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Abstract	
The	 tissue	 engineering	 applications	 of	 coaxial	 electrospinning	 are	 growing	 due	 to	 the	 potential	
increased	functionality	of	the	fibres	compared	to	basic	electrospinning.	Previous	studies	of	core	and	
shell	 scaffolds	 have	 placed	 the	 active	 elements	 in	 the	 core,	 however,	 the	 surface	 response	 to	 a	
biomaterial	affects	the	subsequent	behaviour,	thus	here	hydroxyapatite	(HA)	was	added	to	the	shell.	
Coaxial	 electrospun	 polycaprolactone	 (PCL)-polylactic	 acid	 (PLA)/HA	 (core-shell)	 scaffolds	 were	
produced	in	2D	sheets	using	a	plate	collector,	or	3D	tubes	for	bone	tissue	engineering	using	a	rotating	
needle	collector.	The	scaffolds	include	high	hydroxyapatite	content	while	retaining	their	structural	
and	mechanical	 integrity.	 The	 effect	 of	 the	 collector	 type	 on	 fibre	 diameter,	 fibre	 alignment	 and	
mechanical	properties	have	been	evaluated,	and	the	impact	of	HA	incorporation	on	bioactivity,	BMP-
2	release,	cell	behaviour	and	mechanical	properties	for	up	to	12	weeks	degradation	were	assessed.	
Fibre	uniformity	in	coaxial	electrospinning	depends	on	the	relative	flow	rate	of	the	core	and	shell	
solutions.	 Using	 a	 rotating	 needle	 collector	 increased	 fibre	 alignment	 compared	 to	 a	 stationary	
collector,	 without	 affecting	 fibre	 diameter	 significantly,	 while	 HA	 content	 increased	 fibre	 non-
uniformity.	Coaxial	PCL-PLA/HA	fibres	exhibited	significantly	higher	bioactivity	compared	to	PCL-
PLA	 scaffolds	 due	 to	 the	 surface	 exposure	 of	 the	 HA	 particles.	 Apatite	 formation	 increased	with	
increasing	SBF	immersion	time.	Coaxial	tubular	scaffolds	with	and	without	HA	incorporation	showed	
gradual	reductions	in	their	mechanical	properties	over	12	weeks	in	PBS	or	SBF	but	still	retained	their	
structural	integrity.	Coaxial	scaffolds	with	and	without	HA	exhibited	gradual	and	sustained	BMP-2	
release	and	supported	MSCs	proliferation	and	differentiation	with	no	significant	difference	between	
the	 two	 scaffolds	 types.	 These	 materials	 therefore	 show	 potential	 applications	 as	 bone	 tissue	
engineering	scaffolds.		
	
	

1. Introduction		
	
Numerous	 synthetic	 bone	 graft	 substitutes	 have	
been	 developed	 to	 overcome	 the	 problems	
associated	 with	 using	 autografts	 and	 allografts,	
which	 includes	 limited	 supply,	 donor	 site	
complications	and	the	risk	of	disease	transmission	

and	 immune	 rejection.	 Polymer-based	
biomaterials	 can	 be	 fabricated	 into	 a	 variety	 of	
structures	with	acceptable	mechanical	properties,	
topography,	 geometry	 and	 architecture	 for	
multiple	biomedical	applications.	However,	usually	
they	have	 too	 low	bioactivity	 for	bone	 formation.	
Therefore	the	incorporation	of	bioactive	fillers	into	
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polymers	 matrices	 is	 used	 to	 increase	 their	
bioactivity	 [1,2].	 Calcium	 phosphate	 ceramics	
(CaPs),	 such	 as	 hydroxyapatite	 (HA),	 tricalcium	
phosphate	 (TCP)	and	biphasic	 calcium	phosphate	
(BCP),	are	commonly	added	as	fillers	to	polymers	
due	to	their	resemblance	to	the	natural	 inorganic	
component	 of	 bone	 and	 their	 osteoconductive	
properties.	 Additionally	 incorporation	 of	 calcium	
phosphate	 fillers	 can	 both	 stiffen	 and	 strengthen	
low	modulus	and	low	strength	polymers	[3].	
Among	 various	 scaffold	 fabrication	 techniques,	
electrospinning	has	been	extensively	 investigated	
over	the	last	two	decades	as	it	is	a	relatively	simple	
and	low-cost	method	to	produce	fibrous	scaffolds	
from	polymeric	 solutions	with	 diameters	 ranging	
from	nano-	to	micro-scale	that	mimic	extracellular	
matrix	of	the	native	tissue	[4].	A	variety	of	natural	
and	synthetic	polymers	have	been	used	to	produce	
electrospun	 scaffolds	 for	 bone	 tissue	engineering	
and	have	been	reinforced	with	calcium	phosphates,	
bioglasses,	or	glass-ceramics.	However,	one	of	the	
major	 problems	 associated	 with	 increasing	 filler	
incorporation	 is	 the	 significant	 reduction	 of	 the	
mechanical	properties	due	to	the	brittleness	of	the	
ceramic	fillers	in	general,	bead	formation	along	the	
fibres	and	the	lack	of	interfacial	bonding	between	
the	polymer	matrix	and	 the	 filler.	One	method	of	
improving	 the	 mechanical	 properties	 is	 using	
electrospinning	where	two	dissimilar	materials	are	
delivered	 independently	 through	a	coaxial	needle	
to	form	fibres	with	core	and	shell	configuration.		
In	 this	 study,	 micron-sized	 sintered	 HA	 was	
investigated	 for	 electrospinning	 with	 PLA	 as	 the	
shell	 component	 for	 the	 coaxial	 scaffolds	 to	
improve	 the	 bioactivity	 and	 osteoconductivity	
while	PCL	was	selected	as	the	core	to	provide	the	
mechanical	 stability	 to	 the	 scaffolds.	 These	 two	
polymers	were	chosen	to	give	a	slower	degrading	
and	 more	 ductile	 core	 with	 a	 relatively	 faster	
degrading	 outer	 layer.	 The	 addition	 of	HA	 to	 the	
shell	phase	was	expected	to	affect	the	degradation	
of	 both	 polymers	 as	 both	 degrade	 acidically,	
whereas	the	breakdown	products	of	HA	are	basic	
and	thus	moderate	acidic	degradation	[3].	The	two	
polymers	are	compatible	and	the	same	solvent	was	
used	 thus	give	a	good	interface	between	 the	core	
and	shell	was	expected.		
Modification	 of	 an	 electrospinning	 collector	 is	 a	
common	 method	 to	 produce	 3D	 electrospun	
scaffolds	 for	 tissue	 engineering	 applications.	 For	
many	 tissue	 engineering	 applications,	 tubular	
scaffolds	 are	 fundamental	 as	 they	 imitate	

anatomical	 structures	 in	 the	 body.	 They	 are	
employed	 in	 clinical	 applications	 such	 as	 nerve	
guides	and	bone	defects	[5].	Thus,	this	study	aims	
to	produce	bioactive	tubular	scaffolds	of	core	and	
shell	 fibres	 via	 coaxial	 electrospinning	 and	 a	
rotating	needle	collector.		
	
2.	 Materials	and	Methods	
	
2.1	Materials	
Polylactic	acid	(Ingeo	Biopolymer	3001D	PLA)	with	
136	000	 g	mol−1	 average	molecular	weight	 (Mw)	
[6],	1.5%	D-lactide	content	and	1.24	g	cm-3	density	
was	 supplied	 by	 NatureWorks	 LLC	 (Minnetonka,	
USA).	Polycaprolactone	(PCL)	with	80,000	g	mol−1	
average	number	molecular	weight	and	1.145	g	cm-

3	 density	 was	 obtained	 from	 Sigma-Aldrich,	 UK.	
Sintered	hydroxyapatite	(HA	P220S,	d50	=	3.59μm)	
with	 specific	 surface	 area	 of	 0.965	 m2	 g-1	 and	 a	
theoretical	 density	 of	 3.162	 g	 cm-3	was	 obtained	
from	 Plasma	 Biotal	 Ltd,	 UK.	 The	 solvent	 used	 to	
prepare	 both	 polymeric	 solutions	 was	 a	 2:1	
chloroform:acetone	 mixture,	 using	 chloroform,	
99.8+%,	 certified	 AR	 for	 analysis	 and	 stabilised	
with	 amylene,	 and	 acetone,	 99.5+%	 (both	 Fisher	
Scientific,	UK).	
	
2.2	Electrospinning	solutions	preparation	
To	prepare	the	core	solution,	PCL	was	dissolved	in	
the	chloroform:acetone	mixture	at	40°C	 to	give	a	
concentration	 of	 20%	 (wt/v),	 while	 the	 shell	
solution	 was	 prepared	 by	 dissolving	 PLA	 in	 the	
chloroform:acetone	mixture	at	room	temperature	
to	 give	 15%	 (wt/v)	 PLA	 solution.	 HA	 was	 then	
added	 to	 the	 PLA	 solution	 to	 give	 20vol%	 (38.9	
wt%)	 in	 the	 final	 composite	 shell	 layer.	 The	
PLA/HA	 solution	 was	 mixed	 for	 30	 minutes,	
followed	 by	 placing	 in	 an	 ultrasound	 bath	 for	 at	
least	15	minutes	to	ensure	that	the	filler	was	well	
distributed	 throughout	 the	 solution.	 After	mixing	
and	 sonication	 the	 solutions	 were	 placed	 in	 the	
syringes	and	electrospinning	started.		
	
2.3	Fabrication	of	scaffolds	
Coaxial	 electrospinning	 was	 performed	 using	 a	
horizontal	 setup	 (Figure	 1).	 Two	 programmable	
syringe	 pump	 modules	 (Spraybase,	 Dublin,	
Ireland)	were	 used	 to	 deliver	 the	 shell	 and	 core	
solutions.	The	two	solutions	were	fed	to	a	coaxial	
needle	(16	G	inner	diameter,	11	G	outer	diameter,	
Figure	 1a)	 via	 PTFE	tubes	 (Spraybase,	 Dublin,	
Ireland).	Solutions	were	electrospun	using	13.7	kV		
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Figure	1	Coaxial	electrospinning	setup	showing	a)	the	coaxial	needle,	b)	the	two	syringes	mounted	in	their	pumps,	with	
either	c)	the	plain	collector	and	d)	the	rotating	needle	collector.		
	
voltage	and	tip-to-collector	distance	of	20	cm.	The	
flow	rate	of	the	shell	solution	was	fixed	at	3	mL/h,	
while	 the	 core	 flow	 rate	 was	 set	 at	 either	 2	 or	
3mL/hr	to	give	2:3	or	3:3	flow	rate	ratios.		
The	 2D	 scaffolds	 were	 collected	 on	 standard	
microscope	 slides	(75	x	 25mm)	(Figure	 1c)	while	
the	 3D	 tubes	 were	 collected	 on	 a	 custom	 built	
rotating	needle	collector	(Figure	1d)	manufactured	
using	a	LEGO	power	functions	XL-motor	(Billund,	
Denmark)	 (rotation	 speed	 220	 rpm)	 and	 G16	
(OD=1.35mm)	or	G21	(OD=0.67mm)	stainless	steel	
collector	 needles.	 Prior	 to	 electrospinning,	 the	
collector	needles	were	sprayed	with	anti-adhesive	
PTFE	spray	and	left	to	dry	for	10-15	minutes	before	
electrospinning.	 The	 finished	 electrospun	 tubes	
were	 left	 to	 dry	 for	 15-20	 minutes	 after	
electrospinning	before	extracting	them	gently	from	
the	collector.	Dual	core	scaffolds,	but	without	HA,	
manufactured	 under	 the	 same	 conditions,	 were	
used	as	controls.	
	
2.4	Characterisation	of	electrospun	scaffolds	
	
2.4.1	Structural	and	morphological	
characterisation	
The	morphology	of	 the	electrospun	scaffolds	was	
observed	 using	 scanning	 electron	 microscopy	
(SEM,	 JOEL	 JSM-6400,	 Tokyo,	 Japan)	 at	 10	 kV.	

Control	and	HA	containing	sheets	and	tubes	were	
cut	 into	small	pieces	and	mounted	on	aluminium	
stubs	 using	 double-sided	 conductive	 carbon	
adhesive	tape.	The	specimens	were	sputter	coated	
with	a	thin	(<20nm)	layer	of	gold-palladium	using	
a	 Quorum	 Q150T	 ES	 (Quorum,	 East	Sussex,	 UK).	
The	average	fibre	diameter	 for	each	scaffold	 type	
was	calculated	by	analysing	at	least	50	fibres	from	
three	different	SEM	images	using	ImageJ	software	
(NIH,	USA).	Fibre	orientation	was	measured	using	
the	SEM	 images	and	MATLAB	software.	The	 total	
porosity	 of	 the	 scaffolds	 was	 calculated	 using	 a	
gravimetric	method,	the	specimens	were	weighed	
and	 the	 dimensions	 of	 the	 scaffolds	 were	
measured.	The	bulk	density	of	the	coaxial	scaffolds	
were	 calculated	 to	 be	 1.19	 and	 1.30	 g	 cm-3	 for	
control	and	HA	containing	scaffolds.	
Different	methods	were	 employed	 to	 identify	 the	
core	and	shell	 structure	within	 the	coaxial	 fibres:	
firstly,	electrospun	sheets	were	placed	into	liquid	
nitrogen	 and	 manually	 broken	 prior	 to	 sputter	
coating	 to	 observe	 cross	 sections	 of	 the	 fibres.	
Secondly,	 small	 square	 pieces	were	 cut	 from	 the	
scaffolds	 and	 embedded	 in	 Epon	 resin	 (Hexion,	
Columbus,	 OH,	 USA)	 before	 slicing	 into	 thin	
(~70nm	thick)	sections	using	a	Leica	ultracut	UCT	
ultramicrotome	 (Leica,	 Vienna,	 Austria).	 The	 thin	
sections	were	collected	on	TEM	copper	grids	and	
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imaged	 using	 a	 JOEL	 1200	 EX	 II	 transmission	
electron	microscope	(JOEL,	Tokyo,	Japan)	at	80	kV.	
Lastly,	rhodamine	B	and	FITC	dyes	were	added	to	
the	 core	 and	 shell	 solutions	 respectively	 prior	 to	
electrospinning	 and	 mixed	 for	 about	 1	 hour	 to	
ensure	homogeneity.	Aluminium	foil	was	wrapped	
around	 the	 solution	 containers	 to	 protect	 them	
from	light.	Samples	were	observed	using	a	LSM880	
inverted	confocal	microscope	with	Airyscan	 (Carl	
Zeiss,	 Jena,	 Germany)	 with	 20×,	 40×,	 and	 63×	
objectives.	 A	 488nm	 laser	was	 used	 to	excite	 the	
FITC	 labelled	 shell	 and	 collect	 the	 resulting	
fluorescence,	 while	 a	 561nm	 laser	 was	 used	 to	
excite	the	rhodamine	B	labelled	core.	Images	were	
acquired	 and	 analysed	 using	 ZEN	 Black	 software	
(Carl	Zeiss,	Jena,	Germany).	
	
2.4.2	Biodegradation	and	Bioactivity	
measurements	
To	evaluate	the	dissolution	rate	and	bioactivity	of	
the	 control	 and	 HA	 containing	 scaffolds,	 samples	
were	 immersed	 in	 either	 Phosphate	 Buffered	
Saline	 (PBS)	 or	 Simulated	 Body	 Fluid	 (c-SBF)	 at	
37°C	for	up	to12	weeks.	PBS	solution	(pH	7.4)	was	
prepared	 by	 dissolving	 PBS	 tablets	 (Gibco™)	 in	
distilled	water.	c-SBF	were	prepared	following	the	
method	 described	 by	 Oyane	 et	 al.	 (2003).	 The	
solutions	were	changed	every	7	days.	Six	samples	
of	each	scaffold	type	(n=6)	were	extracted	after	4,	
8,	or	12	weeks	to	measure	their	water	uptake	and	
weight	 loss.	After	each	degradation	time,	samples	
were	 taken	 out	 of	 the	 solution,	 washed	 carefully	
and	thoroughly	in	distilled	water	and	blotted	gently	
with	a	paper	towel	to	remove	excess	water	prior	to	
weighing.	 After	 measuring	 the	 wet	 weights,	
samples	were	dried	for	48h	in	a	desiccator	and	re-
weighed.		
Apatite	 formation	 on	 the	 surface	 of	 fibres	 was	
detected	using	a	Carl	Zeiss	Sigma	variable	pressure	
analytical	 SEM	 at	 20	 kV	 equipped	 with	 Oxford	
microanalysis	EDX	system	(Jena,	Germany).	Three	
samples	 (n=3)	of	both	control	and	HA	containing	
tubes	were	measured	at	each	time	point.	
	
2.4.3	Mechanical	testing	
The	tensile	mechanical	properties	were	measured.	
For	2D	sheets,	test	samples	were	cut	to	10mm	by	
60mm	 to	 provide	 a	 40mm	 test	 gauge	 length	
(reduced	size	ISO	13934),	while	for	the	3D	tubular	
scaffolds,	 tubes	 electrospun	 on	 to	 G16	 needles	
were	cut	to	60mm	to	give	40mm	gauge	length	for	
mechanical	 testing.	 Testing	 using	 a	 Zwick/Roell	

Z2.0	 (Zwick	 Roell,	 Leominster,	 UK)	 test	 machine	
with	 a	 5N	 load	 cell	 operating	 at	 3	mm	min-1	 and	
running	 Zwick/Roell	 TestXpert®	 software.	 Five	
samples	 were	 tested	 for	 each	 group.	 Young’s	
modulus,	 ultimate	 tensile	 strength	 and	 strain	 at	
failure	were	calculated,	before	or	after	immersion	
in	either	PBS	or	SBF.	
	
2.4.4	Measurement	of	BMP-2	release	
The	release	of	recombinant	human	BMP-2	from	the	
co-electrospun	control	and	HA	containing	sheets	in	
vitro	 was	 quantified	 via	 enzyme-linked	
immunosorbent	 assay	 (ELISA).	 15mm	 diameter	
circular	 samples	 were	 placed	 in	 24-well	 plates.	
BMP-2	was	 dissolved	 in	 PBS	 at	 concentration	 of	
50ng	mL-1	 and	 then	 a	 250µL	 drop	 placed	 on	 the	
surface	of	the	samples,	which	were	allowed	to	dry	
overnight	at	room	temperature.	The	next	day,	the	
samples	were	placed	in	new	wells	and	1mL	of	PBS	
was	 added	 to	 each	 membrane.	 	 At	 time	 points	
between	 15	 minutes	 and	 4	 days,	 the	 PBS	 was	
collected	and	stored	at	-20	°C	until	analysis,	and	the	
scaffold	was	re-incubated	 in	1	mL	fresh	PBS.	The	
concentration	 of	 BMP-2	 in	 the	 collected	PBS	was	
measured	using	an	ELISA	kit	following	the	protocol	
provided	by	the	manufacturer	(R&D	Systems,	Inc.,	
Minneapolis,	USA).	Five	samples	(n=5)	were	used	
for	 each	 composition	 and	 time	 point.	 The	
cumulative	release	ratio	was	calculated	as	the	ratio	
of	 the	 cumulative	 amount	 released	 during	 each	
time	 interval	 to	 the	 initial	 amount	 placed	 on	 the	
scaffold.	
	
2.4.5	Human	mesenchymal	stem	cell	(MSC)	
adhesion	and	morphology		
Coaxial	 control	 and	 HA	 containing	 sheets	 were	
used	 for	 cell	 adhesion	 studies.	 Scaffolds	 were	
sterilised	 by	 soaking	 in	 an	 80%	ethanol	 solution,	
washed	 several	 times	 in	 sterile	 PBS	 and	 finally	
soaked	 in	 Dulbecco’s	 modified	 Eagle’s	 medium	
(DMEM)	 supplemented	 with	 10%	 fetal	 bovine	
serum	(FBS),	110	mg	L-1	sodium	pyruvate,	1000	mg	
L-1	 glucose,	 100	 U	 mL-1	 penicillin,	 100	 µg	 mL-1	
streptomycin	and	0.25	µg	mL-1	amphotericin,	2	mM	
L-1	 glutamine	 (expansion	 media).	 Prior	 to	 cell	
seeding,	scaffolds	were	cut	under	sterile	conditions	
to	fit	the	wells	of	standard	24-well	culture	plates.	
Human	 mesenchymal	 stem	 cells	 (MSCs)	
(Promocell,	 UK)	 were	 expanded	 under	 standard	
culture	conditions	(5	%	CO2	and	37	°C)	and	cells	up	
to	 passage	 3	 used.	 Scaffolds	 were	 seeded	 at	 a	
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density	of	4000	cells	cm-2.	Cells	were	cultured	for	
up	to	21	days,	with	media	changed	every	two	days.		
Cell-scaffold	 interactions	 were	 examined	 using	
scanning	 electron	 microscopy	 (SEM,	 JOEL	 JSM-
6400,	 Tokyo,	 Japan).	 At	 1,	 7,	 14,	 or	 21	 days	 cell	
culture	 the	 media	 was	 removed.	 The	 seeded	
scaffolds	were	washed	in	HEPES	saline	and	fixed	in	
1.5%	glutaraldehyde	in	0.1M	sodium	cacodylate	for	
1	hour	at	4	°C.	Afterwards,	the	fixative	solution	was	
removed	 and	 scaffolds	 was	 submerged	 in	 0.1M	
sodium	 cacodylate	 buffer	 rinse	 for	 3	 times	 (5	
minutes	 each).	 Samples	 were	 post	 fixed	 in	 1%	
osmium	 tetroxide	 buffer	 for	 1	 hour	 followed	 by	
three	distilled	water	washes	(10	minutes	each)	and	
then	 en	 bloc	 stained	 with	 0.5%	 aqueous	 uranyl	
acetate	 for	 1	 hour.	 Finally,	 scaffolds	 were	
dehydrated	through	an	ethanol	gradient	and	then	
critically	point	dried	using	a	Tousimis	Autosamdri-
815	 (MD,	 USA)	 before	 mounting	 on	 aluminium	
stubs	and	coating	with	gold-palladium.	
	
2.4.6	 MSC	proliferation	
To	 assess	 the	 effect	 of	 electrospun	 scaffold	
composition	 on	 MSC	 proliferation	 Alamar	 Blue	
assays	were	performed.	At	defined	time	points,	the	
culture	media	was	removed	and	cells	were	washed	
3	times	in	warm	1×	PBS.	10%	(v/v)	of	AlamarBlue	
resazurin	 (Bio-Rad,	 Watford,	 UK)	 diluted	 in	
phenol-red-free	media	(D5030,	Sigma)	was	added	
to	each	scaffold.	After	further	incubation	for	4	h	at	
37	°C	 and	 5%	 CO2,	 the	 culture	 supernatant	 was	
transferred	 into	 96-well	 plates	 to	 measure	
AlamarBlue	reduction	indicating	cell	metabolism.	A	
microplate	 reader	 (Clariostar,	 BMG	 Labtech,	
Germany)	was	used	 to	detect	 light	absorbance	at	
wavelengths	of	570	nm	and	600	nm.		
	
2.4.7	Assessment	of	scaffold	ability	to	support	
osteogenic	differentiation	through	
quantitative	real-time	PCR	(qRT-PCR)	
To	 induce	 osteogenic	 differentiation	 of	 MSCs	 on	
electrospun	scaffolds,	expansion	media	was	further	
supplemented	with	100	µmol	ascorbic	acid	(Sigma	
Aldrich,	 UK),	 100	 nmol	 dexamethasone	 (Sigma	
Aldrich,	 UK)	 and	 10	 mmol	 glycerol	 phosphate	
(Sigma	Aldrich,	UK)	and	cells	were	cultured	for	21	
days,	with	media	changes	every	2	days.	
Following	 21	 days	 culture,	 the	 osteogenic	
differentiation	of	MSCs	on	scaffolds	was	assessed	

using	qRT–PCR.	Cell	scaffolds	were	removed	from	
culture	wells	and	transferred	to	15	ml	Falcon	tubes.	
Equal	 volumes	 of	 Trizol	 reagent	 (Life	
Technologies)	 was	 added	 to	 each	 sample,	 which	
were	 then	 vortexed.	 0.2	ml	 of	 chloroform	 (Sigma	
Aldrich)	was	added	per	ml	of	Trizol	to	each	sample,	
mixed	and	centrifuged	to	separate	the	aqueous	and	
organic	phases.	The	aqueous	phase	was	removed	
and	the	total	RNA	content	was	then	extracted	using	
the	 Qiagen	 RNeasy	 extraction	 kit	 (including	 a	
DNAse	 step)	 according	 to	 the	 manufacturer’s	
instructions	 (Qiagen,	Hilden,	 Germany).	 The	RNA	
concentration	was	quantified	using	the	Nanodrop	
and	 normalized	 for	 each	 sample.	 cDNA	 was	
prepared	by	reverse	transcription	using	the	Qiagen	
Quantitect	kit.	12	µl	of	the	normalized	dilutions	for	
each	RNA	sample	were	added	to	a	0.2	ml	RT–PCR	
tubes.	To	each	of	the	samples,	2	µl	gDNA	wipeout	
buffer	was	added.	Following	this,	each	sample	was	
run	at	42	°C	for	2	mins	on	a	thermal	cycler	(PCR)	
system	to	remove	any	DNA	present	in	the	samples.	
Following	the	removal	of	the	innate	DNA,	6	µl	of	a	
stock	 solution	 (containing	 Qiagen	 reverse	
transcription	 buffer	 reagents)	was	added	 to	each	
reverse	 transcription	 Eppendorf	 tube,	 to	 give	 a	
total	volume	of	20	µl	and	reverse	transcription	of	
the	 RNA	 into	 cDNA	 performed.	 This	 was	
subsequently	 used	 to	 perform	PCR	quantification	
using	 the	 relative	 comparison	 method.	 The	
Quantifast	SYBR	green	qRT-PCR	kit	 (Qiagen)	was	
used	to	perform	amplification	with	specific	primers	
(Eurofins	Genomics,	Ebersberg,	Germany)	 related	
to	osteogenesis	as	well	as	GAPDH,	which	was	used	
as	 a	 genetic	 internal	 control.	 qRT–PCR	 products	
were	 quantified	 using	 the	 2−∆∆Ct	 method	 and	
amplification	 was	 carried	 out	 using	 an	 Applied	
Biosystems	 7500	 Real	 Time	 PCR	 system.	 Primer	
sequences	used	in	this	study	are	listed	in	Table	1.		
	
2.5	Statistical	analysis	
Results	 are	 expressed	 as	 mean	 ±	 standard	
deviation	 (SD)	 in	 all	 experiments.	 Statistical	
analysis	was	performed	using	a	one-	and	two-way	
analysis	 of	 variance	 (ANOVA),	with	 p-values	 less	
than	 0.05	 considered	 statistically	 significant,	 and	
Student's	t-test	was	used	for	pairwise	comparisons.	
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Table	1	qRT-PCR	primer	sequences	used	in	this	study	

Gene	Name	
	 	

Forward	Primer		 Reverse	Primer		

GAPDH	 TCAAGGCTGAGAACGGGAA	 TGGGTGGCAGTGATGGCA	

RUNX2	 GGTCAGATGCAGGCGGCCC	 TACGTGTGGTAGCGCGTGGC	

BMP2	 CTTCTAGCGTTGCTGCTTCC	 AACTCGCTCAGGACCTCGT	

ALKP	 ATGAAGGAAAAGCCAAGCAG	 CCACCAAATGTGAAGACGTG	

3. Results	
	

3.1	Structure	and	morphology	of	scaffolds	
Electrospinning	 at	 2:3	 and	 3:3	 flow	 rate	 ratios	
yielded	 uniform,	 non-beaded	 fibres	 (Figure	 2).	
Fibre	diameters	measured	using	ImageJ	were	5.91	
±	3.47µm	and	6.06	±	2.89µm	respectively.	Figure	3a	
shows	 individual	 fibre	morphology	 of	 coaxial	HA	
containing	 scaffolds	 at	 3:3	 flow	 rate	 ratio	 while	
Figures	 3b	 and	 3c	 show	 TEM	 images	 of	 resin	
embedded	control	and	HA	containing	coaxial	fibres	
electrospun	 at	 3:3	 core:shell	 flow	 rate	 ratio	
respectively.	Fibres	of	both	scaffolds	exhibited	core	
and	shell	structure,	however,	the	thickness	of	the	
shell	 layer	 was	 variable	 and	 in	 some	 cases	
discontinuous.	 The	 HA	 containing	 scaffolds	 show	
HA	 particles	 protruding	 from	 the	 surface	 of	 the	
fibres	 (blue	 arrow	 in	 Figure	 3b)	 or	 into	 the	 core	
layer.	 The	 HA	 particles	 are	 brittle	 and	 fractured	
during	 the	 sectioning	 process	 explaining	 the	
fragments	of	HA	surrounded	by	gaps	seen	in	Figure	

3b.	 Tubular	 PCL-PLA	 and	 PCL-PLA/HA	 co-
electrospun	 scaffolds	 were	 fabricated	 using	 the	
rotating	 needle	 collector.	 Macroscopic	 and	
microscopic	 morphology	 of	 the	 tubular	 scaffolds	
are	shown	in	Figure	4	with	the	internal	hole	clearly	
visible.	
Figures	 5	 and	 6	 show	 the	 morphologies	 of	
electrospun	 control	 and	 HA	 containing	 tube	
scaffolds	 and	 2D	 sheets,	 respectively,	 along	with	
their	 fibre	alignment	patterns	and	 fibre	diameter	
distribution	 curves.	 The	 tubular	 scaffolds	 all	 had	
increased	 fibre	 alignment	 compared	 to	 their	 2D	
coaxial	sheets	equivalents,	as	can	be	seen	in	both	
Figure	5	and	Figure	6	by	comparing	B2)	and	B3)	
with	B1).	The	fibres	in	the	all	control	scaffolds	and	
the	2D	HA	containing	scaffolds	had	more	uniform	
diameters	with	lower	standard	deviations	than	for	
the	HA	containing	tubes	(Table	2),	however,	but	the	
changes	in	porosity	are	not	significant,	with	all	the	
porosities	 high	 enough	 to	 expect	 good	 tissue	
ingrowth.		

	
Figure	2	SEM	images	of	core-shell	PCL-PLA/HA	fibres	electrospun	at	a)	2:3	and	c)	3:3	core:shell	flow	rate	ratio	(marker	
bars=20µm)	with	a1)	and	b1)	showing	the	histograms	of	the	fibre	diameters	for	2:3	and	3:3	flow	rates.	
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Figure	3	a)	SEM	image	of	freeze	fractured	PCL-PLA/HA	coaxial	fibres	electrospun	at	3:3	core:shell	flow	rate	ratio,	b)	and	
c)		TEM	images	of	resin	embedded	PCL-PLA	and	PCL-PLA/HA	coaxial	fibres	electrospun	at	3:3	core:shell	flow	rate	ratio	
respectively,	showing	with	the	shell	layer	covering	the	fibre	completely.	Also	visible	are	a	PLA	fibre	with	no	core	(red	arrow)	
and(c)	partial	encapsulation	of	HA	particles	(blue	arrow)	(marker	bars	a)	and	b)	=	2µm,	c)	=	5µm).	

	
Figure	4	a)	Macroscopic	and	microscopic	structures	of	the	PCL-PLA/HA	tubular	scaffold	the	dimensions	of	the	tubes,	b)	
and	c)	SEM	images	of	G16	and	G21	tube	cross	sections,	respectively	(marker	bars	b)	and	c)	=	500	µm).	

	
Figure	5	SEM	micrographs	of	control	A1)	2D	sheets,	A2)	G16	tubular	scaffolds,	and	A3)	G21	tubular	scaffolds	(marker	bars	
=	20µm	for	A1	and	50µm	for	A2	and	A3).	B:	the	calculated	fibre	alignment	pattern	for	control	B1)	2D	sheets,	B2)	G16	tubular	
grafts,	and	B3)	G21	tubular	grafts.	C1-C3)	shows	the	fibre	diameter	distribution	in	the	2D	sheets,	G16,	and	G21	tubular	
scaffolds,	respectively.		
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Figure	6	 SEM	micrographs	of	HA	containing	A1)	2D	 sheets,	A2)	G16	 tubular	 scaffolds,	 and	A3)	G21	 tubular	 scaffolds	
(marker	bars	=	20µm	for	A1	and	50µm	for	A2	and	A3).	B:	the	calculated	fibre	alignment	pattern	for	HA	containing	B1)	2D	
sheets,	B2)	G16	tubular	scaffolds,	and	B3)	G21	tubular	scaffolds.	C1-C3)	shows	the	fibre	diameter	distribution	of	the	HA	
containing	2D	scaffolds,	G16,	and	G21	tubular	scaffolds,	respectively.		

	
Table	2	Fibre	diameters	and	porosities	for	Control	and	HA	containing	2D	and	tubular	scaffolds	

	

Needle	collector	
gauge	size	

Control	 HA	containing	

Fibre	diameter	(µm)	 Porosity	(%)	 Fibre	diameter	(µm)	 Porosity	(%)	

2D	control	samples	 4.42	±	1.14	 90.3	±	2.9	 6.06	±	2.89	 88.3	±	3.4	
G16	(OD=1.35mm)	
Speed	=	31.1	mm	s-1	 5.78	±	1.52	 85.6	±	3.4	 9.65	±	5.01	 88.2	±	4.0	

G21	(OD=0.67mm)	
Speed	=	15.4	mm	s-1	 5.84	±	0.91	 91.3	±	3.5	 9.08	±	4.51	 90.4	±	2.4	

	

Table	3	Mechanical	properties	of	2D	and	3D	electrospun	PCL-PLA	and	PCL-PLA/HA	at	3:3	core:shell	flow	rate	
ratio	along	with	PCL	and	PLA/HA	single	core	scaffolds	

Scaffold	 Young's	modulus	
(MPa)	 UTS	(MPa)	 Elongation	at	break	

(%)	

2D	single	core	PCL	 4.92	±	0.77	 0.837	±	0.200	 323.2±	119.1	
2D	single	core	PLA/HA	 59.54	±	9.66	 0.263	±	0.055	 13.1	±	2.9	
2D	Core-shell	PCL-PLA	 41.23	±	8.59	 1.259	±	0.396	 102.6	±	17.4	

2D	Core-shell	PCL-PLA/HA	 31.33	±	5.04	 0.680	±	0.101	 30.5	±	4.4	
3D	Core-shell	PCL-PLA	(G16)	 8.62	±	2.19	 0.621	±	0.147	 94.6	±	15.1	

3D	Core-shell	PCL-PLA/HA	(G16)	 5.12	±	1.63	 0.337	±	0.082	 29.9	±	4.7	
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3.2	Mechanical	testing	
The	 tensile	 properties	 for	 electrospun	 20%PCL,	
15%PLA	with	20%HA	scaffolds	 in	addition	 to	co-
electrospun	PCL-PLA	and	PCL-PLA/HA	scaffolds	as	
2D	sheets	and	3D	tubes	at	core:shell	flow	rate	ratio	
of	3:3	are	shown	in	Table	3	
	
3.3	Biodegradation	and	Bioactivity	
Minimal	differences	were	seen	in	water	uptake	and	
weight	loss	between	the	control	and	HA	containing	
scaffolds	in	PBS,	however,	in	SBF	the	variability	in	
the	 results	 was	 substantially	 larger.	 The	 control	
scaffolds	showed	continuous	weight	loss	during	12	
weeks	of	SBF	 immersion	while	 for	HA	containing	
scaffolds,	 the	weight	 loss	decreased	noticeably	at	
week	12	of	immersion	(Figure	7a).	
	
	

Figure	 8	 shows	 the	 morphologies	 of	 tubular	
scaffolds	after	4,	8	and	12	weeks	of	 immersion	in	
either	PBS	or	SBF.	 In	both	solutions,	 the	samples	
maintained	their	shape	and	no	fibre	swelling	was	
noticed,	although	all	 samples	were	dried	prior	 to	
SEM.	 No	 apatite	 formation	 was	 observed	 on	 the	
fibres	immersed	in	PBS	(Figure	8a1-a3	and	Ec1-c3)	
or	control	fibres	in	SBF	(Figure	8b1-b3).	Most	of	HA	
containing	 fibres	 also	 preserved	 their	 structure	
during	 immersion	 in	 PBS	 (Figure	 8c1-c3).	
However,	few	broken	fibres	were	observed,	where	
the	fibres	narrowed,	at	week	8	(Figure	8c2).	In	SBF,	
the	HA	containing	scaffolds	showed	high	levels	of	
bioactivity	 with	 white	 layers	 of	 apatite	 already	
formed	on	the	surface	of	the	fibres	after	4	weeks.	
The	extent	and	thickness	of	the	apatite	layer	grew	
with	increasing	immersion	time	(Figure	8d-d2).	
	
.

	

	

Figure	7	a)	Weight	loss,	b)	Young’s	moduli,	c)	UTS	and	d)	elongation	at	failure	of	control	and	HA	containing	
tubular	scaffolds	during	12	weeks	of	immersion	in	PBS	or	SBF.		
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Figure	8	SEM	images	of	coaxial	control	and	HA	containing	tubular	scaffolds	after	immersion	in	PBS	or	SBF		for	4,	8,	and	12	
weeks,	respectively	(marker	bars	for	a1-c2	=	2	μm	and	for	d1-d2	=	10	μm)	
	
3.4	EDX	
Figures	 9	 and	 10	 show	 the	 EDX	 spectra	 of	 HA	
containing	 scaffolds	 along	with	 element	mapping	
before	and	after	12	weeks	of	immersion	in	SBF.	The	
control	 samples	 showed	 carbon	 and	 oxygen	 only	
from	the	PCL	and	PLA.	However,	the	presence	of	HA	
is	seen	on	the	surface	of	the	HA	containing	fibres	
even	 before	 soaking,	 with	 calcium	 and	

phosphorous	 peaks	 present,	 but	 at	 a	 lower	 level	
than	 the	 carbon	 peak,	 and	 the	 calcium	 to	
phosphorous	ratio	being	1.68,	very	close	to	that	of	
stoichiometric	HA	(1.67)	(Figure	9).	After	soaking	
(Figure	 10)	 deposited	 apatite	 can	 be	 seen	 along	
with	 small	 amounts	 of	 chlorine	 and	 magnesium	
from	 the	 SBF	 and	 a	 reduction	 in	 the	 calcium	 to	
phosphorous	ratio.	

	
	
Figure	9	EDX	spectrum	and	mapping	of	HA	containing	scaffolds	before	immersion	showing	the	distribution	of	carbon	(C),	
calcium(Ca),	oxygen	(O)	and	phosphorus	(P).	
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Figure	10	EDX	spectrum	and	mapping	of	HA	containing	fibres	after	12	weeks	immersion	in	SBF	showing	the	distribution	
of	calcium	(Ca),	phosphorus	(P),	oxygen	(O),	carbon	(C),	chlorine	(Cl)	and	magnesium		(Mg).	
	
The	 Young's	 moduli,	 ultimate	 tensile	 strength,	
elongation	at	failure	for	control	and	HA	containing	
tubular	 scaffolds	 before	 and	 after	 12	 weeks	
immersion	in	PBS	or	SBF	are	shown	in	Figure	7b-d.	
Gradual	 decreases	 in	 all	 these	 properties	 can	 be	
seen,	but	they	are	all	capable	of	load	bearing	even	
after	 12	 weeks	 soaking.	 Minimal	 differences	
between	the	effects	of	PBS	or	SBF	can	be	seen.		
The	cumulative	release	of	BMP-2	over	96	hours	for	
coaxial	 PCL-PLA	 (control)	 and	 PCL-PLA/HA	

scaffolds	 is	 shown	 in	 Figure	 11.	 Two	 regions	 are	
observed,	the	first	4	hours	showed	a	high	release	
rate	with	a	second	linear	phase	of	0.0672%	hr-1	and	
0.0728%	 hr-1	 for	 the	 control	 and	 HA	 containing	
scaffolds	 respectively.	 The	 BMP-2	 release	
behaviour	 showed	 minimal	 differences	 between	
control	and	HA	containing	samples	over	96	hours.	
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Figure	11	Cumulative	release	of	BMP-2	from	coaxial	control	and	HA	containing	scaffolds.		
	
	
3.6	Cell	Culture	
Figures	 12	 and	 13	 show	 SEM	 images	 of	 MSC	
adhesion	 and	 interaction	 with	 control	 and	 HA	
containing	coaxial	scaffolds	respectively	at	days	1,	
7,	14	and	21	of	culture.	On	both	scaffolds,	cell	had	
spindal	shaped	or	rounded	morphologies	and	were	
mainly	seen	to	interact	with	single	fibres,	aligned	
along	 the	 fibre	 length.	After	7	days	culture,	MSCs	
were	 seen	 to	 be	 spread	 between	 fibres	 and	
anchored	 to	 fibres	 with	 numerous	 filopodal	
projections.	Observed	cell	numbers	increased	with	

culture	 time	 and	 retained	 a	 spread	 morphology	
typical	of	MSCs	in	culture.	With	increased	culture	
time	more	 cells	were	 observed	 to	 have	migrated	
deeper	 into	 the	 scaffold	 through	 the	 inter-
connected	pore	structure.	Inclusion	of	HA	did	not	
appear	 to	 alter	 cell	 morphology	 or	 the	 ability	 of	
cells	 to	 invade	 the	 scaffolds,	 though	 the	
microporous	structure	of	HA	containing	scaffolds	
resulted	 in	 cells	 producing	 more	 filopodal	
projections	 (e.g.	 Figure	 13f),	 is	 likely	 to	 enhance	
initial	cell	attachment.		
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	Figure	12	SEM	images	of	coaxial	control,	that	is	without	HA,		scaffolds	at	different	days	and	magnifications	showing	a-c)	
fibres	before	cell	culture	and	after	d-f)	1	day,	g-i)	7	days,	j-l)	14	days	and	m-o)	21	days	of	MSCs	culture	(marker	bars	for	a),	
d),	g),	j)	and	m)	=	100	µm,	for	b),	e),	h),	k)	and	n)	=	10µm	and	for	c),	f),	i),	l)	and	o)	=	5µm).	
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Figure	13	SEM	images	of	coaxial	HA	containing	scaffolds	at	different	days	and	magnifications	showing	(a-c)	fibres	before	
cell	culture	and	after	d-f)	1	day,	g-i)	7	days,	j-l)	14	days	and	m-o)	21	days	of	MSCs	culture	(marker	bars	for	a),	d),	g),	(j)	and	
m)	=	100	µm,	for	b),	e),	h),	k)	and	n)	=	10µm	and	for	c),	f),	i),	l)	and	o)	=	5µm)
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MSCs	could	be	seen	to	adhere,	spread	and	grow	on	
the	 fibres.	 Using	 Alamer	 blue	metabolic	 assay	 to	
infer	cell	 proliferation,	 it	was	 seen	 that	 both	HA-
containing	 and	 control	 scaffolds	 supported	 MSC	
proliferation	over	21	days	in	culture	(Figure	14a).	
Alamar	blue	reduction	was	significantly	increased	
on	 electrospun	 scaffold	 cultures	 at	 various	 time	
points	 in	 comparison	 with	 tissue	 culture	 plastic	
controls,	particularly	at	the	later	stages	of	culture	
(between	 14	 days	 and	 21	 days),	 indicating	
sustained	 cell	 proliferation.	 No	 significant	
difference	 was	 observed	 when	 culturing	 on	 HA-
containing	or	control	electrospun	scaffolds	without	
HA.	When	taken	with	the	SEM	images,	this	indicates	
more	growth	area	in	the	electrospun	scaffolds	and	
cell	 invasion	 into	 the	 scaffold,	 thereby	 reducing	
contact	inhibition	of	cell	proliferation.		
qRT-PCR	 data	 indicated	 that	 scaffolds	 supported	
MSC	 osteogenic	 differentiation	 when	 stimulated	
with	osteogenic	media	 in	culture,	 that	 is	 they	are	
osteoconductive	 (Figure	 14b-d).	 Expression	 of	
RUNX2,	 a	 critical	 osteogenic	 transcription	 factor,	
was	significantly	 increased	 in	osteogenic	cultures	
on	 scaffolds	 in	 comparison	 to	 expansion	 media	

controls	 (HA-containing	 scaffolds	 osteogenic	 vs	
TCP	expansion	media	p=0.0024;	 control	 scaffolds	
osteogenic	vs	TCP	expansion	media	p=0.0049;	TCP	
osteogenic	 vs	 expansion	 p=0.0002)	 indicating	
induction	of	osteogenic	gene	transcription.	BMP-2,	
a	 growth	 factor	 important	 during	 osteogenesis,	
was	 significantly	 upregulated	 in	 osteogenic	
cultures	 in	 comparison	 to	 expansion	 media	
cultures	on	MSCs	cultured	on	electrospun	scaffolds	
(HA-containing	scaffolds	osteogenic	vs.	expansion	
media	 p=0.0029;	 control	 scaffolds	 osteogenic	 vs.	
expansion	media	 p=0.0321;	 tissue	 culture	 plastic	
p=0.157).	 Alkaline	 phosphatase	 is	 a	 marker	 of	
mature	 osteogenic	 differentiation	 and	 a	 critical	
enzyme	 in	 the	 mineralisation	 of	 new	 osteogenic	
tissue.	The	expression	of	alkaline	phosphatase	was	
also	 significantly	 upregulated	 in	 osteogenic	
cultures	on	electrospun	scaffolds	in	comparison	to	
expansion	media	controls	(HA-containing	scaffolds	
osteogenic	 vs	 tissue	 culture	 plastic	 expansion	
media	 p=0.0091;	 control	 scaffolds	 osteogenic	 vs	
tissue	 culture	 plastic	 expansion	media	 p=0.0001;	
TCP	osteogenic	vs	expansion	p=0.025).	
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Figure	14	a)	MSC	proliferation	assessed	through	Alamar	Blue	Assays.	Mean	Alamar	Blue	reduction	±	SEM	was	assessed	
over	21	days	to	estimate	cell	proliferation	(n=3;	*p<0.05,	**p<0.01,	***p<0.001),	b),	c)	and	d)	show	qRT-PCR	analysis	of	
osteogenic	gene	expression	after	21	days	culture	in	osteogenic	or	control	conditions.	Data	shown	represents	means	±SEM	
(n=3	independent	triplicates	(*p<0.05	versus	tissue	culture	plastic	expansion	media;	#p<0.05	versus	electrospun	scaffold	
expansion	media;	^p<0.05	versus	HA-containing	 scaffold	expansion	media;	n.s.-	no	 significant	difference	versus	 tissue	
culture	plastic	TCP	expansion	media).		
	

4.	 Discussion		
	
The	relative	flow	rates	of	core	and	shell	solutions	
affects	the	uniformity	and	stability	of	the	core	jet	
flow	[8].	A	range	of	studies	have	found	that	the	core	
and	 shell	 layer	 dimensions	 can	 be	 tailored	 by	
keeping	one	 flow	rate	constant	while	altering	 the	
other	[9–11].	To	optimise	fibre	morphology	in	this	
study,	core	and	shell	solutions	were	fed	at	2:3	and	
3:3	 flow	 rate	 ratios.	 Both	 flow	 rates	 produced	
uniform	and	beadless	fibres,	however,	the	3:3	flow	
rate	 ratio	 fibres	 exhibited	 more	 homogenous	
diameters	than	those	made	at	2:3	flow	rate	ratio.	
The	viscosities	of	both	solutions	play	a	decisive	role	
in	controlling	fibre	diameter	as	well	as	the	relative	
thicknesses	 [12].	 Thus,	 polymer	 concentration,	
filler	type	and	filler	concentration	can	significantly	

alter	 fibre	 uniformity	 and	 control	 layers	
thicknesses.		
The	fibres	surface	exhibited	nanoporous	structure	
(Figure	 3a)	 resulting	 from	 solvent	 volatility.	
According	 to	 Bognitzki	 et	 al.	 [13],	 surface	 pore	
formation	 occurs	 when	 using	 highly	 volatile	
solvents,	as	fast	evaporation	of	a	solvent	gives	rise	
to	 local	 phase	 separation	where	 solvent-rich	 and	
solvent-poor	regions	are	formed	in	the	polymeric	
solution,	the	solvent-rich	regions	are	transformed	
into	 pores	 during	 the	 evaporation	 process.	
Srinivasarao	 et	 al.	 [14]	 suggested	 a	 different	
mechanism	 for	 the	 formation	of	 surface	pores	on	
electrospun	 fibres	 known	 as	 “breath	 figures”.	
These	 are	 imprints	 created	 by	 the	 heat	 loss	
resulting	from	the	rapid	evaporation	of	the	solvent,	
thus	 significantly	 cooling	 the	 surface	 of	 the	
electrospinning	jet	as	it	travels	to	the	collector.	As	
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the	jet	surface	cools,	moisture	in	the	air	condenses	
and	grows	as	spherical	droplets	due	to	convection	
currents	on	the	surface	of	the	jet.	Finally,	the	water	
droplets	evaporate	as	the	jet	dries	on	the	collector,	
leaving	surface	imprints	in	the	form	of	pores.	Thus,	
the	 formation	 of	 breath	 figures	 indicates	 the	
presence	of	humidity	in	the	atmosphere	in	addition	
to	 the	 use	 of	 volatile	 solvents.	 A	 porous	 fibre	
surface	 has	 several	 advantages	 including	
increasing	 the	 surface	 area	 and	 providing	 more	
sites	for	drug	loading	and	cell	attachment	(Figure	
13	f	and	i)	and	can	affect	the	roughness	and	wetting	
behaviour	of	the	scaffolds	[15,16].		
SEM	images	of	fractured	(3:3)	coaxial	fibres	(Figure	
3a)	 did	 not	 show	an	 exposed	core	 layer	 as	 some	
studies	suggest	[17–19],	however,	it	did	show	a	few	
hollow	 fibres.	 TEM	 cross-sectional	 images	 show	
clearly	 the	 core	 and	 shell	 configuration	 and	 the	
surface	porosity,	but	no	mixing	between	the	layers.	
Fibres	 of	 both	 scaffolds	 had	 non-uniform	 shell	
thickness	and	thus	non-concentric	cores	which	can	
be	attributed	to	the	whipping	motion	of	the	fibres	
during	 electrospinning.	 Some	 fibres	 also	 had	
discontinuous	 shell	 layers	 which	 might	 have	
resulted	 from	needle	blockage,	while	a	 few	shell-
only	 regions	 were	 observed.	 Reznik	 et	 al.	 [20]	
recognised	that	a	core-shell	droplet	at	the	tip	of	the	
needle	does	not	necessarily	result	in	core	solution	
entrainment	and	 thus	not	all	 fibres	possess	core-
shell	structure.	The	shell	layer	thickness	variability	
increased	 in	 the	 HA	 containing	 fibres	 due	 to	 HA	
protuberances	and	ranged	from	~0.7	to	2.3µm	for	
fibres	at	2:3	flow	rate	ratio	versus	~0.2	to	1.8µm	
for	 fibres	 at	 3:3	 flow	 rate	 ratio.	 Therefore,	 only	
partial	encapsulation	of	the	HA	particles	occurred	
with	 some	 HA	 exposed	 on	 the	 surface.	 Finally,	
control	and	HA	containing	coaxial	fibres	with	FTIC	
labelled	 PLA/HA	 shell	 phase	 and	 rhodamine	 B	
labelled	PCL	core	phase	were	used	to	visualise	the	
incorporation	 of	 the	 core	 and	 shell	 phases	 in	
individual	fibres.	Similar	results	were	obtained	by	
Ji	et	al.	[21]	and	Vysloužilová	et	al.	[22],	but	without	
distinct	boundaries	between	the	layers.	However,	
Blackstone	et	al.	[23]	in	confocal	micrographs	for	
their	 core	and	shell	PCL-gelatin	scaffolds	showed	
clear	 boundaries	 between	 the	 layers	 at	 various	
core:shell	 flow	 rate	 ratios.	 For	 the	HA	containing	
scaffolds,	 HA	 particles	 in	 the	 shell	 layer	 were	
surprisingly	 observed	 on	 the	 red	 channel	 which	
should	be	solely	the	core	phase.	It	is	possible	that	
they	appeared	on	the	red	channel	along	with	core	
component	 due	 to	 internal	 protuberances	 mixed	

with	the	red	tagged	PCL,	while	HA	that	protrudes	
outside	 the	 fibres	 appears	 more	 intensely	 in	 the	
green	 channel,	 another	 option	 is	 that	 the	 HA	
absorbed	some	of	the	rhodamine	B.	
Tubular	scaffolds	were	produced	using	a	rotating	
needle	 collector.	 The	 resultant	 electrospun	 tubes	
on	 a	 G16	 needle	 (Figure	 4c)	 had	 an	 external	
diameter	of	around	2.86	mm	and	wall	thickness	of	
around	 1.65	 mm,	 while	 with	 the	 G21	 needle	
collector	 these	 were	 ~1.95	 and	 1.35	 mm	
respectively	 (Figure	 4d)	 with	 no	 significant	
differences	 between	 the	 scaffolds.	SEM	 images	 of	
control	scaffolds	showed	uniform,	bead-free	fibres	
with	average	diameters	slightly	higher	than	those	
for	the	2D	control	sheets.	Jungst	et	al.	[5]	examined	
the	 effect	 of	 collector	 diameter	 and	 rotational	
speed	on	the	diameter	of	electrospun	PCL	fibres	to	
give	surface	velocities	between	62.8	and	628.3	mm	
min-1.	 They	 found	 that	 varying	 the	 diameter	 and	
tangential	speed	of	the	collector	did	not	affect	the	
fibre	 diameter	 significantly.	 While	 in	 this	 study	
using	 the	 rotating	 collector	 did	 not	 affect	 fibre	
diameter,	 electrospun	 tubes	 exhibited	 increased	
circumferential	alignment	 of	 the	 fibres	compared	
to	 the	 2D	 fibrous	 sheets	 (Figures	 5	 and	 6).	 Both	
control	 and	 HA	 containing	 samples	 immersed	 in	
PBS	exhibited	slow	degradation	(Figure	7)	with	a	
weight	loss	rate	of	0.3-0.4%	every	4	weeks.	These	
results	are	expected	since	PCL	and	PLA	are	known	
to	have	very	slow	degradation	rates	even	in	their	
nanofibrous	 form,	 while	 the	 inclusion	 of	 HA	
particles	 has	 also	 been	 shown	 to	 slow	 the	
degradation	 of	 PLA	 [e.g.	 24].	 On	 the	 other	 hand,	
control	 samples	 immersed	 in	 SBF	 have	 shown	
significantly	faster	weight	 loss	compared	to	those	
in	 PBS,	 although	 the	 weight	 loss	 remained	
generally	 low	during	 the	 12	weeks	 of	 immersion	
with	a	total	weight	loss	of	5.14±1.09%.	During	the	
first	 4	 weeks	 of	 immersion,	 the	 HA	 containing	
samples	 exhibited	 similar	 degradation	 behaviour	
as	 the	 control	 samples.	 By	 week	 12	 of	 SBF	
immersion,	 the	 HA	 containing	 samples	 exhibited	
significantly	 reduced	 weight	 loss	 down	 to	
0.50±3.02%.	 Since	 the	 HA	 did	 not	 affect	
significantly	the	weight	 loss	in	PBS,	the	reduction	
in	weight	loss	rate	can	thus	be	attributed	to	apatite	
formation	on	the	fibre	surfaces.		
SEM	 was	 used	 to	 observe	 the	 morphological	
changes,	as	expected,	no	noticeable	changes	were	
seen	in	the	control	fibres	after	immersion	in	either	
solution	over	12	weeks	(Figure	8).	In	addition,	no	
apatite-like	 materials	 were	 precipitated	 on	 the	
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surface	of	the	SBF	immersed	control	fibres	at	any	
time,	 confirming	 that	 these	 fibres	 did	 not	 induce	
bone	 mineral-like	 growth.	 HA	 containing	 fibres	
incubated	 in	 PBS	 also	 preserved	 their	
microstructure	during	the	immersion	period	with	
no	apatite	formed	on	the	fibre	surfaces	with	only	
few	broken	fibres	found	at	week	12	of	immersion	
(Figure	 7c).	However,	 for	HA	 containing	 samples	
immersed	 in	 SBF,	 apatite	 nucleation	 from	 the	
exposed	 HA	 crystals	 on	 the	 fibres	 surface	 was	
observed	 after	week	 4	 of	 immersion	 and	 apatite	
was	deposited	(Figure	8d).	The	thickness	and	area	
of	 the	 apatite	 layer	 formed	 on	 the	 coaxial	 HA	
containing	fibres	increased	with	increasing	soaking	
time	[25,	26],	and	after	soaking	for	12	weeks	in	SBF,	
large	areas	of	the	scaffolds	were	covered	by	a	thick	
layer	 of	 apatite	 (Figure	 8d)	 with	 some	 fibres	
cracked	opened	with	HA	particles	exposed,	offering	
potential	areas	for	apatite	nucleation.		
EDX	 spectra	 of	 control	 samples	were	mainly	 the	
carbon	 and	 oxygen	 peaks	 attributed	 to	 both	
polymers.	 However,	 there	 were	 no	 calcium	 or	
phosphate	peaks	at	any	time	after	SBF	immersion	
confirming	 SEM	 and	 weight	 loss	 results	 that	 the	
control	 scaffolds	 were	 not	 bone	 bioactive.	 EDX	
spectra	 of	 HA	 containing	 samples	 before	
immersion	 confirmed	 the	 presence	 of	 HA	 within	
the	fibres.	After	immersion	in	SBF,	EDX	mapping	of	
elements	composition	over	 the	precipitated	 layer	
showed	 that	 it	 was	 mainly	 composed	 of	 calcium	
and	 phosphorus	 atoms	 related	 to	 mineral	
deposition	 and	 that	 the	 intensity	 of	 these	 peaks	
increased	with	soaking	time.	
For	 2D	 coaxial	 electrospun	 scaffolds	 the	
mechanical	 properties	 of	 the	 core	 and	 shell	
structured	mats	were	 between	 those	 of	 the	 core	
and	shell	monolithic	fibres	(Table	3).	Coaxial	PCL-
PLA/HA	 scaffolds	 had	 significant	 increases	 in	
tensile	 strength	 and	 elongation	 compared	 with	
PLA/HA	 alone,	 while	 the	 stiffness	 of	 the	 coaxial	
scaffolds	decreased	significantly.	The	reduction	in	
Young's	modulus	 for	 coaxial	 scaffolds	 could	 have	
resulted	from	the	non-uniform	distribution	of	core	
solution	 along	 the	 fibres	 due	 to	 HA	 particles.	
Control	 coaxial	 scaffolds	 without	 HA	 exhibited	
significantly	higher	ductility,	strength	and	stiffness	
than	 HA	 containing	 scaffolds.	 Both	 tubular	
scaffolds	 showed	 a	 significant	 reduction	 in	 their	
tensile	strength	and	stiffness	compared	to	the	2D	
coaxial	sheets	while	the	elongation	to	failure	was	
not	 affected	 significantly.	 Since	 tubular	 scaffolds	
fibres	were	more	aligned	 than	 the	2D	sheets,	 the	

reduction	in	tensile	properties	could	have	resulted	
from	 the	 anisotropy	 with	 the	 loading	 applied	
perpendicular	to	the	fibre	direction	[27].	Randomly	
distributed	fibres	will	 lead	to	isotropic	properties	
while	aligned	 fibres	will	produce	anisotropy	with	
the	highest	values	obtained	in	the	direction	of	the	
fibre	alignment.	Prabhakaran	et	al.	[28]	evaluated	
the	 tensile	 properties	 of	 their	 circumferentially	
aligned	PHBV/collagen	scaffolds	in	both	axial	and	
circumferential	 directions	 and	 found	 that	 the	
aligned	 nanofibers	 exhibited	 anisotropic	
behaviour,	with	 the	 tensile	 strength	 and	 Young's	
modulus	 in	 the	 circumferential	 direction	
significantly	higher	than	those	axially.		
The	 tensile	properties	of	 tubular	control	and	HA-
containing	 scaffolds	 were	 also	 evaluated	 after	
soaking	(Figure	7).	In	general,	minimal	changes	in	
the	 structural	 integrity	 were	 seen	 even	 after	 12	
weeks.	 Control	 samples	 showed	 a	 gradual	
reduction	 in	 their	 tensile	 properties	 over	 the	
incubation	 period,	 however,	 they	 generally	
preserved	tensile	strength	and	stiffness,	while	the	
ductility	 started	 to	 reduce	 significantly	 in	 SBF	 at	
week	 8.	 In	 contrast,	 HA-containing	 samples	
maintained	their	ductility,	while	their	strength	and	
stiffness	 were	 reduced	 significantly	 during	
immersion	 in	 both	 PBS	 and	 SBF.	 However,	 the	
ductility	was	mainly	preserved	due	to	the	PCL	core,	
known	 to	 degrade	 slowly.	 Finally,	 no	 statistically	
significant	 differences	 were	 found	 between	 the	
mechanical	 properties	 of	 scaffolds	 immersed	 in	
PBS	 and	 those	 in	 SBF	 for	 both	 control	 and	 HA-
containing	samples.		
The	 release	 profile	 of	 BMP-2	 in	 vitro	 was	
determined	 using	 ELISA	 (Figure	 11).	 A	 burst	
release	of	about	8.8%	of	the	BMP-2	was	observed	
in	 both	 scaffolds	 during	 the	 first	 24	 hours.	 The	
release	 rate	 subsequently	 decreased	 to	 become	
more	uniform	with	about	1.2-1.6%	released	every	
24	hours,	and	approximately	13.0%	and	13.6%	of	
the	total	BMP-2	was	released	from	the	control	and	
HA-containing	scaffolds	 respectively	after	4	days.	
Talal	 et	 al.	 [29]	 measured	 the	 absorption	 and	
release	 of	 fetal	 calf	 serum	 and	 bovine	 serum	
albumin	from	trilayer	PLA	and	HA-PLA	composite	
membranes	reinforced	with	PLA	fibres.	They	found	
that	 that	 HA-containing	 composites	 exhibited	
significantly	 more	 total	 protein	 absorption	 and	
release	 compared	 to	 those	 without	 HA	 and	 that	
more	than	90%	of	the	protein	was	released	after	96	
hours.	 However,	 in	 this	 study,	 no	 significant	
difference	 were	 noticed	 in	 the	 protein	 release	
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behaviour,	 in	fact,	both	types	of	scaffolds	had	the	
same	release	kinetics	and	retained	more	than	86%	
of	 BMP-2	 after	 96	 hours.	 While	 these	 findings	
suggest	that	the	coaxial	scaffolds	produced	can	be	
used	as	an	efficient	carrier	for	the	sustained	release	
of	 BMP-2,	 which	 can	 ultimately	 effect	 osteogenic	
differentiation	and	bone	regeneration,	the	release	
behaviour	 should	 be	 measured	 over	 longer	 time	
periods	 in	 order	 to	 define	 the	 exact	 release	
mechanism	 and	 determine	 the	 influence	 of	
including	HA	in	the	shell	layer.	
The	 interaction	 between	 cells	 and	 their	
environment	plays	a	crucial	role	in	determining	cell	
function.	This	includes	extracellular	matrix	(ECM)	
molecular	 composition,	 architecture	 and	
mechanical	properties	(e.g.	stiffness),	all	of	which	
have	been	shown	to	influence	MSC	behaviour	[30].	
A	major	advantage	of	electrospun	fibres	is	that	they	
favour	 cell	 attachment	 due	 to	 their	 high	 surface	
area	 which	 helps	 absorb	 proteins	 and	 promote	
binding	sites	 [31,	32].	Cell	adhesion	 is	a	dynamic	
process	 that	 results	 from	 specific	 interactions	
between	 cell	 surface	 molecules	 (in	 particular	
integrins)	 and	 their	 appropriate	 attachment	
sequences	 in	 ECM	 molecules	 (e.g.	 the	 RGD	
sequence)	 [33].	Cell	adhesion	on	control	and	HA-
containing	coaxial	scaffolds	and	the	morphology	of	
the	 adhered	 cells	 were	 observed	 using	 SEM	
(Figures	 12	 and	 13).	 MSCs	 adhered	 to	 both	
scaffolds	and	were	initially	observed	to	have	small,	
spindle-shaped	or	rounded	morphologies,	aligning	
with	 single	 fibres	 (Figure	 12	 e,	 l	 and	 o).	 Clear	
filopodial	projections	were	seen	to	anchor	the	cells	
to	the	fibres.	With	increasing	culture	time,	the	MSCs	
adopted	 a	 spread,	 large	morphology	with	 F-actin	
staining	 demonstrating	 the	 formation	 of	 stress-
fibres	within	the	cells.	This	change	is	likely	due	to	
the	 establishment	 of	 specific	 integrin	 attachment	
sites	 following	 deposition	 and	 ECM	 produced	 by	
the	 cells	 themselves.	 The	 architecture	 of	 these	
electrospun	scaffolds	supports	this	deposition	and	
facilitates	cell	migration	into	the	scaffolds	through	
interconnected	 pores.	 Interestingly,	 the	 presence	
of	 surface	 nanopores	 on	 fibres	 facilitated	 cell	
adhesion,	 (Figure	 13f	 and	 i)	 where	 cell	 filopodia	
were	 seen	 to	 interact	 directly	 with	 these	
nanopores.	 Incorporation	 of	 HA	 did	 not	 affect	
significantly	 cell	 attachment	 and	 spreading.	
However,	cell	spreading	was	slightly	lower	in	HA-
containing	 scaffolds	 at	 day	 21	 which	 might	 be	
attributed	to	the	increased	fibre	diameter	and	non-
uniformity	compared	to	control	scaffolds	[34,	35].	

Fibre	diameter	has	previously	been	linked	to	both	
proliferation	and	cell	morphology	and	is	probably	
involved	 in	 stem	 cell	 differentiation	 [36].	 Similar	
levels	 of	 proliferation	 were	 observed	 in	 HA-
containing	 and	 control	 scaffolds.	 Previous	 work	
would	 suggest	 this	 may	 be	 due	 to	 the	 relatively	
large	 size	 of	 the	 fibres	 produced	 here	 (~10µm)	
effectively	 resulting	 in	 similar	 cell	 adhesion	
formation	 between	both	 groups.	 The	 presence	 of	
HA	did	not	influence	cell	proliferation	in	culture.	At	
late	stages	of	culture	(>14	days)	cell	proliferation	
was	 observed	 to	 be	 greater	 on	 electrospun	
scaffolds	than	tissue	culture	plastic	controls.	This,	
along	with	SEM	images	showing	cell	invasion	into	
electrospun	scaffolds,	suggests	that	the	cells	have	a	
greater	growing	surface	and	perceive	the	scaffolds	
as	 three-dimensional	 fibre	 networks	 rather	 than	
two-dimensional	planar	substrates.	Thus,	while	not	
shown	 to	 be	 specifically	 osteoinductive,	 the	
materials	 were	 seen	 to	 be	 osteoconductive,	
allowing	 differentiation	 of	 the	 MSCs	 when	
conditions	were	right,	that	is	an	osteogenic	media	
was	supplied.	
	
5	 Conclusions		
	
2D	 and	 3D	 PCL-PLA/HA	 scaffolds	 with	 core	 and	
shell	structured	fibres	were	successfully	produced	
using	coaxial	electrospinning.	The	uniformity	of	the	
produced	 fibres	 depended	 on	 the	 flow	 rate	 ratio	
between	the	core	and	shell	solutions,	with	higher	
fibre	uniformity	achieved	at	a	flow	rate	ratio	of	3:3.	
TEM	 of	 HA	 containing	 scaffolds	 showed	 that	
increasing	 the	 core	 flow	 rate	 also	 forced	 HA	
particles	to	protrude	out	of	the	fibre	surface	which	
could	enhance	scaffold	bioactivity.		
Electrospinning	 on	 rotating	 needle	 collector	 did	
not	affect	 fibre	diameter	 for	either	control	or	HA	
containing	samples.	However,	it	increased	the	fibre	
alignment	around	the	collector	and	increased	fibre	
non-uniformity	in	the	HA-containing	scaffolds.		
Tubular	scaffolds	with	and	without	HA	have	shown	
slow	 degradation	 profiles	 in	 PBS	 and	 SBF.	
However,	HA-containing	tubes	have	exhibited	high	
level	of	bioactivity	in	SBF	by	forming	thick	layers	of	
apatite	precipitation	on	the	fibres	surface	while	no	
apatite	was	formed	on	control	fibres	even	after	12	
weeks	of	SBF	immersion.	
Electrospinning	of	2D	core	and	shell	PCL-PLA/HA	
fibres	 has	 significantly	 enhanced	 the	 tensile	
strength	 and	 elongation	 at	 break	 compared	 to	
PLA/HA	fibres	produced	by	single	electrospinning,	
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while	 the	 toughness	 of	 the	 scaffolds	 was	
significantly	reduced.	
By	 increasing	 fibre	 alignment	 in	 3D	 scaffolds,	
scaffolds	 showed	 anisotropic	 mechanical	
behaviour	 with	 reduced	 mechanical	 properties	
when	tested	across	fibre	orientation.	Both	tubular	
scaffolds	 have	 shown	 gradual	 reduction	 in	 their	
tensile	 properties	 after	 12	 weeks	 of	 immersion.	
The	reduction	in	tensile	strength	and	stiffness	were	
more	 significant	 in	 HA-containing	 scaffolds	
compared	 to	 control	 scaffolds.	However,	 the	 two	
types	 of	 scaffolds	 retained	most	 of	 their	 ductility	
during	immersion.		
Control	 and	 HA	 containing	 coaxial	 fibres	
electrospun	 at	 3:3	 core:shell	 flow	 rate	 exhibited	
slow	and	sustained	release	of	BMP-2	over	96	hours	
with	only	small	variations	between	the	two	scaffold	
types.	 These	 scaffolds	 also	 allowed	 MSC	
attachment,	 spreading	 and	 proliferation	 and	
support	 osteogenic	 differentiation	 of	MSCs	 under	
osteogenic	culture	conditions.		
While	 not	 shown	 to	 be	 osteoinductive,	 the	
materials	 were	 osteoconductive,	 allowing	
differentiation	 of	 the	 MSCs	 when	 an	 osteogenic	
media	was	supplied.	
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