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Abstract. Vector models of language are based on the contextual aspects of lan-

guage, the distributions of words and how they co-occur in text. Truth condi-

tional models focus on the logical aspects of language, compositional properties

of words and how they compose to form sentences. In the truth conditional ap-

proach, the denotation of a sentence determines its truth conditions, which can

be taken to be a truth value, a set of possible worlds, a context change potential,

or similar. In the vector models, the degree of co-occurrence of words in context

determines how similar the meanings of words are. In this paper, we put these two

models together and develop a vector semantics for language based on the simply

typed lambda calculus models of natural language. We provide two types of vec-

tor semantics: a static one that uses techniques familiar from the truth conditional

tradition and a dynamic one based on a form of dynamic interpretation inspired

by Heim’s context change potentials. We show how the dynamic model can be

applied to entailment between a corpus and a sentence and provide examples.

Keywords. Vector semantics · Simply typed lambda calculus · Context update · Context

change potential · Compositionality.

1 Introduction

Vector semantic models, otherwise known as distributional models, are based on the

contextual aspects of language, the company each word keeps, and patterns of use in

corpora of documents. Truth conditional models focus on the logical and denotational

aspects of language, how words can be represented by functions over sets and applica-

tion and composition of these functions. Vector semantics and truth conditional models

are based on different philosophies; one takes the stance that language is contextual,

the other asserts that it is logical. In recent years there has been much effort to bring

these two together. We have models that are based on a certain type of grammatical

representation, e.g. the pregroup model of [4], the Lambek Calculus model of [5], and

the combinatorial categorial models of [15,17]; we also have more concrete models

that draw inspirations from type theory but whose major development is developing

concrete ways of constructing linear and multi linear algebraic counterparts for the syn-

tactic types, e.g. matrices and tensors of [8,2] and relational clusters of [16].

http://arxiv.org/abs/1810.11351v1
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What these approaches, [4,15,17] more than [2,16], miss is acknowledging the in-

herent gap between the contextual and truth conditional semantics; they closely follow

the truth theoretic conditions to assign vector representations to phrases and sentences.

Indeed it is possible to develop a stand-alone compositional vector semantics along

these lines, but this will result in a static semantics. From the perspective of the under-

lying theory it will also be quite natural to have such a vector semantics work in tandem

with a dynamic theory and let the two modules model different aspects of meaning.

Distributional semantics is particularly apt at modelling associative aspects of mean-

ing, while truth-conditional and dynamic forms of semantics are good at modelling the

relation of language to reality and at modelling entailment. It is quite conceivable that

a theory that combines the two as separate modules will be simpler than one that tries

to make one of the approaches do things it was never intended for.

This is what we will do in this paper. We first sketch how an approach to semantics

that in many of its aspects derives from the one pioneered by [19] can be used to assign

vector meanings to linguistic phrases. The theory will be based on the simply typed

lambda calculus and as a result will be neutral with respect to the linguist’s choice of

syntax, in the sense that it can be combined with any existing syntax-semantics interface

that assumes that the semantics is based on lambdas (e.g. linguistic trees + ‘type-driven

translation’, f-structures + ‘glue’ in Lexical-Functional Grammar, derivations in Com-

binatory Categorial Grammar + the use of combinators, proofs + ‘semantic recipes’ in

Lambek Categorial Grammar, etc.).

Our reasoning for the use of lambda calculus is that it directly relates our semantics

to higher order logic and makes standard ways of treating long distance dependen-

cies and coordination accessible to vector-based semantics. This approach results in

the same semantics as the static approaches listed above. The reason for providing it

is to show that a lambdas calculus model of language can directly be provided with a

straightforward vector semantics. As will be seen, abstract lambda terms, which can be

used as translations of linguistic expressions have a lot in common with the Logical

Forms of these expressions and the lambda binders in them give easy ways for treat-

ing long distance dependencies. The use of lambda terms also makes standard ways of

dealing with coordination accessible to distributional semantics. We provide extensive

discussion of this and will give examples where the direct use of lambdas gives an edge

over the above listed static approaches.

The above semantics does not have an explicit notion of context however. The sec-

ond contribution of this paper paper is that, based on the same lambda calculus model

of natural language, we develop a dynamic vector interpretation for this type theory

where denotations of sentences are “context change potentials”, as introduced by Heim

[11]. We show how to assign such a vector interpretation to words and how these in-

terpretations compose in a way such that the vectors of the sentences containing them

change the context in a dynamic style similar to the one instructed by Heim. A con-

text can be interpreted in different ways, we work with two different notions of context

in distributional semantics: co-occurrence matrices and entity relation graphs, encoded

here in the form of cubes. Both of these are built from corpora of documents and record

the co-occurrence between the words: in a simple neighbourhood window for the case

of co-occurrence matrices and in a window structured by grammatical dependencies, in
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the case of an entity relation cube. We believe our model is flexible enough with other

distributional notions of contexts, such as networks of grammatical dependancies. We

show how our approach relates to Heim’s original notion of ‘files’ as contexts. Other

dynamic approaches, such the update semantics of [30] and the continuation-based se-

mantics of [9], can also be used; we aim to do this in the future.

We are after a compositional vector semantics, but this paper is theoretical. So what

we will not do is settle upon—from the armchair so to speak—certain concrete repre-

sentations of contexts and updates and a set of concrete vector composition operations

for combining phrases or concrete matrices or cubes that embody them. We thus will

leave an exhaustive empirical evaluation of our model to future work, but show, by

means of examples, how the notion of ”admittance of sentences by contexts” from the

context update logic of Heim and Karttunen can be applied to develop a relationship

between matrix and cube contexts and sentences and how this notion can be extended

from a usual boolean relation to one which has degrees, based on the notion of degrees

of similarity between the words. This notion resembles that of a ”contextual entailment”

between corpora and sentences, we review the current entailment datasets that are main-

stream in distributional semantics and discuss how they can or cannot be applicable to

test this notion. but leave an experimental valuation to future work.

The lambda calculus approach we use is based on the Lambda Grammars of [21,22],

which were independently introduced as Abstract Categorial Grammars (ACGs) in [10].

The theory developed here, however, can be based on any syntax-semantics interface

that works with a lambda calculus based semantics. Our approach is agnostic as to the

choice of a syntactic theory. Lambda Grammars/ACGs are just a framework for thinking

about type and term homomorphisms and we are using them entirely in semantics here.

This paper is the journal version of our previous extended abstract [25] and short

paper [24].

2 Lambda Grammars

The Lambda Grammars of [21,22] were independently introduced as Abstract Catego-

rial Grammars (ACGs) in [10]. An ACG generates two languages, an abstract language

and an object language. The abstract language will simply consist of all linear lambda

terms (each lambda binder binds exactly one variable occurrence) over a given vocabu-

lary typed with abstract types. The object language has its own vocabulary and its own

types. We give some basic definitions here, assuming familiarity with the simply typed

λ-calculus.

If B is some set of basic types, we write TYP(B) for the smallest set containing B
such that (αβ) ∈ TYP(B) whenever α, β ∈ TYP(B). Let B1 and B2 be sets of basic

types. A function η from TYP(B1) to TYP(B2) is said to be a type homomorphism if

η(αβ) = (η(α)η(β)), for all α, β ∈ TYP(B1). It is clear that a type homomorphism η

with domain TYP(B) is completely determined by the values of η for types α ∈ B.

Let us look at an example of a type homomorphism that can be used to provide

a language fragment with a classical Montague-like meaning. Let B1 = {D,N, S}
(D stands for determiner phrases, N for nominal phrases, S for sentences), let B2 =
{e, s, t} (e is for entities, s for worlds, and t for truth-values), and let h0 be defined by:
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constant c type τ H0(c) h0(τ )

woman N woman est

man N man est

tall NN tall (est)est

smokes DS smoke est

loves DDS love eest

knows SDS λpλxλw.∀w′(Kxww′ → pw′) (st)est

every N(DS)S λP ′λPλw.∀x(P ′xw → Pxw) (est)(est)st

a N(DS)S λP ′λPλw.∃x(P ′xw ∧ Pxw) (est)(est)st

Table 1. An Abstract Categorial Grammar / Lambda Grammar connecting abstract

terms with Montague-like meanings. Here p is a variable of type st, while x is of type

e, w and w′ are of type s, and P and P ′ are of type est. The constant K of type ess

denotes the epistemic accessibility relation.

h0(D) = e, h0(N) = est,1 and h0(S) = st. Then the types in the second column of

Table 1 have images under h0 as given in the fourth column.

We now define the notion of a term homomorphism. If C is some set of typed

constants, we write Λ(C) for the set of all lambda terms with constants only from

C. The set of linear lambda terms over C is denoted by Λ0(C). Let C1 be a set of

constants typed by types from TYP(B1) and let C2 be a set of constants typed by types

from TYP(B2). A function ϑ : Λ(C1) → Λ(C2) is a term homomorphism based on η if

η : TYP(B1) → TYP(B2) is a type homomorphism and, wheneverM ∈ Λ(C1):

– ϑ(M) is a term of type η(τ), if M is a constant of type τ ;

– ϑ(M) is the n-th variable of type η(τ), if M is the n-th variable of type τ ;

– ϑ(M) = (ϑ(A)ϑ(B)), if M ≡ (AB);

– ϑ(M) = λy.ϑ(A), where y = ϑ(x), if M ≡ (λx.A).

Note that this implies that ϑ(M) is a term of type η(τ), if M is of type τ .

Clearly, a term homomorphism ϑ with domain Λ(C) is completely determined by

the values ϑ(c) for c ∈ C. This continues to hold if we restrict the domain to the set of

linear lambda terms Λ0(C).

In order to show how this can be used, let us continue the example we just looked at.

Consider the (abstract) constants in the first column of Table 1, typed by the (abstract)

types in the second column. We can now define a term homomorphismH0 by sending

the constants in the first column to their images in the third column, making sure that

these have types as in the fourth. Since H0 is assumed to be a type homomorphism, all

lambda terms over the constants in the first column will now automatically have images

1 Association in types is to the right and outer parentheses are omitted; so est is short for (e(st)),
arguably a good type for predicates.



Context Update for Lambdas and Vectors 5

under H0. For example, it can be easily checked that H0 sends the abstract term2

((a woman)λξ((every man)(loves ξ)))

(in which ξ is of type D), to a term βη-equivalent with

λw∃y(woman yw ∧ ∀x(man xw → love yxw)) .

This term denotes the set of worlds in which some specific woman is loved by all men.

While this example sends abstract terms to translations that are close to the ones of

[19] and while such translations obviously will not do as a vector semantics, we will

show in the next sections that it is possible to alter the object language while retaining

the general translation mechanism. For more information about the procedure of ob-

taining an object language from an abstract language, see the papers mentioned or the

explanation in [23].

3 A Static Vector Semantics

3.1 Vector Interpretations for the Object Language

In order to provide an interpretation of our object language, the type theory used must

be able to talk about vectors over some field, for which we choose the reals. We need

a basic object type R such that, in all interpretations under consideration, the domain

DR of type R is equal to or ‘close enough’ to the set of reals R and such that constants

such as the following have their usual interpretation (the → in types is dropped and

association is to the right; constants such as +, ·, and < will be written between their

arguments).

0 : R

1 : R

+ : RRR

· : RRR

< : RRR

This can be done by imposing one of the sets of second-order axioms in [29]. Given

these axioms we have that DR = R in full models, while we get non-standard models

under the Henkin interpretation.

Vectors can now be introduced as objects of type IR, where I is interpreted as some

finite index set. Think of I as a set of words; if a word is associated with a vector v : IR,

v assigns a real number to each word, which gives information about the company the

word keeps. Since IR will be used often, we will abbreviate it as V . Similarly, IIR,

abbreviated as M , can be associated with the type of matrices and IIIR, abbreviated

as C, with the type of cubes, and so on, see Table 2.

2 We use the standard notation of lambda terms. The application of M to N is written as (MN)
(not as M(N)) and lambda abstractions are of the form (λX.A). The usual redundancy rules

for parentheses apply, but will often not be used in abstract terms, in order to emphasise their

closeness to linguistic expressions. In some cases, where it seems to improve clarity, we will

flout the rules and write things like M(N1, . . . , Nn) for (MN1 . . . Nn) or A ∧B for ∧AB.
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Type Abbreviation

IR V Vector

IIR M Matrix

IIIR C Cube

IIIIR H Hypercube

· · ·

Table 2. Vector types and their abbreviations

In this paper we will work with a single index type, but in general one can also consider

cases with several index types, so that phrases of distinct categories can live in their

own space.

We need a toolkit of functions combining vectors, matrices, cubes, etc. Here are

some definitions, in which r is of type R; i, j, and k are of type I; v and u are of type

V ; andm and c are of typesM andC respectively. Indices are written as subscripts—vi
is syntactic sugar for vi.

∗ := λrvi.r · vi : RV V

⊞ := λvui.vi + ui : V V V

⊙ := λvui.vi · ui : V V V

×1 := λmvi.
∑

j

mij · vj :MV V

×2 := λcvij.
∑

k

mijk · vk : CVM

〈· | ·〉 := λuv.
∑

i

ui + vi : V V R

The reader will recognise ∗ as scalar product, ⊞ as pointwise addition, ⊙ as pointwise

multiplication,×1 and ×2 as matrix-vector and cube-vector multiplication, and 〈· | ·〉 as

the dot product. One can also consider further operations, such as a rotation operation

ρ : V V V , given below

ρ(·, ·) := λvu.





〈u | v〉 ±
√

1− 〈u | v〉2

±
√

1− 〈u | v〉2 〈u | v〉



×
u+ v

2

This operation takes two vectors and produces the result of rotating their average to-

wards the first vector. This can be thought of as, for example, providing a good candi-

date for modelling head-argument combinations. We will not present a specific use for

this operation in this paper and are just introducing it as an example of a new operation

that can be, but has not been, used by the existing vector models, in order to illustrate

the range of vector operation that can be modelled in our setting.
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3.2 Abstract Types and Type and Term Homomorphisms

Let us assume again that our basic abstract types are D for determiner phrases, S for

sentences, andN for nominal phrases. But this time our type and term homomorphisms

will be chosen in a way different from how it was done in section 2. A very simple type

homomorphism h can be defined by letting

h(D) = h(S) = h(N) = V

So h assigns vectors to determiners, nominal phrases and sentences. There are other

possibilities for the range of h and we will sketch a more elaborate assignment in which

a running context is used in the next section. The above simple h is chosen for the

expository purposes of this section.

In Table 3, we again provide abstract constants in the first column and their abstract

types in the second column; h assigns to these the object types in the fourth column. For

instance, the constant woman has the abstract type N , and a term homomorphic image

woman, which is assigned the type V by h. We say that the translation of woman is

of type V . Similarly, the translations of tall and smoke are of type V V , love and

know are of type V V V , and those of every, and a are of type V V . The term homo-

morphism H is defined by letting its value for any abstract constant in the first column

be the corresponding object term in the third column. Using this table, we automati-

cally obtain homomorphic images of any lambda term over the constants. But now our

previous example term3

((a woman)λξ((every man)(loves ξ)))

is sent to a term that is βη equivalent with

(love ×2 (a ×1 woman))×1 (every ×1 man) .

Nominal phrases like woman are represented by vectors in Table 3, adjectives and

intransitive verbs like tall and smoke by matrices, and transitive verbs (love) by cubes,

as are constants like know. Generalised quantifiers are functions that take vectors to

vectors. The composition operations used (×1 and ×2) are cube-vector and matrix-

vector instances of tensor contraction. The jury is still very much out on what are the

best operations for composing vectors. [18] consider pointwise addition and multipli-

cation of vectors, matrix multiplication is used in [1]. Such operations are available to

our theory. The table for these will have a different H(c) column and will be the same

in all the other columns. The H(c) columns for these models are given in Table 4.

In this paper, we will not choose between these operations. Instead of this we will ex-

plore the question how to combine such functions once an initial set of them has been

established (and validated empirically). Functions in the initial set will typically com-

bine vector meanings of adjacent phrases. Our aim, like the one in [2] (who also give

an excellent introduction to and survey of the work that has been done in compositional

vector semantics), has been to give a general theory that also includes dependencies

between phrases that are not adjacent, such as in topicalisation and relative clause for-

mation.

3 The entry for man is no longer present in Table 3. But man can be treated in full analogy to

woman. In further examples we will also use constants whose entries can be easily guessed.
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c τ H(c) h(τ )

woman N woman V

tall NN λv.(tall ×1 v) V V

smokes DS λv.(smoke ×1 v) V V

loves DDS λuv.(love ×2 u)×1 v V V V

knows SDS λuv.(know ×2 u)×1 v V V V

every N(DS)S λvZ.Z(every ×1 v) V (V V )V

a N(DS)S λvZ.Z(a ×1 v) V (V V )V

Table 3. Some abstract constants c typed with abstract types τ and their term homo-

morphic imagesH(c) typed by h(τ). Here, Z is a variable of type V V , and v and u are

of type V .

4 Dynamic Vector Semantics with Context Change Potentials

4.1 Heim’s Files and Distributional Contexts

Heim describes her contexts as files that have some kind of information written on

(or in) them. Context changes are operations that update these files, e.g. by adding or

deleting information from the files. Formally, a context is taken to be a set of sequence-

world pairs, in which the sequences come from some domain DI of individuals, as

follows:

ctx ⊆ {(g, w) | g : N → DI , w a possible world}

We follow Heim [11] here in letting the sequences in her sequence-world-pairs be infi-

nite, although they are best thought of as finite.

Sentence meanings are context change potentials (CCPs) in Heim’s work, functions

from contexts to contexts. A sentence S comes provided with a sequence of instructions

that, given any context ctx, updates its information so that a new context denoted as

ctx+ S

results. The sequence of instructions that brings about this update is derived composi-

tionally from the constituents of S.

In distributional semantics, contexts are words somehow related to each other via

their patterns of use, e.g. by co-occurring in a neighbourhood word window of a fixed

size or via a dependency relation. In practice, one builds a context matrix M over R2,

with rows and columns labeled by words from a vocabulary Σ and with entries taking

values from R, for a full description see ([28]). M can be seen as the set of its vectors:

{−→v | −→v : Σ → R}

where each −→v is a row or column in M .
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Addition Multiplication Matrix Multiplication

H(c) H(c) H(c)

woman woman woman

λv.(tall ⊞ v) λv.(tall ⊙ v) λv.(tall ×1 v)

λv.(smoke ⊞ v) λv.(smoke ⊙ v) λv.(smoke ×1 v)

λuv.(love ⊞ u)⊞ v λuv.(love ⊙ u)⊙ v λuv.(love ×1 u)×1 v

λuv.(know ⊞ u)⊞ v λuv.(know ⊙ u)⊙ v λuv.(know ×1 u)×1 v

λvZ.Z(every ⊞ v) λvZ.Z(every ⊙ v) λvZ.Z(every ×1 v)

λvZ.Z(a ⊞ v) λvZ.Z(a ⊙ v) λvZ.Z(a ×1 v)

Table 4. Term homomorphic images H(a) for pointwise addition and multiplication,

and matrix multiplication as composition operations. In the case of addition and multi-

plication, Z is a variable of type V , for matrix multiplication it is of type V V ; whereas

v and c are of type V for all three operations.

If we take Heim’s domain of individuals DI be the vocabulary of a distributional

model of meaning, that is DI := Σ, then a context matrix can be seen as a so-called

quantized version of a Heim context:

{(−→g , w) | −→g : Σ → R, w a possible world}

Thus a distributional context matrix is obtainable by endowing Heim’s contexts with R.

In other words, we are assuming that not only a file has a set of individuals, but also

that these individuals take some kind of values, e.g. from reals.

The role of possible worlds in a distributional semantics is arguable, as vectors

retrieved from a corpus are not naturally truth conditional. Keeping the possible worlds

in the picture provides a machinery to assign a proposition to a distributional vector by

other means and can become very useful. We leave working with possible worlds to

future work and in this paper only work with the sets of vectors as our contexts, that is:

ctx ⊆ {−→g | −→g : Σ → R, g ∈M} (1)

Distributional versions of Heim’s CCP’s can be defined based on the intuitions and

definitions of Heim. In what follows we pan out how these instructions let contexts

thread through vectorial semantics in a compositional manner.

4.2 Dynamic Type and Term Homomorphisms and their Interpretations

On the set of basic abstract types D,S,N a dynamic type homomorphism ρ that takes

into account the contexts of words is defined as follows:

ρ(N) = (V U)U, ρ(D) = V, ρ(S) = U
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Here, sentences are treated as context change potentials. They update contexts and we

assign the type U (for ‘update’) to them. A context can be a matrix or a cube, so it can

have type I2R or I3R. A sentence can then have type (I2R)(I2R) or (I3R)(I3R). We

have previously abbreviated IR to V , I2R to M , and I3R to C. The sentence type then

becomes MM or CC, used as an abbreviation for U ; the former in the context matrix

setting and the latter in the context cube setting. The concrete semantics obtained by

instantiating U to matrix and cube contexts are discussed in more details in sections 5

and 6, respectively.

The update functions are presented in Table 5. Simple words such as names, nouns,

adjectives, and verbs are first assigned vectors, denoted by constants such as anna,

woman, tall and smoke (all of type V ). These are then used by the typed lambda

calculus given via H(a), in the third column, to build certain functions, which will

act as the meanings of those words in context. The object types assigned by ρ are as

follows:

Type of nouns : (V U)U
Type of adjectives : ((V U)U)(V U)U
Type of intransitive verbs : V U
Type of transitive verbs : V V U

The function Z updates the context of proper names and nouns based on their vec-

tors e.g. anna and woman. These are essentially treated as vectors with type V , but,

since they must be made capable of dynamic behaviour, they are ‘lifted’ to the higher

type (V U)U .

The function F of an adjective, takes a vector for the adjective, e.g. tall, a vector

for its argument, e.g. v and a vector for its context, e.g. c, then updates the context, e.g.

as in F (tall, v, c). The output of this function is then lifted to the the higher type, i.e.

((V U)U)((V U)U) via the functions Z and Q, respectively.

Functions G and I update contexts of verbs; they take a vector for the verb as well

as a vector for each of its arguments, plus an input context, and then return a context

as their output. So, the function G of an intransitive verb takes a vector for itself, e.g.

smoke a vector for its subject, e.g. v, plus a context, e.g. c, and returns a modified

context, e.g. via λvc.G(smoke, v, c). The function I of a transitive verb takes a vector

for itself, a vector for its subject, a vector for its object and a context, and returns a

context.

The meanings of function words, such as conjunctions, relative pronouns, and quan-

tifiers, will not (necessarily) be identified with vectors. The type of the quantifier ev-

ery is ((V U)U)(V U)U , where its noun argument has the required ‘quantifier’ type

(V U)U . The lambda calculus entry for ‘every’, λQ.Q, is the identity function; it takes

a Q and then spits it out again. The alternative would be to have an entry along the lines

of that of ‘tall’, but this would not make a lot of sense. It is the content words that seem

to be important in a distributional setting, not the function words.

The word and is treated as a generalised form of function composition. Its entry is

schematic, as and does not only conjoin sentences, but also other phrases of any cate-

gory. So, the type of the abstract constant connected with the word is (αS)(αS)(αS), in
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a τ H(a) ρ(τ )

Anna (DS)S λZ.Z(anna) (V U)U

woman N λZ.Z(woman) (V U)U

tall NN λQZ.Q(λvc.ZvF (tall, v, c)) ((V U)U)(V U)U

smokes DS λvc.G(smoke, v, c) V U

loves DDS λuvc.I(love, u, v, c) V V U

knows SDS λpvc.pJ(know, v, c) UV U

every N(DS)S λQ.Q ((V U)U)(V U)U

who (DS)NN λZ′QZ.Q(λvc.Zv(QZ′c)) (V U)((V U)U)(V U)U

and (αS)(αS)(αS) λR′λRλXλc.R′X(RXc) (ρ(α)U)(ρ(α)U)(ρ(α)U)

Table 5. Some abstract constants a typed with abstract types τ and their term homo-

morphic images H(a) typed by ρ(τ) (where ρ is a type homomorphism, i.e. ρ(AB) =
ρ(A)ρ(B)). Here Z is a variable of type V U , Q is of type (V U)U , v of type V , c of

type M , and p and q are of type U . The functions F , G, I , and J are explained in

the main text. In the schematic entry for and, we write ρ(α) for ρ(α1) · · · ρ(αn), if

α = α1 · · ·αn.

which α can be any sequence of abstract types. Ignoring this generalisation for the mo-

ment, we obtain SSS as the abstract type for sentence conjunction, with a correspond-

ing object type UUU , and meaning λpqc.p(qc), which is just function composition.

This is defined in a way such that the context updated by and’s left argument will be fur-

ther updated by its right argument. So ‘Sally smokes and John eats bananas’ will, given

an initial context c, first update c toG(Sally, smoke, c), which is a context, and then up-

date further with ‘John eats bananas’ to I(eat, John, bananas, G(smoke,Sally, c)).
This treatment of and is easily extended to coordination in all categories. For example,

the reader may check that and admires loves (which corresponds to loves and

admires) has λuvc.I(admire, u, v, I(love, u, v, c)) as its homomorphic image.

The update instructions fall through the semantics of phrases and sentences compo-

sitionally. The sentence every tall woman smokes, for example, will be associated with

the following lambda expression:

(((every (tall woman)) smokes))

This in its turn has a term homomorphic image that is β-equivalent with the following:

λc.G (smoke,woman, F (tall,woman, c))

which describes a distributional context update for it. This term describes a first update

of the context c according to the rule for the constant tall, and then a second update

according to the rule for the constant smokes. As a result of these, the value entries
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at the crossings of 〈tall, woman〉 and 〈woman, smokes〉 get increased. Much longer

chains of context updates can be ‘threaded’ in this way.

In the following, we give some examples. In each case the a. sentence is followed

by an abstract term in b. which captures its syntactic structure. The update potential that

follows in c. is the homomorphic image of this abstract term.

(1) a. Sue loves and admires a stockbroker
b. (a stockbroker)λξ.Sue(and admires loves ξ)
c. λc.I(admire, stockbroker, sue, I(love, stockbroker, sue, c))

(2) a. Bill admires but Anna despises every cop
b. (every cop)λξ.and(Anna(despise ξ))(Bill(admire ξ))
c. λc.I(despise, cop, anna, I(admire, cop, bill, c))

(3) a. The witch who Bill claims Anna saw disappeared
b. the(who(λξ.Bill(claims(Anna(saw ξ))))witch)disappears
c. λc.G(disappear,witch, I(see,witch, anna, J(claim, bill, c)))

5 Co-occurence Matrix Context and its Update

In this section we assume that our contexts are the co-occurrence matrices of distribu-

tional semantics [28]. Given a corpus of text, a co-occurrence matrix has at each of its

entries the degree of co-occurrence between a word and its neighbouring words. The

neighbourhood is usually a window of k words to both sides of the word. The update

type U associated to sentences, will thus take the form (I2R)(I2R), abbreviated to

MM . That is, a sentence will take a co-occurrence matrix as input, update it with new

entries, and return the updated matrix as output.

Since we are working with co-occurrence matrices, the updates simply increase

the degrees of co-occurrences between the labelling words of the rows and columns

of the matrix. In this paper, for the purpose of keeping it simple, we work with a co-

occurrence matrix with raw co-occurrence numbers as entries. In this case, the update

functions just add 1 to each entry at each single update step. This may be extended to (or

replaced with) logarithmic probabilistic entries such as Pointwise Mutual Information

(PMI) or its positive or smoothed version PPMI, PPMIα, in which case the update

functions have to recalculate these weighting schemes at each step. For instance, see

the example presented in Table 6. The cells whose entries are increased are chosen

according to the grammatical roles of the labelling words. These are implemented in

the functions F,G, I, J , which apply the updates to each word of the sentence. The

updates are compositional, i.e. they can be applied compositionally to the words within

a sentence. This is evident as the updates induced by words of a sentence are designed

based on the grammatical roles of them and this acts a glue.
More formally, the object terms corresponding to a word a update a context matrix

c with the information in a and the information in the vectors of arguments u, v, · · · of
a. The result is a new context matrix c′, with different value entries, depicted below:











m11 · · · m1k

m21 · · · m2k

...

mn1 · · · mnk











+ 〈a, u, v, · · · 〉 =











m′

11 · · · m′

1k

m′

21 · · · m′

2k

...

m′

n1 · · · m′

nk
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where we have

m′

ij := mij + 1

The mij and m′

ij entries are described as follows:

– The function denoted by λvc.G(smoke, v, c) increases the value entry of mij of c

by 1, for i and j indices of smoke and its subject v.

– The function denoted by λuv.λc.I(love, u, v, c) increases the value entries of mij ,

mjk , and mik of c by 1, for i, j, k indices of loves, its subject u and its object v.

– The function denoted by λvc.F (tall, v, c) increases the value entry of mij of c by

1, for i and j indices of tall and its modified noun v. The entry for tall in Table 1

uses this function, but allows for further update of context.

– The function denoted by λvc.J(know, v, c) increases the value entry of mij of c

by 1, for i and j indices of know and its subject v. The updated matrix is made

the input for further update (by the context change potential of the sentence that is

known) in Table 1.

As an example, consider the co-occurrence matrices depicted in Figure 1. The left

hand side matrix is a snapshot of a matrix just before a series of updates are applied to

it. In this matrix, for individual nouns such as Anna and noun phrases such as woman

we assume Z is the identity. So their entries are the same as the entries of their distri-

butional co-occurrence vectors. The rationale of this example for the entries of these

words is as follows: Anna is a woman and so it has not much appeared in a corpus in

the neighbourhood of the contextmen; as a result, it has a low value of 100 at that entry;

she loves cats (and has some herself), so her entry at the context cat is 700; she loves

other things such as smoking, and so she has a substantial entry at the context loves;

and so on. The entries of the other words, i.e. tall, smokes, loves, knows,

are also initialised to their distributional co-occurrence matrix vectors. When an entry

cij corresponds to the same two words, e.g. when i and j are both love as in the left

hand side matrix of Figure 1, we put a ǫ to indicate a predefined fixed value.

1 2 3 4 5

man cat loves fears sleeps

1 Anna 100 700 800 500 400

2 woman 500 650 750 750 600

3 tall 300 50 500 400 400

4 smokes 400 50 600 600 200

5 loves 350 250 ǫ 600 500

6 knows 300 50 200 250 270

update by
=⇒

G, I, F, J

1 2 3 4 5

man cat loves fears sleeps

1 Anna 100 700 800 500 400

2 woman 500 650 750 750 600

3 tall 650 50 500 400 400

4 smokes 700 50 600 600 200

5 loves 550 750 ǫ 600 500

6 knows 600 250 450 510 700

Fig. 1. An example of updates by functions F,G, I, J on a co-occurrence matrix
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The intransitive verb smokes updates the left hand side matrix of Figure 1 via the

function G at the entries c4j . Here, in principle, j can be 1 and 2, as both man and

cat, in their singular or plural forms, could have occurred as subjects of smokes in

the corpus. Assuming that cats do not smoke and that a reasonable number of men do, a

series of, for instance, 300 occurrences of smokes with the subject man, updates this

entry and raises its value from 400 to 700. Similarly, adjective tall updates the entries

of the c3j cells of the matrix via the function F , where j can in principle be 1 and 2,

but since cats are not usually tall, it only updates c31. Again, a series of, for example,

350 occurrences of the adjective tall as the modifier of man raises this number from

300 to, say 650. The case for loves and function I is similar. For knows, men know

cats love mice, and love to play and be stroked, etc; they know that cats fear water and

objects such as vacuum cleaners, and that they sleep a lot. As a result, the values of all

of the entires of row 6, that is c61, c62, c63, c64 and c65 will be updates by function J ,

for instance, to the numbers in the right hand side table.

6 Entity Relation Cube Context and its Update

A corpus of text can be seen as a sequence of lexical items occurring in the vicinities

of each other and turned into a co-occurrence matrix. It can also be seen as a sequence

of entities related to each other via predicate-argument structures and turned into an

entity relation graph. These can be modelled in our setting by taking the contexts to be

cubes, thus setting S to have the update typeU = (I3R)(I3R), abbreviated toCC. The

entity relation graph approach needs a more costly preprocessing of the corpus, but it is

useful for a systematic treatment of logical words such as negation and quantification,

as well as coordination.

An entity relation graph can be derived from different resources: a semantic net-

work of concepts, a knowledge base such as WordNet or FrameNet, or an olog or a

Gellish network. We work with entities and relations extracted from text. Discovering

such graphs from corpora of text in an automatic way has been subject of much recent

research, for example see [31,27] for a direct approach and [13,26] via semantic parsing.

The elements of an entity relation graph are argument-relation-argument triples, some-

times referred to by relation paths [31]. Similar to [16] we base ourselves in a binary

cijk

entity relation

entity

+ (a, u, v) =

c′ijkentity relation

entity
where

c
′

ijk := cijk + 1

Fig. 2. Updates of entries in an entity relation cube
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version of the world, where our relations are all binary; we turn non-binary relations

into binary ones using the is-a predicate.

Similar to the matrix case, the object terms corresponding to a constant a update a

context cube c with the information in a and the information in the vectors of arguments

of a. The result is a new context cube c′, with different value entries, greater or less than

the originals, as depicted in Figure 2.

The cijk and c′ijk entries are similar to the matrix case, for example

– The function denoted by λvc.G(smoke, v, c) increases the value entry cijk of c,

for i, j, k indices of is-a and smoker and v the subject of smoke.

– The function denoted by λvc.F (tall, v, c) increases the value entry cijk of c, for

i, j, k indices of is and tall and its modified noun v.

– The function denoted by λuvc.I(love, u, v, c) increases the value entries of cijk of

c, for i, j, k indices of loves, its subject u and its object v.

As an example, consider the series of updates depicted in Figure 3.

100

Anna is-a

smoker

update by G
=⇒

400
Anna is-a

smoker

50

Anna is

tall

update by F
=⇒

280

Anna is

tall

200

Anna loves

cat

update by I
=⇒

Anna

350

loves

cat

Fig. 3. An example of updates by functions F,G, I on an entity-relation cube

Relative pronouns such as ‘who’ update the entry corresponding to the head of the

relative clause and the rest of the clause. For example in the clause ‘the man who went

home’, we update cijk for i the index of ‘man’ as subject of the verb ‘went’ with index

j and its object ‘home’ with index k. Propositional attitudes such as ‘know’ update the

entry value of cijk for i the index of their subject, j the index of themselves, and j

the index of their proposition. For instance in the sentence ‘John knows Mary slept’,
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we update the entry value for ‘John’, ‘know’ and the proposition ‘Mary slept’. The

conjunctive and is modelled as before.

Negation can be modelled by assigning the abstract type D(DS)S to it and a

term homomorphism λuZ.¬J(u, Z, c) with the object type (V (V U))U . Concretely,

it negates the value entry of its input entity relation triple by, for example, setting

¬J(u, Z, c) := −J(u, Z, c), as shown in Figure 5.

Quantifiers can be modelled in a more elaborated way. For instance every can have

the lambda term λuZ.∀(u, Z, c) assigned to it, which finds all the entries of the graph

that have an is-a relation with u, then updates their value entries where they relate to

the verb phrase Z by increasing them. An example is depicted in Figure 4, regarding

the universal quantifier in a sentence such as “All women love cats”. Here, it finds all

entities that are in an is-a relation with woman, such as “Anna is-a woman”, “Susan is-

a woman”, “Aunt is-a woman”. Then it increases cijk where i is the index of “Anna”, j

is the index of “love” and k is the index of “cat”, and similarly for “Susan” and “Aunt”.

The quantifier some, acts in a similar way with the difference that it only updates some

of these value entries, e.g. by random choice. For example, in the above case, it only

increases the entry corresponding to ‘Anna’ and leaves ‘Aunt” and “Susan” unchanged.

Generalised quantifiers act in similar ways, e.g. most changes most of its corresponding

entries, at least 5 changes at least 5 of them; at most 5 changes at most 5 of them (all

chosen randomly) and so on.

380

Anna is-a

woman

update by G
=⇒

Anna
351

loves

cat

is-aSusan

380

woman

update by F
=⇒

Susan

320

cat

loves

is-aAunt 500

woman

update by I
=⇒

loves
410

cat

Aunt

Fig. 4. An example of the updates incurred by the universal quantifier
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cijk

entity relation

entity

+¬J(u,Z) =

entity

entity

−cijk

relation

entity

entity

Fig. 5. The cube of an example negation operator

These update instructions fall through the semantics of phrases and sentences com-

positionally as in the case of co-occurrence matrices.

7 A Logic for Context Change Potentials

A logic for sentences as context change potentials has a syntax as follows:

φ ::= p | ¬φ | φ ∧ ψ |

with disjunction and implication operations defined using de Morgan duality:

φ ∨ ψ := ¬(¬φ ∧ ¬ψ)

φ→ ψ := ¬φ ∨ ψ

This logic is the propositional fragment of the logic of context change potentials, pre-

sented in [20], based on the ideas of Heim [11]. Heim extends the theory of presupos-

sitions of Karttunen [14] and defines the context change potential of a sentence as a

function of the context change potentials of its parts, an idea that leads to the develop-

ment of the above logic. The logic we consider here is the same logic but without the

presupposition operation.

We refer to the language of this logic as Lccp. For a context c, a context change

potential is defined as follows:

||p||(c) := c+ ||p||

||¬φ||(c) := c− ||φ||(c)

||φ ∧ ψ|| := ||ψ||(||φ||(c))

It is easy to verify that:
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||φ ∨ ψ|| = ||ψ||(c)− ||ψ||(||φ||(c))

||φ→ ψ||(c) = c− (||φ||(c) − ||ψ||(||φ||(c)))

Here, ||φ|| is the context change potential of φ and a function from contexts to

contexts. Whereas for Heim, contexts and context change potentials of atomic sentences

||p|| are both sets of valuations, for us contexts are co-occurrence matrices or entity

relation cubes and context change potentials of atomic sentences are vectors. Thus,

where the context change potential operation of Heim simply takes the intersection of a

context and a context change potential c ∩ ||p||, we have to do an operation that acts on

matrices/cubes rather than sets. We use the update operation of term homomorphisms,

defined in the previous sections, and define a context change potential as follows:

Definition 1. For S a sentence in Lccp, ||S|| its context change potential, H(S) the

term homomorphic image of S, and c a co-occurrence matrix or an entity relation cube,

we define:

||S||(c) := c+′ H(S)

c−H(S) := (c+′ H(S))−1

for +′ the update operation defined on term homomorphisms and −′ its inverse, defined

as follows for matrices:











m11 · · · m1k

m21 · · · m2k

...

mn1 · · · mnk











+′ 〈a, u, v, · · · 〉 =











m′

11 · · · m′

1k

m′

21 · · · m′

2k

...

m′

n1 · · · m′

nk











for m
′

ij :=

{

1 mij = 1

1 mij = 0











m11 · · · m1k

m21 · · · m2k

...

mn1 · · · mnk











−′ 〈a, u, v, · · · 〉 =











m′

11 · · · m′

1k

m′

21 · · · m′

2k

...

m′

n1 · · · m′

nk











for m
′

ij :=

{

0 mij = 1

0 mij = 0

The definition of +′ and −′ for cubes are done similarly.

The +′ operation updates the co-occurrence matrix in a binary fashion: if the entry

mij of the matrix has already been updated, and thus has value 1, then a succeeding

update is not going to increase the value from 1 to 2 and will keep it as 1. Conversely,

when the −′ operation acts on an entrymij which is already 0, it is not going to change

its value, but if it acts on a non-zero mij , that is an mij which has value 1, it will

decrease it to 0. The procedure is similar for the cubes. The resulting matrices and cubes

will have binary entires, that is, they will either be 1’s or 0’s. A 1 indicates that at least

one occurrence of the roles associated to the entires have been seen in the corpus before;

a 0 indicates that none has been seen or that a role and its negation have occurred.

Fixing a bijection between the elements [1, n] × [1, k] of our matrices and natural

numbers [1, n× k] and between elements [1, n]× [1, k]× [1, z] of the cubes and natural
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numbers [1, n × k × z], one can show that c +′ H(S) is the table of a binary relation

in the case of matrices and ternary relation in the case of cubes. Those entries (i, j) of

the matrices and (i, j, k) of the cubes that have a non zero value entry, are mapped to

an element of the relation. An example of this isomorphism is as shown below for a 2

× 2 matrix:
(

1 0
1 1

)

7→ 7→
1 2

1 1 0

2 1 1

{(1, 1), (2, 1), (2, 2)}

These binary updates can be seen as providing a notion of ‘contextual truth’, that is,

for example, a sentence S is true in a given a context c, whenever the update resulting

from s is already included in the matrix or cube of its context, i.e. its update is one that

does not change c.

As argued in [20], the semantics of this logic is dynamic, in the sense that the context

change potential of a sequence of sentences is obtained by function composition, that

is as follows:

||S1, · · · , Sn||(c) := ||S1|| ◦ · · · ◦ ||Sn||(c)

Using this dynamic semantics, it is straightforward to show that

Proposition 1. The context c corresponding to the sequence of sentences S1, · · · , Sn,

is the zero vector updated by that sequence of sentences, that is:

c = ||S1, · · · , Sn||(0)

where

||S||(c) := c+H(S)

c−H(S) := (c+H(S))−1

In the case of the co-occurrence matrices, c is the co-occurrence matrix and 0 is the

zero matrix. In the entity relation cube case, c is the entity relation cube and 0 is the

zero cube. We are using the usual real number addition and subtraction on mij and cijk
entires of the matrices and cubes, that is

m′

ij := mij + 1 m′

ij := mij − 1

c′ijk := cijk + 1 c′ijk := cijk − 1

We will refer to a sequence of sentences as a corpus.

8 Admittance of Sentences by Contexts

A notion of admittance of a sentence by a context was developed by Karttunen for

presuppositions and extended by Heim for context change potentials. It is defined as

follows, for c a context and φ a proposition of Lccp:

context c admits proposition φ ⇐⇒ ||φ||(c) = c

We use this notion and develop a similar notion between a corpus and a sentence.
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Definition 2. A corpus admits a sentence iff the context c (a co-occurrence matrix or

entity relation cube) built from it, admits it.

Consider the following corpus:

‘Cats and dogs are animals that sleep. Cats chase cats and mice. Dogs chase all

animals. Cats like mice, but mice fear cats, since cats eat mice. Cats smell mice and

mice run from cats.’

It admits the following sentences:

Cats are animals.

Dogs are animals.

Cats chase cats.

Cats chase mice.

Dogs chase cats and dogs.

Note that this notion of admittance caters for monotonicity of inference. For instance,

in the above example, from the sentences “Cats [and dogs] are animals [that sleep]”

and “Dogs chase all animals”, we can infer that the context admits the sentence ”Dogs

chase cats”.

On the other hand, c does not admit the negation of the above, for example it does

not admit

(*) Dogs do not chase cats.

(*) Dogs do not chase dogs.

It also do not admit the negations of derivations of the above or negations of sen-

tences of the cropus, for example, it does not admit

(*) Cats are not animals.

(*) Dogs do not sleep.

The corpus misses a sentence asserting that mice are also animals. Hence, c does

not admit the sentence ‘dogs chase mice’. Some other sentences that are not admitted

by c as as follows:

(*) Cats like dogs.

(*) Cats eat dogs.

(*) Dogs run from cats.

(*) Dogs like mice.

(*) Mice fear dogs.

(*) Dogs eat mice.

One can argue that by binarizing the update operation and using +′ and −′ rather

than the original + and −, we are loosing the full power of distributional semantics.

It seems wasteful to rather than building context matrices by counting co-occurrences,

only record if something co-occurred with another or not. This can be overcome by

working with a pair of contexts: a binarized one and a numerical one. The binarized
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1 2 3 4 5 6 7 8

animal sleep chase like fear eat smell run

1- cats 1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

2- mice 0 0 1

6

1

6

1

6

1

6

1

6

1

6

3- dogs 1

2

1

4

1

4
0 0 0 0 0

Table 6. The normalised co-occurrence matrix built from the example corpus with the

co-occurrence window taken to be occurrence within the same sentence.

context allows for defining a notion of admittance as before, and the numerical one al-

lows to use numerical values, e.g. the degrees of similarity between words. The notion

of word similarity used in distributional semantics is a direct consequence of the distri-

butional hypothesis: it says that words that often occur in the same contexts have similar

meanings [7]. Various formal notions have been used to measure the above degree of

similarity, amongst the successful ones is the cosine of the angle between the vectors of

the words. If the vectors are normalised to have length 1, which we shall assume, cosine

becomes the same as the dot product of the vectors. Then, one can use these degrees of

similarity to assign a numerical value to the admittance relation, e.g. as follows:

A pair of binary and numerical co-occurrence matrices c and c′admit a sentence

s′ with degree d, if c admits s, and s′ is obtained from s by replacing a word

w of s with a word w′ such that w′ has the same grammatical role in s′ as w

in s and the degree of similarity between w and w′ is d, computed from the

numerical entries of c′.

Here, c admits s and if there is a word in s that is similar to another word w′, then if we

replace w in s with w′ (keeping the grammatical role that w had in s) then the sentence

resulting from this substitution, i.e. s′ is also admitted by c, albeit with a degree equal to

the degree of similarity betweenw andw′. This degree is computed using the numerical

values recored in c′. The above can be extended to the case when one replaces more

than one word in s with words similar to them. Then, the degree of entailment may be

obtained by multiplying the degrees of similarities of the individually replaced words.

The normalised context matrix of our example corpus above are as in tables 6,

where for simplicity the co-occurrence window is taken to be “occurrence within the

same sentence”.

From the context matrix one obtains the following degrees of similarity:

cos(cats,mice) = 6× (
1

6
×

1

8
) =

1

8

cos(cats, dogs) = (
1

2
)× 2× (

1

4
×

1

8
) =

1

32

cos(dogs,mice) =
1

4
×

1

6
=

1

24
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The corpus misses an explicit sentence declaring that mice are also animals. Hence,

from the sentences of the corpus the negation of ‘dogs chase mice’ follows, which is

a wrong entailment in the real world. This wrong can now be put right, since we can

replace the word ‘Cats’ in the admitted sentence ‘Cats are animals’ with ‘Mice’; as we

have cos(cats,mice) = 1

8
, thus obtaining the situation where c admits the following,

both with degree 1

8
:

Mice are animals.

Dogs chase mice.

These were not possible before. We also obtain admittance of the following sentences

albeit with a lower degree of 1

24
:

(*) Cats like dogs.

(*) Cats eat dogs.

(*) Dogs run from cats.

Some other examples are as follows with a still lower degree of 1

32
:

(*) Dogs like mice.

(*) Mice fear dogs.

(*) Dogs eat mice.

Some of the above are as likely as the ones that were derived with degree 1

8
. This is

since the degrees come from co-occurrences in corpora and the one that we have is quite

restrictive. One hopes that the bigger a corpus, the more reflective of the real world it is.

Another way of improving the word-based entailments is by using linguistic resources

such as WordNet, e.g. replacing words with their hypernyms.

8.1 Evaluating on Existing Entailment Datasets

It remains to show if the notion of admittance of a sentence by a context can be ap-

plied to derive entailment relations between sentences. In future work, we will put this

method to test on the main and down stream inference datasets such as FraCas [6],

SNLI[3], Zeichner[32] and datasets of the RTE challenge. The FraCas inferences are

logical and the lambda calculus models of language should help in deriving them. As

an example, consider the fracas-013 test case:

fracas-013 answer: yes

P1 Both leading tenors are excellent.

P2 Leading tenors who are excellent are indispensable.

Q Are both leading tenors indispensable?

H Both leading tenors are indispensable.

In our setting, using the updates resulting from P1 and P2, one can contextually derive

H. Zeichner however does take the similarity between words into account. An example

is the following entailment between two sentences; this entailment was judged to be

true with confidence by human annotators:
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Parents have a great influence on the career development of their children.

Parents have a powerful influence on the career development of their children.

We can derive the above with a contextual entailment consisting of a cube updated

by just the above two sentences, with the degree of similarity between ‘powerful’ and

‘great’, mined from the co-occurrence matrix of a large corpus.

The judgements of the SNLI dataset are more tricky as they rely on external knowl-

edge. For example consider the entailment between the following sentences:

A soccer game with multiple males playing.

Some men are playing a sport.

or the contradiction between the following:

A black race car starts up in front of a crowd of people.

A man is driving down a lonely road.

Deciding these correctly is a challenge for our framework. The strength of our ap-

proach is in deciding whether a set of sentences follow from a given corpus of text,

rather than in judging entailment relations between a given pair or triple of sentences.

We shall, nevertheless, try to experiments with all these datasets.

9 Conclusion and Future Directions

We showed how a static interpretation of a lambda calculus model of natural language

provides vector representations for phrases and sentences. Here, the type of the vector

of a word depended on its abstract type and could be an atomic vector, a matrix, or a

cube, or a tensor of higher rank. Combinations of these vary based on the tensor rank

of the type of each word involved in the combination. For instance, one could take the

matrix multiplication of the matrix of an intransitive verb with the vector of its subject,

whereas for a transitive verb the sequence of operations were a contraction between

the cube of the verb and the vector of its object followed by a matrix multiplication

between the resulting matrix and the vector of the subject. A toolkit of functions needed

to perform these operations was defined. This toolkit can be restated for the higher order

types, such I2R and I3R, rather than the current IR, to provide means of combining

matrices, cubes, and their updates, if needed.

We extended the above setting by reasoning about the notion of context and its up-

date and developing a dynamic vector interpretation for the language of lambda terms.

Truth conditional and vector models of language follow two very different philosophies.

The vector models are based on contexts, the truth models on denotations. Our first in-

terpretation was static and based on truth conditions. Our second approach is based

on a dynamic interpretation, where we followed the context update model of Heim,

and hence, is deemed the more appropriate choice. We showed how Heim’s files can be

turned into vector contexts and how her context change potentials can be used to provide

vector interpretations for phrases and sentences. We treated sentences as Heim’s ‘con-

text change potentials’ and provided update instructions for words therein–including
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quantifiers, negation, and coordination words. We provided two concrete realisations

of contexts: co-occurrence matrices and entity relation cubes and in each case detailed

how these context update instructions allow contexts thread through vector semantics

in a compositional manner. With an eye towards a large scale empirical evaluation of

the model, we defined a notion of ‘contexts admitting sentences’ and degrees thereof

between contexts and sentences and showed, by means of examples, how these can be

used to judge whether a sentence is entailed by a cube context or a pair of cube and

matrix contexts. A large scale empirical evaluation of the model constitutes work in

progress.

Our approach is applicable to the lambda terms obtained via other syntactic models,

e.g. CCG, and Lambek Grammars and can also be modified to develop a vector seman-

tics for LFG. We also aim to work with other update semantics, such as continuation-

based approaches. One could also have a general formalisation wherein both the static

approach of previous work and the dynamic one of this work cohabit. This can be done

by working out a second pair of type-term homomorphisms that will also work with

Heim’s possible world part of the contexts. In this setting, the two concepts of mean-

ing: truth theoretic and contextual, each with its own uses and possibilities, can work in

tandem.

An intuitive connection to Fuzzy logic is imaginable, wherein one interprets the

logical words in more sophisticated ways, for instance, conjunction and disjunction take

max and min of their entires, or add and subtract them. It may be worth investigating

if such connections add to the applicability of the current model and if so making the

connection formal.
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