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Abstract

Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is
regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to ‘reset’ (adapt) the
bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this
feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently
found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex
pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium
containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different
possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to
variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to
different feedback configurations. Using a series of carefully designed experiments we discriminate between these models
and invalidate three of them. When these models are examined in terms of robustness to noise and parametric
uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a ‘cascade control’ feedback
architecture which is used extensively in engineering to improve system performance, including robustness. Given that the
majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback
architectures allow them to have better performance than others. In particular, cascade control may be an important feature
in achieving robust functionality in more complex signalling pathways and in improving their performance.
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Introduction

Living organisms respond to changes in their internal and

external environment in order to survive. The sensing, signalling

and response mechanisms often consist of complicated pathways

the dynamical behaviour of which is often difficult to understand

without mathematical models [1]. Considering the structure and

dynamics of these signalling pathways as integrated dynamical

systems can help us understand how the pathway architecture and

parameter values result in the performance and robustness in the

response dynamics [2].

One extensively studied sensory pathway is bacterial chemo-

taxis. This pathway controls changes in bacterial motion in

response to environmental stimuli, biasing movement towards

regions of higher concentration of beneficial or lower concentra-

tion of toxic chemicals. The chemotaxis signalling pathway in the

bacterium Escherichia coli is a simple network with one feedback

loop [3] which has been extensively studied and used as a

paradigm for the mechanism of chemotaxis signalling networks

[4]. In E. coli, chemical ligands bind to methyl-accepting

chemotaxis protein (MCP) receptors that span the cell membrane

and alter the activity of a cytoplasmic histidine kinase called CheA.

When attractant ligands stimulate the chemotaxis pathway by

binding to MCP, there is a decrease in the autophosphorylation

rate of CheA; conversely, repellent binding or lack of attractant

binding increase CheA autophosphorylation activity. CheA, when

phosphorylated, can transfer the phosphoryl group to two possible

response regulators: CheY and CheB. CheY-P (where ‘-P’ denotes

phosphorylation) interacts with FliM in the multiple E. coli flagellar

motors resulting in a change in the direction of rotation of the

motor. At the same time, a negative feedback loop allows the

system to sense temporal gradients and react to a wide ligand

concentration range: the MCP receptors, which are constantly

methylated by the action of a methyltransferase CheR, are de-

methylated by CheB-P. This negative feedback loop restores the

CheA autophosphorylation rate and the flagellar activity to the

pre-stimulus equilibrium state [5,6].

Describing this pathway mathematically as a dynamical system

can be facilitated by using tools from control theory. For example,

it has been shown that the adaptation mechanism in the E. coli

model [7,8] is a particular example of integral control, a feedback

system design principle used in control engineering to ensure the

elimination of offset errors between a system’s desired and actual

signals, irrespective of the levels of other signals [9].
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Many species have chemotaxis pathways that are much more

complicated than that of E. coli [10,11], either containing

chemotaxis proteins not found in E. coli, e.g. in the case of Bacillus

subtilis [12]; or containing multiple homologues of the proteins

found in the E. coli pathway, as in the case of Rhodobacter sphaeroides

[11,13]. Furthermore, in R. sphaeroides there are two receptor

clusters containing sensory proteins which localize to different

parts of the cell, one located at the cell pole and the other in the

cytoplasm [14]. Although the purpose of the two clusters is

unclear, in vitro phosphotransfer experiments [15,16] show that the

CheA homologues located at the two clusters can phosphotransfer

to different CheY and CheB homologues: at the cell pole CheA2-P

phosphotransfers to CheY3, CheY4, CheY6, CheB1 and CheB2,

while at the cytoplasm CheA3A4-P phosphotransfers to CheY6 and

CheB2. The two methylesterase proteins, CheB1 and CheB2,

which are homologues of CheB in E. coli, are responsible for the

adaptation mechanism in R. sphaeroides [13,17]. Past localization

studies have shown that CheB1 and CheB2 are found diffuse

throughout the cytoplasm [14]. This is different to E. coli where the

CheB protein is localized at the cell pole, and could potentially

mean that the two proteins de-methylate either receptor cluster

[14].

As a system featuring an adaptation mechanism similar to that

in E. coli, but with multiple homologues of the E. coli chemotaxis

proteins, it is useful to examine the R. sphaeroides chemotaxis

pathway from a control engineering perspective. In this way, we

can suggest structures for the R. sphaeroides chemotaxis pathway

that integrate the control mechanisms thought to be responsible

for adaptation in E. coli along with the possible feedback

architectures that arise from the dual sensory modules present in

R. sphaeroides. The relative evolutionary advantages of the different

architectures can then be compared from both control engineering

and biological points of view. The fact that there are two

endogenous ‘measurements’ available to the feedback mechanism

(CheB1-P and CheB2-P) which can be used to regulate two signals

(CheA2 and CheA3A4) makes the whole chemotaxis feedback

pathway a multi-input, multi-output control system (as opposed to

possessing only one CheB and one CheA as in the E. coli models

[7,18]). This introduces extra degrees of freedom in the feedback

control mechanism of the system and, thus, the potential for better

regulation.

However, the different conceivable connectivity configurations

between the two CheB-P proteins and the two receptor clusters

actually correspond to different feedback control architectures,

each with different properties. Some of these configurations, as will

be demonstrated, could allow the bacterium to integrate

information from both internal and external sources and to

function more efficiently, e.g., by varying how strongly it reacts to

external attractants depending on its internal state. At the same

time, the additional receptor cluster not found in E. coli has the

potential of introducing extra sources of performance degradation

such as noise (both intrinsic and extrinsic) and variations in

quantities internal to the cell such as protein copy numbers and

phosphorylation rates: the feedback signalling pathway may be

required to remedy this, and in this regard, some of these feedback

architectures perform better than others.

One of the different pathway configurations that is possible in

this system has similarities to a feedback architecture commonly

found in engineering control systems termed cascade control [19],

which is usually employed when the process to be controlled can

be split into a slow ‘primary’ sub-process (G1 in Figure 1) and a

faster, secondary sub-process (G2 in Figure 1). Without the internal

feedback shown dashed in Figure 1 the primary module maintains

a set-point for the secondary module to follow and the output of

the secondary module is fed back to the primary. A cascade

control design places an additional feedback loop around the fast

secondary process (shown dashed). This has been known to

improve system performance in several ways: it reduces the

sensitivity of the output of the secondary module to changes in the

parameters (thus improving robustness), it attenuates the effects of

disturbance signals, it makes the step response of the control

system to inputs and disturbances less oscillatory and, since the

secondary process is relatively fast, the effects of unwanted

disturbances are corrected before they affect the system output.

Including this additional internal feedback also allows the control

system designer more flexibility in increasing the feedback gain to

achieve higher bandwidth and faster system responses without

losing stability. In fact, cascade control is employed as a design

principle in several engineering systems such as aircraft pitch

control and industrial heat exchangers (see Text S1 for further

details).

In our previous work [20], we used a model invalidation

technique to arrive at a possible pathway architecture that allows

the R. sphaeroides chemotaxis system to convey, via a signalling

cascade, sensed changes in ligand concentration outside the cell to

the flagellar motor. In that model, proteins CheY3-P and CheY4-P

act together to promote autophosphorylation of CheA3A4

(schematically illustrated in Figure 2(A)) whilst CheY6-P binds

Figure 1. A cascade control system. The subsystem G1 is slow
relative to G2 . Cascade control involves placing a negative feedback
loop (dashed line) around the fast secondary module. This scheme
helps reduce the sensitivity of the system’s output to uncertainties in
the subsystems G1 and G2.
doi:10.1371/journal.pcbi.1001130.g001

Author Summary

Bacteria move towards favourable environments by
changing their swimming pattern. An important feature
of this response, which is called bacterial chemotaxis, is
that their sensing ability remains independent of the
background environment in which they find themselves.
This feature has been studied extensively in the bacterium
E. coli, which has a simple chemotaxis decision mechanism.
However, it has been recently found that most bacteria
could potentially have a much more complicated decision
mechanism for this response. In this paper, we look at the
chemotaxis behaviour of one such bacterium, R. sphaer-
oides. We develop mathematical models of possible
decision mechanisms and undertake an experimental
procedure to investigate their validity. We find that only
one of four such models can explain the chemotaxis
response in R. sphaeroides. Compared to the other models,
this model corresponds to a decision mechanism that
provides the bacterium with improved swimming perfor-
mance over the others. Moreover, this decision mechanism
has been used extensively to improve performance in
several engineering systems. We suggest that this
mechanism may play an important role in improving
chemotactic performance in other bacteria and in other
signalling pathways.

Chemotaxis Feedback Control Architecture
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with the FliM rotor switch to increase the frequency of motor

switching (and hence reduce the motor rotation frequency). This

stimulation of CheA3A4 need not be a direct interaction [20].

In this paper, we assume that the chemotaxis pathway has the

same forward signalling pathway of [20] and then suggest four

plausible interconnection structures for the feedback pathway

between the two CheB-P proteins and the two receptor clusters.

Following this, we present the results of experiments that are used to

invalidate all but one of these structures. We then discuss the results

of in silico experiments that highlight the differences in chemotactic

performance between the different models with particular focus on

the robustness of chemotaxis to parametric variations in the

chemotaxis pathway and noise [21,22]. Using analytical techniques

from control theory, we demonstrate that the model not invalidated

by our experiments is structurally similar to the cascade control

architecture, and we use the structural properties of this

interconnection, which are commonly used to reduce the effects

of uncertainty and disturbances in various engineering applications,

to explain the robustness features of the suggested model.

Results

Chemotaxis model creation
Given the structure of the forward path of the chemotaxis

pathway from [20], illustrated in Figure 2(A), and given the rates

previously measured in [15,16] for the phosphotransfer reactions

also shown in Figure 2(A), we constructed a generic ordinary

differential equation model of the R. sphaeroides chemotaxis

pathway, detailed in Materials and Methods. With this forward

signalling pathway, the model makes the following assumptions:

Figure 2. Chemotaxis in R. sphaeroides. (A) The chemotaxis pathway in R. sphaeroides as currently understood, including the forward chemotaxis
pathway previously proposed [20]. MCP: transmembrane methyl accepting chemotaxis protein, Tlp: cytoplasmic methyl accepting chemotaxis
protein, A: CheA histidine protein kinase, W: CheW a linker protein between receptors and CheA, Y: the response regulator CheY, B: the response
regulator CheB, R: the methyltransferase CheR. P indicates a phosphoryl group. The number in subscript denotes one of the multiple homologues in
R. sphaeroides. The flagella motor is shown at the right of the figure. (B) The possible de-methylation feedback structures for the phosphorylated
proteins CheB1-P and CheB2-P in R. sphaeroides. Each possible connection is denoted by a (red) thick solid, dashed or dotted line. Possible models
involve combinations of these four lines. Interactions from the phosphotransfer network are shown in (black) thin dashed arrows, receptor activation/
de-activation is denoted by (black) thin solid lines.
doi:10.1371/journal.pcbi.1001130.g002
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N Polar and cytoplasmic cluster receptors are either methylated

or un-methylated.

N Only a subset of methylated receptors is active, as in [23].

N CheR2/CheR3 act to methylate inactive receptors whilst

proteins CheB1-P/CheB2-P de-methylate active polar and

cytoplasmic receptors with unknown connectivity, as in [23].

N A sensed increase in ligand concentration causes a reduction in

the number of active receptors.

N Active polar and cytoplasmic receptors promote the auto-

phosphorylation of CheA2 and CheA3A4 respectively.

N CheY3-P and CheY4-P act together to promote autopho-

sphorylation of CheA3A4 (Figure 3) whilst CheY6-P binds the

FliM rotor switch to increase the frequency of motor switching.

N Through the phosphotransfer network, a decrease in the

number of active receptors due to a sensed increase in ligand

concentration results in a subsequent decrease in the amount

of CheY3-P, CheY4-P, CheY6-P, CheB1-P and CheB2-P.

One effect of a sensed increase in ligand concentration is a

decrease in the flagellar switching frequency due to decreased

amounts of CheY6-P binding with FliM. Figure 3 shows the result

of a simulation of the signalling pathway that demonstrates the fall

in the concentration of CheY6-P in response to a step decrease in

the number of active receptors at the polar or at the cytoplasmic

clusters. The reaction rates of the phosphotransfer network are

such that a change in the number of active receptors at the

cytoplasmic cluster causes a faster fall in CheY6-P concentration

than does a similar change in the number of active receptors at the

polar cluster.

Qualitatively, the adaptation mechanism in the generic ODE

model presented in Materials and Methods functions as follows:

CheB1-P and CheB2-P are assumed to de-methylate active

receptors, and the phosphotransfer network responds to a sensed

increase in ligand concentration by reducing the concentration of

CheB1-P, CheB2-P, CheY3-P, CheY4-P and CheY6-P. This results

in a reduction in the de-methylation rate of active receptors in the

two receptor clusters, and also results in a decrease in the flagellar

stopping frequency (which corresponds to an increase in the

flagellar rotation rate). The constant methylation of inactive

receptors by CheR2 and CheR3 then causes the number of

methylated receptors, and, it is assumed, of active receptors, to

increase. Thus, the number of active receptors is eventually

restored to its pre-stimulus equilibrium level. In turn, the

phosphotransfer network then restores the amount of CheY6-P,

and hence the flagellar switching frequency, back to its original

level. According to the model of the forward signalling pathway,

the proteins CheB1-P and CheB2-P therefore act as feedback

signals that restore the chemotaxis pathway to its original state.

However, the exact connectivity between CheB1-P/CheB2-P and

the two receptor clusters is unknown.

To determine the most likely interconnection structure and to

provide a rationale of how such a structure may be advantageous in

terms of chemotactic performance, we created four variants of the

generic ODE model with the forward pathway, each having a

different interconnection structure between the proteins CheB1-P/

CheB2-P and the two receptor clusters (Figure 2(B)). All models were

able to produce wild type response data and behaved as expected for

the response data generated with gene deletions available at the time.

The unknown parameters in the models (K1, K21
, K22

, K3 and ~KK1,
~KK21

, ~KK22
, ~KK3) were fitted to wild type data for each model. The

significance of these parameters is as follows:

N K1, ~KK1 : Along with the sensed ligand concentration, these

parameters determine the proportion of methylated receptors

that are active at the polar and cytoplasmic clusters

respectively.

N K21
, K22

: These parameters determine the strength of the

CheB1-P, CheB2-P feedbacks to the polar cluster respectively.

N ~KK21
, ~KK22

: These parameters determine the strength of the

CheB1-P, CheB2-P feedbacks to the cytoplasmic cluster

respectively.

N K3, ~KK3 : These parameters represent the activity of CheR2/

CheR3 respectively.

For notational convenience, it is useful to group the CheB1-P/

CheB2-P feedback gains K21
, K22

, ~KK21
, ~KK22

into a feedback matrix

K2~
K21

K22

~KK21
~KK22

� �
. The four CheB1-P and CheB2-P feedback

connectivities (and their associated K2) for which models were

constructed are as follows:

I. CheB1-P regulates the methylation state of the polar

receptor cluster and CheB2-P of the cytoplasmic cluster

only (shown in solid de-methylation reactions in Figure 2

(B)): K2~
K21

0

0 ~KK22

� �
.

II. CheB1-P regulates the methylation state of both the polar

cluster and the cytoplasmic cluster while CheB2-P de-

methylates only cytoplasmic cluster receptors (solid de-

methylation reactions and the dotted de-methylation

reaction in Figure 2 (B)): K2~
K21

0
~KK21

~KK22

� �
.

III. CheB1-P and CheB2-P both regulate the methylation state

of the polar receptor cluster and CheB2-P of the

cytoplasmic receptor cluster only (solid de-methylation

reactions and the dashed de-methylation reaction in

Figure 2 (B)): K2~
K21

K22

0 ~KK22

� �
.

Figure 3. The speed of response of each cluster to input
signals. The response of the normalized CheY6-P concentration to a
step decrease, at time 10 seconds, in the number of active receptors at
the polar cluster (from Ra = 1 mM to Ra = 0 mM, dashed) and at the
cytoplasmic cluster (from ~RRa = 1 mM to ~RRa = 0 mM, solid). Such a
decrease in active receptors can be due to a step increase in sensed
ligand. A step decrease in active polar cluster receptors results in a
slower fall in the normalized CheY6-P concentration (90%-10% fall time:
50.57 sec) than would an identical change in the number of active
cytoplasmic cluster receptors (90%-10% fall time: 21.98 sec).
doi:10.1371/journal.pcbi.1001130.g003
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IV. CheB1-P and CheB2-P both regulate the methylation state

of both receptor clusters (solid de-methylation reactions,

the dashed de-methylation reaction and the dotted de-

methylation reaction in Figure 2 (B)): K2~
K21

K22

~KK21
~KK22

� �
.

After constructing these four models, we carried out

experiments to differentiate between them, by finding the

optimal initial conditions of the cells in the assay so as to

maximize the difference between the outputs of the different

models [20,24]. The conditions searched were limited to what

could be implemented experimentally and included deletions,

over-expression of proteins and combinations of these. To

confirm these conditions allow for invalidation, simulations were

run of the four models I–IV testing the possible initial conditions

and inputs. The simulations showed that the initial conditions

that allow for the best model invalidation were the deletion of

CheR3 and, in a separate experiment, the deletion of CheB1

(Figure 4).

The experiments were then implemented in R. sphaeroides,

subjecting a population of cells to a step increase in ligand

concentration (propionate) and then measuring the resulting

flagellar activity through a tethered cell assay (Figure 4).

Experimentally the deletion of either CheB1 or CheR3 resulted

in cells with a rotation frequency of 28 Hz that showed no

noticeable response to the addition or removal of ligand. In the

simulations, only Models I and III displayed this behaviour upon

deletion of CheR3 (Figure 4, top row) and only Model III

displayed this behaviour upon deletion of CheB1 (Figure 4, bottom

row). Models I, II and IV were thus invalidated and only Model

III was able to replicate the experimental data. As a test of this

model invalidation, a further experiment wherein CheB2 was

deleted was performed. The result of this experiment and the

outputs of the four models under the CheB2 deletion (overlaid) are

shown in Figure 5. Models I and III were once again able to

replicate the deletion data whilst Models II and IV produced

outputs that differed from the experimental outcome.

Figure 4. Model invalidation. Top left: Simulations of the wild type Models I–IV and with CheR3 deleted in response to 100 mM of ligand added at
100 seconds and removed at 220 seconds. Top right: Average responses of wild type cells and CheR3 deletion cells in a tethered cell assay with
100 mM of propionate added at 100 seconds and removed at 220 seconds. Bottom left: Simulations of the wild type Models I–IV (dashed line) and
with CheB1 deleted in response to 100 mM of ligand added at 100 seconds and removed at 220 seconds. Bottom right: Average responses of wild
type cells and CheB1 deletion cells in a tethered cell assay with 100 mM of propionate added at 100 seconds and removed at 220 seconds. Cells rotate
counter clockwise hence negative Hz values are observed. Ligand addition is marked by grey shading.
doi:10.1371/journal.pcbi.1001130.g004
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Dynamic properties of chemotaxis models
The experiments described above demonstrated that the

proposed Models I, II and IV are invalid, being unable to explain

experimental data. To compare the four models further, in silico

experiments were performed on the data-fitted Models I–IV that

compared how the different feedback configurations affect chemo-

tactic performance in terms of the sensitivity of the flagellar stopping

frequency in response to variations in the values of the models’

biochemical parameters and in response to noise. Following these

results, we use linear models with structures that represent the

different connectivities of Models I–IV to analyze these structures’

relative sensitivities to parametric variations and noise.

Chemotactic performance. The performance of the

different chemotaxis models was compared by simulating the

efficiency of each model in ascending an attractant gradient, as

illustrated in Figure 6 (left). For each chemotaxis model, Figure 6

shows the average distance travelled up the attractant gradient by

ten bacteria during a simulation lasting 80 seconds. As shown in

Figure 6 (right), the chemotactic performances of the different

models according to this measure were nearly identical (see

Materials and Methods for more details).

Response to noisy ligand variations. The bacterium’s

environment is typically composed of regions of high and low

chemoattractant or chemorepellant concentrations. Additionally,

the bacterium will sense small, fast fluctuations in the detected

level of ligand due to molecular noise. To test how sensitive the

chemotaxis Models I–IV are to such ligand fluctuations, an in silico

experiment was performed on each model in which the ligand

concentration sensed by the polar cluster, L, was modelled as the

noisy signal L = max(0,1+g), where g is a white noise signal with a

zero-mean, unit variance Gaussian distribution. The resulting

rotation frequencies were then recorded and are shown in Figure 7.

As can be seen in Figure 7, ligand level fluctuations sensed at the

polar cluster of receptors resulted in larger variance of the rotation

frequency in Models I, II and IV than in Model III.

The sensitivity of the chemotaxis Models I–IV to ligand inputs

was then tested in two in silico experiments which were performed

on each model and in which the flagellar rotation frequency was

recorded in response to sinusoidal variations in the ligand signals

L and ~LL (the latter of which corresponds to ligand inputs acting on

the cytoplasmic cluster). As can be seen in Figure 8, ligand level

fluctuations sensed at the polar cluster of receptors resulted in

larger changes in the rotation frequency in Models II and IV than

in I and III. When the ligand concentration variations were sensed

at the cytoplasmic cluster the result was a greater variation in the

rotation frequency in Models I and III than in the other two

models. Once more, these simulations suggest that CheB1-P de-

methylating the cytoplasmic cluster differentiates the performance

of Models II and IV from Models I and III.

Parametric sensitivity analysis of the chemotaxis

models. To investigate the sensitivity of the models to

parameter variations, we performed an in silico experiment in

which, for each of the different chemotaxis models, the variation of

the steady-state of the chemotaxis system was measured under

randomly chosen values of the copy numbers of chemotaxis proteins

 

 

Figure 5. Deletion of CheB2. Average responses of CheB2 deletion
cells in a tethered cell assay with 100 mM of propionate added at
200 seconds and removed at 512 seconds. Solid lines: simulations of
the Models I–IV with CheB2 deleted in response to 100 mM of ligand
added at 200 seconds and removed at 512 seconds. Cells rotate
counter clockwise hence negative Hz values are observed. Ligand
addition is marked by grey shading.
doi:10.1371/journal.pcbi.1001130.g005

Figure 6. Comparison of chemotactic performance. The four chemotaxis models are simulated in a two-dimensional environment, wherein the
chemoattractant concentration L has a ramp profile that varies along the x-direction only, such that L = 100x for x.0 and L = 0 otherwise (left). The
simulation output (right) shows the relative average distance travelled up the attractant gradient by ten cells for each of the chemotaxis models.
doi:10.1371/journal.pcbi.1001130.g006
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(see Materials and Methods). For each chemotaxis protein, the

resulting coefficient of variation of the steady-state is shown in

Figure 9. Once more, there was a similarity in the sensitivity of each

model to these parametric variations between Models I and III and

between Models II and IV, with the latter pair showing slightly

higher sensitivity to copy numbers of the chemotaxis protein CheY6

among others. In addition, Model III showed considerably lower

sensitivity with respect to CheB1 copy numbers than the other

models.

Linear model analysis. Further insight to the differences in

performance between the models can be obtained by analyzing the

interconnection structure of these models using control theory. In

particular, the way in which such feedback arrangements can affect the

performance of control systems like the R. sphaeroides chemotaxis

pathway can be studied by comparing the behaviour of different linear

systems that are structurally similar to Models I–IV. The block diagram

in Figure 10 depicts a system composed of two modules representing

the polar and cytoplasmic clusters. The CheB1-P/CheB2-P outputs of

the two modules exhibit exact adaptation through integral control in

response to step changes in the input ligand concentration level, as in E.

coli [8]. Depending on the values of feedback gains ~kk21
and k22

(which

correspond to ~KK21
and K22

respectively in the chemotaxis models

described above), the system can represent one of the four chemotaxis

models:

Model I: ~kk21
~0, k22

~0

Model II: ~kk21
w0, k22

~0

Model III: ~kk21
~0, k22

w0

Model IV: ~kk21
w0, k22

w0.

The gains a, b in Figure 10 are such that bwaw0, representing

the fact that the cytoplasmic receptor cluster can, as a result of the

measured reaction rates, relay a sensed ligand input signal to the

flagellar motor faster than the polar receptors cluster (see Figure 3).

For the examples we shall consider we set a~1 and b~10. Gains

~kk22
and k21

correspond to ~KK22
and K21

in the chemotaxis model

respectively. The frequency domain transfer function of the system

in Figure 10 from the ligand inputs L and ~LL to the output y is then

Y~

bq

s
G1G2

1z
ab

s2
qk22

G1G2

Lz
G2

1z
ab

s2
qk22

G1G2

~LL ð1Þ

where G1~
s

szak21

, G2~
s

szb~kk22

, q~1{~kk21
, ~kk22

w0, k21
w0.

This function is a frequency-domain map from signals L and ~LL
to the output Y, which corresponds to the flagellar rotation

frequency. In the following, we shall use this frequency domain

Figure 7. Response to external ligand variations. Standard deviations of the flagellar rotation frequencies for each of the four chemotaxis
models in response to a noisy ligand input sensed at the polar cluster given by L = max(0,1+g) (where g is a white noise signal with a zero-mean, unity
variance Gaussian distribution).
doi:10.1371/journal.pcbi.1001130.g007

 

 

Figure 8. Input-output gains of the two sensing clusters.
Frequency response magnitude plots showing the response of the
different models to sinusoidally-varying ligand concentrations model-
ling noisy ligand input signals. Top: Constant ligand to cytoplasmic
cluster and variable ligand to polar cluster (L~L�zsin(vt),
~LL~3:5L�z0:035, where L�~2). Bottom: Constant ligand to polar
cluster, sinusoidal to cytoplasmic cluster (L~L�,~LL~3:5(L�z
sin(vt))z0:035, where L�~2).
doi:10.1371/journal.pcbi.1001130.g008
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representation of the chemotaxis system to demonstrate how the

feedback of linear systems with structures similar to the chemotaxis

Models I–IV affects system performance.

The Bode magnitude diagrams (Materials and Methods) in

Figure 11(A) illustrate the effect of increasing k22
in reducing the

sensitivity function of the system (1) over most excitation frequencies

(see the Discussion and Text S1 for a brief introduction to sensitivity

functions). At the same time, Figure 11(B) shows that strengthening

the feedback ~kk22
, which corresponds to increasing the de-

methylation of the cytoplasmic cluster by CheB2-P, decreases the

sensitivity of the polar cluster over low frequencies.

Figure 12 presents a Bode magnitude plot showing the gain of

the linear system (1) to inputs L and ~LL which represent sensed

ligand at the polar and cytoplasmic receptor clusters respectively.

The figures show that, similar to the simulations of Models I and

III, the linear model with a gain k22
~0 (similar in structure to

Model I) and k22
~10 (similar in structure to Model III) also shows

a relatively low sensitivity to high frequency (noisy) inputs at the

polar receptor cluster and a relatively high sensitivity to noise

detected at the cytoplasmic receptor cluster.

Discussion

From the designed experiments performed, it was possible to

invalidate all models but Model III. This suggests that the feedback

in the chemotaxis system could occur in an asymmetric fashion.

That is, CheB1-P may only interact with the membrane signalling

cluster whilst CheB2-P interacts with both clusters. It is likely that

the two chemotaxis pathways initially evolved independently and

then became part of the same organism by horizontal gene transfer.

 

 

Figure 9. Parametric sensitivity analysis. Relative sensitivities of the rotation frequency outputs of the different chemotaxis models to changes
in the chemotaxis protein copy numbers.
doi:10.1371/journal.pcbi.1001130.g009

Figure 10. Comparison with engineering systems. Block diagram representation of a linear system structurally similar to the R. sphaeroides
chemotaxis pathway. In this system, gain ~kk21

corresponds to ~KK21
in the chemotaxis model, k22

to K22
, ~kk22

to ~KK22
and k21

to K21
. Levels of CheB1-P and

CheB2-P exhibit exact adaptation to step changes in ligand concentration L, ~LL. We assume bwa, mirroring the faster dynamics of the cytoplasmic
cluster relative to the polar cluster.
doi:10.1371/journal.pcbi.1001130.g010
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Thus one would possibly expect either full connectivity or complete

isolation of the two pathways until a further mutation occurs.

Understanding the outputs of the designed experiments
R. sphaeroides has a more complex chemotaxis network than E.

coli and the multiple receptor clusters and multiple feedback

pathways mean that mutants will not always have an intuitive

phenotype. For example the DcheB1 mutant does not have the loss

of response phenotype one would expect from a direct comparison

with the E. coli system. We can try to understand why DcheB1 has a

steady state at 28 Hz by looking at the structure of the model we

have been unable to invalidate, and the reason is as follows:

CheB1, CheB2 and CheY6 (along with CheY3 and CheY4) each

compete for phosphoryl groups from CheA2-P. CheB1 is present in

relatively large copy numbers and CheB1-P has negligible

degradation rate (see Table 1). When present, CheB1 ‘stores’ a

large proportion of phosphoryl groups. When absent, the

competition for phosphoryl groups from CheA2-P remains

between CheB2, CheY6, CheY3 and CheY4. The rate of

phosphorylation of CheY6 by CheA2-P is relatively small,

CheY6-P receiving most of its phosphorylation from the

CheA3A4-P complex. Therefore deleting cheB1 shifts the equilib-

rium of the system so that a higher proportion of the phosphoryl

groups from CheA2-P go to CheY3, CheY4 or CheB2. The

increase in CheY3-P and CheY4-P results in a stronger negative

feedback to the cytoplasmic cluster, and the steady-state amount of

active receptors at the cytoplasmic cluster is therefore less in the

case of DcheB1. The consequence of this is that the main source of

Figure 11. Variation of linear system sensitivity under different
feedback strengths as a function of frequency. (A) Bode
magnitude plots of the sensitivity function of system (1) with ~kk21

~0
and different values of gain k22

, which corresponds to the feedback
strength of CheB2-P de-methylating active polar cluster receptors. With
these gains the system is structurally similar to Model III. (B) Sensitivity
function of the block corresponding to the cytoplasmic cluster in the
linear model (1), for different values of feedback gain ~kk22

, which
corresponds to the feedback strength of CheB2-P de-methylating active
cytoplasmic cluster receptors. The frequency domain sensitivity

function is Scyt~
s

sz~kk22
b

(see Text S1).

doi:10.1371/journal.pcbi.1001130.g011

 

 

 

 

Figure 12. Variation of linear system gain magnitude under
different feedback strengths as a function of frequency. Bode
magnitude plots of transfer functions from ligand inputs L, ~LL to Y in
the linear system (1) corresponding to Models I (k22

~0) and III
(k22

~10). (A) Bode magnitude plots from L to Y. (B) Bode magnitude
plots from ~LL to Y.
doi:10.1371/journal.pcbi.1001130.g012
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phosphorylation for CheY6-P, which is CheA3A4-P, is reduced,

and hence the level of CheY6-P is reduced. The stopping

frequency is consequently reduced. Therefore, rather than DcheB1

leading to a loss of response to stimulus, the result of this deletion is

a shift in the steady state to a high rotation frequency.

Relative advantages of the chemotaxis models
The performance measure of Figure 6 suggests that in ascending

a ligand gradient under ideal conditions the four models behave

almost identically, which may be expected as they all exhibit the

same output profile under a step ligand addition. At the same time,

simulations of the chemotaxis models showed a difference in

robustness between Model III and the other models. From an

evolutionary point of view, this may suggest that Model III may

have advantages in terms of the robustness of chemotactic

performance with respect to the other models. These differences

in performance and their implications for chemotaxis are discussed

next.

Sensitivity to parameter variations, noise and ligand
inputs

It is desirable that the chemotactic performance of the

bacterium is unaffected by changes such as noise in gene

expression between the expression of CheOp2 and CheOp3 and

therefore the ability to filter out any parametric variations from the

pathway’s output would be an advantageous feature. The

pathway’s primary output and the main determinant of chemo-

taxis performance is the flagellar rotation frequency, which,

according to the four models presented, is directly controlled by

CheY6. It was shown that Models I and III (the latter of which was

not invalidated) have a slightly lower sensitivity to variations in the

copy number of CheY6 compared to Models II and IV (Figure 9).

If Model III is indeed valid, such robustness could serve to better

maintain the nominal steady state rotation frequency.

Model III also has advantages with respect to Model I due to

the CheB2-P feedback to the polar cluster. Strengthening this

feedback to the polar cluster, which corresponds to increasing the

de-methylation rate of the polar cluster by CheB2-P, is equivalent

to increasing the gain k22
in the linear system (1) – see Figure 10.

For the linear model (1), this reduction in sensitivity is illustrated in

the Bode sensitivity plot in Figure 11(A). From the point of view of

control system design, this feedback is typically used to reduce the

magnitude of the system’s sensitivity function (see Text S1). This

function is dependent on the frequency at which the system is

excited and can be shown to be equal to the relative incremental

change in the overall system’s transfer function in response to an

incremental change in the transfer function of the system’s sub-

modules G1 and G2. If the sensitivity of the chemotaxis system is

low, then the bacterium would be able to maintain its chemotactic

response despite changes in the system’s biological parameters.

The Bode plots (Materials and Methods) in Figure 11(A) illustrate

the effect of increasing k22
in reducing the sensitivity function of

the system (1) over most excitation frequencies. This effect can

observed in the chemotaxis models in Figure 9 and Figure 13,

where it is shown that strengthening the CheB2 feedback to the

polar cluster reduces the sensitivity of the steady state rotation

frequency to changes in the copy numbers of CheB1 and CheA2

(see Materials and Methods).

Simulation results in Figure 7 show that the switching frequency

in Model III has a low sensitivity to noisy variations in ligand

signals detected at the polar receptor cluster relative to the other

models. Figure 8 shows the result of a further set of simulations of

the four chemotaxis models in which the gain of each chemotaxis

model in response to sinusoidal ligand variation detected at the

two clusters is given as a function of ligand fluctuation frequency

(see Materials and Methods). The figure shows that the switching

frequency in Models I and III has a relatively low gain with respect

to varying ligand signals detected at the polar receptor cluster and

a relatively high gain with respect to ligand variations detected at

the cytoplasmic cluster. The Bode magnitude plots in Figure 12

show the frequency-dependent gain of the linear system (1) to

sinusoidal ligand inputs in the case ~kk21
~0, which is structurally

similar to Models I and III. These plots parallel the results of the

frequency response magnitude plots of Figure 8 which, for Models

I and III, show low gain in response to high frequency inputs at the

polar receptor cluster and high gain in response to high frequency

signals at the cytoplasmic receptor cluster. The rejection of high

frequency inputs at the cell pole may be advantageous in that the

flagellar switching rate is then only varied when the polar cluster

senses a relatively significant ligand concentration gradient that is

large in spatial extent, and remains relatively unchanged when the

receptors are subject to rapid fluctuations in sensed ligand due, for

example, to molecular noise at the receptor such as that simulated

in Figure 7.

Although the chemotaxis model assumes that the cytoplasmic

cluster input depends on the sensed ligand, it is unknown what the

cytoplasmic cluster senses. In addition to the possibility that this

input is a function of the sensed ligand concentration, this cluster

may potentially also integrate information about the metabolic state

of the cell. In this case, this signalling may well be important to

chemotactic performance and the relatively high gain of Model III

to inputs at the cytoplasmic cluster may suggest that this

Table 1. Model parameters.

Reaction Parameter(s) Value(s)

(R1)A2?A2p k1 0.03 s21

(R2)A2pzB1<A2zB1p kz
2 , k{

2 0.035 (mM s)21 , 0.01
(mM s)21

(R3)A2pzY3<A2zY3p kz
3 , k{

3 0.065 (mM s)21 , 0

(R4) A2pzY4<A2zY4p kz
4 , k{

4 0.004 (mM s)21 , 0

(R5) A2pzY6<A2zY6p kz
5 , k{

5 0.0006 (mM s)21 , 0

(R6) A2pzB2<A2zB2p kz
6 , k{

6 0.0035 (mM s)21 ,
0.01(mM s)21

(R7) B1p?B1 k7 0

(R8) Y3p?Y3 k8 0.08 s21

(R9) Y4p?Y4 k9 0.02 s21

(R10) Y6p?Y6 k10 0.1 s21

(R11) B2p?B2 k11 0.015 s21

(R12) (A3A4)pzY6<(A3A4)zY6p kz
12, k{

12 0.1 (mM s)21, 0

(R13) (A3A4)pzB2<(A3A4)zB2p kz
13, k{

13 0.006 (mM s)21, 0.07
(mM s)21

(R14) (A3A4)?(A3A4)p k14 0.02 s21

CheA2 26000 copies per cell

CheY3 1000 copies per cell

CheY4 4000 copies per cell

CheA3A4 12000 copies per cell

CheY6 51500 copies per cell

CheB1 23000 copies per cell

CheB2 3000 copies per cell

doi:10.1371/journal.pcbi.1001130.t001
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configuration would favour internal signals over external signals in

terms of output. However, if chemotaxis is sensitive to such signals,

it would be important that: (i) these signals are tightly controlled and

relatively free of the influence of noise and (ii) the cytoplasmic cluster

be insensitive to variations in its biological parameters, as sensitivity

to such variations would diminish the system’s ability to correctly

respond to inputs to the cytoplasmic cluster. In Model III, the

CheB2-P feedback loop around the cytoplasmic cluster could offer

this reduction in the sensitivity function of this cluster to such

parametric variations. This reduction in sensitivity to variations of

cytoplasmic cluster parameters is illustrated in Figure 11(B) using

the linear model (1) of the chemotaxis system. The figure shows that

increasing the feedback gain ~kk22
, which corresponds to the gain of

the CheB2-P feedback to the cytoplasmic cluster in Model III,

achieves a reduction in the sensitivity of the cytoplasmic cluster. In

this way, the cytoplasmic cluster remains sensitive to its inputs, as

shown by the large gain at high frequency in Figure 12(B), whilst its

sensitivity to parametric variation is reduced due to the internal

CheB2-P feedback. This effect can be observed in the chemotaxis

models in Figure 14, where it is shown that strengthening the CheB2

feedback to the cytoplasmic cluster reduces the sensitivity of the

steady state rotation frequency to changes in the copy numbers of

CheA3A4 and CheY6 (see Materials and Methods).

Figure 8 also shows that for Model I and III, high frequency

variations in the ligand concentration sensed at the polar cluster

are largely filtered out before causing flagellar switching. This may

suggest that the relatively slow dynamics of the polar receptor

cluster enable it to function as a low pass filter, preventing any

high-frequency noisy variations in the sensed concentration of

ligand from being signalled through to the flagellar motor.

Figure 12(A) illustrates this attenuation of high frequency polar

cluster ligand inputs for the linear model (1).

Chemotaxis as a cascade controlled system
When combined with the forward signalling pathway which was not

invalidated previously [20], Model III has a feedback structure that

corresponds to a control scheme termed cascade control. This term is used

to denote a modular system that includes two feedback loops, one

 

 

Figure 13. Sensitivity to copy number with varying external feedback. Sensitivity of the chemotaxis steady state to random changes in copy
numbers of chemotaxis proteins under different CheB2 feedback strengths to the polar cluster. Sensitivity is measured as the ratio of the standard
deviation of the steady state to the nominal steady state. Solid line: Sensitivity of the chemotaxis steady state to changes in the copy number of
CheA2 under different strengths of CheB2 feedback to the polar cluster. Dashed line: Sensitivity of the chemotaxis steady state to changes in the copy
number of CheB1 under different strengths of CheB2 feedback to the polar cluster.
doi:10.1371/journal.pcbi.1001130.g013
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nested within the other. The nested loop is used to regulate a sub-

process of the system whilst the ‘external’ negative feedback loop from

the system output to the input is used to regulate the entire system.

The measured reaction rates of the two clusters [15,16] are also

such that the cytoplasmic cluster is faster than the polar cluster in

responding to inputs, which would be required for the chemotaxis

pathway to function as a cascade controlled system [19]. This

modularization of the chemotaxis system into fast and slow parts

mirrors the division of the cascade controlled system in Figure 1

into the slow and fast subsystems G1 and G2 respectively. The

cascade control architecture enables the slow (primary) subsystem

to fix a set-point for the fast (secondary) system and for the

feedback around the secondary system to quickly regulate the

secondary output in response to disturbances and variations in the

secondary process [19]. This difference in speed is represented by

having bwwa, ~kk21
~0 and k22

w0 in the linear model (1). Model

III also features both an ‘internal’ feedback loop nested within an

‘external’ one corresponding to the dashed and solid feedbacks in

Figure 1, respectively. These two feedbacks are manifested by the

CheB2-P feedback that de-methylates the cytoplasmic and the

polar clusters respectively.

Interestingly this architecture mirrors the ability of the system to

phosphotransfer, with the membrane cluster being able to

phosphotransfer to and be de-methylated by both CheB proteins

and the cytoplasmic cluster only phosphotransferring to CheB2,

the protein that is able to de-methylate it. It does however raise an

interesting question. Whereas CheB in E. coli is localised to the

polar signalling cluster, in R. sphaeroides both expressed CheB’s are

found to be delocalised. Yet, only one of the CheB proteins

interacts with both signalling clusters. Thus the advantage of

having delocalised CheB1 is unclear.

We have shown that if the R. sphaeroides chemotaxis pathway has

a cascade control architecture, this would enable robust chemo-

taxis in an uncertain, noisy environment, conferring a selective

advantage. In E. coli, one feedback loop is used to achieve perfect

adaptation and sensing of temporal gradients and because there is

only one signalling cluster all signal integration occurs there.

Unlike E. coli, the R. sphaeroides chemotaxis pathway with cascade

 

 

Figure 14. Sensitivity to copy number with varying internal feedback. Sensitivity of the chemotaxis steady state to random changes in copy
numbers of chemotaxis proteins under different CheB2 feedback strengths to the cytoplasmic cluster. Sensitivity is measured as the ratio of the
standard deviation of the steady state to the nominal steady state. Dashed line: Sensitivity of the chemotaxis steady state to changes in the copy
number of CheA3A4 under different strengths of CheB2 feedback to the cytoplasmic cluster. Solid line: Sensitivity of the chemotaxis steady state to
changes in the copy number of CheY6 under different strengths of CheB2 feedback to the cytoplasmic cluster.
doi:10.1371/journal.pcbi.1001130.g014
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control feedback provides the bacterium with two feedback loops,

one embedded within the other, to adapt and to reduce its

sensitivity to parameter variations and noise. The other advantage

to this architecture is demonstrated by the simulations shown in

Figure 12, which illustrate that with this structure the system

would be strongly sensitive to fast-changing inputs to the

cytoplasmic cluster, perhaps from the metabolic state of the cell.

Understanding how biological networks achieve robust func-

tionality in the face of disturbances and noise in their internal and

external environment is a key question in systems biology. Such

networks can be seen as control engineering feedback systems and

can be analyzed using system engineering tools in order to

understand the advantages of particular internal connectivities

over others. In line with this methodology, this paper first utilized a

network discrimination approach [20] to construct a model of the

feedback connectivity within the R. sphaeroides chemotaxis pathway,

and then explained the robustness properties of that model by re-

interpreting the theoretical advantages of its cascade control

structure in a biological framework and comparing it to the other

possible models. This suggests a mechanism by which the

bacterium can achieve robust chemotactic performance despite

biochemical parameter variations and noise. Given that many

chemotactic systems have multiple homologues [10] it would

appear that using more complex feedback architectures to improve

performance may be common in chemotaxis and in other

signalling pathways, raising the possibility that this methodology

can be used to analyze a wide set of biological systems.

Materials and Methods

Modelling the chemotaxis pathway in R. sphaeroides
In the next three subsections, we present the three different

modules of the chemotaxis signalling pathway: sensing, transduc-

tion and actuation.

Sensing. We assume the same underlying mechanisms for the

polar (MCP) and the cytoplasmic (Tlp) receptors. The parameters

of the Tlp cluster are labelled with a tilde superscript. We also

make the same assumptions of our model as those in [20], which

are adopted from the E. coli chemotaxis literature [23].

With the notation defined in Table 2, the model for the sensing

mechanism is as follows:

Ra½ �~
1

K1ze L½ �ð Þ Rm½ �

_RRm

� �
~K3 RT½ �{ Ra½ �ð Þ{ Ra½ � K21

B1p

h i
zK22

B2p

h i� �

~RRa

� �
~

Y3p

h i
z Y4p

h i
~KK1 Y3p

h i
z Y4p

h i� �
z ~LL
� �� � ~RRm

� �

_~RR~RRm

h i
~ ~KK3

~RRT

� �
{ ~RRa

� �� 	
{ ~RRa

� �
~KK21

B1p

h i
z ~KK22 B2p

h i� �

ð2Þ

We assume that the cytoplasmic receptor cluster senses

extracellular ligand concentrations indirectly; for example, ~LL
could be internalized attractants, a by-product of the internaliza-

tion process or a metabolic response to it. For simplicity, we

assume the following affine relationship between L and ~LL

~LL
� �

~3:5 L½ �z0:035 ð3Þ

We let e= 1 (mM)21 and RT½ �~ ~RRT

� �
~1mM. The remaining

unknown parameters in this model are the dimensionless quantities

K1, ~KK1, the feedback matrix K2~
K21

K22

~KK21
~KK22

� �
(which have units

of (mM s)21) and K3, ~KK3 (which have units of s21). The significance

of these parameters was detailed in the Results section. We obtain

the following values for these unknown parameters for the different

models by fitting them to data from tethered cell assays:

K1~ ~KK1~20, K2~
33:75 0

0 33:75

� �
, K3~ ~KK3~0:0612

K1~ ~KK1~1, K2~
0:0022 0

0:0022 0:0022

� �
, K3~ ~KK3~0:002

K1~ ~KK1~20, K2~
33:75 33:75

0 33:75

� �
, K3~ ~KK3~0:0612

K1~ ~KK1~1, K2~
0:0022 0:0022

0:0022 0:0022

� �
, K3~ ~KK3~0:002

The difference between models I–IV lies in the structure of the

CheB1-P, CheB2-P feedback.

Table 2. Model notation.

Species Definition

RT Total polar cluster receptors

~RRT Total cytoplasmic cluster receptors

Rm Methylated polar cluster receptors

~RRm Methylated cytoplasmic cluster receptors

Ra Active polar cluster receptors

~RRa Active cytoplasmic cluster receptors

A2 Un-phosphorylated CheA2

A2p Phosphorylated CheA2

A3A4ð Þ Un-phosphorylated CheA3 -CheA4

A3A4ð Þp Phosphorylated CheA3 -CheA4

B1 Un-phosphorylated CheB1

B1p Phosphorylated CheB1

B2 Un-phosphorylated CheB2

B2p Phosphorylated CheB2

Y3 Un-phosphorylated CheY3

Y3p Phosphorylated CheY3

Y4 Un-phosphorylated CheY4

Y4p Phosphorylated CheY4

Y6 Un-phosphorylated CheY6

Y6p Phosphorylated CheY6

L Ligand acting on polar cluster receptors

~LL Ligand acting on cytoplasmic cluster receptors

M Motor activity

Y Average bacterium body rotation rate

doi:10.1371/journal.pcbi.1001130.t002
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Transduction. We assume that the structure of the

phosphotransfer network is the same as that of the models

presented previously in [20], with the modification that when

polar and cytoplasmic receptors are in their active state the

respective auto-phosphorylation rates of CheA2 and CheA3, k�1
and k�14, are accelerated to k�1~100Rak1 and k�14~100~RRak14

where k1 and k14 are the reaction constants of the auto-

phosphorylation of CheA2 and CheA3 obtained from in vitro

experiments in the absence of the influence of receptors, as given

in Table 1 and in [20]. Biologically, it would be expected that the

auto-phosphorylation rates k�1 and k�14 (for the case where CheA2

and CheA3 are each in a fully active complex) are higher than the

rates k1 and k14 measured in vitro.

Actuation. We denote the flagellar stopping frequency by M.

We assume some interaction which does not lead to a long lasting

binding between CheY6-P and the FliM rotor switch. However,

stopping frequency decreases at a constant rate in the absence of

CheY6-P. This relationship between the CheY6-P and the stopping

frequency effectively constitutes a low-pass filter that attenuates fast

changes in CheY6 -P concentration. We model this behaviour by:

_MM~
Y6p

� �
100

{M ð4Þ

The output of the model is the flagellar rotation frequency

observed in tethered cell assays. We use the following heuristic

description to convert motor activity into R. sphaeroides body

rotations (given in rot/sec or Hertz):

y~{
1

SzM4ð Þ : ð5Þ

We set S~0:125 which means that saturation occurs at 28 rot/

sec. This value follows from experimental observations – even for

major changes in attractant concentrations this value was almost

never surpassed.

Measuring chemotactic performance
The measure of chemotactic performance used in the paper is

the relative distance travelled by the bacterial cells up an attractant

gradient. The medium in which the cells chemotax is assumed to

be a two-dimensional plane having an x- and a y- dimension

(where distance along these two directions is unit-less), as

illustrated in Figure 6 (left). The ligand concentration L is assumed

to vary as L = 100x (for x.0) and L = 0 otherwise, remaining

unchanged along the y direction. The simulation is initialized with

the bacterial cells having a starting position of x = 0 and an initial

orientation aligned with the positive x direction.

At each switch, the bacterium is assumed to change its

orientation by an angle (measured in radians) randomly selected

from the zero-mean, unity-variance Gaussian distribution. The

concentration of ligand at its position, is then input into the

chemotaxis model described above. The output, the flagellar

rotation frequency (in Hz), is then translated to the size of the step

the bacterium makes in the direction of its orientation.

Parametric sensitivity analysis
To measure the effect of the variation of a particular parameter

on the steady state flagellar rotation frequency, several values of

the parameter of interest were randomly selected from a normal

distribution with a mean given by the nominal value of the

parameter for the given model and with a standard deviation

given by half the nominal value of the parameter. A simulation of

the model at steady state was then run and the resulting steady

state rotation frequency was recorded for each of the randomly

chosen parameter values. The coefficient of variation, given by

the ratio of the standard deviation of the recorded steady state

values to the nominal steady state value was then computed. This

dimensionless quantity can be used to compare the dispersion of

quantities with a non-zero mean. Sensitivity to a certain

parameter value is therefore high when its corresponding

coefficient of variation is high, as this would indicate a significant

shift from the nominal output in response to a variation in

parameter values.

Linear systems analysis techniques
To compare the different chemotaxis feedback structures in an

analytical way, the linear system (1) was constructed. A rich theory

exists to analyze and compare the properties of linear systems in

the so-called frequency domain using their associated transfer

functions [25]. Using such tools, it is possible to study the effects of

excitation frequency on systems’ gains and sensitivities as was done

in this paper. As an example of how this method works, consider a

linear dynamical system

_xx~AxzBu, y~Cx ð6Þ

where A, B and C are matrices of appropriate dimension, whose

entries depend on the model parameters, and u(t)~r sin(vt) is a

sinusoidal input with angular frequency v and fixed amplitude r.

System (6) is the so called state space representation of the model

in the time domain. It is common in control systems engineering to

investigate the behaviour of such a system’s dependency on

excitation frequency v. This requires transforming the system to

the frequency domain via the Laplace transform. We denote the

Laplace transform of u and y by U(s) and Y(s) respectively, where s

is a complex independent variable. Then,

Y (s)~G(s)U(s)

where G(s) is the transfer function in the frequency domain and is

given by [25]:

G(s)~C(sI{A){1B:

By evaluating this function for values of s on the imaginary axis

(by setting s~jv where j is
ffiffiffiffiffiffiffiffi
{1
p

) we obtain a frequency domain

relationship between the system’s input and output. If the system

is stable (the eigenvalues of matrix A have negative real parts) and

is excited with a periodic input signal u of frequency v, then after

some transient behaviour the output y is given by a sinusoidal

wave that is phase shifted and amplified with respect to u by

amounts dependent on v. The amplification factor is given in

decibels by

G jvð Þj jdB~20log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< G(jv)f gð Þ2z = G(jv)f gð Þ2

q
,

whilst the phase shift is given by

%G jvð Þ~arctan
= G(jv)f g
< G(jv)f g

� �
:
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The Bode magnitude plot shows the variation of G jvð Þj jdB in

decibels with frequency of excitation v. The Bode phase plot

shows the variation of %G jvð Þ in radians with frequency of

excitation v.

Model parameters
Model parameters were obtained by performing least squares

fitting on previously obtained experimental data [15], as described

in [20]. These are listed in Table 1. Protein concentrations were

obtained via quantitative western blotting as described in [20].

Response to noisy ligand input
We tested the gain of each model to sinusoidally varying ligand

input signals, applied separately at the polar and at the

cytoplasmic clusters. In the first case we applied the constant

ligand input ~LL~3:5L�z0:035, with L�~2 to the cytoplasmic

cluster whilst simultaneously applying to the polar cluster

sinusoidally varying ligand signals given by L~L�zsin(vt), with

frequency v in the range 0.01 to 1 rads21.

In the second case we applied the constant ligand input L~L�

to the polar cluster whilst simultaneously applying to the

cytoplasmic cluster sinusoidally varying ligand signals given by
~LL~3:5(L�zsin(vt))z0:035, with frequency v in the range 0.01

to 1 rads21.

The frequency response magnitude plots of Figure 8 show the

magnitude of the fundamental frequency of the sinusoidal

variation in the flagellar rotation frequency in response to these

sinusoidal ligand input signals.

Plasmids and strains
The strains used in this study are shown in Table 3. R. sphaeroides

strains were grown in succinate medium at 300C under aerobic

conditions with shaking. Where required, nalidixic acid was used

at concentrations of 25 g ml21.

Tethered cell analysis
Tethered cell responses to propionate of the R. sphaeroides strains

were characterized as described previously [20]. For each strain

and wild type 4 slides were analyzed each containing 10 cells.

Supporting Information

Text S1 Supporting information text.

Found at: doi:10.1371/journal.pcbi.1001130.s001 (0.95 MB

DOC)
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Table 3. Strains used in this study.

Strain/Plasmid Characteristics Source

R. sphaeroides WS8N Spontaneous nalidixic acid resistant mutant of wild type WS8 [26]

R. sphaeroides JPA517 WS8N with the cheB1 gene deleted by genomic replacement [17]

R. sphaeroides JPA 1320 WS8N with the cheR3 gene deleted by genomic replacement [15]

doi:10.1371/journal.pcbi.1001130.t003
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