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Abstract

Human dynamical social networks encode information and are highly adaptive. To characterize the information encoded in
the fast dynamics of social interactions, here we introduce the entropy of dynamical social networks. By analysing a large
dataset of phone-call interactions we show evidence that the dynamical social network has an entropy that depends on the
time of the day in a typical week-day. Moreover we show evidence for adaptability of human social behavior showing data
on duration of phone-call interactions that significantly deviates from the statistics of duration of face-to-face interactions.
This adaptability of behavior corresponds to a different information content of the dynamics of social human interactions.
We quantify this information by the use of the entropy of dynamical networks on realistic models of social interactions.
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Introduction

Networks [1–5] encode information in the topology of their

interactions. This is the main reason why networks are ubiquitous

in complexity theory and constitute the underlying structures of

social, technological and biological systems. The information

encoded in social networks [6,7] is essential to build strong

collaborations [8] that enhance the performance of a society, to

build reputation trust and to navigate [9] efficiently the networks.

For these reasons social networks are small world [10] with short

average distance between the nodes but large clustering coefficient.

Therefore to understand how social network evolve, adapt and

respond to external stimuli, we need to develop a new information

theory of complex social networks.

Recently, attention has been addressed to entropy measures

applied to email correspondence [11], static networks [12–14] and

mobility patterns [15]. New network entropy measures quantify

the information encoded in heterogenous static networks [12,14].

Information theory tools set the limit of predictability of human

mobility[15]. Still we lack methods to assess the information

encoded in the dynamical social interaction networks.

Social networks are characterized by complex organizational

structures revealed by network community and degree correlations

[16]. These structures are sometimes correlated with annotated

features of the nodes or of the links such as age, gender, and other

annotated features of the links such as shared interests, family ties

or common work locations [17,18]. In a recent work [19] it has

been shown by studying social, technological and biological

networks that the network entropy measures can assess how

significant are the annotated features for the network structure.

Moreover social networks evolve on many different time-scales

and relevant information is encoded in their dynamics. In fact

social networks are highly adaptive. Indeed social ties can appear

or disappear depending on the dynamical process occurring on the

networks such as epidemic spreading or opinion dynamics. Several

models for adaptive social evolution have been proposed showing

phase transitions in different universality classes [20–23]. Social

ties have in addition to that a microscopic structure constituted by

fast social interactions of the duration of a phone call or of a face-

to-face interaction. Dynamical social networks characterize the

social interaction at this fast time scale. For these dynamical

networks new network measures are starting to be defined [24]

and recent works focus on the implication that the network

dynamics has on percolation, epidemic spreading and opinion

dynamics [25–29].

Thanks to the availability of new extensive data on a wide variety

of human dynamics [30–34], human mobility [15,35,36] and

dynamical social networks [37], it has been recently recognized that

many human activities [26] are bursty and not Poissonian. New

data on social dynamical networks start to be collected with new

technologies such as of Radio frequency Identification Devices

[28,38] and Bluetooth [31]. These technologies are able to record

the duration of social interactions and report evidence for a bursty

nature of social interaction characterized by a fat tail distribution of

the duration of face-to face interactions. This bursty behavior of

social networks [28,38–42] is coexisting with modulations coming

from periodic daily (circadian rhythms) or weakly patterns [43]. The

fact that this bursty behavior is observed also in social interaction of

simple animals, in the motion of rodents [44], or in the use of words

[45], suggests that the underlying origin of this behavior is dictated

by the biological and neurological processes underlying the

dynamics of the social interaction. To our opinion this problem

remains open: How much can humans intentionally change the

statistics of social interactions and the level of information encoded

in the dynamics of their social networks, when they are interfacing

with a new technology?

In this paper we try to address this question by studying the

dynamics of interactions through phone calls and comparing it with

face-to-face interactions. We show that the entropy of dynamical

networks is able to quantify the information encoded in the dynamics
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of phone-call interactions during a typical week-day. Moreover we

show evidence that human social behavior is highly adaptive and that

the duration of face-to-face interaction in a conference follows a

different distribution than duration of phone-calls. We therefore have

evidence of an intentional capability of humans to change statistically

their behavior when interfacing with the technology of mobile phone

communication. Finally we develop a model in order to quantify how

much the entropy of dynamical networks changes if we allow

modifications in the distribution of duration of the interactions.

Results

Entropy of dynamical social networks
In this section we introduce the entropy of dynamical social

networks as a measure of information encoded in their dynamics.

Since we are interested in the dynamics of contacts we assume to

have a quenched social network G of friendships, collaborations or

acquaintances formed by N agents and we allow a dynamics of

social interactions on this network. If two agents i,j are linked in

the network they can meet and interact at each given time giving

rise to the dynamical social network under study in this paper. If a

set of agents of size N is connected through the social network G
the agents i1,i2, . . . in can interact in a group of size n. Therefore at

any given time the static network G will be partitioned in

connected components or groups of interacting agents as shown in

Fig. 1. In order to indicate that a social interaction is occurring at

time t in the group of agents i1,i2, . . . ,in and that these agents are

not interacting with other agents, we write gi1,i2,...,in (t)~1
otherwise we put gi1,i2,...,in (t)~0. Therefore each agent is

interacting with one group of size nw1 or non interacting

(interacting with a group of size n~1). Therefore at any given time

X
G~(i,i2,...,in)ji[G

gi,i2,...,in (t)~1: ð1Þ

where we indicate with G an arbitrary connected subgraph of G.

The history St of the dynamical social network is given by

St~fgi1,i2,...,in (t
0
)Vt
0
vtg. If we indicated by p(gi1,i2,...,in (t)~1jSt)

the probability that gi1,i2,...,in (t)~1 given the story St, the

likelihood that at time t the dynamical networks has a group

configuration gi1,i2,...,in (t) is given by

L~P
G

p(gi1,i2,...,in (t)~1jSt)
gi1,i2,...,in (t) ð2Þ

The entropy S characterizes the logarithm of the typical

number of different group configurations that can be expected in

the dynamical network model at time t and is given by

S~{Slog LTjSt
that we can explicitly express as

S~{
X

G

p(gi1,i2,...,in (t)~1jSt)log p(gi1,i2,...,in (t)~1jSt): ð3Þ

According to the information theory results [46], if the entropy is

vanishing, i.e. S~0 the network dynamics is regular and perfectly

predictable, if the entropy is larger the number of future possible

configurations is growing and the system is less predictable. If we

model face-to-face interactions we have to allow the possible

formation of groups of any size, on the contrary, if we model the

mobile phone communication, we need to allow only for pairwise

interactions. Therefore, if we define the adjacency matrix of the

network G as the matrix aij , the log likelihood takes the very

simple expression given by

L~P
i

p(gi(t)~1jSt)
gi (t) P

ijjaij~1
p(gij(t)~1jSt)

gij (t) ð4Þ

with

gi(t)z
X

j

aijgij(t)~1, ð5Þ

for every time t. The entropy is then given by

S~{
X

i

p(gi(t)~1jSt)log p(gi(t)~1jSt)

{
X

ij

aijp(gij(t)~1jSt)log p(gij(t)~1jSt): ð6Þ

Social dynamics and entropy of phone call interactions
We have analyzed the call sequence of subscribers of a major

euroepan mobile service provider. We considered calls between

users who at least once called each other during the examined 6
months period in order to examine calls only reflecting trusted

social interactions. The resulted event list consists of 633,986,311
calls between 6,243,322 users. For the entropy calculation we

Figure 1. The dynamical social networks are composed by different dynamically changing groups of interacting agents. In panel (A)
we allow only for groups of size one or two as it typically happens in mobile phone communication. In panel (B) we allow for groups of any size as in
face-to-face interactions.
doi:10.1371/journal.pone.0028116.g001
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selected 562,337 users who executed at least one call per a day

during a week period. First of all we have studied how the entropy

of this dynamical network is affected by circadian rhythms. We

assign to each agent i~1,2 a number ni~1,2 indicating the size of

the group where he/she belongs. If an agent i has coordination

number ni~1 he/she is isolated, and if ni~2 he/she is interacting

with a group of n~2 agents. We also assign to each agent i the

variable ti indicating the last time at which the coordination

number ni has changed. If we neglect the feature of the nodes, the

most simple transition probabilities that includes for some memory

effects present in the data, is given by a probability pn~pn(t,t) for

an agent in state n at time t to change his/her state given that he

has been in his/her current state for a duration t~t{ti.

We have estimated the probability pn(t,t) in a typical week-day.

Using the data on the probabilities pn(t,t) we have calculated the

entropy, estimated by a mean-field evaluation (Check Text S1) of

the dynamical network as a function of time in a typical week-day.

The entropy of the dynamical social network is reported in Fig. 2.

It significantly changes during the day describing the fact that the

predictability of the phone-call networks change as a function of

time. In fact, as if the entropy of the dynamical network is smaller

and the network is an a more predictable state.

Adaptive dynamics face-to face interactions and phone
call durations

In this section we report evidence of adaptive human behavior by

showing that the duration of phone calls, a binary social interactions

mediated by technology, show different statistical features respect to

face-to-face interactions. The distributions of the times describing

human activities are typically broad [26,28,30,32,38,39], and are

closer to power-laws, which lack a characteristic time scale, than to

exponentials. In particular in [38] there is reported data on Radio

Frequency Identification devices, with temporal resolution of 20 s,

showing that both distribution duration of face-to-face contacts and

inter-contact periods is fat tailed during conference venues.

Here we analysed the above defined mobile-call event sequence

performing the measurements on all the users for the entire 6

months time period. The distribution of phone-call durations

strongly deviates from a fat-tail distribution. In Fig. 3 we report

Figure 2. Mean-field evaluation of the entropy of the dynamical
social networks of phone calls communication in a typical week-
day. In the nights the social dynamical network is more predictable.
doi:10.1371/journal.pone.0028116.g002

Figure 3. Probability distribution of duration of phone-calls. (A) Probability distribution of duration of phone-calls between two given
persons connected by a link of weight w. The data depend on the typical scale t?(w) of duration of the phone-call. (B) Probability distribution of
duration of phone calls for people of different age. (C) Probability distribution of duration of phone-calls for people of different gender. The
distributions shown in the panel (B) and (C) do not significantly depend on the attributes of the nodes.
doi:10.1371/journal.pone.0028116.g003
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this distributions and show that these distributions depend on the

strength w of the interactions (total duration of contacts in the

observed period) but do not depend on the age, gender or type of

contract in a significant way. The distribution Pw(Dtin) of duration

of contacts within agents with strenght w is well fitted by a Weibull

distribution

t�(w)Pw(Dtin)~Wb x~
Dt

t?(w)

� �
~

1

xb
e
{ 1

1{b
x1{b

: ð7Þ

with b~0:47::. The typical times t�(w) used for the data collapse

of Figure 3 are listed in Table 1. The origin of this significant

change in behavior of humans interactions could be due to the

consideration of the cost of the interactions (although we are not in

the position to draw these conclusions (See Fig. 4 in which we

compare distribution of duration of calls for people with different

type of contract) or might depend on the different nature of the

communication. The duration of a phone call is quite short and is

not affected significantly by the circadian rhythms of the

population. On the contrary the duration of no-interaction periods

is strongly affected by periodic daily of weekly rhythms. The

distribution of no-interaction periods can be fitted by a double

power-law but also a single Weibull distribution can give a first

approximation to describe P(Dtno): In Fig. 5 we report the

distribution of duration of no-interaction periods in the day

periods between 7AM and 2AM next day. The typical times t�(k)
used in Figure 5 are listed in Table 2.

Discussion

The entropy of a realistic model of cell-phone
interactions

The data on face-to-face and mobile-phone interactions show

that a reinforcement dynamics is taking place during the human

social interaction. Disregarding for the moment the effects of

circadian rhythms and weakly patterns, a possible explanation of

such results is given by mechanisms in which the decisions of the

agents to form or leave a group are driven by memory effects

dictated by reinforcement dynamics, that can be summarized in

the following statements: i) the longer an agent is interacting in a group the

smaller is the probability that he/she will leave the group; ii) the longer an

agent is isolated the smaller is the probability that he/she will form a new

group. In particular, such reinforcement principle implies that the

probabilities pn(t,t) that an agent with coordination number n
changes his/her state depends on the time elapsed since his/her

last change of state, i.e., pn(t,t)~fn(t). To ensure the reinforce-

ment dynamics any function fn(t) which is a decreasing function of

its argument can be taken. In two recent papers[41,42] the face-to-

face interactions have been realistically modelled with the use of

the reinforcement dynamics, by choosing

fn(t)~
bn

(tz1)
: ð8Þ

with good agreement with the data when we took bn~b2 for n§2
and b1w0, b2w0.

In order to model the phone-call data studied in this paper we

can always adopt the reinforcement dynamics but we need to

modify the probability fn(t) by a parametrization with an

additional parameter bƒ1. In order to be specific in our model

of mobile-phone communication, we consider a system that

consists of N agents. Corresponding to the mechanism of daily

cellphone communication, the agents can call each other to form a

binary interaction if they are neighbor in the social network. The

social network is characterized by a given degree distribution p(k)
and a given weight distribution p(w). Each agent i is characterized

by the size ni~1,2 of the group he/she belongs to and the last time

ti he/she has changed his/her state. Starting from random initial

conditions, at each timestep dt~1=N we take a random agent. If

the agent is isolated he/she will change his/her state with

probability

f
b

1 (t)~
b1

(tz1)b
ð9Þ

with t~t{ti and b1w0. If he/she change his/her state he/she

will call one of his/her neighbor in the social network which is still

not engaged in a telephone call. A non-interacting neighbor agent

will pick up the phone with probability f
b

1 (t’) where t’ is the time

he/she has not been interacting.

If, on the contrary the agent i is interacting, he/she will change

his/her state with probability f
b

2 (tjw) depending on the weight of

the link and on the duration of the phone call. We will take in

particular

f
b

2 (tjw)~
b2g(w)

(tz1)b
ð10Þ

where b2w0 and g(w) is a decreasing function of the weight w of

the link. The distributions f
b

1 (t) and f
b

2 (tjw) are parametrized by

the parameter bƒ1. As b increases, the distribution of duration of

Figure 4. Probability distribution of duration of phone-calls for
people with different types of contract. No significant change is
observed that modifies the functional form of the distribution.
doi:10.1371/journal.pone.0028116.g004

Table 1. Typical times t?(w) used in the data collapse of Fig. 3.

Weight of the link Typical time t?(w) in seconds (s)

(0–2%) wmax 111.6

(2–4%) wmax 237.8

(4–8%) wmax 334.4

(8–16%) wmax 492.0

(16–32%) wmax 718.8

doi:10.1371/journal.pone.0028116.t001
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contacts and duration of intercontact time become broader. These

probabilities give rise to either Weibull distribution of duration of

interactions (if bv1) or power-law distribution of duration of

interaction b~1. Indeed for bv1, the probability Pw
2 (t) that a

conversation between two nodes with link weight w ends after a

duration t is given by the Weibull distribution (See Text S1 for the

details of the derivation)

t�(w)Pw
2 (t)!Wb((tz1)=t?(w)) ð11Þ

with t?(w)~ 2b2g(w)½ �{1=(1{b)
. This distribution well capture the

distribution observed in mobile phone data and reported in Fig. 3

(for a discussion of the validity of the annealed approximation for

predictions on a quenched network see the Text S1 ).

If, instead of having bv1 we have b~1 the probability

distribution for duration of contacts is given by a power-law

Pw
2 (t)!(tz1){½2b2g(w)z1�: ð12Þ

This distribution is comparable with the distribution observed in

face-to-face interaction during conference venues [41,42]. The

adaptability of human behavior, evident when comparing the

distribution of duration of phone-calls with the duration of face-to-

face interactions, can be understood as a possibility to change the

exponent b regulating the duration of social interactions.

Changes in the parameter b correspond to a different entropy of

the dynamical social network. Solving analytically this model we

are able to evaluate the dynamical entropy as a function of b and

b1. In Fig. 6 we report the entropy S of the dynamical social

network a function of b and b1 in the annealed approximation and

the large network limit. In particular we have taken a network of

size N~2000 with exponential degree distribution of average

degree SkT~6, weight distribution P(w)~Cw{2 and function

g(w)~1=w and b2~0:05. Our aim in Fig. 6 is to show only the

effects on the entropy due to the different distributions of duration

of contacts and non-interaction periods. Therefore we have

normalized the entropy S with the entropy SR of a null model of

social interactions in which the duration of groups are Poisson

distributed but the average time of interaction and non interaction

time are the same as in the model of cell-phone communication.

From Fig. 6 we observe that if we keep b1 constant, the ratio S=SR

is a decreasing function of the parameter b indicating that the

broader are the distribution of probability of duration of contacts

the higher is the information encoded in the dynamics of the

networks. Therefore the heterogeneity in the distribution of

duration of contacts and no-interaction periods implies higher

level of information in the social network. The human adaptive

behavior by changing the exponent b in face-to-face interactions

and mobile phone communication effectively change the entropy

of the dynamical network.

In conclusion, in the last ten years it has been recognized that the

vast majority of complex systems can be described by networks of

interacting units. Network theory has made tremendous progresses

in this period and we have gained important insight into the

microscopic properties of complex networks. Key statistical

properties have been found to occur universally in the networks,

such as the small world properties and broad degree distributions.

Moreover the local structure of networks has been characterized by

degree correlations, clustering coefficient, loop structure, cliques,

motifs and communities. The level of information present in these

characteristic of the network can be now studied with the tools of

information theory. An additional fundamental aspect of social

networks is their dynamics. This dynamics encode for information

and can be modulated by adaptive human behavior. In this paper

we have introduced the entropy of social dynamical networks and

we have evaluated the information present in dynamical data of

phone-call communication. By analysing the phone-call interaction

networks we have shown that the entropy of the network depends

on the circadian rhythms. Moreover we have shown that social

networks are extremely adaptive and are modified by the use of

technologies. The statistics of duration of phone-call indeed is

described by a Weibull distribution that strongly differ from the

distribution of face-to-face interactions in a conference. Finally we

have evaluated how the information encoded in social dynamical

networks change if we allow a parametrization of the duration of

Figure 5. Distribution of non-interaction times in the phone-call data. The distribution strongly depends on circadian rhythms. The
distribution of rescaled time depends strongly on the connectivity of each node. Nodes with higher connectivity k are typically non-interacting for a
shorter typical time scale t?(k).
doi:10.1371/journal.pone.0028116.g005

Table 2. Typical times t?(k) used in the data collapse of Fig. 5.

Connectivity Typical time t?(k) in seconds (s)

k = 1 158,594

k = 2 118,047

k = 4 69,741

k = 8 39,082

k = 16 22,824

k = 32 13,451

doi:10.1371/journal.pone.0028116.t002
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contacts mimicking the adaptability of human behavior. Therefore

the entropy of social dynamical networks is able to quantify how the

social networks dynamically change during the day and how they

dynamically adapt to different technologies.

Materials and Methods

In order to describe the model of mobile phone communication, we

consider a system consisting of N agents representing the mobile

phone users. The agents are interacting in a social network G
representing social ties such as friendships, collaborations or

acquaintances. The network G is weighted with the weights indicating

the strength of the social ties between agents. We use Nk
1 (t0,t)dt0 to

denote the number of agents with degree k that at time t are not

interacting and have not interacted with another agent since time

t’[(t0,t0z1=N). Similarly we denote by Nk,k’,w
2 (t0,t)dt0 the number

of connected agents (with degree respectively k and k’ and weight of

the link w) that at time t are interacting in phone call started at time

t’[(t0,t0z1=N). The mean-field equation for this model read,

LNk
1 (t0,t)

Lt
~{(1zck)Nk

1 (t0,t)f1(t0,t)zNpk
21(t)dtt0

LNk,k’,w
2 (t0,t)

Lt
~{2Nk,k’,w

2 (t0,t)f2(t0,tjw)zNpk,k’,w
12 (t)dtt0

ð13Þ

where the constant c is given by

c~

P
k’

Ð t

0
dt0Nk’

1 (t0,t)f1(t0,t)P
k’ k’

Ð t

0
dt0Nk’

1 (t0,t)f1(t0,t)
: ð14Þ

In Eqs. (13) the rates ppq(t) indicate the average number of agents

changing from state p~1,2 to state q~1,2 at time t. These rates can

be also expressed in a self-consistent way and the full system solved for

any given choice of f1(t0,t) and f2(t0,tjw) (See Text S1 for details).

The definition of the entropy of dynamical social networks of a

pairwise communication model, is given by Eq. (6). To evaluate the

entropy of dynamical social network explicitly, we have to carry out

the summations in Eq. (6). These sums, will in general depend on

the particular history of the dynamical social network, but in the

framework of the model we study, in the large network limit will be

dominated by their average value. In the following therefore we

perform these sum in the large network limit. The first summation

in Eq. (6) denotes the average loglikelihood of finding at time t a

non-interacting agent given a history St. We can distinguish

between two eventual situations occurring at time t: (i) the agent has

been non-interacting since a time t{t, and at time t remains non-

interacting; (ii) the agent has been interacting with another agent

since time t{t, and at time t the conversation is terminated by one

of the two interacting agents.The second term in the right hand side

of Eq. (6), denotes the average loglikelihood of finding two agents in

a connected pair at time t given a history St. There are two possible

situations that might occur for two interacting agents at time t: (iii)

these two agents have been non-interacting, and to time t one of

them decides to form a connection with the other one; (iv) the two

agents have been interacting with each other since a time t{t, and

they remain interacting at time t. Taking into account all these

possibilities we have been able to use the transition probability form

different state and the number of agents in each state to evaluate the

entropy of dynamical networks in the large network limit (For

further details on the calculation see the Text S1).
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SkT~6, the weight distribution is p(w)~Cw{2 and g(w) is taken to be g(w)~b2=w with b2~0:05. The value of S=SR is depending on the two
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