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Keywords:
 The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been
a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only
in terms of hospitalization and reduction symptoms severity, but also in terms of safety, socialization and better
rehabilitation in the society. Regarding themechanism of action, AAPs areweakD2 receptor antagonists and they
act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmit-
ters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism,
hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors.
This review revisits previous and current findings within the class of AAPs and highlights the differences in terms
of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of
“atypia” that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other
AAPs fall within the extremes of this spectrum.
Clozapine is still considered the gold standard in refractory schizophrenia and inpsychoses present in Parkinson's
disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing
the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this,
it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We
also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify
better the old and new hallmarks of “atypia”.
Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their
molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effective-
ness of AAPs in clinical practice.

© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Antipsychotics (APs) are commonly prescribed drugs for treating
schizophrenia, bipolar disorder and other brain diseases that are
characterized by psychotics features (Miyamoto, Miyake, Jarskog,
Fleischhacker, & Lieberman, 2012). Generally, these drugs are divided
into typical antipsychotics (TAPs), referred to as first generation drugs,
and atypical antipsychotics (AAPs), referred to as second-generation
drugs, based on the concept that AAPs have reduced side effects such
as parkinsonism and tardive dyskinesia (TD) (Meltzer, 2013), and even-
tually a better profile in terms of social and cognitive improvement.
However, this distinction has been questioned by different authors
(Gründer, Hippius, & Carlsson, 2009; Keefe et al., 2004), suggesting
that each AP is unique.

In the 1970's, the AAPs were introduced through clozapine, a pro-
totypical drug that was demonstrated to be very effective not only for
treating the positive symptoms of schizophrenia, but also to reduce
the negative and cognitive problems associated with the disorder,
including a strong reduction of motor-related side effects (Wenthur
& Lindsley, 2013). Particularly, clozapine proved effective in patients
resistant to other APs (Gillespie, Samanaite, Mill, Egerton, &
MacCabe, 2017). As the introduction of TAPs has been revolutionary
in reducing hospitalization and deaths of schizophrenic and psychotic
patients, the discovery of clozapine, and subsequently of other AAPs,
has resulted in significant recovery of these patients in terms of cogni-
tion and integrating into society. The benefits of clozapine have unfor-
tunately been outweighed by its potential side effects, such as the risk
of severe hematological effects (0.7%) and weight gain, and this has
complicated its use compelling clinicians to perform mandatory drug
and blood monitoring (Capannolo et al., 2015). For this reason, there
has been a strong effort in the biomedical and pharmaceutical scien-
tific community to find new drugs as effective as clozapine, but devoid
of its relevant side effects.

Importantly, the success of clozapine and other AAPs introduced a
new concept in relation to the mechanism of action, i.e. that drugs
with low affinity for the dopamine D2 receptor could be an effective
AP through the involvement of other receptors, such as 5-HT2A seroto-
nin receptors. The involvement of serotonin (5-HT) receptors was an
important step forward to understand the mechanism of actions of
AAPs, and moreover the affinity ratio 5-HT2A/D2 was considered a hall-
mark for AAPs. Since then, considering that the 5-HT2A/D2 ratio hypoth-
esis was not completely satisfactory as it was unable to thoroughly
explain the differences among the AAPs, many hypotheses have been
formulated on this topic (Miyamoto, Duncan, Marx, & Lieberman,
2005) trying to explain unambiguously the mechanism of “atypia”. In-
deed, for AAPs (including clozapine), many works have pointed out
the importance of other G protein-coupled receptors (GPCRs), beyond
D2 and 5-HT2A, such as serotonin (5-HT2C and 5-HT1A), muscarinic, nor-
adrenergic, glutamatergic and histamine receptors (Meltzer & Massey,
2011). Besides GPCRs, other targets have also been considered, such as
ion channels (e.g. N-methyl-D-aspartate (NMDA)), transporters (e.g.
glycine transporters) and enzymes (e.g. glycogen synthase kinase 3
(GSK3)), in order to explain the characteristics of AAPs.

In addition, other parameters such as receptor dissociation (koff) and
association (kon) kinetics have been taken into consideration (e.g. for D2

receptor) to better understand the mechanism of AAPs, particularly for
their side effects like parkinsonism and hyperprolactinemia.
is article as: Aringhieri, S., et al., Molecular targets of atypical
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Furthermore, although acute events, such as psychoses, are proba-
bly controlled by short-term effects of AAPs that are mostly mediated
by their receptor affinities, it is evident that these drugs have more
complex effects, particularly in the long term, involving intracellular
mechanisms that may regulate neuronal functionality, neuroplasticity
and neurogenesis (Fumagalli, Frasca, Racagni, & Riva, 2009; Molteni,
Calabrese, Racagni, Fumagalli, & Riva, 2009) through the activation
of proteins such as extracellular signal-regulated kinases 1 and 2
(ERK1/2) and protein Kinase B (Akt) (Freyberg, Ferrando, & Javitch,
2010).

In addition, new concepts related to GPCR function, such as “bi-
ased agonism” and receptor dimerization have been recently intro-
duced, which have added further complexity and intrigue over the
mechanism of action of AAPs. In fact, new studies have demonstrated
how the activation of specific functions of the 5-HT2A receptor can be
responsible to distinguish clozapine and other AAPs from TAPs
(Aringhieri et al., 2017; Mocci, Jiménez-Sánchez, Adell, Cortés, &
Artigas, 2014). Other evidence has pointed out the relevance of the
5HT2A-mGlu2 receptor complex to determine the 5-HT2A signaling
properties and how clozapine might influence the heteromer activity
(González-Maeso et al., 2008).

Besides pharmacodynamics, pharmacokinetics is another key deter-
minant factor that can help to explain the therapeutic success and clin-
ical differences among AAPs. Considering the variability in AAP
metabolism among patients, therapeutic drug monitoring (TDM) can
be particularly useful for non-responders, and also to reduce relevant
side effects.

In conclusion, even after 40 years since the discovery of clozapine,
we are still trying to understand: 1) Which are the hallmarks defining
an ideal AAP and 2)Why clozapine, at least in terms of efficacy, is supe-
rior compared to other AAPs. Finally, this review proposes a plausible
correlation between AAPs mechanism of action and their clinical differ-
ences. These aspects need proper investigation in order to find new
ways to produce better drugs.
2. Classic mechanisms of action of atypical antipsychotics (AAPs)

2.1. Dopaminergic system and dopamine receptors

The dopaminergic system plays a key role in the pathogenesis of
schizophrenia and related disorders. The “dopaminergic hypothesis”
of schizophrenia postulates a hyperactivity of dopamine in the
mesolimbic system and a hypofunctionality of dopamine in other
brain areas like the prefrontal cortex (PFC) (Carlsson & Lindqvist,
1963; van Rossum, 1966).

Direct evidence of dopaminergic system dysfunction was found
either with the use of radioligand compounds or by positron emission
tomography (PET) ligands. In addition, a change in dopamine synthe-
sis was determined in humans and animals by studying the uptake
and storage of the dopamine precursor 18F-L-dopa. Taking advantage
of these techniques, it was possible to show a hypersensitivity to am-
phetamine in schizophrenic patients, because an increase of dopamine
release resulted in exacerbation of psychosis (Breier et al., 1997).
Moreover, supporting this notion, the use of amphetamine is a well-
established model of schizophrenia in animals, acting mostly by in-
creasing dopamine release (Lillrank, Oja, Saransaari, & Seppälä,
antipsychotics: Frommechanism of action to clinical differences, Phar-
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1991). Convincing data underline the relevance of increased dopa-
mine synthesis and release in the pathogenesis of schizophrenia, as
a consequence of altered presynaptic dopaminergic function (Howes,
McCutcheon, & Stone, 2015). New compounds such as SEP-363856
have also emerged as potential treatments of schizophrenia by
targeting presynaptic proteins such as the trace amine-associated re-
ceptor 1 expressed in the dopaminergic neurons (Koblan et al., 2016).

Dopamine receptors are conventionally classified as D1-like (D1 and
D5) and D2-like (D2S, D2L, D3 and D4) family receptors, where the
D1-family receptors are coupled with a Gs subunit, while the D2-family
receptors are coupled with a Gi subunit.
2.1.1. D1

The D1 receptors are mostly present on postsynaptic neurons, and
are densely expressed in the striatum, amygdala, olfactory bulb, cere-
bellum, and PFC (Ariano & Sibley, 1994; Bergson et al., 1995). According
to Santana and Artigas (2017), the D1 receptors in the rat PFC are
expressed on GABAergic interneurons and glutamatergic pyramidal
neurons, with some preference for the first group. The PFC is implicated
in cognitive processes such as reasoning, planning, and spatial ability
(Wood & Grafman, 2003), and particularly for this reason the cognitive
role of D1 receptors in schizophrenia has been investigated in various
imaging and pharmacological studies.

Using PET, Okubo et al. (1997) demonstrated that binding of a
radioligand to theD1 receptorwas reduced in the PFC of schizophrenics,
and that this reductionwas related to the severity of the negative symp-
toms. On this subject, Aoyama et al. (2014) studying the psycho-
stimulant phencyclidine (PCP) showed that clozapine was able to
reverse the PCP-induced behavioral deficits in rats, through the activa-
tion of dopamine D1 receptor signaling with an increase of histone H3

acetylation. These findings indicate that the D1 receptor in the PFC
may have a role in clozapine action. However, this effect is most likely
mediated by a dopamine increase in the PFC though clozapine antago-
nism on noradrenergic α2 receptors (Devoto, Flore, Pira, Longu, &
Gessa, 2004). Intriguingly, Chen and Yang (2002) demonstrated that
clozapine, by increasing dopamine release and in turn activating the
D1 receptor, was able to induce NMDA-induced currents in cortical py-
ramidal cells. Similar to clozapine, asenapine, still a strong α2 receptor
Fig. 1.Molecular targets of AAPs. List of themost relevant targets involved in themechanism of
and low (●).●,■ and represent receptor antagonism, partial agonism and positive allosteris

BDNF production, while represents positive allosterism by the clozapine metabolite, nor
mechanism of action. Finally, the 5-HT2A/D2 and 5-HT2C/D2 receptor affinity ratios are include
risperidone and amisulpride are mostly limited to just a few, and this might explain clozapine

Please cite this article as: Aringhieri, S., et al., Molecular targets of atypical a
macology & Therapeutics (2018), https://doi.org/10.1016/j.pharmthera.201
antagonist, was shown to increase cortical dopaminergic and NMDA
receptor-mediated transmission in rats.

Karlsson et al. (1995) confirmed the relevance of dopamine function
in the PFC. They also showed that selective D1 receptor antagonists are
not only inefficacious in improving any symptoms in schizophrenia,
but eventually may even exacerbate some aspects of this disorder.

2.1.2. D2

In the central nervous system (CNS), D2 receptors are mostly
expressed in the striatum, the nucleus accumbens (NAc), and the olfac-
tory tubercle. In addition, they are also present in the substantia nigra,
ventral tegmental area (VTA), hypothalamus, cortical areas, septum,
amygdala, and hippocampus (Missale, Nash, Robinson, Jaber, & Caron,
1998; Seeman, Wilson, Gmeiner, & Kapur, 2006; Vallone, Picetti, &
Borrelli, 2000). Functionally, the D2 receptor is classically assumed to
signal through Gi/o and other proteins, such as β-arrestin (Quan, Kim,
Albert, Choi, & Kim, 2008).

Neuroimaging analyses have established that the optimal D2 recep-
tor occupancy for TAPs is between 65 to 80% in the striatum, where
extrapyramidal symptoms (EPS) may occur when more than 80% of
D2 receptors are blocked (Uchida et al., 2011). In contrast, the optimal
therapeutic window of D2 receptor occupancy for AAPs is not stringent
because AAPs can regulate dopamine hyperactivity through alternative
mechanisms besides D2 receptor antagonism. However, if an AAP
reaches a receptor occupancy of 80% or above, EPS are likely to occur.
This is relevant especially for risperidone, and eventually for olanzapine,
as they have high affinity for the D2 receptor and at certain dosages can
have a receptor occupancy of 80% or above (Fig. 1). On the contrary,
clozapine and quetiapine never show a D2 receptor occupancy above
80% at their therapeutic concentrations, which could explain why they
never cause parkinsonism.

Another elegant pharmacological approach to reduce the risk of EPS
is by using partial agonists at the D2 receptor, as demonstrated by
aripiprazole. This compound behaves as an antagonist when dopamine
is in excess, but intrinsically is still able to partially activate theD2 recep-
tor up to 20-40% (Yokoi et al., 2002). Thus aripiprazole has a dual ago-
nist/antagonist action depending on synaptic levels of dopamine.
Hence, it has a lower incidence of EPS, though at higher doses this
undesired side effect might appear.
action of AAPs based on receptor occupancy. Values are reported as high (●), medium (●)
m, respectively. and represent koff and kon values for the D2 receptor and● represents

clozapine, at M1 and M4 receptors. Aripiprazole is shown at the bottom for its different
d on the right. Clozapine covers a wide-range of molecular targets among all AAPs, while
's superiority among AAPs.

ntipsychotics: Frommechanism of action to clinical differences, Phar-
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2.1.3. D2 koff and kon
Beyond D2 receptor affinity, one of the most enduring and sophisti-

cated hypotheses on themechanism of AAPs is based on their fast disso-
ciation kinetic (koff) from dopamine D2 receptors (Kapur & Seeman,
2001). These particular kinetic properties were introduced to explain
the lower incidence of side effects such as parkinsonism and
hyperprolactinemia in AAPs compared to TAPs. APs are competitive
antagonists that form reversible bonds with the D2 receptor. At equilib-
rium, the amount of drug bound to the D2 receptor is constant, but
receptor occupancy is dynamically determined based on how fast the
drug-receptor complex is displaced in response to changes in the dopa-
mine levels in the synaptic cleft.

Specifically, fast dissociation of the AP allows a greater fraction of the
D2 receptor to be bound to transiently released dopamine in a sur-
mountable manner, while drugs with slow koff tend to prevent dopa-
mine binding and practically behave as insurmountable antagonists.
For example, AAPs such as clozapine and quetiapine show a very
quick displacement from the D2 receptor (Fig. 1) with a half-life in the
order of seconds. However, the supposed linear correlation between
fast dissociation and reduced side effects of AAPs is more complex
than anticipated, particularly for risperidone, olanzapine and
amisulpride, whose clinical characteristics go beyond their D2 receptor
koff (Fig. 1) (Meltzer, 2013). To explain such complexity, first of all we
need to underline the large experimental variability among the kinetic
parameters determined with different methods, and secondly the as-
sumption that AAPs have similar association rates (kon) as previously
proposed (Sahlholm et al., 2016).

Using time-resolved fluorescence resonance energy transfer assay
analysis, Sykes et al. (2017) found very diverse values of both kon and
koff among APs, demonstrating not only the importance of koff, but
also of kon for determining D2 receptor affinities (Fig. 1). Interestingly,
they proposed that the drug-induced EPS are better associated with
the kon, while the koff values seemed to be more related to the increase
in prolactin secretion. For instance, they found a very slowkoff for risper-
idone, even lower than that for haloperidol, which may explain why
hyperprolactinemia is so frequent with risperidone. They also found a
high value of kon for risperidone and the TAP chlorpromazine, which
may be responsible for the incidence of parkinsonism.

In conclusion, based on the model presented by Sykes et al. (2017),
we can assume that the AP-induced hyperprolactinemia is strongly cor-
related with D2 receptor koff, while AP-induced EPS depend on both
receptor koff and kon, together with the contribution of other receptors
(e.g. 5-HT2A/2C) that may regulate dopamine release.

2.1.4. D3

In the human CNS, the dopamine D3 receptors seem to be less
expressed than the two principal dopamine receptors, but more con-
centrated in certain areas. The D3 receptors are expressed both as
autoreceptors on dopaminergic neurons and as postsynaptic receptors
(Diaz et al., 1995; Lévesque et al., 1992). Their highest expression is in
the limbic areas, which are associated with emotional and cognitive
functions, more specifically in the islands of Calleja, NAc and olfactory
tubercle (Gurevich, Himes, & Joyce, 1999; Hurley & Jenner, 2006;
Sokoloff & Le Foll, 2017).

AAPs bind to D3 receptorswith an affinity similar to that of D2, so it is
not easy to understand the specific contribution of the D3 receptor sub-
type. However, selective D3 antagonists seem to enhance dopaminergic
neurotransmission, especially in the PFCwhere dopamine release is also
controlled in part by D3 autoreceptors (Lahti, Weiler, Carlsson, &
Tamminga, 1998). The blockade of D3 receptors enhances acetylcholine
(ACh) release in the PFC that could contribute to pro-cognitive actions
(Gobert et al., 1995; Lacroix et al., 2006). As a consequence, D3 receptor
antagonists are able to reverse the hyperactivity and social interaction
deficits caused by NMDA receptor blockade in an animal model of
schizophrenia (Sokoloff & Le Foll, 2017; Sokoloff, Leriche, Diaz, Louvel,
& Pumain, 2013). Recently, the D3 receptor was also shown to play a
Please cite this article as: Aringhieri, S., et al., Molecular targets of atypical
macology & Therapeutics (2018), https://doi.org/10.1016/j.pharmthera.20
role in the neuroplasticity induced by the NMDA antagonist ketamine
(Cavalleri et al., 2018).

Several selective D3 receptor antagonists (i.e., SB277011A, S33084,
GSK598809, F17464) were demonstrated to be efficacious in animal
models of schizophrenia, and also in humans by improving attention,
socialization and cognitive performance without causing EPS (Millan
et al., 2007; Nakajimaa et al., 2013; Watson, Marsden, Millan, & Fone1,
K. C. F., 2012). In a phase II trial involving patients with acute exacerba-
tion of schizophrenia, the selective ligand F17464 demonstrated superi-
ority over placebo, along with a good safety profile (Bitter et al., 2017).
In addition, two AAPs currently used in therapy are blonanserin, a D3

receptor preferring antagonist and caripiprazine, a D3 receptor partial
agonist (Baba, Enomoto, Horisawa, Hashimoto, & Ono, 2015; Girgis
et al., 2016). Cariprazine reduced both positive and negative symptoms
in schizophrenic patients, and particularly with regard to negative
symptoms it performed better than risperidone (Garnock-Jones,
2017). The improvement on cognitive tasks was mediated by D3 recep-
tors, as demonstrated in knockout mice models (Zimnisky et al., 2013).

2.1.5. D4

The dopamine D4 receptors are mainly distributed in the PFC, ento-
rhinal cortex, and hippocampus, regions particularly important for cog-
nition, with a less significant distribution on themedium spiny neurons
in the striatum and thalamus of rodents and humans (Lauzon &
Laviolette, 2010; Rondou, Haegeman, & Van Craenenbroeck, 2010;
Thomas, Grandy, Gerhardt, & Glaser, 2009). Initially, some authors
hypothesized a possible role of excessive D4 receptor stimulation in
the pathophysiology of schizophrenia because a high density of D4

receptors has been found in the brains of schizophrenics, and clozapine
has a high affinity for this receptor (Seeman, Guan, & Van Tol, 1993; Van
Tol et al., 1991). However, the upregulation of D4 receptors in post-
mortem brains of schizophrenic patients was not confirmed by other
studies (Hwang et al., 2012; Tarazi, Yeghiayan, Neumeyer, &
Baldessarini, 1998).

A considerable number of preclinical and clinical studies has been
carried out to investigate the role of D4 receptors in schizophrenia, but
none of the selective antagonists, such as L745870 and sonepiprazole,
improved any condition of schizophrenia. In addition, it has been
shown that activation of D4 receptors in the PFC elevates cortical ACh
and dopamine efflux, which could significantly contribute to pro-
cognitive effects (Woolley et al., 2008). Recently, Cardozo et al. (2017)
employed an innovative in silico approach and demonstrated that the
D4 receptors in the pineal gland can be a unique target for clozapine
compared to chlorpromazine. The pineal gland produces melatonin
and thus strongly influences mood via circadian rhythms. Also,
González, Moreno-Delgado et al. (2012) proposed that the production
of both melatonin and serotonin is perhaps regulated by the
heteromerization of noradrenergic and dopamine D4 receptors, which
represent a key functional unit able to modify the circadian rhythm.

2.2. Serotoninergic (5-HT) system and serotonin receptors

Serotonin, via its many receptors (15 5-HTRs), is capable of having a
profound impact on dopaminergic, glutamatergic and GABAergic neu-
rons and other neurotransmitters in the human brain (Fig. 2). In addi-
tion to an overactivity of the glutamatergic system in the medial
prefrontal cortex (mPFC) as a pathophysiological marker of schizophre-
nia, hyperactive serotoninergic transmission has also been proposed to
be involved, and clozapine and not haloperidol was able to stabilize the
serotonin increase in the mPFC in the MK-801-based animal model of
schizophrenia (López-Gil et al., 2007).

Besides the hypothesized 5-HT2A/D2 ratio-based mechanism of
AAPs, other serotonin receptors have also been considered as potential
targets of different AAPs (Fig. 1). In fact, today it is clear that receptors
such as 5-HT2C and 5-HT1A have an important role similar to that of
5-HT2A in the mechanism of action of AAPs. In addition, other serotonin
antipsychotics: Frommechanism of action to clinical differences, Phar-
18.06.012

https://doi.org/10.1016/j.pharmthera.2018.06.012


Fig. 2. Schematic representation of the main neurotransmitter pathways and receptors regulating the dopaminergic system. Dopaminergic neurons of Ventral Tegmental Area and
Substantia Nigra project toward the Striatum (Nucleus Accumbens, Caudate Nucleus and Putamen) and the Prefrontal Cortex. Serotoninergic neurons (Raphe Nuclei) and
glutamatergic neurons (Prefrontal Cortex) profoundly influence the dopaminergic activity via direct and indirect pathways. The GABAergic interneurons and glial cells are also
illustrated. Serotoninergic (5-HT2AR, 5-HT2CR and 5-HT1AR), muscarinic (M1R), noradrenergic (α2R) and glutamatergic (NMDAR) receptors as well as glycine transporters (GlyT1/2) are
expressed in different neuronal populations, and they are relevant to explain the differences in the mechanism of action of AAPs.
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receptors such as 5-HT6 and 5-HT7 have started to receive attention as
potential new targets for some AAPs such as amisulpride and others.
The general idea is that the enhanced dopamine efflux that is mediated
by blockade of 5-HT2 receptors compensates for the AP effect of
blocking dopamine receptors, thereby dampening the deleterious effect
associated with the blockade of D2 receptors (Kapur & Remington,
1996; Saller, Kreamer, Adamovage, & Salama, 1989). As a confirmation
regarding the relevance of 5-HT2 receptors in schizophrenia and other
psychoses, the administration of the 5-HT2A agonist lysergic acid
diethylamide in mice is a well-known model of schizophrenia with
behaviors such as hyperactivity and decreased social interaction.

2.2.1. 5-HT1A
The 5-HT1A receptors have complex multiple functions in the CNS

and are expressed in different areas of the brain, mainly in the cortex,
hippocampus, amygdala and VTA. In addition, they are also located in
the raphe nuclei where they act as serotonin autoreceptors (Hall et al.,
1997; Pompeiano, Palacios, & Mengod, 1992). In the cortex, they are
localized on glutamatergic pyramidal cells and GABAergic interneurons,
and they can be co-localized with 5-HT2A and 5-HT2C receptors
(Amargós-Bosch et al., 2004; Santana, Bortolozzi, Serrats, Mengod, &
Artigas, 2004). The 5-HT1A receptors are inhibitory and coupled to Gi

protein.
5-HT1A receptor agonists, such as 8-OH-DPAT, increase dopamine

efflux in the PFC and hippocampus (Sakaue et al., 2000), an effect that
seems related to an inhibitory action on GABAergic interneurons. In
fact, this action results in disinhibition of glutamatergic pyramidal neu-
rons, which enhances dopaminergic neuronal activity and increases
dopamine release (Fig. 2). This mechanism might also be responsible
for an increased release of ACh in the PFC and hippocampus, which
could potentially improve cognitive functions.ManyAAPs such as cloza-
pine, quetiapine, aripiprazole and ziprasidone are 5-HT1A receptor par-
tial agonists, which may be relevant for their mechanism of action
(Fig. 1). Intriguingly, the selective 5-HT1A receptor antagonist WAY
100635 is able to reduce cortical dopamine release induced by AAPs
that do not have an affinity for the 5-HT1A receptor, implying an indirect
role of this receptor in the mechanism of AAPs. Based on this premise,
the 5-HT1A receptor partial agonist buspirone, when used together
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with haloperidol in schizophrenic patients, resulted in a beneficial effect
on psychotic and cognitive symptoms and parkinsonism (Meltzer &
Sumiyoshi, 2008; Sovner & Parnell-Sovner, 1989). Novel compounds
with D2 receptor antagonistic and 5-HT1A receptor agonistic properties,
such as SLV-313, SSR-181507, F-15063, S-16924, BSF 190555 (BTS
79018) and RGH-188, have been synthetized as new AAP candidates
(Birch, Bradley, Gill, Kerrigan, & Needham, 1999; Claustre et al., 2003;
De Berardis et al., 2016; McCreary et al., 2007; Millan et al., 1999;
Newman-Tancredi, 2010). It should not be neglected, however, that
the effect of clozapine to eliminate MK-801-induced hyperactivity was
left unchanged in 5HT1A-receptor knockout mice, leading to the conclu-
sion that the 5-HT1A receptors are notmandatory at least for this specific
activity of clozapine.
2.2.2. 5-HT2A
The 5-HT2A receptors are densely present in cortical regions, includ-

ing the PFC and insular cortex (Doherty & Pickel, 2000; López-Giménez,
Mengod, Palacios, & Vilaró, 1997; Wright, Seroogy, Lundgren, Davis, &
Jennes, 1995). At the cellular level, they are expressed by both gluta-
matergic pyramidal cells and GABAergic interneurons. The 5-HT2A
receptors are GPCRs coupled to theGq andPI-PLCpathway. Early studies
regarding the role of 5-HT2A receptors in regulating dopaminergic neu-
ronal activity and dopamine release were carried out with drugs that
were unable to discriminate different 5-HT2 receptor subtypes, thereby
giving rise to misleading conjectures. Subsequently, many functions
attributed to the 5-HT2A receptors have been reconsidered and assigned
to other receptors like 5-HT2C. In general, the 5-HT2A receptors can facil-
itate dopamine efflux in all regions of the brain with an excitatory func-
tion. However, the modulation on different regions can be complex as
an inhibitory activity was also found in some cases, particularly in the
PFC. The 5-HT2A receptor-dependent control of dopamine release in
the cortex is similar to that of 5-HT1A receptors and involves a long glu-
tamatergic loop (Fig. 2).

Recently, a correlationwas found amongst the clinical doses of some
AAPs, and the D2 versus 5-HT2A/5-HT1A or the D2 versus 5-HT2C/5-HT1A
affinity ratios were used to suggest the relevance of high affinity
towards 5-HT2A, 5-HT2C and D2 receptors (Łukasiewicz et al., 2010).
ntipsychotics: Frommechanism of action to clinical differences, Phar-
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The blockade of 5-HT2A receptors has a strong impact on dopaminer-
gic activity, leading to reduction of dopamine release in themesolimbic
areas that contributes to AAP activity. Nevertheless, we cannot exclude
an activity of specific GABAergic interneurons in the cortical areas,
where 5-HT2A receptor antagonism on specific subpopulations of dopa-
minergic neurons can increase dopamine release.

In humans, pimavanserin, a preferential 5-HT2A receptor antagonist/
inverse agonist,waswell toleratedwhen tried as augmentation strategy
for treating schizophrenia, andmoreover, it potentiated the therapeutic
effects of low-dose risperidone (Abbas & Roth, 2008). On the other side,
when the selective 5-HT2A receptor antagonist SR43469B was tested as
amonotherapy to treat the acute phase of schizophrenia, it was found to
be less effective than haloperidol, but better than placebo (Meltzer,
Arvanitis, Bauer, & Rein, 2004). Strikingly, pimavanserin in monother-
apy has proved to be effective in reducing psychoses in Parkinson's dis-
ease (PD), providing significant evidence for the relevance of 5-HT2A
and most likely also 5-HT2C receptors in psychotic symptoms (Meltzer
et al., 2010).

2.2.3. 5-HT2C
The 5-HT2C receptors arewidely distributed in the brain, particularly

in cortical areas including the PFC, in limbic structures including the hip-
pocampus, in the striatum (NAc), in themesencephalon and in the cho-
roid plexus. This receptor subtype is often expressed by inhibitory
GABAergic interneurons (Fig. 2). The 5-HT2C receptors are GPCRs
coupled to the Gq and PI pathway, and they mainly exert an inhibitory
control on all ascending dopamine pathways, although excitatory
effects have also been reported, thereby confirming the complexity of
5-HT2C receptor action on different neuronal subpopulations.

A constitutive activity of 5-HT2C receptors may be responsible for
inhibition of dopaminergic neuron activity (Fig. 2), with relevant appli-
cations to the pharmacology of inverse agonists. Notably, clozapine and
other AAPs behave as 5-HT2C receptor inverse agonists in vivo, and this
could be relevant to the clinical outcomes of these agents (Herrick-
Davis, Grinde, & Teitler, 2000; Navailles, De Deurwaerdère, &
Spampinato, 2006; Rauser, Savage, Meltzer, & Roth, 2001). In general,
5-HT2C receptor agonists reduce dopamine release in the cortex, stria-
tum and NAc, while 5-HT2C receptor antagonists have the opposite
effect (De Deurwaerdère, Navailles, Berg, Clarke, & Spampinato, 2004;
Meltzer & Huang, 2008). Some studies have pointed out that the sever-
ity of EPS may be inversely correlated to the affinity of the AAPs to
5-HT2C receptors (Gunes, Dahl, Spina, & Scordo, 2008; Richtand et al.,
2007). Based on the evidence that 5-HT2C receptor stimulation inhibits
the mesolimbic dopaminergic system, 5-HT2C receptor agonism could
in theory have a therapeutic potential in improving the positive symp-
toms of schizophrenia (Alex, Yavanian, McFarlane, Pluto, & Pehek,
2005; Marquis et al., 2007; Meltzer, 1999; Pozzi, Acconcia, Ceglia,
Invernizzi, & Samanin, 2002).

Moreover, 5-HT2C receptors seem to be important for cognition as
they are able to modulate not only dopamine, but also ACh, particularly
in the hippocampus (Zhelyazkova-Savova, Giovannini, & Pepeu, 1999).
In addition, blockade of 5-HT2C receptors with a consequent increase
of dopaminergic activity might exert some antidepressive activity,
which contributes to the mechanism of action of atypical antidepres-
sants like mirtazapine, trazodone and nefadozone (Di Matteo, De Blasi,
Di Giulio, & Esposito, 2001; Giorgetti & Tecott, 2004; Guardiola-
Lemaitre et al., 2014; Millan et al., 2000; Millan, Dekeyne, & Gobert,
1998).

2.2.4. 5-HT6/7
The 5-HT6 receptors are expressed at a higher level in the striatum,

olfactory tubercle and NAc, and at a lower level in the cerebral cortex.
Some studies have indicated that 5-HT6 receptor antagonists may in-
crease dopamine extracellularly in the mPFC (Lacroix, Dawson, Hagan,
& Heidbreder, 2004) or hippocampus (Li, Huang, Prus, Dai, & Meltzer,
2007), though others could not confirm this evidence (Dawson & Li,
Please cite this article as: Aringhieri, S., et al., Molecular targets of atypical
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2003; Dawson, Nguyen, & Li, 2003; Li et al., 2007). Moreover, studies
with 5-HT6 receptor agonists were unable to reveal any conclusive
information regarding the role of 5-HT6 receptors in the control of dopa-
mine release. However, the use of 5-HT6 receptor antagonists in combi-
nation with D2 receptor antagonists such as haloperidol potentiated
dopamine release in the mPFC and hippocampus, suggesting a syner-
gism between these two receptors (Li et al., 2007). Importantly, the
administration of 5-HT6 receptor antagonists reduced the effects of
MK-801 and PCP in an animal model of schizophrenia, demonstrating
the therapeutic potential of this receptor (de Bruin et al., 2013). Some
AAPs like clozapine, olanzapine, asenapine and sertindole are potent
5-HT6 receptor antagonists with different affinities (Abbas et al., 2009;
Tarazi, Moran-Gates, Wong, Henry, & Shahid, 2010), and this may
have some role in their actions.

The highest levels of 5-HT7 receptors are found in the hypothalamus,
thalamus, mesencephalon and hippocampus, while lower levels are
present in the cerebral cortex. So far, the lack of selective ligands has
made it difficult to identify a specific functional role of the 5-HT7 recep-
tor in dopaminergic activity. Similar to 5-HT6, some AAPs like
amisulpride, asenapine, clozapine, lurasidone and risperidone have
high affinity for the 5-HT7 receptor, whichmay contribute to their ther-
apeutic actions (Fig. 1) (Roth et al., 1994). In particular, the 5-HT7 recep-
tor affinity of amisulpride shows that it may not simply be a
dopaminergic compound, but also a serotoninergic one. This affinity
for 5-HT7 receptors endows amisulpride with the ability to improve
novel object recognition in mice treated with PCP (Horiguchi, Huang,
& Meltzer, 2011).

In conclusion, recent data underscore the relevance of 5-HT6 and
5-HT7 receptors as a component in the mechanism of some AAPs.
Their actual relevance however is still a matter of debate, requiring
more data for relevant conclusions.

2.3. Glutamatergic system and glutamate receptors

The glutamatergic system has a prominent role in the pathogenesis
of schizophrenia and other psychoses, a fact confirmed by genetic stud-
ies that found mutated genes can dysregulate this system (Fournier
et al., 2017). In fact, in drug-resistant schizophrenic patients or in
patients with very limited response, abnormalities in the glutamatergic
system may be particularly relevant (Howes et al., 2015; Jauhar et al.,
2018; Mouchlianitis et al., 2016). Importantly, in non-responders, only
clozapine seemed to be effective, at least to a certain degree, while in
select few cases olanzapine showed partial efficacy at higher doses
(Kannan et al., 2017). This evidence suggests that the superiority of clo-
zapine is partially explained by its activity on the glutamatergic system.
It is also true that the glutamatergic, dopaminergic and serotoninergic
systems are strongly interconnected, which further complicates the
analysis of the mechanism of action of AAPs on the glutamatergic
system (Fig. 2).

Some studies in humans have suggested that increased glutamate
efflux observed in the PFC and anterior cingulate cortex may be respon-
sible for cognitive and negative symptoms of schizophrenia (Merritt,
Egerton, Kempton, Taylor, & McGuire, 2016; Poels et al., 2014). Addi-
tionally, the use of NMDA receptor antagonists, such as PCP or
MK-801, in mice reproduces aspects and behaviors that reflect human
schizophrenic pathology. In studies involving mice and rats exposed to
PCP, clozapine and other AAPs significantly attenuated the increased
glutamate efflux observed in the PFC, followed by a reduction of
impaired behavior (Dissanayake, Zachariou, Marsden, & Mason, 2009;
Kargieman, Riga, Artigas, & Celada, 2012). In humans, few studies have
reported a relation between the extent of glutamatergic reduction and
symptomatic improvement over the AAP treatment period (Egerton
et al., 2017; van der Heijden et al., 2004; Tascedda et al., 2001).

Noteworthy, the activity of serotonin 5-HT2A and 5-HT1A receptors
seems to be relevant for controlling the glutamatergic system, and this
may explain the superiority of AAPs over TAPs. In addition, effects on
antipsychotics: Frommechanism of action to clinical differences, Phar-
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NMDA receptors and glycine transporters (GlyTs) that contribute to
homeostasis in the glutamatergic system seem important for control-
ling glutamate hyperactivity, a feature which may be relevant particu-
larly for clozapine's action.

2.3.1. NMDA
The NMDA receptor hypofunction has been intriguingly associated

with schizophrenia aetiopathogenesis (Kannan et al., 2017). Besides
glutamate, the NMDA receptor complex is modulated by other factors
such as the amino acids glycine and D-serine that are produced endog-
enously, and by glutathione which regulates the redox-sensitive site
(Balu & Coyle, 2015). Electrophysiological and behavioral studies have
shown that AAPs such as clozapine, olanzapine and risperidone enhance
NMDA receptor-mediated transmission, behaving as partial agonists at
the glycine recognition site (Arvanov, Liang, Schwartz, Grossman, &
Wang, 1997; Kargieman, Santana, Mengod, Celada, & Artigas, 2007;
Ninan, Jardemark, &Wang, 2003). Hence, a direct action of AAPs at gly-
cine sites has been speculated, but this hypothesis is yet to be experi-
mentally confirmed (Millan, 2002; Schwieler, Linderholm, Nilsson-
Todd, Erhardt, & Engberg, 2008).

Other mechanisms may be involved in how clozapine enhances the
functional activity of the NMDA receptor, such as its phosphorylation by
protein kinase A, which is possibly mediated by dopamine release that
subsequently activates the D1 receptor (Chen & Yang, 2002; Leveque
et al., 2000; Tseng & O'Donnell, 2004). In addition, the clozapinemetab-
olite N-desmethylclozapine (norclozapine), an M1 receptor allosteric
agonist, has been shown to potentiate NMDA receptor currents (Sur
et al., 2003).

Indeed, agonists at the glycine site, like D-cycloserine and D-serine,
have been found to potentiate the ability of some AAPs and TAPs to
improve negative and positive symptoms in schizophrenics
(Moghaddam & Javitt, 2012). In contrast, this additional effect was not
observed with clozapine, indicating that clozapine itself is capable of
enhancing NMDA receptor activity (Millan, 2005), most likely by
increasing the release of glycine and/or D-serine from glial and neuronal
cells through inhibition of different neutral amino acid transporters
(Javitt, Duncan, Balla, & Sershen, 2005; Tanahashi, Yamamura,
Nakagawa, Motomura, & Okada, 2012; Williams, Mallorga, Conn,
Pettibone, & Sur, 2004). When tested in monotherapy or adjunct ther-
apy, suppression of D-serine degradation by D-amino acid oxidase
inhibitors such as sodium benzoate improved neurocognition, specifi-
cally speed of processing, visual learning and memory (Lane et al.,
2013; Lin et al., 2017).

2.3.2. Glycine and neutral amino acid transporters
Among the AAPs, clozapine is themost effective in inhibiting GlyT in

glial cells, and this effect mostly seems to involve GlyT1a compared to
GlyT2 (Figs. 1, 2) (Williams et al., 2004). In addition, clozapine is able
to enhance glycine levels by inhibiting sodium-coupled neutral amino
acid transporter 1, and eventually sodium-coupled neutral amino acid
transporter 2 sites, on neuronal cells (Javitt et al., 2004; Schwieler,
Engberg, & Erhardt, 2004), the so called system A-mediated GlyT
(Javitt et al., 2005). A relationship between GlyT1 inhibition and
improvement of cognitive performance, such as working memory in
primates treated with ketamine, has been found using PET techniques,
where the blockade of this transporter wasmore than 75%. Importantly,
sarcosine, an inhibitor of glycine transport, has been tested in clinical
trials either as monotherapy or in association with AAPs, in which it
has shown some promising results (Lane et al., 2008). In a recent
phase 2 clinical study, a new GlyT1 inhibitor RG1678 (bitopertin) was
found to be effective in schizophrenic patients with predominant nega-
tive symptoms (Pinard et al., 2010). However, this compound failed in
several phase 3 clinical trials when studied in patients with persistent
negative symptoms and residual positive symptoms (Bugarski-Kirola
et al., 2016, 2017; Goff, 2014).
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2.4. Cholinergic system and muscarinic receptors

The two major groups of cholinergic projections are the
pedunculopontine cholinergic complex, which projects to various mid-
brain and brainstem structures, and the basal forebrain complex, which
originates in the nucleus basalis of Meynert and projects to the hippo-
campus and to cortical regions (Henny & Jones, 2008). The muscarinic
receptor family consists of five subtypes, M1 toM5, which are expressed
throughout the brain and play a role in a wide range of functional pro-
cesses, such as learning, memory, attention, sensorimotor processing,
sleep-wake cycles and arousal (Conn, Jones, & Lindsley, 2009; Wess,
Eglen, & Gautam, 2007).

The M1, M3, and M5 receptors classically signal through Gq/11, and
mediate the excitatory neuromodulatory actions of ACh, whereas the
M2 and M4 receptors signal through Gi/o and mediate the inhibitory
neuromodulatory actions of ACh (Felder, 1995).

Furthermore, by using mRNA techniques, specific antibodies and
radioligand binding assays, the M1 receptor was found to be the major
postsynaptic receptor across the cholinergic, glutamatergic, and
GABAergic neurons, whereas the M2 and M4 are the major presynaptic
receptors at the cholinergic, glutamatergic and GABAergic synapse
types in the brain (Lebois, Thorn, Edgerton, Popiolek, & Xi, 2017).

As shown by a neuroimaging study using single-photon emission
computed tomography, the non-selective muscarinic receptor ligand
[123I]-iodoquinuclidinyl benzilate decreased the expression of musca-
rinic receptors in the cortex and basal ganglia of schizophrenic patients
compared to healthy subjects. More importantly, the severity of positive
symptoms in these patients negatively correlated with expression
levels, implying a relevance of muscarinic receptors in the pathophysi-
ology of this neurological disorder (Raedler et al., 2003).

2.4.1. M1

The M1 receptors are abundantly expressed on glutamatergic neu-
rons and GABAergic interneurons of the cortex (Fig. 2). Decreased M1

receptor signaling has been linked to cognitive impairment associated
with schizophrenia (CIAS) and thus, enhancement of M1 receptor sig-
naling has been postulated to be a therapeutic target for CIAS
(Carruthers, Gurvich, & Rossell, 2015; Meltzer, 2015). In particular, M1

receptor activation has been shown to induce depolarization of hippo-
campal CA1 pyramidal neurons, which increases glutamatergic neuro-
transmission that eventually leads to long-term-potentiation-
mediated learning and memory formation (Dennis et al., 2016).

Clozapinewas the first AAP reported to improve CIAS in schizophre-
nia (Hagger et al., 1993). Notably, even though clozapine is an antago-
nist at M1, M3, and M5 receptors (Chew et al., 2008), its principal
metabolite norclozapine behaves as positive allosteric modulator of
theM1 receptor (Fig. 1) (Sur et al., 2003; Yohn&Conn, 2017). Therefore,
patients treated with clozapine who showed high norclozapine/cloza-
pine ratios, also showed improved memory and reduced learning
impairment as predicted by agonist/antagonist mixing studies
(Bräuner-Osborne & Brann, 1996; Rajji et al., 2015). Moreover, direct
stimulation of the M1 receptor by NDMC and the M1 receptor agonist
xanomeline in rats promotes release of ACh and dopamine in the PFC
and hippocampus, areas of the brain that arewell known for its involve-
ment in learning and memory (Li, Snigdha, Roseman, Dai, & Meltzer,
2008). Recently, Cardozo et al. (2017) showed that the M1 receptor at
the PFC is a specific and unique signature for clozapine's atypia.

In addition, although clozapine therapy usually lacks the traditional
anti-cholinergic side effects like dry mouth, it could instead promote
sialorrhea (Baldessarini & Frankenburg, 1991). These data strongly
suggest that the enhanced M1 receptor activity mediated by
norclozapine is likely responsible for the improvements observed in
memory and learning of schizophrenic patients, and regrettably for
side effects like hypersalivation (Bymaster et al., 2003). Nevertheless,
compared to potent classical muscarinic receptor antagonists, such as
atropine and scopolamine, olanzapine has only a partial anti-
ntipsychotics: Frommechanism of action to clinical differences, Phar-
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muscarinic activity and therefore is better tolerated by patients
(Bymaster et al., 1999).

2.4.2. M4

Clinical studies with xanomeline in patients with schizophrenia sug-
gest that the activation of M1/M4 receptors is effective in treating posi-
tive, negative, and cognitive symptoms of this disorder (Bolbecker &
Shekhar, 2012; Shekhar et al., 2008). Although it was generally believed
that M1, but not M4, receptor activation is associated with enhanced
cognitive function, recent preclinicalwork suggests that theM4 receptor
also has an important role in cognitive function (Galloway, Lebois,
Shagarabi, Hernandez, & Manns, 2014). Dopamine release induced by
amphetamine, or by the NMDA receptor antagonist PCP, was found to
be elevated in the NAc of M4 receptor knockout mice, suggesting a
role for the M4 receptor in preventing hyperexcitability in midbrain
dopamine neurons (Tzavara et al., 2004). Furthermore, M4 receptor
knockout mice showed increased basal locomotor activity along with
PPI deficits, highlighting the potential of M4 receptors in treating psy-
chosis (Gomeza et al., 1999; Koshimizu, Leiter, & Miyakawa, 2012).

Regarding AAPs, clozapine behaves as M4 receptor antagonist in the
rat striatum (Olianas, Maullu, & Onali, 1997), while its metabolite
norclozapine behaves as M4 receptor agonist in the human neocortex
(Fig. 1) (Gigout, Wierschke, Dehnicke, & Deisz, 2015). Olanzapine
appears to be a weak partial agonist at the M4 receptor (Zeng, Le, &
Richelson, 1997), but in some experimental conditions it behaves as
an antagonist instead (Zhang & Bymaster, 1999).

In summary, clozapinehas a unique activity onmuscarinic receptors,
and the positive allosteric modulation of M1 receptors through its
metabolite norclozapine is relevant for its cognitive effect and other
peculiar characteristics. Importantly, olanzapine is a muscarinic recep-
tor antagonist with a weak/medium affinity and this may be relevant
to explain the low risk to cause EPS.

2.5. Histaminergic system and histamine receptors

Histamine is synthesized by histidine decarboxylase and acts on the
four histamine receptors H1, H2, H3 and H4. The histaminergic projec-
tions in the CNS originate from the tuberomamillary nucleus of the pos-
terior hypothalamus and innervatemany regions of the brain, including
the cerebral cortex, hippocampus, amygdala, striatum and other areas
of the brain stem. The activity of histaminergic neurons is regulated by
a wide variety of neurochemicals such as glutamate, glycine, GABA, bio-
genic amines, purines, peptides and metabolic signals (Haas, Sergeeva,
& Selbach, 2008).

2.5.1. H1

The H1 receptor is ubiquitously expressed, specifically in the CNS
and blood vessels, and has an excitatory activity preferentially coupling
to Gq/11 proteins (Panula et al., 2015; Seifert et al., 2013). In the CNS, the
H1 receptor is involved in regulating locomotor activity, emotions, cog-
nitive functions, arousal, sleep, circadian rhythm and pain perception.
Moreover, theH1 receptor participates in themodulation of energy con-
sumption, food intake and respiration (Schneider, Neumann, & Seifert,
2014). Clozapine, olanzapine and quetiapine have high occupancy
values for the H1 receptors in human brain at minimum clinical doses
(Sato et al., 2015). The H1 receptor is found to be expressed in the supe-
rior cervical ganglion, and the action of clozapine at this level may be a
factor partly responsible for its adverse effects, i.e. orthostatic hypoten-
sion and hypersalivation, the latter due to innervation of salivary glands
from the superior cervical ganglion (Cardozo et al., 2017). Weight gain
is one of the major side effects of AAPs like clozapine, olanzapine,
quetiapine and asenapine, which have a very high affinity for H1 recep-
tors (Kim, Huang, Snowman, Teuscher, & Snyder, 2007; Kroeze et al.,
2003). Instead, risperidone and ziprasidone have low to medium affin-
ity for this receptor, and this might explain the reduced weight gain in
patients treated with them. H1 receptor antagonism is also responsible
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for sedation, a side effect that may be helpful in acute psychoses, partic-
ularly in agitated patients (Fig. 1) (Fang et al., 2016).

2.5.2. H3

The H3 receptor ismainly a presynaptic autoreceptor, and it acts as a
presynaptic heteroreceptor on non-histaminergic neural systems. It
inhibits the release of histamine and other neurotransmitters, such as
ACh, noradrenaline, dopamine or glutamate (Haas et al., 2008). Some
preclinical studies have highlighted the possible role of H3 receptor
antagonism in treating schizophrenia, particularly its role in cognition
(Ito, 2009), which was confirmed in schizophrenic patients by a mild
effect to improve cognition (Jarskog et al., 2015). In striatal post-
synaptic GABAergic neurons, the H3 and also the D1 and D2 receptors
are colocalized and form heterodimers, and this crosstalk has made
way for the possible development of new APs (Ferrada et al., 2009;
Vohora & Bhowmik, 2012). AAPs acting on the H3 auto- and
heteroreceptor, such as clozapine, facilitate the release of histamine,
noradrenaline, ACh and serotonin, and these neurochemical changes
are partly responsible for increase in food intake and improved cogni-
tion (Deng, Weston-Green, & Huang, 2010).

2.6. Noradrenergic system and noradrenergic receptors

Themain source of noradrenaline in the CNS is the locus coeruleus, a
small cluster of neurons located in the pons of the brainstem. Their pro-
jections distribute broadly to the neocortex, hippocampus, thalamus,
subthalamic nucleus and substantia nigra, and to a lesser extent to stri-
atum and spinal cord (Delaville, Deurwaerdère, & Benazzouz, 2011).
Noradrenaline acts on the noradrenergic α and β receptors. Generally,
the α1 and β receptors are stimulatory, while the α2 receptors are
inhibitory. The noradrenergic heteroreceptors are found on glutamater-
gic, GABAergic, dopaminergic, serotoninergic, histaminergic and
orexinergic neurons, showing a broad role of this neurotransmitter in
regulation of other neurotransmitter systems (Maletic, Eramo, Gwin,
Offord, &Duffy, 2017).Many AAPs have an affinity for the noradrenergic
α1 and α2 receptors as antagonists, and in spite of limited clinical evi-
dence, a role for the noradrenergic system has been proposed in schizo-
phrenia (Uys, Shahid, & Harvey, 2017).

2.6.1. α1 and α2

The noradrenergic α1 receptors have a role in controlling the
mesolimbocortical dopaminergic neurons, and in stimulating the locus
coeruleus, which affects dopaminergic neurons of the VTA. Noradrener-
gic α1 receptor antagonism by many AAPs, particularly clozapine, is
believed to contribute to the control of positive symptoms, and tomedi-
ate the correct firing of dopaminergic mesolimbic neurons (Svensson,
2003). In an experiment involving rodents, the deficits induced via
prepulse inhibition was reversed by clozapine, olanzapine and
quetiapine, behaving as α1 receptor antagonists (Carasso, Bakshi, &
Geyer, 1998).

These results indicate that addingα1 receptor blockade to D2 recep-
tor antagonism might synergistically contribute to overall AP activity.
Clozapine and other AAPs could also indirectly act on the dopaminergic
activity through 5-HT2A/2C and α1 receptors, with a lower occupancy of
D2 receptors and minimal interference with the reward system
(Svensson, 2003). Due to its role in energy regulation, the direct antag-
onism of α1 receptors increases adipogenesis, decreases energy expen-
diture and increases body weight (Basile et al., 2001).

In contrast to most other APs, clozapine, and norquetiapine (main
active metabolite of quetiapine) act as antagonists at the α2 receptor,
and this peculiar feature has been hypothesized to contribute to their
clinical profile (Fig. 1). Risperidone has a much lower affinity for the
α2 receptor than clozapine, but a slightly higher affinity than other
AAPs (Svensson, 2003). The α2 receptor antagonism of clozapine and
norquetiapine can be important for their antidepressive characteristics,
antipsychotics: Frommechanism of action to clinical differences, Phar-
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and this effect could partly explain the superiority of clozapine in
preventing suicide (Meltzer et al., 2003).

The α2 receptor blockers modulate firing of dopamine neurons in
the VTA (Fig. 2), and this may contribute to an increase of dopamine
in the mPFC (Kuroki, Meltzer, & Ichikawa, 1999; Svensson, 2003), an
effect that is correlated with the affinity for α2 and 5-HT2A/2C receptors.
Intriguingly, dopamine may also be released from noradrenergic neu-
rons behaving as a cotransmitter (Devoto, Flore, Pani, & Gessa, 2001).
Moderate D2 receptor blockade with a strong α2 receptor antagonist
may be a good profile for an AP, and this could be another peculiarity
of clozapine's mechanism of action (Svensson, 2003). The importance
of α2 receptors in schizophrenia has also been demonstrated by the
improvement of Positive and Negative Syndrome Scale positive scores
when mirtazapine was co-administered with TAPs (Terevnikov et al.,
2010).

2.7. Neurotrophic factors, synaptogenesis and neurogenesis

Several neuronal markers of neuroplasticity, such as the brain-
derived neurotrophic factor (BDNF), have been found altered in the
brain and/or in the plasma of schizophrenic patients (Kim & Na, 2017;
Miller, Buckley, Seabolt, Mellor, & Kirkpatrick, 2011; Molteni et al.,
2009). Accordingly, several studies have considered the role of various
neurotrophic factors in the mechanism of action of AAPs. Among
them, nerve growth factor (NGF), fibroblast growth factor (FGF2) and
especially BDNF have received most attention.

Several experiments in animal models representing pathological
conditions of schizophrenia have shown that AAPs, but not the TAP hal-
operidol, were able to reverse reduction of hippocampal BDNF expres-
sion (Fumagalli et al., 2004). In normal animals, during acute
treatment, AAPs have a limited effect on BDNF expression, and overall
these results are contradictory. On the contrary, during chronic treat-
ment, AAPs tend to increase BDNF expression, while haloperidol
induces down-regulation (Angelucci, Mathé, & Aloe, 2000; Chlan-
Fourney, Ashe, Nylen, Juorio, & Li, 2002; Lipska, Khaing, Weickert, &
Weinberger, 2001). In this case, increased expression of BDNF is depen-
dent on drug usage. For instance, olanzapine was able to increase BDNF
expression at a lower dose, while it reduced the expression at a higher
dose. A reduction of hippocampal BDNF mRNA was also observed at
high doses of risperidone (Chlan-Fourney et al., 2002). Following 8
months treatment of drug-naïve first-episode schizophrenic patients,
olanzapine, quetiapine, risperidone, aripiprazole and amisulpride sig-
nificantly increased serum BDNF levels, and they were able to increase
the volume of the left hippocampus (Rizos et al., 2014). Moreover, the
chronic use of lurasidone in rats increased the total BDNF mRNA levels
in the PFC, and to a lesser extent in the hippocampus (Fig. 1)
(Fumagalli et al., 2012). Finally, ziprasidone significantly attenuated
the decrease in BDNF mRNA expression in the hippocampus and neo-
cortex induced by stress in rat models of schizophrenia (Park et al.,
2009).

NGF is known to be relevant in the peripheral nervous system and
for cognitive functions. Haloperidol-induced reduction of neurotrophins
in vivo (rodent model) was counteracted by AAPs, and the NGF levels
were restored by risperidone and clozapine, while the BDNF levels
were increased by olanzapine (Parikh, Khan, & Mahadik, 2004; Parikh,
Terry, Khan, & Mahadik, 2004). However, the role of NGF in the mecha-
nism of action of AAPs has not been studied as much as that of BDNF
(Molteni et al., 2009).

Other than the most studied neurotrophic factors BDNF and NGF,
FGF2may also have a role in themechanism of action of APs. Moreover,
FGF2 is ubiquitously expressed in the adult brain, with the highest
expression in hippocampus and cortical areas (Turner, Watson, & Akil,
2012). Several studies involvinghaloperidol, chlorpromazine, clozapine,
quetiapine and olanzapine found that the induction of FGF2was unique
to clozapine (Molteni et al., 2009). In a subsequent study (rodent
model), chronic treatment with a combination of fluoxetine and
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olanzapine showed increased FGF2 mRNA levels in the PFC, as well as
in hippocampus and striatum (Chertkow, Weinreb, Youdim, & Silver,
2009; Maragnoli, Fumagalli, Gennarelli, Racagni, & Riva, 2004), with a
significant contribution in brain function and plasticity (Maragnoli
et al., 2004). In a similar rodent model, quetiapine completely reversed
the MK-801-mediated decrease in BDNF and FGF2 mRNA levels
(Fumagalli et al., 2004).

Neurotrophins regulate signaling pathways which influence the
activities of important kinases, like Akt, ERK and GSK3β (Huang &
Reichardt, 2001). In an in vitro experiment, the AAPs olanzapine,
quetiapine and clozapine, but not TAPs, increased the number of cells
bearing neurites by enhancing Akt and ERK phosphorylation (Lu &
Dwyer, 2005). Recently, our group demonstrated that clozapine and
other AAPs behave as biased agonists and activate ERK phosphorylation
in different cell lines through a 5-HT2A receptor-mediated G protein
independent pathway (Aringhieri et al., 2017). This evidence was pre-
ceded by another study on an animal model of schizophrenia, where
the relevance of 5-HT2A-receptor-mediated Akt activation was used to
explain clozapine's AP activity (Schmid, Streicher, Meltzer, & Bohn,
2014).

Additionally, it was hypothesized that the AAPs may stimulate
neurogenesis. Recently, in a rat model of stress-induced impairments
in neuronal structure in the hippocampus and PFC regions, clozapine
upregulated adult neurogenesis and neuronal survival, whereas halo-
peridol promoted a downregulation of these processes (Morais et al.,
2017). Similar to clozapine, other AAPs like quetiapine, olanzapine and
aripiprazole have also been shown to increase neural proliferation
(Chikama et al., 2017).

In conclusion, there is a plethora of preclinical evidence suggesting
that AAPs compared to TAPs offer a better profile in terms of neuro-
and synaptogenesis, with increased expression of neurotrophic factors
such as BDNF. The modulation of adult neuroplasticity promoted by
AAPs may be relevant in the long-term treatment of schizophrenia.

3. Newmechanisms of action of AAPs

3.1. Biased agonism at dopamine and serotonin receptors

According to the classical model for GPCR activation, agonist binding
to the receptor leads to conformational changes within the receptor
structure that results in the activation of the associated heterotrimeric
G protein. Nonetheless, over the past decade new mechanisms associ-
ated with GPCR function have been discovered, such as the ability of
β-arrestins to act as multifunctional proteins and to activate multiple
mediators like ERK, proto-oncogene tyrosine-protein kinase SRC,
nuclear factor-κB and phosphoinositide 3-kinase (Rajagopal,
Rajagopal, & Lefkowitz, 2010). The capacity of a ligand to preferentially
activate either G protein-dependent signaling or G protein-independent
signaling is called “biased agonism” or “functional selectivity”. This
innovative new concept reflects the heterogeneity and complexity of
the different receptor conformation states it can be transitioning when
specifically interacting with stimulants (Kenakin, 2013). In addition,
recent data have demonstrated how receptor functional selectivity is a
dynamic and adaptable process, which can also be modified by physio-
pathological conditions (Kaya et al., 2012).

Biased agonism has important implications for the design of thera-
peutic drugs that target specific receptor activities. Furthermore, this
new concept may be relevant to explain pharmacological differences
that were unnoticed till date among drugs whose clinical differences
were inexplicable. For example, biased agonism has been shown to be
important to explain differences among the β-receptor antagonists for
cardioprotection (Wisler et al., 2007) and among the μ-opioid receptor
agonists for managing pain (Raehal & Bohn, 2005; Schmid et al., 2017).

For the D2 receptor, one of the main target of APs, dopamine repre-
sents the endogenous ligand, which is equally effective in activating
both the Gi-mediated cAMP inhibition and the β-arrestin 2 signaling
ntipsychotics: Frommechanism of action to clinical differences, Phar-
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(Fig. 3a). Dopamine induced β-arrestin 2 activation has been shown by
using knockoutmicemodels. In particular, Gainetdinov, Premont, Bohn,
Lefkowitz, and Caron (2004) observed that mice lacking β-arrestin 2
have a reduced response to amphetamine-induced hyperlocomotion
and to apomorphine-induced behaviors. In addition, these studies dem-
onstrated that the D2-mediated β-arrestin 2 downstream signaling in-
hibits Akt, and thus increases the activation of GSK3 (Beaulieu,
Del'guidice, Sotnikova, Lemasson, & Gainetdinov, 2011). In this path-
way, a protein complex is formed with β-arrestin 2, Akt and protein
phosphatase 2A, which promotes the dephosphorylation/inactivation
of Akt. Consistent with this pathway, APs blocking D2 receptor activity
would also prevent D2 receptor-dependent β-arrestin 2 signaling, lead-
ing to an increased phosphorylation of Akt as suggested by experiments
involving rodent brain. Indeed, both AAPs and TAPs blockedβ-arrestin 2
translocation induced by quinpirole, while only TAPs, and not clozapine
or other AAPs, were able to fully antagonize Gi/o signaling (Fig. 3b)
(Masri et al., 2008). This might explain the pharmacological differences
among these two classes of APs, however, the clinical consequences are
yet to be determined.

Studies on biased agonists have further elucidated the role of
β-arrestin signaling in AP treatments. In particular, Allen et al. (2011)
designed aripiprazole-derived D2 receptor β-arrestin biased ligands,
namely UNC9975, UNC0006 and UNC9994, which showed AP activity
in vivo, but with less side effects. These compounds have a partial ago-
nist activity on β-arrestin 2 recruitment and are antagonists on Gi sig-
naling (Fig. 3c). From these data, they proposed that β-arrestin biased
agonism may offer protection against motor side effects. This mecha-
nism however was not shared by other AAPs, like clozapine. Taken to-
gether, these results suggest that both G protein and β-arrestin
signaling pathways are determinants in D2 receptor function, and that
AAPs can differently modulate these dual activities. In addition, these
studies provide new avenues towards targeting D2 receptors to treat
schizophrenia (Peterson et al., 2015).

In addition to the D2 receptor, the 5-HT2A receptor represents a
prominent target of AAPs and its dual activity on the G protein and
β-arrestin pathways has also been extensively demonstrated. In this
context, although clozapine is classically considered as an antagonist
on 5-HT2A receptors, it has a peculiar pharmacological property such
as activating Akt signaling through this receptor in vitro and in vivo.
Fig. 3. Biased agonism at the D2 receptor: potential role in themechanism of AAPs. (a) The end
arrestin 2 pathways. (b) Haloperidol (TAP) has a strong affinity for the D2 receptor, and it fully a
a strong antagonist on the β-arrestin 2 pathway, while it acts as a weak inhibitor of the G pr
UNC9994) were synthesized and tested in vitro and in vivo, and they were found to behave a
pathway.
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Thus clozapine behaves as a 5-HT2A receptor biased agonist via a G
protein-independent pathway (Fig. 4). Strikingly, clozapine-mediated
suppression of MK-801 and PCP-induced hyperlocomotion in mice
was dependent on 5-HT2A-induced Akt activation, thereby confirming
the relevance of this process in the AP activity of clozapine (Schmid
et al., 2014). In linewith this study, our group demonstrated in different
cell lines that clozapine, via a similarmechanism,was effective at induc-
ing ERK1/2 phosphorylation with a potency in the low micromolar
range. Subsequently, we carried out a systematic comparison between
AAPs and TAPs in relation to ERK 1/2 and Akt activation and found
that only quetiapine and olanzapine were partially active on ERK,
while TAPs like haloperidol and sulpiride did not have any relevant
effect. Similar differences between AAPs and TAPs were also found for
Akt phosphorylation (Aringhieri et al., 2017).

As previously mentioned, kinases such as ERK1/2 and Akt have
received particular attention for their relevance in synaptic plasticity,
neurogenesis, neuroprotection and neural processes that may be impli-
cated in schizophrenia, and that they may also contribute to the mech-
anism of actions of AAPs in the long term. These recent findings add a
new mechanism of action that may be partly responsible for the pro-
cesses involving 5-HT2A receptors. This peculiarity might explain the
superior efficacy of clozapine compared to other AAPs.

3.2. Receptor homomers and heteromers

Many data show that GPCRs, apart from being monomers, form
homodimers, heterodimers and higher-order oligomers through tran-
sient interactions on the plasma cell membrane (Scarselli et al., 2016).
This evidence was provided by new techniques based on single-
molecule microscopy mostly analyzing the formation of homodimers,
whereas there is hardly any high-resolution data available in relation
to the heteromerization process so far. There are several reports demon-
strating that the dimerization process occurs in the endoplasmic reticu-
lum aswell as at the plasmamembrane (Herrick-Davis,Weaver, Grinde,
&Mazurkiewicz, 2006). The functional relevance of this phenomenon is
still under scrutiny, for which many have found possible explanations
(Maggio, Rocchi, & Scarselli, 2013; Scarselli, Annibale, Gerace, &
Radenovic, 2013). These receptor complexes are potential novel targets
for developing better drugs that are more selective, more effective, and
ogenous neurotransmitter dopamine is capable of activating both the G protein and the β-
ntagonizes both signaling pathways. On the contrary, clozapine in vitro seems to behave as
otein pathway. (c) Recently, some derivatives of aripiprazole (UNC9975, UNC0006 and
s antagonists on the G protein pathway but to act as biased agonists on the β-arrestin 2
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Fig. 4. Biased agonism at the 5-HT2A receptor by clozapine and other AAPs. (a) Clozapine, and to a lesser extent olanzapine and quetiapine, act as biased agonists at the 5-HT2A receptor,
thereby activating intracellular pathways independent of G proteins, such as β-arrestin 2. This mechanism is responsible for activating ERK1/2 and Akt kinases, in vitro and in animal
models of schizophrenia. Conversely, all three AAPs antagonize the 5-HT2A-induced G protein activation. (b) Concentration-response curves of 5-HT2A-mediated ERK 1/2
phosphorylation in the presence of clozapine, olanzapine and quetiapine (Aringhieri et al., 2017).
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eventually have fewer side effects. The role of dimers or higher order
oligomers in schizophrenia has been investigated, and the action of
APs on these receptor complexes has been taken into consideration.
Striatal sections of postmortem schizophrenic patients display varia-
tions in dimer expression compared to healthy controls. For instance,
increases in D2 receptor expression and homodimeric fraction were re-
ported in postmortem schizophrenic patients (Seeman & Kapur, 2000;
Wang et al., 2010). Conversely, the glutamatergic mGlu3 receptor di-
mers were reduced in the PFC (Corti et al., 2007). However, the data
are still too preliminary to draw any conclusion.

Related to the mechanism of action of APs, the most analyzed het-
erodimeric complexes are the pairs, D1-D2, D2-D3, D2-A2A (adenosine),
5HT2A-D2 and 5HT2A-mGlu2 (Moreno, Holloway, & González-Maeso,
2013), and there is evidence of activity of AAPs on these receptor com-
plexes' expression and/or signaling. The adenosine receptor subtypeA2A

is coupled to Gs and it allosterically modulates the D2 receptor activity
(Fuxe et al., 2005).

The D1-D2 heteromer is thought to couple to a different G protein,
the Gq protein, and drive PLC-dependent calcium mobilization. The
increased activity of dopamine in schizophrenia may increase D1-D2

heteromer formation and therefore Gq-PLC signaling through the con-
comitant activation of both receptors, as seen in in vitro and in vivo
(striatum) studies. Interestingly, clozapine was able to dissociate the
D1-D2 dimer, thereby reducing the overstimulation of PLC and intracel-
lular calcium levels. The action of clozapine is effective at low concentra-
tions due to its high affinity to the D1-D2 receptor complex (Dziedzicka-
Wasylewska, Faron-Górecka, Górecki, & Kuśemider, 2008; Faron-
Górecka, Górecki, Kuśmider, Wasylewski, & Dziedzicka-Wasylewska,
2008). Along with D1-D2, the D1-D3 and D2-D3 heteromers have also
been taken into consideration. Previously, Scarselli et al. (2001) demon-
strated in vitro a synergistic interaction between the D2 and D3 recep-
tors forming a complex with high affinity for dopamine with unique
functional properties. On the D2-D3 heteromers, aripiprazole and
norclozapine, which are partial agonists onD2 receptors, acted as potent
antagonists that might contribute to their AP effect. The data suggest
that these two compounds may have different pharmacological charac-
teristics depending on the presence of heterodimeric complexes that
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may be different in dorsal versus ventral striatum (Maggio & Millan,
2010; Maggio, Scarselli, Capannolo, & Millan, 2015). Two studies have
found interactions between D1 and D3 receptors forming a heteromeric
complex, where the D3 receptor agonists increase the affinity for D1 re-
ceptor agonists and potentiate D1 receptor agonist-mediated signaling
through adenylyl cyclase (Fiorentini et al., 2008; Marcellino et al.,
2008). Guitart et al. (2014) showed that allosteric interactions between
these two receptors led to selective modulation of MAPK signaling and
recruitment of β-arrestin 1. These data add further complexity to D1 sig-
naling, however the pharmacology of the D1-D3 heteromer in relation to
APs is not yet known. Finally, there are several reports about D2-D4

heteromers and how they are able to modulate glutamate release
(Borroto-Escuela et al., 2011; González, Rangel-Barajas, et al., 2012). A
systematic study of the effects of APs on these heteromers has not
been done.

In addition, interactions with non-dopaminergic receptors have also
been reported and a possible role for A2A-D2, NMDA-D2 and D2-mGlu5
receptor heterodimers have been proposed (Borroto-Escuela et al.,
2016). The A2A-D2 receptor heterodimer has been studied in relation
with the pharmacology in PD and schizophrenia. The A2A receptor ago-
nists acted as APs in rat models through their antagonism on D2

receptor-mediated Gi/o signaling downstream the heteromer in the
striatopallidal GABAergic neurons (Borroto-Escuela et al., 2016). This
heterodimer most likely can interact with other receptors to form
hetero-oligomeric complexes, such as the A2A-D2-mGlu5 complex.
Some data indicate the existence of such oligomers on striatopallidal
GABA neurons. Fuxe et al. (2008) proposed that concomitant treatment
with A2A and mGlu5 receptor agonists could be a new strategy for
schizophrenia treatment via this complex. Moreover, glutamate activity
is further complicated by the existence of D2-NMDA as well as NMDA-
mGlu5 receptor complexes. Fuxe et al. (2008) suggested a dynamic bal-
ance between mGlu5-NMDA and D2-NMDA heterodimers, where the
mGlu5-NMDA-D2 complexes may transiently form as intermediates
(Borroto-Escuela et al., 2016). ThemGlu5 has also been shown to poten-
tially form higher order complexes with A2A and D2 receptors in the ro-
dent striatum, but their validation and relevance in psychotics is yet to
be tested (Cabello et al., 2009).
ntipsychotics: Frommechanism of action to clinical differences, Phar-
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Given the role of both dopamine and serotonin in themechanism of
action of AAPs, a possible interaction between their receptors has also
been considered. Notably, the presence of 5HT2A-D2 heteromers was
found in the ventral striatopallidal GABA pathway, PFC and pars
reticulata of substantia nigra of rat brain (Łukasiewicz, Faron-Górecka,
Kędracka-Krok, & Dziedzicka-Wasylewska, 2011). In vitro data
indicated that concomitant stimulation of these two receptors in the
heterodimeric complex enhanced PLC activation, while the D2

receptor-mediated inhibition of adenylyl cyclase was diminished by
co-stimulation of 5-HT2A receptors through a trans-inhibition mecha-
nism (Borroto-Escuela et al., 2010). In a cellular system expressing
both 5-HT2A and D2 receptors, the high affinity site of the 5-HT2A recep-
tor for clozapine was no longer detectable due to its interactions with
the D2 receptor (Łukasiewicz et al., 2011).

In other in vitro studies, interactions between the 5-HT2A and D2

receptors were studied by comparing them with the known genetic
variant 5HT2A(H452Y), and the effect of some APs was evaluated. The
heteromeric 5HT2A(H452Y)-D2 fraction was reduced compared to the
wild-type counterpart 5HT2A-D2, as evidenced by fluorescence reso-
nance energy transfer measurements. In these experiments, clozapine,
and not haloperidol, was able to restore the fraction of 5HT2A(H452Y)-
D2 heteromer at a level similar to the 5HT2A-D2 receptor complex
(Łukasiewicz et al., 2011). For the moment, the clinical consequences
related to this are still not clear as only few studies have proposed
that the 5HT2A(H452Y) polymorphismmay be responsible for different
clinical responses to AAP treatment (Wilffert, Zaal, & Brouwers, 2005).

Another receptor complex that seems to be involved in schizophre-
nia is the 5HT2A-mGlu2 heteromer of the somatosensory cortex inmice.
In particular, as shown by studies in vitro and in vivo, the 5HT2A-mGlu2
complex enhances the activity of the 5-HT2A component towards Gi, and
less on Gq (Fig. 5a), and the activation of the mGlu2 component of this
receptor complex arrests the hallucinogenic properties induced by 5-
HT2A receptor agonists, like lysergic acid diethylamide. Mechanistically,
the mGlu2 monomer has an allosteric negative effect on 5-HT2A-
mediated Gαq/11 activation, while enhancing its Gi/o activity.
Fig. 5.Mechanism of action of AAPs at signaling of the 5HT2A-mGlu2 receptor complex. (a) In ph
towards Gi, and less on Gq. (b) In animalmodels, psychedelic drugs invert this balance by increa
receptor upregulation may lead to an increase of Gq coupling at the expense of Gi signaling. (c)
physiological conditions.
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Intriguingly, in the postmortem cortex of schizophrenic patients there
is an increase of 5-HT2A receptor expression and a decrease ofmGlu2 re-
ceptors, whichmay be relevant to the pathogenesis of the disease. Also,
chronic use of clozapine, and not haloperidol, in mice induced a down-
regulation of both 5-HT2A and mGlu2 receptors in the somatosensory
cortex (González-Maeso et al., 2008). Following these initial studies,
Fribourg et al. (2011) demonstrated that the 5HT2A-mGlu2 heteromer
is crucial to determine the coupling to Gi/o or Gq/11, and different drugs
may switch either to one or another signaling pathway. In schizophre-
nia, themGlu2 downregulation and the 5-HT2A upregulationmay be as-
sociated with an increase of Gq coupling at the expense of Gi signaling
and, in healthy animals, psychedelic drugs like 5-HT2A agonists promote
a similar switch (Fig. 5b). Conversely, in animal models of schizophre-
nia, AP medications like clozapine and risperidone invert the 5HT2A-
mGlu2 heteromer activity in favor of Gi coupling, as it is in normal phys-
iological conditions (Fig. 5c). In contrast, haloperidol was unable to re-
vert such disruption (Fribourg et al., 2011). These results confirm the
relevance of the 5HT2A-mGlu2 receptor complex in regulating the sen-
sory functions in the somatosensory cortex, which may be disrupted
in schizophrenia. Clozapine was able to restore the original function of
this receptor complex with relevant consequences in animal models of
schizophrenia. So far, this is the most compelling evidence of a possible
role of heteromers in themechanism of actions of AAPs. Among various
strategies utilized to target pharmacologically receptor dimers, the use
of bivalent ligands, targeting both monomers simultaneously, have re-
ceived particular attention, and many bifunctional compounds have
been synthesized that can label and discriminate the presence of dimers
in vivo in animal tissues. This was demonstrated by McRobb, Crosby,
Yuriev, Lane, and Capuano (2012) by using clozapine as a template to
design a series of compounds where two molecules of clozapine were
bound together with spacers of different length to label D2 receptor di-
mers. However, the clinical use of these compounds is non-trivial as
their pharmacokinetic properties are often unfavorable for in vivo ad-
ministration. Intriguingly, on this topic, our grouphas discovered a com-
pound, SB269,652, with dualsteric properties, which means that it acts
ysiological conditions, the 5HT2A-mGlu2 receptor complex enhances the activity of 5-HT2A
sing Gq activity, and in schizophrenic patientsmGlu2 receptor downregulation and 5-HT2A
Conversely, clozapine is able to restore the balance in favor of Gi coupling, as observed in
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as an antagonist on the D2 monomer, but as an allosteric negative mod-
ulator on the D2 dimer (Rossi, Fasciani, Marampon, Maggio, & Scarselli,
2017; Silvano et al., 2010). Hence, this compound switches its antago-
nistic properties in favor of a mild negative allosterism in the presence
of dimers, and this peculiar profile could offer some therapeutic advan-
tages along with better tolerability in terms of side effects, such as par-
kinsonism and hyperprolactinemia (Carli et al., 2018). Finally, the use of
so-called disrupting peptides has been an additional approach for
targeting heteromers, where, instead of promoting or stabilizing the
complex, peptides have been used to disrupt these complexes
(Moreno et al., 2017; Viñals et al., 2015). They have been successfully
deployed in vivo. However, as their in vivo stability is too short, they
need to be optimized for their long-termdelivery as therapeutics as sug-
gested by Viñals et al. (2015).

Overall, these examples show how GPCR homo- and heter-
omerization provide new mechanisms to modulate GPCR signaling in
physiological and pathophysiological conditions related to schizophre-
nia. However, even though these preliminary data look promising,
there is a stringent need to find additional confirmation in vivo, and to
discover new drugs that are able to interact exclusively with these re-
ceptor complexes.

4. Clinical differences among AAPs

In clinical practice, the question as to which AP should be preferred
to ensure the highest probability of therapeutic success for treating
schizophrenia or other psychoses is a complex and fascinating subject,
as this mostly depends on the patient's condition and on the personal
experience of the psychiatrist. However, many clinical studies have sys-
tematically compared AAPswith TAPs in terms of efficacy, quality of life,
tolerability, drop out and side effects, andmost of them demonstrated a
better outcomewith AAPs in several aspects (Leucht et al., 2009; Leucht
et al., 2013; Leucht et al., 2017). Though, not all AAPs have achieved the
same results, and among them, only clozapine, olanzapine, risperidone
and amisulpride have systematically been shown to have an improved
pharmacological profile in the treatment of positive and negative symp-
toms of schizophrenia compared to the prototypical TAP haloperidol,
with clozapine being the most effective (Leucht et al., 2009). However,
Fig. 6. Continuum spectrum of atypia: the three levels of atypicality. Based on the molecular
risperidone is least atypical (Level I) and clozapine is most atypical (Level III), while all other
on the right add up, beginning with the D2 and 5-HT2A receptors that are common targets fo
activity that seem specific to clozapine. Further targets, such as H1 and α2 receptors and BDNF
well explained according to their molecular profile on different targets.
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the clinical differences became less evident when haloperidol was
used at lower doses, particularly in comparison with risperidone, al-
though when confronted with the other three AAPs, in particular with
clozapine, the differences still persisted, at least to a certain degree
(Leucht, Wahlbeck, Hamann, & Kissling, 2003). This confirms the
uniqueness of clozapine's clinical effect based on its ideal activity on do-
pamine and serotonin receptors, strongly in favor of the second, and
also on other targets, i.e. muscarinic and noradrenergic receptors, gly-
cine transporter and BDNF (Lieberman et al., 2005). Conversely,
risperidone's activity is mostly based on a similar antagonism at dopa-
mine and serotonin receptors, making it the least atypical in the family
of AAPs. For these reasons, we propose a continuum spectrum of atypia
that ranges from risperidone, the least atypical, to clozapine, the most
atypical, while all other AAPs fall within these extremes of the spectrum
(Fig. 6). On the other side, this characteristic makes risperidone a strong
AP, very efficacious against psychotic symptoms of schizophrenia with
pharmacological properties in certain aspects similar to that of haloper-
idol (Komossa et al., 2011). Similar considerations can be made for
amisulpride, whose atypical characteristics at low doses become less
evident at higher doses (Curran & Perry, 2002). Indeed, amisulpride's
receptor profile is limited, mostly active on D2/D3 (medium D2 koff)
and on 5-HT7 receptors.

On the same topic, a very largemeta-analysis, focused on a period of
about 2months, was carried out through direct and indirect comparison
of the 15 most commonly used APs, including many AAPs and the two
prototypic TAPs haloperidol and chlorpromazine. Regarding the overall
activity, clozapine was significantly more effective than all other APs
followed by amisulpride, olanzapine and risperidone, while quetiapine
and aripiprazole together with new AAPs showed an overall efficacy
similar to that of haloperidol and chlorpromazine (Leucht et al., 2013).

Despite considerable progresses in the pharmacological treatment of
schizophrenia, about 1/3rd of patients are refractory to treatment, lead-
ing to increased morbidity and mortality. On treatment-resistant
patients, clozapine is superior to all other AAPs, and since its discovery
is still considered the ‘gold standard’ for treatment-refractory schizo-
phrenia (Table 1) (Siskind, McCartney, Goldschlager, & Kisely, 2016).
Clinical studies have confirmed that clozapine is the treatment of choice
not only in treatment-refractory schizophrenia, but also for patients
profiles presented in Fig. 1, we propose to classify the AAPs in three categories, where
s fall within these two extremes of the spectrum (Level II). The molecular targets shown
r all AAPs, extending to additional mechanisms such as M1 positive allosterism and GlyT
, are relevant to both Level II and III of atypia. The clinical characteristics of each AAP are
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Table 1
Clozapine, the gold standard AAP: pros and cons.

Pros Cons

• Efficacy in treatment-refractory schizophrenia
• Efficacy on negative and cognitive symptoms
(improved verbal fluency)

• Efficacy in psychoses associated with PD
• Efficacy in patients who develop TD
• Only FDA-approved AAP to lower suicide risk and
to exert some antidepressant properties

• Diminished aggressive behaviors
• No EPS
• No TD
• No increase in serum prolactin

• Agranulocytosis (0.7-1%)
• Weight gain
• Hyperglycemia, increase
in triglycerides

• Sialorrhea
• Risk of epileptic seizure
• Risk of myocarditis
• Sedation
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who display violent behaviors and/or are at high risk of suicide (Fakra &
Azorin, 2012).

Apart from clinical differences among APs in terms of their efficacy,
they differ in their side effects for which there is consensus in the scien-
tific community. Regarding motor side effects, there is a continuum
among AAPs starting from clozapine that practically never shows EPS
and ending with risperidone that shows a notable rate of parkinsonism
compared to others, especially at higher dose (Leucht et al., 2013). Sim-
ilar to clozapine, quetiapine also never shows EPS, and for olanzapine
this adverse event is quite rare. Another relevant motor side effect
that concerns psychiatrists in the use of APs, particularly in the long
term, is the occurrence of TD, a potentially irreversiblemovement disor-
der, the pathophysiology of which is not yet well understood (Lerner,
Miodownik, & Lerner, 2015). The prevalence of TD in patients exposed
to APs is about 20% after one year, with a cumulative increase of 5%
per year during AP exposure (Stegmayer, Walther, & van Harten,
2018; Yassa& Jeste, 1992). The introduction of AAPs has been associated
with a strong reduction of TD, however they still may cause TD, and this
possibility should not be underestimated (Woods et al., 2010). The inci-
dence of TD is about 2 to 10 times less for AAPs than for TAPs, depending
on the study analyzed, and therefore there is a general consensus to pre-
fer AAPs for long-term treatment. Among the AAPs, clozapine has the
least propensity to induce TD, though it is yet to be determinedwhether
the new AAPs, like ziprasidone, lurasidone and asenapine, are associ-
ated with a reduction of TD (Scarff & Casey, 2011). Strikingly, there is
clinical evidence that clozapine very rarely causes TD, and moreover it
may have beneficial effects on patients who develop this long-term
motor complication. Hence, clozapine should be considered for patients
who develop TDwhile receiving other APs (Bassitt & Louzã Neto, 1998).

Though in terms of motor side effects and hyperprolactinemia the
AAPs are superior to TAPs, unfortunately the AAPs cause weight gain
and other metabolic problems. For instance, olanzapine and clozapine
treatments are associatedwith the greatest risk of weight gain, whereas
quetiapine, risperidone and amisulpride show low-to-moderate levels
of this undesired effect. Interestingly, the newAAPs such as ziprasidone,
lurasidone and asenapine seem to have a low likelihood to cause these
side effects. However, this advantage has to be balanced against their
therapeutic efficacy, as these new drugs seem to be less effective in
treating psychosis when compared to other AAPs (Leucht et al., 2017).
As mentioned previously, the mechanisms of action associated with
weight gain are complex and they involve many receptors like H1, 5-
HT2C and other 5-HT receptors, and D2 receptors. Interestingly, a poly-
morphism on the 5-HT2C receptor was proposed to predict weight
gain (Sicard et al., 2010; Zhang&Malhotra, 2013). Recent evidence sup-
ports nutritional interventions and psychoeducational programs for
preventing AP-induced weight gain (Curtis et al., 2016). This approach
was associated with lesser weight gain in participants treated with
olanzapine (Jacobowitz, Derbabian, & Saunders, 2014). Different pro-
grams that included nutrition, physical activity and psychoeducation,
have been shown to be useful in reducingweight in a clinical population
taking APs (Magni et al., 2017).
Please cite this article as: Aringhieri, S., et al., Molecular targets of atypical
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Regardingmetabolic problems, clozapine, and especially olanzapine,
may be associated with hyperglycemia and dyslipidemia, hence they
should be avoided in diabetic and/or obese patients (Table 1). These
side effects are in part a consequence of weight gain and in part are
due to mechanisms that involve both peripheral and central molecular
targets. The blockade of hypothalamic 5-HT2C and H1 receptors results
in increased appetite and weight gain, while M3 receptor antagonism
inhibits M3 receptor-induced insulin secretion from the pancreatic
beta cells, and therefore leads to hyperglycemia (Ballon et al., 2018;
Liu et al., 2017).

In relation to side effects, it is also relevant to mention that AAPs,
especially sertindole, might induce electrocardiogram alterations, like
QTc prolongation, and for this reason patients should be carefully mon-
itored (Beach, Celano, Noseworthy, Januzzi, & Huffman, 2013).

Dealing with other difficult situations present in schizophrenia, the
negative symptoms (apathy, anhedonia, asociality) and cognitive
impairment are relevant features that might profoundly affect clinical
recovery and social rehabilitation. On negative symptoms, the data are
consistently in favor of AAPs compared to TAPs, and this has been a
turning point since the introduction of clozapine. There are mainly
two reasons to explain these differences. First, TAPs worsen negative
symptoms of schizophrenia because of their strong antagonism at D2

receptors that has a negative impact on dopaminergic activity in the
PFC. Second, AAPs increase dopamine, noradrenaline and ACh efflux in
the PFC, which has a positive clinical outcome, although the deleterious
effect of TAPs on negative symptoms is less detrimental at lower dos-
ages. Differenceswithin the AAP family are small, however a continuum
of efficacy on negative symptoms, starting with risperidone (the least)
and ending with clozapine and olanzapine (the most) has been found
in different studies (Alvarez, Ciudad, Olivares, Bousoño, & Gómez,
2006). The suppression of negative symptoms may be influenced in
part by reduction of positive symptoms, and this further complicates
any clinical investigation (Czobor & Volavka, 1996).

Regarding the cognitive deficits associatedwith schizophrenia, AAPs
may produce a mild remediation with differential effects on specific
cognitive domains. Clozapine significantly improves verbal fluency
more than any other AAP (Woodward, Purdon, Meltzer, & Zald, 2005),
and quetiapine and olanzapine seem more effective in attention and
processing speed (Désaméricq et al., 2014), while risperidone shows
the least beneficial effects on these cognitive domains, which may be
due to its high affinity for D2 receptors (Nielsen et al., 2015). Conversely,
the cholinomimetic properties of clozapine, through its metabolite
norclozapine acting particularly on the M1 receptor, may contribute to
its favorable profile in cognition (Olianas, Maullu, & Onali, 1999; Zorn,
Jones, Ward, & Liston, 1994). Interestingly, besides the anti-muscarinic
activity of olanzapine, and also clozapine in part, these two AAPs do
not appear to have a negative impact on patient's cognitive functions,
at least at low-medium doses (Kennedy et al., 2001; Street et al.,
2000). Alternatively, the possible cognitive enhancement induced by
clozapine, olanzapine and quetiapine may be related to increased re-
lease of dopamine and other neurotransmitters in the PFC and hippo-
campus (Ichikawa, Li, Dai, & Meltzer, 2002; Shirazi-Southall,
Rodriguez, & Nomikos, 2002). There is a number of clinical data indicat-
ing amodest effectiveness of AAPs in cognitive improvement (Davidson
et al., 2009; Keefe et al., 2007; Nielsen et al., 2015; Vreeker, van Bergen,
& Kahn, 2015).

Another aspect that needs to be addressed is the use of AAPs in psy-
choses associated with PD which may be caused either by the progres-
sion of this disease or by the use of L-Dopa or dopamine agonists
(Zahodne & Fernandez, 2008). A number of studies have been con-
ducted investigating the role of AAPs, like clozapine, quetiapine,
olanzapine and risperidone, for this adverse effect, and among them,
only clozapine, at low dose, demonstrated superiority over placebo in
reducing the psychotic symptoms (Parkinson Study Group, 1999). In
few open-label studies, patients treated with quetiapine experienced
partial resolution of psychosis, but these data have not been confirmed
antipsychotics: Frommechanism of action to clinical differences, Phar-
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in double-blind trials. Furthermore, theuse of quetiapinewas associated
with a high prevalence of dropouts due to its adverse effects (Jethwa &
Onalaja, 2015). Olanzapine and risperidonewere unable to significantly
improve psychotic symptoms, and in some cases they even exacerbated
motor complications (Jethwa & Onalaja, 2015). On this topic,
pimavanserin has recently been approved for psychoses associated
with PD. Pimavanserin is a preferential 5-HT2A receptor antagonist
with some residual activity on 5-HT2C receptors as well, but it is devoid
of activities on almost all other receptors targeted by AAPs (Cummings
et al., 2014; Sarva & Henchcliffe, 2016). These results support the high
relevance of the 5-HT2A receptor and, secondly, the 5-HT2C receptor to
attenuate psychoses in PD, a mechanism that may be shared, at least
in part, by clozapine. However, the mechanism of action of clozapine
on this aspect is probablymore complex. Unfortunately, these favorable
characteristics of clozapine have to bewell balancedwith its side effects,
like agranulocytosis, weight gain and metabolic problems, all advocat-
ing a careful monitoring of the patients by clinicians.

In conclusion, clinical evidence has found important differences
among AAPs, with clozapine being the best choice in different medical
conditions, such as treatment-refractory schizophrenia, in psychoses
associated with PD and in patients who develop TD (Table 1). Besides
clozapine, AAPs like olanzapine, amisulpride and risperidone have also
shown superiority compared to other APs, even if risperidone and
amisulpride often present motor side effects and hyperprolactinemia.
These diversities are quite well explained by their profiles on different
molecular targets. The weight gain and metabolic problems, associated
especially with clozapine and olanzapine, urge psychiatrists for a tai-
lored therapy designed as per patient's condition.

5. Therapeutic drug monitoring (TDM) of AAPs: towards
a personalized therapy

From prescribed dose to clinical drug response, multiple factors of a
pharmacokinetic and pharmacodynamic nature are determinant for the
therapeutic success of AAPs. Since the conception of personalized phar-
macotherapy, strong efforts havebeenmade to understand all interindi-
vidual variables that influence the therapeutic response, and to tailor
the required dosage for individual patients. This is particularly relevant
for psychiatric disorders where more than 1/3rd of the patients do not
receive any benefit from the pharmacological treatment, and where
20-60% of the patients, in the long-term, suspend drug usage either
due to side effects or for non-adherence (poor compliance).

Considering the high variability in drugmetabolism among patients,
TDM is a rational approach for optimizing and personalizing pharmaco-
therapy, where the drug plasma concentration (Cp) can be a relevant
parameter for drug efficacy and tolerability. Some AAPs have shown a
good correlation between their Cp and the highest probability of
response with minimized risk of adverse drug reactions. Indeed, TDM
of APs is particularly useful for identifying a non-response at therapeutic
doses, uncertain drug adherence, pharmacokinetic drug-drug interac-
tions and reduced side effects. In addition, for someparticular categories
of patients like children, adolescents, pregnant women, elderly individ-
uals and persons with intellectual disabilities, TDM seems particularly
useful (Hiemke et al., 2018).

For AAPs, the prediction of Cp after drug administration is difficult,
and many interindividual factors affect this parameter (Grundmann,
Kacirova, & Urinovska, 2014; Kornhuber, Wiltfang, Riederer, & Bleich,
2006; Mauri et al., 2001; Mauri et al., 2007). Many studies related to
the variability between AAP dose and Cp have been done with cloza-
pine, which nowadays is frequentlymonitored. The Cp of clozapine can-
not be predicted due to large interindividual variability factors, such as
sex, weight, smoking and concomitant use of other medications that
influence CYP450 activity (e.g. CYP1A2) (Rostami-Hodjegan et al.,
2004). In particular, with a fixed dose of clozapine of 400mg/day,
Potkin et al. (1994) found a very large Cp variability, ranging from 40
to 1911 ng/ml. Ageing was also shown to increase the Cp of clozapine
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as its active metabolite norclozapine increases up to 72% in older
patients (Castberg, Westin, Skogvoll, & Spigset, 2017). Sex related
differences in Cp was reported to be higher in females (Castberg et al.,
2017; Mauri et al., 2004). On the contrary, smoking lowers the Cp of
clozapine by inducing CYP1A2 (Lopez & Kane, 2013). Fluvoxamine
was shown to increase the Cp of clozapine up to 10 times, and this is
related to its inhibitory activity on CYP1A2. On the other hand,
co-administrationwith carbamazepine, a CYP3A4 and CYP1A2 inducing
drug, resulted in a substantial decrease in the Cp of clozapine (Jerling,
Lindström, Bondesson, & Bertilsson, 1994). Similar interactions were
found with other AAPs like olanzapine and risperidone when they
were co-administered either with SSRIs (e.g. fluoxetine and paroxe-
tine), which are mostly CYP2D6 and CYP2C19 inhibiting drugs, or with
carbamazepine (Spina & de Leon, 2007). Genetic variants regarding
the CYP450 family could also explain some Cp variability and efficacy
among AAPs (Pouget, Shams, Tiwari, & Müller, 2014). For example,
several studies have shown that CYP2D6 polymorphismsmay influence
the efficacy of risperidone, however these data are controversial
(Almoguera et al., 2013; Kakihara et al., 2005).

Neuroimaging studies have demonstrated that EPS may occur when
more than 80% of D2 receptors in the striatum are blocked. Importantly,
a correlation was found between the D2 receptor occupancy and the Cp
of the APs, whereas such a relationship with dosage was less clear.
Indeed, the Cp is a good predictor for its cerebral concentration
(Hiemke et al., 2011), especially for lipophilic drugs where the blood-
brain barrier efflux transporters are poorly involved. A recent finding
confirmed a good correlation between Cp and D2 receptor occupancy
of AAPs in striatal areas (Grundmann et al., 2014).

Other studies have found that the relationship between Cp and D2

receptor occupancy is nicely fit by a hyperbolic saturation curve (one
site model), where risperidone and olanzapine, at higher concentra-
tion, may exceed 80% of receptor occupancy, while clozapine or
quetiapine never reach this level (Lako, van den Heuvel,
Knegtering, Bruggeman, & Taxis, 2013; Uchida et al., 2011). These
curves show a good correlation between predicted and observed re-
ceptor occupancy in relation to the drug Cp. The prediction of D2 re-
ceptor occupancy in relation to Cp is particularly valid for
olanzapine, less for risperidone and not significant for clozapine.
For risperidone, blood-brain barrier efflux transporters such as P-
glycoprotein (P-gp) may be responsible for lowering its concentra-
tion in the brain, thus reducing the above mentioned correlation,
while in the case of clozapine, the lack of this correlation may be
due to its lower affinity for the D2 receptor. Interestingly, P-gp phar-
macogenetics contribute to the efflux of APs from the CSF, and three
different polymorphisms have been associated with the variation in
AP efficacy (Pouget et al., 2014), particularly for risperidone. The ex-
pression of P-gp is controlled by many factors besides the genetic
background, such as pathophysiological conditions, hormones and
diet (Miller, 2015).

The effect of APs on D2 receptor occupancy was also studied in
extrastriatal regions. In the case of clozapine, Gründer et al. (2006)
showed a larger occupancy for cortical receptors than striatal ones at
clinically significant Cp. However, the data are controversial and Agid
et al. (2007), for olanzapine and risperidone, found a correlation
between clinical outcomes and receptor occupancy only in striatal, but
not extrastriatal regions. Recently, some in vivo studies have analyzed
the possible relationship between Cp and receptor occupancy for
other targets such as the 5-HT2A receptor in the cortex and GlyT1 trans-
porters, however the information is still too preliminary (Alberati et al.,
2012; Mamo et al., 2004).

Regarding drug efficacy, several studies have found a good correla-
tion between AP response and its Cp, especially for clozapine and
olanzapine. In fact, TDM of these two drugs is strongly recommended
as indicated by the Arbeitsgemeinschaft für Neuropsychopharmakologie
und Pharmakopsychiatrie consensus guidelines (Level I recommenda-
tion) (Hiemke et al., 2018).
ntipsychotics: Frommechanism of action to clinical differences, Phar-
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Perry, Miller, Arndt, and Cadoret (1991) for the first time showed in
treatment-resistant schizophrenic patients that a Cp of clozapine
greater than 350 ng/ml resulted in a 64% clinical response, while
below this level the responsewas only 22%. Other studies have also con-
firmed a cut off for clozapine efficacy at 350 ng/ml (Kronig et al., 1995;
Perry, 2000) or 420 ng/ml (Mauri et al., 2007; Potkin et al., 1994; Spina
et al., 2000). However, this evidence has not always been confirmed due
to the complexity and variability of the analysis (Dettling et al., 2000).

In addition, a correlation was found between Cp of clozapine and
increased risk of epilectic seizures, and hence the proposed therapeutic
range is currently 350–600 ng/ml, with an upper alert limit of 1000
ng/ml (Hiemke et al., 2018; Mauri et al., 2007). A concentration above
1000 ng/ml increases the risk of delirium, confusion and seizures
(Grundmann et al., 2014). In addition, a fluctuation of clozapine Cp is
predictive for relapses and re-hospitalization in schizophrenic patients,
where TDM may reduce such risks and show important cost-effective
advantages (Hiemke et al., 2018). There is also some evidence for a dis-
tinct relationship between Cp and clinical efficacy of olanzapine and
risperidone.

In conclusion, several data have pointed out the utility of TDM for
clinical use of AAPs as stated by the Arbeitsgemeinschaft für
Neuropsychopharmakologie und Pharmakopsychiatrie consensus guide-
lines, particularly for clozapine and olanzapine (Hiemke et al., 2018).
In addition, the relatively narrow therapeutic range of clozapine sug-
gests that in most individuals, besides any intervariabilities, there is a
clinical response above a Cp of 350 ng/ml. Does this mean that cloza-
pine, among themany receptors targeted, has just one or some few spe-
cific mechanisms? Or does it mean that the many targeted receptors
converge in something specific? Intriguingly, lithium also has a narrow
therapeutic window with a threshold at 0.5 mM. These questions
demand further investigation into the mechanisms of action of AAPs
in relationship with their pharmacokinetic and pharmacodynamic
properties.

6. Conclusions

In this review, we have highlighted the pharmacological differences
among theAAPswith the scope tofinda link between themolecular tar-
gets of AAPs and their clinical characteristics. Many have questioned the
classification of APs into the two classes of TAPs and AAPs, underlining
that each AP shows unique characteristics. In fact, in clinical practice,
many psychiatrists are inclined toward a tailored therapy according to
the patient's characteristics and risks of side effects. As a consequence,
treatment is mainly decided by trying to avoid the risk of motor side
effects, weight gain and other metabolic issues associated with APs.

However, despite the inherent variety among all APs, we still believe
that the classification of AAPs is an important reference for research and
clinical use alike. The concept of atypia is still intact in its essence and
refers to a category of APs (AAPs) which demonstrate reduced motor
problems, reduced hyperprolactinemia, and reduced worsening of apa-
thy and anhedonia along with a possible improvement of negative and
cognitive symptoms of schizophrenia. Other therapeutic advantages
relate to efficacy in treatment-refractory schizophrenia, psychoses asso-
ciated with PD and TD. In all these conditions, clozapinemay be consid-
ered as the gold standard of AAPs.

In addition, in order to reconcile the concept of atypicality and the
diversity of each AAP, we propose a continuum spectrum of atypia
that ranges from risperidone, the least atypical, to clozapine, the most
atypical, while all the other AAPs fall within the extremes of this spec-
trum (Fig. 6). It is worth mentioning that risperidone and amisulpride
can lose their atypicality at higher doses.

Importantly, the clinical characteristics of each AAP could be pre-
dicted by their molecular profile on different targets. For instance, the
ratio of 5-HT2A/D2 and 5-HT2C/D2 receptor affinity together with a
rapid koff from the D2 receptor are two important factors that distin-
guish AAPs in terms of efficacy and side effects. However, these two
Please cite this article as: Aringhieri, S., et al., Molecular targets of atypical
macology & Therapeutics (2018), https://doi.org/10.1016/j.pharmthera.20
mechanisms are not mutually exclusive, considering the relevance of
5-HT2A/2C receptors for regulating dopamine release in the synaptic
cleft. Intriguingly, some AAPs were shown to have biased signaling
activities at D2 and 5-HT2A receptors, and therefore are able to preferen-
tially activate a specific receptor-mediated intracellular signaling path-
way. For instance, in some experimental models, clozapine has been
shown to act as a biased agonist at the 5-HT2A receptor and to activate
ERK and Akt, although the clinical consequences of these effects are
yet to be determined.

Besides D2 and 5-HT2A/2C receptors, other molecular targets are rel-
evant to further characterize the AAPs, and among them, 5-HT1 partial
agonism, D3 antagonism,H1 antagonism,α2 antagonism,muscarinic an-
tagonism (moderately), M1 positive allosterism, BDNF production and
GlyT blocking have received particular attention. Clozapine has a unique
profile on these molecular targets and this might explain its broad clin-
ical activity. Moreover, this raises many questions: are all these molec-
ular targets equally relevant to explain atypia or are some more
important than others? Do the many targeted receptors converge in
some specific cellular mechanisms? Are there still some undiscovered
molecular targets? These outstanding questions demand further inves-
tigations, and the answers will allow a better understanding of the
mechanism of atypia and to find new ways to develop better drugs.
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