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Abstract—We introduce a novel generalization of entropy
and conditional entropy from which most definitions from
the literature can be derived as particular cases. Within this
general framework, we investigate the problem of designing
countermeasures for information leakage. In particular, we seek
metric-invariant solutions, i.e., they are robust against the choice
of entropy for quantifying the leakage. The problem can be
modelled as an information channel from the system to an
adversary, and the countermeasures can be seen as modifying
this channel in order to minimise the amount of information that
the outputs reveal about the inputs. Our main result is to fully
solve the problem under the highly symmetrical design constraint
that the number of inputs that can produce the same output is
capped. Our proof is constructive and the optimal channels and
the minimum leakage are derived in closed form.

I. INTRODUCTION

In many computational systems, the system’s behaviour is
affected by a confidential internal state and produces some
publicly observable behaviour. This can be modelled as an
information channel where the input of the channel is the
confidential state of the system and the output is the externally
observable behaviour, which can be observed not only by
the intended recipient but also by some malicious agent. The
security goal here is to minimize the leakage of confidential
state to potentially adversarial observers.

As a simple example of this problem consider a government
website processing tax returns. Suppose the website takes less
than 10 seconds to process a tax return and send an electronic
acknowledgement for an individual who owes less than $1000
in tax, but it takes 20 seconds to process a tax return and
send an electronic acknowledgement for an individual who
owes more than $1000 in tax. Then an eavesdropper that
can only observe the time it takes to produce the electronic
acknowledgement can learn confidential information about the
user. A solution to avoid this leak could be to make sure
that the website always sends the acknowledgement after 20
seconds. Then an attacker cannot observe any behavioural
difference and so no information about the internal state, i.e.,
the user tax status, is disclosed. This countermeasure can be
seen as a channel that maps both secrets (owing less or more
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than $1000 in tax) to the same observable (20 seconds to
generate the acknowledgement). The pre-image of this map
on its produced observable includes both possible secrets.

In many contexts, the trivial countermeasure of mapping all
secrets to a unique observable may be unsuitable or even in-
feasible. Consider for instance a password-checker system: at
the bare minimum, the system should produce two distinct ob-
servables (password match/mismatch) to preserve its defining
functionality. There are also cases where mapping all secrets
to the same observable (and so zero leakage) may be possible
but undesirable as it leads to an unacceptable degradation in
the utility of the system. Some prominent examples include
location privacy [2]–[4], in which if a mobile device reports the
same location coordinates, then it may receive no connectivity
or unfavourably poor location-based service. Another example
is defences against web traffic fingerprinting [5], [6], where
generating the same observable involve lengthening inter-
packet delays or generating dummy packets, both of which
can have an undesirably large bandwidth or delay overhead.
Motivated by this observation and still allowing for analytical
treatment, we consider a highly symmetric constraint: that is,
we restrict the size of the subsets of the inputs (secrets) that can
be mapped to the same output (observable). This will disallow
all the inputs to be conflated with each other through the same
output as the trivial solution. Our problem statement is then:
given this pre-image size constraint, can we design a channel
of minimal leakage? This problem is a stylised abstraction
of the above mentioned real world scenarios, with surprising
mathematical properties explored in this paper.

A challenging problem in designing leakage-minimal chan-
nels is that there are several candidates for quantifying infor-
mation leakage, e.g., Shannon [7], Min-Entropy [8], Bayesian
[9], g-leakage [10], guesswork (guessing) entropy [11], Rényi
family [12], etc. This is rather problematic, as some of these
entropies have distinct operational interpretation that rely on
different modelling of the behaviour or the abilities of the
adversary [13]. Therefore, we add this desirable notion of
robust optimality to our design problem: the channel should
stay optimal with respect to any “reasonable” choice of
leakage quantification.

Given such a strong requirement of robust optimality, there
is no a priori reason that such a solution should even exist.
Moreover, the few robustness results in the field of quantifi-
cation of leakage have been hard to prove (e.g. the proof
of the Coriaceous Conjecture [14]). This work contributes to
both leakage guarantees and robustness in that it investigates
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channels that are “metric-invariantly” optimal within the large
class of our generalised entropies.

Road-map and Contributions: The focus of this work
is foundational. In particular, the list of our contributions is
as follows: First we introduce a general framework which
includes all reasonable entropies and derived leakage notions.
Specifically, our generalised entropies satisfy the basic prop-
erties of symmetry, expansibility, and a form of concavity
as made precise later in the paper. We show for example
that Sharma-Mittal entropies (themselves including Rényi en-
tropies), Arimoto conditional entropies, Guesswork and other
known measures from the literature are particular cases of our
definition.

Second, we formalize the problem of minimizing the in-
formation leakage given a prior distribution of the secret and
constraints on how many secrets can be mapped to a common
output, where the information leakage is quantified as the
difference between the prior and posterior uncertainties of
an adversary for our generic entropy function (Section II).
In Section III, we express and prove our main result (The-
orem 1), that is, we provide the lowest achievable leakage
across all (potentially probabilistic) channels in closed form.
We explicitly construct channels that achieve this information
theoretical bound, and establish that their optimality is metric-
invariant, in that they achieve minimum leakage with respect
to any choice of entropy that satisfies three mild conditions:
core-concavity (which we define), symmetry and expansibil-
ity. Next, in Section IV, we extend our framework to non-
symmetric (gain-based) entropies, introduce a generalization
of g-leakage, and establish a natural extension of our main
result to this class of entropies (Proposition 4) for diagonal
gain matrices. Finally, in Section V, we numerically investigate
the effect of the maximum allowable size of the pre-images
of observables, the choice of the entropy, comparison with
the baseline of uniform randomization, and the effect of the
adversary’s knowledge of the true prior distribution.

Our proofs follow non-trivial techniques that we believe
will add to the theoretical toolbox of the research community.
Despite the theoretical nature of this work, we envisage pos-
sible applications of our results in fields such as side channels
countermeasures in the style of bucketing [15], [16], in privacy
preserving mechanisms like crowd-based anonymity protocols
[17], (Geo)-location privacy [2], [3], [18], or obfuscation-
based web searching [19], etc. Detailed investigation of these
connections and potential practical implementations will be
part of our future work.

Literature Review: Generalisation of entropies is also
discussed in a large body of literature. These entropies include
the Rényi family that generalises Shannon and Min-entropy
e.g. [12], [20]–[24], and the Sharma-Mittal [25] family, that
generalises Rényi and Tsallis entropies. However, some of the
entropies with very clear operational interpretation like Guess-
work falls outside of their scope. Our generalised entropies
includes all of them as special cases.

A main line of research to distinguish from is the classical
context of secure communication and secrecy systems [26]–
[30] (e.g., in a wiretap setting), secure key distribution [31],
or steganography [32], [33], etc., where the main goal is to

reliably communicate secrets to a recipient while leaking the
least to a third party. In contrast, in our setting, there is no
intention to communicate any information at all as there is
no intended recipient. There is instead a system that seeks to
emit the least information to any outsider. That said, similar to
this line of work, the results in our paper is also information-
theoretic, in that, our guarantees do not rely on computational
difficulty of certain operations (e.g. discrete logarithm) as in
non-information-theoretic cryptography.

The general setting of information leakage outside of the
communication setting has been studied in the quantitative
information flow (QIF) literature [34]–[37], works on private
information retrieval (PIR) [38] and private search queries
[19], [39], as well as research on privacy-utility trade-offs [2],
[3], [18].

Particularly important from the field of QIF are advances on
fundamental security guarantees of leakage measures (what
security can be achieved) and robust techniques and results
(how much a technique or result is valid across different
notions of leakage). However, most of the theoretical effort
has been focused on analysing a given system as opposed to
a design problem.

In the context of PIR, [38] showed that in the pres-
ence of a single database, the only information-theoretically
private method is the trivial but unacceptable solution of
requesting the entire database for each query. If multiple
non-communicating replicas of the same database exist, then
information-theoretic perfect privacy is achievable at a com-
munication overhead. A heuristic work in the context of
privacy in using internet search engines is [39], where it is
proposed that each search query should be accompanied by a
number of bogus queries with similar frequencies as a means
of camouflaging the real one. However, no analysis or claim
about the optimality is produced.

The works on privacy-utility trade-off, e.g., in the context of
location privacy [2], [3], [40], share a conceptual theme with
our paper. In particular, the cap on the size of the pre-image
can be seen as a stylized constraint to achieve a minimum
utility. However, in contrast to these works that only provide a
methodology of finding a solution or an approximate solution,
e.g., solving convex optimizations, we explicitly derive both
the minimum leakage (exact, not a bound) and the optimal
solution that achieves it. Moreover, there is no other work that
considers our notion of robustness, i.e., measure-invariance.

Another line of research that is in the general spirit of
utility-privacy trade-off is of ε-differential privacy [41], [42].
There are a number of differences between our approach and
differential privacy, in terms of context, differential privacy is
mostly for non-identifiability of individuals in published statis-
tical data; in terms of implementation approach, the differential
privacy is typically achieved by adding a controlled noise to
the data, while in our setting, we conflate a controlled number
of inputs by mapping them to the same output. But most signif-
icantly, there is a fundamental difference between information
theoretic metrics of leakage and differential privacy: while
information theoretic metrics rely on statistical averages, the
differential privacy is a much stronger per realization metric.
Indeed, for instance as is shown by [42], differential privacy
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implies a bound on the min-entropy leakage but not vice-versa.
There are some notable works that consider the problem of

privacy-utility trade-off (PUT) from an information-theoretic
point of view [18], [43], [44]. The focus of Maximal leakage
metrics family is to provide a measure that is robust against
the relative “advantage” each secret carries for the adversary,
where this advantage may be unknown, i.e., robustness against
the interest of the adversary in the secret. In contrast, our
information-measure-invariance is about another robustness
measure, that of modelling the attack mechanism: e.g. min-
entropy is modelling an adversary that gets to make only one
(best) guess after his observation; Guesswork, an adversary
that can make sequential best guesses; Shannon, an adversary
that can ask set-membership questions, etc. This notion of
robustness is arguably more relevant in a security context,
where the “value” of the secret is known, but the capabilities of
the attacker is not. In that sense, the original Maximal leakage
[43] falls under an adversary that makes a single best guess
(albeit about a function of the secret, as opposed to the secret
directly). Although the generalization of that to α-Maximal
leakage and f -divergence allow other entropies, but still in
the definition, the robustness is against the interest (or the
advantage) of each secret to an adversary, and the choice of
α or f is fixed. Some of the relations of these notions are
explored in [45]. Moreover, unlike “capacity” measures that
consider worst case secret distribution for leakage, the secret
distribution is a given in our setting. Finally, the focus of
most the literature is on providing a robust measure to analyse
a given channel, as opposed to the constrained “design”
problem, which is the focus of this work.

II. MODEL

We will denote sets, random variables and realizations with
calligraphic, capital, and small letters respectively, e.g. X , X ,
x. We will denote the cardinality of a set X by |X |. For a vec-
tor p, we use p[i] to denote the i’th largest element of p where
ties are broken arbitrarily. Also, we will use the notation ‖p‖α
for the α-norm of vector p, that is, ‖p‖α := (

∑n
i=1 p

α
i )

1/α.
The limit case of ∞-norm is ‖p‖∞ := p[1].

Let X represent the secret as a discrete random variable
that can take one of the n possibilities from X := {1, . . . , n}
with the (categorical) distribution of pX . We assume that pX
is publicly known and hence, we will refer to it as the prior.
For the rest of the paper, as is the convention, we will omit the
superscript X whenever not ambiguous and simply use p(x)
to refer to pX(x). Also, with a slight abuse of notation, we
may use p to refer to the vector of probabilities as opposed
to its function form, that is, p = (p(1), p(2), . . . , p(n)). The
distinction should be clear from the context, e.g., when p is
used as the argument of a function with a vector input. Without
loss of generality, assume that every secret has a strictly
positive probability of realization, and that p(x)’s are sorted in
non-increasing order, that is, p(1) ≥ p(2) ≥ . . . ≥ p(n) > 0.

The system generates observables that can probabilistically
depend on the secret. Let Y represent the discrete set of
possible observables. Then the system can be modelled as a
probabilistic discrete channel (henceforth referred to simply as

channel) denoted by the triplet (X , pY |X ,Y), where X and Y
are the input and output alphabets respectively, and pY |X(y|x)
for x ∈ X , y ∈ Y denotes the conditional probability
distribution, i.e., the transition matrix. Specifically, it needs
to satisfy the following (omitting the subscript for brevity,
henceforth):

p(y|x) ≥ 0 ∀x ∈ X , y ∈ Y; (1a)∑
y∈Y p(y|x) = 1 ∀x ∈ X . (1b)

In the rest of the paper, we use the term channel to refer only
to the conditional probability distribution (transition matrix),
and will use the terms secret and input, as well as observables
and outputs interchangeably. For a y0 ∈ Y , we can define its
pre-image as the subset of inputs that could have produced y0
with non-zero probability. Formally, PreIm(y0) := {x ∈ X :
p(y0|x) > 0}.

The general setting in our paper is the following: an
adversary observes the output of the channel and wants to
infer about its input. The defender has a limited flexibility in
designing the channel (the transition probability) and cannot
change the prior, and wants to minimize the amount of
information that the adversary can infer about the input by
observing the outputs, i.e., leakage of information.

In the absence of any channel design constraint, one trivial
solution that guarantees zero leakage is the following: showing
the same output, say y0 ∈ Y for any realization of the input.
More generally, any channel matrix that has the same rows will
also lead to zero leakage. However, such solutions might not be
practical nor desirable in many areas of interest. Technically,
the property that enables the above trivial solutions is that the
pre-image is allowed to be the entire space of the input, as
PreIm(y0) = X , and in particular, |PreIm(y0)| = |X | = n,
where y0 is any output whose entry in the identical rows is
non-zero. Indeed, the problem of designing minimal-leakage
channel becomes immediately non-trivial if we impose a cap
on the size of the pre-images. That is, if we require that, ∀y0 ∈
Y , |PreIm(y0)| ≤ k where k < n. This constitutes the main
setting of this paper.

To find leakage-minimal channels, we need a met-
ric/measure to evaluate/quantify the information leakage. At a
high level, this can be quantified as the difference between the
prior uncertainty of an adversary and its posterior uncertainty,
i.e., the uncertainty of the adversary about the input after
observing the output of the channel – on average. The prior
uncertainty about the random variable X is measured through
its entropy, and is denoted by H(X) or simply H(p). The
posterior uncertainty is measured by posterior entropy or
the conditional entropy of the random variable X given the
random variable Y . This is sometimes also referred to as the
equivocation, and is denoted by H(X|Y ). The classical choice
for entropy and posterior entropy are the (Gibbs)-Shannon’s:

H(X) = −
∑
x∈X

p(x) log(p(x)) (2a)

H(X|Y ) = −
∑
y∈Y+

p(y)
∑
x∈X

p(x|y) log(p(x|y)) (2b)

where Y+ is the set of outputs that have a strictly positive
probability of realization, that is, Y+ = {y ∈ Y | ∃x ∈
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X , p(y|x) > 0}. Also, p(y) is the (total) probability that
y is observed by the adversary, and p(x|y) is the posterior
probability of the secret x given that y is observed, as given
by the Bayes’ rule. Specifically, p(x|y) = p(x, y)/p(y) =
p(x)p(y|x)/p(y) where p(y) =

∑
x′∈X p(x

′)p(y|x′).
Shannon’s entropy is related to the shortest coding of a

random variable, which is also related to the average number
of set-membership questions of an optimal adversary before
getting to the value of a random variable. However, this may
not be a suitable measure in many contexts of interest [8], [11],
e.g., when the adversary needs to make a best guess in one,
or multiple tries. For these operational scenarios, other more
relevant entropies are introduced. For instance, the 1-guess-
error-probability, defined as H(X) = 1 − ‖p‖∞ = 1 − p[1],
is the probability that the best guess of an adversary about
the secret is incorrect. A closely related measure is the Min-
entropy: H(X) = − log ‖p‖∞. The l-guess-error-probability
extends to the cases where an adversary can submit l best
guesses, then H(X) = 1 −

∑l
i=1 p[i] is the probability that

none of them would be correct. Another frequently used
entropy with a clear operational interpretation is guesswork
(guessing) entropy: H(X) =

∑n
i=1 ip[i]. This measures the

expected number of steps that takes a sequentially guessing
optimal adversary to get to the secret. Another example is
Rényi, which is in fact a family of entropies parametrised by
α ≥ 0, α 6= 1, defined as:

Hα(X) =
1

1− α
log(

∑
x∈X

(p(x))α), or equivalently,

Hα(X) =
α

1− α
log ‖p‖α

Rényi entropies can recover Shannon and Min-entropy as limit
cases by respectively letting α → 1 and α → ∞. For α = 2,
i.e., H2(X) = − log

∑
x∈X (p(x))2, it is specifically called the

collision entropy. Likewise, the case of α = 0, i.e., H0(X) =
log | supp(p)| = log(n) is also known as the Hartley entropy.

For each of the aforementioned entropies, a posterior en-
tropy can be defined in a meaningful way. For instance, the
posterior l-guess-error-entropy (1 ≤ l ≤ n) can be simply
defined as the average failure rate of an adversary that makes
a best guess about the secret after seeing the observable:

H(X|Y ) =
∑
y∈Y+

p(y)
(
1−

l∑
i=1

(
pX|y

)
[i]

)
(3)

where pX|y is the vector of posterior probabilities given
Y = y, i.e., pX|y := (p(x|y))x∈X . We are using the
vector interpretation of probability distributions as it greatly
simplifies the exposition. Similarly, with respect to guesswork,
we can write:

H(X|Y ) =
∑
y∈Y+

p(y)
( n∑
i=1

i(pX|y)[i]
)
. (4)

For the Rényi family, there is no universally accepted def-
inition of its conditional form (e.g. [12], [20]–[24]). Some of

the candidates for the posterior Rényi entropy in the literature
are:

Hα(X|Y ) =
∑
y∈Y+

p(y)Hα(pX|y) (5a)

Hα(X|Y ) =Hα(XY )−Hα(Y )

=
1

1− α
log

(∑
x,y (p(x, y))

α∑
y (p(y))

α

)
(5b)

Hα(X|Y ) =
1

1− α
max
y∈Y+

(
log ‖pX|y‖αα

)
(5c)

Hα(X|Y ) =
α

1− α
log
( ∑
y∈Y+

p(y)‖pX|y‖α
)

(5d)

Hα(X|Y ) =
1

1− α
log
( ∑
y∈Y+

p(y)‖pX|y‖αα
)

(5e)

Hα(X|Y ) =− log
( ∑
y∈Y+

p(y)‖pX|y‖
α
α−1
α

)
(5f)

In particular, definition (5a) is introduced in [46, eq. (2.15)],
definition (5b) in [23, eq. (2.9)] and [20, eq.(2.17)], definition
(5c) in [21, Sec. 2.1] by setting ε = 0 in their conditional
ε-smooth Rényi entropy definition. It is shown (e.g. in [24,
Theorem 7]) that none of the definitions (5a)-(5c) satisfy
the basic property of monotonicity, i.e., conditioning reduces
entropy (CRE) in general. That is, for each of these defi-
nitions, one can find joint distributions on X,Y such that
Hα(X|Y ) > Hα(X). This makes them rather unsuitable
for our setting: we make the assumption that the average
uncertainty of the adversary about the input should not in-
crease after observing the output of a channel, based on the
argument that the adversary always has the option of simply
ignoring his observation. Therefore, we only consider the
definitions (5d) to (5f), which, as we will show satisfy the
data processing inequality (DPI), which in part implies CRE.
(5d) is the recognised Arimoto definition of conditional Rényi
[47]. Definition (5e) is proposed in [48, Sec. II.A] and (5f) is
introduced in [12]. We also note that (5e), (5d) are respectively
equivalent to H1+s and H↑1+s defined in eq. (15) and (16) in
[27] by taking α = 1 + s.

A. Introducing a generalised entropy

In this paper, we consider a generalized entropy that encom-
pass all of the above cases. In particular, it has the following
structure:

H(X | Y ) = η
( ∑
y∈Y+

p(y)F
(
pX|y

) )
, (6)

where η is just an R → R function, and F is a bounded
scalar function over the space of probability distributions with
the following properties:
• symmetry, i.e., its value only depends on the shape of a

distribution and does not change with any re-ordering of
the probabilities (re-labelling the random variables);

• expansibility, i.e., its value does not change by padding
the probability distribution with zero entries;
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Moreover, one of the following two conditions holds (a
property that we just call core-concavity):1

η: increasing, and F : concave; or (7a)
η: decreasing, and F : convex. (7b)

By definition, F (p), as a scalar function with vector argu-
ments, is concave (respectively, convex) in p iff: ∀λ ∈ [0, 1]
and for any probability distributions p1, p2 over X , we have:
λF (p1)+(1−λ)F (p2) ≤ (respectively, ≥) F (λp1+(1−λ)p2).

Note that the form of the conditional entropy in (6) governs
the form of the unconditional entropy as well (e.g. by taking
Y and X to be independent). Specifically,

H(X) = H(p) = η (F (p)) .

For cases where η(·) is strictly monotonic, our generalised
conditional entropy can be re-written in terms of the non-
conditional entropy as follows:

H(X|Y ) = η

(∑
y

p(y)η−1
(
H(pX|y)

))
,

This gives another interpretation for H(X|Y ) as the
Kolmogorov-Nagumo average of the unconditional entropy
with respect to function η−1(·) (see e.g. [49]).

Proposition 1: All of the conditional entropies: l-guess-error
probability, Guesswork (4) and Rényi entropies according to
(5d)–(5f) (which includes Shannon (2) and Min-Entropy as
limit cases) are special cases of our generalised definition in
(6).

Proof: Shannon entropy can be represented by taking
η to be the identity function, i.e., η(x) = x, and F (p) =
−
∑n
i=1 pi log(pi) which is well known to be a symmetric

concave function over the space of probability distributions,
and also expansible with the convention of 0 log 0 = 0.
Likewise, for l-guess-error probability and guesswork, η can
be taken as the identity function as well. The F (p) will be
1 −

∑l
i=1 p[i] and

∑n
i=1 ip[i], respectively, which are again

known to be concave. For the Arimoto conditional Rényi
entropy as in (5d), we can take η(x) = α

1−α log(x) on
R+ and F (p) = ‖p‖α. For the conditional Rényi entropy
as per (5e), we can take η(x) = 1

1−α log(x) on R+ and
F (p) = ‖p‖αα =

∑n
i=1 p

α
i . For both cases, F is a symmetric

function. Moreover, when 0 ≤ α < 1, η is increasing and F
is concave, and when α > 1, η is decreasing and F is convex.
For definition (5f), we can take η(x) = − log(x), which is a
decreasing function, and F (p) = ‖p‖

α
α−1
α , which is a convex

function for any α ≥ 0.
Remark: Another important family of entropies is the

Sharma-Mittal parametrised entropies [25] defined as:

Hα,β(X) =
1

β − 1

(
1− (‖p‖αα)

1−β
1−α
)
, α ≥ 0, α, β 6= 1.

(8)

This family can retrieve Rényi as Hα,β→1(X) (including
Shannon as Hα→1,β→1(X)), as well as Tsallis entropies [50]:

1Note that only case (a) can be considered as the definition, as case (b) can
be transformed to case (a) by F ′(p) = −F (p), η′(x) = η(−x).

Hα,α(X) = 1
1−α (1− ‖p‖αα). Hα,β(X) also is particular case

of our generalised entropies. This can be seen, for instance, by
taking η(x) = 1

β−1 (1 − x
1−β
1−α ) and F (p) = ‖p‖αα. For α > 1

and any β 6= 1, η(x) is decreasing and F (p) is convex, and
for 0 < α < 1 and any β 6= 1, η(x) is increasing and F (p)
is concave. As with the Rényi entropy, there is no generally
agreed-upon conditional form of the Sharma-Mittal entropies.
Our generalised form allows multiple candidates. If we take
the same η and F functions as above, we get the following
form of conditional Sharma-Mittal entropy:

Hα,β(X|Y ) =
1

β − 1

1−

∑
y∈Y+

p(y)‖pX|y‖αα


1−β
1−α


With the above definition, the limit Hα,β→1(X|Y ) retrieves
the Arimoto’s form of conditional entropy as in (5d). Different
choices of η and F are possible which result in alternative
forms of the conditional entropies.

a) Derived generalised Information Theoretical Mea-
sures: Given our generalised entropy and conditional entropy
H(X), H(X|Y ) we can define a generalization of mutual
information: this is defined as the difference between the prior
(unconditional) and posterior (conditional) entropies:

I(X;Y ) = H(X)−H(X|Y )

Arimoto’s α−mutual information [47] is a particular case of
the above. In our setting mutual information is synonymous
with leakage: it quantifies, according to a chosen entropy H
the reduction in uncertainty of an attacker given the obser-
vations. Building on the generalized mutual information we
can also generalize the channel capacity: this is the maximum
mutual information where the maximization is with respect to
all distributions over X:

C(X;Y ) = max
pX

I(X;Y )

Min-capacity [8] and Maximal leakage [43], [51] are particular
examples of the channel capacity by choosing the underlying
entropy to be Min-Entropy.

b) Symmetry, core-concavity, majorization and Schur-
concavity: The symmetry and core-concavity properties to-
gether have an intuitive implication: that the distributions that
are “closer to uniform” represent a higher entropy. This is
formalized through the notions of majorization and Schur-
concavity, which we will use in our proofs. Here, we provide
a brief overview: For vectors a, b ∈ Rn, we denote a � b
and say a majorizes b (or b is majorized or dominated by
a) iff:

∑j
i=1 a[i] ≥

∑j
i=1 b[i] for all j = 1, . . . , (n − 1), and∑n

i=1 ai =
∑n
i=1 bi. For probability distributions, p1 � p2

implies that p1 is further away (more skewed away) from
uniform distribution compared with p2.

A function f : Rn → R is called Schur-concave iff: for
a, b ∈ Rn, a � b implies f(a) ≤ f(b). In words, the value
of a Schur-concave function (over the space of probabilities)
increases as its input gets closer to the uniform distribution.
A Schur-convex function is defined likewise where the last
inequality is flipped. A basic result in convex analysis (see e.g.
[52, Prop. 3.C.2]) states that: Any function that is symmetric
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and concave (convex, resp.) is also Schur-concave (Schur-
convex, resp.). Therefore, symmetry and core-concavity con-
ditions imply that our entropy functions are Schur-concave as
well.

As mentioned before the information leakage can be quan-
tified as the mutual information I(X;Y ) = H(X)−H(X|Y ),
a quantity which we want to minimize.

As we already argued, Shannon entropy may not be a
suitable measure for many contexts of interest, which moti-
vated introduction of other entropies and leakage measures.
A main concern is which one to choose for the problem
of leakage-minimal design, especially as each entropy has a
distinct operational interpretation, and most awkwardly, some
depend on modelling the behaviour/abilities of the adversaries.
A desirable property would be to have a solution that is
invariant under the choice of the entropy, i.e., a channel that
would simultaneously minimize the leakage for any reasonable
choice of the entropy, if such a solution exists. This is
exactly the goal of this paper. Hence, we express the problem
statement of our paper as follows:

Given: pX = (p1, . . . , pn) in non-increasing order,
and k < n

Goal: Find pY |X that minimizes H(X) − H(X|Y )
for any choice of entropy
subject to: |PreIm(y)| ≤ k ∀y ∈ Y.

Note that in our setting, H(X) is fixed, and hence, the above
minimization can be equivalently expressed as maximization
of H(X|Y ).

B. Basic properties of our generalized entropies and leakage

Here, we show that our generalized entropies in (6) sat-
isfy some desirable properties, namely, non-negativity of the
leakage and the data-processing inequality.

Proposition 2: Any generalized entropy as defined in (6)
satisfies:
(a) Non-negativity of leakage, defined as H(X)−H(X|Y );

and
(b) Data processing inequality (DPI): consider random vari-

ables X , Y , Z, and assume that given Y , Z is con-
ditionally independent from X (sometimes denoted as
X → Y → Z). Then for any entropy measure in (6),
we have: H(X|Z) ≥ H(X|Y ).
Proof: Part (a) follows as a special case of part (b) if

we take Z to be independent from X . Hence, we just prove
part (b): Referring to (6), we have:

H(X|Z) = η

(∑
z

p(z)F
(
pX|z

))
=

η

(∑
z

p(z)F

(∑
y

p(y|z)pX|y,z

))
,

where we used pX|z =
∑
y p(y|z)pX|y,z . Next, note that for

any given z, p(y|z) constitute convex coefficients, since they

are non-negative for each y, and
∑
y p(y|z) = 1. Therefore,

following Jensen’s inequality, for both cases (7a) and (7b), we
have:

H(X|Z) ≥ η

(∑
z

∑
y

p(z)p(y|z)F
(
pX|y,z

))
.

The conditional independence of Z and X given Y means:
pX|y,z = pX|y . Hence:

H(X|Z) ≥ η

(∑
y,z

p(y, z)F
(
pX|y

))
=

η

(∑
y

p(y)F
(
pX|y

))
= H(X|Y ).

Our data processing inequality (DPI) applies to generalized
conditional entropies in (6). In particular, it recovers similar
results in [12], [28] for conditional Rényi in the forms of (5d),
(5e) as special cases.

III. ANALYSIS

The first point to observe is that in our setting, the prior
pX is a given parameter and the choice of the channel does
not impact the prior uncertainty H(X). Hence, the objective
of minimizing the leakage becomes equivalent to maximizing
the posterior entropy. In this section, we derive (in closed
form) the maximum possible posterior entropy that can be
achieved among all feasible channels for a given prior p, a pre-
image size cap k, and a measure of entropy H (Theorem 1-A).
Our result is constructive, in that, in Algorithm 1, we explic-
itly provide a channel that achieves this maximum posterior
entropy (and hence, minimum leakage) for any symmetric,
expansible, core-concave measure of entropy (Theorem 1-B).
As we mentioned before, since each entropy measure has its
own distinct form and interpretation, it could have been the
case that optimality of any channel sensitively depended on the
choice of entropy. The fact that such metric-invariant optimal
channels exist in our setting is one of our contributions.

Before we present our formal result, let us develop a feeling
about the behaviour of an optimal channel. Intuitively, the pre-
images should be at the maximum allowed size of k, since
the maximum number of inputs will be conflated with each
other to increase the adversary’s ambiguity. Also, intuitively,
we should try to induce posterior distributions over the pre-
images that are as close to uniform distribution over k elements
as possible, since any well-defined measure of uncertainty
increases as the distributions gets closer to uniform. The ideal
case is that given any shown output, after the Bayesian update,
the input be equally likely any of the k members of its pre-
image. However, if the prior distribution is too skewed and
the cap size of the pre-images is small, then inducing uniform
posteriors might not be feasible, as the inputs with too big
prior probabilities will still have higher posteriors. If a prior
probability of an input is too big to be made uniform in the
posterior, i.e., a “giant”, then it should be instead maximally
leveraged against to hide other inputs in its “shadow”. So,
intuitively, an optimal channel should try to induce posteriors
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that are uniform over as many of the small probability inputs
as possible and the giants should always be included in the
pre-image to provide coverage for the small-probability inputs.

In order to formally present our results, we need to introduce
some auxiliary parameters. Given k and p = (p(1), . . . , p(n)),
sorted in non-increasing order, let index j∗ be:

j∗ := min

{
j : 1 ≤ j ≤ k, p(j) ≤

∑n
i=j p(i)

k − j + 1

}
. (9)

Note that for j = k, the condition p(j) ≤
∑n
j=1 p(i)/(k− j+

1) reduces to p(k) ≤
∑n
i=k p(i), which is trivially satisfied.

Therefore, j∗ is well-defined (i.e., can always be found), and
we have 1 ≤ j∗ ≤ k. Along the lines of the above intuitive
discussion, the first j∗−1 inputs are the giants. Next, for a prior
distribution p = (p(1), . . . , p(n)) sorted in non-increasing
order, cap-size k, and the corresponding j∗ given by (9), let
π = (π1, . . . , πk) denote the probability distribution over k
elements defined as follows:

π :=
(
p(1), . . . , p(j∗ − 1),

∑n
i=j∗ p(i)

k − j∗ + 1
, . . . ,

∑n
i=j∗ p(i)

k − j∗ + 1

)
, i.e.:

πl=p(l) : l≤j∗−1, πl=

∑n
i=j∗ p(i)

k − j∗ + 1
: j∗≤ l≤k (10)

In words, π is a k-sized probability distribution (in vector for-
mat) that is constructed by keeping the top j∗−1 probabilities
of the prior as is, and then wrapping or mashing the remaining
probabilities of the prior together and spreading them evenly
over the remaining k− (j∗−1) elements. Note that if j∗ = 1,
then π is simply the uniform distribution over the entire k
elements.

Finally, let M(S), where S ⊆ X and |S| ≤ k, denote the
set of subsets of X that include all the elements of S and
have size equal to k. Formally, M(S) := {M ⊂ X : S ⊆
M, |M | = k}. Note that M(∅) is just the set of all k-sized
subsets of X . This notation is used in our Algorithm as well
as our proofs. For a simple example, suppose X = {1, 2, 3, 4}
and k = 3, then M({1}) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}},
and M({1, 2}) = {{1, 2, 3}, {1, 2, 4}}, and so on. We are
now ready to express our main result:

Theorem 1: Let p = (p(1), . . . , p(n)) be the prior (sorted
in non-increasing order), and let k be the maximum allowed
size of the pre-images. Suppose the posterior entropy H has
the generic format of (6). Let the probability distribution π be
as described in

(10). Then:

A. The maximum achievable posterior entropy among all
channels is H(π).

B. Algorithm 1 explicitly provides a feasible channel that
achieves the above maximum posterior entropy for any
choice of our entropy functions, and is hence metric-
invariant.

In the algorithm, each distinct pre-image is associated with
a unique output. Consequently, each output is indexed by its
associated pre-image. Note that the optimal channel may not
be unique, since the set of solutions to the linear feasibility
system in Step 2 of Algorithm 1 are in general convex

Algorithm 1: Optimal channel for a given p, k (Theorem 1)

Input: p = (p(1), . . . , p(n)) in non-increasing order, k
Output: pY |X

1: Find j∗ ← min
{

1 ≤ j ≤ k : p(j) ≤
∑n
i=j p(i)

k − j + 1

}
2: Solve

∑
M∈M({1,...,j∗−1,i})

vM = p(i), ∀i =

j∗, . . . , n
s. t.: vM ≥ 0, ∀M ∈M({1, . . . , j∗−1})

3: p(yM |i)← vM/p(i) ∀i = j∗, . . . , n
∀M ∈M({1, . . . , j∗−1, i})

4: p(yM |i)← vM (k − j∗ + 1)/
∑n
j=j∗ p(j)
∀i = 1, . . . , j∗−1

∀M ∈M({1, . . . , j∗−1})
5: p(y|x)← 0 everywhere else

polyhedra. The theorem guarantees that all of such solutions
are optimal and their optimality is metric-invariant.

At its core, Algorithm 1 is doing something simple: it
generates a channel such that given any output y shown to the
adversary, the posterior distribution over the inputs in its pre-
image is exactly π. It does so by always including the inputs
1, . . . , j∗ − 1 in the pre-images, and carefully choosing the
randomization of the transition matrix such that the posterior
probability over the remaining k − (j∗ − 1) items of a pre-
image is uniform (guaranteed by the solution of the linear
system of equations in Step 2), and the posterior distribution
over the first j∗ − 1 elements of the pre-image is exactly the
first j∗− 1 entries of the prior (guaranteed by Steps 3 and 4).

Before we present the proof, let us compute the optimal
channel for a few toy examples to gain some intuition.
Consider the case X = {1, 2, 3, 4} and k = 3. We have the
following possible size 3 pre-images:

M1 ={1, 2, 3},M2 ={1, 2, 4},M3 ={1, 3, 4},M4 ={2, 3, 4}

First, consider the following prior over the secrets: p1 =
(0.3, 0.28, 0.22, 0.2). We have: p1(1) = 0.3 ≤ 1/k = 1/3 =
0.33, hence j∗ = 1, and an optimal channel must induce
π = (1/3, 1/3, 1/3) posterior distributions. Since, j∗ = 1,
the linear system in Step-2 of the algorithm is as follows:

v{1,2,3} + v{1,2,4} + v{1,3,4} = 0.3

v{1,2,3} + v{1,2,4} + v{2,3,4} = 0.28

v{1,2,3} + v{1,3,4} + v{2,3,4} = 0.22

v{1,2,4} + v{1,3,4} + v{2,3,4} = 0.2

v{1,2,3}, v{1,2,4}, v{1,3,4}, v{2,3,4} ≥ 0

which, after solving it and following Steps 3 and 4 of the
algorithm yields the optimal channel as:

y{1,2,3} y{1,2,4} y{1,3,4} y{2,3,4}

(0.30) 1: 0.4444 0.3778 0.1778 0
(0.28) 2: 0.4762 0.4048 0 0.1190
(0.22) 3: 0.6061 0 0.2424 0.1515
(0.20) 4: 0 0.5667 0.2667 0.1667
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Fig. 1. Three toy examples for illustration of Theorem 1. The priors p1, p2 and p3 beside their corresponding π (as described in the theorem) are respectively
shown in (a), (b) and (c). Note that the priors are increasingly more skewed away from the uniform. In particular, in (a): we have j∗ = 1, i.e., no giants, in
(b): j∗ = 2, i.e., one giant, and in (c): j∗ = 3, i.e., 2 giants.

We can check that the above optimal channel induces uni-
form posterior distribution over 3 elements of any pre-image.
Recall from Bayes’ rule that p(x|y) = p(x)p(y|x)/p(y). Since
the denominator is the same for a given output, we just need to
verify p(x)p(y|x) is the same for all x ∈ PreIm(yM ) = M .
For instance, for M1 = {1, 2, 3} we have: 0.3 × 0.4444 =
0.28×0.4762 = 0.22×0.6061 = 0.1333. Hence, p(1|y1,2,3) =
p(2|y1,2,3) = p(3|y1,2,3) = 1/3. Similarly, for M2 = {1, 2, 4}
we have: 0.3 × 0.3778 = 0.28 × 0.4048 = 0.2 × 0.5667 =
0.1133. And finally, for M3 = {1, 3, 4}, we have: 0.3 ×
0.1778 = 0.22× 0.2424 = 0.2× 0.2667 = 0.0533.

Now consider an alternative prior: p2 =
(0.36, 0.3, 0.2, 0.14), We have: p2(1) = 0.36 > 1/k but
p2(2) = 0.3 ≤ (0.3 + 0.2 + 0.14)/(k − 1) = 0.64/2 = 0.32,
therefore j∗ = 2, and the optimal channel will
always include 1 in the pre-images and induce π =
(p2(1), (p2(2) + p2(3) + p2(4))/2, (p2(2) + p2(3) + p2(4))/2) =
(0.36, 0.32, 0.32) posterior distributions. The corresponding
linear system in Step 2 is:

v{1,2,3} + v{1,2,4} = 0.3

v{1,2,3} + v{1,3,4} = 0.2

v{1,2,4} + v{1,3,4} = 0.14

v{1,2,3}, v{1,2,4}, v{1,3,4} ≥ 0

which yields the optimal channel as:

y{1,2,3} y{1,2,4} y{1,3,4}

(0.36) 1: 0.5625 0.3750 0.0625
(0.30) 2: 0.6000 0.4000 0
(0.20) 3: 0.9000 0 0.1000
(0.14) 4: 0 0.8571 0.1429

Finally, consider the prior p3 = (0.4, 0.35, 0.15, 0.1), which
implies: p3(1) = 0.4 > 1/k, p3(2) = 0.35 > (0.35 + 0.15 +
0.1)/(k−1) = 0.6/2 = 0.3, and only p3(3) = 0.15 ≤ (0.15+
0.1)/(k − 2) = 0.25/1 = 0.25. Therefore, j∗ = 3 and Step-2
of the algorithm becomes solving the following trivial system:

v{1,2,3} = 0.15, v{1,2,4} = 0.1, v{1,2,3}, v{1,2,4} ≥ 0

Hence, the corresponding optimal channel will be:

y{1,2,3} y{1,2,4}

(0.40) 1: 0.6000 0.4000
(0.35) 2: 0.6000 0.4000
(0.15) 3: 1 0
(0.10) 4: 0 1

Note that the optimal channel always includes 1 and 2 in
the pre-images, i.e., only shows y{1,2,3} and y{1,2,4} outputs,
and, moreover, it induces π = (p3(1), p3(2), p3(3) + p3(4)) =
(0.4, 0.35, 0.25) posteriors for both of them.

We develop the proof of Theorem 1 in the following logical
succession: First, we establish that H(π) is an upper-bound
for the posterior entropy H(X|Y ) for any feasible channel
(Lemma 1). Then we prove that this bound is tight by showing
that Algorithm 1 provides a feasible channel that achieves this
upper-bound with equality, and hence, is optimal (Lemma 2).

Lemma 1: Given the prior p and pre-image size cap k, for
any feasible channel: H(X|Y ) ≤ H(π).

Lemma 2: For a given p and k, Algorithm 1 produces a
feasible channel that achieves H(X|Y ) = H(π).

Proof of Lemma 1: Recall our generic form of conditional
entropy in (6), where η and F satisfy (7a) or (7b). We provide
the proof for the case of (7a). The treatment of case (7b) is
similar. Since F is symmetric and concave (case (7a)), it is
also Schur-concave.

Consider an arbitrary feasible channel satisfying the pre-
image maximum size constraint. Then for any y ∈ Y+, we
have | supp(pX|y)| ≤ k, that is, at most k entries of pX|y are
non-zero. This is due to the facts that |PreIm(y)| ≤ k and
p(x|y) = 0 for any x 6∈ PreIm(y).

Suppose that for the given p and k, the value of j∗ as defined
in (9) is 1. For j∗ = 1, π is the uniform distribution over k
elements, which is majorized by any probability distribution
over a support size of at most k. Therefore, following Schur-
concavity of F , each of the terms F (pX|y) are bounded by
F (π). Hence, noting that η is an increasing scalar function,
we have:

H(X|Y ) = η

∑
y∈Y+

p(y)F (pX|y)

 ≤ η
∑
y∈Y+

p(y)F (π)


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= η

F (π)
∑
y∈Y+

p(y)

= η (F (π)) = H(π)

This was intuitive: the highest uncertainty of the adversary, if
the size of the pre-images is restricted to k, pertains to uniform
distribution over the k elements of the pre-image.

Now, we turn our attention to cases where j∗ > 1. First,
∀y ∈ Y+, following the symmetry of F , we can safely sort
each of the posterior probabilities in non-increasing order, that
is: F (pX|y) = F (p↓X|y).

Second, the fact that ∀y ∈ Y+, | supp(pX|y)| ≤ k, implies
that the bottom (n − k) elements of p↓X|y are always zero.
Therefore, following the expansibility of F , we can safely
remove them. That is, F (p↓X|y) = F (p↓X|y ↓(1,...,k)), where
the subscript ↓ (1, . . . , k) denotes projecting to only the first
k elements.

Third, note that p(y) for y ∈ Y+ constitute coefficients of
a convex combination, since each is non-negative and they
add up to one. Hence, following the concavity property of F
(Jensen’s inequality) and the previous two steps, we have:

H(X|Y ) = η

∑
y∈Y+

p(y)F
(
p↓X|y ↓(1,...,k)

)
≤ η

F
∑
y∈Y+

p(y)p↓X|y ↓(1,...,k)


= H

∑
y∈Y+

p(y)p↓X|y ↓(1,...,k)

 .

The inequality in (III) can be re-written as: H (X|Y ) ≤ H(q)
where q = (qi), i = 1, . . . , k is defined as follows: qi :=∑
y∈Y+

(
p(y)pX|y

)
[i]

. Recall that subscript [i] denotes the i’th
largest element of a vector. Each vector p(y)pX|y is the joint
probability distribution of X and Y for Y = y. Specifically,
we have:

p(y)pX|y = (p(y)p(x|y))x∈X = (p(x, y))x∈X = (p(x)p(y|x))x∈X

Hence, we can rewrite qi equivalently as∑
y∈Y+ ((p(x)p(y|x))x∈X )[i].
Fourth, we show that q, such defined, majorizes π as

described in (10), i.e., q � π. First of all, q is itself a
probability distribution over a support of size k, since it
is a convex combination of k-sized probability distributions
p↓X|y ↓(1,...,k). In particular, we have

∑k
i=1 qi =

∑k
i=1 πi = 1.

Moreover, both q and π are already in non-increasing order:
For q, this follows from the fact that all p↓X|y ↓(1,...,k) are
in non-increasing order. For π, first note that its first j∗ − 1
entries match exactly those of the prior: (p(1), . . . , p(j∗ − 1)),
and are hence in non-increasing order according to our as-
sumption for p. The next k − j∗ + 1 elements are all equal
to (
∑n
i=j∗ p(i))/(k − j∗ + 1). Hence, we just need to show

p(j∗ − 1) ≥ (
∑n
i=j∗ p(i))/(k − j∗ + 1). This is a conse-

quence of the definition of j∗. Specifically, (9) implies that
p(j∗−1) > (

∑n
i=(j∗−1) p(i))/(k− (j∗−1) + 1). Multiplying

both side by (k− (j∗−1)+1) and subtracting p(j∗−1) from
both sides yields our desired inequality.

Therefore, all we need to show in order to establish q � π
is that

∑l
i=1 qi ≥

∑l
i=1 πi for all l = 1, . . . , (k− 1). We will

use the following sub-lemma:
Sub-lemma 1:

∑l
i=1 qi ≥

∑l
i=1 p(i) for any l < k.

Proof: Replacing for qi, for any l < k, we have:

l∑
i=1

qi =

l∑
i=1

∑
y∈Y+

((p(x)p(y|x))x∈X )[i]

=
∑
y∈Y+

l∑
i=1

((p(x)p(y|x))x∈X )[i] ≥
∑
y∈Y+

l∑
i=1

p(i)p(y|i)

The second equality is simply switching the order of
summations. The inequality follows because summation
of the top l elements of any vector is no less than
the summation of any l elements of it. The right hand
side of the inequality, after a change in the order
of summations, is equal to:

∑l
i=1

∑
y∈Y+ p(i)p(y|i) =∑l

i=1 p(i)
∑
y∈Y+ p(y|i) =

∑l
i=1 p(i). The last equality fol-

lows because
∑
Y ∈Y+ p(y|x) = 1 for each x ∈ X . Replacing

this back in the inequality yields
∑l
i=1 qi ≥

∑l
i=1 p(i), the

claim of the sub-lemma.
Now, for any l ≤ j∗ − 1, the inequality

∑l
i=1 qi ≥∑l

i=1 πi directly follows from the above sub-lemma, since
πi = pi for all i ≤ j∗ − 1 by its definition in (10). For
an l ∈ {j∗, . . . , k − 1}, first we argue that

∑l
i=j∗ qi/(l −

j∗ + 1) ≥
∑k
i=j∗ qi/(k − j∗ + 1): The left hand side

is the (arithmetic) average of (qj∗ , . . . , ql), and the right
hand side is the (arithmetic) average of (qj∗ , . . . , qk); the
inequality then follows due to the fact that qi’s are in non-
increasing order. This inequality can be written as

∑l
i=j∗ qi ≥

l−j∗+1
k−j∗+1

∑k
i=j∗ qi. Adding

∑j∗−1
i=1 qi to both sides, and rewrit-

ing
∑k
i=j∗ qi equivalently as (1 −

∑j∗−1
i=1 qi), we obtain:∑l

i=1 qi ≥
∑j∗−1
i=1 qi + l−j∗+1

k−j∗+1 (1−
∑j∗−1
i=1 qi). Following the

sub-lemma, we have
∑j∗−1
i=1 qi ≥

∑j∗−1
i=1 p(i). Now, consider

the R → R function f(x) = x + l−j∗+1
k−j∗+1 (1 − x). For any

j∗ ∈ {2, . . . , k}, this function is increasing in x. Therefore,∑j∗−1
i=1 qi ≥

∑j∗−1
i=1 p(i) implies

∑j∗−1
i=1 qi + l−j∗+1

k−j∗+1 (1 −∑j∗−1
i=1 qi) ≥

∑j∗−1
i=1 p(i) + l−j∗+1

k−j∗+1 (1−
∑j∗−1
i=1 p(i)) as well.

Note that the right hand side of the latter inequality is exactly∑l
i=1 π(i) when l ∈ {j∗ − 1, . . . , k}. Putting the cases of

l ≤ j∗ − 1 and l ∈ {j∗, . . . , k − 1} together, we obtain∑l
i=1 qi ≥

∑l
i=1 πi for any l ∈ j∗, . . . , k. This completes

the argument for establishing q � π.
In the final step for proving Lemma 1, we note that Schur-

concavity of H together with q � π give H(q) ≤ H(π).
The lemma now follows by noting that in step 3, we showed
H(X|Y ) ≤ H(q).

Lemma 1 established that H(π) is an upper-bound for the
posterior entropy of any feasible channel. Next, we prove
Lemma 2, which states that our algorithm constructs a feasible
channel that achieves this upper-bound, and hence, is optimal.
Both lemmas hold for any symmetric expansible core-concave
H .

Proof of Lemma 2: We provide the proof in the following
sequence: (I): Algorithm 1 indeed terminates with an output.
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(II): The output of the algorithm is a feasible channel satisfying
the pre-image size constraint. (III): The channel achieves
H(X|Y ) = H(π).

(I): As we argued after (9), j∗ can always be found.
Therefore, we only need to ensure that the linear system
in Step 2 of the algorithm indeed has a solution. This is a
consequence of the following sub-lemma:

Sub-lemma 2: Consider a (n − j + 1)-sized vector p′ =
(p(j), . . . , p(n)) with non-negative elements, sorted in non-
increasing order. Suppose p(j), i.e., the biggest element of p′,
satisfies p(j) ≤

∑n
i=j p(i)/(k − j + 1) for a j and k, j ≤

k ≤ n. Then the following system has a feasible solution:∑
M∈M({1,...,j−1,i})

vM = p(i), ∀i = j, . . . , n;

subject to: vM ≥ 0, ∀M ∈M({1, . . . , j−1}).

Moreover, for any solution we have:∑
M∈M({1,...,j−1})

vM =

∑n
i=j p(i)

k − j + 1
.

Note that the condition of sub-lemma 2 is satisfied for j∗

found in the first step of Algorithm 1.
Proof: For brevity, take s :=

∑n
i=j p(i), t := (n− j+1),

and u := (k − j + 1). Let:

Ω := {ω ∈ Rt :

t∑
i=1

ωi = s, & 0 ≤ ωi ≤
s

u
,∀i = 1, . . . , t}.

Ω is a convex polyhedron in Rt−1 (since it is described by
a system of linear inequalities, and the minus 1 is due to
the one equality constraint). It is also closed, and is non-
empty, as ω = (s/t, . . . , s/t) ∈ Ω. Hence, Ω is also a non-
empty polytope in Rt−1, i.e., can be described as the convex
hull of a finite number of points in Rt−1. Specifically, any
point inside Ω can be written as a convex combination of the
extreme (a.k.a. corner) points of Ω (and vice versa). In fact,
according to Carathèodory’s theorem, this can be done by a
convex combination of at most t of them. The extreme points
of Ω are t-dimensional vectors where w of their elements are
s/u and the t − u rest of them are zeros. There are

(
t
u

)
of

such vectors. Let Λ be a matrix whose columns are these
extreme points, i.e, each column is a distinct permutations
of u entries of s/u and t − u entries of zero, that is: Λ :=
[(s/u, . . . , s/u, 0, . . . , 0)T , . . . , (0, . . . , 0, s/u, . . . , s/u)T ].

The condition of the sub-lemma, i.e., p(j) ≤∑n
i=j p(i)/(k − j + 1), or p(j) ≤ s/u implies that p′ ∈ Ω.

Hence, as we argued above, p′ can be expressed as a convex
combination of the extreme points of Ω. Let z ∈ R+(tu)

denote such a convex combination, thus, we have: Λz = p′

where z ≥ 0 (elementwise non-negative for all
(
t
u

)
entries),

and 1T z = 1 where 1 is a
(
t
u

)
-sized vector of all ones.

On the other hand, the linear system in the sub-lemma can
be written in matrix form as: Λ̄v = p′ where Λ̄ is a t ×(
t
u

)
matrix whose columns are all the

(
t
u

)
permutations of

having u entries of 1 and t − u entries of 0. Therefore, with
some re-ordering of the equations if necessary, we can write:
Λ = (s/u)Λ̄. Hence, Λz = p′ implies (s/u)Λ̄z = p′, and

z ≥ 0 implies (s/u)z ≥ 0. Therefore, v = (s/u)z is a feasible
solution of the system in the sub-lemma.

The second claim of the sub-lemma follows from summat-
ing all the equations of the system and a simple counting:∑n
i=j p(i) =

∑n
i=j

∑
M∈M({1,...,j−1,i}) vM = (k − j +

1)
∑
M∈M({1,...,j−1}) vM .

This finishes part (I) of the lemma’s proof: that Algorithm 1
always terminates with a solution.

(II): First, note that the algorithm assigns a non-zero
value to p(yM |i) only for i ∈ M . Hence, the pre-
image of yM is a subset of M , and thus, its size is
bounded by the size of M , i.e., k. Specifically, for an
i ∈ {j∗, . . . , n}, Algorithm 1 assigns p(yM |i) = vM/p(i)
for all M ∈ M({1, . . . , j∗−1, i}), and zero for any other
y. Hence,

∑
y∈Y p(y|i) =

∑
M∈M({1,...,j∗−1,i}) p(yM |i) =∑

M∈M({1,...,j∗−1,i}) vM/p(i) = 1, where the last equality
follows directly from the system of equations in Step 2
of the algorithm, specifically, the equality constraint of∑
M∈M({1,...,j∗−1,i}) vM = p(i). Similarly, for an i ∈

{1, . . . , j∗ − 1}, the algorithm assigns: p(yM |i) = vM (k −
j∗ + 1)/

∑n
j=j∗ p(j) for all M ∈ M({1, . . . , j∗ − 1})

and zero for any other y. Therefore,
∑
y∈Y p(y|i) =∑

M∈M({1,...,j∗−1}) p(yM |i) =
∑
M∈M({1,...,j∗−1}) vM (k −

j∗+1)/
∑n
j=j∗ p(j) = 1, where the last equality is due to the

second claim of Sub-lemma 2, that
∑
M∈M({1,...,j∗−1}) vM =

(
∑n
i=j∗ p(i))/(k−j∗+1). Hence, Algorithm 1 terminates with

a valid channel that satisfies the pre-image size constraints.
(III): The pre-images of the channel constructed by the

algorithm are M ∈ M({1, . . . , j∗− 1}) for which vM >
0. In particular, all of these pre-images include inputs
1, . . . , j∗ − 1, along with k − j∗ + 1 other inputs. Let M =
{1, . . . , j∗−1, φ1, . . . , φk−j∗+1}, where {φ1, . . . , φk−j∗+1} ⊂
{j∗, . . . , n} be any of such pre-images for which vM > 0.
The posterior probability distribution for yM is given by the
Bayes’ rule: p(x|yM ) = p(x)p(yM |x)/p(yM ) where p(yM ) =(∑

x′∈X p(x
′)p(yM |x′)

)
. Replacing from the assignments in

Steps 3 through 5 of Algorithm 1, we get:

p(yM ) =

j∗−1∑
i=1

p(i)

(
vM (k − j∗ + 1)∑n

j=j∗ p(j)

)
+

k−j∗+1∑
i=1

p(φi)
vM
p(φi)

= vM (k− j∗+1)

(∑j∗−1
i=1 p(i)∑n
j=j∗ p(j)

+ 1

)
=
vM (k − j∗ + 1)∑n

j=j∗ p(j)

Hence, for all i = 1, . . . , k − j∗ + 1:

p(φi|yM ) =
p(φi)vM/p(φi)

vM (k − j∗ + 1)/
∑n
j=j∗ p(j)

=

∑n
j=j∗ p(j)

k − j∗ + 1

(11)

On the other hand, for i = 1, . . . , j∗ − 1:

p(i|yM ) =
p(i)vM (k − j∗ + 1)/

∑n
j=j∗ p(j)

vM (k − j∗ + 1)/
∑n
j=j∗ p(j)

= p(i) (12)

According to (11) and (12) and the definition of π in (10),
a channel resulting from Algorithm 1 ensures that for each
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y ∈ Y+, pX|y = π. Therefore, employing such a channel, we
will have:

H(X|Y ) = η

∑
y∈Y+

p(y)F
(
pX|y

)
= η

∑
y∈Y+

p(y)F (π)

= η (F (π)) = H(π).

This concludes the proof of Lemma 2, and thus, of Theorem 1.

In what follows, in order to showcase the versatility of our
main result, we provide a series of corollaries.

Corollary 1: Given prior p and pre-image size-cap k, the
maximum achievable posterior entropy with respect to Min-
Entropy is − log(max(1/k, p[1])). This in turn implies that the
minimum achievable leakage with respect to Min-Entropy is
0 for any k ≥ 1/p[1], and − log(kp[1]) for k < 1/p[1].

Proof: From Theorem 1, if p[1] ≤ 1/k, then j∗ = 1
and π = (1/k, . . . , 1/k), which means the highest achievable
posterior entropy is H((1/k, . . . , 1/k)). For Min-Entropy, this
gives − log(1/k). If on the other hand p[1] > 1/k, then j∗ is an
index between 2 and k. For any j∗ > 1, the largest element of
π is p[1], hence H(π) for Min-Entropy is equal to − log(p[1]).
Putting these together yields the claim.

Corollary 1 may come as a bit of a surprise: if p[1] > 1/k,
the information leakage with respect to Min-Entropy can be
made absolutely zero. This can in fact be generalized to
l-Guess-Entropy too: If p[l] ≥

(∑k
i=l p[i]

)/
(k − l + 1),

then the minimum leakage with respect to l-Guess-Entropy is
zero. These results however do not contradict the Shannon’s
perfect secrecy, since, unlike Shannon’s entropy, Min-Entropy
and l-Guess-Entropy do not retain the information of the
whole distribution. Also note that these zero-leakage cases
correspond to priors that are highly skewed. In such cases, the
prior is already very revealing and gives a big advantage to
the adversary, but the defender can at least leverage those high
probability inputs to not reveal any extra information. In other
words, figuratively speaking, the inputs with high probabilities
cannot be helped, but the small-probability inputs can “hide
in their shadow”.

Extension of Corollary 1 to the l-Guess and Guesswork are
provided next (proofs skipped for brevity).

Corollary 2: Given a prior p and pre-image size-cap k,
the maximum posterior entropy with respect to l-Guess-Error-
Probability, i.e., the probability that an adversary is wrong
within his l best guesses, is:

1− max
0≤j≤l

{ j∑
i=1

p[i] +
(
1−

j∑
i=1

p[i]
) l − j
k − j

}
Corollary 3: Given a prior p and pre-image size-cap k, the

maximum posterior entropy with respect to the Guesswork
entropy, i.e., the expected number of guesses of an adversary
before detection, is:

min
1≤j≤k

{ j−1∑
i=1

ip[i] +
(
1−

j−1∑
i=1

p[i]
)k + j

2

}

A. A counterexample to metric invariance

It is not possible in general to have an optimal solution that
is metric invariant. The following is a counterexample: con-
sider 4 secrets: {1, 2, 3, 4} with prior (p1, p2, p3, p4). The set
of observables (outputs) is {a, b}. The set of feasible observ-
ables is defined by Ω = {(1, a), (2, a), (2, b), (3, b), (4, b)}.
That is, for secret 1, the only possible observable to show is
a, for secret 2, both a and b are allowed, and for secrets 3 and
4, the only allowed observable is b. Following the admissible
observables for secrets 1, 3 and 4, we have: δ(b|1) = δ(a|3) =
δ(a|4) = 0, and therefore: δ(a|1) = δ(b|3) = δ(b|4) = 1.
For secret 2, δ(a|2) and δ(b|2) are free, as long as they are
positive and add up to 1. Therefore, δ(b|2) is the only variable
of optimization. For this example the optimal depends on
the measure chosen: setting δ(b|2) = x/p2 we have that the
maximizer x for guesswork entropy is 0.1518, for Rényi with
α = 2 is 0.2573, for Shannon entropy is 0.2998.

IV. DEPARTURE FROM SYMMETRIC ENTROPIES:
EXTENSION TO GAIN-BASED LEAKAGES

In the previous section, we provided a channel that, under
a pre-image size constraint, yields minimum leakage with
respect to a large class of classical entropy measures. Our
analysis only relied on structural properties of the entropy
function, namely: symmetry, expansibility, and core-concavity.
A major point of departure from this family of entropies,
where potentially all three of these properties can be violated,
is the gain based entropy (g-entropy) introduced in [10]. g-
entropy is a generalization of the notion of Min-Entropy
by permitting secret-guess dependent gains to a guessing
adversary. This notion of leakage has received attraction in a
line of research (e.g. [14], [37], [53]–[55]). We now introduce
our generalization of g-entropy by fusing it with a generic
classical entropy, and present an extension of our main result.

Given a set of guesses W and secrets X , we start by
defining a gain function g by a matrix G ∈ R|W|×|X|,
where Gw,x := g(w, x). The coefficient g(w, x) is the gain
of the adversary when her guess is w and the secret is
x. We consider now a gain matrix G such that the vector
Gp/‖Gp‖1 is elementwise non-negative for any probability
distribution p over a fixed support (and hence, Gp/‖Gp‖1 is
a legitimate probability distribution). Then a generalized gain-
based entropy and its corresponding conditional entropy can
be defined as follows:

Hg(X) := η

(
‖Gp‖1F

(
Gp

‖Gp‖1

))
(13)

Hg(X|Y ) :=η

∑
y∈Y+

p(y)‖GpX|y‖1F
(

GpX|y

‖GpX|y‖1

) (14)

where, as before, η is a monotonic scalar function and F is a
symmetric expansible core-concave function. For instance, g-
entropy [10] is retrieved by taking η(·) = − log(·) and F (·) =
‖ · ‖∞. In fact, a whole family of entropies can be derived
from the Rényi family, Hα, by taking η(·) = −α

α−1 log(·) and
F (·) = ‖·‖α (noting the scalability of the α-norm) as follows:
Hα,g(X) := Hα(Gp) = −α

α−1 log ‖Gp‖α. All Rényi entropies
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are trivially instances of this (α, g) family by taking G to be
the identity matrix. In particular, Shannon entropy is retrieved
by also letting α→ 1.

The g-leakage defined in [10] can now be generalized as
the difference between prior and posterior entropies defined
in (13) and (14) respectively. In what follows, we establish
that the leakage such defined is always non-negative (hence
generalizing [10, Theorem 4.1]). The proof is similar to that
of Proposition 2 and is removed for brevity.

Proposition 3: Hg(X)−Hg(X|Y ) ≥ 0.
Note that for almost any G other than the identity matrix,

our new entropy functions Hg are no longer symmetric (nor
expansible or core-concave) in p. However, for a special
class of matrix gains, namely diagonal matrices, we present a
generalization of Theorem 1. We use the notation G = diag(γ)
where γ = (γ1, . . . , γn) ∈ R+n, to indicate that G is a square
diagonal matrix (zero for every entry except for possibly the
diagonal elements). This models cases where the adversary
gains γi ≥ 0 if the channel’s input is i and he identifies it
correctly, and zero if he mis-identifies. Although investigating
only diagonal gain matrices may be restrictive, they do exhibit
the secret-dependent non-symmetric essence of the g-leakage.

Proposition 4: Let p = (p(1), . . . , p(n)) be the prior,
G = diag(γ), be the diagonal gain matrix with non-negative
gains (with at least one of them strictly positive), and let k be
the maximum allowed size of the pre-images. Without loss of
generality, assume that Gp = (γ1p(1), . . . , γnp(n)) is in non-
increasing order. Then Theorem 1 holds with p replaced with
Gp. Specifically, let index j∗ and vector π = (π1, . . . , πk) ∈
R+k be defined as follows:

j∗ := min

{
j : 1 ≤ j ≤ k, γjp(j) ≤

∑n
i=j γip(i)

k − j + 1

}
,

πl :=γlp(l) : l ≤ j∗−1, πl=

∑n
i=j∗ γip(i)

k − j∗ + 1
: j∗≤ l≤k.

(15)

Then:

A. The maximum achievable posterior entropy Hg(X|Y )
among all feasible channels satisfying pre-image size
constraint is η (‖π‖1F (π/‖π‖1)).

B. Algorithm 1 where Gp (ordered in decreasing order)
replaces p (and assuming the convention of 0/0 = 0
whenever necessary) explicitly provides a feasible (ran-
domized) channel that achieves the above maximum
posterior entropy for any generalized measure per (14).

The extension makes intuitive sense: The gain coefficients,
γi’s, represent the relative importance of having a secret
revealed. The algorithm multiplies each probability by its
corresponding gain and tries to make this effective importance
of the secrets as uniform as possible. The proof is very similar
to that of Theorem 1. We hence omit the detail and just
provide an overview of it. As before, one can first establish
that η (‖π‖1F (π/‖π‖1)) is an upper-bound for Hg(X|Y ) for
any feasible channel, and then prove that Algorithm 1, fed
with Gp instead of p, produces a valid channel that achieves
this upper-bound with equality and is hence optimal. Notably,
the arguments again hold for any choice of the entropy in this

family (for a fixed gain matrix), and therefore, the optimality
of the provided channel is, once again, metric-invariant.

V. NUMERICAL ILLUSTRATIONS

First, we investigate the effect of the maximum permitted
pre-image size, k, and the choice of the entropy on the
minimum achievable leakage. We consider three candidate
entropies: Shannon, Guesswork, and Min-Entropy. Recall that:
HSh.(X) := −

∑n
x∈X p(x) log(p(x)) and its posterior entropy

is HSh.(X|Y ) =
∑
y∈Y+ p(y)

(
−
∑n
x∈X p(x|y) log(p(x|y))

)
.

For Min-Entropy, H∞(X) := − log maxx∈X (p(x)),
and posterior entropy is computed as H∞(X|Y ) =
− log(

∑
y∈Y+ p(y) maxx∈X (p(x|y)), a case of (7b). For

Guesswork, HGu.(X) =
∑n
i ip[i] and the posterior entropy

is HGu.(X|Y ) =
∑
y∈Y+

∑n
i i(pX|y)[i], a case of (7a). To

obtain a comparable scale for all three, we added a log(·) to
both prior and posterior of Guesswork entropy as well.

For all examples in this section, we consider a input space
consisting of 30 elements with the following prior distribution:
p = (30/465, 29/465, . . . , 1/465). Fig. 2a shows that, as we
expect, the minimum leakage reduces as larger pre-images are
allowed. When leakage is quantified with Shannon entropy,
min-leakage only vanishes when k = n, in accordance with the
classic perfect secrecy result. However, the minimum achiev-
able information leakage with respect to Min-Entropy becomes
zero for any k ≥ 16 in our example. This complies with the
result of Corollary 1, which stated that for any k ≥ d1/p[1]e,
an optimal channel can achieve zero leakage with respect to
Min-Entropy. In this example, d1/p[1]e = d465/30e = 16.

Next, we compare the performance of optimal channels
against the following base-line: For a given input, construct
its set of maximal pre-images to be the subsets of size k of
the inputs that include that particular input, i.e., is composed
of that input and k− 1 others. Then uniformly randomly pick
the outputs that correspond to those pre-images. Note that
this strategy is in fact optimal when the prior distribution
is uniform, but not necessarily for other priors. Fig. 2b
depicts the leakage with respect to Min-Entropy achieved by
the optimal strategy and the base-line strategy when p =
(30/465, . . . , 1/465), demonstrating the sub-optimality of the
base-line for any intermediate value of k. Adoption of this
strategy is sub-optimal because it essentially ignores the fact
that an adversary who is aware of the distribution of the input
can exploit it to further improve his guessing power.

Next, we investigate the effect of one of the assumptions
we made in the paper: that the defender designs her channel
assuming that the adversary knows the true distribution of the
inputs. In particular, we consider an uninformed adversary,
that does not know the prior distribution, and thus, for any
observed output, simply chooses a guess uniformly randomly.
What will be the performance of the strategy that is designed to
be optimal with the (worst-case) assumption that the adversary
is informed of the true distribution, but facing an uninformed
(ignorant) adversary instead. In Fig. 2c, for the prior of
p = (30/465, . . . , 1/465), we have depicted the posterior Min-
Entropy for an informed vs. ignorant adversary. As we can see,
for k ≥ 16, the Min-Entropy of the ignorant adversary is larger
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Fig. 2. For all figures, the prior is p = (30/465, . . . , 1/465) and the pre-image size-cap, k, is varied from 1 to n = 30 as the x-axis. (a) The minimum
achievable leakage with respect to Shannon, Guesswork and Min-Entropy. The minimum leakage improves as larger pre-images are allowed. The Shannon
entropy only becomes zero for k = n, as is the classic perfect secrecy, while the best min-entropy leakage becomes zero for any k ≥ 16 for this prior
distribution as per Corollary 1. (b) Comparison of the Min-Entropy leakage achieved by the optimal channel and the base-line (uniform randomization) strategy.
(c) Negative of the log of the expected reward of an informed adversary, who knows the true prior distribution of the channel input, and an uninformed
adversary who simply assumes a uniform prior. The channel (randomized strategies) is designed to be optimal assuming facing an informed adversary.

than that of the informed one. For k < 16, we have p[1] < 1/k,
which implies j∗ = 1, and hence, the optimal channel indeed
induces uniform posterior distributions on the pre-image of
any shown output. Hence, uniformly random guessing from
any observed output by the uninformed adversary matches the
optimal strategy of an informed adversary as well.

VI. CONCLUSION AND FUTURE WORK

We investigated the problem of minimizing leakage when
perfect secrecy is not achievable due to operational limits
on the allowable size of the conflating sets. We construc-
tively shown the existence of metric-invariant optimal channels
achieving minimum leakage for any choice of entropy that
satisfy a mild set of conditions (symmetry, expansibility, and
core-concavity).

We expect that the techniques developed in our proofs,
especially majorization arguments, be reused in unification
of different notions of leakage and establishing robustness
results for more general set of constraints. Exploring concrete
application-oriented settings, e.g., in side-channel defence and
attack, is another goal in our future research. Extensions of
our framework to leakage metrics that consider worst-case
scenarios like maximal leakage [43] and differential privacy
are also yet to be investigated.
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information leakage of randomized protocols,” in Proceedings of the 14th

International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI), vol. 7737. Springer, 2013, pp. 68–87.

[55] P. Mardziel, M. S. Alvim, M. Hicks, and M. R. Clarkson, “Quantifying
information flow for dynamic secrets,” in Proceedings of the 35th IEEE
Symposium on Security and Privacy (S&P). IEEE, 2014, pp. 540–555.

MHR Khouzani received his Ph.D. in Electrical
and Systems Engineering in 2011 from University
of Pennsylvania. He held postdoctoral research po-
sitions with the Ohio State University (OSU), the
University of Southern California (USC), Royal Hol-
loway, University of London (RHUL), and Queen
Mary, University of London (QMUL). Since Novem-
ber of 2016, he is a Lecturer in the EECS department
at QMUL. Dr. Khouzani’s research is in the area of
information security. He uses analytical tools from
areas such as information theory, optimization, and

game theory, to contribute to field of the science of security.

Pasquale Malacaria received his Laurea in Philoso-
phy from "La Sapienza" University in Rome and his
PhD in “Logique et fondements de l’Informatique”
from the University of Paris VII in France. His
work focuses on information theory, game theory,
verification and their applications to computer se-
curity. He is a Professor of Computer Science at
Queen Mary University of London. He has been an
EPSRC advanced research fellow, is a recipient of
the Alonzo Church award 2017 and of the Facebook
Faculty awards 2015.


