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Abstract

In this paper, based on the Smith iteration [30], an inner-outer (IO) iteration algorithm for

solving the coupled Lyapunov matrix equations (CLMEs) is presented. First, the IO iteration

algorithm for solving the Sylvester matrix equation is proposed, and its convergence is analyzed

in detail. Second, the IO iteration algorithm for solving the CLMEs is constructed. By utilizing

the latest estimation, a current-estimation-based and two weighted IO iteration algorithms are

also given for solving the CLMEs, respectively. Convergence analyses indicate that the iteration

solutions generated by these algorithms always converge to the unique solutions to the CLMEs for

any initial conditions. Finally, Several numerical examples are provided to show the superiority

of the proposed numerical algorithms.
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1. Introduction

The CLMEs are very important in analysis and design for continuous-time Markovian jump

linear systems, which can be used to model dynamic systems related to abrupt changes in their

structures and parameters due to component failure or repairs, environment changes and chang-

ing subsystem interconnections. This kind of systems have a wide range of applications, such

as network control systems [5] and fault tolerant control systems [7], etc. In [2], the stochastic

controllability and stabilizability have been investigated for continuous-time Markovian jump

linear systems. The moment stability of this kind of systems was studied in [32]. In [2,5], it was

showed that both the stochastic and moment stability of the Markovian jump linear system can

be characterized by the existence of unique positive definite solutions to the CLMEs.

The aforementioned facts indicate that the CLMEs play an important role in stability analy-

sis and stabilizing controller design. Therefore, many approaches have been presented for solving
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the CLMEs related to the continuous-time Markovian jump systems during the last decades.

Based on the Kronecker products, the exact solutions to the coupled matrix equations were ex-

plicitly obtained in [9], but this algorithm needed excessive computer storage and was prohibitive

for large scale systems. In order to overcome this problem efficiently, iteration algorithms have

been presented in the literatures for matrix equations [6,17,20,23]. In [12], a parallel iteration

algorithm was proposed for solving the CLMEs, in which some independent standard continu-

ous Lyapunov matrix equations needed to be solved in each iteration step. For high dimension

matrices, the solution to the standard Lyapunov equation is still costly, and thus the algorithm

in [12] was an implicit iteration algorithm. By introducing the latest estimation, a modified pre-

ceding implicit iteration algorithm was developed in [8]. A weighted implicit iteration algorithm

in [16] was given for solving the coupled Lyapunov matrix equations, and its convergence rate

was improved significantly if the weighting parameters were appropriately chosen. Some explicit

iteration algorithms, for example, the gradient-based iteration algorithms [22,26,28], have been

proposed for solving the CLMEs. Several reduced-rank gradient-based iteration algorithms in

[29] were constructed for solving the generalized coupled Sylvester matrix equations, which can

also be used to solve the CLMEs. Recently, some efficient explicit iteration algorithms have been

developed, such as [24,27]. In [15], the iteration algorithms based on positive operator were pre-

sented for solving Itô stochastic systems with Markovian jumps, which convergence was obtained

according to the properties of some positive operators associated with the stochastic system. In

[18,21], by using the ST technique [34] to decompose the stochastic systems with Markovian

jumps into N decoupled linear subsystems, some policy iteration algorithms have been estab-

lished for solving the stochastic coupled algebraic Riccatic equation for the continuous-time Itô

stochastic systems with Markovian jumps. In [11], an explicit iteration algorithm was proposed

for solving the CLMEs. By introducing the latest estimation, a current-estimation-based and

an accelerated Smith iteration algorithms were also given, respectively.

In this paper, we present an IO iteration algorithm for solving the CLMEs associated with the

continuous-time Markovian jump linear systems. First, we propose the IO iteration algorithm

for solving the Sylvester matrix equation, and prove its overall convergence. Next, we use

the IO iteration algorithm to solve the CLMEs. In order to improve the convergence rate of

the IO iteration algorithm, a current-estimation-based IO iteration algorithm is constructed by

utilizing the latest estimation, and it is proved that the algorithm can monotonically converge

to the unique positive definite solutions to the corresponding matrix equations with zero initial

conditions. Moreover, a necessary and sufficient condition is given for the proposed algorithm

with any initial conditions to be convergent. Furthermore, two weighted IO iteration algorithms

are also presented. Finally, several numerical examples are implemented to demonstrate the

effectiveness of the proposed iteration algorithms.

Throughout this paper, for a matrix A ∈ Rn×n, AT and ρ(A) denote its transpose and

spectral radius, respectively. For two integers m and n with m ≤ n, Π[m,n] denotes the set

{m,m+ 1, · · · , n}. For a matrix A = [a1 a2 · · · an] , vec(A) = [aT1 aT2 · · · aTn ]T . The notation

A ⊗ B represents the Kronecker products of the matrices A and B. The matrix E > 0 means

that E is real symmetric and positive definite. The matrix tuple F = {F1, F2, · · ·Fn} > 0
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implies that all the matrices Fi > 0, i ∈ Π[1, n]. For two matrices A and B, we define λ(A,B) =

{τ |det(τA−B) = 0}. For a complex number a, Re(a) is its real part. In what follows, it should

be stated that the sum is zero if the upper limit of the sum notation is less than the lower limit.

2. Previous results

Consider the following continuous-time Markovian jump linear system

ẋ = Ar(t)x(t), (2.1)

where x(t) ∈ Rn is the state vector, r(t) is a continuous-time Markovian random process, which

takes values in a discrete finite set Ω = {1, 2, · · · , N}, and Ar(t) ∈ Rn×n is the mode-dependent

system matrix. The dynamics of the probability distribution of the Markov chain is described

by the following differential equation

π̇(t) = π(t)P, (2.2)

where π is an N -dimensional row vector of unconditional probabilities and P is the transition

rate matrix denoted by [pij ]n×n, which elements satisfy pii < 0, pij ≥ 0(i ̸= j) and
n∑
j=1

pij = 0.

Let x(0) = x0 and r(0) = r0, the definition of stochastic stability for (2.1)-(2.2) can be

described as follows:

Definition 2.1 [1]. The continuous-time Markovian jump linear system (2.1)-(2.2) is stochas-

tically stable if for any x0 ∈ Rn and r0 ∈ Ω, there holds

E

{∫ ∞

0
∥x(t)∥2|x0, r0

}
<∞.

The CLMEs for the preceding Markovian jump linear system (2.1)-(2.2) have the following

form:

ATi Ki +KiAi +

N∑
j=1

pijKj +Qi = 0, Qi > 0, i ∈ Ω, (2.3)

where K = {K1,K2, · · · ,KN} is the unknown matrix tuple, and Q = {Q1, Q2, · · · , QN} > 0 is

an arbitrarily given positive definite matrix tuple. In fact, the CLMEs (2.3) are a special case

of (21) [15] with r = 0.

It is well known that the CLMEs (2.3) can be rewritten as follows:

ATi Ki +KiAi +
N∑

j=1,j ̸=i
pijKj +Qi = 0, Qi > 0, i ∈ Ω, (2.4)

where Ai = Ai +
pii
2 I (i ∈ Ω), and I is an identity matrix with appropriate dimension.

Lemma 2.1 [1]. The continuous-time Markovian jump linear system (2.1)-(2.2) is stochastically

stable if and only if the CLMEs (2.3) have a unique solution K > 0 for any Q > 0.

3



Lemma 2.2 [11]. If the Markovian jump linear system (2.1)-(2.2) is stochastically stable,

then the matrix Ai (i ∈ Ω) in (2.4) is Hurwitz stable, which means that all the eigenvalues of

Ai (i ∈ Ω) lie on the left-hand plane.

Many iteration algorithms have been proposed for solving the CLMEs (2.3) and (2.4), some

of them are listed as follows.

Lemma 2.3 [8]. If the Markovian jump linear system (2.1)-(2.2) is stochastically stable, then

the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)} generated by the following iteration

algorithm

ATi Ki(m+ 1) +Ki(m+ 1)Ai = −
i−1∑
j=1

pijKj(m+ 1)−
N∑

j=i+1

pijKj(m)−Qi, i ∈ Ω (2.5)

converges to the unique solution K = {K1,K2, · · · ,KN} to the CLMEs (2.4) for zero initial

conditions.

Lemma 2.4 [19]. Assume that the CLMEs (2.4) have a unique solution, if |ζ| < 1 for any

ζ ∈ λ(H̄, Ḡ), then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)} derived from the

following iteration algorithm

ATi Ki(m+ 1) +Ki(m+ 1)Ai

= −
i−1∑
j=1

pij

(
(1− γ)Kj(m+ 1) + γKj(m)

)
−

N∑
j=i+1

pijKj(m)−Qi, i ∈ Ω
(2.6)

converges to the unique solution K to the CLMEs (2.4) for any initial conditions, where 0 ≤ γ < 1

is a tunable parameter, and the matrices H̄, Ḡ are defined as in Theorem 2 [19].

From Algorithms (2.5) and (2.6), it is clear that N standard continuous Lyapunov matrix

equations need to be solved in each iteration step, so Algorithms (2.5), (2.6) are also called

the implicit iteration algorithms due to this. In order to avoid solving the Lyapunov matrix

equations, some explicit iteration algorithms have been constructed in [11,22].

Lemma 2.5 [22]. If the CLMEs (2.3) have a unique solution K = {K1,K2, · · · ,KN} > 0,

consider the following iteration algorithm

Ki(m+ 1) = Ki(m)− µ

Ai∆i(K) + ∆i(K)ATi +
N∑
j=1

pji∆j(K)

 , i ∈ Ω, (2.7)

where µ is the step size and

∆i(K) = ATi Ki(m) +Ki(m)Ai +
N∑
j=1

pijKj(m) +Qi, i ∈ Ω.

Then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)} generated by (2.7) converges to

the unique solution K to the CLMEs (2.3) for any initial conditions if and only if

0 < µ < (2/∥Ξ∥22),

4



where Ξ is the matrix defined as in Theorem 4 [22].

Lemma 2.6 [11]. Assume that the Markovian jump linear system (2.1)-(2.2) is stochastically

stable, consider the following iteration algorithm

Ki(m+ 1)

= UTi Ki(m)Ui + 2qDT
i

(
−
i−1∑
j=1

pijKj(m+ 1)−
N∑

j=i+1
pijKj(m)−Qi

)
Di, i ∈ Ω,

(2.8)

where q is a tunable parameter, and the matrices Ui, Di are defined as in Theorem 1 [11]. If

q < 0, then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)} obtained from (2.8) with

zero initial conditions converges to the unique solution K to the CLMEs (2.4).

In [11], an accelerated Smith iteration algorithm and corresponding convergence theorem are

also given. The algorithm is expressed as follows:

Ki(m+ 1) = UTi Ki(m)Ui + 2DT
i

(
−

i−1∑
j=1

pij
(
(q − 1)Kj(m+ 1) +Kj(m)

)
−q

N∑
j=i+1

pijKj(m)− qQi

)
Di, i ∈ Ω.

(2.9)

3. An IO iteration algorithm for solving AX +XB = C

In [4], an IO iteration algorithm has been presented for solving the following linear system

to obtain PageRank vector [25,33]:

(I − ηP )x = (1− η)v (3.1)

with 0 < η < 1, and P is a column-stochastic matrix. Based on the following matrix splitting

I − ηP = (I − βP )− (η − β)P, (3.2)

then the iteration sequence for solving (3.1) can be expressed by

(I − βP )xk+1 = (η − β)Pxk + (1− η)v, k = 0, 1, · · · , (3.3)

where 0 < β < η. The iteration sequence (3.3) is the so-called outer iteration.

In order to solve the linear system efficiently with the coefficient matrix I − βP in each

iteration of (3.3), an inner Richardson iteration is used to approximate xk+1. Setting the right-

hand side of (3.3) as

f = (η − β)Pxk + (1− η)v,

and defining the following inner linear system

(I − βP )y = f, (3.4)

then (3.4) can be solved by the inner iteration

yj+1 = βPyj + f, j = 0, 1, 2, · · · , l − 1, (3.5)

5



where y0 is given by xk as the initial guess and yl is treated as the new xk+1.

Next, we will apply the IO iterations (3.3) and (3.5) to solve the following Sylvester matrix

equation

AX +XB = C, (3.6)

where A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×n are known matrices, and X ∈ Rm×n is the unknown

matrix to be determined. When A = BT and C = CT , Eq. (3.6) becomes the well-known

Lyapunov matrix equation. Eq. (3.6) admits a unique solution if and only if A and −B possess

no common eigenvalues [14].

By using the principle of the Smith method in [11,35], Eq. (3.6) can be transformed into the

following equivalent form:

(ψIm −A)X(ψIn −B)− (ψIm +A)X(ψIn +B) = −2ψC, (3.7)

where ψ is a tunable parameter, Im and In are them×m and n×n identity matrices, respectively.

Premultiply (3.7) by (ψIm −A)−1 and postmultiply (3.7) by (ψIn −B)−1, then we have

X − EXF = Q (3.8)

with 
E = (ψIm −A)−1(ψIm +A),

F = (ψIn +B)(ψIn −B)−1,

Q = −2ψ(ψIm −A)−1C(ψIn −B)−1.

According to the properties of the Kronecker products [3] and Eq. (3.8), we obtain the following

linear system

(I − F T ⊗ E)vec(X) = vec(Q).

By using the IO iterations (3.3), (3.5) and the following matrix splitting

I − F T ⊗ E = (I − αF T ⊗E)− (1− α)F T ⊗ E,

we obtain the following stationary iteration sequence for solving Eq. (3.8):

(I − αF T ⊗ E)vec(Xk+1) = (1− α)(F T ⊗ E)vec(Xk) + vec(Q), k = 0, 1, 2, · · ·

with 0 < α < 1, which is equivalent to

Xk+1 − αEXk+1F = (1− α)EXkF +Q, k = 0, 1, 2, · · · . (3.9)

In what follows, we regard (3.9) as the outer iteration.

Let W = (1− α)EXkF +Q and Y = Xk+1, then it follows from (3.9) that

Y − αEY F =W,

and Xk+1 can be computed by using an inner iteration as follows:

Yj+1 = αEYjF +W, j = 0, 1, 2, · · · ,mk − 1, (3.10)
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where Y0 = Xk as the initial guess, and assign Ymk
as the approximate solution to Xk+1 in (3.9).

Algorithm 1: The IO iteration algorithm for solving Eq. (3.8)

Input: E, F, Q, α, ϱ

Output: X

1:X ← Q

2: Y ← EXF

3: while ∥Q+ Y −X∥F ≥ ϱ
4: W ← (1− α)Y +Q

5: for i=1:mk

6: X ← αY +W

7: Y ← EXF

8: end

9: end while

In Algorithm 1, lines 1 and 2 initialize X = C and Y = EXF . W in (3.10) is computed in

line 4. The inner iteration defined in (3.10) is implemented from line 5 to line 8. The matrix

Yj+1 − αEYj+1F is given by X − αY , since now X holds Yj+1 and Y is computed by EXF in

line 7 as well as in line 2. Upon exit from the algorithm, X is the desired approximation of the

exact solution to Eq. (3.8).

3.1 Convergence analysis of the IO iteration algorithm

First, we rewrite the IO iteration algorithm as the following two-stage matrix splitting iter-

ation framework: 
Xk,0 = Xk, X0 = Q, Xk+1 = Xk,mk

,

Xk,j+1 = αEXk,jF + (1− α)EXkF +Q, k = 0, 1, 2, · · · ,
j = 0, 1, 2, · · · ,mk − 1.

(3.11)

Theorem 3.1. Let ψ > 0 and 0 < α < 1, and mk be the number of the inner iteration

steps at the k−th outer iteration. If A and B are stable, then the iteration sequence {Xk}∞k=0

derived from (3.11) converges to the exact solution X∗ to Eq. (3.8). Moreover, the IO iteration

algorithm converges faster than the Smith method.

Proof. If A and B are stable, then Re(ψ̃i) < 0 (i = 1, 2, · · · ,m) and Re(ψ̂j) < 0 (j =

1, 2, · · · , n), where ψ̃i and ψ̂j are the eigenvalues of A and B, respectively. From Eq. (3.8), it is

obvious that

ρ(E) = max
1≤i≤m

∣∣∣∣∣ψ + ψ̃i

ψ − ψ̃i

∣∣∣∣∣ < 1, ρ(F ) = max
1≤j≤n

∣∣∣∣∣ψ + ψ̂j

ψ − ψ̂j

∣∣∣∣∣ < 1.

By using the Kronecker products, from (3.11), we have

vec(Xk,j+1) = αF T ⊗ E · vec(Xk,j) + (1− α)F T ⊗ E · vec(Xk) + vec(Q). (3.12)

Let vec(Xk,j+1) = xk,j+1, F
T ⊗ E = H, vec(Xk) = xk and vec(Q) = q̄. From (3.12), it

follows that

xk,j+1 = αHxk,j + (1− α)Hxk + q̄. (3.13)
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From (3.11) and (3.13), it is clear that

xk,j+1 =

[
(αH)j+1 + (1− α)

j∑
s=0

(αH)sH

]
xk +

j∑
s=0

(αH)sq̄.

Then

xk+1 = Rkxk +Gkq̄, k = 0, 1, 2, · · · , (3.14)

where Rk = (αH)mk + (1− α)
mk−1∑
s=0

(αH)sH and Gk =
mk−1∑
s=0

(αH)s.

Let x∗ = vec(X∗). Since X∗ is the exact solution to Eq. (3.8) , then

x∗ = Rkx
∗ +Gkq̄, k = 0, 1, 2, · · · . (3.15)

Subtracting (3.15) from (3.14), then we obtain

xk+1 − x∗ = Rk(xk − x∗) = · · · = RkRk−1 · · ·R0(x0 − x∗), k = 0, 1, 2, · · · , (3.16)

and

Rk = (αH)mk + (1− α)
mk−1∑
s=0

(αH)sH

= (αH)mk +
mk−1∑
s=0

(αH)s[(I − αH)− (I −H)]

= (αH)mk + (I − (αH)mk)−
mk−1∑
s=0

(αH)s(I −H)

= I −
mk−1∑
s=0

(αH)s(I −H).

(3.17)

Let λi be an eigenvalue of H. From (3.17), then

ϕ
(k)
i = 1− (1− λi)(1− (αλi)

mk)

1− αλi
(3.18)

is an eigenvalue of Rk.

Since ρ(E) < 1 and ρ(F ) < 1, then we get

ρ(H) = ρ(ET ⊗ F ) ≤ ρ(E)ρ(F ) < 1,

thus |αλi| < 1 for 0 < α < 1. From (3.18), it is clear that∣∣∣ϕ(k)i

∣∣∣ =
∣∣∣1− (1−λi)(1−(αλi)

mk )
1−αλi

∣∣∣
=

∣∣∣∣∣λi
(
1−α+αmkλ

mk−1

i −(αλi)
mk

)
1−αλi

∣∣∣∣∣
< |1−α|+|αλi|mk−1|1−λi|

|1−αλi| < 1

as mk →∞. Then ρ(Rk) < 1.
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Let χ = max
k
{ρ(Rk)} < 1 (k = 0, 1, 2, · · · ) and ϕ̂(k)i be an eigenvalue of RkRk−1 · · ·R0, then

ϕ̂
(k)
i = Πks=0

(
1− (1− λi)(1− (αλi)

ms)

1− αλi

)
,

so

ρ(RkRk−1 · · ·R0) ≤ ρ(Rk)ρ(Rk−1) · · · ρ(R0) ≤ χk+1 < γ̄k+1

with 0 < χ < γ̄ < 1.

According to Lemma 6.5 [3], there exists an operator norm ∥ · ∥ζ such that

∥RkRk−1 · · ·R0∥ζ < γ̄k+1.

From (3.16), we have

∥xk+1 − x∗∥ζ ≤ ∥RkRk−1 · · ·R0∥ζ · ∥x0 − x∗∥ζ < γ̄k+1∥x0 − x∗∥ζ . (3.19)

Therefore, from (3.19), the iteration sequence {Xk}∞k=0 generated by (3.11) converges to the

exact solution X∗ to Eq. (3.8) as k →∞.

From (3.18), it follows that

(1− αλi)ϕ(k)i = (1− αλi)− (1− λi)(1− (αλi)
mk)

= λi(1− α+ αmkλmk−1
i − (αλi)

mk).

(3.20)

From (3.20), then ∣∣∣(1− αλi)ϕ(k)i

∣∣∣ =
∣∣∣λi(1− α+ αmkλmk−1

i − (αλi)
mk)
∣∣∣

= |λi| · |1− α+ α(αλi)
mk−1(1− λi)|

< |λi|(|1− α|+ |αλi|mk−1 · |1− λi|)

= |λi| · |1− α|

< |λi| · |1− αλi|

(3.21)

with mk →∞, then |ϕ(k)i | < |λi|, so ρ(Rk) < ρ(H) for k = 0, 1, 2, · · · .
By using Smith method, the iteration sequence for solving Eq. (3.8) is

X̃k+1 = EX̃kF +Q, k = 0, 1, 2, · · · . (3.22)

Let x̃k+1 = vec(X̃k+1), then from (3.22), we have

x̃k+1 = Hx̃k + q̄, k = 0, 1, 2, · · · . (3.23)
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Let {x̃k}∞k=0 be the iteration sequence derived from (3.23), and the initial vector x∗ − x0 be

an eigenvector of H with eigenvalue λi and |λi| = ρ(H). From (3.16), we obtain

∥xk+1 − x∗∥ = ∥RkRk−1 · · ·R0(x0 − x∗)∥

= ∥ϕ(k)i ϕ
(k−1)
i · · ·ϕ(0)i (x0 − x∗)∥

≤ ∥ρ(Rk)ρ(Rk−1) · · · ρ(R0)(x0 − x∗)∥

< ∥ρ(H)ρ(H) · · · ρ(H)(x0 − x∗)∥

= ∥Hk+1(x0 − x∗)∥ = ∥x̃k+1 − x∗∥

,

then the IO iteration algorithm (3.11) converges faster than the Smith method with the same

initial vector x∗ − x0.
In fact, for any initial vector, the IO iteration algorithm (3.11) always converges faster

than the Smith method for solving Eq. (3.8). From Definition 6.5 [3], the convergence rate of

xm+1 = Rxm + c is defined by

r(R) = − log
ρ(R)
10 ,

where r(R) is the increase in the number of correct decimal places in the solution per iteration.

Since ρ(Rk) < ρ(H) (k = 0, 1, 2, · · · ), it implies that the IO iteration algorithm has a higher

convergence rate, i.e., the greater is the number of correct decimal places computed per iteration.

Thus, the proof is completed. �
Remark 1. For the discrete Sylvester matrix equation [30]

X −AXB = C, (3.24)

we can also solve it by using the IO iteration algorithm similar to Algorithm (3.11), and obtain

the corresponding convergence theorem by referring to Theorem 3.1.

The algorithm for solving Eq. (3.24) can be described as follows:
Xk,0 = Xk, X0 = C, Xk+1 = Xk,m̂k

,

Xk,j+1 = α̂AXk,jB + (1− α̂)AXkB + C, k = 0, 1, 2, · · · ,
j = 0, 1, 2, · · · , m̂k − 1

(3.25)

with 0 < α̂ < 1.

4. The IO iteration algorithm for solving the CLMEs (2.4)

In this section, we will consider how to solve the CLMEs (2.4) by using the IO iteration

algorithm proposed in Section 3. Just as (3.7), the CLMEs (2.4) have the following equivalent

form:

(piI −ATi )Ki(piI −Ai)− (piI +ATi )Ki(piI +Ai) = 2pi

 N∑
j=1,j ̸=i

pijKj +Qi

 , i ∈ Ω. (4.1)
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Since the Markovian jump linear system (2.1)-(2.2) is stochastically stable, from Lemma

2.2, it follows that the matrix piI − Ai is invertible for pi > 0. Let Bi = (piI − Ai)−1, Vi =

(piI +Ai)(piI −Ai)−1 and Q̄i = 2piB
T
i

(
N∑

j=1,j ̸=i
pijKj +Qi

)
Bi. From (4.1), then we have

Ki − V T
i KiVi = Q̄i, i ∈ Ω. (4.2)

Now, we can apply the IO iteration algorithm (3.11) to solve each matrix equation in (4.2).

The outer iteration sequences for solving (4.2) are given by

Ki(m+ 1)− φiV T
i Ki(m+ 1)Vi = (1− φi)V T

i Ki(m)Vi + Q̄i, m = 0, 1, 2, · · · , i ∈ Ω (4.3)

with 0 < φi < 1.

Let Wi = (1−φi)V T
i Ki(m)Vi+ Q̄i and Zi = Ki(m+1). From (4.3), we obtain the following

matrix equations

Zi − φiV T
i ZiVi =Wi, i ∈ Ω. (4.4)

The inner iteration sequences for solving (4.4) are

Zi(j + 1) = φiV
T
i Zi(j)Vi +Wi, j = 0, 1, · · · , m̃k − 1, i ∈ Ω (4.5)

with the initial guess Zi(0) = Ki(m) and Zi(m̃k) as the approximation of Ki(m+ 1) in (4.3).

Let the relative residual

ϖ =

N∑
i=1

∥∥∥ATi Ki(m) +Ki(m)Ai +
N∑
j=1

pijKj(m) +Qi

∥∥∥
F

∥Qi∥F
.

Algorithm 2: The IO iteration algorithm for solving the CLMEs (2.4)

Input: Vi, Q̄i, φi, γi, δ, i ∈ Ω

Output: Ki

1:while ϖ ≥ δ
2: for i=1:N

3: Ki ← Q̄i

4: Zi ← V T
i KiVi

5: while ∥Q̄i + Zi −Ki∥F ≥ γi
6: Wi ← (1− φi)Zi + Q̄i

7: for s=1: m̃k

8: Ki ← φiZi +Wi

9: Zi ← V T
i KiVi

10: end

11: end

12: end

13:end

11



4.1. A current-estimation-based IO iteration algorithm

From Algorithm 2, we find that the current estimate Ki(m + 1) for Ki is computed by

only using the estimates Kj(m) (j ∈ Ω, j ̸= i) at the m-th step, while the estimates Kj(m +

1) (j ∈ Π[1, i − 1]) have been obtained before Ki(m + 1) is updated. Thus, we can make use

of both the estimates K1(m + 1), · · · ,Ki−1(m + 1) and Ki+1(m), · · · ,KN (m) to calculate the

Ki(m+1), just as the information renovation idea used in [8,11,19,23]. By the two-stage matrix

splitting iteration framework similar to (3.11), we obtain the following current-estimation-based

IO iteration algorithm:
Ki(m, 0) = Ki(m),Ki(0) = Q̂i,Ki(m+ 1) = Ki(m, m̃k), i ∈ Ω,

Ki(m, j + 1) = φiV
T
i Ki(m, j)Vi + (1− φi)V T

i Ki(m)Vi + Q̂i, m = 0, 1, 2, · · · ,
j = 0, 1, 2, · · · , m̃k − 1,

(4.6)

where

Q̂i = 2piB
T
i

 i−1∑
j=1

pijKj(m+ 1) +

N∑
j=i+1

pijKj(m) +Qi

Bi.

Lemma 4.1. Assume that the Markovian jump linear system (2.1)-(2.2) is stochastically stable.

If pi > 0 and 0 < φi < 1 for i ∈ Ω, then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)}
generated by (4.6) is upper bounded by the solution K = {K1,K2, · · · ,KN} to the CLMEs (2.4)

with zero initial conditions. Namely, for any integer m ≥ 0, it follows that

Ki(m) < Ki, i ∈ Ω. (4.7)

Proof. Since the Markovian jump system (2.1)-(2.2) is stochastically stable, then the CLMEs

(2.4) have unique positive definite solution K = {K1,K2, · · · ,KN}. Due to zero initial condi-

tions, it is clear that Ki(0) < Ki (i ∈ Ω). Now it is assumed that

Ki(l) < Ki, i ∈ Ω (4.8)

by the principle of the mathematical induction.

It follows from (4.6) that

Ki(l + 1) = φm̃k
i (V m̃k

i )TKi(l)V
m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )TKi(l)V

s+1
i

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pijKj(l + 1) +
N∑

j=i+1
pijKj(l) +Qi

)
BiV

s
i , i ∈ Ω

(4.9)

and

Ki = φm̃k
i (V m̃k

i )TKiV
m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )TKiV

s+1
i

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pijKj +
N∑

j=i+1
pijKj +Qi

)
BiV

s
i , i ∈ Ω.

(4.10)
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Subtracting (4.9) from (4.10), then

Ki −Ki(l + 1)

= φm̃k
i (V m̃k

i )T (Ki −Ki(l))V
m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )T (Ki −Ki(l))V

s+1
i

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pij(Kj −Kj(l + 1)) +
N∑

j=i+1
pij(Kj −Kj(l))

)
BiV

s
i ,

i ∈ Ω.

(4.11)

For i = 1, 0 < φ1 < 1 and p1 > 0, from (4.11), then we have

K1 −K1(l + 1)

= φm̃k
1 (V m̃k

1 )T (K1 −K1(l))V
m̃k
1 + (1− φ1)

m̃k−1∑
s=0

φs1(V
s+1
1 )T (K1 −K1(l))V

s+1
1

+2p1
m̃k−1∑
s=0

φs1(B1V
s
1 )

T

(
N∑
j=2

p1j(Kj −Kj(l))

)
B1V

s
1 > 0.

(4.12)

From (4.8) and (4.12), we obtain K1(l + 1) < K1.

Now, we assume that

Kj(l + 1) < Kj , j ∈ Π[1, t− 1], t ≥ 2. (4.13)

For i = t, it follows from (4.11) that

Kt −Kt(l + 1)

= φm̃k
t (V m̃k

t )T (Kt −Kt(l))V
m̃k
t + (1− φt)

m̃k−1∑
s=0

φst (V
s+1
t )T (Kt −Kt(l))V

s+1
t

+2pt
m̃k−1∑
s=0

φst (BtV
s
t )

T

(
t−1∑
j=1

ptj(Kj −Kj(l + 1)) +
N∑

j=t+1
ptj(Kj −Kj(l))

)
BtV

s
t .

(4.14)

From (4.8), (4.13) and (4.14), it is obvious that Kt(l+ 1) < Kt with 0 < φt < 1 and pt > 0. By

the induction principle, we have

Ki(l + 1) < Ki, i ∈ Ω. (4.15)

From (4.8), (4.15) and the mathematical induction, we have Ki(m) < Ki (i ∈ Ω) for any integer

m ≥ 0. Thus, the proof is completed. �
Lemma 4.2. Assume that the Markovian jump linear system (2.1)-(2.2) is stochastically stable.

If pi > 0 and 0 < φi < 1 for i ∈ Ω, then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)}
derived from (4.6) with zero initial conditions is strictly monotonically increasing. Namely, for

any integer m ≥ 0, we have

Ki(m) < Ki(m+ 1), i ∈ Ω. (4.16)
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Proof. From (4.9), it follows that

Ki(1) = φm̃k
i (V m̃k

i )TKi(0)V
m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )TKi(0)V

s+1
i

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pijKj(1) +
N∑

j=i+1
pijKj(0) +Qi

)
BiV

s
i , i ∈ Ω.

(4.17)

Since Ki(0) = 0 (i ∈ Ω), then (4.17) can be rewritten as

Ki(1) = 2pi

m̃k−1∑
s=0

φsi (BiV
s
i )

T

 i−1∑
j=1

pijKj(1) +Qi

BiV
s
i , i ∈ Ω. (4.18)

Since p1 > 0, Q1 > 0 and 0 < φ1 < 1, from (4.18), we have

K1(1) = 2p1

m̃k−1∑
s=0

φs1(B1V
s
1 )

TQ1B1V
s
1 > 0,

then K1(0) < K1(1).

For i = 2, from (4.18), it is clear that

K2(1) = 2p2
m̃k−1∑
s=0

φs2(B2V
s
2 )

T (p21K1(1) +Q2)B2V
s
2

> 2p2
m̃k−1∑
s=0

φs2(B2V
s
2 )

T (p21K1(0) +Q2)B2V
s
2

= 2p2
m̃k−1∑
s=0

φs2(B2V
s
2 )

TQ2B2V
s
2 > 0

with p2 > 0, Q2 > 0 and 0 < φ2 < 1, then K2(0) < K2(1). By repeating the above process, we

can easily obtain that Ki(0) < Ki(1), i ∈ Π[3, N ].

Now, we assume that for l ≥ 1,

Ki(l) < Ki(l + 1), i ∈ Ω. (4.19)

It follows from (4.9) that

Ki(l + 2)−Ki(l + 1)

= φm̃k
i (V m̃k

i )T (Ki(l + 1)−Ki(l))V
m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )T (Ki(l + 1)−Ki(l))V

s+1
i

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pij(Kj(l + 2)−Kj(l + 1)) +
N∑

j=i+1
pij(Kj(l + 1)−Kj(l))

)
BiV

s
i ,

i ∈ Ω. (4.20)

Since p1 > 0 and 0 < φ1 < 1, for i = 1, from (4.19) and (4.20), we have

K1(l + 2)−K1(l + 1)

= φm̃k
1 (V m̃k

1 )T (K1(l + 1)−K1(l))V
m̃k
1 + (1− φ1)

m̃k−1∑
s=0

φs1(V
s+1
1 )T (K1(l + 1)−K1(l))V

s+1
1

+2p1
m̃k−1∑
s=0

φs1(B1V
s
1 )

T

(
N∑
j=2

p1j

(
Kj(l + 1)−Kj(l)

))
B1V

s
1 > 0,
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it is clear that K1(l + 1) < K1(l + 2).

Now, it is assumed that

Kj(l + 1) < Kj(l + 2), j ∈ Π[1, t− 1]), t ≥ 2. (4.21)

According to (4.19) and (4.21), for i = t, we have

Kt(l + 2)−Kt(l + 1)

= φm̃k
t (V m̃k

t )T (Kt(l + 1)−Kt(l))V
m̃k
t + (1− φt)

m̃k−1∑
s=0

φst (V
s+1
t )T (Kt(l + 1)−Kt(l))V

s+1
t

+2pt
m̃k−1∑
s=0

φst (BtV
s
t )

T

(
t−1∑
j=1

ptj

(
Kj(l + 2)−Kj(l + 1)

)
+

N∑
j=t+1

ptj

(
Kj(l + 1)−Kj(l)

))
BtV

s
t

> 0 (4.22)

with pt > 0 and 0 < φt < 1. From (4.22), we obtain that Kt(l + 1) < Kt(l + 2). Then by the

principle of mathematical induction, we have Ki(l + 1) < Ki(l + 2) (i ∈ Ω). Therefore, for any

integer m ≥ 0, the relation (4.16) holds, and the proof is completed. �
Theorem 4.1. Assume that the Markovian jump linear system (2.1)-(2.2) is stochastically sta-

ble. If pi > 0, 0 < φi < 1 for i ∈ Ω, then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)}
obtained from (4.6) converges to the unique solution K = {K1,K2, · · · ,KN} to the CLMEs (2.4)

with zero initial conditions. Namely, lim
m→∞

Ki(m) = Ki, i ∈ Ω.

Proof. From Lemmas 4.1 and 4.2, the iteration sequence K(m) = {K1(m),K2(m), · · · ,KN (m)}
generated by (4.6) is monotonically increasing and upper bounded by the solutions to the CLMEs

(2.4), then

0 = Ki(0) < Ki(1) < Ki(2) < · · · < Ki(m) < Ki(m+ 1) < · · · < Ki, i ∈ Ω. (4.23)

From [10], it is shown that the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)} is convergent.
Let lim

m→∞
Ki(m) = Ki(∞) (i ∈ Ω) and substitude Ki(∞) into (4.9), it is clear that

Ki(∞) = φm̃k
i (V m̃k

i )TKi(∞)V m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )TKi(∞)V s+1

i

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pijKj(∞) +
N∑

j=i+1
pijKj(∞) +Qi

)
BiV

s
i , i ∈ Ω.

(4.24)

From (4.6), (4.24) are equivalent to

ATi Ki(∞) +Ki(∞)Ai +
N∑
j=1

pijKj(∞) +Qi = 0, i ∈ Ω. (4.25)

From (4.25), it is obvious that K(∞) = {K1(∞),K2(∞), · · · ,KN (∞)} is the solution to the

CLMEs (2.4). Since the Markovian jump linear system (2.1)-(2.2) is stochastically stable, then

the CLMEs (2.4) have a unique solution, so K(∞) = {K1(∞),K2(∞), · · · ,KN (∞)} is the unique
solution to the CLMEs (2.4) and Ki(∞) = Ki (i ∈ Ω). Thus, the proof is completed. �
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From Theorem 1, it is stated that the proof is based on two assumptions: the stochastic

stability of the associated Markovian jump linear system and zero initial conditions. Next, we

give a convergence theorem for (4.6) without the assumption of zero initial conditions.

Theorem 4.2. Assume that the CLMEs (2.4) have a unique solution K = {K1,K2, · · · ,KN}.
If pi > 0 and 0 < φi < 1 for i ∈ Ω, then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)}
generated by (4.6) converges to K = {K1,K2, · · · ,KN} for any initial conditions if and only if

H is invertible and ρ(H−1F) < 1, where H is a lower triangular matrix with

Hii = I,Hij = −2pipij
m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j < i

and F is an upper triangular matrix with
Fii = φm̃k

i (V m̃k
i )T ⊗ (V m̃k

i )T + (1− φi)
m̃k−1∑
s=0

φsi (V
s+1
i )T ⊗ (V s+1

i )T ,

Fij = 2pipij

m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j > i.

Proof. From (4.9), we have

vec(Ki(m+ 1))

= φm̃k
i (V m̃k

i )T ⊗ (V m̃k
i )Tvec(Ki(m)) + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )T ⊗ (V s+1

i )Tvec(Ki(m))

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T

(
i−1∑
j=1

pijvec(Kj(m+ 1)) +
N∑

j=i+1
pijvec(Kj(m)) + vec(Qi)

)
,

i ∈ Ω. (4.26)

Let

θ(m) =
(
vec(K1(m))T vec(K2(m))T · · · vec(KN (m))T

)T
,

δ =
(
vec(Q1)

T vec(Q2)
T · · · vec(QN )T

)T
,

and Φ be a diagonal matrix with Φ(ii) = 2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T (i ∈ Ω). Then (4.26)

have the following equivalent form:

Hθ(m+ 1) = Fθ(m) + Φδ. (4.27)

Since H is an invertible matrix, it follows from (4.27) that

θ(m+ 1) = H−1Fθ(m) +H−1Φδ. (4.28)

From (4.28), we obtain the following recursive relation:

θ(m+ 1) = (H−1F)m+1θ(0) +

m∑
i=0

(H−1F)iH−1Φδ. (4.29)
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Since ρ(H−1F) < 1, then

lim
m→∞

θ(m+ 1) = lim
m→∞

(
(H−1F)m+1θ(0) +

m∑
i=0

(H−1F)iH−1Φδ

)
= (I −H−1F)−1H−1Φδ = (H−F)−1Φδ.

Let θ =
(
vec(K1)

T vec(K2)
T · · · vec(KN )

T
)T

. From (4.10), we get

Hθ = Fθ +Φδ. (4.30)

According to (4.30), the exact solution to the CLMEs (2.4) is

θ = (H−F)−1Φδ.

Thus,

lim
m→∞

θ(m+ 1) = θ,

and the proof is completed. �

4.2. Two weighted IO iteration algorithms

In this section, we propose two weighted IO iteration algorithms for solving the CLMEs (2.4).

Analogous to the accelerated Smith iteration algorithm [11], we rewrite (4.2) in the following

equivalent form:

Ki − V T
i KiVi = 2BT

i

 i−1∑
j=1

pij

(
(pi − 1)Kj +Kj

)
+

N∑
j=i+1

pipijKj + piQi

Bi, i ∈ Ω. (4.31)

If we solve (4.31) by Algorithm (4.6), then obtain the first weighted IO iteration algorithm as

follows:

Ki(m+ 1)

= φm̃k
i (V m̃k

i )TKi(m)V m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )TKi(m)V s+1

i

+2
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pij

(
(pi − 1)Kj(m+ 1) +Kj(m)

)
+

N∑
j=i+1

pipijKj(m) + piQi

)
BiV

s
i ,

i ∈ Ω. (4.32)

According to Algorithm (26) [19], we reformulate (4.2) in the following way:

Ki − V T
i KiVi = 2piB

T
i

 i−1∑
j=1

pij

(
(1− ω)Kj + ωKj

)
+

N∑
j=i+1

pijKj +Qi

Bi, i ∈ Ω (4.33)

with 0 ≤ ω < 1.
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Using Algorithm (4.6) to solve (4.33), then we derive the second weighted IO iteration

algorithm:

Ki(m+ 1)

= φm̃k
i (V m̃k

i )TKi(m)V m̃k
i + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )TKi(m)V s+1

i

+2pi
m̃k−1∑
s=0

φsi (BiV
s
i )

T

(
i−1∑
j=1

pij

(
(1− ω)Kj(m+ 1) + ωKj(m)

)
+

N∑
j=i+1

pijKj(m) +Qi

)
BiV

s
i ,

i ∈ Ω, (4.34)

Theorem 4.3. If the CLMEs (2.4) have a unique solution K = {K1,K2, · · · ,KN}, pi > 0 and

0 < φi < 1 (i ∈ Ω), then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)} derived from

(4.32) converges to K = {K1,K2, · · · ,KN} for any initial conditions if and only if H̃ is invertible

and ρ(H̃−1F̃) < 1, where H̃ is a lower triangular matrix with

H̃ii = I, H̃ij = −2(pi − 1)pij

m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j < i

and F̃ is a matrix with

F̃ii = φm̃k
i (V m̃k

i )T ⊗ (V m̃k
i )T + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )T ⊗ (V s+1

i )T ,

F̃ij = 2pij

m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j < i,

F̃ij = 2pipij

m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j > i.

Proof. The proof is similar to that of Theorem 4.2. �
Theorem 4.4. Assume that the CLMEs (2.4) have a unique solution K = {K1,K2, · · · ,KN},
If pi > 0 and 0 < φi < 1 for i ∈ Ω, then the matrix tuple K(m) = {K1(m),K2(m), · · · ,KN (m)}
generated by (4.34) converges to K = {K1,K2, · · · ,KN} for any initial conditions if and only if

Ĥ is invertible and ρ(Ĥ−1F̂) < 1, where Ĥ is a lower triangular matrix with

Ĥii = I, Ĥij = −2(1− ω)pipij
m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j < i

and F̂ is a matrix with

F̂ii = φm̃k
i (V m̃k

i )T ⊗ (V m̃k
i )T + (1− φi)

m̃k−1∑
s=0

φsi (V
s+1
i )T ⊗ (V s+1

i )T ,

F̂ij = 2ωpipij

m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j < i,

F̂ij = 2pipij

m̃k−1∑
s=0

φsi (BiV
s
i )

T ⊗ (BiV
s
i )

T , j > i.

18



Proof. The proof can be completed by a similar way to Theorem 4.2. �
Compared with the previous algorithms (2.5)-(2.9), we have some remarks given as follows:

Remark 2. For the proposed IO iteration algorithms in this paper, we only need to compute

(piI −Ai)−1 (i ∈ Ω) in the first iteration step, which computational cost is much less than the

overall cost of the algorithms (4.6), (4.32) and (4.34), respectively.

Remark 3. In regard to the implicit algorithms (2.5) and (2.6), by using our proposed explicit

iteration algorithms, the iteration solutions to the CLMEs (2.4) can be obtained explicitly in

each iteration step. Therefore, the algorithms (4.6), (4.32) and (4.34) should take less CPU time

than the algorithms (2.5) and (2.6), especially for large continuous-time Markovian jump linear

systems, which is illustrated by the numerical results in Section 6.

Remark 4. In comparison our proposed iteration algorithms with the explicit algorithms (2.7)-

(2.9), the algorithms (4.6), (4.32), (4.34) perform better than the algorithms (2.7)-(2.9) in terms

of the iteration steps and CPU time according to the simulation results in Section 6.

5. The choices of the parameters in the IO iteration algorithms

In this section, we will discuss the choices of the parameters in the proposed iteration al-

gorithms. Since it is difficult to obtain the optimal parameters, then we can only give some

heuristical strategies for the choices of the corresponding parameters in the following sections.

5.1. The choices of the parameters in Algorithms (3.11) and (3.25)

In this section, we consider the choices of the parameters α, mk and ψ in the IO itera-

tion algorithm (3.11). By the Kronecker products, the outer iteration sequence (3.9) can be

reformulated as

(I − αF T ⊗ E)xk+1 = (1− α)(F T ⊗ E)xk + q̄, (5.1)

and the inner iteration sequence (3.10) has the following form:

yj+1 = (αF T ⊗ E)yj + w, (5.2)

where yj+1 = vec(Yj+1) and w = vec(W ), respectively.

It is clear that the outer iteration sequence (5.1) is based on the following matrix splitting

I − F T ⊗ E =M1 −N1, M1 = I − αF T ⊗ E, N1 = (1− α)F T ⊗ E,

and the corresponding iteration matrix

R̄ =M−1
1 N1 = (1− α)(I − αF T ⊗E)−1(F T ⊗ E). (5.3)

The inner iteration sequence (5.2) is associated with the matrix splitting

M1 =M2 −N2, M2 = I, N2 = αF T ⊗ E,
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and the corresponding iteration matrix is

R̂ =M−1
2 N2 = αF T ⊗ E. (5.4)

Let λi be an eigenvalue of F T ⊗ E. Assume 0 < α < 1 and ρ(E)ρ(F ) < 1, then |λi| < 1.

From (5.3) and (5.4), we have

ρ(R̄) = max
i

∣∣∣∣(1− α)λi1− αλi

∣∣∣∣ ≤ max
i

(1− α)|λi|
1− α|λi|

=
(1− α)ρ(F T ⊗ E)

1− αρ(F T ⊗ E)
(5.5)

and

ρ(R̂) = max
i
|αλi| = αρ(F T ⊗ E). (5.6)

Let g(α) = (1−α)ρ(FT⊗E)
1−αρ(FT⊗E)

, by simple calculation, then we obtain

g′(α) =
ρ(F T ⊗ E)(ρ(F T ⊗ E)− 1)

(1− αρ(F T ⊗ E))2
< 0.

Hence, g(α) is monotonically decreasing, so the outer iteration sequence (3.9) converges faster

for a larger α. From (5.6), it is clear that the inner iteration sequence (3.10) converges faster

if α is close to zero. Thus, how to determine α for accelerating the IO iteration algorithm and

reducing its computational work as much as possible is a challenge. From (5.5), we find that

an appropriate parameter α only reduces the upper bound of the spectral radius ρ(R̄), but does

not decrease the spectral radius itself. For many numerical examples, the values of parameter

α around 0.5 can achieve better numerical results, which is verified in Section 6.

For the parameter mk, just as the analyses in [4], if the value of mk is large, which may spend

a long computational time performing inner iterations, just to compute a single outer iteration

at a time, and slow the overall convergence rate. On the other hand, if mk is small, which may

result in inner iterations that do not sufficiently approximate the exact solution to the matrix

equation Y −αEY F =W , and hence do not yield sufficient progress towards the exact solution

to Eq. (3.8). In Section 6, we observe that the better numerical results can be achieved with a

smaller mk, such as mk = 2, 3.

For the parameter ψ in Eq. (3.8), we learn from (5.5) and (5.6) that smaller the ρ(E)ρ(F ),

faster the convergence of the IO iteration algorithm is. The optimal ψ satisfies the following

relation:

min
ψ>0

max
ψ̃i,ψ̂j

|ψ + ψ̃i|
|ψ − ψ̃i|

· |ψ + ψ̂j |
|ψ − ψ̂j |

, (5.7)

where ψ̃i (i = 1, 2, · · · ,m), ψ̂j (j = 1, 2, · · · , n) are eigenvalues of A and B, respectively. For the

general matrices A and B, it is not easy to find the optimal ψ. However, for some special cases,

the optimal ψ can be obtained from (5.7). For example, if Eq. (3.8) is the Lyapunov matrix

equation

ATX +XA = Q, (5.8)

and all the eigenvalues of A are negative real numbers, then the following result holds.

20



Theorem 5.1 [31]. Assume that all the eigenvalues of A in Eq. (5.8) are negative real numbers

and ψ > 0. Let ψ̃min and ψ̃max be the minimum and maximum eigenvalues of A, respectively.

Then the optimal ψ is

ψ̄ = argmin
ψ

{
max
ψ̃k

|ψ + ψ̃k|
|ψ − ψ̃k|

}
=

√
ψ̃minψ̃max.

For the choices of the parameters α̂ and m̂k in Algorithm (3.25), the similar conclusions can

be drawn according to the analyses of the parameters α and mk, respectively.

5.2. The choices of the parameters in Algorithms 2, (4.6), (4.32) and (4.34)

From the analyses in Section 4, when using Algorithms 2, (4.6), (4.32) and (4.34) to solve the

CLMEs (2.4), we need to solve N Lyapunov matrix equations in each iteration step. Therefore,

for the choices of the parameters pi, φi and m̃k in each Lyapunov matrix equation, we can get

the similar conclusions to the parameters ψ, α and mk, respectively. However, for Algorithm

(4.32), the pi (i ∈ Ω) calculated by Theorem 5.1 may not be optimal, since pi (i ∈ Ω) are also

treated as the relax factors in the right-hand side of the iteration sequences (4.32), thus we can

only obtain the appropriate pi (i ∈ Ω) through numerical experiments.

6. Numerical results

In this section, we present several numerical examples to illustrate the performances of the

proposed algorithms for solving Eqs. (3.6), (3.24) and the CLMEs (2.4), respectively. Three

iteration parameters are used to test these algorithms, which are iteration step (denoted as IT),

computing time in seconds (denoted as CPU), and relative residual (denoted as RES), where

the RES for the CLMEs (2.4) is

N∑
i=1

∥∥∥ATi Ki(m) +Ki(m)Ai +
N∑
j=1

pijKj(m) +Qi

∥∥∥
F

∥Qi∥F
,

, the RES for Eq. (3.6) is ∥R̃(k)∥F
∥C∥F with R̃(k) = AXk+XkB−C, the RES for Eq. (3.24) is ∥R⃗(k)∥F

∥C∥F
with R⃗(k) = Xk −AXkB − C, where k and m denote the iteration number, respectively.

Example 1. Consider the matrix equation AX +XB = C, where A(i, i) = −2.5, A(i, i+ 1) =

1, A(i+1, i) = −3, A(i+2, i) = −3, A(i, i+2) = 1. B = AT and Ci,j = 1 for i, j = 1, 2, · · · , n.
In this example, we compare Algorithm (3.11) with the Smith method [30], where α = 0.7,

ψ = 4 and mk = 2, respectively.

From Fig. 1 and Table 1, it is clear that Algorithm (3.11) converges faster than the Smith

method in terms of iteration step and CPU time, especially for large matrix equations, such as

n = 800.
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Figure 1: Convergence curves with IT=100 and n=600

Table 1: Numerical results of Algorithm (3.11) and Smith method

The Smith method Algorithm (3.11)

n IT CPU RES IT CPU RES

50 33 0.01095 1.30× 10−9 18 0.00519 1.83× 10−9

300 59 1.12446 3.09× 10−9 31 0.66575 2.78× 10−9

500 59 4.31727 1.85× 10−9 31 2.27159 1.67× 10−9

800 60 14.4988 1.16× 10−9 33 7.93633 1.04× 10−9
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Example 2. In this example, consider the solution of the following discrete Lyapunov matrix

equation X −AXAT = C, where A is defined as in [13] and

A =



0 ν

−ν 0 ν

−ν 0 ·

· · ·

· · ν

−ν 0


,

Ci,j = 1 for i, j = 1, 2, · · · , n. The eigenvalues of A are given by λj = 2i|ν| cos πj
n+1 , j = 1, · · · , n.

When n is large and ν is close to 0.5, ρ(A) becomes close to 1, which slows down the convergence

rate of the Smith method greatly.

In this example, we make a comparison of Algorithm (3.25) with the Smith method, where

n = 500, α̂ = 0.6 and m̂k = 2, respectively. From Table 2, it is clear that the Smith method

needs more iteration steps and CPU time than Algorithm (3.25) in both the iteration steps and

CPU time. For the larger ν, Algorithm (3.25) is more efficient than the Smith method, such as

the cases for ν = 0.49 and 0.495, respectively.

Table 2: Numerical results of Algorithm (3.25) and Smith method

The Smith method Algorithm (3.25)

ν IT CPU RES IT CPU RES

0.40 19 1.44211 1.44× 10−9 10 0.95560 9.83× 10−9

0.42 23 1.62581 1.70× 10−9 14 1.13830 1.48× 10−9

0.44 30 2.04436 1.62× 10−9 18 1.39988 1.45× 10−9

0.46 42 3.03121 1.89× 10−9 25 1.92395 1.62× 10−9

0.49 130 9.30354 1.99× 10−9 74 5.51254 1.88× 10−9

0.495 222 16.0229 1.97× 10−9 123 9.28304 1.98× 10−9

Now, we investigate the choice of the parameter m̂k in Algorithm (3.25) with n = 500,

ν = 0.48 and α̂ = 0.7. From Table 3, it follows that Algorithm (3.25) with a larger m̂k may

need less iteration steps, but take more computing time to satisfy the given stopping criterion,

for example, the cases for m̂k = 6, 7 compared with those for m̂k = 3, 4. Then Algorithm (3.25)

with a smaller m̂k can achieve better numerical results, which is consistent with the analyses in

Section 5.
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Next, we perform Algorithm (3.25) with different α̂, where m̂k = 3, α̂ = i
10 , i = 2, · · · , 8.

From Table 4, we find that Algorithm (3.25) has worse effectiveness for a larger α̂ or smaller α̂,

such as the case α̂ = 0.8 or 0.2, and Algorithm (3.25) performs better when α̂ is around 0.5,

which is also in concord with our conclusions in Section 5.

Table 3: Numerical results of Algorithm (3.25)

for different m̂k.

m̂k IT CPU RES

2 41 6.53207 1.95× 10−9

3 32 6.58435 1.80× 10−9

4 28 6.67555 1.83× 10−9

5 26 7.19918 1.80× 10−9

6 25 7.47139 1.71× 10−9

7 24 7.92004 1.87× 10−9

Table 4: Numerical results of Algorithm (3.25)

for different α̂.

α̂ IT CPU RES

0.2 56 8.86911 1.82× 10−9

0.3 50 8.37723 1.87× 10−9

0.4 45 7.68162 1.78× 10−9

0.5 40 7.04392 1.84× 10−9

0.6 36 6.77274 1.74× 10−9

0.7 42 7.35351 1.80× 10−9

0.8 49 7.78312 1.63× 10−9

Example 3. In this example, consider the CLMEs (2.3) with system matrices and transition

rate matrix defined as follows:

A1 =


−1.3232 −1.1582 1.0290

−0.12292 −2.0737 0.2234

−0.6075 1.1656 −3.1031

 , A2 =


−2.479 1.3537 −0.5717

0.8246 −1.8727 0.4868

1.0958 −0.9525 −0.6483

 ,
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A3 =


−2.7604 0.5164 −0.0381

0.5067 −2.6064 0.399

0.528 −0.2465 −2.1332

 , P =


−4 3 1

2 −2.5 0.5

1.75 1.75 −3.5

 .
The system has been investigated in [11,12], and the number of the subsystems is N = 3. We

choose the positive definite matrices Qi (i ∈ Π[1, 3]) as identity matrices.

First, we make a comparison for Algorithms 2, (4.6), (4.32), (4.34) and the iteration algo-

rithms in [11]. Let the parameters p1, p2, p3 in Algorithm 2, (4.6), (4.32), (4.34) and the param-

eter q in [11] satisfy the relation p1 = p2 = p3 = |q|. We choose m̃k = 2 and φi = 0.7 (i ∈ Π[1, 3]),

and list the numerical results in Tables 5, 6, 7 for different |q|, respectively. From Table 5, it

follows that Algorithm 2 outperforms the Smith method for solving the CLMEs (2.4) in terms

of the iteration steps and CPU time. Moreover, Algorithm 2 has more effectiveness than the

Smith method for a larger |q|. In Table 6, we compare Algorithm (4.6) with Algorithm (2.8), the

similar conclusions can be drawn from Table 6 as those from Table 5. In Table 7, we compare

Algorithms (4.32), (4.34) with Algorithm (2.9) for ω = 0.2, respectively. The two weighted IO

iteration algorithms (4.32), (4.34) both converge faster than Algorithm (2.9) in both iteration

steps and CPU time. Furthermore, Algorithm (4.32) performs best for the larger |q|.

Table 5: Numerical results of Algorithm 2 and the Smith method

The Smith method Algorithm 2

|q| IT CPU RES IT CPU RES

1 81 0.006590 8.23× 10−15 64 0.003866 7.34× 10−15

5 67 0.004448 8.40× 10−15 53 0.004371 8.96× 10−15

10 82 0.003034 8.03× 10−15 64 0.002988 9.57× 10−15

15 110 0.003615 8.38× 10−15 79 0.001958 7.82× 10−15

20 139 0.003927 9.37× 10−15 95 0.003284 8.19× 10−15

25 169 0.003183 9.28× 10−15 112 0.002741 8.41× 10−15

Since the eigenvalues of Ai (i ∈ Π[1, 3]) are all negative real numbers, then we can obtain

the optimal pi denoted as p̂i (i ∈ Π[1, 3]) by Theorem 5.1, where φi = 0.7 (i ∈ Π[1, 3]), m̃k = 2

and ω = 0.1 in Algorithms (4.6) and (4.34). From Figs. 2, 3 and Table 8, it is clear that the

algorithms with the optimal parameters p̂i (i ∈ Π[1, 3]) perform better compared with other

values of the parameters pi (i ∈ Π[1, 3]). Although Algorithm (4.6) has the same iteration steps

for |q| = 4 and the optimal parameters p̂i (i ∈ Π[1, 3]), it needs more CPU time for |q| = 4 at

the same time. Furthermore, Algorithm (4.6) converges faster than Algorithm (4.34) with the

same optimal parameters p̂i (i ∈ Π[1, 3]) .
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Table 6: Numerical results of Algorithms (2.8) and (4.6)

Algorithm (2.8) Algorithm (4.6)

|q| IT CPU RES IT CPU RES

1 64 0.001230 8.31× 10−15 43 0.001091 5.33× 10−15

5 44 0.002717 7.71× 10−15 29 0.002108 8.51× 10−15

10 62 0.001229 7.00× 10−15 43 0.001107 5.09× 10−15

15 91 0.001912 8.91× 10−15 59 0.001662 7.34× 10−15

20 121 0.003693 8.65× 10−15 75 0.002971 9.95× 10−15

25 151 0.002866 8.84× 10−15 93 0.002465 7.66× 10−15

Table 7: Numerical results of Algorithms (2.9), (4.32) and (4.34)

Algorithm (2.9) Algorithm (4.32) Algorithm (4.34)

|q| IT CPU RES IT CPU RES IT CPU RES

2 47 0.001055 6.14× 10−15 43 0.001228 6.60× 10−15 36 0.001030 5.12× 10−15

7 48 0.001716 8.29× 10−15 38 0.000992 8.01× 10−15 40 0.001050 5.68× 10−15

12 75 0.001499 8.85× 10−15 51 0.001418 7.96× 10−15 54 0.001408 7.66× 10−15

17 105 0.002131 7.37× 10−15 67 0.001735 7.99× 10−15 70 0.001829 7.58× 10−15

22 134 0.002970 8.79× 10−15 84 0.002426 7.70× 10−15 87 0.002445 8.03× 10−15

25 164 0.003507 9.17× 10−15 100 0.002603 9.86× 10−15 104 0.002750 9.01× 10−15

Table 8: Numerical results of Algorithms (4.6), (4.34) for different parameters

Algorithm (4.6) Algorithm (4.34)

|q| IT CPU RES IT CPU RES

4 28 0.001294 5.28× 10−15 35 0.000953 5.29× 10−15

9 40 0.001030 5.54× 10−15 45 0.001187 7.39× 10−15

14 55 0.001418 9.10× 10−15 60 0.001637 6.88× 10−15

19 72 0.001719 9.27× 10−15 76 0.001977 9.91× 10−15

p̂1, p̂2, p̂3 28 0.000684 8.09× 10−15 32 0.000839 7.98× 10−15
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Figure 2: Convergence curves of Algorithm (4.6) with different parameters
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Figure 3: Convergence curves of Algorithm (4.34) with different parameters
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Next, we will compare the convergence performances of Algorithms (4.6), (4.32), (4.34)

with Algorithms 2.5, 2.6, 2.7, respectively. All algorithms are started with the following initial

conditions:

K1(0) =


1 0 0.5

0 0 1.2

2 −3 0.8

 ,K2(0) =


−1 0.5 0.7

1 0 0.9

0 2.1 −1

 ,K3(0) =


0.8 −0.5 1.6

0.15 2.3 −0.7

0.3 −2.1 1.5

 .
Here, we choose φi = 0.8, pi = 4 (i ∈ Π[1, 3]), m̃k = 2 and ω = 0.1, respectively. Let µ = 0.0114

in Algorithm (2.7). From Table 9, we find that Algorithm (2.5) needs fewest iteration steps,

however, it also takes more CPU time than Algorithms (4.6), (4.32), (4.34), respectively. More-

over, Algorithms (2.5), (2.6) are implicit algorithms, so it is difficult to solve N Lyapunov matrix

equations in each iteration step for large CLMEs (2.4). Due to this, the explicit algorithms (4.6),

(4.32), (4.34) proposed in this paper are more efficient for large CLMEs (2.4).

Table 9: Comparison of the convergence

results for different algorithms.

Iteration algorithm IT CPU RES

Algorithm (2.5) 25 0.028055 4.12× 10−14

Algorithm (2.6) 31 0.012804 8.01× 10−14

Algorithm (2.7) 403 0.009850 9.54× 10−14

Algorithm (4.6) 26 0.000670 4.54× 10−14

Algorithm (4.32) 33 0.000914 4.00× 10−14

Algorithm (4.34) 29 0.000855 7.64× 10−14

7.Conclusions

In this paper, an IO iteration algorithm for solving some matrix equations is presented.

The algorithm is firstly employed to solve the Sylvester matrix equation, and the corresponding

convergence is analyzed. Next, the IO iteration algorithm is used to solve the CLMEs (2.4). In

order to improve the convergence rate of the IO iteration algorithm, a current-estimation-based

IO iteration algorithm is constructed by introducing the latest estimation. Afterwards, two

weighted IO iteration algorithms are proposed, and the corresponding convergence theorems are

given. Finally, several numerical examples demonstrate the efficiency of the proposed algorithms.

Since these algorithms are rather parameter-dependent, thus how to determine the optimal

parameters is an interesting topic, and will be further investigated in our future work.
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