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Abstract—The weighted sum rate maximization problem of
ultra-dense cloud radio access networks (C-RANs) is considered,
where realistic fronthaul capacity constraints are incorporated.
To reduce the training overhead, pilot reuse is adopted and the
transmit-beamforming is designed to be robust to the channel
estimation errors. In contrast to the conventional C-RAN where
the remote radio heads (RRHs) coherently transmit their data
symbols to the user, we consider their non-coherent transmission,
where no strict phase-synchronization is required. By exploiting
the classic successive interference cancellation (SIC) technique,
we first derive the closed-form expressions of the individual data
rates from each serving RRH to the user and the overall data rate
for each user that is not related to their decoding order. Then,
we adopt the reweighted l1-norm technique to approximate the
l0-norm in the fronthaul capacity constraints as the weighted
power constraints. A low-complexity algorithm based on a novel
sequential convex approximation (SCA) algorithm is developed
to solve the resultant optimization problem with convergence
guarantee. A beneficial initialization method is proposed to find
the initial points of the SCA algorithm. Our simulation results
show that in the high fronthaul capacity regime, the coherent
transmission is superior to the non-coherent one in terms of its
weighted sum rate. However, significant performance gains can be
achieved by the non-coherent transmission over the coherent one
in the low fronthaul capacity regime, which is the case in ultra-
dense C-RANs, where mmWave fronthaul links with stringent
capacity requirements are employed.

Index Terms—Ultra-dense networks (UDN), C-RAN, limited
fronthaul capacity, pilot reuse, non-coherent transmission.

I. INTRODUCTION

Ultra dense networks (UDN), where a large number of base
stations (BS) are installed within a given area, have been
regarded as one of the most promising techniques to achieve
the ambitious goal of the fifth-generation (5G) wireless system
[1]. In UDNs, the received useful signal power is enhanced at
the user side due to the reduced distance to its serving BSs.
However, the user also receives the severe interference from its
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neighboring BSs, which constitutes the performance limiting
factor for UDNs. Cloud radio access networks (C-RANs) have
been recently proposed as the most promising solution to
dealing with this issue. Under the C-RAN architecture, all
the signal processing tasks are performed at the baseband
unit (BBU) pool, which is located at the data center and
equipped with powerful cloud computing capabilities. Then,
the traditional full-functionality BSs are replaced by the low-
functionality remote radio heads (RRHs), which only needs to
support the simple transmission/reception. Under this central-
ized architecture, some advanced signal processing techniques
can be realized in C-RANs, such as the coordinated multi-
point (CoMP) transmission, where the interference signals
can be transformed into useful signals. Furthermore, due to
their low functionalities, the RRHs can be densely deployed
with low operational cost. As a result, the C-RAN is an ideal
platform to realize the benefits of UDNs.

To enable the centralized signal processing, the RRHs need
to exchange data and channel information with the BBU pool
via high-speed links named the fronthaul links. Convention-
ally, the fronthaul links are provisioned by the wired links
such as optical fibers or high-speed Ethernet. However, in
ultra-dense C-RANs, there are a large number of RRHs, and
huge deployment costs will be incurred when connecting every
RRH to the BBU pool using the wired links. Furthermore,
some RRHs are located at places which are not accessible,
and it may not be feasible to provide the dedicated wired links
between each RRH to the BBU pool. Therefore, the millimeter
wave (mmWave) wireless fronthaul is appealing for ultra-
dense C-RANs due to its flexibility and low deployment cost,
which has received extensive attention [2]–[4]. However, even
at the mmWave frequency, the available bandwidth is limited
compared with the wired links. Hence, the fronthaul capacity
constraints should be taken into account when optimizing the
system design.

Recently, transmission design has been extensively studied
to deal with the fronthaul capacity constraints for C-RANs
[4]–[10]. However, these contributions mainly focus on the
coherent joint transmission scenario, where multiple RRHs co-
herently transmit the same data symbol to the served user and
strict phase-synchronization among these RRHs is required.
In ultra-dense C-RANs with excessive number of RRHs, it
is difficult to satisfy the phase-synchronization requirement.
Another alternative transmission strategy is the so-called non-
coherent transmission, where multiple RRHs can transmit
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different data streams to the user. At the user side, successive
interference cancellation technique can be adopted to decode
the data streams from the corresponding RRHs. In this scheme,
the strict phase-synchronization requirement is not necessary,
which is more amenable to implement in ultra-dense C-RANs.
The data rate expression achieved by each user for both
strategies are different. For the coherent transmission, the
serving RRHs for each user can be regarded as a unique
antenna array with a large number of antennas. However, for
the non-coherent transmission, the data rate transmitted from
each RRH to the user is different, and the data rate of the user
is the summation of individual data rates from all the RRHs
in its serving cluster. Due to this difference, the fronthaul
usage model for these two different transmission schemes are
different. To the best of our knowledge, this paper is the first
attempt to consider the non-coherent transmission with the
fronthaul capacity constraints.

Besides the fronthaul capacity limit issue, another trouble-
some problem in ultra-dense C-RANs is that a large amount of
channel state information (CSI) is required for the facilitation
of centralized signal processing. To acquire these CSIs, an
excessive amount of training overhead will be required, which
significantly reduces the available resources for data transmis-
sion. One promising solution is to consider the incomplete
CSI scenario, where each user only needs to estimate the
CSI from its nearby RRHs, and only the large-scale channel
gains are obtained for distant RRHs. Recently, we have studied
the network power minimization problem under this scenario
in [8], where a novel two-stage optimization framework was
proposed to solve this problem. However, [8] assumed the per-
fect intra-cluster CSI, which is impractical due to the limited
amount of pilot resources. To save the pilot consumption, pilot
reuse scheme should be adopted, which incurs sizeable channel
estimation error. Hence, it is imperative to design transmission
schemes that are robust to the channel estimation error. Most
recently, we have considered the transmit power minimization
problem for time division duplex (TDD) C-RANs in [9] and
frequency division duplex (FDD) C-RANs in [11]. However,
both papers considered the coherent transmission in C-RANs.

In this paper, we study the weighted sum rate maximization
problem for TDD ultra-dense C-RANs with non-coherent joint
transmission and imperfect CSI, where the fronthaul capacity
constraints are taken into account. In contrast to the transmit
power minimization problem in [7], [9], [12]–[14] where
the problem can be transformed into a convex second-order
cone programming (SOCP) or semi-definite programming
(SDP), the weighted sum rate maximization problem cannot
be transformed into a convex optimization problem, which
is proved to be NP-hard in [15]. In general, there are three
approaches to solve this kind of optimization problems. The
first one is the cyclic coordinate descent algorithm developed
in [15], which enables each transmitter to update its beam-
forming vector locally. However, this algorithm relies on the
assumption that the optimization variables are not coupled in
the constraints, which is not the case in ultra-dense C-RAN
where each RRH serves multiple users. The second is the
weighted minimum mean square error (WMMSE) method [16]
that has been successfully applied to solving diverse problems

in C-RAN [6], [17]–[20]. However, since we consider the
non-coherent transmission, the WMMSE used in the above-
mentioned papers cannot be used. The third one is the iterative
SOCP-based algorithm developed in [21], which has been
used in [5], [22] to deal with the transmission issues of C-
RANs. However, again due to the fact that we consider the
non-coherent transmission, the method developed in [21] is
not applicable. Hence, the contributions of this paper can be
summarized as follows:

1) We first derive the closed-form expression of the indi-
vidual achievable data rates of each RRH in the serving
cluster to each user by exploiting the statistical prop-
erties of the channel estimation errors, which depends
on the decoding order. Then, we obtain the closed-
form expression of the achievable sum-rate, which is
not related to the decoding order. Based on the results
derived, we formulate the weighted sum-rate maximiza-
tion optimization subject to both the per-RRH power
constraints and to the fronthaul capacity constraints.

2) To handle the l0-norm in the fronthaul capacity con-
straints, we adopt the reweighted l1-norm technique of
compressive sensing for approximating the l0-norm as
the weighted power constraints. Then, a novel sequential
convex approximation (SCA) algorithm is adopted for
solving the resultant optimization problem with conver-
gence guarantee. Furthermore, we also provide a novel
method of initializing the algorithm.

3) Our simulation results show that the performance-
advantage of the coherent versus non-coherent trans-
mission depends on the fronthaul capacity limit. The
weighted sum-rate of the coherent transmission is high-
er than that of its non-coherent counterpart, when a
high fronthaul capacity is available. However, the non-
coherent transmission significantly outperforms its co-
herent counterpart, when the fronthaul capacity is more
limited, which is often the case for mmWave fronthaul
links.

The rest of this paper is organized as follows. In Section II,
we present the system model along with the problem formu-
lation. A low-complexity algorithm is provided in Section III,
where the novel initialization method is also proposed. Exten-
sive simulation results are shown in Section IV. Conclusions
are finally drawn in Section V. The notations are deferred to
[9].

II. SYSTEM MODEL

We consider a downlink TDD UD-CRAN, which has I
RRHs and K UEs as shown in Fig. 1. Each RRH is equipped
with M antennas and each UE has a single antenna. Denote
I = {1, · · · , I} and U = {1, · · · ,K} as the sets of RRHs and
UEs, respectively. To reduce the complexity, the user-centric
cluster method is adopted, where each UE is exclusively served
by its nearby RRHs. Hence, we can define Ik ⊆ I as the set
of RRHs that potentially serve UE k, and Ui ⊆ U as the
set of UEs that can be potentially served by RRH i. These
clusters are determined based on the large-scale channel gains
that change very slowly, which are assumed to be fixed in this
paper.
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Fig. 1. Illustration of a C-RAN with thirteen RRHs and six UEs, i.e., I = 13,
K = 6. To reduce the complexity, each UE is served by the RRHs within
the dashed circle centered at the UE.

Let xi ∈ CM×1 be the transmit signal at RRH i, the
received signal at UE k can be written as

yk =
∑
i∈I

hH
i,kxi + zk, (1)

where hi,k ∈ CM×1 represents the channel vector, zk is
the zero-mean additive complex white Gaussian noise with
variance σ2. The channel vector hi,k is expressed as hi,k =√
αi,kh̄i,k, which consists of two parts: the large-scale channel

gains αi,k that includes the shadowing and path loss, and the
small-scale channel fading h̄i,k following the distribution of
CN (0, I).

A. Channel Estimation

Similar to our previous work [9], [11], we only consider
the channel estimation for the intra-cluster CSI. For the CSI
out of the UE’s cluster, it is assumed that only large-scale
channel gains are obtained, i.e., {αi,k, ∀i ∈ I\Ik, ∀k}. The
channels are assumed to be frequency-flat within a coherence
interval with T time slots, among which τ time slots are used
for channel estimation, and the remaining T − τ time slots
are dedicated for the data transmission. Hence, the number of
orthogonal pilot sequences is equal to τ . In UD-CRANs, the
number of UEs is much larger than τ . To enable the channel
estimation, some UEs should reuse the same pilot.

Denote the set of available pilot sequences as Q =
[q1, · · · ,qτ ] ∈ Cτ×τ that satisfies the orthogonal condition.
For TDD UD-CRANs, the UEs send the pilot sequences to
the RRHs. In specific, the training signals received at RRH i
is given by

Yi =
∑

k∈U

√
pthi,kq

H
πk

+Ni, (2)

where pt is the pilot power for each UE, Ni ∈ CM×τ is
the Gaussian noise matrix, the elements of which follow the
same distribution of CN (0, σ2), qπk

∈ Cτ×1 is the pilot
training vector sent from UE k. In addition, to differentiate
the channels from different UEs, the pilot sequences used by
the UEs sharing the same RRH should also be orthogonal, i.e.

qH
πk
qπk′ = 0, for k, k′ ∈ Ui, k ≠ k′, ∀i ∈ I. Furthermore,

to control the estimation error, the maximum reuse time
for each pilot should be below a fixed value nmax, i.e.,
nl ≤ nmax, ∀l, where nl denotes the reuse time for pilot l. This
paper aims to minimize the number of required orthogonal
pilots while guaranteeing the above constraints. The Dsatur
algorithm of graph theory can be used for solving the pilot
allocation problem as detailed in [23]. In TDD UD-CRANs,
the number of pilots required increases with the number of
UEs and decreases with the number of RRHs. However, it
is not related to the number of antennas at each RRH. The
other key parameter is the maximum pilot reuse time nmax. A
higher nmax leads to more severe channel estimation errors,
while a smaller nmax will require a larger number of pilots,
hence the number of time slots remaining for transmission will
be reduced. Denote c⋆ as the minimum number of different
colors, which is equal to τ .

Denote Kπk
as the set of UEs that reuse the same pilot of

UE k, that includes UE k. Then the minimum mean square
error (MMSE) estimation of channel hi,k is given by [24]

ĥi,k =
αi,k∑

k′∈Kπk
αi,k′ + σ̂2

1
√
pt
Yiqπk

(3)

where σ̂2 = σ2/pt. According to the property of MMSE
estimation [24], the channel estimation ĥi,k is independent of
the channel estimation error ei,k = hi,k−ĥi,k. The estimation
error ei,k follows the distribution of CN (0, δi,kI), where δi,k
is given by

δi,k =
αi,k

(∑
l∈Kπk

\{k} αi,l + σ̂2
)

∑
l∈Kπk

αi,l + σ̂2
. (4)

B. Downlink Data Transmission Model

The non-coherent joint transmission is considered, where
the RRHs in Ik send different data streams to UE k 1. Then,
the signal received at UE k is given by

yk =
∑
i∈Ik

hH
i,kwi,ksi,k +

∑
l ̸=k,l∈U

∑
i∈Il

hH
i,kwi,lsi,l + zk, (5)

where wi,k ∈ CM×1 represents beam-vector from RRH i to
UE k, respectively, si,k denotes the data stream that RRH i
intends to send to UE k. The data streams are assumed to
be independent of each other, and have zero mean and unit
variance.

It is assumed that each UE k has perfect knowledge of
the effective precoded channels ĥH

i,kwi,k,∀i ∈ Ik. In general,
some downlink pilot resources are required to train the effec-
tive precoded channels as detailed in [25], which will incur

1It should be noted that the non-coherent joint transmission is different
from the coherent joint transmission where all the RRHs serving the same UE
will transmit the same data symbol to the UE as seen in our previous work
[8], [9], [11]. The non-coherent joint transmission is easier to implement
at the transmitter side than the coherent joint transmission, since no strict
phase-synchronization of the RRHs is required. For the receiver side, SIC is
required in support of the non-coherent transmission, which incurs additional
complexity. However, since the cluster size for each user in practical ultra-
dense C-RANs is generally small, the computational complexity remains
affordable at the user.
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estimation error. However, Caire et al. showed in [25] that this
error is marginal compared with that of channel estimation.
Hence, this error is not considered here.

Since different RRHs send different signals to each UE,
each UE needs to detect all the signals from all its serving
RRHs. One low-complexity detection algorithm named succes-
sive interference cancellation (SIC) [26]–[29] can be adopted,
where each UE sequentially detects its signals from different
RRHs 2. In particular, each UE first detects its signal from
the first RRH in Ik, while regarding the other desired signals
as interference. For the second RRH, the UE already knows
the signal from the first RRH. Hence, this UE can subtract it
from the received signals and detect the signal from the second
RRH. Repeat this procedure until all the desired signals are
detected. As a result, the data rate transmitted on each RRH
depends on the decoding order. Denote Ik = {ck1 , · · · , ck|Ik|}
as the candidate set of RRHs for UE k. Without loss of
generality, we assume that the decoding order at UE k is
ck1 , · · · , ck|Ik|, namely, UE k first decodes the signal from RRH
ck1 , then decodes the signal of RRH ck2 second, etc.

C. Achievable Data Rate Analysis

We first analyze the achievable data rate between RRH ckj
and UE k. When UE k first decodes the signal from RRH ck1 , it
will not have any knowledge of the signals from all the RRHs
in Ik. Then, the received signal at UE k can be reexpressed
as

yck1 ,k = yk = ĥH
ck1 ,k

wck1 ,k
sck1 ,k + eH

ck1 ,k
wck1 ,k

sck1 ,k

+
|Ik|∑
m=2

hH
ckm,kwckm,ksckm,k +

∑
l ̸=k,l∈U

∑
n∈Il

hH
n,kwn,lsn,l+zk.

(6)
When UE k starts to decode the signal from RRH ckj , j =
2, · · · , |Ik|, it has already decoded the signals from the first
j − 1 RRHs, i.e., ckm,m = 1, · · · , j − 1. Then, the received
signal in (5) is processed by subtracting the known signals
from (5) as

yckj ,k

= yk −
j−1∑
m=1

ĥH
ckm,kwckm,ksckm,k

= ĥH
ckj ,k

wckj ,k
sckj ,k +

j∑
m=1

eHckm,kwckm,ksckm,k+

|Ik|∑
m=j+1

hH
ckm,kwckm,ksckm,k +

∑
l ̸=k,l∈U

∑
n∈Il

hH
n,kwn,lsn,l + zk.

(7)
Since ĥH

ckj ,k
wckj ,k

is assumed to be known at UE k, the first
term in the second equality of (7) is regarded as the useful
signal while the other terms are treated as uncorrelated noise.
Then, the achievable data rate can be obtained by regarding
the uncorrelated noise as the Gaussian noise with the same

2In this paper, perfect SIC is assumed and the absence of error propagation
is stipulated. This assumption is reasonable, since each user has to decode the
signals from its serving clusters, the size of which is usually small. David Tse
stated [29] that the effect of error propagation can be compensated by using
a stronger code (e.g., increasing the block length), provided that the decoding
size is relatively small.

variance. The average data rate is given by

r̄ckj ,k =
T − τ

T
E
{
log2

(
1 + γ̄ckj ,k

)}
, (8)

where the expectation is taken over all uncertain terms, such
as unknown channel estimation errors {ei,k, i ∈ Ik}, and the
small-scale inter-cluster CSI {hi,k, i ∈ I\Ik}, γ̄ckj ,k is the
effective SINR between RRH ckj and UE k, given by

γ̄ckj ,k =

∣∣∣ĥH
ckj ,k

wckj ,k

∣∣∣2
SIckj ,k+MIk + σ2

. (9)

In (9), SIckj ,k represents the self-interference incurred by
channel estimation error and interference from the remaining
RRHs in Ik, and MIk is the multi-UE cochannel interference.
The expressions of SIckj ,k and MIk are respectively given by

SIckj ,k=

j∑
m=1

∣∣∣eHckm,kwckm,k

∣∣∣2 + |Ik|∑
m=j+1

∣∣∣hH
ckm,kwckm,k

∣∣∣2 (10)

and
MIk =

∑
l ̸=k,l∈U

∑
n∈Il

∣∣hH
n,kwn,l

∣∣2, (11)

Due to the incomplete CSI and the channel estimation error,
it is difficult to derive the closed-form expression of the data
rate. To deal with difficulty, we first derive its lower bound,
which is more amenable for algorithm design.

Note that ĥckj ,k
is the channel estimate given in (3) and

wckj ,k
is the beamforming vector designed by the BBU pool.

Hence, the numerator in (9) is available at the BBU pool, and
only the denominator contains the uncertain terms. By using
Jensen’s inequality [30], we can derive the data rate lower
bound as follows:

r̄ckj ,k (12)

≥ log2

1 +

∣∣∣ĥH
ckj ,k

wckj ,k

∣∣∣2
E
{
SIckj ,k

}
+ E {MIk}+ σ2

 (13)

∆
= rckj ,k (14)

where rckj ,k is the lower bound of the average data rate r̄ckj ,k.

E
{
SIckj ,k

}
can be represented as

E

{
j∑

m=1

∣∣∣eHckm,kwckm,k

∣∣∣2}+E


|Ik|∑

m=j+1

∣∣∣hH
ckm,kwckm,k

∣∣∣2
 . (15)

The first term in (15) can be easily calculated as∑j
m=1 δckm,k

∥∥wckm,k

∥∥2. For the second term, note that chan-
nels hckm,k,m ∈ Ik are estimated at UE k, we have

E
{∣∣∣hH

ckm,kwckm,k

∣∣∣2}=E
{∣∣∣(ĥH

ckm,k+eHckm,k

)
wckm,k

∣∣∣2}
=
∣∣∣ĥH

ckm,kwckm,k

∣∣∣2+δckm,k

∥∥wckm,k

∥∥2(16)



5

where the second equality follows by using the independence
of ĥckm,k and eckm,k, and the covariance matrix of eckm,k is
δckm,kIM . Then, the second term is given by

E

{
|Ik|∑

m=j+1

∣∣∣hH
ckm,kwckm,k

∣∣∣2}
=

|Ik|∑
m=j+1

(∣∣∣ĥH
ckm,kwckm,k

∣∣∣2 + δckm,k

∥∥wckm,k

∥∥2) .

(17)

The E
{
SIckj ,k

}
is given by

E
{
SIckj ,k

}
=

|Ik|∑
m=j+1

∣∣∣ĥH
ckm,kwckm,k

∣∣∣2+∑
m∈Ik

δm,k∥wm,k∥2. (18)

To calculate E {MIk}, we consider two cases: 1) n ∈ Ik; 2)
n /∈ Ik. For the first case, the channel hn,k has been estimated
at UE k. Hence, the expectation value can be calculated as in
(16). For the latter case, UE k only knows the large-scale
channel gain αn,k. Then, the expectation can be calculated as

E
{∣∣∣hH

n,kwn,l

∣∣∣2} = αn,k∥wn,k∥2 and MIk can be calculated
as

E {MIk}=
∑

l∈U,l ̸=k

 ∑
n∈Il∩Ik

wH
n,lJn,kwn,l+

∑
n∈Il\Ik

αn,k∥wn,l∥2
,

where Jn,k = ĥn,kĥ
H
n,k + δn,kIM .

It is shown in [8] that the gap between the data rate lower
bound rckj ,k and the average data rate r̄ckj ,k is within 3% in
ultra-dense C-RANs, which can be ignored. Hence, in the
following, instead of considering the average data rate with
intractable expressions, we consider its lower bound rckj ,k that
is much easier to handle and more suitable for algorithm
design. In the following, the data rate refers to the lower bound
of data rate for simplicity. Based on the above derivations, the
sum data rate of UE k is obtained as

rk =

|Ik|∑
j=1

rckj ,k =
T − τ

T
log2

|Ik|∏
j=1

(
1 + γckj ,k

)
︸ ︷︷ ︸

J
ck
j
,k

, (19)

where Jckj ,k is given by

|Ik|∑
m=j

∣∣∣ĥH
ckm,kwckm,k

∣∣∣2+ ∑
m∈Ik

δm,k∥wm,k∥2+MIk+σ
2

|Ik|∑
m=j+1

∣∣∣ĥH
ckm,k

wckm,k

∣∣∣2+ ∑
m∈Ik

δm,k∥wm,k∥2+MIk+σ2

. (20)

Note that the denominator of Jckj ,k is exactly the numerator
of Jckj+1,k

for j = 1, · · · , |Ik| − 1. Then, with some simple
manipulations, we have

rk=
T − τ

T
log2

1+
∑

m∈Ik

∣∣∣ĥH
m,kwm,k

∣∣∣2∑
m∈Ik

δm,k∥wm,k∥2+MIk + σ2

 . (21)

It should be emphasized that the data rate for UE k in the
non-coherent transmission case is totally different from the

coherent case as seen in our previous work [9], [17], where
there is one term in the nominator of the SINR expression.
In contrast, for the non-coherent transmission case in (21),
the nominator of the SINR expression is the summation over
all desired signal power towards UE k. The first term in the
denominator of the SINR expression is the self-interference
power due to the channel estimation error, the second term
corresponds to the multiuser interference, and the final term is
the noise power. From (21), we find that the decoding order is
not reflected in the sum rate expression. Hence, the sum rate
of UE k does not depend on the decoding order.

D. Problem Formulation

In UD-CRAN, the fronthaul links are usually deployed by
using wireless transmission due to its flexibility and low cost.
However, compared with the wired fronthaul links such as
optical fiber, the fronthaul capacity is more stringent in wire-
less links. Hence, when designing the transmission strategy,
the fronthaul capacity constraints in UD-CRAN should be
considered, which can be expressed as∑

k∈Ui

I
(
∥wi,k∥2

)
ri,k ≤ Ci,max, ∀i ∈ I. (22)

where ri,k is given in (8), Ci,max is the fronthaul capacity
limit, and I (·) is the indicator function, defined as

I (x) =
{

1, if x ̸= 0,
0, otherwise.

(23)

Note that in our previous work [8], [9], [11], [17] for coherent
joint transmission, the set of RRHs serving UE k transmit with
the same data rate rk, and the fronthaul link capacity constraint
is modeled as follows∑

k∈Ui

I
(
∥wi,k∥2

)
rk ≤ Ci,max, ∀i ∈ I. (24)

For the non-coherent transmission case in (22), each UE’s sum
rate is divided among the serving candidate of RRHs, while
for the coherent transmission case in (24), each RRH has to
transmit the signals with each UE’s sum rate. Hence, for the
case with stringent fronthaul capacity limit, the non-coherent
transmission may be the better option.

In contrast to the data rate expression in (21), the fronthaul
capacity constraint model in (22) is related to the decoding
order and different decoding order leads to different data rates
between each RRH and each UE. Hence, how to find the
optimal decoding order remains a critical issue. This problem
is very difficult to solve. We provide a heuristic method
to solve this problem as follows. First, sort the large-scale
channel gains of the serving RRHs for each UE k in the
descending order, namely, απk

1 ,k
≥ · · · ≥ απk

|Ik|
,k. Then, UE

k decodes the data streams from the RRHs in Ik according
to this descending order. That is, UE k decodes the signal
from RRH πk

1 first, and then πk
2 in a successive interference

cancellation manner until the signal from the final RRH is
decoded. This decoding order is reasonable since the RRH
with higher large-scale channel gain generally has a larger
SINR. When decoding the signals from this RRH first, the
decoding error propagation will be reduced.
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In this paper, we aim to optimize the beam-vectors to
maximize the weighted sum rate of UEs while guaranteeing
the fronthaul capacity constraints and each RRH’s power limit.
Mathematically, the problem can be formally formulated as

max
w

∑
k∈U

ρkrk (25a)

s.t.
∑
k∈Ui

∥wi,k∥2 ≤ Pi,max, i ∈ I, (25b)

∑
k∈Ui

I
(
∥wi,k∥2

)
ri,k ≤ Ci,max,∀i ∈ I, (25c)

where w is the collection of all beam-vectors, ρk is the
weightor factor assigned to UE k that is used to control the
fairness among the UEs, rk is given in (21), constraints (25b)
corresponds to the per-RRH power constraints. The weight-
ed sum rate maximization problem is an NP-hard problem.
Additionally, the indicator function in the fronthaul capacity
constraints complicates further the analysis of this problem.
The imperfect CSI case considered here does not allow the
application of the WMMSE method. In the following, we pro-
vide a low-complexity algorithm to solve the above problem.

III. LOW-COMPLEXITY ALGORITHM

In this section, we first simplify the data rate expressions,
and then propose a low-complexity algorithm to solve the
resultant optimization problem. Finally, we provide a novel
method to initialize the algorithm.

A. Simplification of the Data Rate Expression

Before solving Problem (25), we first simplify the ex-
pressions of rk and ri,k. The beamforming vectors from all
RRHs in Ik can be merged into a single large-dimension
vector according to the decoding order, denoted as wk =[
wH

πk
1 ,k

, · · · ,wH
πk

|Ik|
,k

]H
∈ C|Ik|M×1. Then, the data rate rk

in (21) can be rewritten as

rk =
T−τ
T

log2

1+ wH
k Gk,kwk

wH
k Ek,kwk+

∑
l∈U,l ̸=k

wH
l Gl,kwl+σ2

 .

(26)
where Gk,k, Ek,k and Gl,k are respectively given by

Gk,k = blkdiag

{
ĥπk

1 ,k
ĥH
πk
1 ,k

, · · · , ĥπk

|Ik|
,kĥ

H
πk

|Ik|
,k

}
, (27)

Ek,k = blkdiag

{
δπk

1 ,k
IM , · · · , δπk

|Ik|
,kIM

}
, (28)

and

Gl,k = blkdiag

{
Aπl

1,k
, · · · ,Aπl

|Il|
,k

}
, (29)

with Aπl
j ,k

given by

Aπl
j ,k

=

{
ĥπl

j ,k
ĥH
πl
j ,k

+ δπl
j ,k

IM , if πl
j ∈ Il ∩ Ik,

απl
j ,k

IM , otherwise.
(30)

To obtain the expression of rπk
j ,k

, we first define wπk
j+1,:

=[
wH

πk
j+1,k

, · · · ,wH
πk

|Ik|
,k

]H
. Then, the data rate rπk

j ,k
in (8)

can be rewritten as in (31) at the top of the next page, where
Bπk

j+1,k
is given by

Bπk
j+1,k

=blkdiag

{̂
hπk

j+1,k
ĥH
πk
j+1,k

, · · · , ĥπk

|Ik|
,kĥ

H
πk

|Ik|
,k

}
.

B. Low-complexity Algorithm

The indicator function in the fronthaul capacity constraints
can be equivalently expressed as an l0-norm of a scalar,
which represents the number of non-zero values in a vector.
This reexpression allows us to approximate it as a convex
reweighted l1-norm from compressed sensing technique [6],
[31]. Specifically, the indicator function I

(
∥wi,k∥2

)
can be

rewritten as
I
(
∥wi,k∥2

)
=
∥∥∥∥wi,k∥2

∥∥∥
0
. (32)

Then, the fronthaul capacity constraints in (25c) can be
reformulated as [6], [31]∑

k∈Ui

βi,k∥wi,k∥2ri,k ≤ Ci,max, ∀i ∈ I, (33)

where βi,k is a constant weight factor that is related to UE k
and RRH i, that is iteratively updated as

βi,k =
1

∥wi,k∥2 + τ
, ∀i, k, (34)

with τ being a small constant regularization parameter 3 and
∥wi,k∥2 from the previous iteration.

However, even with the simplification of (25c) as (33),
Problem (25) is still difficult to solve due to the data rate
ri,k in (33), which is a non-convex constraint. To deal with
this difficulty, we replace ri,k with r̂i,k obtained from the
previous iteration. With fixed βi,k and r̂i,k, Problem (25) can
be transformed as

max
w

∑
k∈U

ρkrk (35a)

s.t.
∑
k∈Ui

∥wi,k∥2 ≤ Pi,max, i ∈ I, (35b)∑
k∈Ui

βi,kr̂i,k∥wi,k∥2 ≤ Ci,max, ∀i ∈ I, (35c)

where the transformed fronthaul capacity constraint (35c) can
be interpreted as the weighted per-RRH power constraint
similar to the conventional per-RRH power constraint (35b).

Problem (35) is still difficult to solve due to the following
reasons. Since we consider the non-coherent transmission, the

3This approximation makes the approximated problem different from the
original ones. However, when the regularization parameter is chosen as a very
small value, this approximation error becomes negligible. In the simulations,
the regularization parameter is set to τ = 10−8 and the transmit power is
set to zero if the calculated power to be transmitted from each RRH to any
user is smaller than 10−8. This incurs a negligible effect on the data rate of
each user. In fact, for practical analog to digital conversion (ADC) or digital
to analog conversion (DAC), there is a minimum power that can activate the
ADC/DACs. This kind of value is usually higher than 10−8.
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rπk
j ,k

=
T − τ

T
log2

1 +

∣∣∣ĥH
πk
j ,k

wπk
j ,k

∣∣∣2
wH

πk
j+1,:

Bπk
j+1,k

wπk
j+1,:

+wH
k Ek,kwk +

∑
l∈U,l ̸=k

wH
l Gl,kwl + σ2

 . (31)

WMMSE developed in [16] cannot be used since the rank
of matrix Gk,k defined in (27) is generally higher than one.
Hence, we cannot construct the auxiliary signal transmission
model for each UE as in the coherent transmission case of
[17]. Again due to that the rank of matrix Gk,k is higher than
one, the nominator of the SINR of UE k cannot be transformed
as in (6b) of [21] or (25) of [5]. As a result, new methods have
to be developed to solve Problem (35). In the following, we
develop a low-complexity algorithm based on the sequential
convex approximation (SCA) algorithm.

By introducing some slack variables, Problem (35) can be
rewritten as

max
w,µ,η,ν

∑
k∈U

ρkµk (36a)

s.t.
T − τ

T
log2 (1 + ηk) ≥ µk,∀k, (36b)

wH
k Gk,kwk

ηk
≥ νk, ∀k, (36c)

νk ≥ wH
k Ek,kwk+

∑
l∈U,l ̸=k

wH
l Gl,kwl+σ2,∀k, (36d)

(35b), (35c) (36e)

where µ, η and ν denote the collections of µk, ηk and
νk, respectively. The equivalence between Problem (25) and
Problem (36) lies in the fact that inequalities (36b), (36c) and
(36d) hold with equality at the optimal point, which can be
readily proved by using the contradiction method.

Denote the left hand side (LHS) of (36c) as the following
function

f (wk, ηk) =
wH

k Gk,kwk

ηk
. (37)

It is of the form quadratic over linear, which is jointly convex
over wk and ηk. Hence, constraint (36c) is non-convex. We
then approximate it as its first-order Taylor expansion. Specif-
ically, by using Appendix B of [11], the following inequality
holds

f (wk, ηk) ≥
w

(n)H
k Gk,kw

(n)
k

η
(n)
k

−
w

(n)H
k Gk,kw

(n)
k

η
(n)2
k

(
ηk−η(n)k

)

+
2Re

{
w

(n)H
k Gk,k

(
wk −w

(n)
k

)}
η
(n)
k

(38)

=
2Re

{
w

(n)H
k Gk,kwk

}
η
(n)
k

−
w

(n)H
k Gk,kw

(n)
k

η
(n)2
k

ηk (39)

, F
(
wk, ηk|w(n)

k ,η
(n)
k

)
. (40)

where w
(n)
k and η

(n)
k are obtained from the n-th iteration.

Then, we replace constraint (36c) with the following inequal-

ities:
F
(
wk, ηk|w(n)

k ,η
(n)
k

)
≥ νk, ∀k. (41)

which is a linear inequality.
Constraint (36d) can be equivalently rewritten as an SOC

constraint:(
wH

k Ek,kwk+
∑

l∈U,l ̸=k

wH
l Gl,kwl+σ2+ 1

4 (νk − 1)
2

)1/2

≤ 1
2 (νk + 1) .

(42)
The other troublesome constraint in Problem (36) is (36b).

Although it is a convex constraint, it cannot be solved by the
common convex solvers such as CVX package [30] due to the
log-function involved. To resolve this issue, we approximate
this constraint as a more tractable constraint by using the
following inequality:

ln (x) ≥ 1− 1

x
. (43)

By substituting x = (1 + ηk)
/(

1 + η
(n)
k

)
into the above

inequality, we have

ln (1 + ηk) ≥ ln
(
1 + η

(n)
k

)
+ 1−

1 + η
(n)
k

1 + ηk
. (44)

The above inequality holds with equality when ηk = η
(n)
k .

In addition, the first derivatives of the both sides of (44) are
the same when ηk = η

(n)
k . Hence, the right hand side (RHS)

of (44) is a proper approximation for the LHS of (44). By
substituting the RHS of (44) into constraint (36b), we have

ln
(
1 + η

(n)
k

)
+ 1 ≥ ln 2

T

T − τ
µk +

1 + η
(n)
k

1 + ηk
, (45)

which is convex.
Based on the above derivations, the optimization problem

to be solved in the n+ 1-th iteration is given by

max
w,µ,η,ν

∑
k∈U

ρkµk (46a)

s.t. (35b), (35c), (41), (42), (45), (46b)

which is an SOCP problem that can be effectively solved by
using the CVX package [30].

Based on the above derivations, a straightforward way of
solving Problem (25) involves two layers of iterations: the
inner layer to solve Problem (35) with given βi,k and r̂i,k,
and an outer layer to update βi,k and r̂i,k. Although the inner
layer algorithm can be guaranteed to converge due to the
property of SCA algorithm, the overall algorithm may have
high computational complexity since two-layer iterations are
involved. Here, we merge these two-layer iterations into only
one layer and update βi,k and r̂i,k inside the SCA algorithm,
as shown in Algorithm 1. Although the algorithm cannot
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be strictly proved to converge, the simulation section always
shows the convergence of the algorithm and it converges
rapidly.

Algorithm 1 SCA algorithm for solving Problem (35)
1: Initialize iteration number n = 1, error tolerance ε, fea-

sible w(0), calculate {β(0)
i,k , r̂

(0)
i,k , ∀i, k} and η(0), calculate

the objective value of Problem (46), denoted as Obj(0).
2: With fixed {β(n−1)

i,k , r̂
(n−1)
i,k , ∀i, k}, η(n−1) and w(n−1),

solve Problem (46) by using the CVX package to obtain
w(n) and η(n);

3: Update {β(n)
i,k , r̂

(n)
i,k ,∀i, k};

4: Calculate new objective value Obj(n). If∣∣Obj(n) −Obj(n−1)
∣∣/Obj(n) < ε, terminate. Otherwise,

set n← n+ 1, go to step 2.

C. Initialization of the algorithm

There is one critical issue that remains to be solved: how
to find initial feasible beam-vectors w in Algorithm 1. Note
that randomly choosing a set of beam-vectors that satisfy the
per-RRH power constraints may not satisfy per-link capacity
constraints. However, if one sets the initial beam-vectors to
zero vectors, r̂(0)i,k will be zero for all UEs, which makes the
constraints (35c) meaningless. Hence, one has to carefully
choose the initial feasible beam-vectors. In the following, we
provide an alternative to finding the initial beam-vectors.

First, we assume that each RRH is serving all the UEs in
its candidate set Ui, and the power is equally split among
these UEs. Furthermore, the beam direction is chosen to align
with its channel direction. Hence, one set of beam-vectors that
satisfy the per-RRH power constraints is given by:

w̃i,k =

√
Pi,max

|Ui|
ĥi,k∥∥∥ĥi,k

∥∥∥ ,∀i ∈ I, k ∈ Ui. (47)

By substituting the above beam-vectors into the data rate
expression (31), we can obtain the data rates r̃πk

j ,k
,∀j =

1, · · · , |Ik| , k ∈ U . Then, check whether the beam-vectors in
(47) satisfy the per-link capacity constraints or not. If yes, then
set the initial beam-vectors as w

(0)
i,k = w̃i,k, ∀i ∈ I, k ∈ Ui.

Otherwise, we have to go one step further to find a set
of feasible beam-vectors that satisfy the per-link capacity
constraints.

To this end, we first split the fronthaul capacity limit among
its serving UEs according to the following formulation:

Ci,k =
αi,k∑

k∈U
αi,k

Ci,max,∀i ∈ I, k ∈ Ui. (48)

The above rate assignment is reasonable since in general the
UE with better channel condition can transmit with higher data
rate. Then, we construct the following power minimization

problem:

min
w

∑
k∈U
∥wk∥2 (49a)

s.t. rπk
j ,k
≥ Cπk

j ,k
,∀j = 1, · · · , |Ik| , k ∈ U , (49b)∑

k∈Ui

∥wi,k∥2 ≤ Pi,max, i ∈ I. (49c)

Since the rotation of the beam-vectors will not affect the SINR
value, constraint (49b) can be equivalently cast as the SOC
constraints in (50) and (51) at the top of the next page, where

η̃πk
j ,k

= 2
T

T−τ C
πk
j
,k−1. By replacing (49b) with (50), Problem

(49) is an SOCP problem that can be effectively solved.
If Problem (49) is feasible, denote the optimal solution as

w∗. Then, the rate constraint (49b) must hold with equality at
the optimal solution, which can be readily proved by using the
contradiction method. Hence, the obtained solution w∗ must
be feasible for Problem (25), which can be used as the initial
beam-vectors of Algorithm 1, i.e., w(0)

i,k = w∗
i,k,∀i ∈ I, k ∈

Ui.
Otherwise, we construct an alternative optimization problem

by introducing a series of auxiliary variables {ξi,k, ∀i, k}:

min
w,{ξi,k≥0,∀i,k}

∑
i∈I

∑
k∈U

ξi,k +
∑

k∈U
∥wk∥2 (52a)

s.t. ĥH
πk
j ,k

wπk
j ,k

+ ξπk
j ,k
≥ gπk

j ,k
(w)

(51), (49c), (52b)

where gπk
j ,k

(w) is defined in (50) at the top of this page.
Obviously, the above optimization problem is always fea-
sible. Let us denote the optimal solution of Problem (52)
by w⋆, {ξ⋆i,k,∀i, k}. Since Problem (49) is assumed to be
infeasible here, there must exist at least one ξ⋆i,k that is strictly
larger than zero. Denote the set of indices of these ξ⋆i,ks as

A =
{
(i, k)|ξ⋆i,k > 0, ∀i, k

}
and the set of indices of the

ξ⋆i,ks that are equal to zero as B =
{
(i, k)|ξ⋆i,k = 0,∀i, k

}
.

Note that the first set of constraints in Problem (52) hold
with equality at the optimal point, which can be proved
by using contradiction method. Hence, the obtained data
rates corresponding to A are strictly smaller than Ci,k, i.e.,
r⋆i,k < Ci,k, for (i, k) ∈ A, while those corresponding to
B are equal to Ci,k, i.e., r⋆i,k = Ci,k, for (i, k) ∈ B. As a
result, the obtained solution w⋆ satisfies the per-link capacity
constraints, which can be used as the initial input of Algorithm
1, i.e., w(0)

i,k = w⋆
i,k,∀i ∈ I, k ∈ Ui.

In summary, the algorithm to find the initial feasible point
is given in Fig. 2 at the top of the next page.

IV. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of our proposed algorithm. We consider an
C-RAN network covering a square area of 600 m × 600 m.
Both the RRHs and UEs are randomly generated in this area.
The number of RRHs and UEs are respectively given by 14
and 10, respectively. The corresponding densities of RRHs
and UEs are then given by 39 RRHs/km2 and 28 UEs/km2,
respectively. This is consistent with the requirement of 5G
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ĥH
πk
j ,k

wπk
j ,k
≥
√
η̃πk

j ,k

√
wH

πk
j+1,:

Bπk
j+1,k

wπk
j+1,:

+wH
k Ek,kwk +

∑
l∈U,l ̸=k

wH
l Gl,kwl + σ2 , gπk

j ,k
(w), (50)

Im
(
ĥH
πk
j ,k

wπk
j ,k

)
= 0, (51)

Start

Calculate by

using in (45)

,k
i
k

r
p

b
,k

i
k

r
p

Calculate beam-

vectors in (45)

Is constraint

(21) satisfied?

    Set ,

and terminate.

(0)

, , , ,
i k i k

i k= "w w ,, , , ,
i k, ,, , i k,,"w

Calculate fronthaul

capacity split

by using (46)
,i kC

Check whether

Problem (47) is feasible

or not?

Denote the solution as

set ,

and terminate.

*
w

(0) *

, , , ,
i k i k

i k= "w w

Solve Problem (50)

to obtain the beam-

vectors

Solve Problem (50)

to obtain the beam-

vectors *
w
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terminate.
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i k i k

i k= "w w

Yes

No

Yes

No

,i kw ,,

,i kw ,,

Fig. 2. Flow chart of the algorithm to find the initial feasible point for Algorithm 1.

ultra-dense network [32], where the density of the base stations
(BS) is up to 40-50 BS/km2. The channel model is set as: 1)
Path loss PL = 35.3 + 37.6log10d (dB) [33]; 2) log-normal
shadow fading with zero mean and 8 dB standard derivation;
3) Rayleigh channel fading with zero mean and unit variance.
Unless otherwise stated, the other simulation parameters are
set as: Channel bandwidth of B = 20 MHz, the number of
transmit antennas of M = 2, the noise power density of −174
dBm/Hz, the pilot power of pt = 2 W, the maximum power
of RRHs of Pi,max = 1 W,∀i, weight factor of ρk = 1, ∀k,
regularization parameter τ = 10−8, pilot maximum reuse time
of nmax = 2. Each UE is assumed to select the RRHs with the
L highest large-scale channel gains as its candidate serving set,
i.e., |Ik| = L, ∀k. The fronthaul capacity constraint for each
UE is assumed to be the same, i.e., Cmax = Ci,max, ∀i.

Fig. 3 illustrates the convergence behaviour Algorithm 1 for
different number of transmit antennas. It can be observed from
this figure that the weighted sum rate monotonically increases
with the number of iterations and converges rapidly for all
numbers of transmit antennas considered. In general, all curves
converge within ten iterations. It is interesting to observe that
the convergence speed increases with the number of antennas.
In particular, nine iterations are required for the case of M = 1

Number of iterations
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Fig. 3. Convergence behaviour of Algorithm 1 for different number of
transmit antennas, where fronthaul capacity is set as Cmax = 2 bit/s/Hz.

to converge, while four iterations are sufficient for the case
of M = 4. As expected, the algorithm with larger number
of transmit antennas will converge to a larger weighted sum
rate since higher spatial degrees of freedom can be exploited.
However, we find that significant gains are achieved by M = 2
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Fig. 4. Convergence behaviour of Algorithm 1 for different number of RRHs,
where fronthaul capacity is set as Cmax = 2 bit/s/Hz.
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Fig. 5. Weighted sum rate versus the fronthaul capacity Cmax for different
transmission schemes.

over that of M = 1, while only marginal performance gains
can be obtained by the case of M = 4 over that of M = 2,
which comes at a higher computational complexity. Hence,
this means that in ultra-dense C-RANs, the number of transmit
antennas at the RRH does not have to be high.

Fig. 4 investigates the impact of the number of RRHs on
the convergence behavior of the proposed algorithm, where
the number of UEs is set to K = 12. It is observed again that
the algorithm converges for I = 12, 16, 20, and ten iterations
are sufficient for the algorithm to converge. As expected, a
larger number of RRHs leads to a higher weighted sum rate
due to the multi-RRH diversity. In contrast to the case seen in
Fig. 3, the impact of the number of RRHs on the convergence
speed is not obvious in the examples considered. The similar
trend has observed for the study of the impacts of the number
of UEs on the convergence speed, which is omitted here for
brevity.

Next, we compare our proposed non-coherent joint trans-
mission with the coherent transmission, where the RRHs in
each UE’s serving cluster are transmitting the same signal to
the UE. In Fig. 5, we plot the weighted sum rate versus the
fronthaul capacity Cmax for these two transmission schemes.
As expected, the weighted sum rate achieved by both schemes
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Fig. 6. Weighted sum rate versus the candidate size L for different
transmission schemes.

increases with Cmax. We can observe from Fig. 5 that it is
difficult to judge which transmission scheme is superior over
the other one over the overall Cmax regime. For the example
in Fig. 5, in the low Cmax regime when Cmax < 6bit/s/Hz,
the non-coherent transmission significantly outperforms the
coherent one. The reason can be explained as follows. In
the low Cmax regime, only a limited number of UEs can
be supported by the coherent transmission scheme since the
RRHs for the serving cluster have to transmit the same signal
to the same UE, and the maximum data rate achieved by
the UE is limited to Cmax. However, for the non-coherent
transmission scheme, since different RRHs in the UE’s serving
cluster can transmit different signals to the same UE, and
the data rate achieved by each UE is the summation of the
data rates from all the RRHs in its serving cluster. Hence,
the maximum data rate achieved by each UE can be up to
LCmax. However, in the high Cmax regime, the coherent
transmission scheme produces higher weighted sum rate than
the non-coherent one. This is due to the fact that in the
high Cmax regime, the fronthaul capacity is abundant such
that the benefits of coherent transmission can be exploited,
where all RRHs in the serving cluster can be regarded as a
large-dimensional base station. However, for the non-coherent
transmission, the data rate from each RRH is very low due
to the additional interference from other RRHs in the same
cluster. Hence, the summation of these data rates will be
smaller than that of the coherent one. Another interesting
phenomenon is that the non-coherent transmission scheme
saturates rapidly with the fronthaul capacity constraint, and
increases slowly when Cmax > 6 bit/s/Hz.

Fig. 6 shows the weighted sum rate versus the candidate size
L for different transmission schemes with different Cmax. It
is observed from Fig. 6 that the weighted sum rate achieved
by all schemes increase with L due to the fact that more
spatial degrees of freedom are available for each UE. As
expected, the larger Cmax leads to higher weighted sum rate
for both schemes. We can also find from Fig. 6 that the
non-coherent transmission scheme converges rapidly than the
the coherent one, and keeps steady when L > 3. When
Cmax = 4 bit/s/Hz, the non-coherent transmission scheme
has superior performance over the coherent one, and vice
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versa.

V. CONCLUSIONS

This paper studied the weighted sum-rate maximization
problem of non-coherent ultra-dense C-RANs in the face
of imperfect CSI, where fronthaul capacity constraints are
imposed. We first derived the closed-form expression of the
achievable individual data rate by exploiting the statistical
properties of the channel estimation error. To solve this opti-
mization problem, the l0-norm in the fronthaul capacity con-
straints was approximated as the weighted power constraints.
Then, a low-complexity SCA algorithm was proposed for
solving the resultant optimization problem, along with a novel
initialization method. Our simulation results illustrated that
the non-coherent scheme outperforms its coherent counterpart,
when the fronthaul capacity limit is low. Hence, the non-
coherent regime is an appealing scheme in ultra-dense C-
RANs, when the mmWave fronthaul has a limited capacity.
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