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Abstract

Kinetic Alfvén waves (KAWs) are the short-wavelength extension of the magnetohydrodynamics Alfvén-wave
branch in the case of highly oblique propagation with respect to the background magnetic field. Observations of
space plasma show that small-scale turbulence is mainly KAW-like. We apply two theoretical approaches, a
collisional two-fluid theory and a collisionless linear kinetic theory, to obtain predictions for the KAW
polarizations depending on βp (the ratio of the proton thermal pressure to the magnetic pressure) at the ion
gyroscale in terms of fluctuations in density, bulk velocity, and pressure. We perform a wavelet analysis of
Magnetospheric Multiscale magnetosheath measurements and compare the observations with both theories. We
find that the two-fluid theory predicts the observations better than the kinetic theory, suggesting that the small-scale
KAW-like fluctuations exhibit a fluid-like behavior in the magnetosheath although the plasma is weakly
collisional. We also present predictions for the KAW polarizations in the inner heliosphere that are testable with
Parker Solar Probe and Solar Orbiter.
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1. Introduction

Standard single-fluid magnetohydrodynamics (MHD) con-
tains four linear modes in a collisional plasma: the Alfvén
wave, the fast-magnetosonic wave, the slow-magnetosonic
wave, and the entropy mode. The polarization and dispersion
relations identify their counterparts in the collisionless kinetic
theory (Stix 1992; Gary 1993). Due to the collisionless nature
of the solar wind, kinetic models have been expected to
describe these fluctuations more accurately than MHD.
However, Verscharen et al. (2017) compare theoretical
predictions for wave polarization properties from both the
MHD theory and the kinetic theory with observations of
compressive fluctuations in the solar wind and find that the
predictions from linear MHD agree better with the observations
than the predictions from the kinetic theory for slow modes at
large scales. The comparison between the fluid-like and the
kinetic behavior of collisionless plasmas is of great importance
for our fundamental understanding of plasma turbulence. In
this context, we define a fluid-like mode as a plasma mode that
follows the predictions from fluid equations with adiabatic and
isotropic pressure closure.

The magnetic fluctuations in the inertial range of solar-
wind turbulence exhibit Alfvénic correlations (Belcher &
Davis 1971) and a scale-dependent anisotropy with k k^  
(Horbury et al. 2008; Wicks et al. 2010; Chen et al. 2011, 2012;
He et al. 2013; Yan et al. 2016), where k⊥ is the perpendicular
wavenumber and kP is the parallel wavenumber with respect to
the background magnetic field. Kinetic Alfvén waves (KAWs)
are the short-wavelength extension of the Alfvén-wave branch

in the case of highly oblique propagation with respect to the
background magnetic field. Therefore, it is thought that the
cascade continues into the KAW-like regime for k⊥ρp1,
where ρp=vth/ωcp is the ion gyroscale, vth is the perpendicular
thermal speed, ωcp=qpB0/mpc is the proton gyrofrequency, qp
is the proton electric charge, mp is the proton mass, B0 is the
magnitude of the background magnetic field, and c is the speed
of light. A growing body of evidence corroborates the presence
of kinetic Alfvén turbulence in the solar wind (Chandran et al.
2009; Chen et al. 2010, 2013; Sahraoui et al. 2010; He et al.
2011; Salem et al. 2012). Likewise, observations of small-scale
fluctuations in the magnetosheath also suggest the presence of
KAW-like turbulence (Chen & Boldyrev 2017; Breuillard et al.
2018). We extend the study of Verscharen et al. (2017) to
examine KAW-like fluctuations at small scales. In Section 2,
we present predictions for fluctuations in the first three velocity
moments associated with KAWs from both the collisional two-
fluid theory and the collisionless linear kinetic theory. In
Section 3, we describe our analysis of Magnetospheric
Multiscale (MMS) magnetosheath measurements. We compare
observations with our predictions in Section 4. In Section 5, we
discuss our results and present our conclusions. We present
predictions for solar-wind measurements with Parker Solar
Probe and Solar Orbiter in the Appendix.

2. Theory

We take the background magnetic field to be B B0, 0,0 0= ( ),
the electric field to be E Ed= ( Ed is the fluctuating electric
field), and the wave vector to be k k k, 0,= ^ ( ). In our
coordinate system, the z-direction is parallel to B0, and k lies in
the x–z plane. We define the dimensionless quantities ξs, χPs,
χ⊥s, and ψs as the normalized amplitudes of the fluctuations in

The Astrophysical Journal, 870:106 (7pp), 2019 January 10 https://doi.org/10.3847/1538-4357/aaef77
© 2019. The American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0003-0424-9228
https://orcid.org/0000-0003-0424-9228
https://orcid.org/0000-0003-0424-9228
https://orcid.org/0000-0002-0497-1096
https://orcid.org/0000-0002-0497-1096
https://orcid.org/0000-0002-0497-1096
https://orcid.org/0000-0002-0622-5302
https://orcid.org/0000-0002-0622-5302
https://orcid.org/0000-0002-0622-5302
https://orcid.org/0000-0001-8179-417X
https://orcid.org/0000-0001-8179-417X
https://orcid.org/0000-0001-8179-417X
https://doi.org/10.3847/1538-4357/aaef77
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaef77&domain=pdf&date_stamp=2019-01-14
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaef77&domain=pdf&date_stamp=2019-01-14
http://creativecommons.org/licenses/by/3.0/


the first three velocity moments of species s through

n

n

B

B
, 1s

s
s

0

y

0

d
x
d

= ( )

v

v

B

B
, 2

s
s

A

y

0

d
c

d
=

 ( )

v

v

B

B
, 3

s
s

y

A

y

0

d
c

d
= ^ ( )

and

P

P

B

B
, 4s

B
s

0

y

0

d
y

d
= ( )

where P B 8 ;B0 0
2 p= n0s is the average density of species s,

δns, δvPs, δvys, δPs, and δBy are the amplitudes of fluctuations in
the number density, the bulk velocity component parallel to B0,
the bulk velocity component in the y-direction, the thermal
pressure, and the magnetic-field component in the y-direction,
respectively. We note that ξs, χPs, χ⊥s and ψs are complex and
include information about the phases between the fluctuating
quantities. We consider a plasma consisting of protons (s=p)
and electrons (s=e) only and neglect all of the effects of
temperature anisotropies.

2.1. Two-fluid Model

The two-fluid dispersion relation follows from linearizing
the continuity, momentum, and energy equations and
Maxwell’s equations. We rewrite the two-fluid solutions of
Hollweg (1999) for the dispersion relation of KAWs using
our coordinate system. The KAW dispersion relation is then
given by
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where v B n m4A 0 0p pp= is the Alfvén speed, dp=vA/ωcp is
the ion inertial length, G=(γpβp+γeβe)/2,
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sg is the specific heat ratio of species s, me is the electron mass,
Ts is the parallel temperature of species s, and κB is Boltzmann
constant.

We calculate the quantities ξp, χPp, χ⊥p, and ψp as
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2.2. Kinetic Theory

The linear kinetic hot-plasma dispersion relation follows
from linearizing the Vlasov equation and Maxwell’s equations
(see, e.g., Stix 1992, Chapter 10). We assume that both protons
and electrons have isotropic Maxwellian background distribu-
tion functions. The dispersion relation is then given by the non-
trivial solutions to the wave equation,

k k
E E D E

c c
0, 13

w w
d d d´ ´ + º =⎜ ⎟⎛

⎝
⎞
⎠ ( )

where ò is the dielectric tensor. We note that ω is complex. The
electric current density fulfills
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where js is the current density contribution from species s, ss is
the susceptibility tensor of species s, and 1 s s s= + å .
The linearized continuity equation connects the fluctuations

of the density with the fluctuations of the current density,
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The fluctuations in pressure follow from the second moment of
the fluctuations in the distribution δfs,
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The New Hampshire Dispersion relation Solver (NHDS)
code (Verscharen & Chandran 2018) solves the hot-plasma
dispersion relation of the linearized Vlasov–Maxwell system
and determines the polarization properties numerically.
Figure 1 shows NHDS solutions for ωr (the real part of the
frequency) of KAWs with k⊥ρp=2 as functions of βp for
βe/βp=1 and βe/βp=0.2. In addition, we show KAW
solutions from our two-fluid theory with the same parameters
and γp=5/3 and γe=1. The dispersion relations agree
quantitatively well, especially for βp1.

3. Data Analysis

We analyze data from the four MMS spacecraft (Burch et al.
2016). In burst mode, the Fast Plasma Investigation (FPI)

instrument provides proton moments every 150ms and electron
moments every 30ms (Pollock et al. 2016). The fluxgate
magnetometer (FGM) measures the magnetic field with a
resolution of <1 ms. We select intervals in the magnetosheath
from 2015 October 1 to 2018 February 28 based on the
quicklook archive of MMS. We split every interval into 10 s
intervals with an overlap of 5 s. We remove data intervals in
which n n nmax 0.1p e p- >[∣ ∣ ] .
Magnetosheath plasma exhibits fluctuations not related to pure

turbulence, e.g., instability-generated waves (such as mirror
modes, ion-cyclotron waves, and whistler waves) and various
other non-turbulent structures (see, e.g., Lucek et al. 2005). In
order to investigate the turbulence itself, we eliminate intervals
with max minp p 0pb b b- >( ) ( ) and n nmax minp p- >( ) ( )

n0.2 0p, where the subscript 0 represents the average over the
10 s interval. We also remove data intervals in which v0p<vA,
where v0p is the average ion bulk velocity so that Taylor’s
hypothesis applies (Taylor 1938; Klein et al. 2014). For each
interval, we calculate 0pb and β0e. We find that the average ratio
β0e/β0p≈0.21 with a standard deviation of 0.09 and, therefore,
set βe/βp=0.2 in our study. The averaged normalized amplitude
of the fluctuations in δB⊥ is δB⊥/B0=0.05 with a standard
deviation of 0.04, and the averaged normalized amplitude of the
fluctuations in magnetic-field amplitude is B B 0.070d =∣ ∣ with a
standard deviation of 0.05. The Columb collision frequency νei
is 7×10−5 Hz under the conditions in our data set:
ne≈25 cm−3, Te≈50 eV, corresponding to a mean free path of
λ≈2×107 km for v0p≈150 km s−1. Since λ/dp≈1500, we
consider the plasma to be collisionless.
In order to study the scale-dependent behavior of the

fluctuations, we apply a continuous wavelet transform based on
the Morlet wavelet (Torrence & Compo 1998) to np, all
components of vp and B, and to every element of the proton
pressure tensor Pp. We obtain the fluctuation amplitudes δnp,
vpd , Bd , and Ppd from the absolute wavelet coefficients as
functions of both scale ℓ (16 logarithmically spaced scales) and
time t. We calculate the local magnetic field and the local
velocity at wavelet scale ℓ and time tn by weighting the time
series with a Gaussian curve centered at time tn (Horbury et al.
2008; Podesta 2009) as
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where N is the number of data points and C is either B or v. In this
way, we obtain the local mean magnetic field B0, the local mean
velocity v0p, the angle between local mean velocity and local mean
magnetic field θvB, as well as βp and ρp as functions of ℓ and tn.
We find that B By xd d for KAWs in both the two-fluid

theory and the kinetic theory. Therefore, we use δB⊥≈δBy

and exploit the azimuthal symmetry of a gyrotropic distribution
of the fluctuating energy. We calculate the parallel and
perpendicular fluctuations by
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where Cd is either vpd or Bd .

Figure 1. Real part of the frequency of KAWs with k⊥ρp=2 as a function of
βp from the two-fluid theory (blue) and kinetic theory (red). We use θkB=88°,
γp=5/3, and γe=1, where θkB is the angle between the direction of wave
propagation and the background magnetic field. The solid and dashed–dotted
lines represent βe/βp=1 and βe/βp=0.2 respectively. The two-fluid theory
and kinetic theory agree quantitively. The value of βe/βp affects the
predictions.
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We obtain the transformation matrix αij from the Geocentric
Solar Ecliptic coordinate system to the field-aligned coordinate
system with respect to B0 and then transform the tensor of pressure
fluctuations P ijpd to the field-aligned coordinate system by

P P . 26ij ki km mjp pd a d a¢ = ( )

The total proton thermal pressure is given by

P P P P
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3
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For each scale ℓ and time tn, we determine k⊥ as
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and retain only coefficients with 1.8�k⊥ρp�2.2 and 60 <
120vBq < .

In order to remove noise in our measurements, we only retain
coefficients when v 1.0pd > km s−1 and δv⊥p>1.0 km s−1.
We then construct a set of 600 bins in logarithmic space of βp
and the value of the coefficients, count the number of
occurrences in each bin, normalize each bin by its width, and
then column-normalize the histogram.

4. Results

Figure 2 shows the zeroth proton velocity moment ξp
depending on βp in the two-fluid and kinetic theory and our
MMS observations for k⊥ρp=2. The two-fluid theory and
kinetic theory predict similar values for ξp under these
parameters. Therefore, the observations of the zeroth moment
do not favor the applicability of either theory unambiguously.
However, the data agree well with the theoretical predictions as
well as previous observations (Chen et al. 2013; Chen &
Boldyrev 2017) and thus support the applicability of our data
analysis technique and the model comparisons.

Figure 3 shows the first parallel proton velocity moment χPp

depending on βp in both theories and our MMS observations. For
all shown values of βp, χPp is significantly greater in our results
from the two-fluid theory than in our results from the kinetic
theory. The two-fluid theory predicts a value that is approximately
the observed value of χPp. The kinetic theory, on the other hand,
underestimates the observed value by a factor between about
3 and 30 in the shown range of βp. This observation suggests that
the plasma exhibits fluid-like behavior at k⊥ρp≈2.
Figure 4 shows the first perpendicular proton velocity

moment χ⊥p depending on βp in both theories and our MMS

Figure 2. Ratio of proton density fluctuations and perpendicular magnetic-field
fluctuations, ξp, as a function of βp at k⊥pi≈2. The lines show our theoretical
results and the color coded bins show the logarithmically scaled, column-
normalized data distribution in the p px b– plane. The theoretical predictions
from the two-fluid theory and kinetic theory are similar, and the observations
agree with both models.

Figure 3. Ratio of parallel proton velocity fluctuations and perpendicular
magnetic-field fluctuations, χPp, as a function of βp at k⊥ρp≈2 with the same
panel and line styles as Figure 2. The theoretical predictions for χPp from the two-
fluid theory are significantly greater than those from the kinetic theory, and the
observations agree better with the two-fluid theory than with the kinetic theory.

Figure 4. Ratio of perpendicular proton velocity fluctuations and perpendicular
magnetic-field fluctuations, χ⊥p, as a function of βp at k⊥ρp≈2 with the same
panel and line styles as Figure 2. The theoretical predictions for χ⊥p from the
two-fluid theory are greater than the predictions from the kinetic theory, and the
observations agree with both the two-fluid theory and kinetic theory with a
small bias toward the two-fluid theory.
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observations. The predictions from our two-fluid model are
greater than the predictions from the kinetic theory by a factor
of about three. The observations lie between both predictions
with a small bias toward the two-fluid theory.

Figure 5 shows the second proton velocity moment ψp

depending on βp in both theories and our MMS observations.
Like in Figure 2 for ξp, the two-fluid theory and kinetic theory
predict similar values for ψp, and both predict the observa-
tions well.

We note that an adjustment of γp and γe within reasonable
values does not lead to a significant change in our results.
Moreover, an adjustment of θkB within the range of 85°
θkB<90° does not lead to a significant change in our results,
confirming our assumption that the observed fluctuations are
indeed consistent with highly oblique KAW turbulence.

5. Discussion and Conclusions

The behavior of KAWs departs from the behavior of Alfvén
waves mainly due to two effects. The ion motion is affected by
compression and introduces a polarization-drift term in the
equation of motion. Furthermore, the parallel component of the
electric field is non-zero and electrons move in the field-parallel
direction to neutralize the ion density perturbations. We derive
predictions for the proton polarization of KAWs using a
collisional two-fluid theory and a collisionless kinetic theory. In
the linear kinetic theory, the fluctuations are represented by
fluctuations in the distribution function, δfs, so that all moments
are included and generally non-zero. Our two-fluid theory, on
the other hand, assumes an adiabatic and isotropic closure for
the moment hierarchy, i.e., there are no fluctuations in heat flux
and the pressure tensor is isotropic. Apart from these
differences, the fluid theory and the kinetic theory are
equivalent. Measurements with even higher velocity-space
resolution may be capable of showing the heat-flux suppression
in the future.

Both theories predict similar behaviors for density and
pressure fluctuations, but the parallel and perpendicular
velocity fluctuations show clear differences: these fluctuations

are greater in the two-fluid theory than in the kinetic theory.
Due to the noise in the velocity observation, we cannot rule out
the possibility that fluctuations with very small amplitude
exhibit a behavior consistent with the kinetic theory. However,
our comparison of fluctuations in the magnetosheath above the
noise level with our theoretical predictions shows that KAW
turbulence behaves fluid-like at ion scales, suggesting that
some of the fluid-like behavior found by Verscharen et al.
(2017) extends to the ion-scale fluctuations. We note that
relaxing our assumption of temperature isotropy may improve
the agreement between our theory and observations. In
addition, a study based on a superposition of KAW turbulence
with other modes at small scales may modify our results since
our present method does not distinguish the contributions from
different wave types than KAWs. A comparison with
alternative approximations to the dispersion relation (Hunana
et al. 2013; Sulem & Passot 2015; Told et al. 2016) may give
further insight into the physics of the observed modes.
However, these extensions are beyond the scope of this work.
Our finding of fluid-like behavior in KAW turbulence

suggests that some yet unknown mechanism creates conditions
similar to the adiabatic and isotropic closure applied in our two-
fluid theory, even at small scales and under collisionless
conditions. Anti-phase-mixing (Schekochihin et al. 2016) is a
potential explanation for this fluid-like behavior. In the
turbulent background, nonlinear interactions between fluctua-
tions at different scales can trigger stochastic plasma echoes
(Gould et al. 1967; Schekochihin et al. 2016) that may inhibit
the transfer of power to higher moments of the velocity
distribution. Parker et al. (2016) and Meyrand et al. (2018) find
that energy transfer from large to small velocity-space scales
nearly cancels due to anti-phase-mixing excited by a stochastic
plasma echo. This process leads to an effective low-moment
closure, even under collisionless conditions. In KAWs with
larger amplitude, the nonlinear trapping of electrons may
contribute to the saturation of damping and a more fluid-like
behavior (Gershman et al. 2017).
Alternatively, wave–particle interactions can suppress fluc-

tuations in higher moments of the velocity distribution.
Verscharen et al. (2016) find that microinstabilities generate
fluctuations that scatter protons and thus reduce the anisotropy
of the pressure tensor. Wave–particle interactions may then
play the role of particle–particle collisions in suppressing
fluctuations in higher moments and closing the moment
hierarchy at a low order.
Our finding of the fluid-like behavior of KAW turbulence at

scales down to the proton inertial length supports the use of
fluid models when studying large- and small-scale fluctuations.
This discovery will be beneficial to astrophysical modeling
since fluid computations are much faster than kinetic
computations. More fundamentally, it is of great importance
to determine the physics processes that lead to this fluid-like
behavior of an otherwise collisionless plasma.
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Figure 5. Ratio of ion pressure fluctuations and perpendicular magnetic-field
fluctuations, ψp, as a function of βp at k⊥ρp≈2 with the same panel and line
styles as Figure 2. The theoretical predictions for ψp from the two-fluid theory
and kinetic theory are similar, and the observations agree with both models.
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Appendix
Predictions for Kinetic Alfvén Turbulence in

the Inner Heliosphere

In the near future, the space missions Parker Solar Probe and
Solar Orbiter will carry instruments into the inner heliosphere that
will provide us with unprecedented measurements of the
fluctuations in both the fields and the particle distributions. Their
data will allow us to study kinetic Alfvén turbulence in the solar
wind using our methods for the first time.

The solar wind in the inner heliosphere exhibits a broader
range of βp values and typically shows βp≈βe. We derive
predictions for the KAW polarizations under typical solar-wind
conditions with θkB=88°, TPs=T⊥s, βe/βp=1.0, γp=5/3,
and γe=1. For completeness, we add the polarizations for
electrons. Our kinetic theory applies to protons and electrons
likewise. In the two-fluid theory, the calculations for the
electron polarizations differ from the calculations for the proton
polarization. We find for electrons

, 29e px x= ( )

Figure 6. Predictions of KAWs as functions of βp at k⊥ρp=2. From top to bottom, these panels show ξs, χPs, χ⊥s, and ψs. The blue (red) lines represent the two-fluid
theory (kinetic theory). The left panels show the amplitudes and the right panels show the phases. The solid (dashed) lines represent protons (electrons).
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Figure 6 shows ξs, χPs, χ⊥s, and ψs at k⊥ρp=2 as defined in
Section 2. Under solar-wind conditions, the two-fluid theory and
kinetic theory predict similar ξs and ψs (in both amplitude and
phase) behaviors depending on βp. For χPs and χ⊥s, our theoretical
results show large differences in both amplitude and phase.

We expect Parker Solar Probe and Solar Orbiter to test our
predictions based on large statistical data sets in the solar wind
at different distances from the Sun. This future study will
improve our understanding of fluctuations at ion scales and the
differences between kinetic and fluid-like behavior in the
solar wind.
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