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Abstract 16 

 17 

Tephrochronology is increasingly being utilised as a key tool for improving chronological 18 

models and correlating disparate palaeoclimatic sequences. For many sedimentary 19 

environments, however, there is an increased recognition that a range of processes may 20 

impart a delay in deposition and/or rework tephra. These processes can affect the integrity of 21 

tephra deposits as time-synchronous markers, therefore, it is crucial to assess their 22 

isochronous nature, especially when cryptotephras are investigated in a dynamic marine 23 

environment. A methodology for the identification and characterisation of marine 24 

cryptotephras alongside a protocol for assessing their integrity is outlined. This methodology 25 
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was applied to a wide network of North Atlantic marine sequences covering the last glacial 26 

period. A diverse range of cryptotephra deposits were identified and, based on similarities in 27 

physical characteristics (e.g. glass shard concentration profiles and geochemical 28 

homogeneity/heterogeneity), indicative of common modes of tephra delivery and post-29 

depositional reworking, a deposit type classification scheme was defined. The presence and 30 

dominance of different deposit types within each core allowed an assessment of spatial and 31 

temporal controls on tephra deposition and preservation. Overall, isochronous horizons can 32 

be identified across a large portion of the North Atlantic due to preferential atmospheric 33 

dispersal patterns. However, the variable influence of ice-rafting processes and an interplay 34 

between the high eruptive frequency of Iceland and relatively lower sedimentation rates can 35 

also create complex tephrostratigraphies in this sector. Sites within a wide sector to the south 36 

and east of Iceland have the greatest potential to be repositories for isochronous horizons that 37 

can facilitate the synchronisation of palaeoclimatic records. 38 

 39 

Keywords: Quaternary; palaeoceanography; tephrochronology; North Atlantic; transport and 40 

deposition; marine cores; glass shard concentrations 41 

 42 

1. Introduction  43 

 44 

Deposits of volcanic ash, tephra, can act as time-synchronous marker horizons linking 45 

palaeoclimatic sequences to help improve chronological models and assess the relative timing 46 

of climatic changes (Lowe, 2011). Two fundamental principles that underpin the application 47 

of tephrochronology are the rapid deposition of ash at all sites, i.e. instantaneous in 48 

geological terms, and that the stratigraphic position of the ash in a sequence directly relates to 49 

the timing of the volcanic eruption. Processes that either delay the transportation of ash 50 
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particles to a site or rework the material following initial deposition can have major impacts 51 

on the integrity of deposits as well-resolved isochronous markers. The operation of such 52 

processes has been investigated in many sedimentary environments (e.g. Ruddiman and 53 

Glover, 1972; Austin et al., 2004; Davies et al., 2007; Brendryen et al., 2010; Payne and 54 

Gehrels, 2010; Pouget et al., 2014; Todd et al., 2014; Hopkins et al., 2015; Watson et al., 55 

2015; Zawalna-Geer et al., 2016) and are particularly crucial for cryptotephras, due to the 56 

absence of any visible stratigraphic features that would identify the position of the isochron, 57 

and hence the timing of deposition, and draw attention to any post-depositional reworking 58 

(Davies, 2015). For the marine environment it is critical to consider these processes due to its 59 

dynamic nature and the wide range of potential influences, especially when investigating 60 

sediments from glacial periods and high-latitude settings where ice-rafting processes could be 61 

a significant complicating factor.  62 

 63 

Isochronous tephra deposits are formed in the marine environment if primary tephra fallout is 64 

deposited on the ocean surface, rapidly transported through the water column, deposited on 65 

the seabed and then preserved in the sediment by subsequent marine sedimentation (Figure 66 

1). However, deposition onto other surfaces, e.g. ice sheets and sea-ice, subsequent rafting, 67 

and post-depositional reworking and redistribution processes, such as bioturbation and 68 

sedimentary loading, can have a major impact on the integrity of tephra deposits in this 69 

environment (Figure 1). For instance, these processes can affect the stratigraphic position of a 70 

tephra, a pertinent issue for marine sequences due to their lower resolution relative to other 71 

records, and potentially compromise the use of the deposit as an isochron. Therefore, it is 72 

essential that a full assessment of the sedimentation and depositional processes influencing 73 

the preservation, form and isochronous nature of marine cryptotephra deposits is undertaken. 74 
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This is especially important if tephra or cryptotephra horizons are to be used as tie lines to 75 

assess the relative timing of climatic changes between depositional environments.  76 

 77 

Here we present an optimised protocol for marine cryptotephra studies that builds on 78 

previous studies, such as, Austin et al. (2004), Brendryen et al. (2010), Abbott et al. (2011, 79 

2013, 2014, 2016), Davies et al. (2014) and Griggs et al. (2014), which used similar methods 80 

and indicators to assess visible or cryptotephra deposits within single core sequences. Our 81 

examples are derived from a range of depositional settings in the North Atlantic region 82 

(Figure 2), but the methodological approach could be applicable to many other marine 83 

settings. Within our approach, cryptotephras are identified and characterised using density 84 

separation, magnetic separation and electron probe micro-analysis (EPMA) techniques. We 85 

then employ a series of indicators to assess the isochronous nature of tephra deposits in the 86 

North Atlantic. These include (i) high-resolution shard concentration profiles, (ii) glass shard 87 

size variations, (iii) comprehensive single-shard geochemical analysis, and (iv), when 88 

available, co-variance with ice-rafted debris (IRD). With a focus on the time-period between 89 

60-25 cal ka BP in the North Atlantic we define several key types of cryptotephra deposit. 90 

These are manifested as variations in glass shard concentrations, that share characteristics, 91 

such as shard concentrations profiles and geochemical compositions, which are interpreted as 92 

being indicative of common transport, depositional and post-depositional processes. The 93 

cryptotephra deposit types provide a basis for assessing the dominant controls on tephra 94 

deposition in different areas and time periods. Given the widespread core network employed 95 

in this study we pinpoint sectors of the North Atlantic Ocean that preferentially preserve 96 

isochronous deposits and these underpin a marine tephra framework presented in Abbott et al. 97 

(in revision). These horizons are the most valuable for establishing independent high-98 
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precision correlations to the Greenland ice-core records to assess the relative timing of abrupt 99 

climate changes. 100 

 101 

2. Methodology 102 

 103 

2.1 Core Network 104 

 105 

Thirteen marine sequences are included in our core network and each record was investigated 106 

using the same methodological approach (Figures 2 and 3; Table 1). Cores with well-107 

developed proxy records were prioritised due to the overarching goal of assessing the relative 108 

timing of abrupt climate changes during the last glacial period. In addition, cores from areas 109 

with high sedimentation rates and sufficient material for contiguous tephra sampling were 110 

selected. Overall the network has a wide geographical spread. However, in some instances 111 

paired cores from nearby locations were investigated to assess the stratigraphic integrity of 112 

individual tephra deposits. It was not always possible to fulfil all of these requirements. For 113 

instance, contiguous samples were not available from MD95-2024 and two sites, M23485-1 114 

and GIK23415-9, do not have well-resolved records of abrupt climate changes. However, 115 

these sites were included to increase the geographical extent and capture a wide range of 116 

depositional settings.  117 

 118 

2.2 Identification of cryptotephra deposits 119 

 120 

Cryptotephras were identified and characterised according to the methodological protocol 121 

outlined in Figure 3. Although most aspects of this marine-focussed methodological approach 122 

have been described separately in previous studies, here we synthesise the full procedure. 123 



6 
 

Core sequences were initially analysed at a low-resolution (5 or 10 cm sampling intervals) 124 

using contiguous samples, i.e. samples taken along the whole length of depth intervals with 125 

no gaps between samples, to provide an initial quantified assessment of tephra content (i.e. 126 

glass shards) for the whole period of interest. Selected intervals were then reanalysed at a 127 

high-resolution (1 cm depth intervals) depending on a range of factors, outlined in Section 3, 128 

consistent with other studies of both marine and terrestrial sequences (e.g. Pilcher and Hall, 129 

1992; Lane et al., 2015; Matthews et al., 2015). Both low and high-resolution samples were 130 

processed according to the workflow outlined in Figure 3. 131 

 132 

Within the protocol, samples are sieved to isolate glass shards in three recommended size 133 

fractions (>125 µm, 80-125 µm and 25-80 µm). This separation and focus on fine-grain sizes 134 

is a development from prior studies that focused on coarser grain size fractions (e.g. >150 µm 135 

- Austin et al., 2004, Voelker and Haflidason, 2015; 63-125 µm and 125-150 µm – Brendryen 136 

et al., 2010), most typically utilised in the identification of foraminifera. The development 137 

was driven by the increased identification of cryptotephras as fine-grained deposits in distal 138 

sequences (Davies, 2015). The smallest grain-size fraction (25-80 µm) was split using heavy 139 

liquid separation into density fractions most likely to contain glass shards, a method initially 140 

developed to identify tephras or cryptotephras in terrestrial sediments (Hodder and Wilson, 141 

1976; Turney, 1998; Blockley et al., 2005). Magnetic separation is an additional step utilised 142 

to separate paramagnetic basaltic material from minerogenic material with a similar high 143 

density (>2.5g/cm3; Griggs et al., 2014). Whilst magnetic separation is infrequently employed 144 

for terrestrial sequences, e.g. Mackie et al. (2002), it is routinely applied in this investigation 145 

to aid the isolation and identification of basaltic glass. The high number and proportion of 146 

basaltic horizons, relative to rhyolitic horizons, identified in this study demonstrates the value 147 

of including this step of magnetic separation within marine cryptotephra studies in the North 148 
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Atlantic. During low-resolution analysis, magnetic separation was only utilised on the 25-80 149 

µm size fraction, because the time required for this process was longer than the time required 150 

to count shards from an unseparated sample of the coarser-grained fractions. However, during 151 

preparation of samples for geochemical analysis these coarse-grained fractions were 152 

magnetically separated alongside the 25-80 µm fraction to provide a purer basaltic glass 153 

sample.   154 

 155 

If a low-resolution tephrostratigraphy was being constructed, all fractions were inspected for 156 

glass shard content using optical microscopy (i.e. >125 µm, 80-125 µm, 2.3-2.5 g/cm3 and 157 

the >2.5 g/cm3 magnetic fraction; step 12 in Figure 3). However, when glass shard 158 

concentration profiles were refined at a higher 1 cm sampling resolution, some fractions were 159 

not inspected. For example, if no rhyolitic material was present at a low resolution then the 160 

2.3-2.5 g/cm3 fraction was not inspected. 161 

 162 

Depending on the nature of the samples and the glass contained within a sequence, alternative 163 

or additional steps were occasionally adopted (Figure 3). For instance, in some cores 164 

sediment clusters, that appear to consist of sediment bound together by biogenic silica, were 165 

observed (see also Ponomareva et al., 2018). These clusters were broken down using a weak 166 

treatment of sodium hydroxide (NaOH) (step 5). This chemical treatment could also be 167 

undertaken after step 3 of the method if clusters are known to be present following initial 168 

investigations. In such cases, the HCl should be washed out of the sediments, but no re-169 

sieving is necessary. NaOH has previously been used in cryptotephra studies to remove 170 

biogenic silicates (e.g. Rose et al., 1996), with samples warmed to 90°C for 4 hours. 171 

However, it was found that treatment at room temperature for 1 hr was sufficient to 172 

disaggregate the sediment clusters in this study. As a precaution, NaOH treatment was 173 
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avoided when samples were being prepared for geochemical analysis, as it has been 174 

suggested that NaOH could cause geochemical modification (e.g. Blockley et al., 2005). 175 

However, other studies have shown that such treatments do not affect the glass composition 176 

(e.g. Steinhauser and Bichler, 2008) and experimentation by Ponomareva et al. (2018) 177 

indicates that electron-probe micro analysis (EPMA) analyses are unaffected by this weak 178 

NaOH treatment. 179 

 180 

To quantify exceptionally high shard concentrations (~>10,000 per 0.5 g dry weight sediment 181 

(dws)), samples were spiked with Lycopodium spore tablets containing a known quantity of 182 

pollen grains (step 10 in Figure 3). The threshold of 10,000 glass shards per 0.5 g dws is 183 

recommended as this roughly equivalent to the number of pollen spores present in a tablet. 184 

The ratio between glass shards and pollen grains is then used to quantify shard concentrations 185 

(e.g. Griggs et al., 2014). This is an adaption of a standard pollen counting approach 186 

previously applied to tephra and cryptotephra studies by Gehrels et al. (2006). Typically, it is 187 

not known if this quantification approach is required until low-resolution analysis has been 188 

conducted. Hence, if high shard concentrations were observed in low-resolution samples and 189 

it became apparent that shard concentrations would exceed 10,000 shards, then counting was 190 

halted and the additional step of spiking samples was incorporated into high resolution 191 

analysis of those sections.  192 

 193 

2.3 Geochemical analysis of cryptotephra deposits 194 

 195 

Shard concentration profiles are employed to select samples for geochemical analysis using 196 

the criteria outlined in Section 3. Samples were re-processed using steps 1-9 of the procedure 197 

in Figure 3, but, the fractions of interest were then mounted in epoxy resin on 28 × 48 mm 198 
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microprobe slides to permit the sectioning of the glass shards (Figure 3). When high shard 199 

concentrations were present, all material from the fraction was mounted directly on to the 200 

slides. When glass shards were present only at a low concentration (~<50 per 0.5 g dws) they 201 

were picked onto a microprobe slide using a micromanipulator. Shards prepared by this 202 

method are easier to locate during sectioning and EPMA analysis. Flat and polished sections 203 

through the individual glass shards were produced for EPMA analysis using decreasing 204 

grades of silicon carbide paper and 9, 6 and 1 µm diamond suspensions.  205 

 206 

EPMA was conducted at the Tephra Analytical Unit, University of Edinburgh, using a 207 

Cameca SX100 with five wavelength dispersive spectrometers over a number of analytical 208 

periods. All shards were analysed using the same operating conditions outlined in Hayward 209 

(2012). Pure metals, synthetic oxides and silicate standards were used for calibration. The 210 

secondary standards of Cannetto Lami Lava, Lipari and BCR2g were analysed at regular 211 

intervals to monitor for instrumental drift within analytical sessions, to assess the precision 212 

and accuracy of analysed samples and to provide a cross-check of the comparability of 213 

analyses between analytical periods. A comparatively large number of shards (~20-40 214 

individual shards) were analysed for each deposit to provide comprehensive characterisations 215 

that underpin the assessment of taphonomic processes, depositional controls and the 216 

isochronous nature of deposits. For all analysis and data comparison the major element data 217 

were normalised to an anhydrous basis, i.e. 100 % total oxides. However, the geochemical 218 

data utilised here are provided as raw analyses in the Supplementary Data alongside 219 

secondary standard analyses. 220 

 221 

3. Constructing a tephrostratigraphy 222 

 223 
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The two major indicators that we employ to assess the integrity of marine tephra deposits are 224 

(i) contiguous high-resolution shard concentration profiles and (ii) rigorous geochemical 225 

characterisation of the glass shards. These are the key aspects of the tephrostratigraphies 226 

defined in this work. Constructing a tephrostratigraphy, however, involves a series of 227 

selections and we illustrate our approach, which aimed for consistency and comparability 228 

between cores, with reference to the record of brown (basaltic) shards in the MD99-2251 core 229 

from the Iceland Basin between 1650-1950 cm depth (Figure 4). There was a distinct lack of 230 

colourless shards in this core section but a slight increase was observed towards the base, 231 

which can be related to reworking and redistribution of the underlying North Atlantic Ash 232 

Zone II (NAAZ) II (see Section 4). 233 

 234 

First a low-resolution shard concentration profile is constructed to determine the overall 235 

presence of cryptotephra and to define the background level of glass shards within a sequence 236 

(e.g. Figure 4a). All notable shard peaks were then re-analysed at a high-resolution (1 cm 237 

sampling interval) to refine their stratigraphic position. This step is crucial because the peak 238 

in concentration is typically thought to represent the timing of atmospheric fallout from a 239 

volcanic event (e.g. Ruddiman and Glover, 1972; Jennings et al., 2002; Davies et al., 2012). 240 

Theoretically it is possible for the maximum shard concentration peak to lie below the 241 

original depth of deposition, based on an interplay of the extent of mixing within and depth of 242 

the mixing layer and the sedimentation rate at the site, but, the impact of such mixing has 243 

been assessed as negligible in practice (Berger and Heath, 1968; Ruddiman and Glover, 244 

1972). Indeed, our focus on high sedimentation rate sites would negate this effect, however, it 245 

is recommended that the potential influence of mixing on the isochron position is considered 246 

for individual horizons if they are to be used as isochronous tie-lines between sequences.  247 

 248 
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Selecting which peaks to refine at a 1 cm sampling resolution depends on the peak versus 249 

background concentrations, the shape and discreteness of peaks and replication across grain-250 

size fractions (e.g. Figure 4a). To some extent there is subjectivity in the selection of peaks 251 

and no consistent concentration thresholds could be defined because of variability in peak 252 

and background shard concentrations both within and between the core sequences. In most 253 

instances, but not exclusively, shard concentrations in the 25-80 µm fraction displayed the 254 

greatest variability and occurrence within the records and were the prime criteria for these 255 

selections (e.g. Figure 4a). For some cores, high-resolution investigations were extended over 256 

intervals wider than the main peaks to provide a greater constraint on shard concentration 257 

variations (e.g. between 1678-1698 cm in MD99-2251; Figure 4a) and/or additional samples 258 

were analysed to determine if smaller peaks were due to increased input of material from a 259 

volcanic event or general fluctuations in background shard concentrations (e.g. between 260 

1869-1874 cm and 1879-1884 cm in MD99-2251; Figure 4a).  In addition, the time required 261 

for processing and analysing the number of selected samples was considered.  262 

 263 

Reanalysing selected sections at a high-resolution allows an integrated shard concentration 264 

profile to be constructed (e.g. Figure 4b) that, in general, constrains the shard peaks to 265 

vertical distances of 1 or 2 cm in a core, and higher concentrations were normally observed in 266 

the high-resolution counts (e.g. peaks at 1680-1681 cm and 1904-1905 cm depth in MD99-267 

2251; Figure 4b). This observation was anticipated because the low-resolution counts should 268 

provide an average of the glass shard concentration over the sampling interval and has been 269 

observed for other cores within the network. However, in some cases lower peak 270 

concentrations or very few shards were observed in the high-resolution samples (e.g. the 271 

1869-1874 and 1879-1884 cm sections in MD99-2251; Figure 4b). This mis-match may be 272 

due to uneven lateral distribution of glass shards within core sequences, a lack of horizontal 273 
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continuity or glass shards being constrained in pods or lenses. Glass shard distributions of 274 

this nature have been observed in thin section (2D) and X-ray microtomography (3D) 275 

analysis of North Atlantic marine tephra sediments (Griggs et al., 2014, 2015). These 276 

additional 2D and 3D methods can provide further sedimentological information to aid 277 

isochron placement and the interpretation of post-depositional processes, however, at present 278 

they have not been widely applied to tephra deposits in our network.  279 

 280 

Once an integrated tephrostratigraphy is defined, shard peaks are selected for geochemical 281 

analysis to allow the assessment of volcanic source and deposit integrity. Peaks were selected 282 

using criteria akin to those used to pinpoint samples for high-resolution analysis, i.e., 283 

discreteness relative to background concentrations, replication across grain-size fractions and 284 

processing and analysis time (e.g. Figure 4b). On occasions, glass shards from long upward 285 

tails in deposition or secondary peaks were analysed to provide further insights into the 286 

nature of individual deposits (see Section 4.1). 287 

 288 

4. Results 289 

 290 

4.1 Classification of individual tephra deposits 291 

 292 

We utilised the approach outlined above to construct a tephrostratigraphic record for all cores 293 

within our network and tephra deposits were identified in the vast majority of records. Glass 294 

shard concentration profiles, geochemical characterisations and other indicators, such as 295 

shard size and co-variance with IRD, were integrated for these cryptotephra deposits to define 296 

a deposit type classification scheme (Table 2). Six deposit types that each share similar 297 

physical characteristics reflecting common modes of delivery and post-depositional 298 
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reworking are identified (Table 2). This classification scheme is mainly based on deposits of 299 

brown glass shards (i.e. basaltic material) due to the relative lack of colourless shard deposits. 300 

However, Type 3, is an exception and is based on deposits that are most commonly 301 

associated with colourless shards related to NAAZ II, the most widespread silicic tephra 302 

found within our core network.  303 

 304 

Deposit Types 1,2 and 3 are all characterised by distinct concentration peaks, however, their 305 

profiles vary in form, displaying discrete (e.g. Figure 5a(i)), bell-shaped (e.g. Figure 6a(i)) 306 

and asymmetric (e.g. Figure 7a(i)) forms, respectively, and in vertical spread ranging from 1 307 

cm to up to 100 cm (Table 2). These contrasting features are attributed to variable shard 308 

concentrations between the deposit types and differential influence of post-depositional 309 

reworking. For instance, the low shard concentrations of Type 1 deposits contribute towards 310 

their discreteness. Whilst this discreteness may result from limited post-depositional 311 

reworking, it is also possible that the low concentration of glass shards deposited at the sea-312 

bed is not an adequate tracer of such activity. Reworking such as bioturbation, however, 313 

would most likely not impact the isochron position (see Section 3). In contrast, the higher 314 

glass shard concentrations associated with Type 2 deposits allows the glass shards to act as a 315 

tracer for bioturbation (e.g. Ruddiman and Glover, 1972; Griggs et al., 2015), which creates 316 

the upward and downward tails in deposition and roughly bell-shaped profile. This shard 317 

distribution pattern has often been viewed as the classic form of tephra deposits preserved in 318 

marine records (e.g. Ruddiman and Glover, 1972).  319 

 320 

For Type 3 deposits the extremely high shard concentrations rapidly isolated underlying 321 

sediment from bioturbative activity and restricted downward migration of shards, as observed 322 

for the FMAZ II deposit in Griggs et al. (2015). The upward tail and continued deposition of 323 
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glass is primarily attributed to secondary deposition of glass shards from the same volcanic 324 

event from the surrounding sea-bed due to bottom current transportation. Bioturbative 325 

reworking may have also contributed towards increasing the overall vertical spread of these 326 

deposits. In combination these two factors create the observed asymmetric profile (e.g. Figure 327 

7a(i); Table 2). Additional samples in the overall declining concentration profile of Type 3 328 

deposits were sometimes analysed, particularly when subsidiary peaks were observed, in case 329 

any subsequent volcanic events were obscured within the upward tail. In all instances these 330 

additional analyses had an identical composition to shards in the main peak, corroborating the 331 

assertion that the upward tail was formed mainly through reworking of material from a single 332 

eruption (e.g. Figure 7a(i)).  333 

 334 

Deposit Types 1, 2 and 3 are most likely derived from single depositional events, yet their 335 

isochronous nature can only be fully determined by assessing the relative homo/heterogeneity 336 

of their geochemical signature. Type 1 and 3 deposits have a homogeneous major element 337 

signature, i.e. all analysed shards form a single geochemical population most likely sourced 338 

from one volcanic eruption, which strongly suggests that they were deposited via primary fall 339 

and are useful isochronous tephra markers (e.g. Figure 5a(ii) for Type 1 deposits and Figure 340 

7a(i) for a Type 3 deposit). Type 2 deposits are sub-divided into Type 2A, which have a 341 

homogeneous composition, and Type 2B, which have a heterogeneous composition with the 342 

analysed shards forming multiple populations and/or revealing a wide spread of analyses with 343 

high variability and limited consistency. Figures 6a and 6b provide examples of homogeneity 344 

based on major element analyses for two Type 2A deposits, whilst, Figure 5b provides 345 

examples of the heterogeneity observed for two Type 2B deposits. This sub-categorisation is 346 

important as the homogeneous Type 2A deposits are likely to be isochronous, akin to Type 1 347 

and 3 deposits, while the heterogeneity of Type 2B deposits most likely reflects the 348 
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deposition of products from multiple eruptions and probably secondary transport processes 349 

that affect the isochronous nature of the horizons. For example, geochemical heterogeneity is 350 

a key indicator of transport via iceberg rafting and/or the amalgamation of the products of 351 

closely timed eruptions (Griggs et al., 2014). An additional line of evidence for Type 2B 352 

deposits is co-variance of shard concentrations with IRD records. The relative proportion of 353 

shards across the different grain-size fractions can also help determine transport processes 354 

because sea-ice rafting typically transports shards larger than would be expected via primary 355 

fallout to distal sites (e.g. Austin et al., 2004). Overall, for Type 2 deposits a careful 356 

assessment of a range of key indicators is required to determine their value as isochronous 357 

deposits.  358 

 359 

In contrast to the single concentration peaks displayed by deposit Types 1, 2 and 3, Type 4 360 

deposits display multiple peaks over a period of elevated shard concentrations whereas Type 361 

5 deposits are characterised by glass shards in multiple consecutive samples, but with no 362 

clear pattern or peaks in shard concentrations (Table 2). In most cases, the multiple peaks 363 

seen in the Type 4 deposits display similar major element geochemical signatures but they are 364 

typically heterogeneous, e.g. the 456-473 cm depth deposit widely dispersed in MD04-365 

2820CQ (Figure 7b; Abbott et al., 2016). This compositional pattern indicates that the entire 366 

deposit is an amalgamation of eruptive material from several, closely-timed, volcanic 367 

eruptions and that the multiple peaks are the product of secondary transport processes (e.g. 368 

bioturbation and bottom current reworking) rather than primary fallout. Alternatively, the 369 

glass shards found in Type 4 deposits may have been amalgamated during deposition on the 370 

Icelandic ice-sheet and subsequently transported to core sites via iceberg rafting. As with 371 

Type 2B deposits, further insights into the mode of deposition may be gained by comparing 372 

shard concentration profiles with iceberg rafting proxies. Without a distinct concentration 373 
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peak or geochemical evidence that they were sourced from a single eruption, Type 4 deposits 374 

typically cannot be utilised as isochronous marker horizons for high-precision correlations. 375 

However, they have the potential to be used as regional marine-marine core tie-lines, as 376 

suggested for FMAZ III by Abbott et al. (2016).  377 

 378 

Type 5 deposits are commonly identified during low-resolution investigations. Only selected 379 

deposits were re-evaluated at a high-resolution and for geochemical composition.  No distinct 380 

concentration peaks were identified, and geochemical analyses revealed heterogeneous 381 

populations of shards that were geochemically identical to those of underlying deposits, e.g. 382 

NAAZ II. As such, Type 5 deposits are interpreted as a background of glass shards that are 383 

deposited at the core sites and dispersed in the sediment column by remobilisation and 384 

reworking processes. These background signals vary between sites and may mask and 385 

hamper the identification of primary fall events that resulted in deposition of glass shards 386 

only in low concentrations. High-resolution analysis coupled with intensive geochemical 387 

characterisation may isolate such events and would be appropriate if specific volcanic events 388 

were being targeted. However, this was not feasible within our extensive core network. 389 

 390 

4.2 Categorising core sequences using the tephra classification scheme 391 

 392 

The tephra classification scheme has been employed to categorise the cores according to the 393 

presence and dominance of different deposit types. Four core categories have been identified 394 

(Figure 8) and range from sites dominated by primary fall deposits (sites marked in green) to 395 

sites with deposits affected by secondary processes (sites marked in red). In addition, very 396 

few shards were identified in the northernmost (JM04-25PC from the Western Svalbard 397 

slope) and southernmost (MD01-2444 from the Iberian Margin) records. Trace amounts (1-2 398 
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shards) were identified in some low-resolution samples but none were replicated as 399 

significant deposits during high-resolution analysis.   400 

 401 

4.2.1 Core dominated by Type 1 deposits  402 

 403 

Only two marine sequences exclusively contain Type 1 deposits, MD04-2822 from the 404 

Rockall Trough and MD04-2829CQ from the Rosemary Bank (Figure 8). The Type 1 405 

deposits comprise discrete peaks in brown shard concentrations constrained vertically within 406 

~1 cm and both sites have a limited background of brown shards over the zone of interest 407 

(e.g. Figure 5a(i)). Shards from the discrete peaks have single homogeneous geochemical 408 

populations that can be directly related to single volcanic source regions (Figure 5a(ii)) and 409 

hence likely represent isochronous marker horizons. The shard concentrations were low (~5-410 

40 shards per 0.5 g dws in the 25-80 µm fraction) and occasionally replicating these peaks to 411 

extract shards for geochemical analysis was challenging. This lack of replication may be a 412 

consequence of the uneven distribution of shards within the cores. However, the successful 413 

identification of these Type 1 deposits does demonstrate how the approach adopted in this 414 

work can be used to trace such low concentration deposits.  415 

 416 

4.2.2 Cores containing single occurrences of Type 2A deposits 417 

 418 

Two cores, MD95-2010, from the Norwegian Sea, and MD01-2461, from the Porcupine 419 

Seabight, each contain just one significant tephra deposit with bell-shaped shard 420 

concentration profiles (Figure 6a(i) and b(i)).  These deposits were identified because 421 

significant numbers of shards were isolated over 10-20 cm intervals in the low-resolution 422 

counts. Given their homogeneous geochemical compositions, these are both classified as 423 
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Type 2A deposits (Figure 6a(ii) and b(ii)) and are thus thought to be isochronous markers. 424 

Evidence of upward reworking within MD01-2461 is seen as a small subsidiary shard peak, 425 

positioned 4-5 cm above the highest shard concentrations, with an identical geochemical 426 

composition at both depths (Figure 6b). In both cores only trace amounts (<2-3) of shards 427 

were present in the rest of the low-resolution samples, apart from ~10 shards identified 428 

around NAAZ II in MD95-2010. 429 

 430 

4.2.3 Cores containing mixed deposit types 431 

 432 

Five of the core sites have been grouped into this category (Figure 8) and contain a range of 433 

deposit types. Type 2 deposits dominate and these are typically relatively discrete with high 434 

shard concentrations, but the geochemical compositions range between homogeneous (Type 435 

2A) and heterogeneous (Type 2B). Type 4 deposits are also present in some sequences and at 436 

most sites the rhyolitic component of NAAZ II is present as a Type 3 deposit. The MD04-437 

2820CQ record is a prime example of this mixed category. It contains a number of Type 2 438 

deposits, with differing geochemical homogeneity, the FMAZ III as a Type 4 deposit and the 439 

NAAZ II rhyolitic component as a Type 3 deposit (Abbott et al., 2016). The variability in 440 

tephra deposit types means that a careful assessment of individual deposits is required and 441 

strongly suggests that the depositional controls at sites in this category varied temporally 442 

throughout the last glacial period. 443 

 444 

4.2.4 Core dominated by Type 2B and Type 4 deposits 445 

 446 

Two cores have been grouped within this category, SU90-24 from the Irminger Basin and 447 

M23485-1 from the Iceland Sea (Figure 8). These sites are characterised by multiple glass 448 
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concentration peaks within a high background level of shards, e.g. 1,000-10,000s of shards 449 

per 0.5 g dws. Peaks in shard concentration are not well-resolved in these records and the 450 

distinct contrast between SU90-24 and a Type 1 dominated core (MD04-2822) is shown in 451 

Figure 5. For SU90-24, single-shard analyses from some of the concentration peaks have 452 

highly heterogeneous geochemical signatures, with a wide range of major oxide values that 453 

span several different Icelandic volcanic systems (Figure 5b). Given the shard concentration 454 

profiles and compositional results, these deposits are classified as Type 2B and Type 4. 455 

M23485-1 is dominated by Type 4 deposits with two major depositional pulses of 456 

heterogeneous basaltic and rhyolitic material. Overall, the deposits found in these cores 457 

cannot be considered as isochronous horizons.  458 

 459 

5. Discussion - Controls on Ash Deposition and Preservation 460 

 461 

The core categorisation highlights that a diverse range of tephrostratigraphies were preserved 462 

during the last glacial period across the North Atlantic. Geographical clustering of similar 463 

core sites suggests that there were both spatial and temporal controls on ash deposition. 464 

Various factors could have controlled the transport and deposition of tephra, including (i) the 465 

nature of volcanism inputting tephra into the system, (ii) atmospheric dispersal patterns and 466 

distance from eruptive source, (iii) rafting by icebergs and sea-ice and (iv) the rate and nature 467 

of sedimentation. Local factors may have also operated at individual cores sites. Through an 468 

assessment of these factors we propose that for our core categories common controls 469 

operating within different sectors of the North Atlantic can be identified (Figure 9).  470 

 471 

5.1 Frequency and composition of Icelandic volcanism 472 

 473 
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The marine tephra records are ultimately controlled by the nature and frequency of Icelandic 474 

eruptions as these provide the primary input of tephra into the North Atlantic. Currently the 475 

most well-resolved record of Icelandic eruptions during the glacial period is derived from the 476 

Greenland ice-cores (Bourne et al., 2015) as proximal records are relatively limited due to the 477 

removal of material by glacial activity and the burial of deposits by subsequent volcanic 478 

activity. Within the Greenland ice-cores over 99 tephra or cryptotephra deposits have been 479 

identified in this time-period, which is significantly higher than the number identified within 480 

our marine tephra framework but could suggest that some of the marine deposits have 481 

amalgamated material from multiple eruptions (e.g. FMAZ III in JM11-19PC and MD04-482 

2820CQ; see Figure 7b). Within our core network there is a greater abundance of basaltic 483 

horizons in comparison to rhyolitic deposits, which is consistent with the Greenland ice-core 484 

records, where 95 % of the deposits are basaltic (Bourne et al., 2015). This dominance of far-485 

travelled basaltic material within distal sites could be due to the increased ice cover during 486 

the last glacial period which implies that the horizons were derived from subglacial 487 

phreatomagmatic eruptions, which can enhance the explosivity of basaltic eruptions due to 488 

the presence of water (Larsen and Eiríksson, 2008).  The relative lack of rhyolitic horizons in 489 

the ice-cores suggests that the rhyolitic background of shards observed in many of the marine 490 

records is most likely due to reworking of material from NAAZ II, rather than resulting from 491 

subsequent volcanic activity.  492 

 493 

5.2 Atmospheric dispersal patterns and proximity to Iceland  494 

 495 

Following a volcanic eruption, the wind-driven dispersal patterns will largely dictate the 496 

location of fall deposits. The proximity of a core site to the volcano is important as the grain-497 

size, shard concentration and thickness of airfall deposits decreases exponentially away from 498 
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the eruptive source. Atmospheric transport skews this relationship with extended transport of 499 

material along transport axes downwind from the eruptive source and this bias is more 500 

evident at distal sites (Sparks et al., 1981; Pyle, 1989; Lacasse, 2001). 501 

 502 

The four cores solely preserving deposits thought to be transported via primary ashfall (i.e. 503 

sites marked green and orange containing Type 1 and Type 2A deposits: MD95-2010, MD04-504 

2829CQ, MD04-2822 and MD01-2461; Figure 9) are located between the south and east of 505 

Iceland. This oceanic sector stretches from the south coast of Ireland to the west coast of 506 

Norway, with the two green sites containing multiple deposits lying close together towards 507 

the SE off the west coast of Scotland (Figure 9). Other sites that preserve a mix of deposit 508 

types including some deposited via atmospheric transport, i.e. yellow coded sites, also 509 

generally lie to the south and east of Iceland with the exception of MD95-2024 (Figure 9). 510 

This clustering of sites suggests that tephra was transported from Iceland via westerly winds, 511 

consistent with dominant wind patterns and typical plume heights of Icelandic eruptions.  512 

 513 

Modern observations indicate that over Iceland wind direction changes progressively with 514 

altitude in the troposphere, with easterlies dominating at ground level shifting to southerly at 515 

a low level (1.4 km) and westerlies in the upper troposphere and lower stratosphere between 516 

9-15 km throughout the year (Lacasse, 2001). Above 15 km altitude seasonal variability is 517 

observed with strong westerlies during the autumn and winter and relatively weak easterlies 518 

during the spring and summer (Lacasse, 2001). The modern atmospheric patterns are utilised 519 

as an analogue for dispersal of tephra during the glacial period as the reconstruction of glacial 520 

wind patterns is uncertain. Studies do suggest, however, that surface circulation was more 521 

intense over the North Atlantic during the last glacial period (e.g. Kutzbach and Wright, 522 

1985; Mayewski et al., 1994;). Plume heights from modern basaltic eruptions similar in 523 
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nature to those that occurred during the last glacial period (e.g. Vatnajökull 1996, Hekla 524 

2000, Grímsvötn 2004 and 2011 and Eyjafjallajökull 2010) were typically between ~8-15 km 525 

with some reaching 25 km altitude (Gudmundsson et al., 2004; Höskuldsson et al., 2007; 526 

Kaminski et al., 2011; Oddsson et al., 2012; Petersen et al., 2012). For older eruptions, 527 

Lacasse (2001) deduced from proximal and distal grain sizes that the Saksunarvatn Ash, 528 

erupted from Grímsvötn in the early Holocene, produced an eruption column of at least 15 529 

km elevation. Eruptive plume heights together with dominant wind directions suggest that 530 

basaltic tephra was mainly atmospherically transported away from Iceland in an easterly 531 

direction, which is consistent with our findings.  532 

 533 

Southward atmospheric dispersal of some tephras, to core sites such as MD99-2251 and 534 

MD04-2820CQ, may be a consequence of modification by more variable surface wind 535 

conditions that reflect the weather at the time of an eruption (Lacasse, 2001). A similar 536 

scenario was observed for the Eyjafjallajökull 2010 eruption, with weather conditions 537 

exerting a strong influence following initial easterly transport of tephra (Davies et al., 2010). 538 

Other variable influences such as precipitation, the timing of the eruption, style of volcanism, 539 

magma discharge rate and height of eruptive column may have also created differences from 540 

the general pattern for individual eruptions. Although our observations indicate some 541 

dispersal towards the south, no tephra deposits were preserved in the southernmost site 542 

MD01-2444, most likely as a consequence of the long distance between this site and the main 543 

Icelandic source.  544 

 545 

Preferential atmospheric transport of ash to the east and south of Iceland is also consistent 546 

with the identification of tephra fall deposits or cryptotephra deposits from Iceland in 547 

terrestrial deposits from sites in northwest Europe (e.g. Lawson et al., 2012) and their absence 548 
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to the west and southwest of Iceland (e.g. Greenland – Blockley et al., 2015; eastern North 549 

America - Pyne-O’Donnell et al., 2012; Mackay et al., 2016). Cryptotephra is preserved at 550 

the most westerly site, MD95-2024. This core is downwind and the second farthest from 551 

Iceland with greater peak and background shard concentrations relative to closer and 552 

downwind sites such as MD04-2829CQ and MD04-2822. This cryptotephra occurrence 553 

conflicts with the expected atmospheric dispersal pattern of tephra and proximity to source, 554 

strongly indicating that other processes were at times helping to control tephra delivery to the 555 

North Atlantic west of Iceland.  556 

 557 

The observation of limited atmospheric dispersal in a northerly direction from Iceland has 558 

some conflicts with the observations of Bourne et al. (2015), who inferred direct transport of 559 

ash in a north-westerly direction to the Greenland ice-sheet (Figure 9). However, this conflict 560 

could be a consequence of marine sites north of Iceland being more dominantly influenced by 561 

other controls, such as ice-rafting deposition of tephra (see discussion below), which masked 562 

any isochronous primary fall deposits. The distance from source was highly likely to be a 563 

dominant control on the non-preservation of tephra at the most northerly site JM04-25PC. 564 

 565 

Overall, therefore, while atmospheric transport was the primary mechanism delivering tephra 566 

to the sites marked in green and orange on Figure 9 it was only a partial control on the 567 

delivery of tephra to the sites marked in yellow. At those locations other controls had an 568 

additional influence, leading to the identification of some diachronous deposits.  569 

 570 

5.3 Ice-Rafting of Tephra and Ocean Currents 571 

 572 
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The potential for tephra to have been rafted either by sea-ice or icebergs prior to deposition in 573 

the glacial North Atlantic has been highlighted previously and this process can transport 574 

material along different trajectories and further from the source than atmospheric dispersal. 575 

Three distinct areas that preserve tephra deposited by rafting processes, i.e. deposit Types 2B 576 

and 4, have been identified. These areas are the Iceland Sea and Irminger Basin to the north 577 

and west of Iceland (core sites M23485-1 and SU90-24), the mid Atlantic (MD95-2024, 578 

MD99-2251, GIK23415-9, MD04-2820CQ) and northeast of the Faroe Islands (JM11-19PC). 579 

Whilst the Iceland Sea and Irminger Basin were heavily influenced by these processes 580 

throughout the 60-25 cal ka BP period, both Type 2A and Type 2B deposits were preserved 581 

in the other two areas suggesting that the influence of rafting was temporally variable (Figure 582 

8).  583 

 584 

Surface ocean currents have a huge role to play in the trajectory of tephra-bearing sea-ice and 585 

icebergs away from Iceland (Bigg et al., 1996) and thus influence the deposition of tephra at 586 

core sites during melting. Modern surface ocean currents are illustrated on Figure 9 and are 587 

used as an approximate analogue for the glacial period. The North Atlantic Drift (NAD) from 588 

the southwest dominates the warm surface ocean currents and splits into the Irminger Current 589 

south of Greenland and the North Iceland Irminger Current around Iceland before flowing 590 

into the Nordic Seas. Cold currents are dominated by the East Greenland Current flowing 591 

down the east coast of Greenland. A distinct feature of the surface circulation is the subpolar 592 

gyre, an anti-clockwise ocean surface circulation south of Iceland (Figure 9). These surface 593 

ocean currents would have strongly influenced ice-rafting but the source of icebergs and sea-594 

ice extent was also an important factor.  595 

 596 
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The expanded size of the LGM ice-sheet over Iceland suggests that ice calving margins could 597 

have been located all around the island (Figure 9). With the majority of the major volcanic 598 

centres located in the south of the island, icebergs from the southward margin may have 599 

contained a greater concentration of tephra, however, local atmospheric transport north, east 600 

and west of the volcanoes would have contributed material to icebergs calving from all of 601 

these margins. The circulation patterns shown in Figure 9 suggests that icebergs from all 602 

margins could have been transported in surface ocean currents. Sea-ice reconstructions have 603 

shown that its extent over the North Atlantic region varied in time with the DO and Heinrich 604 

events (Hoff et al., 2016). It has been suggested that sea-ice retreated abruptly during the 605 

warming at the start of interstadials, but spread rapidly from the coast of Greenland during 606 

interstadial cooling with perennial sea-ice extending beyond Iceland during cold stadials and 607 

reaching a greater extent during Heinrich events (Figure 9; Hoff et al., 2016). This temporal 608 

variability in sea-ice coverage and its rafting along similar trajectories to those proposed for 609 

icebergs is likely to have played a role in the dispersal of tephra.  610 

 611 

Iceberg rafting from the north coast of Iceland was the likely primary control on tephra 612 

deposition north and west of Iceland. The M23485-1 site lies close to the northern margin of 613 

the LGM Icelandic ice sheet and icebergs calved from this margin could have been entrained 614 

within the East Greenland Current and deposited material over the SU90-24 site. In addition, 615 

sea-ice rafting may have contributed towards this pattern of tephra deposition as the latter site 616 

lies within the stadial perennial ice-sheet limits and would have been covered early in the 617 

advances during interstadial cooling phases. Within the mid-Atlantic area, Icelandic icebergs 618 

transported in the subpolar gyre are likely to have deposited material at both the MD95-2024 619 

and MD99-2251 sites. The MD04-2820CQ and GIK23415-9 sites lie within the IRD Belt, an 620 

area of the North Atlantic within which IRD from the Laurentide Ice Sheet was deposited 621 
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during Heinrich events, and may have been influenced by Icelandic icebergs transported in 622 

this zone by surface currents (Figure 9). Indeed, glass shards have been found in association 623 

with the lithic Heinrich layers (e.g. Obrochta et al., 2014). The influence of sea-ice rafting in 624 

the mid-Atlantic would have been temporally variable throughout the glacial period and 625 

hence should not be ruled out as a potential process for ash transport and deposition as 626 

MD95-2024 and MD99-2251 lie close to the stadial perennial sea ice limit and MD04-627 

2820CQ and GIK23415-9 lie close to the Heinrich event limit (Figure 9). The area to the 628 

northeast of the Faroe Islands, the JM11-19PC site, may have been influenced by both rafting 629 

processes, with icebergs transported from the north coast of Iceland in the North Iceland 630 

Irminger Current and it lies close to the limit of perennial sea-ice during stadial periods. For 631 

all sites potentially affected by rafting processes key indicators such as the level of 632 

geochemical heterogeneity and shard sizes should be utilised to assess the origin of individual 633 

deposits.  634 

 635 

The lack of rafted deposits in the MD04-2822 and MD04-2829CQ cores may be due to the 636 

Rockall Trough, the main pathway by which the warm North Atlantic surface water flows 637 

northward into the Norwegian Sea, effectively isolating them from the influence of Icelandic 638 

icebergs. The sites lie close to the stadial perennial sea ice limit so could be susceptible to sea 639 

ice rafting. However, the tephrostratigraphic records strongly indicate that this process has 640 

not deposited glass at these particular sites. Continuous sea-ice cover can be ruled out as a 641 

potential control on the lack of tephra preservation at the northerly JM04-25PC site. The 642 

reconstructed sea-ice limits from Hoff et al. (2016) suggest that although the site is the most 643 

northerly, sea-ice cover was limited to stadial phases and Heinrich events and was not greater 644 

than at other sites, e.g. SU90-24 and M23485-1, which contain significant cryptotephra 645 

deposits (glass shard concentrations) (Figure 9). 646 
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 647 

5.4 Nature and Rate of Sedimentation 648 

 649 

Sedimentation rates are a further important control on tephra preservation. They provide 650 

information on the nature of sedimentation and slower rates of sedimentation increase the 651 

likelihood that the products of separate but closely timed eruptions are amalgamated. Table 1 652 

presents approximate average sedimentation rates for all the sites in the core network 653 

between 60-25 cal ka BP. In general, all the sites had relatively high sedimentation rates, a 654 

bias created by our prioritisation of sites to include in the network (see Section 2.1).  655 

 656 

These high sedimentation rates may indicate that, in addition to sedimentation occurring 657 

through pelagic settling, bottom currents were also transporting material to the sites (Rebesco 658 

et al., 2014). Thus, the sites incorporated in the network may have an increased susceptibility 659 

to secondary deposition of tephra-derived glass shards via bottom current reworking. This 660 

process could account for the persistent low background levels of glass shards at most sites 661 

(Type 5 deposits) and occasional outlying single shard analyses in the cryptotephra deposits 662 

(see Abbott et al., in revision). However, bottom current reworking does not appear to have 663 

been a significant control on the nature of these tephra records. The only deposit type that we 664 

interpret as being formed and affected by bottom current reworking is Type 3, which can be 665 

attributed to the exceptionally high peak shard concentrations in comparison to the other 666 

deposit types (Table 2). Almost exclusively, Type 3 deposits are NAAZ II occurrences, 667 

unique deposits formed by an event that led to the input of a sufficient concentration of 668 

shards into the oceanic system to be reworked and act as a tracer for bottom current activity. 669 

As with bioturbation, the lack of evidence of reworking for other deposits does not 670 

definitively demonstrate that this process was not occurring, because glass shard tephra 671 
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concentrations could have been too low to be detected using our methods (i.e. insufficient to 672 

act as an adequate tracer). 673 

 674 

There is no clear difference in sedimentation rates between the cores containing only 675 

isochronous deposits (i.e. green and orange marked sites) and those dominated by 676 

heterogeneous secondary deposits (i.e. red marked sites) with estimated rates of 14-20 cm/ka 677 

and 17-19 cm/ka respectively (Table 1; Figure 8). However, in general the sites containing a 678 

mix of deposit types (yellow marked sites; Figure 8) have lower sedimentation rates, between 679 

9-11 cm/ka, apart from the MD95-2024 site which had a rate of 22 cm/ka (Table 1). This 680 

contrast in sedimentation rates is a general reflection of these cores deriving from the deepest 681 

sites in the network, away from terrestrial sediment sources and the higher sedimentation 682 

rates observed on continental shelves (Figure 9). The low sedimentation rates may have 683 

contributed towards the preferential occurrence of Type 2B and Type 4 deposits at these sites 684 

due to the increased likelihood of closely spaced eruptive products being amalgamated. With 685 

Icelandic basaltic tephra horizons in the Greenland ice-cores having an average recurrence 686 

interval of ~1 per 200 years during this period (Bourne et al., 2015), and 200 years being 687 

represented by ~2 cm depth at the sites depicted in yellow (Figure 9) it is highly likely that 688 

closely spaced eruptions were mixed. The lower sedimentation rates would also have 689 

contributed to slower upward migration of the bioturbation mixing zone, promoting the 690 

amalgamation of deposits and vertical elongation of the shard concentration profile for Type 691 

2 deposits. Each deposit must be evaluated individually as these sites may also be heavily 692 

influenced by rafting processes, which can produce Type 2B deposits with geochemical 693 

heterogeneity. Overall, the lower sedimentation rates and thus temporal resolution at all these 694 

sites could account for the lower number of cryptotephra horizons identified within the 695 
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marine core network in comparison to the numbers in the Greenland ice-core records (see 696 

Abbott et al., in revision for further discussion).  697 

 698 

5.5 Local Site Conditions 699 

 700 

Based on their proximity to Iceland, atmospheric dispersal patterns and tephra rafting in the 701 

North Atlantic, it might be expected that MD95-2010 and MD01-2461 would both contain a 702 

number of cryptotephra deposits. Each, however, only contained a single tephra deposit, the 703 

FMAZ IV in MD95-2010 and NAAZ II in MD01-2461, strongly suggesting that another 704 

factor was limiting the deposition of tephra at these sites. Both sites lie close to the former 705 

limits of LGM ice sheets and are amongst the shallowest sites in the network (Figure 9; Table 706 

1). Higher levels of terrigenous sediment deposition might have masked or diluted the glass 707 

shard concentrations at these sites, especially if the non-tephric material was coarse-grained 708 

and/or dense because the shard concentrations presented in this work are referenced to 709 

sediment mass.  710 

 711 

5.6 Summary  712 

 713 

In general, whilst only a small area of the North Atlantic was disposed to solely preserving 714 

isochronous Type 1 and Type 2A deposits, these primary tephra-fall deposits can also be 715 

preserved in a wide area to the east and south of Iceland due to prevalent atmospheric 716 

dispersal patterns. Only a small area to the north and west of Iceland does not preserve any 717 

isochronous primary fall deposits. We suggest that the most significant factor complicating 718 

the tephrostratigraphic records is the rafting of tephra within icebergs and sea-ice, which can 719 

be constrained spatially but also displays temporal variability, particularly at sites within the 720 
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central North Atlantic. In addition, the high frequency of Icelandic volcanic eruptions during 721 

the period provides a constraint on the number of tephra. Despite our focus on sites with 722 

relatively high sedimentation rates, the rates are potentially still too low to enable individual 723 

events to be resolved within the sediment cores.  724 

 725 

6. Conclusions 726 

 727 

This work provides an integrated methodology for the identification of cryptotephras in North 728 

Atlantic marine records alongside a protocol for assessing the integrity of deposits and the 729 

influence of primary and secondary transport and depositional processes based on a 730 

classification scheme for glass shard deposits. A widespread network of cores was studied 731 

and six key glass shard deposit types with common physical characteristics and depositional 732 

and transport histories were identified in these records. The deposits types range from 733 

valuable ash-fall deposited isochronous horizons, to geochemically heterogeneous deposits 734 

with complex histories, to persistent background signals of ash deposition. While the variety 735 

of deposit types observed in the glacial North Atlantic reflects the complexity of processes 736 

controlling the transport, deposition and post-depositional reworking of tephra and may be 737 

unique to this setting, the methodological approach for identification could underpin 738 

investigations in other oceanic regions.  739 

 740 

A regional analysis of the tephrostratigraphic records has shown that a range of different 741 

controls influenced tephra deposition and the deposit types preserved as glass-shard 742 

concentrations at different sites within the North Atlantic over the last glacial period. A key 743 

area to the southeast of Iceland was sheltered from any ice-rafting influence and only 744 

isochronous primary fall deposits have been isolated in these records. However, primary 745 
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deposits were also identified in a wide oceanic sector between the south and east of Iceland, 746 

which could be the focus of future studies to identify further isochronous horizons or to 747 

extend the distribution of those identified within this work. The wider significance of the 748 

isochronous horizons identified in this work is discussed in Abbott et al. (in revision), which 749 

defines a framework of marine tephra horizons for the 60-25 cal ka BP period in the North 750 

Atlantic region. 751 
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Figures Captions 775 

 776 

Figure 1: Flow chart of the transportation and depositional processes that could have affected 777 

tephra within the glacial North Atlantic prior to preservation in marine sediments. Adapted 778 

from Griggs et al. (2014). 779 

 780 

Figure 2: Network of North Atlantic marine cores studied within this work and ice-cores 781 

mentioned within the text. 782 

 783 

Figure 3: Flow chart of the consistent methodology utilised to determine the glass shard 784 

content of cores within the marine network and to extract and prepare such shards for major 785 

element geochemical analysis. NaOH = sodium hydroxide. SPT = sodium polytungstate. 786 

 787 

Figure 4: Example of the construction of a tephrostratigraphy using the MD99-2251 core. (a) 788 

Low-resolution brown glass shard concentration profiles split into three grain-size fractions. 789 

Blue bars denote depth intervals reinvestigated at a 1 cm sampling resolution in the core. (b) 790 

Integrated high and low resolution brown shard counts for the MD99-2251 core. Shard counts 791 

have been truncated for clarity. Shard counts in the 1686-1687 cm sample (*) are 4991, 1862 792 

and 507 shards per 0.5 g dws in the 25-80, 80-125 and >125 µm grain-size fractions, 793 

respectively. The shard counts for the 25-80 µm grain-size fraction from the 1904-1905 cm 794 

sample (**) are 3776 shards per 0.5 g dws. Red bars denote samples depths from which glass 795 

shards were subsequently extracted for compositional characterisation by EPMA. 796 

 797 

Figure 5: Comparison of (i) tephrostratigraphic records and (ii) compositional 798 

characterisations of glass shard deposits from the (a) MD04-2822 and (b) SU90-24 marine 799 
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sequences. Brown shard counts for the 25-80 µm grain-size fraction from 470-500 cm in 800 

SU90-24 have been truncated for clarity. Shard counts exceed 40,000 shards per 0.5 g dws, 801 

but, two peaks could be identified at 480-481 cm and 486-487 cm. Percentage abundance of 802 

Neogloboquadrina pachyderma (sinistral) record for MD04-2822 from Hibbert et al. (2010). 803 

Magnetic susceptibility record for SU90-24 from Elliot et al. (2001). Geochemical fields for 804 

Icelandic source volcanoes are based on normalised whole rock and glass shard analyses 805 

utilised in Bourne et al. (2015) and references within and additional data for the Kverkfjöll 806 

volcano from Gudmundsdóttir et al. (2016). Within MD04-2822 additional discrete peaks can 807 

be observed, e.g. at 1731-1732 cm and 1965-1966 cm. However, it was not possible to 808 

acquire sufficient material for geochemical characterisation. All geochemical data plotted on 809 

a normalised anhydrous basis. 810 

 811 

Figure 6: Examples of shard concentration profiles and geochemical characterisations for 812 

Type 2A tephra deposits from two North Atlantic marine records within the network. (a) 813 

MD95-2010 (i) 910-920 cm high-resolution tephrostratigraphy of brown glass shards, (ii) 814 

compositional variation diagrams of analyses from glass shards extracted from the 915-916 815 

cm depth sample. Chemical classification and nomenclature for total alkalis versus silica plot 816 

after Le Maitre et al. (1989) and division line to separate alkaline and sub-alkaline material 817 

from MacDonald and Katsura (1964). Geochemical fields for Icelandic tholeiitic volcanic 818 

systems defined using normalised whole rock and glass shard analyses from Jakobsson et al. 819 

(2008) (Reykjanes), Höskuldsson et al. (2006) and Óladóttir et al. (2011) (Kverkfjöll) and 820 

Jakobsson (1979), Haflidason et al. (2000) and Óladóttir et al. (2011) (Grímsvötn and 821 

Veidivötn-Bardabunga). (b) MD01-2461 (i) 940-950 cm high-resolution tephrostratigraphy 822 

of colourless glass shards (ii) total alkalis versus silica plot of analyses from glass shards 823 

extracted from the 947-948 cm depth sample. Normalised compositional fields for the 824 
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Icelandic rock suites derived from whole rock analyses in Jakobsson et al. (2008). All 825 

geochemical data plotted on a normalised anhydrous basis. 826 

 827 

Figure 7: Examples of shard concentration profiles and geochemical characterisations for a 828 

(a) Type 3 and a (b) Type 4 deposits from two North Atlantic marine records within the 829 

network. (a) MD99-2251 (i) 1950-2030 cm tephrostratigraphy of colourless glass shards 830 

integrating low and high-resolution shard counts (ii) compositional variation diagrams 831 

comparing characterisations of colourless glass shards from 1974-1979 cm and 2014-2015 832 

cm depth. (b) MD04-2820CQ (i) 450-480 cm high-resolution tephrostratigraphy of brown 833 

glass shards (ii) compositional variation diagrams comparing characterisations from four 834 

shard peaks within the Type 4 deposit. Data from Abbott et al. (2016). Chemical 835 

classification and nomenclature for total alkalis versus silica plot after Le Maitre et al. (1989) 836 

and division line to separate alkaline and sub-alkaline material from MacDonald and Katsura 837 

(1964). All geochemical data plotted on a normalised anhydrous basis. 838 

 839 

Figure 8: Classification of core sites within the marine core network. See Section 4.2 for 840 

details of classes. 841 

 842 

Figure 9: Primary controls and influences on the deposition of tephra within the glacial 843 

North Atlantic Ocean. Ocean surface currents and names from Voelker and Haflidason 844 

(2015) and Rasmussen et al. (2016). Currents: IC = Irminger Current; NIIC = North Iceland 845 

Irminger Current; EGC = East Greenland Current; EIC = East Iceland Current; NAD = North 846 

Atlantic Drift; SPG = Subpolar Gyre. Last Glacial Maximum (LGM) ice limits from Dyke et 847 

al. (2002), Funder et al. (2011) and Hughes et al. (2016). Perennial sea ice limits from Hoff et 848 

al. (2016). Core classification from Figure 7. 849 
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 850 

Supplementary Information 851 

 852 

Table S1: Original major oxide concentrations of shards from tephra deposits in the MD04-853 

2822 core. Deposits analysed are from the depths of (i) 1836-1837 cm (ii) 2004-2005 cm and 854 

(iii) 2017-2018 cm.  855 

 856 

Table S2: Original major oxide concentrations of shards from tephra deposits in the SU90-24 857 

core.  Deposits analysed are from the depths of (i) 340-342 cm (ii) 420-422 cm (iii) 480-481 858 

cm and (iv) 486-487 cm. 859 

 860 

Table S3: Original major oxide concentrations of shards from the MD95-2010 915-916 cm 861 

tephra deposit.  862 

 863 

Table S4: Original major oxide concentrations of shards from MD01-2461 related to the 864 

rhyolitic component of North Atlantic Ash Zone II (II-RHY-1). Deposits analyses are at (i) 865 

942-943 cm and (ii) 2014-2015 cm depth. 866 

 867 

Table S5: Original major oxide concentrations of shards from MD99-2251 related to the 868 

rhyolitic component of North Atlantic Ash Zone II (II-RHY-1). Deposits analyses are at (i) 869 

1974-1975 cm and (ii) 947-948 cm depth. 870 

 871 

Table S6a: Original secondary standard analyses of the BCR2g standard made throughout 872 

analytical periods during which sample glass shard analyses presented in this work were 873 

analysed. 874 
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 875 

Table S6b: Original secondary standard analyses of the Lipari standard made throughout 876 

analytical periods during which sample glass shard analyses presented in this work were 877 

analysed. 878 

  879 
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Table 1: Details of the North Atlantic marine core network investigated in this study. 

Approximate sedimentation rates cover the 60-25 cal ka BP period for the cores, except for 

MD04-2829CQ which covers the 41-25 cal ka BP period, and were calculated using existing 

age-depth models for the sequences or approximated based on ages for event markers e.g. 

Heinrich events and North Atlantic Ash Zone II. 

Core Location Lat/Long 
Water 

depth 

Approx. average 

sedimentation 

rate (cm/ka) 

Example references 

JM04-25PC 
Western Svalbard 

slope 
77º 28´ N, 09º 30´ E 1880 m 10 Jessen et al. (2015) 

M23485-1 Iceland Sea 76 º 54.9´ N, 17º 52.4´ W 1120 m 17 - 

MD95-2010 Norwegian Sea 66º 41.05´ N, 04º 33.97´ E 1226 m 16 Dokken and Jansen (1999) 

JM11-19PC North Faroe Slope 62º 49´ N, 03º 52´ W 1179 m 11 
Ezat et al. (2014); 

Griggs et al. (2014) 

SU90-24 Irminger Basin 62º 40´ N, 37º 22´ W 2100 m 19 Elliot et al. (1998, 2001) 

MD04-2829CQ Rosemary Bank 58º 56.93´ N, 09º 34.30´ W 1743 m 20 Hall et al. (2011) 

MD04-2822 Rockall Trough 56º 50.54´ N, 11º 22.96´ W 2344 m 14 Hibbert et al. (2010) 

MD99-2251 Gardar Drift 57º 26´ N, 27º 54´ W 2620 m 11 - 

MD95-2024 Labrador Sea 50º 12.40´ N, 45º 41.22´ W 3539 m 22 Stoner et al. (2000) 

GIK23415-9 
Northern North 

Atlantic 
53º 10.7´ N, 19º 08.7´ W 2472 m 9 Weinelt et al. (2003) 

MD01-2461 Porcupine Seabight 51º 45´ N, 12º 55´ W 1153 m 13 Peck et al. (2006, 2008) 

MD04-2820CQ Goban Spur 49º 05.29´ N, 13º 25.90´ W 3658 m 11 Abbott et al. (2016) 

MD01-2444 Iberian Margin 37º 33.68´ N, 10º 08.53´ W 2637 m 23 Martrat et al. (2007) 

 



Table 2: Summary of the shard profiles, characteristics, transportation and deposition 

processes of cryptotephra deposit types common to North Atlantic marine sequences between 

60-25 cal ka BP.  = position of the isochron for deposit type.  

Deposit 

type 
Typical shard profile Deposit type characteristics 

Transport and deposition 

processes 

T
Y

P
E

 1
 

L
o

w
 c

o
n

ce
n
tr

at
io

n
 p

ea
k
 

 

 

-Well constrained shard 

concentration peak 

-Low shard concentrations (< 50 per 

0.5 g dws) 

-Shards generally 25-80 µm in 

diameter 

-Homogenous geochemical 

composition 

-Single depositional event 

-Sourced from a single volcanic 

eruption 

-Potentially limited post-

depositional reworking 

-Most likely primary airfall 

deposition  

 

T
Y

P
E

 2
 

H
ig

h
 c

o
n
ce

n
tr

at
io

n
 p

ea
k
 

 

 

-Distinct peak in shard concentration 

-High shard concentrations (100s-

1,000s per 0.5 g dws)  

-Upward and downward spanning up 

to 10 cm 

-Homogenous (Type 2A) or 

heterogeneous (Type 2B) 

geochemical composition 

-Analysis of geochemistry, 

shard sizes and IRD required  

-Bioturbative reworking 

-Single depositional event 

-Transport via primary airfall, 

sea-ice and iceberg rafting 

possible 

 

T
Y

P
E

 3
 

H
ig

h
 c

o
n
ce

n
tr

at
io

n
 p

ea
k
; 

g
ra

d
at

io
n
al

 u
p
w

ar
d
 t

ai
l 

 

 

-Flat bottomed profile with a clear 

gradational upward tail 

-Very high shard concentrations 

(100,000s-1,000,000 per 0.5 g dws) 

-Deposit spread up to 100 cm 

-Homogenous composition of shards 

in peak 

-Single depositional and 

volcanic event 

-Reworking via secondary 

deposition and bioturbation 

-Transport via primary airfall or 

sea-ice rafting 

-Useful isochron 

T
Y

P
E

 4
 

D
if

fu
se

 d
is

tr
ib

u
ti

o
n
; 

 

m
u

lt
ip

le
 p

ea
k
s 

 

 

-High shard concentrations (1,000s-

1,000,000s per 0.5 g dws) 

-Multiple peaks in concentration in a 

period of elevated shard 

concentrations 

-Deposit spread of 10s of cms 

-Heterogeneous geochemical 

composition common between peaks 

-Deposition of multiple closely 

spaced eruptions or deposition 

via iceberg rafting 

-Comparison to Greenland 

tephra framework and IRD 

records required 

-Potential as regional marine-

marine tie-lines 

T
Y

P
E

 5
 

B
ac

k
g
ro

u
n
d
 o

f 
co

n
si

st
en

t 

co
n
ce

n
tr

at
io

n
 

 

 

-Consistent deposition of shards with 

limited variability in concentrations 

between samples 

-Wide variability of deposit spreads 

-Heterogeneous or geochemically 

related to underlying deposits 

-Background signal of glass 

shards  

-Shards reworked and 

remobilised in the oceanic 

system 

-Potential masking of low 

concentration glass shard 

deposits 
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1. Take contiguous direct core samples at the resolution of interest: 5 or 10 cm for low-resolution analysis and 1 cm 
for high-resolution and geochemical analysis. 

2. Freeze dry and homogenise appropriate samples and weigh out 0.5 g from each into 15 ml conical centrifuge tubes.

3. Immerse samples in 6 ml of dilute (10 %) hydrochloric acid (HCl) overnight.

4. Sieve samples through 125 µm and 80 µm test sieves and 25 µm nylon mesh, retaining the >125, 80-125 and 
25-80 µm grain-size fractions in 15 ml conical centrifuge tubes.

YES NO

NOYES

5. Immerse >125, 80-125 and 25-80 µm fractions in 6 ml of 10 % sodium hydroxide (NaOH) for 1 hour at room 
temperature. Re-sieve all samples.

6. Remove distilled water from the 25-80 µm fraction, add 3 ml of SPT prepared to 2.3 g/cm3 and centrifuge for 15 
minutes at 2500 rpm without a brake. Decant float into new conical centrifuge tube (<2.3 g/cm3). Repeat.

7. Add 3 ml of SPT prepared to 2.5 g/cm3 to the original tube and centrifuge for 15 minutes at 2500 
rpm without a brake. Decant float into another new conical centrifuge tube (2.3-2.5 g/cm3). Repeat.

8. Remove SPT from all density fractions (<2.3, 2.3-2.5 and >2.5 g/cm3) by centrifuging in distilled water three times 
(5 minutes; 2500 rpm; maximum brake). Recycle liquid from the first washes of the <2.3 and 2.3-2.5 g/cm3 fractions.

9. Magnetically seperate the >2.5 g/cm3 fraction using the method and parameters outlined in Griggs et al. (2014).

10. Spike samples with Lycopodium spore tablets.

11. Mount samples of interest on microscope slides using 
Canada Balsam and quantify shards concentrations using 

optical microscopy.

13. Directly mount sample on a  
microprobe slide and cover in 

epoxy resin.

13. Using a micromanipulator 
place shards on a microprobe 
slide and cover in epoxy resin.

14. Create thin sections through shards using decreasing 
grades of silicon carbide paper and then polish the surface 

using 9, 6 and 1 µm diamond suspension. 

Are sediment clusters 
present?

Are samples being 
prepared for geochemical 

analysis?
NO

Are shard 
concentrations >10,000 

per 0.5 g dws?

YES

Are shard 
concentrations >50 per 

0.5 g dws?
YES NO

12. Construct a tephrostratigraphic record for the core 
sequence of interest.

15. Analyse the major element composition of individual 
shards from the sample of interest.

Figure 3



(b) Integrated high (1 cm) and low resolution (5 cm) brown glass shard tephrostratigraphy for MD99-2251

(a) Low resolution (5 cm) brown glass shard tephrostratigraphy for MD99-2251

Geochemical selection criteria

-clear peak across grain-size fractions; counts greatly 
exceed low-resolution concentrations

-peaks not resolved; lower and likely background 
concentrations; no geochemical selections

-clear peak across grain-size fractions; counts greatly 
exceed low-resolution concentrations

-double peak across grain-size fractions; counts greatly 
exceed low-resolution concentrations

-clear peaks across grain-size fractions; counts greatly 
exceed low-resolution concentrations

-low concentration peak in 25-80 µm grain-size 
fraction

-clear peak not resolved; lower and likely background 
concentrations; no geochemical selections
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