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Abstract 

 

Introduction:  

C-type natriuretic peptide (CNP) is synthesised and released by the endothelium and plays 

a vital role in the maintenance of vascular homeostasis (Moyes et al., 2014). However, a 

similar regulatory role of endogenous CNP in the heart has yet to be elucidated. Therefore, 

I have used three unique mouse strains with endothelium (Tie2-Cre), cardiomyocyte 

(αMHC-Cre) and fibroblast (Col1α2-Cre)-restricted deletion of CNP to investigate if the 

peptide modulates coronary vascular reactivity and cardiac function. 

Methods: 

Langendorff isolated hearts were used to investigate the effect of CNP deletion on coronary 

vascular reactivity in response to the endothelium-dependent vasodilators bradykinin 

(10nmol) and acetylcholine (0.1-1nmol). Vasodilatation associated with reperfusion was 

investigated by transient cessation of flow (20-80 seconds). Ischaemia reperfusion (IR) 

injury (35 minutes ischaemia followed by 60 minutes reperfusion) was also investigated in 

cell-specific knockout (KO) animals. Isoprenaline (ISO; 20mg/kg/day, 7days)- and pressure 

overload (abdominal aortic constriction [AAC]; 6 weeks)-induced heart failure were used to 

study the effect of CNP deletion during cardiac stress, with cardiac function assessed by 

echocardiography. Cardiac fibrosis and hypertrophy were determined by picro-sirius red 

and wheat-germ agglutinin fluorescence staining, respectively. A subset of experiments 

was repeated in mice with global deletion of natriuretic peptide receptor-C (NPR-C) to 

delineate the signalling pathway triggered by CNP. Real time qPCR was used to determine 

hypertrophic and fibrotic gene expression in left ventricles isolated from mice subjected to 

AAC or sham. Neonatal cardiomyocytes were isolated to investigate angiotensin (Ang)II-

induced hypertrophy.  

Results: 

Coronary endothelial reactivity was reduced in endothelial CNP (ecCNP) KO mice compared 

to wild type (WT) in response to bradykinin, acetylcholine and reperfusion-induced 

vasodilatation. These observations were paralleled in NPR-C KO animals. ecCNP KO did not 

exacerbate IR injury, whilst mice with cardiomyocyte-restricted deletion of CNP (cmCNP 

KO) and NPR-C KO animals exhibited a larger infarct size compared to WT. cmCNP KO mice 

also displayed greater cardiac dysfunction and fibrosis after ISO infusion or AAC compared 
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to WT; similar results were observed in fbCNP KO and NPR-C KO animals. Infusion of CNP 

(0.2mg/kg/day; osmotic mini-pump, s.c.) in WT, but not NPR-C KO, animals rescued the 

decline in cardiac function. CNP (1μM) administration in isolated cardiomyocyte also 

blunted Ang II-induced hypertrophy. Pro-hypertrophic and pro-fibrotic gene expression 

(ANP, β-MHC and MMP-2) was augmented in cmCNP KO and NPR-C KO mice compared to 

littermate controls following AAC. 

Conclusions: 

Endothelial, cardiomyocyte and fibroblast-derived CNP have distinct, complementary roles 

in the heart, modulating cardiac function by influencing coronary vascular tone and 

protecting against heart failure and IR injury. These protective effects of CNP are mediated, 

at least in part, via NPR-C activation. Developing CNP mimetics or selective NPR-C agonists 

could be a novel therapeutic intervention in cardiovascular disease. 
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Chapter 1 – Introduction  

1 Introduction 

1.1 Cardiovascular disease 

1.1.1 Background 

Cardiovascular disease (CVD) is a group of disorders of the heart and blood vessels, 

including coronary heart disease (CHD), cerebrovascular disease, peripheral arterial 

disease, congenital heart disease, and deep vein thrombosis. CVDs are the leading cause of 

death worldwide.  An estimated 17.7 million people died from CVD in 2015, representing 

31% of all global deaths and this has been projected to increase to 23.3 million by 2030 

(World Health Organisation, 2015). Of these, an estimated 42% were due to CHD. In the 

UK, almost 160,000 deaths resulted from CVD in 2015, which accounted for more than a 

quarter of all deaths, and around 7 million people are living with CVD (British Heart 

Foundation [BHF], 2017). Clinical care of CVD is costly and prolonged. The total annual 

health care cost of CVD in the UK is estimated at £9 billion. People with, or at risk of, CVD 

may exhibit one or more risk factors such as hypertension, diabetes, hyperlipidaemia or 

obesity. These individuals require early detection and management using counselling and 

medicines in order to effectively prevent premature deaths caused by CVD.  

1.1.2 Coronary heart disease 

CHD or ischaemic heart disease is the most common form of CVD. An estimated 2.3 million 

people are living with CHD in the UK (BHF statistics, 2017). It occurs when the coronary 

vessels that supply blood to the heart become narrowed by a build-up of fatty deposits, 

called atheroma. This narrowing reduces blood supply to the heart and causes pain and 

discomfort, an event called angina. Heart attack, also known as myocardial infarction (MI), 

occurs when an advanced atheroma ruptures in coronary arteries, causing reduced or no 

blood supply to the heart muscle (myocardium) beyond the lesion. This results in lack of 

oxygen and nutrient supply to myocardium and causes cell death. To minimise the damage 

to the myocardium, it is necessary to unblock the blood vessel using thrombolytic therapy, 

percutaneous coronary intervention (PCI; i.e. balloon angioplasty), or coronary artery 

bypass as soon as possible. However, the process of reperfusion itself can aggravate 

myocardial injury. This phenomenon is termed myocardial ischaemia reperfusion (IR) injury 
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and pre-clinical models suggest this could account up to 50% of the final infarct size (Yellon 

and Hausenloy, 2007). 

1.1.3 Chronic heart failure 

Chronic heart failure (CHF) is a condition where cardiac output cannot meet the demand of 

the body’s needs at normal filling pressure. Over half a million patients are diagnosed with 

CHF every year in the UK (BHF statistics, 2017). CHF most commonly results from 

myocardium damage caused by MI or prolonged hypertension, but can also stem from 

faulty heart valves, infection (e.g. myocarditis) or genetic deficiency (i.e. cardiomyopathies) 

(Yousef et al., 2000, Appenzeller et al., 2011, Morales and Hershberger, 2017). 

The improvement in therapeutic intervention in MI has led to more patients surviving and 

living longer after the event. Accordingly, the occurrence of post-MI CHF continues to rise. 

The progression of the CHF phenotype in these patients involves complex and progressive 

ventricular remodelling that entails dilatation of the left ventricle (LV) and formation of 

scar. These can be driven by molecular and cellular transformation in cardiomyocytes, 

fibroblasts and neurohormonal pathways. 

Untreated hypertension causes LV remodelling that can eventually leads to CHF (David C. 

Dugdale, 2012). Hypertension mainly results from increased peripheral vascular resistance 

and/or a reduction in compliance, which causes an elevation of cardiac afterload. To 

accommodate the increased afterload, the LV has to generate a greater force of 

contraction that overcomes the elevated aortic pressure. The heart achieves this by 

increasing wall thickness and becoming distended. This adaptive structural remodelling is 

termed compensatory or concentric (physiological) cardiac hypertrophy (Heineke and 

Molkentin, 2006). However, when the remodelling is no longer able to compensate or the 

magnitude of the overload increases further, a relentless deterioration of cardiac structure 

and function ensues. This includes dilatation of the LV chamber, contractility reduces, and 

cardiac output consequentially declines (Heineke and Molkentin, 2006). This is termed 

decompensatory or eccentric LV hypertrophy.  This chronic myocardial remodelling is 

characterised by myocyte loss due to necrosis and apoptosis, cardiomyocyte hypertrophy, 

re-expression of a fetal gene profile and increases in extra-cellular matrix (ECM)/fibrosis. 

Clinically, patients are often grouped based on their LV ejection fraction (EF), HF with 

preserved EF (HFpEF) ≥50%, and HF with reduced EF (HFrEF) <50% (Noordali et al., 2018). 

HFpEF tends to occur in older, hypertensive patients with multiple cardiovascular 

comorbidities including the metabolic syndrome, diabetes mellitus, obesity, and 
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endothelial dysfunction (Burchfield et al., 2013). Recent published guideline in the 

diagnosis of HFpEF includes a normal LVEF coupled with raised LV end-diastolic pressure 

due to diastolic dysfunction, left atrial enlargement, LV hypertrophy and/or elevation of 

plasma natriuretic peptides (Burchfield et al., 2013).  

HFrEF typically occurs in patients who have suffered acute myocardial damage (e.g. MI), 

chronic haemodynamic stress (e.g. hypertension and valvular heart disease), or results 

from autoimmune/infective causes (Noordali et al., 2018). A severe reduction in EF is the 

consequence of contractile impairment, maladaptive cardiac remodelling, and 

dysfunctional vasculoventricular coupling (Noordali et al., 2018). The fall in cardiac output 

results in end-organ hypoperfusion (e.g renal hypoperfusion) and baro-reflex impairment, 

which leads to activation of neurohormonal compensatory mechanisms (Jackson et al., 

2000). These mechanisms include activation of the renin-angiotensin-aldosterone system 

(RAAS) that results in vasoconstriction, stimulates the release of noradrenaline from 

sympathetic nerve terminals and inhibits vagal tone.  The release of aldosterone leads to 

the retention of salt and water that increases blood volume. Together, the activation of 

RAAS increases preload that augments systolic pressure according to the Frank-Starling 

mechanism. Activation of the sympathetic nervous system increases cardiac inotropy, 

chronotropy and lusitropy in order to maintain cardiac output. However, sustained 

sympathetic activation has deleterious effect, causing a further deterioration in cardiac 

function. In addition, excessive sympathetic activation is also associated with myocyte 

apoptosis and necrosis, and hypertrophy. Interestingly, Larsen et al. (2016) has shown that 

cross-culturing healthy sympathetic neurons onto diseased myocytes rescues the aberrant 

cAMP response of the myocyte and vice versa, diseased neuron cultured with healthy 

myocyte leads to the development of an increased cAMP response (Larsen et al., 2016). 

This suggests that the sympathetic neurons are the dominant drivers of β-adrenergic 

hyperactivity in myocardial pathology. 

Many existing therapeutics licensed to treat HFrEF and are aimed at correcting volume-

overload (e.g. diuretics), alter haemodynamics (e.g. vasodilators and inotropic agents), and 

reduce neurohormonal activation (e.g. β-adrenergic blockers and angiotensin converting 

enzyme inhibitors (ACEi)). Large clinical trials such as CONSENSUS (1987a) and SOLVD 

(Yusuf et al., 1991) have shown that the ACEi, enalapril, reduces mortality and improves 

symptoms in patients with CHF. β-blockers are also associated with survival benefits (CIBIS-

II (1999a), MERIT-HF (1999b)). However, to date, there are no evidence-based therapies for 

HFpEF and the prognosis of both forms of HF remains poor (Noordali et al., 2018). No 
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therapeutic intervention directly prevents or reverses LV remodelling but rather they 

reduce symptoms, which entails a five year mortality of almost 50% (Mahjoub et al., 2008). 

Therefore, more effective therapeutic strategies are needed in the prevention and 

treatment of CHF.  

In the recent past, the understanding of cyclic guanosine-3’,5’- monophosphate (cGMP) 

signalling mediated by nitric oxide (NO) or natriuretic peptides in the cardiovascular system 

(CVS) has been significantly advanced and has shown to be an effective therapeutic target. 

For example, the VICTORIA trial has recently commenced to investigate vericiguat, a novel 

oral soluble guanylyl cyclase (sGC) stimulator (the enzyme responsible for cGMP synthesis 

in response to NO), in patients with HFrEF (Armstrong et al., 2018); LCZ696 

(Sacubitril/valsartan), a novel combined inhibitor of neprilysin (neutral endopeptidase) and 

angiotensin receptor blocker (ARB), has been shown to be more effective than ARB or ACEi 

alone in the PARAMETER (Williams et al., 2017) and PARADIGM-HF studies (McMurray et 

al., 2014), respectively. A phase II clinical trial, PARAMOUNT, involving patients with HFpEF 

has also demonstrated LCZ696 reduces NT-proBNP, a well-established HF biomarker, to a 

greater extent than valsartan (Solomon et al., 2012), but whether this effect will translate 

into an improved outcome requires a larger scale prospective trial. 

1.2 Regulation of cardiac remodelling 

1.2.1 Physiological and pathological remodelling 

Cardiac remodelling/hypertrophy refers to the changes in size, shape, structure and 

function of the heart. It can be broadly classified as physiological hypertrophy, for example, 

due to chronic exercise or pregnancy, and pathological hypertrophy as a result of 

hypertension or cardiac injury (Bernardo et al., 2010). Physiological hypertrophy is 

reversible and characterised by normal cardiac morphology, i.e. no fibrosis and apoptosis, 

normal or enhanced cardiac function (Bernardo et al., 2010). At the molecular level, 

physiological cardiac remodelling is associated with well-established signalling pathways, 

including vascular endothelial growth factor B (VEGF-B), growth hormone (GH), insulin-like 

growth factor (IGF)-1, and the thyroid hormone tri-iodothyronine (T3). These pathways 

essentially control angiogenesis, cardiomyocyte contractility, sarcomere remodelling, 

metabolic and mitochondrial adaptations, and cell survival (Wu et al., 2017b). Moreover, 

this hypertrophy is associated with no changes in the expression of known pathological 

biomarkers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), β-
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myosin heavy chain (β-MHC) and sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) (Wu et 

al., 2017b). 

In contrast, pathological remodelling is irreversible and associated with ventricular 

hypertrophy, fibrosis and chamber dilatation (Bernardo et al., 2010). These adverse 

changes cause a decline in systolic and/or diastolic function of the heart, leading to 

reduced cardiac output and HF. In pressure overload diseases, such as aortic stenosis and 

hypertension, the heart initially develops concentric hypertrophy to reduce wall stress and 

increase systolic pressure. This involves cardiomyocytes increasing in thickness and the 

formation of a parallel assembly of sarcomeres (Grossman et al., 1975). In volume overload 

diseases, such as dilated cardiomyopathy and MI, the loss of cardiomyocytes and scar 

formation leads to eccentric hypertrophy with sarcomeres increase in a serial fashion to 

accommodate the greater ventricular volumes (Wu et al., 2017b). Although the initial 

‘compensatory’ stage is beneficial in order to maintain cardiac output, the changes in gene 

transcription, protein synthesis and function, metabolism and cardiomyocyte survival 

eventually lead to an increase in cardiac fibrosis, contractile dysfunction, ventricular 

dilatation, and transforms the heart into a maladaptive phase and HF (Figure 1). 

Furthermore, cardiac hypertrophy is also an independent risk factor for MI, arrhythmia and 

sudden cardiac death (Messerli and Ketelhut, 1991) and thus, understanding the molecular 

mechanisms responsible for cardiac hypertrophy have been of great interest to identify 

new therapeutic target to prevent or reverse cardiac remodelling and HF.  

1.2.2 Mechanisms of pathological hypertrophy 

The enlargement of cardiac myocytes involves a series of intercellular molecular events 

that includes activation of signalling pathways that lead to changes in gene expression and 

results in an increase in protein synthesis and myocyte size (Heineke and Molkentin, 2006). 

Vasoactive factors such as Ang II, endothelin (ET)-1 and noradrenaline are released in 

response to a pathological stimulus such as pressure overload (Bernardo et al., 2010). 

These hormones bind to cognate G-protein coupled receptors (GPCRs), which activate 

downstream signalling proteins, including phospholipase C (PLC), mitogen activated protein 

kinases (MAPKs), protein kinase C (PKC) and PKA. Key molecular mechanisms involved in 

cardiomyocyte hypertrophy during cardiac remodelling are shown in Figure 2.  

1.2.2.1 Mitogen activated protein kinases (MAPKs) 

Studies in mice with cardiac-specific overexpression of Gq reported a pathological 

hypertrophic phenotype associated with cardiac dysfunction and premature death (Mende 
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et al., 1998, Wettschureck et al., 2001). Whereas, mice lacking Gq in cardiomyocytes are 

resistant to the development of hypertrophy in response to pressure-overload 

(Wettschureck et al., 2001). These studies provide evidence that Gq-mediated pathways are 

involved in cardiac hypertrophy. MAPKs are a group of signalling proteins that lie 

downstream of Gq activation (Bernardo et al., 2010). MAPK activation is observed at 

different stages of heart disease progression, including hypertrophic cardiomyopathy, 

dilated cardiomyopathy, and IR injury in human and animal models (Wang, 2007). The 

MAPK cascade involves at least three protein kinases activated in series that include a 

MAPK kinase kinase (MEK2), MAPK kinase (MEK1) and a terminal MAPK. The three best-

characterised distal MAPKs are extracellular signal-regulated kinases (ERK)1/2, the c-Jun 

amino-terminal kinase (JNKs) and the p38 kinases, which have all been implicated in 

pathological remodelling (Wang, 2007). These kinases are regulated by an activation loop 

that contains a tyrosine/threonine (TxY) motif, which needs to be phosphorylated in order 

to lock the kinase domain in a catalytically competent conformation. Studies have shown 

that the levels of the phosphorylated state of these three types of kinase are elevated in 

response to Ang II, ET-1 and noradrenaline in cultured cardiac myocytes, as well as in the 

pressure-overload model and patients with HF (Yamazaki et al., 1993b, Sugden and Clerk, 

1998, Cook et al., 1999, Esposito et al., 2001). 

1.2.2.1.1 Ras-raf-MEK-ERK1/2 pathway 

Ras is a small guanosine-5'-triphosphate (GTP)-binding protein that transduces signals from 

calcium channels, membrane tyrosine kinase receptor (e.g. VEGFR and FGFR) and GPCRs 

(e.g. adrenoceptor and Ang II receptor), causing Raf activation and subsequent translocates 

from the membrane to the cytoplasm (Wang, 2007). This in turn activates MEK1 and 

sequentially ERK1/2 activation that has long been known to underlie cell hypertrophy and 

proliferation via gene regulation (Wang, 2007). In patients with hypertrophic 

cardiomyopathy, a positive correlation between Ras expression and the severity of 

hypertrophy has been observed (Kai et al., 1998). In addition, an endogenous inhibitor of 

the ERK1/2 pathway, sprouty-1, is induced in patients during hypertrophy regression after 

implementation of a left ventricular assist device (Huebert et al., 2004). These observations 

underscore a role for the ERK1/2 pathway in ventricular remodelling. Interestingly, the 

downstream signalling of Ras may have an ERK1/2-independent component. Transgenic 

mouse studies have shown that a gain-of-function mutation of MEK1 promotes 

compensatory hypertrophy (Bueno et al., 2000), whereas, constitutively activated v-12-H-

Ras mutant develops pathological remodelling (Zheng et al., 2004). These different 
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observations indicate MEK-ERK1/2 is not the sole downstream target of Ras and the 

activation of ERK1/2-independent pathway(s) is likely to be critical to the transition from 

compensated to decompensated cardiac remodelling. In addition, Kehat et al. (2011) have 

shown that adult myocytes from mice with a cardiac deletion of ERK1/2 develop eccentric 

cardiac hypertrophy (lengthening), whereas cardiomyocytes from MEK1 transgenic mice 

exhibit concentric growth (width thickening) (Kehat et al., 2011). These findings further 

suggest the ERK1/2 signalling pathway coordinates eccentric and concentric growth of the 

heart. 

1.2.2.1.2 JNK pathway 

Activation of the JNK cascade involves triggering of the upstream MEKK1, MEKK2, MEKK3, 

and mixed lineage (MLK) 2 and 3 kinases. These subsequently phosphorylate and activate 

MKK4 and MKK7 that in turn phosphorylate JNK. Increased activity of JNK is found in the 

myocardium of HF patients secondary to ischaemic heart disease, indicating the JNK 

pathway may be involved in human cardiac pathology (Cook et al., 1999).  Petrich et al. 

(2004) demonstrated that cardiac-specific activation of the JNK pathway in mice results in a 

marked increase in fetal gene expression, contractile dysfunction and premature death 

from CHF (Petrich et al., 2004). Moreover, specific activation of the JNK pathway by MKK7 

in cardiac myocytes also induces hypertrophy, including an increase in cell size, augmented 

expression of ANP and impairment of sarcomere organization (Wang et al., 1998b). In sharp 

contrast, mice with selective deletion of JNK1 exhibit a significant reduction in fractional 

shortening (FS) associated with marked inflammatory infiltration after 3 and 7 days of 

pressure-overload, followed by a steady progression of cardiac dysfunction after 12 weeks 

that becomes indistinguishable from WT (Tachibana et al., 2006). This demonstrated that 

JNK1 prevents early deterioration of cardiac function in response to hemodynamic stress. 

Furthermore, targeted deletion of MEK4 or MEKK1, upstream kinases of JNK, in myocytes 

results in ventricular hypertrophy, elevated levels of apoptosis, fibrosis and inflammatory 

lesions compared to control animals, leading to HF and higher mortality (Liu et al., 2009, 

Sadoshima et al., 2002). Taken together, these conflicting data indicate JNK activation can 

be protective or exacerbate cardiac remodeling depending on the duration and the type of 

stimuli.  

1.2.2.1.3 p-38 pathway 

The p38 MAPK is a highly conserved stress-signaling pathway and consists of four isoforms: 

p38α, p38β, p38δ and p38γ (Martin et al., 2015). All four isoforms are expressed in the 
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murine heart but with higher expression of p38α and p38γ compared to p38β and p38δ 

(Martin et al., 2015). Phosphorylation of p38 has been implicated in the regulation of 

cardiac gene expression, myocyte apoptosis, myocyte proliferation and hypertrophy, 

inflammatory responses, contractility, energy metabolism, and vasoreactivity (Wang, 

2007). The role of the p38 MAPK pathway has been extensively investigated in ischaemic 

heart disease (Clark et al., 2007). It has been reported that inhibition of p38 is protective 

against ischaemia-induced injury (Schneider et al., 2001, Clark et al., 2007). A further study 

showed reduced activation of p38 by steric obstruction of Cys-119/Cys-162, the cysteine 

residues close to the MKK3 docking domain, attenuates H2O2-induced hypercontracture 

following IR injury in isolated murine heart (Bassi et al., 2017). In addition, patients with 

ischaemic heart disease have elevated p38-MAPK activity in the myocardium (Cook et al., 

1999), indicating a potential interventional target. A randomized phase II trial of a p38-

MAPK inhibitor, Losmapimod, in non-ST elevation myocardial infarction (NSTEMI) patients 

showed the compound is well tolerated, improved EF and plasma BNP levels were lower 

compared to placebo (Newby et al., 2014).  

In vivo studies have reported that p38 activation by gene transfer of the activated 

upstream kinases of p38 (MAPK kinase 3/6 [MKK3/6]) has a negative inotropic effect and 

causes diastolic dysfunction accompanied by enhanced matrix remodeling (Liao et al., 

2001). A similar cardio-depressant effect is observed in isolated hearts from mice lacking 

MKK3, in which p38 activation contributes to tumour necrosis factor (TNF)-α-induced 

contractile dysfunction (Bellahcene et al., 2006).  

On the other hand, evidence for a role of the p38 pathway in cardiac hypertrophy is highly 

controversial. Activation of p38 by over-expressing MKK3 and MKK6 in cultured 

cardiomyocytes results in characteristic hypertrophic responses (Wang et al., 1998a). 

Whereas, animals with cardiac-specific overexpression of MKK6 exhibit less myocardial 

damage and better functional recovery after IR injury (Martindale et al., 2005). In accord, 

transgenic mice expressing dominant-negative mutants of MKK3, MKK6, and p38α exhibit 

enhanced cardiac hypertrophy in response to cardiac stress, including aortic banding, Ang II 

infusion and isoprenaline (ISO) infusion (Braz et al., 2003). In addition, cardiac-restricted 

p38 KO mice exhibit significant cardiac fibrosis and enhanced cardiac apoptosis in response 

to pressure-overload (Nishida et al., 2004), indicating p38 activation contributes to 

cardiomyocyte survival pathway. However, some studies reported inhibition of p38 activity 

reduces ISO-induced ischaemic myocardial injury (Li et al., 2004b) and preserves systolic 

function in MI-induced HF but concomitantly leads to increase in cardiac hypertrophy (See 
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et al., 2004, Ren et al., 2005). This suggests p38 activity contributes to the progression of 

HF but not through aggravated hypertrophy. Though, evidence suggests that P38γ can 

contributes to hypertrophy in response to pressure overload by disinhibition of calpain via 

phosphorylation of calpastatin, resulting in calcineurin activation and subsequently, nuclear 

factor of activated T cells (NFAT) translocation and pro-hypertrophic gene expression 

(Clark, 2018). 

1.2.2.2 Calcium signaling associated with cardiac hypertrophy 

Intracellular Ca2+ regulates many cellular processes, especially contraction and hypertrophy 

(McDonald, 2011). The best-characterised calcium-dependent signalling proteins are 

calcineurin and calcium/calmodulin-dependent protein kinase II (CaMKII).  

1.2.2.2.1 Calcineurin/NFAT 

Activation of calcineurin by Ca2+ leads to dephosphorylation of NFAT transcription factors, 

promoting nuclear translocation, and association with other transcription factors such as 

GATA4 and myocyte enhancer factor 2 (MEF2) to regulate cardiac gene expression 

(Molkentin et al., 1998).  Calcineurin activity is increased in patients with hypertrophied or 

failing hearts (Haq et al., 2001) and also in ventricular muscle explanted from human failing 

heart in response to hypertrophic stimuli such as ET-1 and Ang II (Li et al., 2005). In animal 

studies, calcineurin activity is increased in perfused heart preparation subjected to acute 

pressure-overload, and following aortic banding (Zou et al., 2001, Saito et al., 2003). 

Furthermore, transgenic mice with a constitutively active form of calcineurin develop 

marked pathological hypertrophy that progresses to dilated cardiomyopathy with profound 

interstitial fibrosis and sudden death (Molkentin et al., 1998).  This can be prevented by 

pharmacological inhibition of calcineurin (Molkentin et al., 1998). Similarly, transgenic mice 

that overexpress a cardiac-specific dominant negative mutant of calcineurin exhibit a 

blunted hypertrophic response to pressure-overload compared to WT controls (Zou et al., 

2001). Interestingly, when NFAT-luciferase reporter mice are subjected to both 

physiological and pathological stimuli, NFAT-luciferase reporter activity is only upregulated 

in response to pathological stress (Wilkins et al., 2004). Taken together, these studies 

suggest that calcineurin/NFAT plays a critical role in pathological hypertrophy.  

1.2.2.2.2 CaMKII 

Upregulation of CaMKII has been implicated in cardiac hypertrophy and HF (Anderson, 

2005). Transgenic mice with overexpression of cardiac-specific CaMKII exhibit a genetic 
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profile associated with cardiac remodelling and HF (i.e. increased mRNA expression of ANP, 

β-MHC and α-skeletal actin, decreased expression of α-MHC, SERCA2a and phospholamban 

(PLB)) (Zhang et al., 2003). These mice also develop a dilated cardiomyopathy with reduced 

FS and die prematurely (Zhang et al., 2003).  Consistent with these data, inhibition of 

CaMKII prevents maladaptive remodelling and cardiac dysfunction from excessive β-

adrenergic receptor (β-AR) stimulation and MI (Zhang et al., 2005b). Moreover, cardiac-

specific deletion of CaMKIIδ (the major isoform expressed in the heart) protects against 

cardiac hypertrophy and fibrosis in response to pressure overload (Backs et al., 2009). 

Ventricular lysates from these transgenic mice contain reduced histone deacetylase 4 

(HDAC 4) activity, a protein that suppresses MEF2 (Backs et al., 2009). This study supports 

the idea that CaMKII mediates cardiac hypertrophy by inducing phosphorylation of HDAC4, 

which in turn dissociates from MEF2, causing MEF2 activation and hypertrophic gene 

expression (Backs and Olson, 2006, Kim et al., 2008).   

1.2.2.3 PI3K-Akt-GSK-3β pathway 

1.2.2.3.1 Phosphoinositide 3-kinase (PI3K) 

Evidence obtained from transgenic strains indicates that PI3K activity is implicated in 

cardiac hypertrophy. Mice expressing a cardiac-specific constitutively active form of PI3K 

have a 20% increase in heart size, whereas hearts from mice with a dominant negative 

form of PI3K are 17% smaller compared to controls (Shioi et al., 2000, McMullen et al., 

2003). These observations indicate an important role of PI3K in the growth of the heart. 

Furthermore, when adult mice with down-regulated PI3K activity are subjected to chronic 

swimming training, an attenuated hypertrophic response is observed; surprisingly however, 

these mice are not resistant to cardiac remodeling in response to pressure overload 

(McMullen et al., 2003, McMullen et al., 2007). This implies that PI3K is essential for 

physiological remodeling of the heart but not involved in pathological hypertrophy. In 

addition, insulin-like growth factor 1 (IGF1) is thought to trigger physiological heart growth 

and over-expressing the IGF1 receptor (IGF1R) leads to enlargement of the heart without 

histopathology (McMullen et al., 2004). Double transgenic mice over-expressing the IGF1 

receptor and dominant negative PI3K are not significantly different from a phenotypic 

standpoint compared to dominant negative PI3K transgenic animals per se (McMullen et 

al., 2004), indicating physiological cardiac remodeling stimulated by IGF1 depends on PI3K 

signaling. 
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1.2.2.3.2 Akt 

Akt, also known as protein kinase B (PKB), is a well-characterised target of PI3K (Matsui and 

Rosenzweig, 2005). There are three isoforms of Akt, Akt1, Akt2 and Akt3, of which only 

Akt1 and Akt2 are highly expressed in the heart (Abeyrathna and Su, 2015). The functional 

role of Akt in cardiac hypertrophy is controversial. Some transgenic mice studies showed 

overexpression of Akt improves contractility and protects again IR injury, but others 

reported massive cardiac dilatation and premature death (Condorelli et al., 2002, Matsui et 

al., 2002). This discrepancy is probably because Akt can be activated by both receptor 

tyrosine kinases (e.g. IGF-1R) and GPCRs (Bernardo et al., 2010). Thus, depending on the 

initiating stimulus, the resulting downstream signalling via Akt will be different. However, 

Akt1 KO mice exhibit a reduced hypertrophic response to swim training but not to pressure 

overload (DeBosch et al., 2006). This finding is in parallel with the phenotype of down 

regulation of PI3K, indicating Akt primarily underpins physiological hypertrophy.  

1.2.2.3.3 Glycogen synthase kinase (GSK3) 

GSK3 is a ubiquitously expressed, constitutively active serine/threonine kinase that is 

negatively regulated by Akt. GSK3 consist of two isoforms: GSK3α and GSK3β (Cheng et al., 

2011). Although both isoforms are expressed in the heart (Henry and Killilea, 1994), most 

studies have been conducted to investigate the role GSK3β since it was among the first 

negative regulators of cardiac hypertrophy to be identified (Haq et al., 2000, Badorff et al., 

2002, Morisco et al., 2000). It is evident that GSK3β negatively regulates cardiac 

hypertrophy in response to ISO, ET-1 and Fas signaling so removing the inhibitory constrain 

of GSK3β on gene transcription by hypertrophic stimuli is an important mechanism for the 

development of cardiac remodeling (Hardt and Sadoshima, 2002). GSK3β directly 

phosphorylates and stimulates nuclear export of GATA4, preventing gene transcription. 

Numerous cardiac hypertrophy genetic markers are critically regulated by GATA4 and other 

GATA family transcription factors, for example, ANP, BNP, α-MHC, cardiac troponin I, 

platelet-derived growth factor receptor (PDGFR) and Ang II type 1 receptor (Hardt and 

Sadoshima, 2002, Charron et al., 1999). Therefore, the regulation of GATA4 by GSK3β plays 

a critical role influencing the pathogenesis of cardiac hypertrophy. 

GSK3β also negatively regulates cardiac growth by exerting inhibitory effects on the nuclear 

translocation of NFAT, thereby prevents NFAT-mediated gene transcription (Haq et al., 

2000). Since NFAT is stimulated by calcineurin, GSK3β counteracts calcineurin signaling; 
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thus, inhibition of GSK3β by Akt invokes cross talk between the two pathways and 

exacerbates the hypertrophic response mediated by the calcineurin/NFAT cascade. 

1.2.2.3.4 Protein kinase C 

PKC is one of the key signal transducers downstream of Gαq in response to hypertrophic 

stimuli (Dorn and Force, 2005). There are at least 12 isoforms of PKC and 4 are known to be 

involved in cardiac hypertrophy (α, β, δ and ε) (Singh et al., 2017). Studies of myocardial 

hypertrophy or HF have reported that upregulation of the α and β isoforms is likely to 

cause maladaptive hypertrophy via Ras activation, whereas δ and ε phosphorylation leads 

to physiological remodelling (Dorn and Force, 2005).  Braz et al. (2002) have shown that 

only the PKCα isoform is able to induce hypertrophic growth of neonatal cardiomyocytes 

and inhibition of PKCα abolishes agonist-mediated hypertrophy. However, in vivo studies of 

PKCα overexpression have demonstrated no effect of PKCα on cardiac hypertrophy but 

instead, deletion of PKCα protects against HF by improve cardiac contractility, while 

overexpression diminishes it (Braz et al., 2004). In accord, inhibition of PKCα activity in 

pathological hypertrophy improves systolic and diastolic function, indicating PKCα is a 

negative regulator of cardiac contractility (Hahn et al., 2003).  

To give the role of PKC a human context, PKC activity and expression are elevated in HF 

patients (Simonis et al., 2007). These observations are in agreement with cardiac-specific 

overexpression of PKCβ displaying cardiac dysfunction and fibrosis (Wakasaki et al., 1997). 

However, PKCβ KO mice exhibit similar cardiac hypertrophy in response to phenylephrine 

and aortic-banding compared to control mice, demonstrating PKCβ is not necessary for the 

development of pathological hypertrophic responses (Roman et al., 2001). 

1.2.3 Mechanism of cardiac fibrosis 

1.2.3.1 Overview 

An important hallmark of pathological hypertrophy and HF is cardiac fibrosis, which is 

characterised by excessive deposition of ECM proteins in the myocardium, leading to 

cardiac stiffening, arrhythmia, systolic and diastolic dysfunction (Creemers and Pinto, 

2011). It is evident that increased ECM is directly induced by mechanical overload (Bishop 

and Lindahl, 1999), a phenomenon that is probably beneficial initially for accommodating 

the growth of the myocardium. However, chronic pressure overload leads to excessive 

collagen deposition that stiffens the ventricles, causing both systolic and diastolic 

dysfunction, impairs the cardiac conduction system, and can lead to hypoxia by reducing 
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capillary density and increasing oxygen diffusion distance (Sabbah et al., 1995, Jalil et al., 

1988). Further, a study in spontaneous hypertensive rat (SHR) has shown that the transition 

from compensated hypertrophy to decompensated HF is closely correlated with increases 

in interstitial fibrosis (Boluyt and Bing, 2000). Drug treatments that prevent or reverse gene 

expression associated with ECM in the SHR heart improve myocardial function and survival 

(Boluyt and Bing, 2000). The components contributing to sensing and transducing the 

mechanical stress into biochemical events are facilitated by the fibroblast, involving the 

cytoskeleton of the cell, integrins and stretch-activated channels (Creemers and Pinto, 

2011). Although the understanding of the mechanism responsible for the transition of the 

normal scaring process to excessive collagen accumulation is incomplete, there is evidence 

for the involvement of hormones such as Ang II, ET-1, and catecholamines, or locally 

produced growth factors, such as fibroblast growth factor 2 (FGF2), PDGF and transforming 

growth factor (TGF)-β are involved (Spinale, 2007, Manabe et al., 2002)(Figure 3). 

1.2.3.2  TGF-β 

In mammals, three isoforms of TGF-β has been discovered: TGF-β1, TGF-β2 and TGF-β3 

(Heger et al., 2016). Although all three isoforms are expressed in the heart, only TGF-β1 is 

upregulated during pressure overload-induced hypertrophy (Li and Brooks, 1997). Thus, 

cardiac fibrosis studies have focused on the TGF-β1 isoform using genetic mouse models. 

Mice with overexpression of TGF-β1 develop cardiac morphology comprising increased 

myocyte size and interstitial fibrosis (Rosenkranz et al., 2002). Whilst, heterozygous TGF-

β1+/- deficient mice appear to ameliorate age associated myocardial fibrosis and improve LV 

compliance (Brooks and Conrad, 2000). In this regard, inhibition of TGF-β1 by a specific 

neutralising antibody prevents the collagen mRNA induction, myocardial fibrosis and 

diastolic dysfunction (Kuwahara et al., 2002).  

In human studies, the expression of TGF-β1 is elevated in the failing heart (Fielitz et al., 

2001) and blockade of Ang II signalling has been shown to lower the levels of TGF-β 

(Agarwal et al., 2002). This is in agreement with the observation that HF patients 

administered ACEi or ARB display a reduction in ECM protein accumulation in the heart 

(Agarwal et al., 2002). This beneficial effect is most likely mediated via inhibition of TGF-β 

and its downstream cascade (Creemers and Pinto, 2011, Rosenkranz, 2004). Imaging-

genomic analyses of primary human fibroblast has revealed that upregulation of interleukin 

(IL)-11 is the dominant transcriptional response to TGF-β1 and required for its pro-fibrotic 

effect (Schafer et al., 2017). Mice with overexpression of IL-11 display an enhanced fibrotic 



39 

response when exposed to pre-clinical HF models, whilst IL-11 KO animals resist the 

pathology (Schafer et al., 2017). Taken together, these findings suggest targeting TGF-β and 

its downstream signalling might be a new therapeutic approach to prevent diastolic 

dysfunction and cardiac fibrosis. 

1.2.3.3 TGF-β downstream signalling 

1.2.3.3.1 Smad 

TGF-β exerts its biological effects via binding to its cognate receptor types 1 and 2 (TGFβR1 

and TGFβR2) (Brand and Schneider, 1995). Activation of the receptors upon ligand binding 

leads to phosphorylation of Smad proteins, which subsequently translocate into the 

nucleus where they act as transcription factors (Creemers and Pinto, 2011). Studies from 

human mesangial cells have demonstrated that Smad proteins bind primarily to collagen 

type 1 promoter, mediating TGF-β1-induced collagen deposition (Poncelet and Schnaper, 

2001).  

1.2.3.3.2 Rho/ROCK 

There is also evidence that TGF-β induces translocation of myocardin-related transcription 

factor (MRTF)-A, which promotes the transition of fibroblasts into myofibroblasts, via 

Rho/ROCK signalling (Small et al., 2010). In addition, fibrosis and scar formation in MRTF-A 

KO mice subjected to MI or Ang II is diminished compared to control animals and this is 

attributed to a reduction in gene expression driving fibrosis, including collagen 1α2 

(Col1α2) and elastin (Small et al., 2010). In concert with the idea that Rho kinase signalling 

is involved in the development of cardiac fibrosis, Kagiyama et al. demonstrated that Rho 

kinase activity is increased in cardiac fibrosis, and that a specific Rho kinase inhibitor 

(fasudil) attenuates collagen accumulation (Kagiyama et al., 2010). 

1.2.3.3.3 TAK1/p38 

TGF-β-induced fibrosis can also be mediated via phosphorylation of activating transcription 

factor 2 (ATF-2; also known as CREB-BP1) through TGF-β-activated kinase-1 (TAK1) and p38 

signalling (Sano et al., 1999, Rosenkranz, 2004). In aortic banded mice, the expression 

levels of TGF-β and TAK1 activity are upregulated and overexpression of TAK1 is sufficient 

to induce cardiac hypertrophy and fibrosis, leading to severe cardiac dysfunction (Zhang et 

al., 2000).  However, these transgenic mice were generated via a cardiomyocyte-specific 

promoter; thus, the observed fibrotic response may have been a secondary effect 

facilitated by growth factors released from the hypertrophic myocardium.  
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Pathological cardiac remodelling 

 

Figure 1. Pathological cardiac remodelling. 

Pathological remodelling can be classified as concentric hypertrophy, in which the ventricular wall thickens 

reducing chamber diameter, and eccentric hypertrophy, in which the ventricular wall thins and the chamber 

dilates. Concentric hypertrophy can develop into cardiac dilation in advanced pathological conditions. 

Biomarkers such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain 

(β-MHC) are up-regulated, whereas the expression of sarco/endoplasmic reticulum calcium ATPase (SERCA)2α 

is down-regulated in cardiac remodelling. LV, left ventricle; MI, myocardial infarction; DCM, dilated 

cardiomyopathy. 
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Cardiac hypertrophic pathways 

 

Figure 2. Cardiac hypertrophic pathways. 

A schematic depicting the major pathways and transcription factors involve in cardiac hypertrophy. Adr, 

adrenaline; NA, noradrenaline; Ang II, angiotensin II; ET-1, endothelin-1; IGF-1, insulin-growth factor-1; PKA, 

protein kinase A; SERCA, sarco/endoplasmic reticulum calcium ATPase; PLC, phospholipase C; IP3, inositol 

trisphosphate; CaM, calmodulin, CaMK II, calcium/calmodulin dependent protein kinase II; NFAT, nuclear factor 

of activated T cells; DAG, diacylglycerol; PKC, protein kinase C; PI3K, phosphoinositide 3-kinase; GSK3β, 

glycogen synthase kinase 3β; MAPKs, mitogen activated protein kinases; ERK, extracellular signal-regulated 

kinase; MEK, MAPK kinase, MLK, mix lineage kinase; HDCA, histone deacetylse; MEF2, myocyte enhancer factor-

2. 
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Cardiac fibrotic pathways 

 

Figure 3. Cardiac fibrotic pathways. 

A schematic depicting the major pathways and transcription factors involve in cardiac fibrosis. TGF-β, 

transforming growth factor-β; NA, noradrenaline; Ang II, angiotensin II; ET-1, endothelin-1; MRTF, myocardin-

related transcription factor; TAK1, TGF-β-activated kinase-1; ATF-2, activating transcription factor 2; ECM, 

extracellular matrix. 
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1.3 Ischaemia reperfusion injury 

1.3.1 Overview 

Under normal circumstances, myocytes respire aerobically and hence if blood supply to the 

myocardium is cut off (e.g. as a result of CHD), the cells switch to rely on anaerobic 

respiration i.e. glycolysis (Powers et al., 2007). This results in in-sufficient energy 

production, acidosis, the build-up of toxic metabolites and oxidative stress (Hausenloy and 

Yellon, 2013). When the ischaemic period is extended beyond 20 minutes, some of the 

cardiac cells become irreversibly damaged and infarcted (Downey, 1990). Revascularisation 

of the culprit vessel using thrombolytic therapy or primary PCI is key to minimising infarct 

size (Hausenloy and Yellon, 2013). However, the process of reperfusion per se can 

aggravate the cellular injury already inflicted during the ischaemic period and thus, 

reperfusion can provoke both protective and harmful consequences. This phenomenon is 

termed myocardial IR injury. Since the final infarct size is the main determinant of mortality 

and morbidity (Sorensson et al., 2013, Terkelsen et al., 2009), it is important to investigate 

the molecular mechanism(s) behind IR injury and potential strategies to reduce the infarct 

size and the subsequent myocardial remodelling. 

1.3.2 Harmful mediators contributing to IR injury 

Several harmful mediators have been identified that can promote myocardial injury in 

response to reperfusion. These include oxygen and calcium paradoxes, rapid normalisation 

of pH and osmolality, the opening of a mitochondrial permeability transition pore (mPTP), 

and inflammation.   

1.3.2.1 Intracellular calcium overload 

A prolonged period of ischaemia results in high intracellular calcium concentration ([Ca2+]i) 

(Hausenloy and Yellon, 2013). Upon reperfusion, ATP production resumes and activates 

SERCA on the mitochondrial membrane that removes the excess [Ca2+]i into the 

mitochondria (Siegmund et al., 1997). Na+/Ca2+ exchangers on the cell membrane are also 

activated to pump out Ca2+ using the energy from the inward movement of Na+ down its 

electrochemical gradient (Piper et al., 2003); three Na+ ions enter and one Ca2+ ion leaves 

the cell.  This leads to an increase in [Na+]i  that activates the Na+/K+ ATPase to remove 

three Na+ ions whilst transporting two K+ ions into the cell. If this pump is damaged during 

ischaemia, Na+ ions accumulate in the cytosol that reduce the efficacy of the Na+/Ca2+ 

exchanger, or even reverses its direction, causing enhancement of Ca2+ overload (Inserte et 



44 

al., 2002, Schafer et al., 2001). The elevated [Ca2+]i also leads to hypercontracture of the 

myocardium, resulting in irreversible shortening of the myocytes and induces cytoskeleton 

structural injury (Yellon and Hausenloy, 2007). 

1.3.2.2 pH and osmolality correction 

Myocytes respire anaerobically during ischaemia, which causes the production of lactic acid 

and reduces interstitial and intracellular space pH (Hausenloy and Yellon, 2013). 

Restoration of flow flushes away the accumulated extracellular [H+], creating a high proton 

gradient between the intracellular and extracellular environment (Frank et al., 2012). This 

activates the Na+/H+ exchanger that drives outward movement of one H+ ion for exchange 

with one Na+ ion. The Na+/HCO3
- co-transporter is also activated by the higher Na+ content, 

neutralising the intracellular acidic environment by HCO3
- binds to the excess H+ to form 

carbonic acid, which then dissociates into carbon dioxide and water. Consequently, the 

transporters increase intracellular Na+ that lowers the Na+ gradient. This reduces the 

efficiency of the Na+/Ca2+ exchanger that can aggravate calcium overload (see section 

1.3.2.1). This implies that a reduction in the proton gradient upon reperfusion would be 

beneficial and experimental reperfusion with acidic buffer is potentially cardioprotective 

(Bond et al., 1991). However, in clinical studies, the use of a Na+/H+ exchanger inhibitor at 

the start of reperfusion to delay restoration of physiological pH does not limit infarct size or 

improve clinical outcome (Zeymer et al., 2001).  

Another factor that causes cell death upon reperfusion is osmolality (Piper et al., 1998). 

Cytosolic Na+ overload and many end products of anaerobic metabolism accumulate in the 

interstitial and intracellular space during ischaemia (Piper et al., 1998) Reperfusion rapidly 

washes out the extracellular molecules, creating a high osmolality gradient. This causes an 

inward movement of water that can results in cell swelling, rupture and necrosis (Piper et 

al., 1998).  

1.3.2.3 Opening of mitochondria permeability transition pore 

The mitochondria permeability transition pore (mPTP) is a non-selective channel on the 

inner membrane of mitochondria that allows molecules smaller than 1500 kDa to pass 

through (Piper et al., 1998). During ischaemia, the mPTP remains shut but opens at the 

start of reperfusion in response to mitochondrial calcium overload, ATP depletion, 

oxidative stress and restoration of physiological pH (Kim et al., 2006a, Griffiths and 

Halestrap, 1995). The opening of the mPTP leads to collapse of the mitochondrial 

membrane potential and influx of molecules, causing organelle swelling and rupture 
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(Honda et al., 2005). Mitochondrial materials such as cytochrome C and apoptosis-

induction factors (AIF) can also be released and initiate apoptosis (Honda et al., 2005). 

Thus, inhibiting the opening of the mPTP is an important new target for cardioprotection 

during reperfusion. The first proof-of-concept clinical trial was carried out by Piot et al. 

(2008), in which 58 patients presenting with acute ST segment elevation myocardial 

infarction (STEMI) were randomized to receive a single intravenous bolus of either 

Cyclosporin-A (CsA; 2.5 mg/kg), an immunosuppressant that inhibits mPTP opening, or 

placebo, 10 min prior to primary PCI. It was reported that the release of creatine kinase (an 

indicator of myocardial injury) was significantly reduced in the CsA group as compared with 

the control group (Piot et al., 2008). In a follow-up cardiac magnetic resonance study, it was 

demonstrated that MI size was also significantly reduced, accompanied by less adverse 

cardiac remodelling and improved EF in the CsA group compared to control patients at 

both 5 days and 6 months after the infarction (Mewton et al., 2010).  However, in another 

larger clinical trial, CYCLosporinE A in Reperfused Acute Myocardial Infarction (CYCLE), 

patients received a single intravenous CsA bolus just before primary PCI did not have 

improved clinical outcomes or LV remodelling up to 6 months compared to the control 

group (Ottani et al., 2016). 

1.3.2.4 Generation of reactive oxygen species 

The transition of ischaemia to re-oxygenation generates reactive oxygen species (ROS), 

primarily superoxide (O2
-), hydrogen peroxide (H2O2), hypochlorous acid (HClO) and 

hydroxyl radicals (OH-). These highly reactive molecules represent a double-edged sword; 

moderate levels of ROS production lead to an ischaemic preconditioning-like effect 

encompassing decreased Ca2+ load, increased GPCR and mitochondrial ATP-dependent 

potassium (mitoKATP) channel activities, and decreased apoptotic signalling and mPTP 

opening (Bagheri et al., 2016). On the other hand, excess ROS production can directly cause 

damage to cellular DNA, oxidative injury to membrane lipids, damage enzyme complexes in 

the mitochondrial respiratory chain that results in ATP depletion and cytochrome C release, 

and activate stress response pathways (Bagheri et al., 2016). Ultimately, these deleterious 

effects provoke apoptosis and necrosis. Therefore, limiting the amount of ROS production 

represents an important therapeutic target to limit the extent of IR injury. These include 

xanthine oxidase (XO), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 

mitochondria, and uncoupled nitric oxide synthase (NOS) (Granger and Kvietys, 2015). 
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XO is a mammalian form of xanthine oxidoreductase that catalyses purine metabolism i.e. 

the hydroxylation of xanthine to uric acid and generates ROS. Treatment strategies 

employing the xanthine oxidase inhibitors (XOI), allopurinol and oxypurinol, have proven to 

effectively inhibit XO activity and reduces ROS production, and exhibit cardioprotective 

effects against IR injury and HF in animal models (Puett et al., 1987, Haga et al., 2017, 

Naumova et al., 2006, Ukai et al., 2001). Moreover, a meta-analysis of randomised 

controlled trials has reported that XOI may reduce the incidence of adverse CV outcomes 

(Bredemeier et al., 2018). However, XO is also required for the reduction of nitrite to NO, 

which may be beneficial (Ghosh et al., 2013). 

NO derived from NOS or from pharmaceutical administration of NO-donors is 

cardioprotective against IR injury in animal models and humans via its anti-oxidant and 

anti-inflammatory effects (Schulz et al., 2004, Duranski et al., 2005, Phillips et al., 2009). 

However, when NOS is ‘uncoupled’, e.g. as a result of IR injury, superoxide production 

increases and reduces NO generation (Bendall et al., 2014). Reductions in the levels of 

tetrahydrobiopterin (BH4), a cofactor of NOS required for NO synthesis, have been shown 

to associate with NOS uncoupling and ROS production in IR models (Dumitrescu et al., 

2007). BH4 supplementation or substrates for BH4 biosynthesis (sepiaterin and folate) can 

re-couple NOS and ameliorate IR-induced cardiac inflammation and myocardial damage, 

and improve cardiac function (Yamashiro et al., 2002, Tiefenbacher et al., 2003, Moens et 

al., 2008). However, clinical trials have been largely disappointing probably due to limited 

endothelial uptake, failure to act on specific site(s) of target cells or systemic oxidation of 

BH4 (Cunnington et al., 2012). 

1.3.2.5 Inflammation 

Cardiac repair after ischaemic myocardial damage relies on the activation of the immune 

system that serves to clear the wound of dead cells, produce mediators triggering 

fibroblast growth and matrix formation, and to promote angiogenesis (Bonaventura et al., 

2016). These processes are finely regulated by the production of cytokines, chemokines 

and growth factors (Frangogiannis, 2012). Dysregulation of any of the immune components 

may extend injury and accentuate adverse remodelling in cardiac injury. Therefore, to 

understanding the cellular inflammatory events during reperfusion and healing are 

important for potential therapeutic interventions by selectively inhibiting injury and 

promoting repair (e.g. resolution of inflammation) (Bonaventura et al., 2016). 
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The inflammatory response in the infarcted area involves up-regulation of endothelial 

adhesion molecules, increased permeability of the microvascular wall, and up-regulation of 

cytokines and chemokines which eventually lead to extravasation of activated cells into the 

injured site (Bonaventura et al., 2016). The infiltrated leukocytes produce ROS beyond the 

initiation of the inflammatory cascade, which causes further cardiac injury (Bonaventura et 

al., 2016). Studies targeting the process of leukocyte infiltration by inhibiting expression of 

adhesion molecules have shown a significant reduction in infarct size (Yamazaki et al., 

1993a, Tojo et al., 1996). Also, studies investigating macrophage polarisation in the 

infarcted lesion have promoted interest in this area (Horckmans et al., 2017, Hulsmans et 

al., 2016, Nahrendorf and Swirski, 2013). It is largely agreed that the M1 macrophage is 

pro-inflammatory and destructive, whereas the M2 macrophage is anti-inflammatory and 

reparative (Boag et al., 2017). Thus, promoting M1 to M2 macrophage transition might be 

beneficial.  

Coronary endothelial P-selectin is upregulated in cardiac IR injury (Thomas et al., 2010) and 

its interaction with leukocytes plays an important role in cell adhesion and the subsequent 

cellular infiltration. Studies have reported that P-selectin deficient mice or administration 

of an anti-P-selectin antibody results in a significantly smaller cardiac infarction in an in vivo 

MI model compared to controls (Palazzo et al., 1998, Tojo et al., 1996). Furthermore, 

antibodies against neutrophil adhesion protein CD18 also limit myocardial infarct size and 

preserve LV function in many species, including murine, canine and primates (Arai et al., 

1996, Aversano et al., 1995, Ma et al., 1991, Lefer et al., 1993). However, these protective 

effects of a CD18 antibody did not translate to clinical benefits (LIMIT AMI, HALT MI, and 

FESTIVAL) with no modification in infarct size (Baran et al., 2001, Faxon et al., 2002, Rusnak 

et al., 2001). One possible explanation for the discrepancy between animal studies and 

human trials could be due to the longer duration of ischaemia period in patients (>2 hours), 

resulting in endothelial barrier leakage that circumvents the positive effect of blocking 

adhesion molecules, permitting neutrophils to migrate into the intravascular structure. This 

hypothesis is supported by a rabbit study in which a CD18 antibody reduced infarct size in 

the group subjected to 30 minutes ischaemia but not 45 minutes (Williams et al., 1994).  

1.4 The importance of the endothelium in cardiovascular homeostasis 

1.4.1 Overview of endothelial function 

Although the endothelium is just a cell mono-layer that overlays the vascular smooth 

muscle, it plays an essential role in the maintenance of vascular homeostasis. It releases 
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numerous vasoactive mediators in response to neurohormonal substances (e.g. bradykinin 

(BK), thrombin, ATP and substance P), and physical stimuli (i.e. shear stress) (Rajendran et 

al., 2013, Busse et al., 2002). The most well-established endothelium-derived relaxant 

mediators are NO and prostacyclin (PGI2). Together, they provide cardiovascular protection 

by regulating vascular tone, protect from oxidative stress, are anti-proliferative, and 

provide an anti-adhesive and anti-aggregatory vessel surface that prevents inflammation 

and thrombosis (Deanfield et al., 2007) (Figure 4). The loss of these protective functions is 

termed endothelium dysfunction and is thought to both initiate and exacerbate 

cardiovascular disorders associated with vasoconstriction, thrombosis and inflammation 

(Godo and Shimokawa, 2017). Indeed, evaluation of endothelial function in humans (e.g. 

flow mediated dilatation) has attracted much attention in the clinical settings because it 

can serve as an excellent prognostic marker for adverse cardiovascular events (Morimoto 

et al., 2016, Deanfield et al., 2007).  

1.4.2 Nitric oxide 

In 1980, Furchgott and Zawadzki discovered that a humoral factor released by the 

endothelium relaxed the underlying smooth muscle and termed this endothelium-derived 

relaxing factor (EDRF). A few years later, Furchgott and Ignarro independently identified NO 

as responsible for the vascular smooth muscle relaxation elicited by EDRF (Ignarro et al., 

1987). In the same year, Moncada and co-workers also demonstrated that the release of 

NO from endothelial cells induced vasorelaxation indistinguishable from EDRF, confirming 

NO is responsible for the bioactivity of this factor (Palmer et al., 1987).  

NO is synthesised from L-arginine by NOS. There are three isoforms of NOS: neuronal NOS 

(nNOS or NOS 1), inducible NOS (iNOS or NOS 2) and endothelial NOS (eNOS or NOS 3) 

(Chen et al., 2017). nNOS and eNOS are constitutively active, whereas iNOS is upregulated 

in response to pro-inflammatory stimuli such as lipopolysaccharide (LPS). The production of 

NO by eNOS in endothelial cells diffuses into the adjacent vascular smooth muscle cells 

(VSMCs), activating soluble guanylyl cyclase (sGC) which catalyses the conversion of GTP to 

cGMP. In turn, cGMP mediates biological effects via activation of cGMP-regulated ion 

channels, cGMP-binding phosphodiesterases (PDEs) and cGMP-dependent protein kinase 

(PKG or cGK) (Tsai and Kass, 2009). In VSMCs, PKG mediates relaxation via reducing 

intracellular calcium concentrations by activating Ca2+ ATPase on the cell membrane and 

sarcoplasmic reticulum, hyperpolarising the cell membrane by opening large conductance 

Ca2+ activated potassium (BKCa) channels, and upregulating myosin light chain phosphatase 
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(MLCP) activity that dephosphorylates myosin light chain, thus inhibiting contraction 

(Gewaltig and Kojda, 2002).  

Shear stress is one of the most important stimuli for the release of NO. This endothelial 

mechanotransduction system plays a prominent role in health and disease as it translates 

the physical force changes on the internal surface of the endothelial layer throughout the 

CVS into numerous downstream signalling pathways in response to diverse physiological 

demands in the body, i.e. matching organ perfusion with cardiac output (Baratchi et al., 

2017, Kim et al., 2017). Many published reports emphasize the distinct role of steady 

laminar flow or pulsatile shear stress being atheroprotective by triggering endothelial 

release of PGI2 and NO, whereas disturbed flow or oscillatory shear stress stimulates 

proinflammatory signalling and leads to the development of atherosclerotic lesions (Abe 

and Berk, 2014, Zhou et al., 2014). In fact, atheroma often appears in branch points of the 

vessels where oscillatory shear stress occurs concomitant with low NO production (Libby, 

2002).   

1.4.3 Prostacyclin 

PGI2 shares some common biological activities with NO in the CVS, including vasodilatation, 

anti-platelet and anti-inflammatory properties. PGI2 elicits vasodilatation via activation of 

prostacyclin receptors (IP) on the smooth muscle cell membrane that are coupled to 

adenylyl cyclase (AC). AC catalyses the conversion of ATP to cyclic adenosine-3',5'- 

monophosphate (cAMP) and leads to the activation of cAMP-dependent protein kinase 

(PKA). Similar to PKG phosphorylation, PKA mediates vasodilatation via reducing 

intracellular calcium concentrations and the calcium sensitivity of the contractile machinery 

(Morgado et al., 2012).  

PGI2 is synthesised from arachidonic acid by cyclo-oxygenase (COX). There are two 

isoforms: COX-1 and COX-2. COX-1 is widely distributed and constitutively expressed in 

nearly all cell types whilst COX-2 expression is induced by pro-inflammatory and 

proliferative stimuli, paralleling iNOS (Vane and Botting, 1998). It has been suggested that 

PGI2 production in endothelial cells is dependent on COX-2 induction (Schmedtje et al., 

1997, Grosser et al., 2006, Yu et al., 2012) and may account for the increased 

cardiovascular risk associated with the use of COX-2 specific inhibitors and non-steroid anti-

inflammatory drugs (NSAIDs) (Solomon et al., 2004, Mukherjee et al., 2001, Yu et al., 2012, 

McGettigan and Henry, 2011). However, a recent study has demonstrated that under 

physiological conditions it is COX-1 and not COX-2 that drives PGI2 production in the CVS 
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(Kirkby et al., 2012). Thus, the reason why COX-2 inhibitors increase adverse cardiovascular 

events needs to be revisited. It has been reported that COX-2 has a defined role in renal 

function and regulates blood pressure (BP) (Khan et al., 2002), which could provide a 

possible reason for the adverse cardiovascular effect with the use of COX-2 inhibitors. In 

addition, a recent study has revealed that COX-2 inhibition elevates renal production of 

asymmetrical dimethylarginine (ADMA), an endogenous NOS inhibitor (Ahmetaj-Shala et 

al., 2015). Thereby, COX-2 inhibitors reduce cardioprotective NO production.  

1.4.4 Endothelium-derived hyperpolarizing factors  

Another family of mediators, that are distinct from the bioactivity of NO and PGI2, also play 

an important role in the regulation of vascular tone. These are termed endothelium-

derived hyperpolarising factors (EDHFs) (Garland et al., 1995). As named, they are factors 

released from the endothelial cell that causes hyperpolarisation in the adjacent VSMCs 

resulting in vasodilatation. Many candidates for EDHF have been proposed, including H2O2, 

cytochrome P450 metabolites, anandamide, K+ ions and C-type natriuretic peptide (CNP) 

(Ahluwalia and Hobbs, 2005); but each of the individual candidates for EDHF remains 

debatable and varies across different vascular beds and species. In conduit vessels, EDHF 

may provide a secondary/back-up system to NO, but the importance of EDHF as a 

vasorelaxant is more apparent in the resistance vasculature (Shimokawa et al., 1996). Since 

resistant vessels are one of the main determinants of systemic BP (i.e. peripheral vascular 

resistance), altered EDHF responses are associated with hypertension. Interestingly, double 

KO of eNOS and COX-1 in female mice has no effect on mean arterial blood pressure 

(MABP) whereas male double knockout mice are hypertensive (Scotland et al., 2005). These 

observations demonstrate that EDHF plays an important role in regulating BP in females, 

whereas males rely on NO and PGI2 predominately. This also possibly explains the 

cardioprotective phenotype seen in pre-menopausal females when compared to age-

matched male counterparts (McCulloch and Randall, 1998, Moyes et al., 2014). 

Furthermore, EDHF-mediated responses are altered in various other pathological 

conditions, including aging, atherosclerosis, IR injury and CHF (Fujii et al., 1993, Selemidis 

and Cocks, 2002, Chan and Woodman, 1999, Malmsjo et al., 1999).  Common treatments 

for CVDs, such ACEi, restore the EDHF response and improve endothelium dysfunction 

(Goto et al., 2000), which suggests activation of the EDHF pathway contributes to the 

observed beneficial effect of such therapeutic interventions.   
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Pathways of endothelial (dys)function 

 

Figure 4. Pathways of endothelial (dys)function. 

Healthy endothelium releases numerous vasoactive mediators in response to neurohormonal substances and 

shear-stress. Nitric oxide (NO), prostacyclin (PGI2) and endothelium-derived hyperpolarising factor (EDHF) 

regulates vascular homeostasis by mediating vasodilatation, protects against oxidative stress, provides anti-

inflammatory and anti-aggregatory vessel surface. In dysfunctional endothelium, endothelial nitric oxide 

synthase (eNOS) becomes uncoupled, diminishes NO production and produces ROS, which increases vascular 

oxidative stress, augments expression of adhesion molecules and mediates vasoconstriction. ACh, 

acetylcholine; BK, bradykinin; Ang II, angiotensin II; COX-1, cyclo-oxygenase-1; eNOS, endothelial nitric oxide 

synthase; L-Arg, L-arginine; sGC, soluble guanylyl cyclase; ROS, reactive oxygen species. 
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1.5 Natriuretic peptides 

1.5.1 Overview of the natriuretic peptide family 

Three main mammalian natriuretic peptides have been discovered: ANP, BNP and CNP. In 

addition, Dendroaspis natriuretic peptide (DNP) has been isolated from the venom of 

Dendroaspis angusticeps, and urodilatin has been found in human urine that is produced by 

renal tubular cells from the Nppa gene (Del Ry et al., 2013). ANP and BNP are endocrine 

hormones secreted from the heart and regulate natriuresis, diuresis, BP, and maintain 

cardiac integrity (Del Ry et al., 2013, Lee and Burnett, 2007). Whereas, CNP is 

predominantly released from the endothelial layer of the blood vessels, but also expressed 

at a low level in the heart. Studies published by the Hobbs’ group have shown that CNP 

plays a fundamental role in vascular homeostasis by contributing to EDHF activity, 

promoting an anti-atherosclerotic environment and inhibiting the development of 

aneurysm (Moyes et al., 2014).  

1.5.2 Discovery 

The work of de Bold et. al (1981) provided the first comprehensive physiological 

characterisation of the ability of atrial tissue to induce a large diuretic and natriuretic 

response in the rat (de Bold et al., 1981). The group injected supernatant of atrial 

homogenates intravenously into non-diuretic rats, causing a rapid increase in sodium and 

chloride excretion, and urine volume. This work led to the discovery of ANP. Subsequently, 

Sudoh et. al isolated an analogous peptide from porcine brain and named it BNP (Sudoh et 

al., 1988). However, in the subsequent year it was shown that cardiac ventricles are the 

major source of circulating BNP (Saito et al., 1989). In 1990, Sudoh et. al isolated a third 

member of the natriuretic peptide family from porcine brain, which they termed CNP.  

Following the discovery of CNP, Burnett’s group showed this member of the natriuretic 

peptide family is synthesised and released by endothelial cells and has vasoactive 

properties (Stingo et al., 1992). 

1.5.3 Structure and synthesis 

All natriuretic peptides are produced as preprohormones that are cleaved to generate 

prohormones. These are subsequently processed into biologically active peptides (D'Souza 

et al., 2004). Each natriuretic peptide consists of a 17 amino acid disulphide ring structure 

that is critical for receptor binding and 11 of the amino acids in the cyclic structure are 

conserved across the three peptides (Del Ry et al., 2013). ANP and BNP possess 5- and 6-
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amino acid residues on the carboxyl terminal extension, respectively, but CNP completely 

lacks this tail. These are thought to be important in receptor selectivity (D'Souza et al., 

2004) (Figure 5).  

1.5.4 Atrial natriuretic peptide 

The human ANP gene (Nppa) is located on chromosome 1 and contains three exons and 

two introns, encoding a 151-amino acid preprohormone (Song et al., 2015). Proteolytic 

processing removes the signal peptide to form a 126-amino acid prohormone (pro-ANP) 

that is stored in dense granules in the atrial myocyte (Ruskoaho, 1992). During the 

secretory process, corin, a cardiac serine protease, cleaves proANP to the biologically active 

28-amino acid mature ANP (C-terminal) and a 98-amino acid fragment (N-terminal proANP) 

(Yan et al., 2000). ANP is released into the circulation in response to atrial wall stretch 

resulting from increased intravascular volume (Potter et al., 2006). ANP is a potent 

vasodilator and has natriuretic and diuretic properties through its actions on renal tubules 

and inhibition of the RAAS (Rubattu et al., 2013). Thus, it is an important anti-hypertensive 

and anti-hypovolemic factor. Furthermore, studies have shown that ANP KO mice exhibit 

exaggerated cardiac remodelling in response to pressure or volume overload (Li et al., 

2008, Mori et al., 2004). A synthetic ANP analogue, carperitide, reduces BP and increase 

cardiac output by causing vasodilatation, natriuresis, and inhibits RAAS. This drug is used as 

therapeutic in HF (Rubattu et al., 2013). 

1.5.5 Brian natriuretic peptide 

BNP is a 32-amino acid polypeptide synthesised and secreted from cardiac tissue, 

predominantly the ventricles. The human BNP gene (Nppb) is located on chromosome 1 

and consists of two exons and one intron (Song et al., 2015). It encodes a preprohormone 

of 134-amino acid that is cleaved into a 108-amino acid prohormone (proBNP1-108) by 

removing the signal peptide. This is subsequently processed into the mature biologically 

active 32-amino acid C-terminal peptide and a 76-amino acid N-terminal fragment (NT-

proBNP) (Sudoh et al., 1989). In contrast to ANP, BNP is not stored but synthesised de novo 

in the ventricles upon volume overload that is sensed by cardiac wall stretch (Potter et al., 

2006). Plasma levels of BNP are normally low but markedly increased upon 

pathophysiological conditions such as HF. Thus, particularly NT-proBNP, has been used as a 

diagnostic and prognostic biomarker of cardiac dysfunction (Aspromonte et al., 2017). Mice 

with BNP deletion exhibit an augmented fibrotic lesion in response to pressure-overload 

compared to WT controls, suggesting BNP is an anti-fibrotic factor.  



54 

1.5.6 C-type natriuretic peptide 

CNP is the most highly conserved natriuretic peptide across species, including humans, 

rodents, reptiles and fish (Del Ry et al., 2006b). In addition, studies of the lineage of 

natriuretic peptide genes have suggested that ANP and BNP originated from CNP via gene 

duplication (Inoue et al., 2003). The human CNP gene (Nppc) is located on chromosome 2 

and contains two exons and one intron (Ogawa et al., 1992). CNP is synthesised as pre-

proCNP comprising 126 amino acids. The pre-proCNP is then cleaved into pro-CNP (103 

amino acids) via the removal of signal peptide by signal peptidase. Pro-CNP is the form in 

which the peptide is stored. Subsequently, furin, a protein convertase that residents in the 

trans-Golgi network, cleaves pro-CNP to yield CNP-53. CNP-53 is then converted to 

biological active CNP-22 by an unidentified mechanism (Del Ry et al., 2006b) (Figure 6). 

Targeted disruption of CNP in mice causes severe dwarfism due to impairment of 

endochondral ossification, and high mortality before adulthood (Komatsu et al., 2002). 

Similar phenotypes are observed in humans with conditions involving inactivating 

mutations in CNP (Hisado-Oliva et al., 2018). Furthermore, several genome-wide 

association studies (GWAS) have established a relationship between Nppc and height 

(Estrada et al., 2009, Wood et al., 2014). This indicates that CNP is crucial for bone 

development and growth. Interestingly, the highest CNP expression in adult mice is found 

in the uterus and ovary (Stepan et al., 2000), and a function of CNP in reproduction has 

been demonstrated (Gutkowska et al., 1999). Other sites with significant expression of CNP 

mRNA include the CVS, skin, lungs, tongue, liver, kidney and stomach (Stepan et al., 2000). 

This wide distribution of CNP expression implies a multifunctional role for this peptide.  

CNP is highly expressed in endothelial cells and acts in an autocrine/paracrine fashion. 

Several stimuli have been found to be important in triggering the release of CNP in 

endothelial cells. This includes pro-inflammatory cytokines such as TNF-α and interleukin 

(IL)-1, TGF-β, and LPS (Potter et al., 2006), as well as shear stress (Chun et al., 1997). In 

addition, ANP and BNP also strongly stimulate the production and secretion of CNP from 

the endothelium, suggesting the vascular actions of ANP and BNP may partly be mediated 

via CNP release (Nazario et al., 1995). In fact, CNP is more potent than ANP in inducing 

smooth muscle relaxation but does not elicit natriuretic and diuretic effects (Chen and 

Burnett, 1998). Furthermore, forearm vasodilatation in response to ANP administration is 

reduced in patients with HF compared to normal individuals (Hirooka et al., 1990), but the 

vasorelaxant effects of CNP in such patients are preserved (Nakamura et al., 1994). Taken 
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together, these observations suggest that CNP could be a good pharmacological target for 

managing CVDs (Clavell et al., 1993) without inducing an adverse drop in BP. However, the 

role of CNP in the pathophysiology of CVD, particularly in the heart, is yet to be fully 

elucidated. 

1.5.7 Urodilatin 

Urodilatin is a 32-amino acid peptide generated from alternative processing of ANP 

expressed in the kidney (Potter et al., 2006). It plays an important role in the regulation of 

sodium and water homeostasis and has vasorelaxant effects (Hirsch et al., 2006). In healthy 

volunteers, urodilatin dose-dependently reduces mean pulmonary arterial pressure and 

pulmonary capillary wedge pressure, and increases heart rate (HR) and cardiac index 

(Kentsch et al., 1992b), indicating urodilatin has beneficial effect in CVDs. These 

cardioprotective effects of urodilatin are also observed in patients with CHF (Kentsch et al., 

1992a, Elsner et al., 1995). 
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The structure of natriuretic peptides 

 

Figure 5. The structure of natriuretic peptides. 

Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). 

Conserved amino acids are in green and disulphide bonds are indicated in straight lines. 
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Biosynthesis of biologically active CNP-22 

 

Figure 6. Biosynthesis of biologically active CNP-22. 

The signal peptide is removed from pre-proCNP by signal peptidase, yielding pro-CNP, which is then cleaved by 

furin to produce CNP-53. CNP-53 is then converted into CNP-22 by an unknown mechanism.  
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1.6 Natriuretic peptide signalling and clinical significance 

1.6.1 Overview of natriuretic peptide receptors  

The biological effects of natriuretic peptides are mediated by binding of the peptides to a 

family of membrane spanning receptors, termed natriuretic peptide receptors (NPRs) 

(Potter et al., 2006). Three subtypes of NPRs have been found: NPR-A, NPR-B, and NPR-C. 

NPR-A and NPR-B are also known as GC-A and GC-B, respectively, representing particulate 

guanylyl cyclases (pGC). ANP and BNP are the primary ligands for NPR-A, whereas NPR-B is 

more selective for CNP (Potter, 2011a). NPR-C is the most abundant NPR in many tissues 

and it is known as a clearance receptor that removes natriuretic peptides from the 

circulation. Thus, the binding affinities of NPR-C for all three natriuretic peptides are 

relatively similar (Potter, 2011a).  

NPRs are homodimeric and exhibit high homology, especially their N-terminal extracellular 

binding domain (Potter, 2011a). Both NPR-A and NPR-B have GC functionality at the C-

terminus, which is normally inhibited by phosphorylation of the kinase homology domain 

(Koller et al., 1992). Receptor binding of the natriuretic peptides to their respective NPR 

causes conformational changes, which releases the inhibitory action of the kinase 

homology domain on the GC functionality resulting in cGMP synthesis, which underpins 

many of the biological activities of the peptides (Ogawa et al., 2004, Pagel-Langenickel et 

al., 2007)(Figure 7). The extracellular ligand-binding domain of NPR-C shares approximately 

30% homology with NPR-A and NPR-B (Potter et al., 2009). However, NPR-C is devoid of 

kinase and GC activities but possesses a 37-amino acid intracellular N-terminal that has 

been shown to have a Pertussis toxin (PTx) sensitive Gi binding domain (Zhou and Murthy, 

2003) (Figure 7). 

1.6.2 Natriuretic peptide receptors A 

NPR-A is the common receptor for ANP and BNP that is widely expressed in the CVS, 

predominantly in the cardiac atria and the ventricles, aorta and peripheral vasculature as 

well as in platelets, kidney and presynaptic fibres (Pandey, 2011). Activation of NPR-A by 

ANP or BNP elicits vasodilatation, natriuresis as well as decreases renin, vasopressin and 

aldosterone release (Lohmeier et al., 1995). Deletion of NPR-A in mice causes hypertension 

and leads to cardiac hypertrophy and fibrosis (Oliver et al., 1997), indicating the 

importance of the receptor in cardiovascular homeostasis. 
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1.6.3 Natriuretic peptide receptor B 

In NPR-B expressing cells, only CNP can effectively stimulate GC activity (Ogawa et al., 

1992). Although NPR-B is expressed in blood vessels, NPR-B KO mice do not exhibit 

hypertension (Tamura et al., 2004). However, absence of NPR-B leads to dwarfism due to 

impairment of endochondral ossification and female animals fail to develop a normal 

reproductive tract (Tamura et al., 2004). In humans, homozygous defects in NPR-B gene 

cause a severe skeletal dysplasia, acromesomelic dysplasia Maroteaux type (Bartels et al., 

2004). This confirms CNP/NPR-B signalling is critical for bone development.  

1.6.4 Natriuretic peptide receptor C 

The extracellular domain of NPR-C shares ~30% homology with NPR-A and NPR-B and has a 

short 37 amino acid cytoplasmic domain (Anand-Srivastava, 2005). It is widely distributed 

throughout the body including vasculature, heart, kidney and the brain (Anand-Srivastava, 

2005). The receptor density in these tissues is higher than NPR-A/B. In fact, NPR-C 

comprises about 94% of the natriuretic peptide receptor population on endothelial cells 

(Leitman et al., 1986). It has long been thought to solely acts as a clearance receptor due to 

an absence of a GC domain (Nussenzveig et al., 1990). However, two subtypes of NPR-C 

have been found. The 77-kDa protein is implicated in ligand clearance via receptor 

internalisation, whereas a 67-kDa protein has Gi protein coupling that is able to inhibit 

AC/cAMP cascade and activate PLC-β3 (Murthy et al., 2000, Li et al., 2014a) (Figure 7). NPR-

C KO mice exhibit increased bone growth resulting in a hunched back, dome-shaped skull, 

elongated tail and limbs (Jaubert et al., 1999), probably due to reduced local clearance of 

CNP that over-stimulates NPR-B signalling. Although mice with NPR-B deletion are 

normotensive, NPR-C KO mice exhibit elevated BP (Moyes et al., 2014), suggesting NPR-C 

signalling is important in maintaining vascular function. It has been reported that NPR-C 

activation leads to the opening of G protein-gated inwardly rectifying potassium (GIRK) 

channels that causes hyperpolarisation of VSMCs, resulting in vasorelaxation (Chauhan et 

al., 2003). 

1.6.5 Clinical trials of natriuretic peptides 

Hobbs et al. (1996) conducted the first randomised, double-blinded, placebo-controlled 

clinical trial of synthetic human BNP, nesiritide, in patients with acute decompensated 

(AD)HF. The study demonstrated that bolus intravenous administration of BNP improves 

haemodynamics, and increases cardiac and stroke volume indices in a dose-dependent 

fashion (Hobbs et al., 1996). Other trials also showed continuous infusion of nesiritide in 
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ADHF patients is well tolerated and provides a rapid and sustained beneficial 

haemodynamic effect that is comparable with standard therapies such as intravenous 

diuretics, dobutamine, nitroglycerin and sodium nitroprusside (Mills et al., 1999, Colucci et 

al., 2000). Furthermore, the Vasodilation in the Management of Acute CHF (VMAC) study 

demonstrated nesiritide improves dyspnoea similarly to nitroglycerin with a greater 

reduction in pulmonary capillary wedge pressure (PCWP), which formed the basis for the 

Food and Drug Administration’s approval of nesiritide in the US. The PRECEDENT study also 

indicated that nesiritide has greater haemodynamic effect without the undesired pro-

arrrythmic and chronotropic effects associated with dobutamine (Burger et al., 2002). 

These studies demonstrated that nesiritide is a safer, short-term treatment for patients 

with ADHF. However, a meta-analysis suggested nesiritide significantly increases the risk of 

worsening renal function that is associated with poorer prognosis compared with control 

therapy (Sackner-Bernstein et al., 2005). Yet, the definition of worsening renal function 

used in these trials was elevations in serum creatinine. Blockade of RAAS by the action of 

nesiritide can lead to increases in creatinine levels, suggesting the ‘worsening renal 

function’ may reflect the haemodynamic effect, rather than renal injury. In addition, 

studies have shown that nesiritide has no impact on renal function and no association with 

short or long-term mortality (Witteles et al., 2007, Arora et al., 2006). Indeed, nesiritide 

administered to patients with left ventricular dysfunction undergoing coronary artery 

bypass grafting is associated with a significant reduced peak increase of serum creatinine, a 

smaller fall in glomerular filtration rate and a lower 180 day mortality (Mentzer et al., 

2007). However, the ROSE Acute Heart Failure Trial, which was specifically designed to 

investigate the effect of low-dose nesiritide on renal function in patients with acute HF and 

renal dysfunction on diuretic therapy, demonstrated that nesiritide neither enhances 

decongestion nor improves renal function as indicated by urine volume and serum cystatin 

C measurements (Chen et al., 2013). In addition, serial outpatient nesiritide infusion does 

not provide clinical benefit over standard therapies in patients with advanced HF (Yancy et 

al., 2008). This fits well with the first large-scale randomised, placebo-controlled trial with 

over 7000 acute HF patients (ASCEND-HF trial). It demonstrated that nesiritide has no 

significant clinical benefits in addition to standard care, including neither increase nor 

decrease in death rate and rehospitalisation, no worsened renal function but associated 

with an increased occurrence of hypotension (O'Connor et al., 2011). The study, in part, 

agrees with the VMAS trial in that a significant effect on dyspnoea at 3 hours was observed 

as compared with placebo but the improvement was similar to that of intravenous 
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nitroglycerin, and no significant effect was observed at 24 hours. Taken together, there is 

no strong clinical evidence demonstrating nesiritide is superior to standard care. The 

inconsistencies reported from different clinical trials could be due to the patient population 

studied, analysis strategies, and whether nesiritide was compared to standard therapy or 

placebo. For example, the treated patients in the VMAS study were compared to placebo 

with no additional therapy unless worsening symptoms was observed, whereas in the 

ASCEND-HF trial, all patients received interventions and the effect of nesiritide was 

compared to the standard therapy. 

Some clinical trials have been conducted to investigate the action of BNP in LV remodelling 

and function in patients with AMI.  A proof-of-concept study involving 24 patients showed 

72 hours infusion of BNP has beneficial effect on LVEF and reduced LV end-systolic volume 

(Chen et al., 2009). However, a phase II study, BELIEVE II, involving 60 patients with STEMI 

showed no significant effect of 3 days of nesiritide infusion on infarct size and cardiac 

function compared to placebo (Sangaralingham et al., 2013, Chen, 2014). Whilst, eight 

weeks of chronic subcutaneous infusion of BNP improves LV remodelling, LV systolic and 

diastolic volume index, LV filling pressure and Minnesota Living with Heart Failure scores in 

patients with HFrEF (Chen et al., 2012). Yet, this study was unable to determine clinical 

outcomes and whether BNP can delay progression of HF due to lack of long-term follow up 

of the patients. Furthermore, evidence suggests that NPR-A signalling is reduced whereas 

as NPR-B activation is increased in experimental models of HF and in human failing hearts 

(Dickey et al., 2007, Dickey et al., 2012, Tsutamoto et al., 1993, Matsumoto et al., 1999). In 

accord, immunocytochemistry has demonstrated a significant downregulation in the 

density of NPR-A in cardiomyocyte, endothelial cells and vascular smooth muscle of 

patients with ischaemic heart disease.  Thus, increasing circulating active BNP may not 

necessarily confer cardiovascular benefits due to dysfunction/downregulation of NPRs in 

patients with HF. In contrast, an increase in NPR-C mRNA expression was observed in 

patients with HF (Kuhn et al., 2004), suggesting NPR-C activation may represents a feasible 

therapeutic target. In fact, sympathetic over-activation, which is associated with HF, is 

dampened by NPR-C signalling, possibly in a similar manner as β-blockers (Azer et al., 2012, 

Azer et al., 2014, Moghtadaei et al., 2017). Thus, targeting CNP/NPR-C signalling offers a 

theoretical advantage in treating HF. 
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1.7 Clearance of natriuretic peptides 

1.7.1 Overview 

Plasma levels of natriuretic peptides are regulated by the rate of synthesis, release and 

clearance from the circulation. Two main mechanisms contribute to the removal of the 

peptides: NPR-C mediated endocytosis or hydrolysis by neutral endopeptidase (NEP) 

(Potter, 2011b). The reported half-life for ANP is about 2.5 minutes in normal human 

subjects (Yandle et al., 1986) and about 20 minutes for BNP (Holmes et al., 1993).  This 

parallels NEP sensitivity and NPR-C affinity, which are both lower for BNP (Potter, 2011b). 

CNP has the shortest half-life (~2 minutes) of all the natriuretic peptides in human (Hunt et 

al., 1994), probably due to the sensitivity to NEP degradation. 

1.7.2 Endocytosis by NPR-C 

NPR-C-mediated internalisation and degradation involves the binding of the peptides to the 

receptor, followed by endocytosis and lysosomal degradation. The ligand-free receptor is 

then rapidly recycled back to the plasma membrane (Potter, 2011b). The dissociation of 

natriuretic peptides from NPR-C is slower than the rate of internalisation, ensuring the 

bound peptide is delivered to the lysosome for degradation. NPR-C contains a single 

tyrosine (Tyr508) amino acid in the cytoplasmic domain that has been suggested to be 

important in clathrin-dependent endocytosis (Cohen et al., 1996). However, NPR-C does 

not contain cytoplasmic internalisation motifs that are homologous to other receptors that 

are known to internalise via a clathrin-coated-pit dependent pathway (Cohen et al., 1996), 

hence the exact mechanism by which NPR-C-mediates endocytosis is still uncertain. 

1.7.3 Neutral endopeptidase 

NEP, also known as neprilysin, is a zinc-containing, membrane-bound, extracellular 

proteinase that cleaves substrates on the amino side of hydrophobic residues (Kerr and 

Kenny, 1974). It is widely distributed throughout the body including the heart, lungs, kidney 

and also found on the surface of endothelial cells, VSMCs, fibroblasts and myocytes 

(Vanderheyden et al., 2004). NEP cleaves ANP and CNP at multiple sites but the initial 

cleavage occurs between the conserved C7 and F8 residue, breaking the ring structure and 

inactivating the peptide (Potter, 2011b). Studies have been shown that BNP is a poorer 

substrate for NEP, which does not break between C7 and F8 but at M5-V6 near the N-

terminal tail of the peptide (Kenny et al., 1993). This may contribute to the longer half-life 

of BNP.  
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The relative contribution of receptor-mediated and extracellular proteinase to natriuretic 

peptide inactivation has been studied. Charles et al. (1996) have shown that NPR-C 

blockade and NEP inhibition induce similar increases in ANP and BNP concentration under 

physiological conditions, indicating an equal contribution of enzymatic and receptor 

clearance pathway. However, during pathophysiological conditions where natriuretic 

peptide levels are raised and NPR-C may be saturated, NEP may play a major role in 

inactivation (Hashimoto et al., 1994).   
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Natriuretic peptide receptors and their respective downstream signalling 

pathways 

 

Figure 7. Natriuretic peptide receptors (NPRs) and their respective downstream signalling pathways. 

NPR-A and –B are particulate guanylyl cyclase receptors that produce biological effects via cGMP production. 

NPR-C is a clearance receptor and has Gi-protein coupling. Its activation by CNP mediates biological signalling 

via inhibition of adenylyl cyclase (AC), activation of phospholipase-C (PLC) or opening of G protein-gated 

inwardly rectifying potassium channels (GIRK). 
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1.8 The role of CNP in the vascular system 

1.8.1 Overview 

The relatively high expression of CNP in endothelial cells and the presence of its receptor 

on the underlying smooth muscle cells suggest that CNP plays a role in vascular 

homeostasis (Stingo et al., 1992). Due to the low plasma levels of CNP, it is thought to act in 

a paracrine/autocrine fashion. In healthy human subjects, the plasma concentration of CNP 

is approximately 1 pg/ml (Igaki et al., 1996, Hama et al., 1994) and rises in pathological 

conditions, especially in patients with cardiovascular disorders (septic shock, 13 pg/ml 

(Hama et al., 1994); renal failure, 3 pg/ml (Igaki et al., 1996); CHF, 8 pg/ml (Del Ry et al., 

2011a)), diabetes (9 pg/ml (Del Ry et al., 2011a)) and cirrhosis (5 pg/ml (Del Ry et al., 

2011a)). In conditions of oxidative stress, such as atherosclerosis, NO bioavailability is 

reduced whilst CNP production is increased (Chun et al., 2000). These observations suggest 

CNP may play a protective, compensatory role to NO in maintaining endothelial function. 

1.8.2 CNP in the regulation of vascular tone 

CNP is widely reported as a potent vasodilator in various vascular beds of different species 

including human (Wiley and Davenport, 2001), pig (Barber et al., 1998), rat (Chauhan et al., 

2003) and mouse (Madhani et al., 2003). In isolated porcine coronary arteries CNP evokes 

vasorelaxation by hyperpolarisation (Barton et al., 1998). Subsequently, Chauhan et al. 

(2003) showed that CNP and EDHF exhibit equivalent hyperpolarisation and relaxation 

responses in rat mesenteric artery that were blocked by well-characterised EDHF inhibitors. 

This provided the first evidence that CNP acts as an EDHF and regulates local vascular tone 

in parallel with NO and PGI2. Correspondingly, mice lacking endothelium-derived CNP have 

reduced vasorelaxant responses to ACh compared to WT in the presence or absence of NO 

and PGI2 blockade (Moyes et al., 2014). With the use of the selective NPR-C antagonist, 

M372049, it has been revealed that CNP acts on NPR-C leading to Gi-dependent activation 

of Ba2+-sensitive GIRK channels and Na+/K+-ATPase in the VSMC, resulting in 

hyperpolarisation and vasorelaxation (Villar et al., 2007) (Figure 8). This mechanism 

represents a major component of EDHF-induced smooth muscle relaxation. However, 

activation of proteinase-activated receptor 2 (PAR2) in the endothelium also mediates EDHF 

responses and this is not altered in mice deficient in the NPR-C gene (McGuire et al., 2004). 

Furthermore, vasodilator responses to CNP in capillaries are preserved in endothelial-

restricted NPR-B KO mice but abolished in pericyte NPR-B KO (Spiranec et al., 2018). These 
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observations indicate CNP signalling is important in regulating different vascular cell types 

across various vascular beds. 

1.8.3 CNP in the regulation of blood pressure 

The ability of CNP to regulate vascular tone intimates that this peptide contributes to BP 

regulation. In a genetic association study, it has shown that a single-nucleotide 

polymorphism in the CNP gene associates with hypertension, particular in younger adults 

(Ono et al., 2002). GWAS have also shown that mutations in NPR-C and furin associate with 

higher BP (Ehret et al., 2011). This is consistent with animal studies that have revealed 

disruption of CNP production leads to a hypertensive phenotype in an allele dependent 

manner, particularly in female animals (Moyes et al., 2014).  

1.8.4 Interaction between CNP and renin-aldosterone-angiotensin system 

There is evidence that CNP contributes to the regulation of BP by interfering with the RAAS 

signalling in a manner akin to ANP. Ang II stimulates the secretion of ET-1, a process that is 

inhibited by CNP with a greater potency than ANP or BNP (Kohno et al., 1992). In human 

forearm blood flow studies, CNP inhibits Ang I-induced vasoconstriction but not Ang II, 

intimating that CNP inhibits ACE activity (Davidson et al., 1996). On the other hand, 

ramipril, an ACEi, increases CNP mRNA expression in the renal cortex (Walther et al., 2001), 

suggesting the use of ACEi not only inhibits the generation of Ang II but also increases CNP 

expression that could be cardioprotective. However, the overall diuretic and natriuretic 

effect of CNP is modest compared to ANP and BNP (Kalra et al., 2001). 

1.8.5 CNP in vascular cell proliferation and remodeling 

Atherosclerosis is a huge contributor to cardiovascular disorders including CHD, stroke and 

MI (Hansson, 2005). To promote endothelial regeneration whilst inhibiting VSMC 

proliferation is essential to prevent atherosclerosis, restenosis and maintain a healthy 

vasculature (Kipshidze et al., 2004, Losordo et al., 2003). Many studies have shown that 

CNP is a strong anti-proliferative agent and reduces intimal thickening via the NPR-B/cGMP 

cascade (Furuya et al., 1993, Doi et al., 2001, Ohno et al., 2002). Similar results were 

reported in different vascular beds and species, including rat and rabbit carotid artery 

(Furuya et al., 1993, Gaspari et al., 2000, Shinomiya et al., 1994), porcine coronary artery 

(Morishige et al., 2000) and porcine femoral artery (Pelisek et al., 2006). However, a study 

by Cahill et al. (1994) showed that CNP suppresses aortic smooth muscle cell proliferation 

via a cGMP-independent pathway involving NPR-C. This result is supported by recent 
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studies from the Hobbs’ laboratory, using antagonists and NPR-C KO mice, demonstrating 

that NPR-C dependent ERK1/2 phosphorylation is responsible for the dual effect of CNP to 

inhibit VSMC proliferation but concomitantly augment endothelial cell growth (Khambata 

et al., 2011). These dual roles of CNP in vascular cell proliferation might represent an 

attractive therapeutic avenue in atherosclerosis and might provide an alternative agent to 

the existing drug eluting stents for patients undergoing PCI. 

1.8.6 CNP in vascular inflammation and atherosclerosis 

One of the early steps of atherogenesis is the rolling and adhesion of leukocytes to the 

endothelial surface through interaction of various cell adhesion molecules that are 

expressed on both leukocytes and endothelial cells (Libby, 2002). CNP has been shown to 

supress leukocyte rolling induced by acute inflammation or in a high basal leukocyte 

activation mouse model (i.e. eNOS KO mice). Genetically modified mice with endothelial 

CNP deletion exhibit increased basal leukocyte rolling, and apolipoprotein E 

(ApoE)/endothelial CNP double KO mice are more prone to the development of 

atherosclerotic plaque in the aorta compared with WT/ApoE KO littermate controls (Moyes 

et al., 2014). These findings provide strong evidence that CNP has anti-atherosclerotic 

properties. 

Furthermore, CNP is expressed strongly in coronary atherosclerosis lesions, particularly in 

the endothelium, VSMCs and macrophages (Casco et al., 2002). Interestingly, the level of 

CNP expression correlates with the severity of human atherosclerotic lesions. Naruko et al. 

(1996) showed that CNP expression is present in the endothelial cells of non-lesional 

human coronary arterial segments, but is decreased in lesional segments (Naruko et al., 

1996). Conversely, CNP levels are increased in VSMCs and macrophages of the lesion area 

but absent from healthy segments (Naruko et al., 1996, Casco et al., 2002). In addition, 

NPR-A is absent in the lesions but both NPR-B and NPR-C are expressed (Casco et al., 2002). 

Taken together, this evidence indicates an autocrine/paracrine action of CNP in modulating 

the progression of atherosclerotic disease via its anti-proliferative and anti-migratory 

action on VSMCs and macrophages, and maintenance of vasculature integrity. 
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EDHF/CNP-mediated vascular smooth muscle hyperpolarisation 

 

Figure 8. EDHF/CNP-mediated vascular smooth muscle hyperpolarisation.  

EDHF/CNP is released in the endothelial cell upon activation of calcium-dependent potassium channel, SKCa. 

The release of CNP results in the activation of NPR-C on the vascular smooth muscle cell, which causes 

activation of Na+/K+ ATPase and G protein-gated inwardly rectifying potassium (GIRK) channels via Gi-coupling, 

leading to hyperpolarisation and vasorelaxation. SKCa, calcium activated small-conductance potassium channel; 

BKCa, calcium activated big-conductance potassium channel; CTx, charybdotoxin; PTx, pertussis toxin. 
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1.9 The role of CNP in cardiac function 

1.9.1 CNP in cardiac pathologies 

Early studies detected expression of all three types of NPR (NPR-A, -B and -C) in both rat 

and human hearts (Nunez et al., 1992). Subsequently, CNP mRNA was also found in rat 

hearts (Vollmar et al., 1993), confirming the production of CNP in the myocardium and 

hinting that it may contributes to the regulation of cardiac function. By measuring the 

difference in plasma levels of CNP between the aortic root and coronary sinus in patients 

with CHF, it has been confirmed that failing hearts produce CNP (Kalra et al., 2003, Del Ry 

et al., 2006a), and that plasma levels of CNP are related to disease severity (Del Ry et al., 

2005). The expression of CNP mRNA is also significantly increased in ischaemic 

cardiomyopathy and inversely associated with LV function (Tarazon et al., 2014). Similarly, 

CNP mRNA expression is elevated in the fibrotic area of the infarct and border regions of 

the lesion (Soeki et al., 2005), indicating local CNP acts in an autocrine manner and may 

play an important part in cardiac fibrosis. In in vivo studies, CNP levels decrease as collagen 

deposition increases in aging rat (Ichiki et al., 2014, Sangaralingham et al., 2011), 

suggesting a reduction in CNP may contribute to fibrosis. These observations indicate CNP 

production and secretion in the heart may play an important role in pathophysiological 

processes, and may have a compensatory or potentiating effect on other cardioprotective 

mediators, such as NO and alternate natriuretic peptides. In addition, higher levels of CNP 

and NPR-B expression are observed in leukocytes of HF patients with respect to control 

subjects (Cabiati et al., 2012), indicating CNP may also influence cardiovascular disorders 

via anti-inflammatory activity (Wang et al., 2007).  

Nevertheless, the physiological function of CNP in cardiac function remains to be 

elucidated due to lack of selective pharmacological tools and cell-specific gene deletion, 

since global CNP KO is lethal before mice reach adulthood (Chusho et al., 2001). 

1.9.2 CNP in ischaemia-reperfusion injury  

Numerous studies have shown a protective effect of pGC/cGMP/PKG activity in IR injury 

(Abdallah et al., 2005, Burley et al., 2007, Inserte et al., 2000, Jin et al., 2014), implying the 

activation of NPR-B by CNP is myocardial protective. However, cardiomyocytes respire 

anaerobically during ischaemia that results in intracellular acidosis, which blunts cGMP 

production via pGC signalling in this environment (Agullo et al., 2003). This suggests that a 

pGC/cGMP-independent protective pathway might be involved. The Hobbs’ lab has 
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demonstrated in the isolated Langendorff heart that infusion of CNP prior to or following 

an ischaemic insult results in a 30-50% reduction in infarct size. The NPR-C agonist, cANF4-

23, mimicked this beneficial effect of CNP, indicating that NPR-C activation contributes to 

the CNP-mediated protective mechanism against IR injury (Hobbs et al., 2004). 

Furthermore, it has been suggested that the activation of NPR-C/Gi coupling exerts its 

biological action by recruiting PI3K/Akt cascade that in turn stimulates eNOS and NO 

production (Anand-Srivastava, 2005). This pathway is known to be protective in IR injury 

(Schulz et al., 2004). Thus, both cGMP-dependent (i.e. NPR-B) and –independent (i.e. NPR-

C) mechanisms might underlie the cardioprotective effect of exogenous CNP. 

1.9.3 CNP in the regulation of cardiac remodelling 

Cardiac remodelling and fibrosis is a hallmark of end-stage HF that involves cardiac 

fibroblast proliferation, and changes in myocardial morphology and function (Wu et al., 

2017b). Thus, to slow cardiac hypertrophy and fibrosis is a sought-after therapeutic option 

in CHF.  To date, it is well established that ANP and BNP possess anti-hypertrophic and anti-

fibrotic properties and improve cardiac function in the diseased heart (Tamura et al., 2000, 

Rosenkranz et al., 2003). However, their potent diuretic and natriuretic properties are a 

huge drawback to patients with unstable haemodynamics, dropping BP and impairing renal 

function (Vaduganathan et al., 2013). Interestingly, it has been reported that CNP has more 

potent anti-hypertrophic and anti-fibrotic actions than ANP (Horio et al., 2003), suggesting 

CNP may be a better pharmacological tool for CHF. Studies of CNP pharmacology have 

demonstrated that CNP attenuates an increase in cardiac hypertrophy and fibrosis, reduces 

LV enlargement in response to pressure-induced or ischaemia-induced HF (Soeki et al., 

2005, Izumiya et al., 2012). In concert with these studies, mice with cardiac-restricted CNP-

overexpression do not develop cardiac hypertrophy and fibrosis after MI, but no difference 

in infarct size was observed compared to WT (Wang et al., 2007). This indicates that CNP 

moderates the adverse cardiac remodelling process post-ischaemia. The protective 

mechanism of CNP is proposed to be attributed to CNP/NPR-B signalling as down-

regulation of NPR-B signalling exhibits progressive cardiac hypertrophy without altering BP 

(Langenickel et al., 2006, Del Ry et al., 2008a). Yet, the ventricular expression of NPR-B is 

reduced in HF (Del Ry et al., 2008a), limiting the therapeutic potential of targeting NPR-B 

signalling. In addition, there is no evidence of increased fibrosis in animals with down-

regulated NPR-B, while loss of NPR-C results in structural remodelling and fibrosis (Egom et 

al., 2014). These observations suggest that the anti-fibrotic action of CNP might be 

conveyed via NPR-C. 
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1.9.4 CNP in the control of heart rate 

All three NPRs are expressed in the sinoatrial node (SAN) and atrium (Springer et al., 2012), 

suggesting natriuretic peptides have the ability to modulate HR and the cardiac conduction 

system. Early in vivo studies showed that CNP has positive chronotropic and inotropic 

effects via NPR-B signalling (Beaulieu et al., 1997, Hirose et al., 1998). Correspondingly, a 

recent study has shown that CNP increases HR via increasing L-type Ca2+ current (ICa(L)) and 

hyperpolarisation-activated current (If) (Springer et al., 2012). It is proposed that CNP 

regulates HR and conductivity by activating GC-linked NPR-B that increases cGMP 

concentration and inhibits PDE3 activity (Springer et al., 2012). Blockade of PDE3 would be 

expected to result in an increase of cAMP, which has positive chronotropic effect.  

However, Herring et al. (2001) reported a bradycardia effect of CNP via a cGMP/PDE3 

dependent pathway, causing an increase of cAMP PKA-dependent phosphorylation of 

presynaptic N-type calcium channels. This leads to ACh release into the synapse and 

activates M2 receptor on pacemaker cells that results in an enhanced vagal tone (Herring et 

al., 2001).  

Rose et al. (2004) have demonstrated a negative chronotropic effect of CNP mediated by 

activation of NPR-C through Gi protein coupling in isolated SAN cells that leads to inhibition 

of L-type Ca2+ current (Rose et al., 2004). This group has also demonstrated a dual role of 

CNP in HR and SAN function by stimulating NPR-B and/or NPR-C in response to different 

levels of sympathetic drive (Azer et al., 2012). Under basal condition, CNP is able to 

increase HR, but this effect is not replicated by cANF4-23, which suggests NPR-B is 

responsible for the positive chronotropic activity. In sharp contrast, CNP causes a reduction 

in HR in the presence of isoprenaline (ISO) and this effect is enhanced by NPR-B blockade, 

but abolished in NPR-C KO mice. These observations provide a definitive role for CNP in the 

SAN function and demonstrated CNP acts via NPR-B to increase HR under basal conditions 

but that this appears to switch to NPR-C signalling, probably via decrease in cAMP level, 

during sympathetic hyperactivity.  In addition, NPR-C KO mice have elevated heart rate 

with reduction in parasympathetic activity and enhanced sympathetic activity, confirming 

NPR-C signalling modulates autonomic function (Moghtadaei et al., 2017). Furthermore, 

CNP can also reduce cardiac sympathetic neurotransmission by inhibiting the release of 

noradrenaline (Buttgereit et al., 2016).  These biological actions of CNP on the sympathetic 

system may represent an important therapeutic target in CHF patients as damping 

sympathetic activity improves survival (Gheorghiade et al., 2003, Butler et al., 2006).  
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1.9.5 CNP in the control of cardiac contractility 

Patients with CHF have elevated plasma levels of CNP that parallels clinical severity (Del Ry 

et al., 2005). Furthermore, clinical studies also reported a negative correlation between 

CNP and dP/dt in CHF patients, indicating CNP has a possible role in cardiac contractility 

(Del Ry et al., 2008b).  In cardiac muscle preparations and isolated cardiomyocytes, CNP 

displays a positive lusitropic effect associated with a negative inotropic effect (Brusq et al., 

1999, Nir et al., 2001, Zhang et al., 2005a). Whereas in the isolated perfused working heart, 

CNP exhibits a biphasic action with an immediate increase in inotropy and lusitropy, 

followed by a slowly developing negative inotropic effect (Pierkes et al., 2002, Wollert et 

al., 2003). These actions associate with PLB phosphorylation and activation of SERCA, and 

are mimicked by a cGMP-analogue (Pierkes et al., 2002), suggesting a cGMP-dependent 

pathway contributes to CNP bioactivity. In addition, cGMP-dependent protein kinase I (PKG 

I) overexpression enhances CNP-mediated cell shortening, systolic Ca2+ levels and 

accelerates Ca2+ decay (Wollert et al., 2003). Thus, it is plausible that CNP modulates 

cardiac contractility via the NPR-B/cGMP cascade. 

1.10 cGMP and cAMP signalling in cardiac remodelling  

1.10.1 Overview 

cGMP and cAMP are second messengers conveying the biological activity of NO and 

natriuretic peptides, and the sympathetic system (Tsai and Kass, 2009). Different stimuli 

activating these cyclic nucleotides can mediates diverse cellular and physiological effects on 

the CVS depending on their concentration, localisation and duration of stimulation (Levy, 

2013). For instance, acute elevation of cAMP increases intracellular Ca2+ that enhances 

contractility of the heart and cardiac output (Bobin et al., 2016). However, prolonged 

activation of cAMP activity due to sustained activation of adrenoceptors, as occurs in 

hypertension and HF, leads to maladaptive cardiac remodelling, apoptosis and arrhythmia 

(Bobin et al., 2016). Hence, modulation of cyclic nucleotide amplitude, duration and 

localisation is very important in determining the physiological responses. This is tightly 

regulated by the balance between the rate of cAMP and cGMP generation by AC and GC, 

respectively, and the rate of degradation by PDEs. 

1.10.2 cAMP/PKA cascade in the heart 

The stimulation of Gs protein coupled receptors, such as β-adrenoceptors, activates AC that 

syntheses cAMP, which in turn activates cAMP-dependent protein kinase A (PKA) (Bobin et 
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al., 2016). PKA phosphorylates various downstream proteins that regulate Ca2+ transient in 

cardiomyocytes in response to acute sympathetic stimulation, including sarcolemmal L-

type Ca2+ channels, ryanodine receptors (RyR2), PLB (which controls the activity of SERCA2) 

and troponin I, leading to positive inotropic and lusitropic effects (Bobin et al., 2016). 

However, chronic activation of PKA suppresses GSK3β that releases numerous transcription 

factors from chronic inhibition (see section 1.8.4.3), leading to protein synthesis and 

maladaptive hypertrophy (Dorn and Force, 2005). In addition to PKA, cAMP-activated 

guanine nucleotide exchange proteins (Epacs) may also play an important role in 

remodelling (Bobin et al., 2016). A study has shown that Epac1 expression is increased in 

response to pressure-overload, and activation of Epac1 triggers the calcineurin/CaMKII 

signalling pathway that results in hypertrophic growth (Metrich et al., 2008). Thus, 

inhibition of the production of cAMP, i.e. by activating Gi protein coupled receptors, or 

increasing its rate of degradation by PDEs could be beneficial in CVDs. 

1.10.3 cGMP/PKG cascade in the heart 

It is widely agreed that elevation of cGMP is cardioprotective. Activation of sGC and pGC by 

NO and natriuretic peptides, respectively, leads to cGMP production.  

1.10.3.1 The effector molecules of cGMP and its physiological action in the 

cardiovascular system 

Two types of effector molecules of cGMP predominate in the CVS: cGMP-dependent 

protein kinases (PKG), and PDEs. A third type of cGMP effector is the cGMP-gated cation 

channel, which is found in retinal and olfactory neuro-epithelium and nephrons. 

1.10.3.1.1 cGMP-dependent protein kinase 

There are three isoforms of PKG. PKG-type Iα (PKG-Iα) is expressed in cardiac myocytes, 

PKG-Iβ is predominantly found in the endothelial cells, while VSMC expresses both 

isoforms. The third isoform is PKG-type II (PKG-II) that is found in the kidney, brain and 

intestine. All three isoforms are homodimers and each subunit consist of three functional 

domains – N-terminal, regulatory domain and a kinase domain. When cGMP binds to 

specific sites in the regulatory domain, PKG undergoes a conformational change that leads 

to the release of the N-terminal inhibition of the kinase domain. Subsequently, the kinase 

domain catalyses the phosphorylation of a serine/threonine residue of the target proteins. 

The action of cGMP is often viewed as opposing cAMP activity, meaning cGMP has negative 

inotropy, anti-hypertrophic and anti-fibrotic effects. In isolated cardiomyocytes, cGMP 
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analogues modulate the contraction of electrically stimulated myocardium from WT 

control mice, but have no effect in the myocardium from cardiomyocyte-specific PKG-I null 

mice (Wegener et al., 2002), demonstrating cGMP/PKG-I signalling negatively modulates 

cardiac contractility.  Moreover, it has been shown that inhibition of L-type Ca2+ channel 

and troponin I phosphorylation is responsible for the negative inotropic effect mediated by 

PKG (Yang et al., 2007).  

The anti-hypertrophic role of cGMP has been demonstrated in numerous studies with 

genetic disruption of the cGMP pathway. Mice lacking eNOS develop cardiac hypertrophy 

and dysfunction (Wenzel et al., 2007, Li et al., 2004a, Flaherty et al., 2007). However, local 

ANP signalling can compensate for the loss of NO and prevent the development of 

hypertrophy in eNOS-deficient mice (Bubikat et al., 2005). Likewise, disruption of the cGMP 

pathway in the heart by cardiac-specific deletion of NPR-A leads to maladaptive 

hypertrophy with enhanced fibrosis and marked deterioration in cardiac function (Holtwick 

et al., 2003, Kuhn et al., 2002). These observations are also seen in mice with 

cardiomyocyte-restricted deletion of PKG-I and accompanied by diminished expression of 

SERCA2a and PLB that affects myocardial Ca2+ homeostasis (Frantz et al., 2013). Taken 

together, these studies illustrate that one of the potential molecular mechanisms by which 

ANP and/or BNP exert anti-hypertrophic effects is via regulation of intracellular Ca2+ 

through NPR-A-cGMP-PKG-I signalling that can consequently inhibit the Ca2+-calcineurin-

NFAT hypertrophic pathway (see section 1.2.2.2).  

An anti-fibrotic effect of natriuretic peptide/pGC pathway has also been identified. It has 

been shown that ANP-cGMP-PKG signalling induces phosphorylation of Smad3 at a 

different site from TGF-β1 (Li et al., 2008). The resultant pSmad3 cannot translocate into 

the nucleus, thus, PKG disrupts TGF-β1-induced pro-fibrogenic gene expression (Li et al., 

2008). Moreover, mice with ANP deficiency exhibit accelerated dilated cardiomyopathy 

with enhanced fibrosis and systolic dysfunction (Wang et al., 2014). Interestingly, these 

mice have marked increases in CNP and NPR-C expression, which may indicates CNP/NPR-C 

signalling is upregulated to play a compensational role when ANP production is diminished. 

It is known that activation of Gi protein coupled NPR-C can indirectly generate cGMP by 

activating eNOS via PI3K and Akt (Costa et al., 2006). Perhaps, CNP can exert 

cardioprotective effects via stimulating cGMP production and inhibiting excessive cAMP 

signalling through activation of NPR-B and/or NPR-C, respectively. Regardless, the 

patho/physiological signalling of CNP in cardiac function is still poorly understood.  
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1.10.3.1.2 Phosphodiesterases 

cGMP and cAMP catabolism is regulated by PDEs. Since some non-selective PDEs can 

catabolise both cAMP and cGMP, the hydrolysis of one cyclic nucleotide can inhibit the 

activity of PDEs on the other cyclic nucleotide. This provides a cross-regulation of cAMP and 

cGMP signalling. For example, cGMP production following the activation of NPR-B binds to 

PDE3 and inhibits cAMP degradation, resulting in an increase of cAMP-mediated β-

adrenoceptor signalling and contractility in both failing and non-failing hearts (Qvigstad et 

al., 2010, Meier et al., 2017). Whereas, PDE2 is stimulated by cGMP, leading to an increase 

in cAMP hydrolysis and protects against sympathetic over-stimulation (Mehel et al., 2013). 

Indeed, one plausible mechanism by which cGMP/PKG signalling mediates anti-

hypertrophic effects is by inhibiting the calcineurin pathway that can activated by 

cAMP/PKA cascade (Tsai and Kass, 2009). Furthermore, PDE5 is specific for cGMP 

degradation. In HF models, studies reported PDE5 inhibition blunts β-adrenergic 

stimulation (Senzaki et al., 2001), protects against IR injury by targeting mitochondrial KATP 

channels (Ockaili et al., 2002) and reverses pre-established cardiac hypertrophy in 

pressure-overload model (Takimoto et al., 2005). Small scale clinical trials in HErEF patients 

have reported that PDE5 inhibitors improve cardiac function and exercise capacity (Lewis et 

al., 2007, Kim et al., 2015). However, the larger scale RELAX trial, in HFpEF patients showed 

neutral results with sildenafil administration (Redfield et al., 2013). One explanation could 

be that the natriuretic peptides levels are lower in HFpEF patients compared to HErEF 

(Bishu et al., 2012), which suggests limited natriuretic peptide activity. Thus, to enhance 

cGMP levels by PDE5 alone may not be adequate in HFpEF patients. 

1.11 Hypothesis and aims 

Despite the pharmacological evidence supporting a beneficial action of exogenous CNP in 

maintaining cardiac function in disorders such as MI and HF, there is no direct evidence for 

a physiological or pathological role for endogenous CNP. Thus, my PhD project was 

designed to investigate the hypothesis that ‘endothelium-derived CNP (ecCNP), 

cardiomyocyte-derived CNP (cmCNP) and fibroblast-derived CNP (fbCNP) play a central role 

in regulating cardiac function in health and disease’. To test this hypothesis, I addressed the 

following specific aims: 

1. To determine the role of ecCNP in the regulation of coronary vascular reactivity and 

explore if it has a protective effect in IR injury by comparing the cardiac phenotype of 

WT and ecCNP KO mice. 



76 

2. To investigate if deletion of CNP from cardiomyocytes affects the development of 

cardiac remodelling in experimental HF, and if this has a protective effect against IR 

injury, by comparing WT and cmCNP KO mice. 

3. To investigate if deletion of CNP from fibroblasts affects the development of cardiac 

hypertrophy and fibrosis in HF by comparing WT and fbCNP KO mice.  

4. To establish the NPR subtype(s) that confers the bioactivity of ecCNP, cmCNP and 

fbCNP identified in Aims 1, 2 and 3, respectively. 

5. To identify the pro-hypertrophic and pro-fibrotic pathways that are inhibited by the 

NPR defined in Aim 4.  
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Chapter 2 – Methods  

2 Methods 

2.1 Animal models of cardiovascular disease 

The greatest advantage of using mouse models is the availability of relevant transgenic or 

KO strains that provide an excellent tool for identifying a novel signalling pathway and, 

potentially, therapeutic target.  

Many animal models of HF have been developed, including volume overload, pressure 

overload, rapid-pacing, drug-induced, ischaemia, and genetically modified (Patten and Hall-

Porter, 2009). None of the models reproduces every aspect of human HF, but rather these 

have been developed to represent different characteristics of the disease. In addition, 

there is evidence that the nature of the stimulus for cardiac hypertrophy determines the 

type of hypertrophic responses and triggers different signalling pathways (Breckenridge, 

2010). For instance, cardiac hypertrophic response to β-adrenoceptor overstimulation by 

ISO are not altered in PKG KO mice but loss of PKG causes a marked exacerbation of cardiac 

function in pressure-overload model (Frantz et al., 2013). Therefore, it is very important to 

choose the right model that signifies the pathology in question.  

Although mouse models have many advantages, structural and electrophysiological 

differences with respect to the human CVS are important limitations (Doevendans et al., 

1998).  

2.1.1 Isoprenaline-induced heart failure 

The sympathetic drive of the heart is regulated by the β-adrenergic system that leads to an 

increase in contractile force and HR; essentially increasing cardiac output in order to match 

the demand of the body (Vincent, 2008). This increased workload of the heart elevates 

cardiac oxygen consumption and may cause myocardial ischaemia and injury. Accumulating 

evidence illustrates that over-activation of the cardiac adrenergic system promotes 

myocardial hypertrophy and can be detrimental to the heart (Limbird and Vaughan, 1999). 

Indeed, a study by Strand et al (2006) has shown in men that plasma noradrenaline levels 

predict LV mass independently of systolic BP, suggesting a close link between chronic 

adrenergic activation and hypertrophy/HF (Strand et al., 2006). Moreover, excessive 
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endogenous catecholamines (β-adrenoceptor agonists) in the circulation are associated 

with myocardial tissue damage seen in patients with ischaemic heart disease, cardiac 

arrhythmias and sudden cardiac death (Nichtova et al., 2012). These observations are 

corroborated by the fact that chronic stimulation of cardiac β-adrenoceptors causes 

progressive myocyte dysfunction, necrosis and myocardial remodelling (Limbird and 

Vaughan, 1999). Mechanisms that underlie such damage have been proposed to include 

Ca2+ handling abnormalities, defects in energy production and utilisation, increased preload 

and afterload and altered signal transduction (Nichtova et al., 2012). Furthermore, the use 

of β-blockers provides time-dependent improvements in ventricular structure and function 

as well as reductions in HR and BP (Gillian Pocock, 2006). Considering these clinical findings, 

it is reasonable to employ an animal model of chronic administration of β-adrenoceptor 

agonist to investigate the deleterious effects of sympathetic over-activation upon cardiac 

structure changes and function, and thus, the progression to cardiac disease. 

ISO is a synthetic catecholamine that activates the adrenergic system, causing severe 

cardiac stress. In the late 50s, Rona and Chappel showed that subcutaneous injection of ISO 

produces diffuse myocardial necrosis that is similar to infarct-like lesions without coronary 

vasculature damage (Rona et al., 1959). Further studies of acute injection of ISO have 

demonstrated that ISO-induced myocardial necrosis is time- and dose-dependent and 

eventually results in a progressive enlargement of the LV cavity that is out of proportion to 

mass (Teerlink et al., 1994). This morphology has been shown to be an important predictor 

of mortality in HF and MI patients (Teerlink et al., 1994). In later studies, continuous 

administration of ISO in rats using osmotic mini-pumps for 1-4 weeks was reported to 

result in an increase in heart weight of 30-70% (Osadchii, 2007). Similarly, sustained 

infusion of ISO also induces cardiac hypertrophy in mice (Oudit et al., 2003, Ozaki et al., 

2002), rabbits (Kim et al., 2006b) and guinea pigs (Maisel et al., 1989). The development of 

ISO-mediated cardiac hypertrophy is associated with upregulation of foetal genes such as 

ANP, skeletal α-actin and β-MHC (Osadchii, 2007).  With the use of β-adrenoceptor 

selective antagonists (β1 and β2), it has been found that β-stimulated cardiac hypertrophy is 

predominantly mediated via β1 (Morisco et al., 2001, Tomita et al., 2003).  More 

importantly, long-term exposure of isolated, cultured cardiac myocytes to ISO stimulates 

myocyte growth, suggesting that cardiac hypertrophy results from direct sympathetic 

stimulation rather than developed only as a compensation for myocyte loss due to necrosis 

(Luo et al., 2001, Tomita et al., 2003). In addition, there is evidence supporting the 
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activation of both the circulating and cardiac renin-angiotensin system is also involved in 

ISO-induced cardiac damage (Grimm et al., 1998, Leenen et al., 2001).  

2.1.2 Pressure overload-induced heart failure 

Pressure overload models have been the most common model to study the pathogenesis 

of hypertrophy, subcellular failure, and vascular changes. Transverse aortic constriction 

(TAC) or administrations of angiotensin II are the most widely used pressure-overload HF 

model. Rockman et al. first introduced the TAC mice model in 1991 for investigation of ANP 

expression in cardiac hypertrophy (Rockman et al., 1991). The sudden onset of 

hypertension achieved with TAC causes an approximately 50% increase in LV mass within 2 

weeks (Patten and Hall-Porter, 2009), making this model an excellent choice to examine 

the utility of pharmacological or molecular interventions that may limit cardiac 

hypertrophy. However, the severity and time course of hypertension in humans occurs 

over many years, thus the acute onset of severe hypertension in this model lacks direct 

clinical relevance. Hence in recent years, more studies are conducted using abdominal 

aortic constriction (AAC) which induces less severe afterload and the disease progression 

arises over a longer period of time that more closely mimics the human situation. 

While performing the TAC or AAC model demands some advanced surgical skills, the use of 

a vasoconstrictor, Ang II, provides an alternative, less invasive HF model. Ang II can be 

administrated by daily injections or via an osmotic mini-pump implanted subcutaneously. 

Interestingly, many recent pre-clinical and clinical studies have suggested that Ang II does 

not solely induce hypertension but also has direct bioactivity on myocardial remodelling, 

which can be prevented or reversed by Ang II antagonists (Williams, 2001, Kim et al., 1995). 

Enalapril, an ACEi, has been shown to reduce mortality in numerous clinical trials such as 

CONSENSUS (1987b)and SOLVD (1991) (Jong et al., 2003). These findings support Ang II 

having detrimental effects in cardiovascular pathologies. Furthermore, transgenic mice 

with myocardium-specific overexpression of angiotensinogen develop left and right 

ventricular hypertrophy without an increase in BP (Mazzolai et al., 2000). This study 

suggests that local production of Ang II in the myocardium conveys the hypertrophic 

response in vivo. Kim et al. (1995) also demonstrated that exogenous Ang II infusion in rats 

induces cardiac hypertrophy accompanied by an increase in the expression of hypertrophic 

genes such as β-MHC, fibronectin, TGF-β, type I and type III collagen. Normalisation with 

the use of vasodilator neither prevents cardiac hypertrophy nor decreases the level of 

foetal gene expressions. However, a selective Ang II receptor (AT1R) antagonist, TCV-116, 
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abolishes these phenotypes (Kim et al., 1995), suggesting that Ang II causes cardiac 

remodelling via AT1 signalling, independent of a systemic vascular effect. This work 

dovetails with the study of Harada et al. (1998) who demonstrated cardiac hypertrophy is 

induced by Ang II infusion in WT mice but not in AT1 KO mice. However, the same study 

also reported that the development of cardiac hypertrophy in response to TAC model is not 

altered in mice with deletion of AT1 signalling compared to control (Harada et al., 1998), 

implying that pressure overload-induced cardiac remodelling can be driven by an AT1- 

independent mechanism and multiple hypertrophic pathways can be involved. Thus, the 

use of TAC and Ang II model should delineate two distinct cardiac hypertrophic pathways 

and might provide new insights into the development of novel therapeutic strategies for 

cardiac hypertrophy. 

2.1.3 Myocardial infarction-induced heart failure 

MI is one of the main causes of HF in patients. It occurs when an atherosclerotic plaque 

ruptures and blocks the coronary arteries supplying oxygen and nutrient to the 

myocardium (Dargie, 2005). This causes cardiomyocyte damage (infarct) that results in a 

decreased EF and an increased in LV end-diastolic pressure and volume. The increased wall 

stress may induce regional hypertrophy in non-infarcted areas, but wall thinning in the 

infarcted segments (Muthuramu et al., 2014). Thus, the degree of ventricular hypertrophy 

and remodelling is dependent on infarct size. 

One of the pre-clinical models that mimic the human condition is permanent ligation of the 

left anterior descending coronary artery (LADCA). LADCA is the main vessel that supplies 

blood to the LV myocardium. Upon occlusion of the LADCA, the anterior wall of the LV and 

the anterior portion of the interventricular septum suffer ischaemia. This model has long 

been used in mice for the investigation of ventricular remodelling and HF post-MI. Fang 

Yang et al. (2002) examined the inflammatory response and cardiac remodelling in mice 

after MI for 6 months. They demonstrated that neutrophil infiltration peaks at 1-2 days 

after MI, while massive macrophage infiltration appears after 4 days. These inflammatory 

cells are responsible for ECM degradation and removal of necrotic tissue, which results in 

ventricular wall thinning and cardiac rupture (Yang et al., 2002). Lymphocyte infiltration, 

reaches a maximum at 1-2 weeks, and then decreases as proliferation of connective tissue 

increases. This implies that lymphocytes are important in the transition between 

inflammation and wound healing. An increase in LV internal diameter (LVID) and interstitial 

collagen deposition are also observed at 1-2 weeks after MI (Yang et al., 2002). 
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Interestingly, myocyte cross-sectional area remains constant from 4 months to 6 months 

while heart weight continues to increase, indicating that the hypertrophic process involves 

myocyte elongation and results in LV enlargement (Yang et al., 2002). This observation is 

comparable to end-stage human HF that is characterised by dilated, relatively thin-walled 

ventricles (Gerdes, 1997). More importantly, post-MI cardiac structural composition, LV 

dilatation and functional deterioration continues over 6 months in this model, allowing 

long-term studies of myocardial remodelling and drug intervention (Yang et al., 2002).  

Another model of MI-induced HF is transient ligation of the LADCA. This model arguably 

more closely mimics IR injury in the clinical setting. It is different in terms of 

pathophysiological relevance compared to permanent ligation. The final infarct size 

resulting from the transient ligation model is exacerbated by myocardial salvage factors 

following reperfusion (Powers et al., 2007), whereas the infarct area is fixed in the 

permanent ligation model (Muthuramu et al., 2014). Therefore, the IR model is largely used 

to examine the short-term consequences of ischaemic injury and to explore the potential 

therapeutic interventions targeting reperfusion injury that could account for up to 50% of 

the final infarct size (Yellon and Hausenloy, 2007). Nevertheless, one major limitation of 

both permanent and transient ligation of the LAD is the accuracy of the ligature position for 

each repeated experiment that can affect the severity of MI.  

2.2 Generation of genetically modified animals and genotyping 

2.2.1 Generation of cell-restricted CNP KO mice 

Cre/loxP technology was employed to generate conditional deletion of the CNP gene 

(Nppc) in C57BI6 mice (Figure 9). Cre-recombinase excises the region of DNA between two 

loxP sites.  The loxP site is a 34bp nucleotide recognition sequence that can be inserted into 

both ends of an essential exon (or exons) in a gene of interest (Gu et al., 1994). The allele 

containing the gene flanked by LoxP sites is called the floxed allele and is phenotypically 

WT. Mice containing the floxed allele can then be bred to Cre expressing transgenic strains 

that have been developed using cell-specific promoters that are required to drive Cre 

expression, allowing cell-restricted deletion of the floxed genes. 

2.2.2 Generation of ecCNP KO and cmCNP KO mice 

To generate ecCNP KO mice, floxed CNP mice were mated with mice expressing Cre-

recombinase under the control of the endothelium specific tyrosine protein kinase receptor 

(Tie2) promoter, as previously described (Moyes et al., 2014, Kisanuki et al., 2001). To 



83 
 

produce cmCNP KO animals, floxed CNP mice were bred to an α-MHC Cre-recombinase 

expressing mouse line (Agah et al., 1997).  

2.2.3 Generation of tamoxifen-induced fbCNP KO mice 

To generate fbCNP KO mice, a modified strategy was used compared to ec/cmCNP KO. 

Mice expressing collagen type I alpha 2-cre inducible estrogen receptor transgene (Col1α2-

Cre-ERT; Jaxon laboratory, USA) (Zheng et al., 2002) were mated with floxed CNP mice. In 

this approach, Col1α2-Cre-ERT is ligated to a mutated ligand binding domain of the 

estrogen receptor that restricts transcription until tamoxifen is present (Hall et al., 2009). 

Therefore, it allows the timing of recombination to be regulated. To trigger the activity of 

Col1α2-Cre, the mice were given 40mg/kg/day of tamoxifen (Sigma-Aldrich, Poole, UK; 

T5648) for 5 consecutive days. Tamoxifen powder was weighed and dissolved in sunflower 

seed oil (Sigma-Aldrich, S5007) with 10% absolute ethanol. The solution was wrapped in foil 

to avoid light and heated on a heating block at 50-55°C for 5 minutes or until the tamoxifen 

was completely dissolved. 100µL of the tamoxifen solution was injected intra-peritoneally. 

Since tamoxifen can cause transient cardiac dysfunction (Koitabashi et al., 2009), both 

control (WT) and fbCNP KO mice received tamoxifen injections to ensure the observed 

effects were not due to tamoxifen toxicity. The effect of tamoxifen on cardiac function was 

also studied in a group of mice by echocardiography, followed up to 6 weeks after 

tamoxifen injection. 

2.2.4 Global NPR-C KO mice 

Global NPR-C KO mice were the kind gift of Prof. Oliver Smithies (University of North 

Carolina, USA; (Matsukawa et al., 1999)).  

2.2.5 Genotyping of animals 

Genomic DNA was prepared from ear biopsies for analysis by polymerase chain reaction 

(PCR) using standard cycling parameters.  Mouse ear clip samples were digested overnight 

at 55°C using proteinase K (10mg/ml; Sigma-Aldrich, Poole, UK) and mouse ear-lysis 

reagent (0.3mg/ml; Viagen Biotech, Los Angeles, USA). The samples were then vortexed to 

make sure the tissue had completely broken down and heated at 85°C for 45 minutes to 

denature the proteinase K. Samples were stored at 4°C. A master mix was prepared for the 

PCR reactions composed of BiomixTM Red (Bioline 25006, London, UK), forward and reverse 

primers (Table 1) and ddH2O. For the floxed gene genotyping, MyTaqTM Red Mix (Bioline 

25044, London, UK) was used because MyTaq DNA polymerase has increased affinity for 
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DNA and thus, improves sensitivity and yield. For details of the master mix components see 

Table 2. 3µL of the DNA sample was added to 22μL of the master mix. The PCR thermal 

cycler conditions (Bio-Rad S1000, UK) for each reaction are described in Table 3. PCR 

products were loaded into the wells of an electrophoresis gel made of 2% agarose gel in 

TAE buffer (2.0M Tris Acetate and 100mM Na2EDTA; Fisher Scientific, Loughborough, UK) 

containing Midori Green nuclei acid stain (5µL/100mL gel; NIPPON Genetics EUROPE 

GmbH). The gel was run for 1 hour at 100mV and the bands were visualised under UV light 

using Alphalmager (Alpha-Innotech, Kasendorf, Germany). Floxed animals were identified 

by a band of 956bp whereas non-floxed animals have a band of 842bp. The appearance of 

both floxed and non-floxed bands indicate heterozygous (Het) animals. In terms of 

genotyping for the Cre transgenes, the Tie2-Cre band corresponds to 512bp, αMHC-Cre to 

990bp, and Col1α2-Cre-ERT to 700bp. Mice with flox+/+ and Cre positive (i.e. Nppcflox/flox 

Cre+) represent CNP KO mice in each respective cell type, whereas flox-/- Cre positive or 

flox+/+ Cre negative mice (i.e. Nppc+/+ Cre+ or Nppcflox/flox ) were used as WT controls.  Global 

NPR-C KO mice were identified by a band at 413bp, WT at 250bp. The analyses of genotype 

by PCR/gel electrophoresis are shown in Figure 10. 
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Generation of cell-specific deletion of CNP using Cre/LoxP technology 

 

Figure 9. Generation of cell-specific deletion of CNP using Cre/LoxP technology. 

LoxP sites were inserted into the CNP gene (exon 1 and 2). Firstly, chimeric mice were breed with LoxP-

expressing mice. Flippase recognition target (FRT) sites were used to allow efficient removal of the neomycin 

cassette, resulting in the generation of Nppcflox/flox offspring. The resulting animal was then crossed with specific 

Cre recombinase-expressing mice in which expression is driven by cell-specific promoters.  
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Primer sequences used for genotyping 

  
Table 1.  The primer sequences used for genotyping cell-specific CNP KO and WT mice. 
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Components of the PCR reactions for genotyping  

 

Table 2. Components of the PCR reactions for genotyping. 

The total volume for each reaction was 25μL. The working stock concentrations for each primer were: floxed 

CNP, 100μM; Tie2 Cre, 25μM; α-MHC Cre, 10μM; Col1α2α-Cre, 10μM; NPR-C, 2.5μM. 

 

PCR thermal cycler conditions for genotyping target genes 

 

Table 3. The PCR thermal cycler conditions used for each genotyping target genes. 
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Analysis of DNA from genetically modified mice 

 

Figure 10. Analysis of DNA from the genetically modified mice.  

(A) Floxed animals were identified by the band at position of 956bp and non-floxed animals has band position at 

842bp. (B) Tie2-Cre at position of 512, αMHC-Cre at position of 990bp, Col1α2-Cre at position 700bp. (C) NPR-C 

KO mice were identified by a band at position 413bp and WT at 250bp.  Non-floxed mice or mice that do not 

have Cre expression are referred to as WT; the appearance of both floxed and non-floxed bands with Cre 

expression are referred to as heterozygous (Het) animals. 
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2.3 Langendorff isolated heart model 

2.3.1 Overview of the Langendorff system 

Even 100 years after its description, the Langendorff isolated heart system remains at the 

forefront of cardiovascular physiological and pharmacological studies. It represents a 

feasible and highly reproducible model for obtaining a broad spectrum of physiological 

data, including contractile function, coronary blood flow and cardiac metabolism, and 

pharmacological responses (Bell et al., 2011). With the emergence of genetically modified 

animals, the Langendorff perfused heart is a unique tool to study the impact of targeted 

deletion or upregulation of genes on the physiology of the heart and the coupled 

intracellular signalling. The Langendorff isolated heart model has also been widely used to 

investigate the pathophysiology of IR injury as it provides an easier, less technically 

demanding alternative to in vivo MI models. Hearts are retrogradely perfused via the aorta 

(i.e. opposite direction compared to the in vivo situation). Thus, the aortic valves are forced 

closed, and the perfusate is directed into the coronary system and the capillary beds of the 

myocardium.  The perfusate leaves the heart via two venous drainages. The majority of the 

perfusate goes into the coronary sinus that lies within the posterior atrioventricular groove, 

which opens into the right atrium. The perfusate then passes through the tricuspid valve, 

into the right ventricle and leaves the heart via the pulmonary artery. In addition, a small 

proportion of the perfusate leaves the heart via the Thebesian veins, which directly drain 

into the chambers. 

2.3.2 Materials  

Krebs-Henseleit buffer solution was made fresh on a daily basis from its constituents: 

sodium chloride (NaCl; 118.5mM; Sigma-Aldrich, Poole, UK), potassium chloride (KCl; 

4.7mM; BDH/VWR, Poole, UK), Magnesium sulphate (MgSO4; 1.2mM; BDH/VWR, Poole, 

UK), potassium dihydrogen orthophosphate (KH2PO4, 1.2mM; BDH, Poole, UK), glucose 

(12mM; Sigma-Aldrich, Poole, UK), sodium bicarbonate (NaHCO3; 25mM; Poole, UK), 

sodium pyruvate (2mM; Sigma-Aldrich, Poole, UK), and calcium chloride (CaCl2; 1.7mM; 

VWR, Leicestershire, UK).  

Vasoactive drugs used: NG-nitro-L-arginine methylester (L-NAME; Sigma-Aldrich, Poole, UK), 

acetylcholine (ACh, Sigma-Aldrich, Poole, UK), bradykinin (BK, Sigma-Aldrich, Poole, UK), 

CNP (Gene-script, Piscataway, USA), sodium nitroprusside (SNP, Sigma-Aldrich, Poole, UK),  
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2.3.3 Langendorff isolated heart preparation 

The isolated heart perfusion system used in this project was manufactured by Harvard 

Apparatus, UK. A schematic diagram of the system is shown in Figure 11. Firstly, mice were 

anti-coagulated with an intra-peritoneal injection of heparin (100μL, 5000unit/ml; LEO, 

Wrexham, UK) and then anaesthetised with isoflurane (3% in O2; 100%w/w; Abbott 

Laboratories Ltd, Queenborough, UK). The adequacy of anaesthesia was confirmed with 

the absence of a pedal reflex. The hearts were quickly excised and immersed in ice-cold 

perfusion solution to prevent warm ischaemic injury. Subsequently, the hearts were 

mounted onto the perfusion system as fast as possible via the aorta for retrograde 

perfusion and fixed by ligature to the cannula (made using a 21-gauge needle with the 

sharp end snapped off and smoothed). In order to minimize air embolization (which 

damages the endothelial layer and affects pressure readings) during cannulation, the flow 

of perfusate via the aortic cannula was started prior to the mounting of the hearts. The 

Krebs-Henseleit buffer solution was gassed with 95% O2/ 5% CO2  (British Oxygen Company, 

BOC, Guildford, UK), pH 7.4 and the temperature maintained at 37°C by a water-jacketed 

chamber. A digital thermometer was used throughout the experiment to monitor the 

perfusate temperature. Constant flow mode was used in this project, which was set at 

2mL/minute controlled by a peristaltic pump (MINIPULS3, Gilson) (Sutherland et al., 2003). 

The left atrium was removed and a fluid-filled balloon made of plastic film was inserted 

into the LV for recording of the left ventricular developed pressure (LVDP). The balloon was 

inflated in steps of 4μL until a total volume of 24μL for female or 28μL for male animals. 

These volumes have been demonstrated in previous studies to give a consistent LVDP 

reading without damaging the internal ventricular wall (Sutherland et al., 2003). HR was 

derived from the cycle of contraction per minute. Coronary perfusion pressure (CPP) and 

LVDP were monitored using a pressure transducer (HUGO TECH) connected to an amplifier 

(Power Lab 4/30, ADInstruments, UK), which was then recorded via LabChart 6.0 software. 

2.3.4 Assessment of coronary vascular reactivity 

Since constant flow mode was used, changes in the diameter (i.e. resistance) of the 

coronary vasculature were reflected by changes in CPP (Figure 12). After 10-15 minutes of 

stabilisation of the heart, perfusion was switched to Krebs-Henseleit buffer solution 

containing the NOS inhibitor, L-NAME (300μM). CPP increased with the addition of L-

NAME, by approximately 50%, which gave a good indication of an intact endothelium (i.e. 

blockade of NO production). The hearts were further stabilised for 15 minutes before being 
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challenged with pharmacological agents. Any preparations that had a CPP higher than 

100mmHg before exposure to L-NAME, and/or did not give a rise of 50% in CPP with L-

NAME perfusion were deemed to be endothelium-denuded and excluded from the study.  

2.3.4.1 Vasoactive drugs 

The coronary reactivity was investigated, in the presence of L-NAME, by bolus addition of 

the endothelium-dependent vasodilators: BK (10nmol) and ACh (0.1, 0.3 and 1nmol), and 

endothelium-independent vasodilators: CNP (10nmol) and SNP (1nmol). A dose-response 

curve to BK cannot be constructed due to rapid desensitisation of the receptor (Gobeil et 

al., 2002). 10μL of each drug was administered by bolus injection with a Hamilton syringe 

(1702, Ghiroda, Romania). Each injection was at least 5 minutes apart in order for the 

cardiac function to return to baseline before adding the next dose or drug. 10ml of 

coronary effluent was collected from the apex of the hearts during the response to 1nmol 

ACh. This was immediately snap-frozen in liquid nitrogen and stored at  -80°C for CNP 

bioassay. The coronary reactivity in response to each vasoactive drugs were quantified by 

the following equation: 

∆𝐶𝑃𝑃, % =
𝐶𝑃𝑃 𝑎𝑡 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑃𝑃 𝑎𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐶𝑃𝑃 𝑎𝑡 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100 

 

2.3.4.2 Vasodilatation associated with reperfusion 

The release of CNP from endothelial cells in response to shear stress is well established in 

in vitro studies (Chun et al., 1997). The initial resumption of flow after a brief period of 

ischaemia can be used to mimic shear stress–induced release of endothelium-derived 

mediators, including CNP (Zatta and Headrick, 2005). The hearts were subjected to three 

occlusion periods (cessation of flow for 20, 40 and 80 seconds), in the presence of L-NAME. 

Similar to the drug addition protocol, occlusion periods were at least 5 minutes apart, 

allowing the CPP to return to baseline. The magnitude of vasodilatation associated with 

reperfusion was quantified by calculating area under the curve using the trapezium rule 

between the period of perfusion resumption and the point at which CPP returned to 

baseline (Figure 12). 
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Langendorff perfused heart model

 

Figure 11. Simplified scheme of a Langendorff perfused heart model in constant flow.  

(A) Schematic diagram of the Langendorff system. The heart is cannulated via the aorta and retrogradely 

perfused, and suspended within a warmed chamber. The flow rate is controlled by a peristaltic pump. The pipe 

work goes into the water-jacketed chamber to maintain the perfusate temperature at 37°C. One side arm of the 

perfusion cannula is used for drug administration and the other one is connected to a transducer for measuring 

coronary perfusion pressure (CPP). A left ventricle (LV) balloon is inserted to measure LV developed pressure 

(LVDP). Transducers are connected to an amplifier, which then transmits the data to a computer. (B) Diagram 

showing aortic cannulation (adapted from http://www.cvphysiology.com/Blood%20Flow/BF001). The perfusate 

(red arrow) enters the aorta via the cannula and closes the aortic valves, which forces the perfusate into the 

coronary system.  
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Assessment of coronary vascular reactivity and cardiac contractility 

 

Figure 12. Assessment of coronary vascular reactivity and cardiac contractility. 

(A) Example of a trace depicting a vasorelaxation in response to a vasodilator. Constant flow mode was used 

and thus, changes in the resistance of the coronary vasculature were reflected by changes in coronary perfusion 

pressure  (CPP). (B) Example of a trace depicting vasodilatation associated with reperfusion. Perfusion was 

stopped and resumed after a transient period of ischaemia. Total area under the curve between the resumption 

of perfusion and returning of CPP to baseline (blue triangle) was calculated according to the trapezium rule. (C) 

Example of a trace for left ventricular developed pressure (LVDP) and heart rate assessment via a balloon 

inserted into the left ventricle.   
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2.3.5 Ischaemia reperfusion injury 

The excised hearts were placed in Krebs solution at room temperature (instead of ice-cold 

solution) to avoid pre-conditioning of the hearts and then cannulated in an identical 

fashion to that described above. After 10-15 minutes of stabilisation of the heart, perfusion 

was stopped for 35 minutes to induce global ischaemia and then re-perfused for 60 

minutes to create IR injury. During the ischaemic period, the hearts were maintained at 

37°C by immersion in warm perfusion solution. After 60 minutes reperfusion, the hearts 

were removed from the system and placed at -20°C for 10 minutes to harden the tissue for 

slicing. This was cut into 1mm thick sections perpendicular to the long-axis of the heart 

using fixed razor blades. The heart sections were then incubated with 1% triphenyl 

tetrazolium chloride (TTC; Sigma-Aldrich, Poole, UK) in an enclosed shaker at 37°C for 15 

minutes. TTC is a white compound that reduces to red TPF (1,3,5-triphenylformazan) in 

living tissues due to the activity of dehydrogenses; in areas of necrosis, dehydrogenases are 

either denatured or degraded so TTC is unable to be reduced in infarcted areas and 

remains white. The heart sections were then arranged on a plastic film and scanned 

(600dpi; CanoScan LiDE 700F, Canon, UK) on both sides. The infarcted regions were 

quantified using Image J and expressed as a percentage of infarcted area over total 

ventricular area. 

2.3.6 CNP bioassay 

The effluent collected from the Langendorff experiment was defrosted to room 

temperature. Peptides were extracted using C18 SEP-Columns according to the 

manufacturer’s instructions (Phoenix Pharmaceuticals, Karlsruhe, Germany). The eluents 

were concentrated to dryness by a centrifugal concentrator overnight (Speedvac, Thermo 

Scientific, USA). Samples were then reconstituted in 125µL assay buffer and CNP-22 

enzyme-linked immunosorbent assay (ELISA) performed according to the manufacturer’s 

instructions (Phoenix Pharmaceuticals, USA, FEK-012-03). The kit has a sensitivity limit of 

6.6pg/ml. 

2.4 In vivo heart failure models 

2.4.1 Materials 

Isoprenaline hydrochloride (ISO, Sigma-Aldrich, Poole, UK), saline (NaCl, 0.9%w/v; Baxter 

healthcare, Norfolk, UK), ascorbic acid (Sigma-Aldrich, Poole, UK), Vetergesic (Centeur, 

Somerset, UK), isoflurane (100%w/w; Abbott Laboratories Ltd, Queenborough, UK), 
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Lidocaine hydrochloride (2.0%, w/v; LIGNOL ® Dechra, Skipton, UK), tissue adhesive (3M 

Vetbound, St.Paul, USA).  

2.4.2 Recovery surgery 

All the recovery surgeries were performed under a standard sterile environment, including 

the use of sterilised drapes, surgical groves and gown, heat-sterilised surgical tools, and the 

mouse was covered with sterile film only exposing the incision area. Mice were 

anaesthetised with isoflurane (2% in O2) and laid on a heating plate (Physitemp, Norfolk, 

UK) to maintain temperature at 37°C via a TCAT-2LV controller (Physitemp, Norfolk, UK). 

Mice received 100µL of vetergesic (30mM; Centeur, Somerset, UK) subcutaneously at the 

beginning of the surgery. The hairs around incision area were removed by hair-removal 

cream (Veet; Hull, UK). 6.0 absorbable and non-absorbable sutures were used for internal 

and external stiches, respectively. Small amount of tissue adhesive was applied on the 

stiches to avoid wound opening and local anaesthetic (lidocaine) was smeared around the 

wound using cotton buds. 500µL of saline was injected subcutaneously before the mouse 

was left to recover on a heating mat. The health of the mice was monitored closely for 3 

consecutive days after surgery.  

2.4.3 Isoprenaline-induced heart failure 

2.4.3.1 Overview of the experimental protocol 

ISO was administrated subcutaneously via osmotic mini-pumps (model 1002, Alzet, 

DURECT corporation, Cupertino, CA). To establish a suitable dose and duration of the 

model, pilot studies of 20mg/kg/day and 30mg/kg/day of ISO infusion for 7 or 14 days were 

conducted in WT mice.  

The pilot studies revealed that 20mg/kg/day for 7 days is a subpressor dose that causes 

mild/no change in cardiac function in WT but detects increased pathology in cmCNP KO 

mice. Echocardiography was performed under isoflurane anaesthesia (2% in O2) at baseline 

prior to the induction of ISO and on the 7th day of ISO treatment. The body weight of each 

mouse was determined before euthanisation. Blood samples were taken from the 

abdominal aorta and centrifuged for plasma collection (2 minutes at 13,000rpm). It was 

then frozen immediately in liquid nitrogen and stored at -80°C. Weight of the whole hearts 

and the LVs were recorded and preserved for histological staining. 
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2.4.3.2 Osmotic mini-pump preparation 

ISO was dissolved in saline with 0.5% ascorbic acid to prevent oxidation. The mini-pumps 

were filled with 100μL of the ISO solution in a sterile environment and submerged in saline 

for 48 hours at 37°C for equilibration prior to implantation.  

2.4.3.3 Surgical procedure of mini-pump implantation 

Standard recovery surgery procedures were employed as described above. The hairs 

around the back of the neck were removed and a small opening made in the skin. With the 

use of a haemostat, the skin layer and the muscle layer were separated carefully down 

towards the side of the body, creating a ‘pocket’ for the mini-pump to be inserted. Small 

amount of saline were injected into the ‘pocket’ to facilitate the mini-pump placement. 

After placing the mini-pump into the body, the incision was closed with 6.0 non-absorbable 

sutures. Post-operative care was carried out as described above.   

2.4.4 Radio-telemetric recording of haemodynamics and heart rate in response to 

isoprenaline 

In order to examine the effect of ISO, a subset of animals were implanted with radio-

telemetric transmitter (TA11PA-C10; Data Science International). MABP, HR and locomotor 

activity were recorded in conscious, freely moving mice before and after receiving ISO 

infusion. The probe was sterilised in gluteraldehyde (2%) overnight and rinsed in sterile 

saline prior to implantation. The surgery was done under standard recovery surgery 

procedure as described above.  The mice were laid in a supine position and hairs around 

the neck were removed. A small incision was made, exposing the salivary glands. The 

glands were separated gently using fine forceps until the left carotid artery is visible. The 

artery then isolated from the surrounding tissues and clamped at the top and the bottom 

of the vessel to stop blood flow. A small cut on the vascular wall was made and the BP 

catheter inserted ensuring no air bubble formed. The tip of the catheter was placed into 

the aortic arch and secured in place with a suture. Subsequently, a subcutaneous pouch 

was made at the right flank for the transmitter body implantation. The animals were 

allowed 10 days of recovery before taken recordings. Data was recorded for 24 hours 

under 12 hour light/12 hour dark cycle. Samplings were acquired for 2 minutes every 15 

minutes, and the average values for MABP, HR and locomotor activity were calculated for 

every time point (Dataquest Art Acquisition System).  
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2.4.5 Pressure overload-induced heart failure by abdominal aortic constriction 

2.4.5.1 Overview of the experimental protocol 

AAC was performed on male cmCNP KO, fbCNP KO, NPR-C KO and WT mice weighing 23-

24g. Mice were randomly assigned to undergo either a sham surgical procedure or AAC. 

Cardiac function was measured by echocardiography and assessed at baseline prior to the 

aorta banding, and at 3 and 6 weeks after the surgical procedure (Figure 13). At 

termination, carotid MABP was measured under isoflurane anaesthesia (1.5% in O2). Blood 

samples were taken by cardiac puncture and centrifuged for plasma collection (2 minutes 

at 13,000rpm), which was snap frozen in liquid nitrogen and stored at -80°C. The body 

weight, whole heart and LV weight were recorded. The LV were either snap frozen and 

stored at -80°C for further biochemical analyses or preserved (4% formaldehyde solution 

overnight then stored in 70% ethanol) for histology staining. 

2.4.5.2 Surgical procedure of abdominal aortic constriction 

Standard recovery surgery procedures were followed as described above. The coat 

between the sternum and the bladder was removed using hair removal cream. A small cut 

was made in the lower abdomen. The skin and the muscle layer towards the sternum were 

then separated using a haemostat. A midline incision was made and exposing the upper 

abdomen by pulling the skin to the sides. The stomach together with the spleen was then 

pulled out and clamped aside carefully. The organs were covered with a piece of moist 

gauze to avoid drying-out. The liver and the right kidney were pushed away slightly using a 

small ball of wet gauze to expose the abdominal aorta. After clearing of fat and connective 

tissue around the abdominal aorta, the vessel was ligated above the renal artery branches 

using 4.0 suture with an overlying blunted 25-gauge needle (Figure 13). The needle was 

then removed with care, leaving a discrete region of stenosis with the diameter 

approximately equal to the needle width (0.51mm), ~30% constriction of the aorta. Organs 

were placed back into the abdomen cavity gently and the wound was closed as  described 

above. In mice subjected to sham surgery, the aorta was exposed and a 4.0 suture was 

pulled through without performing the ligation.  

2.4.5.3 Acute mean arterial blood pressure measurement 

After 6 weeks of AAC, the mice were subjected to carotid acute MABP measurement 

before being euthanised. The mice were anaesthetised (2% isoflurane in O2) and placed 

supine on a thermostatically regulated heating mat at 37°C. A small incision was made at 
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the position of the salivary glands and the left common carotid artery was isolated. The top 

and bottom of the carotid artery were clamped and a very small cut on the artery wall 

performed. A cannula (0.28mm internal diameter; Critchley Electrical Products Pty Ltd, 

Castle Hill, Australia) filled with heparinised saline (100U/ml in 0.9% saline) was inserted 

into the artery carefully without inducing any air bubbles and secured in position with a 6-0 

suture. The clamp at the bottom of the carotid artery was removed that allowed the 

detection of MABP using a calibrated in-line P23 XL transducer (Viggo-Spectramed, 

California, USA) and PowerLab system (ADInstruments, Oxford, UK) which was recorded on 

a computer running LabChart 6.0. The level of anaesthesia was reduced to 1.5% until the 

respiration rate reached 110±5 breath per minute before the MABP and HR measurements 

were taken (to minimise and standardise the effect of anaesthesia on MABP). 

2.5 Echocardiography 

A Vevo 770 ECHO system was employed in the studies of cmCNP KO and NPR-C KO mice; 

and a Vevo 3100 system was used in fbCNP KO studies. Mice were anaesthetised with 

isofluorane (3% in O2) before transferred onto the ECHO stage and the isoflurane reduced 

to 2% (in O2). Conduction gels were applied onto the four paws and attached to the ECG 

pads. The chest hair was removed with hair removal cream and cleaned thoroughly. A small 

amount of ECHO gel (Aquasonic, Parker; the Netherland) was applied on the chest and the 

ECHO probe was placed above the heart. The position of the probe and the angle of the 

stage were adjusted so that the entire long-axis of the LV was seen in a horizontal position 

on the computer screen. The mice were equilibrated on the stage for 10 minutes or until 

the HR reached 500±10bpm and the body temperature at 37°C. Three recordings of the B 

mode (longitudinal axis) and M-mode (cross-sectional axis immediately below the mitral 

valves) were made in each mouse. Analyses of the heart function were conducted on the 

M-mode with measurements of LV anterior wall (LVAW) and LV posterior wall (LVPW) 

thickness, and LV internal diameter (LVID) at diastole (d) and systole (s) (Figure 14). The EF 

and FS were calculated by the following equations: 

𝐸𝐹 (%) =
𝐿𝑉 𝑉𝑜𝑙; 𝑑 − 𝐿𝑉 𝑉𝑜𝑙; 𝑠

𝐿𝑉 𝑉𝑜𝑙; 𝑑
× 100           

𝐹𝑆(%) =
𝐿𝑉𝐼𝐷; 𝑑 − 𝐿𝑉𝐼𝐷; 𝑠

𝐿𝑉𝐼𝐷; 𝑑
× 100  

 𝑊ℎ𝑒𝑟𝑒:   𝐿𝑉 𝑉𝑜𝑙; 𝑑 = 𝐿𝑉𝐼𝐷; 𝑑3 ×
7.0

2.4+𝐿𝑉𝐼𝐷;𝑑
  ;   𝐿𝑉 𝑉𝑜𝑙; 𝑠 = 𝐿𝑉𝐼𝐷; 𝑠3 ×

7.0

2.4+𝐿𝑉𝐼𝐷;𝑠
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Abdominal aortic constriction-induced heart failure 

 

Figure 13. Abdominal aortic constriction-induced heart failure. 

(A) An anatomical diagram showing the position of abdominal aortic constriction (AAC), above the renal 

arteries. (B) A timeline illustrating the AAC-induced heart failure protocol. 
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Echocardiography images using B-mode and M-mode 

 

Figure 14. Example of echocardiography images using B-mode and M-mode. 

(A) The long-axis of the left ventricle (LV) on B-mode. (B) The cross-sectional axis of the LV on M-mode. ECHO 

measurements on the M-mode trace are indicated, including the diameter of the LV anterior and posterior wall, 

and LV internal diameter.  
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2.6 Histology 

2.6.1 Left ventricle fixation 

The isolated LVs were cut transversely below the mitral valves, where the M-mode ECHO 

images were taken. They were then immersed in 4% formaldehyde (10% formalin, VWR, 

Leicestershire, UK) overnight and subsequently transferred to 70% ethanol (Fisher Scientific 

Ltd, Leicestershire, UK) and stored at 4°C until paraffin wax embedding and sectioning were 

performed. 

2.6.2 Martius scarlet blue staining  

Martius scarlet blue (MSB) staining was performed by the pathology department at the 

Royal London Hospital. This stains for fibrin (red), erythrocytes (yellow) and connective 

tissue (blue). Axioplot microscope (Zeiss, UK) was used to view and capture images at a 

magnification of X50 of the stained sections. 

2.6.3 Picro-sirus red staining 

Picro-sirus red (Polysciences, Germany) stains the cytoplasm of cells yellow and collagen (as 

an index of fibrosis) red. The tissue slides were firstly dewaxed and rehydrated by 

processing the slides through the following steps: 1) histoclear for 5 minutes; 2) 1:1 of 

histoclear and 100% ethanol for 5 minutes; 3) 100% ethanol for 3 minutes; 4) 95% ethanol 

for 3 minutes; 5) 70% ethanol for 3 minutes; 6) 50% ethanol for 3 minutes; 7) distilled 

water for 3 minutes. The tissue slides were then placed in solution A (phosphomolybdic 

acid) for 2 minutes, and then rinsed with distilled water, followed by Solution B (Pico-sirius 

red) for 60 minutes and solution C (0.1M HCl) for 1 minute. The slides were then 

dehydrated with 100% ethanol for 10 minutes followed by histoclear for another 10 

minutes. The slides were mounted with DPX (Merck, a mixture of distyrene, a plasticizer, 

dissolved in toluene-xylene) and left to dry on a tray overnight. 8 images (2 images at each 

of the position of top, bottom, left and right of the LV slide) were taken using a light 

microscope (Nikon Eclipse TS100, Amsterdam, Netherland). The collagen deposition (as the 

percentage of total area) was quantified using Image J. 

2.6.4 Wheat germ agglutinin fluorescence staining 

In order to measure the ventricular myocyte size, tissue slides were stained with wheat 

germ agglutinin (WGA) alexafluor 647 (InvitrogenTM Thermo Scientific, Paisley, UK). This 

lectin selectively binds to N-acetylglucosamine and N-acetylneuraminic acid (sialic acid) 
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residues in glycoproteins and hence, stains the cell membrane. The tissue slides were firstly 

dewaxed and rehydrated as described earlier (section 2.8.3). Antigen unmasking solution 

(Vector Laboratories Inc. (H3300), Peterborough, UK) was pre-boiled for 6 minutes in a 

microwave. The rehydrated tissue slides were then added into the solution and heated for 

a further 11 minutes. The tissue slides were then cooled in running water and washed with 

phosphate-buffered saline (PBS; pH7.4) three times, 5 minutes each. The slides were then 

dried and a square was drawn around the tissue using a water repellent pen. 200µL of WGA 

(1:500 dilution) was applied onto each tissue section and incubated in darkness at room 

temperature for 1 hour. The tissue slides were then washed three times with PBS, 5 

minutes each, and mounted with ProLong™ Gold Antifade Mountant with DAPI (Thermo-

Fisher Scientific, Leicestershire, UK). Images were taken on a Zeiss 710 confocal microscope 

(magnification X20) and the cardiomyocyte size was analysed with Image J. 

2.7 Primary cell isolation and culture 

2.7.1 Materials 

PierceTM primary cardiomyocyte isolation kit (Thermo Fisher Scientific, Leicestershire, UK), 

Dulbecco’s Modified Eagle’s Medium (DMEM) (Thermo-Fisher Scientific, Leicestershire, 

UK), heat inactivated bovine serum (BS; Life Technologies Ltd, Paisley, UK), and penicillin 

streptomycin (Pen/Strep; Sigma-Aldrich, Poole, UK).  

2.7.2 Neonatal cardiomyocyte isolation and culture 

Neonatal hearts were dissected from 2-3 day old mice and placed in 500µL of ice-cold 

Hank’s balance salt solution (HBSS; Thermo-Fisher Scientific, Leicestershire, UK). The hearts 

were then minced into 1-3mm3 pieces in a petri dish and transferred to 1.5mL tubes using a 

1mL pipette.  The tissues were washed twice with 500µL ice-cold HBSS to remove blood. 

200µL of Cardiomyocyte Isolation Enzyme 1 (with papain) and 10µL of Cardiomyocyte 

Isolation Enzyme 2 (with thermolysin) were then added to each tube, mixed gently and 

incubated in 37°C for 30-35 minutes. The enzyme solutions were then removed gently and 

the tissues washed twice with 500µL ice cold HBSS. Subsequently, 0.5mL of complete 

DMEM (containing 10% BS and 1% Pen/Strep) were added and cells dissociated into a 

single cell suspension by pipetting up and down 25-30 times using a sterile 1mL pipette tip. 

1mL of complete DMEM was then added to each tube to bring the total volume to 1.5mL. 

The cell suspension in each tube was seeded into two separate wells of a gelatine (0.1%) 

pre-coated 12-well plate (Corning Incorporated, UK) i.e. 0.75mL into each well, and topped 
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up with 0.25mL of complete DMEM to bring the total volume to 1mL. The plates were then 

incubated at 37°C in a 5% CO2 incubator for 24 hours. After the incubation, the medium 

was replaced with fresh complete DMEM containing Cardiomyocyte Growth Supplement 

(1µL per ml of media). The cardiomyocytes were then further cultured for 3 days to 

become confluent. Beating cells that had striations with an irregular shape were identified 

as neonatal cardiomyocytes (Figure 15).  

2.7.3 Hypertrophic analysis 

The confluent cardiomyocytes were cultured in media with 0% BS and 1% Pen/Strep for 24 

hours before treated with Ang II (1µM) ± CNP (1μM). Light microscopy images (x40; Nikon 

Eclipse TS100, Amsterdam, Netherland) of the beating neonatal cardiomyocytes were 

taken at 0 hour (baseline), 24 hours and 48 hours of Ang II treatment. The cardiomyocyte 

size was determined by measuring cell surface area using Image J. At least 40 

cardiomyocytes from each well were measured to minimise bias. 

2.7.4 Cardiac fibroblast isolation and culture 

Hearts isolated from adult fbCNP KO and WT mice were washed in sterile ice-cold PBS to 

remove any blood. The hearts were placed on a sterile surface and cut into 1mm pieces, 

and transferred into a T75 flask using a sterile cell scraper. Tissues were spread around the 

flask and incubated for 25 minutes at room temperature. 20mL of media containing 

DMEM, 15% BS and 1% Pen/Strep were added into the flask without disturbing the tissues. 

The tissue flask were then incubated in a 37°C/5% CO2 incubator for 7 days to allow cardiac 

fibroblasts to grow. The cells were then trypsinised by the following steps. First, old media 

was removed and washed twice with pre-warmed sterile PBS. 3mL trypsin was added into 

the flask and incubated at 37°C for 5 minutes for the cells to detach. 3mL of BS was then 

added to stop the trypsin activity. The cell suspension was transferred into a 15mL tube 

and centrifuged at 1000rpm for 5 minutes. The supernatant was removed and the cell 

pellet was transferred into a new T75 flask and incubated in 20mL complete DMEM for 10 

days (media changed every 2-3 days) until the cardiac fibroblasts reached confluency. To 

collect the cells, the media was removed and replaced with 3mL of RLT buffer from the 

RNeasy mini kit (QIAGEN, Hilden, Germany) with 30µL of β-mercaptoethanol (Sigma-

Aldrich, Poole, UK). Cells were then scrapped from the flask using a sterile cell scraper. The 

cell suspension were divided into two 1.5mL tubes, snap-frozen with liquid nitrogen and 

stored at -80°C. 
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Identification of neonatal cardiomyocytes 

 

Figure 15. Identification of neonatal cardiomyocytes. 

Neonatal cardiomyocytes beat spontaneously and are identified by their striation and irregular shape. The 

cardiomyocyte size was determined by the area of the cell using Image J. 
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2.8 Molecular biology 

2.8.1 Materials 

Ribonucleic acid (RNA) extraction from cells was undertaken using a QIAshredder (cat. 

79656) and RNeasy mini kit (cat. 74106). For RNA isolation from tissues, RNeasy Fibrous 

Tissue Mini Kit (cat. 74704) was used. RNase-Free DNase Set (cat. 79254) was used to 

eliminate genomic DNA contamination in the samples. Generation of cDNA was achieved 

using a QuantiTect® Reverse Transcriptase kit (cat. 205313), and a QuantiTect® SYBR® 

Green PCR kit (cat. 204143) was used for qPCR reaction.  All sourced from Qiagen (Hilden, 

Germany).  

2.8.2 RNA extraction  

2.8.2.1 RNA extraction from cardiac fibroblasts and cardiomyocytes 

Total RNA extraction was performed according to the manufacturer’s instructions using a 

RNeasy mini kit (cat. 74106; Qiagen; Hilden, Germany). Briefly, cells were thawed on ice 

and pipetted directly into a QIAshredder spin column placed in a 2mL collection tube, and 

centrifuged for 2 minutes at 14000rpm. One equal volume of 70% ethanol was added to 

the homogenised lysate and mixed well by pipetting. The samples then transferred to an 

RNAeasy spin column placed in a 2mL collection tube and centrifuged for 15 seconds at 

14000rpm. In order to eliminate genomic DNA contamination, on-column DNAse digestion 

was performed using a RNase-free DNase Set (Qiagen, Hilden, Germany): 350µL of buffer 

RW1 solution was added into the RNeasy spin column and centrifuged for 15 seconds at 

14000rpm. 10µL DNase I solution plus 70µL of buffer RDD were added directly to the 

RNeasy spin column membrane and incubated for 15 minutes at room temperature. The 

columns were then washed with 350µL of buffer RW1 and centrifuged for 15 seconds at 

14000rpm. After further washes with 500µL of buffer RPE twice, the RNeasy spin columns 

then placed onto new collection tubes, and centrifuged for 1 minute at 14000rpm to 

eliminate any possible carryover of RPE. The columns were then placed in 1.5mL tubes for 

RNA collection. 30µL of RNase-free water were used to elute the RNA on the spin column 

membrane (centrifuged for 1 minute at 14000rpm). The eluents were re-applied onto the 

spin columns and centrifuged to obtain a higher concentration of RNA. 
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2.8.2.2 RNA extraction from tissue  

RNA extraction from tissues was achieved with a RNeasy Fibrous Tissue Mini Kit (Qiagen, 

Hilden Germany) and performed according to the manufacturer’s instruction. Organs were 

powdered using a pestle and mortar in liquid nitrogen. 25-30mg of tissue sample was 

dissociated in 300μL RLT buffer with 3μL β-mercaptoethanol (Sigma-Aldrich, Poole, UK) by 

agitation using a 1mL pipette. The cell suspension were then homogenised with a 

QIAshredder. 590μL of H2O and 10μL of proteinase K were added to the homogenised cells 

and incubated at 55°C for 10 minutes followed by 3 minutes centrifugation at 14000rpm. 

The supernatant were transferred to 1.5mL tubes and 450uL of 100% ethanol was added 

and mix by pipetting. The mixture was then transferred to RNAeasy spin columns and spun 

at 14000rpm for 15 seconds for total RNA binding on the column membrane. The on-

column genomic DNA elimination and RNA eluting steps were then performed as described 

above. 

2.8.3 Measurement of RNA concentration and quality 

The concentration and quality of RNA was determined using a Nano-drop®ND-1000 

Spectrophotometer (Thermo-Fisher, Leicestershire, UK). Sample concentration in ng/uL 

was calculated based on absorbance at 260 nm. The ratio of sample absorbance at 260 and 

280 nm (260/280) is used to assess the purity of RNA. A ratio of ~2.0 is generally accepted 

as “pure” for RNA. If the ratio is <1.8, it may indicate the presence of protein, phenol or 

other contaminants that absorb strongly at or near 280 nm, and the RNA sample was 

excluded. The ratio of sample absorbance at 260 and 230nm (260/230) is a secondary 

measure of nucleic acid purity. The 260/230 values for ‘pure’ nucleic acid are often higher 

than the respective 260/280 values and they are typically in the range of 1.8-2.2. If the ratio 

is appreciably lower, it may indicate the presence of ethanol or guanidine contamination 

(NanoDrop 1000 Spectrophotometer V3.8 User's Manual). 

2.8.4 Complementary (c)DNA generation 

Since the yield of total RNA extracted from neonatal cardiomyocytes was relatively low 

(approximately 40ng/µL), 250ng of RNA were used to generate cDNA. Whereas, the yields 

from cardiac fibroblast (approximately 200ng/µL) and tissues (>400ng/μL) were relatively 

high and thus, 1000ng of RNA were used to generate cDNA. First, genomic DNA elimination 

step was carried out by adding 2µL of gDNA wipeout buffer (Qiagen; Hilden, Germany) to 

12μL of RNA samples and followed by an incubation of 2 minutes at 42°C. A reverse 

transcription (RT) master mix prepared according to Table 4 was then added to the 
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samples. A thermal cycler (Bio-Rad S1000TM, UK) was used for the reverse transcription 

reaction (15 minutes at 42°C followed by 3 minutes at 95°C to inactivate Quantiscript 

Reverse Transcriptase). The cDNA products were stored at -20°C until proceeding to real-

time quantitative (q)PCR. 

2.8.5 Real-time quantitative PCR 

2.8.5.1 cDNA dilution 

Prior to the qPCR reaction, cDNA was diluted 1:40 with RNase-free water, except for the 

detection of the Nppc gene, in which cDNA was diluted 1:2 due to low mRNA expression. 

2.8.5.2 qPCR reactions 

The components for the qPCR master mix per reaction were prepared according to Table 5, 

and samples were prepared in triplicate. The qPCR reactions were facilitated by the 7900HT 

machine and the qPCR cycle conditions for 10μL sample are shown in Table 6. Using the 

SDS 2.4 software, the efficiency of the qPCR reaction was assessed by examining the melt 

curves for each reaction to exclude primer-dimer formation and to ensure that only one 

product was amplified. The threshold (manual Ct) for each detector was adjusted by 

placing the threshold line at the geometric phase along the amplification plot. The baseline 

for each detector was set manually to end before the amplification curve starts to rise. 

Details of the primers used are shown in Table 7. β-actin and RPL-19 were used as 

reference genes and relative gene expression were calculated using the 2-ΔΔCt method (Livak 

and Schmittgen, 2001).  
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Master mix components for reverse transcription 

 

Table 4. Master mix components for reverse transcription per reaction. 

 

Master mix components for qPCR reaction 

 

Table 5. Master mix components for qPCR reaction per sample. 

 

Real-time qPCR cycle conditions 

 

Table 6. qPCR cycle conditions. 
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Cardiac remodelling target genes and their primer sequence 

 

Table 7. List of cardiac remodelling target genes and their primer sequences for qPCR. 
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2.9 Data analysis 

All data are reported as mean ± SEM, where n is the number of mice used. Statistical 

analyses were conducted using GraphPad Prism version 5 (GraphPad software, California, 

USA). For comparison of two groups of data, a two-tailed, unpaired Student’s t-test was 

used. When comparing three or more groups of data one-way ANOVA followed by a 

Bonferroni multiple comparisons test was used. Two-way ANOVA was used to compare 

data influenced by two factors. Shapiro-Wilk test was used to test normality of data. For all 

tests, p<0.05 was considered statistically significant. 
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Chapter 3 – Results I  

3 Results I 

3.1 Introduction 

The actions of EDHFs are of critical importance to cardiovascular physiology, especially 

when production of NO is compromised in diseases such as pulmonary hypertension and 

atherosclerosis (Luksha et al., 2009). Chauhan et al. 2003 originally reported that CNP is 

indistinguishable from EDHF in the regulation of vascular tone and blood flow in mesenteric 

resistance arteries. More recently, evidence showing CNP plays a critical role in regulating 

vascular homeostasis, by acting as an EDHF, maintaining vascular integrity and preventing 

atherogenesis has been provided by the generation of endothelial-specific CNP KO mice 

(Moyes et al., 2014, Nakao et al., 2017).  Many groups have also demonstrated exogenous 

CNP is a potent coronary vasodilator (Wei et al., 1994, Wright et al., 1996, Hobbs et al., 

2004) and protects against IR injury (Hobbs et al., 2004). During CHF, myocardial 

production and release of CNP is elevated as a function of clinical severity (Kalra et al., 

2003, Del Ry et al., 2006a, Del Ry et al., 2005). In in vivo studies, IR injury and ventricular 

remodelling are aggravated in response to CNP genetic knockdown (Wu et al., 2017a). 

Whilst, pharmacological addition of CNP ameliorates IR injury (Jin et al., 2014, Hobbs et al., 

2004, Soeki et al., 2005). These observations suggest CNP might be a potential therapeutic 

target for coronary artery disease and have beneficial effects in MI patients.  Therefore, 

this thesis investigated a patho/physiological role of CNP in the regulation of coronary 

vascular function and in acute IR injury by utilising the Langendorff isolated heart model 

and cell-specific CNP KO mice (i.e. ecCNP and cmCNP KO). 

Sex differences in the contribution of EDHF to the regulation of vascular activity have 

previously been reported (Scotland et al., 2005, Barber et al., 1998). Furthermore, 

endothelial dysfunction and a hypertensive phenotype are observed in female, but not 

male, ecCNP KO (Moyes et al., 2014). Thus, my work also investigated sex differences in 

endogenous CNP-mediated changes in coronary reactivity in ecCNP KO mice.  

The mechanism by which CNP induces vasodilatation remains unclear and appears to vary 

between vascular beds. Early studies in aortic rings reported the activation of NPR-B upon 

CNP binding is responsible for relaxation of vascular smooth muscle via production of 
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cGMP (Drewett et al., 1995, Madhani et al., 2003). However, in smooth muscle restricted 

NPR-B KO mice, ACh-induced vasorelaxation is preserved in mesenteric vessels (Nakao et 

al., 2015), suggesting a NPR-B independent mechanism is involved. Accordingly, Villar et al. 

2007 demonstrated that a selective NPR-C antagonist, M372049, inhibits CNP-induced 

vasodilatation in mesenteric arteries. Subsequently, Moyes et al. 2014 showed a 

hypertensive phenotype in NPR-C KO animals, but not in NPR-B KO (Nakao et al., 2015). 

These data imply NPR-C is the dominant receptor for CNP signalling in resistance vascular 

beds, and thus, I also explored the coronary vasoreactivity and IR injury in NPR-C KO mice 

in this project.  

3.2 Characterisation of cell-specific CNP KO mouse 

3.2.1 Endothelium-specific CNP KO mice 

The characterisation of ecCNP KO mice under the tyrosine protein kinase receptor (Tie2) 

promoter has been previously published and showed CNP expression is specifically reduced 

in the endothelial cells by 80% (Moyes et al., 2014).  

3.2.2 Cardiomyocyte-specific CNP KO mice 

CNP expression was deleted in cardiomyocytes via cell-specific excision of the Nppc gene 

using Cre-Lox technology (α-MHC-driven Cre) (Agah et al., 1997). CNP mRNA expression in 

whole hearts (analysed by qPCR) revealed almost 80% reduction in cmCNP KO mice 

compared to WT controls (Figure 16). In contrast, CNP mRNA expression in other organs 

was similar (lungs, liver, and kidney) across the genotypes. Expression of CNP mRNA in 

neonatal cardiomyocytes isolated from cmCNP KO mice was approximately 50% lower than 

WT littermates (Figure 16). This residual CNP expression is likely to be due to the impurity 

of the cell culture, with cardiomyocytes comprising approximately 60% of the total cell 

population (Figure 16). The percentage of cardiomyocytes was estimated by the number of 

cells that stained positive for the cardiomyocyte-specific marker Troponin T (ab8295; 

AbCam) in comparison to the total cell population (DAPI positive). Thus, a 50% reduction in 

CNP mRNA expression overall, in a cell population consisting of 60% cardiomyocytes, gives 

rise to an approximate 83% reduction in abundance, which closely matches the whole 

heart evaluation. These data confirm efficient and specific removal of the Nppc gene from 

cardiomyocytes. However, the baseline levels of ANP and BNP were not measured. The lost 

of CNP bioactivity may have been compensated for, in part, by an increase in the bioactivity 



114 
 

of other natriuretic peptides, although this would only results in an under-estimate of the 

(patho)physiological consequences of CNP deletion.  
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Characterisation of CNP expression in WT and cmCNP KO mice 

 

 

Figure 16. Characterisation of cmCNP KO mice.  

qPCR analysis of CNP mRNA from different tissues in WT and cmCNP KO confirmed that the CNP gene had been 

deleted from the heart (A). qPCR analysis of CNP mRNA expression in neonatal cardiomyocytes also established 

that deletion of CNP is specific to cardiomyocytes (B). Isolated cardiomyocytes were stained with cardiac 

Troponin T (green) and DAPI (blue), demonstrating approximately 60% of the cultured cells were 

cardiomyocytes (C). Data are represented as the mean±SEM. n=4-6. *p<0.05, **p<0.01 (unpaired t-test), 

significantly different from corresponding WT littermates. 
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3.3 Coronary vascular reactivity in ecCNP KO mice 

3.3.1 Baseline coronary perfusion 

Baseline CPP was similar between WT and ecCNP KO mice in both females and males 

(female, 91.80±7.35mmHg vs. 95.32±8.72mmHg; male, 79.14±8.65mmHg vs. 

77.69±10.00mmHg; p>0.05; n=8-10) (Figure 17). Coronary perfusion pressure increased in 

the presence of L-NAME (300μM) regardless of genotype or sex (female, WT 

142.2±9.64mmHg, ecCNP KO 138.7±11.77mmHg; male, WT 126.6±8.57mmHg, ecCNP KO 

144.3±6.06mmHg; p<0.001 compared to baseline; n=8-10) (Figure 17). This increase in CPP 

indicates the presence of an intact endothelium in the hearts studied, i.e. blockade of NO 

production from the endothelium. 

3.3.2 Endothelium-dependent vasodilators 

3.3.2.1 Bradykinin  

The endothelium-dependent vasodilator BK (10nmol) produced an equivalent fall in CPP in 

hearts from female and male WT mice (female, ΔCPP=-31.68±2.682%; male, ΔCPP=-32.59 

±2.350%; p>0.05; n=7-9) (Figure 18). In female ecCNP KO animals the responsiveness to BK 

was significantly reduced (ΔCPP=-21.14±2.89%; p<0.05; n=7-9) (Figure 18). However, this 

blunted response to BK was not observed in male ecCNP KO (ΔCPP=-32.84±3.42%; p=0.95; 

n=7-8) compared to WT (Figure 18).  

3.3.2.2 Acetylcholine 

The mechanistically-distinct endothelium-dependent vasodilator, ACh (0.1nmol – 1nmol) 

produced a dose-dependent decrease in CPP in hearts from both WT and ecCNP KO 

animals (Figure 19). Unlike responses to BK, coronary reactivity in both male and female 

ecCNP KO was significantly blunted compared with WT controls (female, p<0.001; male, 

p<0.05, 2-way ANOVA; n=7-9) (Figure 19). In particular, the response to 1nmol ACh in 

female ecCNP KO was almost 50% lower than WT (ΔCPP=-30.12±5.82% vs. -50.40±2.92%; 

p<0.001; n=7-9). 

3.3.2.3 Vasodilatation associated with reperfusion 

CNP expression and secretion are upregulated in endothelial cells in response to shear-

stress (Chun et al., 1997, Zhang et al., 1999). Thus, I also investigated if CNP contributes to 

shear-stress-induced vasodilatation in the coronary vasculature ex vivo by examining the 

magnitude of vasodilatation in response to reperfusion. The resumption of flow following 
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transient cessation of perfusion creates a shear force against the vessel wall and triggers 

the release of endothelium-derived mediators, such as CNP (Nakamura et al., 1994, Zatta 

and Headrick, 2005). The response to reperfusion following 80 seconds of zero flow was 

significantly reduced in hearts from female ecCNP KO mice compared to WT (WT, 

2429±300 a.u vs. KO, 1493±280 a.u; p<0.05; n=6-8) (Figure 20), but not in male animals 

(WT, 4454±642 a.u; ecCNP KO 4125±575a.u; p>0.05; n=5-7) (Figure 20). However, the area 

under the curve was 50% higher in male compared to females across all three occlusion 

durations, regardless of genotype. This observation is probably due to the size difference of 

the hearts/coronary vasculature tree between sexes. Nevertheless, the heart size/body 

weight were similar between the genotypes within the same sex, suggesting the phenotype 

observed in female might be due to the loss of endothelial CNP production.  

3.3.3 Endothelium-independent vasodilators 

3.3.3.1 CNP  

CNP (10nmol) was used to examine if vascular smooth muscle sensitivity altered in 

response to endothelial-specific deletion of CNP (i.e. in ecCNP KO mice). The coronary 

reactivity was comparable between WT and ecCNP KO mice in both sexes (female, WT 

ΔCPP=-11.96±1.838% vs. ecCNP KO ΔCPP = -9.769±1.274%, p>0.05; male, WT ΔCPP=-

24.10±6.283% vs. ecCNP KO ΔCPP=-19.99±3.957%, p>0.05; n=6-9) (Figure 21). These data 

suggest that the responsiveness to CNP is not affected in ecCNP KO and that differences 

observed in endothelium-dependent vasodilator responses are due to lack of endothelial 

CNP production.   

3.3.3.2 SNP 

The NO donor SNP was employed to examine the sensitivity of the vascular smooth muscle 

in response to vasodilators mechanistically distinct to CNP. The vasorelaxant response to 

SNP was similar between WT and ecCNP KO (female, WT ΔCPP=-23.78±3.152% vs. ecCNP 

KO ΔCPP=-21.52±3.249%, p>0.05; male, WT ΔCPP=-41.64±3.228 vs. ecCNP KO ΔCPP=-37.65 

±3.356%, p>0.05; n=7-9) (Figure 21). These results indicate that the coronary vascular 

smooth muscle sensitivity to exogenous vasodilators is equivalent in all animals regardless 

of genotype.  

3.3.4 Release of CNP from the coronary endothelium 

In order to confirm that the difference observed between WT and ecCNP KO mice with 

respect to coronary vasodilatation was due to a diminished release of endothelial CNP in 
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response to ACh, the coronary effluent was collected immediately after bolus injection of 

ACh (1nmol) for CNP bioassay. Indeed, the concentration of CNP in the effluent of ecCNP 

KO hearts was significantly lower compared to WT (ecCNP KO, 0.459±0.111ng/mL vs. WT, 

0.884±0.074ng/mL; p<0.01; n=4-7) (Figure 22). This observation confirms that CNP is 

released by the coronary endothelium in response to ACh, and substantiates the concept 

that the reduced vasoreactivity is due to the lack of endothelium-derived CNP. However, 

CNP production was not completely abolished in ecCNP KO mice (Figure 22). It is not clear if 

this is due to the release of CNP by other cardiac cells or just at the level of signal-noise 

ratio for this EIA. 

Taking together, these observations demonstrate endothelium-derived CNP contributes to 

coronary reactivity in response to endothelium-dependent vasodilators and mechanical 

shear force, especially in females.  
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Baseline coronary perfusion in hearts from female and male WT and ecCNP KO 

mice in the absence and presence of L-NAME 

 

 

Figure 17. Baseline coronary perfusion pressure in hearts from female and male WT and ecCNP KO mice in 

the absence and presence of L-NAME. 

Coronary perfusion pressure (CPP) in the isolated hearts from WT and ecCNP KO in the absence and presence of 

L-NAME (300μM). (A) females and (B) males. Data are represented as the mean±SEM. n=8-10. ***p<0.001 (2-

way ANOVA with Bonferroni post-hoc test), significantly different from corresponding WT littermates. 
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Coronary reactivity in hearts from female and male WT and ecCNP KO mice in 

response to bradykinin 

 

Figure 18. Coronary reactivity in hearts from female and male WT and ecCNP KO mice in response to 

bradykinin. 

Coronary endothelium-dependent relaxation to bradykinin (10nmol) in isolated hearts from female (A) and 

male (B) WT and ecCNP KO mice. Data are represented as the mean±SEM. n=7-9. *p<0.05 (unpaired t-test), 

significantly different from corresponding WT littermates. 
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Coronary reactivity in hearts from female and male WT and ecCNP KO mice in 

response to acetylcholine  

 

Figure 19. Coronary reactivity in hearts from female and male WT and ecCNP KO mice in response to 

acetylcholine. 

Coronary endothelium-dependent relaxation to acetylcholine (0.1-1nmol) in isolated hearts from female (A) 

and male (B) WT and ecCNP KO mice. Data are represented as the mean±SEM. n=8-12. *p<0.05 (2-way ANOVA 

with Bonferroni post-hoc test), significantly different from corresponding WT littermates. 
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Coronary reactivity in hearts from female and male WT and ecCNP KO mice in 

response to reperfusion 

 

Figure 20. Coronary reactivity in hearts from female and male WT and ecCNP KO mice in response to 

reperfusion. 

Cessation of flow, 20, 40 or 80 seconds followed by reperfusion. (A) female, (B) male animals. Data are 

represented as the mean±SEM. n=6-7. *p<0.05 (2-way ANOVA with Bonferroni post-hoc test), significantly 

different from corresponding WT littermates. 
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Coronary reactivity in hearts from female and male WT and ecCNP KO mice in 

response to endothelium-independent vasodilators 

 

Figure 21. Coronary reactivity in hearts from female and male WT and ecCNP KO mice in response to 

endothelium-independent vasodilators. 

(A) and (C), coronary endothelium-independent relaxation to CNP (10nmol) in female and male WT and ecCNP 

KO mice, respectively. (B) and (D), the response to SNP in female and male animals, respectively. Data are 

represented as the mean±SEM. n=6-9. Statistical analysis was by unpaired t-test.  
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Release of CNP from hearts in response to acetylcholine 

 

Figure 22.  Release of CNP from hearts in response to acetylcholine. 

Coronary perfusion effluent was collected following bolus injection of ACh (1nmol) in WT and ecCNP KO mice. 

Data are represented as the mean±SEM. n=4-7. **p<0.01 (unpaired t-test), significantly different from 

corresponding WT littermates.  
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3.4 Ischaemia reperfusion injury 

Having established that CNP release by the coronary endothelium regulates vascular 

function and local blood flow, I went on to investigate a potential cardioprotective effect of 

endothelial-derived CNP in IR injury. Previous studies have established that exogenous CNP 

(i.e. pharmacological administration) provides a protective effect against reperfusion injury 

(Hobbs et al., 2004). Baxter et al. (2004) also demonstrated myocardial ischemia is 

associated with rapid release of natriuretic peptide and induction of de novo peptide 

synthesis (Baxter, 2004). Herein, I investigated if endogenous release of CNP has protective 

function against IR injury and, if so, which source of CNP (i.e. cellular origin) proffers the 

most beneficial effect. 

3.4.1 ecCNP KO mice in response to ischaemia reperfusion injury 

After establishing the acute IR injury model, isolated hearts were subjected to 35 minutes 

global ischaemia followed by 60 minutes reperfusion; this results in an approximately 15% 

infarct size in WT animals (as measured by TTC staining). This relative small infarct 

induction was chosen because it was expected that abrogation of CNP would exacerbate IR 

injury.  However, the infarct size was not significantly different between WT and ecCNP KO 

mice in both male and female animals, although there was a trend towards a larger infarct 

size in female ecCNP KO compared to littermate controls (male, WT 15.05±2.040% vs. 

ecCNP KO 14.66±2.498%, p>0.05, n=11; female WT, 18.96±2.17% vs. ecCNP KO 

25.13±2.71%, p=0.095, n=7-8) (Figure 23 and Figure 24). The recovery of LVDP was lower in 

females than males but no difference was observed between genotypes (female, WT 

13.78±1.742mmHg, ecCNP KO 16.96±4.241mmHg; male, WT 34.23±4.056mmHg, ecCNP KO 

27.91±3.701mmHg; p>0.05; n=7-11) (Figure 23 and Figure 24). 

3.4.2 cmCNP KO mice in response to ischaemia reperfusion injury 

In contract to ecCNP KO, the hearts from cmCNP KO mice had a significantly greater infarct 

size in comparison to WT controls following IR, regardless of sex (Figure 25 and Figure 26). 

The infarct size in female WT was 12.73±1.15% vs. cmCNP KO 21.76±1.85%; p<0.005; n=5-

8. The effect of male cmCNP KO in response to IR was even more striking; WT 13.02±1.70% 

vs. cmCNP KO 35.89±3.64; p<0.0005; n=8-12 (Figure 26). Accordingly, this larger infarct size 

in male cmCNP KO was accompanied by a much smaller recovery of LVDP compared to WT 

controls (p<0.0005; n=8-12) (Figure 26). The recovery of LVDP in female cmCNP KO was not 

significantly different to WT controls, probably due to a relatively small increase in infarct 
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size compared to the male cmCNP KO.  These results suggest that cardiomyocyte-derived 

CNP is cardioprotective in a pre-clinical MI model.  
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IR injury in female WT and ecCNP KO mice 

 

Figure 23. IR injury in female WT and ecCNP KO mice. 

Infarct size (A) and left ventricular developed pressure (LVDP) (B) in isolated hearts from female WT and ecCNP 

KO mice subjected to 35 minutes ischaemia followed by 60 minutes reperfusion.  Representative images of TTC 

staining for infarcted areas (white regions) are shown (C). Data are represented as the mean±SEM. n=7-8. 

Unpaired t-test and 2-way ANOVA was used to analyse infarct size and LVDP, respectively. 
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IR injury in male WT and ecCNP KO mice  

 

Figure 24. IR injury in male WT and ecCNP KO mice. 

Infarct size (A) and left ventricular developed pressure (LVDP; B) in isolated hearts from male WT and ecCNP KO 

mice subjected to 35 minutes ischaemia followed by 60 minutes reperfusion.  Representative images of TTC 

staining for infarcted areas (white regions) are shown (C). Data are represented as the mean±SEM. n=11. 

Unpaired t-test and 2-way ANOVA was used to analyse infarct size and LVDP, respectively.  



129 
 

IR injury in female WT and cmCNP KO mice 

 

Figure 25. IR injury in female WT and cmCNP KO mice. 

Infarct size (A) and left ventricular developed pressure (LVDP) (B) in isolated hearts from female WT and cmCNP 

KO mice subjected to 35 minutes ischaemia followed by 60 minutes reperfusion.  Representative images of TTC 

staining for infarcted areas (white regions) are shown (C). Data are represented as the mean±SEM. n=5-8. 

Unpaired t-test and 2-way ANOVA was used to analyse infarct size and LVDP, respectively. **p<0.01, 

significantly different from corresponding WT littermates.  
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IR injury in male WT and cmCNP KO mice 

Figure 26. IR injury in male WT and cmCNP KO mice. 

Infarct size (A) and left ventricular developed pressure (LVDP) (B) in isolated hearts from male WT and cmCNP 

KO mice subjected to 35 minutes ischaemia followed by 60 minutes reperfusion.  Representative images of TTC 

staining for infarcted areas (white regions) are shown (C). Data are represented as the mean±SEM. n=8-12. 

Unpaired t-test and 2-way ANOVA was used to analyse infarct size and LVDP, respectively. **p<0.01, 

***p<0.001, significantly different from corresponding WT littermates. 

 

  



131 
 

3.5 Endothelium-derived CNP induces coronary vasorelaxation via NPR-C 

activation 

3.5.1 Coronary reactivity in NPR-C KO mice 

To identify the NPR responsible for conveying the vasorelaxant activity of CNP in the 

coronary vasculature, I employed male global NPR-C KO mice in the Langendorff isolated 

heart model. Similar to ecCNP KO mice, there was no difference in baseline CPP between 

WT and NPR-C KO animals (WT, 75.61±4.296mmHg vs. NPR-C KO, 77.13±6.654mmHg; 

p>0.05; n=5-8) (Figure 27). CPP was elevated by approximately 50% in response to L-NAME 

(300μM) in both genotypes (WT, 134.4±9.728mmHg vs. NPR-C KO, 125.6±15.53mmHg; 

p<0.001 compared to baseline; n=5-8) (Figure 27). The vasodilator response to BK (10nmol) 

was significantly reduced in NPR-C KO compared to littermate controls (WT, ΔCPP=-

29.25±3.61% vs. NPR-C KO, ΔCPP=-11.15±2.57%; p<0.005; n=5-8) (Figure 28).  Likewise, the 

responses to ACh (0.1-1nmol) were markedly reduced in mice lacking NPR-C (1nmol: WT, 

ΔCPP =-49.81±5.958% vs. NPR-C KO, ΔCPP=-23.27±6.364%; p<0.01; n=5-8) (Figure 28). 

Reactive hyperaemia (20-80 seconds) was also significantly blunted in NPR-C KO mice 

compared to WT (80 seconds: WT, 5163±572.1 a.u vs. NPR-C KO, 1779±385.9 a.u; p<0.001; 

n=5-6) (Figure 29). These observations illustrate NPR-C mediates CNP signalling in the 

coronary vasculature. The vasorelaxant potency of exogenous CNP (10nmol) was reduced 

in the deletion of NPR-C, but was not completely abolished (WT, ΔCPP=-27.10±6.698% vs. 

NPR-C KO, ΔCPP=-11.99±1.287%; p<0.05; n=5-7) (Figure 30), suggesting NPR-B may also 

play a part in mediating CNP-induced vasodilatation in the coronary vasculature. 

3.5.2 Ischaemia reperfusion injury 

Having identified cardiomyocyte-derived CNP is cardioprotective against IR injury, I 

repeated the IR model in male global NPR-C KO mice to explore if a similar phenotype was 

present, thereby supporting a role for NPR-C signalling in the beneficial effect of 

cardiomyocyte-derived CNP. Indeed, the effect of cmCNP KO animals in response to IR 

injury is recapitulated in NPR-C KO mice. The infarct size in NPR-C KO animals was almost 

50% larger than WT controls (WT, 18.20±4.35% vs.   NPR-C KO, 35.21±4.46%; p<0.05; n=7-

8) (Figure 31), accompanied by a significantly lower recovery of LVDP (WT, 

45.44±8.171mmHg vs. NPR-C KO, 16.48±5.397; p<0.001; n=5-7) (Figure 31). These data 

suggest activation of NPR-C is critical to the cardioprotective effect of CNP against IR injury.  
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Baseline coronary perfusion in hearts from male WT and NPR-C KO mice in the 

absence and presence of L-NAME  

 

Figure 27. Baseline coronary perfusion in hearts from male WT and NPR-C KO mice in the absence and 

presence of L-NAME 

Baseline CPP in isolated hearts from WT and global NPR-C KO mice in the absence and presence of L-NAME 

(300μM). Data are represented as the mean±SEM. n=5-8. ***p<0.001 (2-way ANOVA with Bonferroni post-hoc 

test), significantly different from corresponding WT littermates. 
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Coronary reactivity in hearts from male WT and NPR-C KO mice in response to 

endothelium-dependent vasodilators 

 

Figure 28. Coronary reactivity in hearts from male WT and NPR-C KO mice in response to endothelium-

dependent vasodilators 

Vasorelaxant responses to bradykinin (10nmol) (A) and acetylcholine (0.1 – 1nmol) (B), in the presence of L-

NAME (300μM), in WT and NPR-C KO mice. Data are represented as the mean±SEM. n=5-8. Unpaired t-test and 

2-way ANOVA with Bonferroni post-hoc test was used to analyse the response to bradykinin and acetylcholine, 

respectively. **p<0.01, ***p<0.001, significantly different from corresponding WT littermates.  
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Coronary reactivity in hearts from male WT and NPR-C KO mice in response to 

reactive hyperaemia 

 

 

Figure 29. Coronary reactivity in hearts from WT and NPR-C KO mice in response to reactive hyperaemia. 

Vasorelaxant responses to reactive hyperaemia (cessation of flow for 20, 40 and 80 seconds), in the presence of 

L-NAME (300μM), in WT and NPR-C KO mice. Data are represented as the mean±SEM. n=5-6. ***p<0.001 (2-

way ANOVA with Bonferroni post-hoc test), significantly different from corresponding WT littermates. 
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Coronary reactivity in hearts from male WT and NPR-C KO mice in response to 

CNP 

 

 

Figure 30. Coronary reactivity in hearts from male WT and NPR-C KO mice in response to CNP. 

Coronary endothelium-independent relaxation to CNP (10nmol), in the presence of L-NAME (300μM), in WT 

and NPR-C KO mice. Data are represented as the mean±SEM. n=5-7; *p<0.05 (unpaired t-test), significantly 

different compared to WT littermates. 
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IR injury in male WT and NPR-C KO mice  

 

Figure 31. IR injury in male WT and NPR-C KO mice. 

Infarct size (A) and left ventricular developed pressure (LVDP) (B) in isolated hearts from WT and NPR-C KO mice 

subjected to 35 minutes ischaemia followed by 60 minutes reperfusion. Representative images of TTC staining 

for infarcted areas (white regions) are illustrated (C). Data are represented as the mean±SEM. n=5-7. Unpaired 

t-test and 2-way ANOVA with Bonferroni post-hoc test was used to analyse infarct size and LVDP, respectively. 

*p<0.05, ***p<0.001, significantly different from corresponding WT littermates. 
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3.6 Summary of key findings 

I have demonstrated that endothelium-derived CNP regulates coronary vascular function, 

at least in part, via NPR-C activation. In addition, production of CNP in the cardiomyocyte, 

rather than endothelium, protects the heart from IR injury via activation of NPR-C 

signalling. These data suggest CNP of endothelial and cardiomyocyte origins coordinate to 

govern coronary vascular function and cardioprotection following ischaemia. This intimates 

CNP may play an important role in ischaemic heart disease and represents a novel 

therapeutic target. 
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Chapter 4 – Results II 

4 Results II 

4.1 Introduction 

The co-localisation of CNP and its cognate receptors in the heart (Del Ry et al., 2011b) 

suggests a possible role for CNP in regulating cardiac function in a physiological setting and 

in pathologies such as HF. Indeed, myocardial CNP production and plasma levels are 

increased in patients with HF (Cabiati et al., 2013, Del Ry et al., 2006a, Kalra et al., 2003). 

Moreover, pharmacological administration of CNP in vivo improves cardiac function and 

slows cardiac remodelling in pre-clinical MI and pressure-overload (i.e. HF) models (Soeki et 

al., 2005, Wang et al., 2007, Izumiya et al., 2012). This protective effect of exogenous CNP 

on cardiac remodelling is probably the result of its anti-hypertrophic and anti-fibrotic 

actions (Horio et al., 2003, Soeki et al., 2005). However, a role for endogenous CNP in 

cardiac function has not been demonstrated. Previous work has suggested that the 

protective effect of exogenous CNP can be attributed to activation of the NPR-B/cGMP 

cascade (Langenickel et al., 2006, Rosenkranz et al., 2003). Downregulation of NPR-B 

signalling contributes to cardiac hypertrophy but not fibrosis in preclinical models 

(Langenickel et al., 2006), suggesting NPR-B activation may not (solely) be the receptor 

responsible for the protection against maladaptive cardiac remodelling. On the other hand, 

NPR-C signalling appears to be involved in cardiac fibroblast and myocyte proliferation 

(Rose and Giles, 2008), suggesting NPR-C may play a part in preventing disease progression. 

In this chapter I have examined the patho/physiological role of CNP in cardiac function by 

using cmCNP KO mice subjected to two HF models; ISO-induced HF and pressure overload. 

Also, I have investigated the role of NPR-C in cardiac remodelling by using global NPR-C KO 

mice. 

4.2 Isoprenaline-induced heart failure 

4.2.1 Pilot studies in WT mice  

Sustained β-adrenoceptor activation by chronic administration of ISO induces cardiac 

hypertrophy and fibrosis as well as myocardial necrosis, which leads to progressive HF 

(Grimm et al., 1998). This HF model mimics aspects of the sympathetic hyperactivation in 
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human HF (Packer, 1992). In my pilot studies, WT mice subjected to ISO (20 or 30 

mg/kg/day, 14 days) via osmotic mini-pump elicited a trend towards an increase in left 

ventricular internal diameter (LVID) and left ventricular posterior wall diameter (LVPW), 

accompanied by a reduction in ejection fraction (EF) and fractional shortening (FS) (data 

not shown). In order to decide the optimum time course for ISO infusion in my studies 

(anticipating a deterioration in mice lacking cardiomyocyte-derived CNP), I conducted 

another set of pilot experiments utilising 20mg/kg/day ISO for 7 days and 14days.  Both 

time courses exhibited a progressive cardiac dysfunction with a time-dependent increase in 

LVIDs (baseline, 1.75±0.12mm; 7 days ISO, 2.17±0.12mm; 14 days ISO, 2.39±0.17mm; 

P<0.01; n=5-9) and decrease in EF (baseline, 78.34±2.84%; 7 days ISO, 70.29±3.49%; 14 

days ISO, 65.44±4.95%; P<0.05; n=5-9) (Figure 32). The heart and LV weights were also 

significantly increased after 14 days of ISO infusion (HW/BW: control, 0.50±0.02%, 14days 

ISO, 0.67±0.01%; P<0.001; LV/BW: control, 0.43±0.02%; 14days ISO 0.52±0.01%; P<0.05; 

n=5-9) (Figure 33). 14 day ISO administration induced a more severe cardiac dysfunction, so 

I decided to use the 7 day time period to study HF in cmCNP KO mice in order to be able to 

detect increased pathology. 

4.2.2 Isoprenaline-induced heart failure in cmCNP KO mice 

4.2.2.1 Effects of ISO-induced HF in WT and cmCNP KO mice on heart rate and blood 

pressure measured by radio-telemetry  

The effects of ISO infusion (20mg/kg/day; 7 days) on HR, MABP and locomotor activity 

were measured by radio-telemetry over 24 hours (12 hours in light and 12 hours darkness). 

β-adrenoceptor hyperactivation by ISO infusion for 7 days increased HR by approximately 

50bpm in both WT and cmCNP KO mice (WT: baseline, 590±5.50bpm, + ISO, 638±5.05bpm; 

cmCNP KO: baseline, 586±7.76bpm, + ISO, 640±4.80bpm; P<0.01; n=3) (Figure 34). There 

was no difference in the MABP and locomotor activity (Figure 35 and 36). In addition, the 

HF models were conducted in male animals because a sex difference is apparent in vascular 

reactivity (female mice are more reliant on CNP in the context of endothelial dysfunction; 

this study and Moyes et al. [2014]), and I wanted to investigate the direct effect of CNP 

deletion on the myocardium rather than potentially via indirectly altering endothelial 

signalling. 
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4.2.2.2 Effects of ISO-induced HF in WT and cmCNP KO mice on cardiac structure 

measured by echocardiography 

Echocardiography was used to investigate cardiac function in a temporal fashion. 

Abrogation of cardiomyocyte-derived CNP did not affect cardiac function at baseline 

compared to WT controls, with no difference observed in chamber diameter (WT, 

3.548±0.106mm; cmCNP KO, 3.545±0.080mm) (Figure 37), LVPW thickness (WT, 

0.780±0.072mm; cmCNP KO, 0.816±0.058mm) (Figure 38), and EF (WT, 70.69±1.87%; 

cmCNP KO, 75.26±2.69%; all P>0.05; n=6) (Figure 39). After 7 days of ISO infusion, changes 

in cardiac structure and function were apparent in all animals but was more prominent in 

cmCNP KO mice with greater reduction in EF and FS (EF: cmCNP KO, Δ-23.87 ±8.61% vs. WT, 

Δ-3.90±6.09%; FS: cmCNP KO Δ-16.33±5.47% vs. WT, Δ-2.35±4.55%; p<0.05; n=6) (Figure 

39). Mice lacking myocardial CNP also exhibited an enlargement of the LV chamber 

following ISO infusion, which was illustrated by a significant increase in LVID at both 

diastole and systole (LVID;d, Δ+0.47±0.16mm; LVID;s Δ+0.95±0.32mm; p< 0.05 compared to 

WT; n=6) (Figure 37). However, ISO did not expand the diameter of the LV chamber in WT 

controls. 

4.2.2.3 Histology 

Whole heart and LV weight were similar between WT and cmCNP KO following ISO infusion 

(HW/BW: WT, 0.57±0.02%; cmCNP KO, 0.57±0.01%; LV/BW: WT, 0.42±0.01%; cmCNP KO, 

0.41±0.01%; p>0.05; n=6) (Figure 40). Consistent with these data, the increase in 

cardiomyocyte size in response to ISO also showed no genotypic difference (WT, 

281.5±15.29μm2 vs. cmCNP KO, 295.1±10.52μm2; p>0.05; n=6) (Figure 42). These findings 

suggest that, despite changes in LVID, endogenous CNP might not play a significant role in 

ISO-induced cardiac hypertrophy. However, images obtained from MSB and picro-sirus red 

staining illustrated higher collagen deposition in cmCNP KO mice (WT, 9.41±1.54% vs. 

cmCNP KO, 13.86±1.49%; p<0.05; n=5-6) (Figure 41), suggesting cardiomyocyte-derived 

CNP may play a role in preventing the development of cardiac fibrosis.  

Taken together, these observations imply that in chronic β-adrenergic stimulation 

cardiomyocyte-derived CNP prevents myocardial stiffening, preserves LV structure and 

maintains cardiac contractility, probably by limiting cardiac fibrosis, but has less of an 

impact on cardiac hypertrophy per se. 
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Effect of increasing the time period of isoprenaline infusion on cardiac structure 

and function in WT mice 

 

Figure 32. Effect of increasing the time period of isoprenaline infusion on cardiac structure and function in 

WT mice 

Left ventricular structure (A) and contractile function (B) at baseline, 7 days and 14 days following 20mg/kg/day 

of isoprenaline infusion. Left ventricular internal diameter at end-diastole (LVID;d), and at end-systole (LVID;s), 

left ventricular posterior wall at end-diastole (LVPW;d) and at end-systole (LVPW;s). Data are represented as 

the mean±SEM. n=5-9. *p<0.05, **p<0.01, ***p<0.001, significantly different from corresponding WT 

littermates using 1-way ANOVA followed by Bonferroni post-hoc test. 
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Effect of isoprenaline infusion on the heart and left ventricular weight in WT mice 

 

 

Figure 33. Effect of isoprenaline infusion on heart and left ventricular weight in WT mice. 

Whole heart (A) and left ventricular (LV, [B]) weights are measured following 14 days of isoprenaline infusion 

(20mg/kg/day). Data are represented as the mean±SEM. n=5-9. *p<0.05, ***p<0.001 significantly different 

from control using unpaired t-test. 
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Effect of isoprenaline infusion on heart rate in WT and cmCNP KO mice 

 

 

Figure 34. Effect of isoprenaline infusion on heart rate in WT and cmCNP KO mice. 

Telemetry probe recording of the heart rate of WT and cmCNP KO mice at baseline and exposed to 7 days 

isoprenaline (20mg/kg/day) over a 24 hour period; (A) circadian cycle, (B) mean heart rate. Data are 

represented as the mean±SEM. n=3; **p<0.01 using 2-way ANOVA followed by Bonferroni post-hoc test. 
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Effect of isoprenaline infusion on mean arterial blood pressure in WT and cmCNP 

KO mice  

 

Figure 35. Effect of isoprenaline infusion on mean arterial blood pressure in WT and cmCNP KO mice. 

Telemetry probe recording of the blood pressure of WT and cmCNP KO mice at baseline and exposed to 7 days 

isoprenaline (20mg/kg/day) over a 24 hour period; (A) circadian cycle, (B) mean arterial blood pressure. Data 

are represented as the mean±SEM. n=3. 
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Effect of isoprenaline infusion on activity in WT and cmCNP KO mice  

 

Figure 36. Effect of isoprenaline infusion on activity in WT and cmCNP KO mice. 

Telemetry probe recording of the locomotor activity of WT and cmCNP KO mice at baseline and exposed to 7 

days isoprenaline (20mg/kg/day) over a 24 hour period; (A) circadian cycle, (B) mean locomotor activity. Data 

are represented as the mean±SEM. n=3. 
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Effect of cardiomyocyte CNP deletion on cardiac structure in isoprenaline-induced 

heart failure 

 

Figure 37. Effect of cardiomyocyte CNP deletion on cardiac structure in isoprenaline-induced heart failure. 

Representative echocardiography images from WT (A) and cmCNP KO (B) mice exposed to 7 days isoprenaline 

(20mg/kg/day). Left ventricular internal diameter at end-diastole (LVID;d) (A, C) and at end-systole (LVID;s) (E, 

F). Data are represented as the mean±SEM. n=6. *p<0.05, **p<0.01, using 2-way ANOVA followed by 

Bonferroni post-hoc test. #p<0.05 significantly different compared to WT using unpaired t-test. 
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Effect of cardiomyocyte CNP deletion on cardiac structure in isoprenaline-induced 

heart failure 

  

 

Figure 38. Effect of cardiomyocyte CNP deletion on left ventricular posterior wall diameter in isoprenaline-

induced heart failure 

Echocardiographic measurements of left ventricular posterior wall at end-diastole (LVPW;d) (A, B) and end-

systole (LVPW;s) (C, D) in WT and cmCNP KO mice exposed to 7 days isoprenaline (20mg/kg/day). Data are 

represented as the mean±SEM. n=6. #p<0.05 significantly different compared to WT using unpaired t-test.  
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Effect of cardiomyocyte CNP deletion on systolic function in isoprenaline-induced 

heart failure 

  

 

Figure 39. Effect of cardiomyocyte CNP deletion on systolic function in isoprenaline-induced heart failure. 

Echocardiographic measurements of ejection fraction (EF) (A and B) and fractional shortening (FS) (C and D) in 

WT cmCNP KO mice exposed to 7 days of isoprenaline (ISO) infusion (20mg/kg/day). Data are represented as 

the mean±SEM. n=6. *p<0.05, **p<0.01 significantly different compared to baseline using 2-way ANOVA 

followed by Bonferroni post-hoc test. #p<0.05 significantly different compared to WT using unpaired t-test. 
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Effect of cardiomyocyte CNP deletion on the heart and left ventricular weight in 

isoprenaline-induced heart failure  

 

 

Figure 40. Effect of cardiomyocyte CNP deletion on the heart and left ventricular weight in isoprenaline-

induced heart failure. 

Whole heart (A) and left ventricular weight (B) in WT and cmCNP KO mice were measured following 7 days 

isoprenaline infusion (20mg/kg/day). Data are represented as the mean±SEM. n=6. 

  



151 
 

Effect of cardiomyocyte CNP deletion on cardiac fibrosis in isoprenaline-induced 

heart failure  

 

Figure 41. The effect of cardiomyocyte CNP deletion on cardiac fibrosis in isoprenaline-induced heart failure. 

Martius Scarlet Blue staining (A): fibrin (red), erythrocytes (yellow) and connective tissue (blue), magnification 

5X. Picro-sirus red staining (B): cytoplasm (yellow) and collagen (as an index of fibrosis) (red), magnification 20X. 

Data are represented as the mean±SEM. n=5-6. *p<0.05, ***p<0.001, ****p<0.0001 using 2-way ANOVA 

followed by Bonferroni post-hoc test. 
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Effect of cardiomyocyte CNP deletion on cardiomyocyte hypertrophy in 

isoprenaline-induced heart failure  

 

Figure 42. Effect of cardiomyocyte CNP deletion on cardiomyocyte hypertrophy in isoprenaline-induced heart 

failure. 

Cardiomyocyte area (A) in WT and cmCNP KO mice exposed to 7 days isoprenaline (20mg/kg/day). (B) 

Representative wheat germ agglutinin (WGA) fluorescence stained images from each group, magnification 20X. 

Data are represented as the mean±SEM. n=6. ***p<0.001, ****p<0.0001 using 2-way ANOVA followed by 

Bonferroni post-hoc test. 
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4.3 Pressure overload-induced heart failure in cmCNP KO mice  

4.3.1 Echocardiography 

To determine whether cardiomyocyte-derived CNP had protective effects in a second, 

aetiologically distinct model of HF, I measured the development of cardiac dysfunction and 

remodelling in animals subjected to AAC-induced pressure-overload for 6 weeks. There was 

no genotypic difference in sham-operated animals (Figure 43 and Figure 44). AAC caused 

an increase in LVID in control mice (LVID;d, sham 3.46±0.10mm vs. AAC 3.84±0.09mm; 

LVID;s, sham 1.96±0.09mm vs. AAC 2.49±0.07mm; p<0.001; n=10) (Figure 43). Also, cardiac 

dysfunction was apparent with a significant reduction in EF and FS following AAC (EF, sham 

75.20±1.55% vs. AAC 64.72±0.81%; FS, sham 43.54±1.60%, AAC 35.23±0.64%; p<0.001; 

n=10) (Figure 44). However, there were no significant changes in the diameter of the LVPW 

(Figure 43). In cmCNP KO mice, LVID increased to the same extent as WT in response to 

AAC (Figure 43). However, EF and FS were significantly lower than control animals following 

AAC (EF, WT 64.72±0.81% vs. cmCNP KO 56.35±2.32%; FS, WT 35.23±0.64% vs. cmCNP KO 

28.70±1.49%; p<0.01; n=10) (Figure 44). Importantly, the increase in MABP following AAC 

was similar in both genotypes (WT, 108.6±1.319mmHg; cmCNP KO 108.0±1.795mmHg; 

n=7-10) (Figure 46), indicating the more severe phenotype observed in cmCNP KO mice was 

independent of afterload.  

4.3.2 Histology 

Whole heart and LV weight were significantly augmented in response to AAC in WT animals 

(HW/BW, sham 0.448±0.013% vs. AAC 0.557±0.014%; p<0.001; n=6-9) (Figure 45), 

indicating ventricular remodelling in response to haemodynamic stress. Similar 

measurements were obtained in cmCNP KO mice (HW/BW, sham 0.457±0.011% vs. AAC 

0.567±0.018%; p<0.001; n=6-9) (Figure 45). Quantification of picro-sirus red staining 

illustrated a significant increase in collagen deposition following AAC in WT (sham 

1.56±0.05% vs. AAC 2.94±0.35%; p<0.05; n=6) (Figure 47), indicating a maladaptive fibrosis. 

However, this structural deficit was significantly higher in cmCNP KO mice (WT AAC 

2.94±0.35% vs. cmCNP KO AAC 4.14±0.35%; p<0.05; n=6) (Figure 47). Cardiomyocyte area 

was also increased in response to AAC in all animals, but a trend towards to a larger cell 

size was observed in cmCNP KO compared to WT (WT 260.0±3.76μm2 vs. cmCNP KO 

282.4±9.47μm2; p=0.052; n=6) (Figure 48). Taken together, these findings indicate that 

cardiomyocyte-derived CNP protects against AAC-induced HF in a similar fashion and to a 
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similar extent as observed in the sympathetic hyperactivation model; this is primarily via an 

anti-fibrotic action.  
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Effect of cardiomyocyte CNP deletion on cardiac structure in pressure overload-

induced heart failure  

 

Figure 43. Effect of cardiomyocyte CNP deletion on left ventricular internal diameter and posterior wall in 

pressure overload-induced heart failure. 

Left ventricular internal diameter at end-diastole (LVID;d) (A) and end-systole (LVID;s) (B),  left ventricular 

posterior wall diameter at end-diastole (LVPW;d) and end-systole (LVPW;s) in WT and cmCNP KO mice 

subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. 

n=10. ***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test.  

  



156 
 

Effect of cardiomyocyte CNP deletion on systolic function in pressure overload-

induced heart failure  

 

 

Figure 44. Effect of cardiomyocyte CNP deletion on systolic function in pressure overload-induced heart 

failure. 

Ejection fraction (A) and fractional shortening (B) in WT and cmCNP KO mice subjected to sham or abdominal 

aortic constriction (AAC) for 6 weeks. (C) Representative echocardiography images from WT and cmCNP KO 

mice. Data are represented as the mean±SEM. n=10. **p<0.01, ***p<0.001 using 2-way ANOVA followed by 

Bonferroni post-hoc test.   
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Effect of cardiomyocyte CNP deletion on the heart and left ventricular weight in 

pressure overload-induced heart failure  

 

Figure 45. Effect of cardiomyocyte CNP deletion on the heart and left ventricular weight in pressure overload-

induced heart failure. 

Whole heart (A) and left ventricular (LV) (B) weight in WT and cmCNP KO mice subjected to sham or abdominal 

aortic constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. n=6-9. ***p<0.001 using 2-way 

ANOVA followed by Bonferroni post-hoc test.  
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Effect of cardiomyocyte CNP deletion on mean arterial blood pressure in pressure 

overload-induced heart failure  

 

 

Figure 46. Effect of cardiomyocyte CNP deletion on mean arterial blood pressure in pressure overload-

induced heart failure. 

Left carotid mean arterial blood pressure (MABP) in WT and cmCNP KO mice subjected to abdominal aortic 

constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. n=7-10. 
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Effect of cardiomyocyte CNP deletion on cardiac fibrosis in pressure overload-

induced heart failure  

 

Figure 47. Effect of cardiomyocyte CNP deletion on cardiac fibrosis in pressure overload-induced heart failure. 

Left ventricular collagen deposition in WT and cmCNP KO mice subjected to sham or abdominal aortic 

constriction (AAC) for 6 weeks. Representative piro-sirus red staining images (cytoplasm, yellow; collagen, red) 

from each group are shown on the lower panel, magnification 20X. Data are represented as the mean±SEM. 

n=6. *p<0.05, **p<0.01, ***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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Effect of cardiomyocyte CNP deletion on cardiomyocyte hypertrophy in pressure 

overload-induced heart failure  

 

Figure 48. Effect of cardiomyocyte CNP deletion on cardiomyocyte hypertrophy in pressure overload-induced 

heart failure. 

Cardiomyocyte area in WT and cmCNP KO mice subjected to sham or abdominal aortic constriction (AAC) for 6 

weeks. Representative wheat germ agglutinin (WGA) fluorescence stained images from each group are shown 

on the lower panel, magnification 20X. Data are represented as the mean±SEM. n=6. ***p<0.001 using 2-way 

ANOVA followed by Bonferroni post-hoc test. 
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4.4 The role of CNP in cardiac hypertrophy in vitro 

Neonatal cardiomyocytes from cmCNP KO mice and littermate controls were isolated and 

cultured to study the physiological role of CNP in cardiac hypertrophy in an isolated in vitro 

system. Cells with visible striations and that contracted spontaneously were regarded as 

cardiomyocytes. Cardiomyocyte area was similar at baseline between WT and cmCNP KO 

(WT, 2596±92.41μm2; cmCNP KO 2598±61.57μm2; p>0.05; n=18-23) (Figure 49). However, 

cardiomyocytes from cmCNP KO were markedly larger than from WT littermates following 

Ang II treatment (1μM; 48 hours; WT, 3453±96.10μm2 vs. cmCNP KO, 3927±109.4μm2; 

p<0.05; n=15-20) (Figure 49). Exogenous CNP addition (1μM) blunted the cardiomyocyte 

growth in cmCNP KO cells to a level similar to WT (cmCNP KO +CNP, 3171±106.7μm2; WT 

3372±171.3μm2; p>0.05; n=8-11) (Figure 49), but did not have an additional effect in WT. 

This suggests cardiomyocyte-derived CNP has a physiological, autocrine role in preventing 

cardiac hypertrophy (here in response to Ang II), and can also achieve the same effect from 

a pharmacological perspective when CNP production is diminished. 
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Effect of cardiomyocyte CNP deletion and exogenous CNP on cardiomyocyte 

hypertrophy in response to angiotensin II  

 

Figure 49. Effect of cardiomyocyte CNP deletion and exogenous CNP on cardiomyocyte hypertrophy in 

response to angiotensin II. 

The cell area of isolated neonatal cardiomyocytes exposed to angiotensin II (Ang II; 1μM) alone or with CNP 

(1μM) for 48 hours. Representative images of isolated neonatal cardiomyocytes are shown in the lower panel.  

Data are represented as the mean±SEM. Ang II, n=15-20; Ang II +CNP, n=8-11. *p<0.05, **p<0.01, ***p<0.001 

using 2-way ANOVA followed by Bonferroni post-hoc test. 
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4.5 Cardioprotective effects of CNP are mediated via NPR-C activation 

In order to investigate which NPR(s) mediates the cardioprotective effects of CNP, the AAC-

induced HF model was repeated in global NPR-C KO mice.  

4.5.1 Cardiac function in NPR-C KO mice 

Similar to cmCNP KO mice, a phenotype involving a significantly more dilated LV was 

observed in NPR-C KO mice compared to WT littermates subjected to AAC (LVID;d, WT AAC, 

3.78±0.07mm vs. NPR-C KO AAC 4.47±0.11mm; LVID;s, WT AAC 2.47±0.05mm vs. cmCNP 

KO AAC 3.11±0.11mm; p<0.01; n=9) (Figure 50). EF and FS were also reduced to an overtly 

greater extent after AAC in NPR-C KO mice (EF, WT AAC 63.92±0.70% vs NPR-C KO AAC 

57.78±2.22%; FS, WT AAC 34.76% vs. NPR-C KO AAC 30.40±1.45%; p<0.05; n=9) (Figure 

51.). This more severe profile was accompanied by a marked increase in the heart and LV 

weight in NPR-C KO mice that was considerably higher than WT following AAC (WT, 

0.542±0.009% vs. NPR-C KO, 0.636±0.048%; p<0.05; n=10-11) (Figure 52). Carotid MABP 

measurement confirmed that the differences observed were not due to an altered 

afterload (WT AAC, 110.1±2.09mmHg; NPR-C KO AAC, 105.2±3.85mmHg; p>0.05; n=5) 

(Figure 53). 

4.5.2 Histology 

A profound increase in fibrosis was observed in both WT and NPR-C KO mice in response to 

AAC, but the collagen deposition was significantly higher in NPR-C KO (WT, 3.38±0.39% vs. 

NPR-C KO 5.39±0.62%; p<0.05; n=6) (Figure 54). WGA fluorescence staining illustrated a 

marked increase in cardiomyocyte size after AAC in all animals. Again, the enlargement of 

the cells was significantly greater in NPR-C KO compared to WT littermates (WT, 

265.60±4.26μm2 vs. NPR-C KO, 349.2±14.67μm2; p<0.001; n=6) (Figure 55). Taken 

together, these data suggest the loss of NPR-C signalling results in cardiac hypertrophy and 

fibrosis in response to pressure overload. Indeed, cardiac remodelling observed in NPR-C 

KO mice were even more striking than that observed in cmCNP KO (Figure 56), indicating a 

complete loss of NPR-C signalling is detrimental during cardiac stress.  
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Effect of global NPR-C deletion on cardiac structure in pressure overload-induced 

heart failure  

 

Figure 50. Effect of global NPR-C deletion on left ventricular internal diameter and posterior wall in pressure 

overload-induced heart failure. 

Left ventricular internal diameter at end-diastole (LVID;d) (A) and end-systole (LVID;s) (B), left ventricular 

posterior wall diameter at end-diastole (LVPW;d) (C) and end-systole (LVPW;s) (D) in WT and NPR-C KO mice 

subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. 

n=9. **p<0.01 using 2-way ANOVA followed by Bonferroni post-hoc test.   
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Effect of global NPR-C deletion on systolic function in pressure overload-induced 

heart failure 

 

 

Figure 51. Effect of global NPR-C deletion on systolic function in pressure overload-induced heart failure 

Ejection fraction (A) and fractional shortening (B) in WT and NPR-C KO mice subjected to sham or abdominal 

aortic constriction (AAC) for 6 weeks. (C) Representative echocardiography images from WT and NPR-C KO 

mice. Data are represented as the mean±SEM. n=9. *p<0.05, ***p<0.001 using 2-way ANOVA followed by 

Bonferroni post-hoc test.  
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Effect of global NPR-C deletion on the heart and left ventricular weight in 

pressure overload-induced heart failure 

 

 

Figure 52. The effect of global NPR-C deletion on the heart and left ventricular weight in pressure overload-

induced heart failure. 

Whole heart (A) and left ventricular (LV) (B) weights were obtained from WT and NPR-C KO mice subjected to 

sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. n=10-11. 

*p<0.05, **p<0.01 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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Effect of global NPR-C deletion on mean arterial blood pressure in pressure 

overload-induced heart failure  

 

Figure 53. Effect of global NPR-C deletion on mean arterial blood pressure in pressure overload-induced heart 

failure. 

Left carotid mean arterial blood pressure (MABP) in WT and NPR-C KO mice subjected to abdominal aortic 

constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. n=5. 
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Effect of global NPR-C deletion on cardiac fibrosis in pressure overload-induced 

heart failure  

 

Figure 54. Effect of global NPR-C deletion on cardiac fibrosis in pressure overload-induced heart failure. 

Collagen deposition in WT and NPR-C KO mice subjected to sham or abdominal aortic constriction (AAC) for 6 

weeks. Representative picro-sirius red staining images (cytoplasm, yellow; collagen, red) from each group are 

shown on the lower panel, magnification 20X. Data are represented as the mean±SEM. n=6. **p<0.01, 

***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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Effect of global NPR-C deletion on cardiomyocyte hypertrophy in pressure 

overload-induced heart failure  

 

Figure 55. Effect of global NPR-C deletion on cardiomyocyte hypertrophy in pressure overload-induced heart 

failure. 

Cardiomyocyte area in WT and NPR-C KO mice subjected to sham or abdominal aortic constriction (AAC) for 6 

weeks. Representative wheat germ agglutinin (WGA) immunofluorescent staining images from each group are 

shown on the lower panel, magnification 20X. Data are represented as the mean±SEM. n=6. ***p<0.001 using 

2-way ANOVA followed by Bonferroni post-hoc test. 
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Cardiac remodelling in cmCNP KO and NPR-C KO mice in response to abdominal 

aorta constriction 

 

Figure 56. Cardiac remodelling in cmCNP KO and NPR-C KO mice in response to abdominal aorta constriction. 

Comparison of left ventricular internal diameter at end-systole (LVID;s) (A), ejection fraction (EF) (B), picro-sirius  

red staining (collagen deposition) (C) and cardiomyocyte area (D) in cmCNP KO and NPR-C KO mice subjected to 

abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. n=6-9. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 using one-way ANOVA followed by Bonferroni post-hoc test.  
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4.5.3 Exogenous CNP rescued cardiac dysfunction in WT but not in NPR-C KO mice 

The findings above suggest that loss of CNP production by the myocardium accelerates the 

development of HF, and that NPR-C KO mice exhibited a similar, but exaggerated, 

phenotype. In order to demonstrate the importance of NPR-C signalling to the 

cardioprotective effect of cmCNP, and the therapeutic potential of targeting this pathway 

in HF, I investigated if administration of exogenous CNP provides a protective effect during 

cardiac stress in WT and NPR-C KO animals subjected to AAC. CNP (0.2mg/kg/day) was 

administrated via osmotic mini-pump, initiated at 3 week AAC to allow the HF phenotype 

to develop (to mimic a ‘reversal’ or therapeutic’ administration). In WT mice, infusion of 

CNP was able to reverse the decline in EF and FS in response to AAC model (EF, AAC 

62.72±1.09%, AAC+CNP 69.76±0.81%, p<0.05; FS, AAC 34.28±1.08%, AAC+CNP 

38.67±0.66%, p<0.01; n=6-7) (Figure 57), without affecting MABP (AAC, 111.4±2.14mmHg; 

AAC+CNP, 109.9±5.43) (Figure 58). Collagen deposition in WT mice receiving CNP was also 

decreased to a level equivalent to sham animals (sham 1.903±0.0161%; AAC+CNP 

1.082±0.132%; p>0.05; n=5-6) (Figure 59).  Intriguingly, however, these protective effects 

were abolished in NPR-C KO mice (i.e. EF, NPR-C KO AAC 57.78±2.22% vs. NPR-C KO 

AAC+CNP 59.77±1.65%; p>0.05; n=5-9) (Figure 57), confirming the cardioprotective actions 

of CNP are mediated via NPR-C signalling. This result also illustrates a therapeutic window 

of cardioprotective effects of CNP via NPR-C without altering BP – which is key in HF 

patients due to potential detrimental effects of hypotension and inadequate renal 

perfusion.  
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Effect of CNP infusion on cardiac function in pressure overload-induced heart 

failure in WT and NPR-C KO mice 

 

Figure 57. Effect of CNP infusion on cardiac function in pressure overload-induced heart failure in WT and 

NPR-C KO mice. 

Ejection fraction (A) and fractional shortening (B) in WT and NPR-C KO mice subjected to sham, abdominal 

aortic constriction (AAC) alone or AAC with CNP (0.2mg/kg/day). Data are represented as the mean±SEM. n=6-

7. *p<0.05, **p<0.01, ***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test. 
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Effect of CNP infusion on mean arterial blood pressure in pressure overload-

induced heart failure in WT mice  

 

 

Figure 58. Effect of CNP infusion on mean arterial blood pressure in pressure overload-induced heart failure 

in WT mice. 

Left carotid mean arterial blood pressure (MABP) from WT mice subjected to sham, abdominal aortic 

constriction (AAC) or AAC with CNP (0.2mg/kg/day). Data are represented as the mean±SEM. n=6-7. *p<0.05 

using 1-way ANOVA followed by Bonferroni post-hoc test. 
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Effect of CNP infusion on cardiac fibrosis in pressure overload-induced heart 

failure in WT and NPR-C KO mice 

 

Figure 59. Effect of CNP infusion on cardiac fibrosis in pressure overload-induced heart failure in WT and NPR-

C KO mice. 

Left ventricular collagen deposition from picro-sirius red staining in WT and NPR-C KO mice subjected to sham, 

abdominal aortic constriction (AAC) or AAC with CNP (0.2mg/kg/day). Data are represented as the mean±SEM. 

n=5-6. *p<0.05, **p<0.01, ***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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4.6 The role of cardiofibroblast-derived CNP in cardiac function 

Earlier findings in this chapter hinted that NPR-C KO mice exhibit a more severe pathology 

compared to cmCNP KO animals when exposed to pressure-overload (e.g. bigger increase 

in LVID, higher collagen deposition and larger cardiomyocyte size) (Figure 56). One 

explanation for this exacerbated deterioration in cardiac structure and function is the 

incomplete deletion of CNP from the cardiomyocyte (approximately 83%) compared to the 

100% (i.e. global) ablation of NPR-C. Another reason could be activation of NPR-C by 

another natriuretic peptide (i.e. ANP or BNP). However, an alternative plausible hypothesis 

is that an additional cellular source of CNP may contribute to triggering NPR-C to bring 

about a cardioprotective effect. Previous studies have demonstrated that CNP is 

synthesised and secreted from cardiac fibroblasts and may play an autocrine regulatory 

role in supressing collagen synthase (Horio et al., 2003). Hence, I developed a fibroblast-

specific CNP KO mouse line (fbCNP KO) to investigate a potential role for cardiac fibroblast-

derived CNP in cardiac remodelling and HF.  

4.6.1 Characterisation of fbCNP KO mice 

Tamoxifen-induced Cre-Lox technology was used to abrogate CNP expression in fibroblasts. 

Mice expressing Col1α2-Cre-ERT was crossed with floxed CNP animals to generate fbCNP 

KO mice. CNP+/+ Cre mice were used as littermate (WT) controls. All animals received 

tamoxifen (TAM; 40mg/kg/day) intra-peritoneally for 5 consecutive days at age 4-5 weeks. 

CNP expression was significantly reduced (approximately 60%) in cardiac fibroblasts 

isolated from fbCNP KO mice compared to WT littermates (Figure 60). In contrast, the 

expression of CNP mRNA was equivalent in all other tissues examined from WT and fbCNP 

KO animals (Figure 60). Interestingly, CNP mRNA expression in the whole heart was not 

significantly different between fbCNP KO and WT. This may be due to the fact that 

fibroblasts are not the major cell population expressing CNP in the heart (including 

endothelium and cardiomyocytes); this fits with the observed 80% reduction in CNP mRNA 

expression I reported in cardiomyocytes (Figure 16). 

4.6.2 Tamoxifen-induced cardiac toxicity 

Previous studies have reported tamoxifen can induce transient cardiac dysfunction 

(Koitabashi et al., 2009). Therefore, both WT and fbCNP KO mice were given equal doses of 

TAM to ensure any cardiac effect(s) are due to the genetic deletion of CNP and not the 

potential adverse effects of the drug. A trend towards a reduced EF and FS was observed 
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following 1 week tamoxifen injection regardless of genotypes (EF: WT, pre-TAM 

71.06±3.00%, post-TAM 65.55±2.91%; fbCNP KO, pre-TAM 70.56±1.63%, post-TAM 

66.41±1.70%; FS: WT, pre-TAM 39.69±2.56%, post-TAM 35.55±2.25%, fbCNP KO, pre-TAM 

38.99±1.33, post-TAM 35.85±1.31%; p>0.05; n≥5) (Figure 61). However, the cardiac 

function fully recovered after 2 weeks, again regardless of whether the mice were WT or 

fbCNP KO (EF, WT 71.82±2.72%, fbCNP KO 70.77±2.25%; p>0.05) (Figure 61). Thus, TAM 

was given to mice aged 4-5 weeks (16-18g) to allow time for cardiac function to recover 

fully before being subjected to sham or AAC at 6-7 weeks of age (23-24g). 

4.6.3 Echocardiography 

Akin to cmCNP KO and NPR-C KO animals, mice with loss of fibroblast-derived CNP 

exhibited a dilated cardiomyopathy in response to AAC characterised by an increase in LVID 

compared with littermate controls (LVID;d, WT 3.70±0.07% vs. fbCNP KO 4.02±0.12%, 

p<0.05; LVID;s, WT 2.44±0.06% vs. fbCNP KO 2.84±0.15%, p<0.01; n= 10-12) (Figure 62). 

Correspondingly, EF and FS were significantly reduced in fbCNP KO mice compared to WT 

(EF, WT 64.92±1.15% vs. fbCNP KO 56.33±2.54%, p<0.001; FS, WT 34.96±0.88% vs. fbCNP 

KO 29.22±1.56%, p<0.01; n=10-12) (Figure 63). There was no difference in MABP between 

the genotypes following AAC (WT 111.7±1.49mmHg; fbCNP KO 108.7±2.12mmHg; n=10-12) 

(Figure 64), indicating that the deterioration seen in fbCNP KO mice was due to a loss of 

direct protective actions of fibroblast-derived CNP on cardiac structure and function. 

4.6.4 Histology 

Whole heart and LV weight in fbCNP KO animals following AAC were significantly higher 

than WT (HW/BW, WT 0.53±0.01% vs. fbCNP KO 0.60±0.02%, p<0.05; LV/BW, WT 

0.42±0.01% vs. 0.47±0.02%, p<0.01; n=10-12) (Figure 65). Collagen deposition was 

significantly increased in response to AAC in both genotypes but it was more profound in 

fbCNP KO than WT mice (WT, 6.20±0.65% vs. fbCNP KO 8.23±0.56%; p<0.05; n=5-6) (Figure 

66). Cardiomyocyte size was increased significantly in fbCNP KO mice following AAC (sham 

230.7±7.04μm2, AAC 288.5±6.77μm2; p<0.01; n=5-6) (Figure 67), whilst there was no 

significant increase in cell size in WT animals.  

Taken together, these data highlight loss of fibroblast-derived CNP results in a more 

hypertrophic and fibrotic phenotype in response to pressure-overload compared to WT 

animals.  
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Characterisation of CNP expression in WT and fbCNP KO mice 

 

 

Figure 60. Characterisation of CNP expression in WT and fbCNP KO mice. 

qPCR analysis of CNP mRNA from the heart and different tissues (A), and isolated cardiac fibroblasts (B) in WT 

and fbCNP KO animals. A representative confocal image (vimentin, green; nuclei, blue) of cardiac fibroblast is 

shown on the right panel. Data are represented as the mean±SEM. n=5-6. *p<0.05 significantly different from 

WT littermates using unpaired student t-test.  
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Effect of tamoxifen on cardiac function in WT and fbCNP KO mice 

 

 

 

Figure 61. Effect of tamoxifen on cardiac function in WT and fbCNP KO mice. 

Ejection fraction (A) and fractional shortening (B) in WT and fbCNP KO mice exposed to tamoxifen (TAM; 

40mg/kg/day) for 5 consecutive days. Data are represented as the mean±SEM. n≥5. 
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Effect of fibroblast CNP deletion on cardiac structure in pressure overload-

induced heart failure  

 

Figure 62. Effect of fibroblast CNP deletion on cardiac structure in pressure overload-induced heart failure. 

Left ventricular internal diameter at end-diastole (LVID;d) (A) and end-systole (LVID;s) (B), left ventricular 

posterior wall diameter at both end-diastole (LVPW;d) (C) and end-systole (LVPW;s) (D) in WT and fbCNP KO 

mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=10-12. *p<0.05, **p<0.01 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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Effect of fibroblast CNP deletion on systolic function in pressure overload-induced 

heart failure  

 

Figure 63. The effect of fibroblast CNP deletion on systolic function in pressure overload-induced heart 

failure. 

Ejection fraction (A) and fractional shortening (B) in WT and fbCNP KO mice subjected to sham or abdominal 

aortic constriction (AAC) for 6 weeks. (C) Representative echocardiography images from WT and fbCNP KO mice 

after AAC. Data are represented as the mean±SEM. n=10-12. **p<0.01, ***p<0.001 using 2-way ANOVA 

followed by Bonferroni post-hoc test.   
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Effect of fibroblast CNP deletion on mean arterial blood pressure in pressure 

overload-induced heart failure  

 

 

Figure 64. Effect of fibroblast CNP deletion on mean arterial blood pressure in pressure overload-induced 

heart failure. 

Left carotid mean arterial blood pressure (MABP) in WT and fbCNP KO mice subjected to sham or abdominal 

aortic constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. n=10-12. ***p<0.001 using 2-

way ANOVA followed by Bonferroni post-hoc test. 
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Effect of fibroblast CNP deletion on the heart and left ventricular weight in 

pressure overload-induced heart failure  

 

Figure 65. Effect of fibroblast CNP deletion on the heart and left ventricular weight in pressure overload-

induced heart failure. 

Whole heart (A) and left ventricular (LV) (B) weight obtained from WT and fbCNP KO mice subjected to sham or 

abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the mean±SEM. n=10-12. *p<0.05, 

**p<0.01 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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Effect of fibroblast CNP deletion on cardiac fibrosis in pressure overload-induced 

heart failure  

 

Figure 66. Effect of fibroblast CNP deletion on cardiac fibrosis in pressure overload-induced heart failure. 

Left ventricular collagen deposition in WT and fbCNP KO mice subjected to sham or abdominal aortic 

constriction (AAC) for 6 weeks. Representative picro-sirius red staining images (cytoplasm, yellow; collagen, red) 

from each group are shown on the lower panel, magnification 20X. Data are represented as the mean±SEM. 

n=5-6. *p<0.05, ***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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Effect of fibroblast CNP deletion on cardiac hypertrophy in pressure overload-

induced heart failure 

 

 

Figure 67. Effect of fibroblast CNP deletion on cardiac hypertrophy in pressure overload-induced heart 

failure. 

Cardiomyocyte area in WT and fbCNP KO mice subjected to sham or abdominal aortic constriction (AAC) for 6 

weeks. Representative wheat germ agglutinin (WGA) fluorescence stained images from each group are shown 

on the lower panel, magnification 20X. Data are represented as the mean±SEM. n=6. **p<0.01 using 2-way 

ANOVA followed by Bonferroni post-hoc test.  
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4.7 Changes in mRNA expression in response to AAC 

To understand how the loss of CNP drives cardiac remodelling, I investigated relative 

expression of an array of hypertrophic and fibrotic mediators and markers. Gene 

expression was normalised to two housekeeping genes, β-actin and RPL-19 (Bustin et al., 

2009), and the expression of these genes was confirmed not to be altered in response to 

AAC (Figure 68).  

4.7.1 Changes in ANP mRNA expression  

ANP is a well-established HF biomarker the expression of which correlates with disease 

severity and the risk of cardiovascular events and death (Wang et al., 2004, Volpe et al., 

2014). Surprisingly, ANP mRNA levels were higher in cmCNP KO mice at baseline (i.e. 

without cardiac stress) compared to WT (WT, 1.054±0.143; cmCNP KO, 1.548±0.076; 

p<0.05; n=5)(Figure 69), indicating deletion of cardiomyocyte CNP may predispose to 

cardiac dysfunction although that is not yet apparent from a functional standpoint at the 

age the mice were studied. ANP mRNA expression in cmCNP KO was increased further in 

response to AAC (WT, 1.063±0.238; cmCNP KO, 1.932±0.556; p<0.05; n=6) (Figure 69). In 

NPR-C KO mice, the ANP mRNA expression was comparable with its littermate control in 

sham, but markedly increased following AAC (WT, 0.582±0.108; NPR-C KO, 1.633±0.157; 

p<0.001; n=6) (Figure 69). Since ANP expression correlates with the severity of HF, these 

data substantiate the functional data (above) that the loss of cardiac CNP aggravates 

cardiac dysfunction and this was more pronounced in NPR-C null mice.  

4.7.2 Changes in α- and β-MHC mRNA expression 

Two isoforms of myosin heavy chain (MHC), α and β, exist in the mammalian myocardium 

(Nakao et al., 1997). It has been reported that pathological stimuli can cause a shift in MHC 

composition from α- to β-MHC (Depre et al., 1998, Nakao et al., 1997). Thus, a decrease in 

α-MHC/β-MHC ratio or upregulation of β-MHC expression is associated with cardiac 

hypertrophy and HF (Cox and Marsh, 2014). Expression of β-MHC was significantly higher in 

cmCNP KO mice in both sham and following AAC compared to WT (WT sham, 1.000±0.154 

vs. cmCNP KO sham, 3.880±0.593; WT AAC 2.444±0.477 vs. cmCNP KO AAC, 4.101±0.935; 

p<0.01; n=4-6)(Figure 71). An enhanced expression of β-MHC was also found in NPR-C KO 

mice compared to WT following AAC (WT AAC, 1.135±0.231 vs. NPR-C KO, 1.917±0.399; 

p<0.01; n=4-5)(Figure 71). Moreover, no significant changes were observed in α-MHC 

expression in all mice following AAC (Figure 70). This is probably because α-MHC comprises 
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>90% of the MHC composition in rodents (Nakao et al., 1997), thus, subtle changes in the 

expression are difficult to detect. 

4.7.3 Changes in SERCA2a mRNA expression 

Myocyte Ca2+ cycling is primarily governed by SERCA2a, which mediates Ca2+ 

sequestration into the SR and regulates cardiac contractility (Frank et al., 2002). This is 

routinely reduced in failing hearts (Zima et al., 2014). A trend towards to a reduction of 

SERCA2a was observed following AAC in cmCNP KO (sham 1.097±0.118; AAC 0.728±0.16; 

n=6) and fbCNP KO (sham 0.721±0.174; AAC 0.474±0.143; n=4-5) (Figure 72). 

Unexpectedly, SERCA2a mRNA expression was significantly increased in NPR-C WT mice 

following AAC (sham 1.000±0.081, AAC 1.320±0.096; p<0.05; n=5-6), but this change was 

not apparent in NPR-C KO mice (Figure 72). 

4.7.4 Changes in TGF-β1 mRNA expression and its linked extracellular matrix genes 

TGF-β1 plays a key role in regulating many aspect of cardiac remodelling process including 

the upregulation of ECM genes, e.g. collagen I, collagen III, MMP-2 and fibronectin (Lijnen 

et al., 2000). TGF-β1 mRNA expression was significantly increased in cmCNP WT mice 

following AAC (sham 1.000±0.063, AAC 1.580±0.137; p<0.05; n=5-6) (Figure 73). There is a 

trend towards to an increased TGF-β1 mRNA expression in cmCNP KO sham mice compared 

to WT sham (WT sham, 1.000±0.063; cmCNP KO, 1.356±0.137; p>0.05; n=6), but this did 

not elevate further in response to AAC (Figure 73). Again, these observations suggest 

cmCNP KO mice have intrinsic upregulation of pro-fibrotic gene expression that underlies 

the accentuated fibrotic burden in pre-clinical models I demonstrated earlier.  

Upregulation of MMP-2 mRNA expression was also observed in cmCNP KO mice in both 

sham and AAC compared to WT (sham: WT 1.000±0.074 vs. cmCNP KO 1.415±0.083; AAC: 

WT 1.268±0.174 vs. cmCNP KO 1.525±0.169; p<0.05; n=6) (Figure 74). A trend towards to 

an increased Col1a1 mRNA expression was also observed in cmCNP KO compared to WT 

following AAC (WT, 1.034±0.134; cmCNP KO, 1.463±0.215; p>0.05; n=6) (Figure 75). 

Furthermore, Col1a1 mRNA expression was equivalently increased in WT and NPR-C KO 

mice following AAC (WT: sham 1.000±108 vs. AAC 1.606±0.155; NPR-C KO: sham 

1.046±0.114 vs.± 1.788±0.160; p<0.05; n=5-6) (Figure 75). Whereas, fibronectin expression 

was not altered in response to AAC in all animals (Figure 76).  
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Comparison of the expression of the reference genes in response to abdominal 

aorta constriction 

 

Figure 68. Comparison of the expression of the reference genes in response to abdominal aorta constriction. 

Left ventricular mRNA expression of the two reference/housekeeping genes, β-actin (A) and RPL-19 (B) in WT 

mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=10-12. p>0.05 using unpaired t-test. 
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene profile 

in pressure overload-induced heart failure  

 

Figure 69. Effect of cmCNP, fbCNP and NPR-C deletion on ANP mRNA expression in pressure overload-

induced heart failure. 

ANP mRNA expression from left ventricles isolated from littermate WT, cmCNP KO, fbCNP KO and NPR-C KO 

mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=3-6. *p<0.05, **p<0.01, ***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test.  
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene profile 

in pressure overload-induced heart failure  

 

Figure 70. Effect of cmCNP, fbCNP and NPR-C deletion on α-MHC mRNA expression in pressure overload-

induced heart failure. 

α-MHC mRNA expression from left ventricles isolated from littermate WT, cmCNP KO (A), fbCNP KO (B) and 

NPR-C KO (C) mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented 

as the mean±SEM. n=4-6. 
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene profile 

in pressure overload-induced heart failure   

 

Figure 71. Effect of cmCNP, fbCNP and NPR-C deletion on β-MHC mRNA expression in pressure overload-

induced heart failure. 

β-MHC mRNA expression from left ventricles isolated from littermate WT, cmCNP KO, fbCNP KO and NPR-C KO 

mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=3-6. **p<0.01 using 2-way ANOVA followed by Bonferroni post-hoc test. 
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene 

profile in pressure overload-induced heart failure  

 

Figure 72. Effect of cmCNP, fbCNP and NPR-C deletion on SERCA2a mRNA expression in pressure overload-

induced heart failure. 

SERCA2a mRNA expression from left ventricles isolated from littermate WT, cmCNP KO, fbCNP KO and NPR-C 

KO mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=4-6. *p<0.05 using 2-way ANOVA followed by Bonferroni post-hoc test.   
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene profile 

in pressure overload-induced heart failure 

 

Figure 73. Effect of cmCNP, fbCNP and NPR-C deletion on TGF-β1 mRNA expression in pressure overload-

induced heart failure. 

TGF-β1 mRNA expression from left ventricles isolated from littermate WT, cmCNP KO, fbCNP KO and NPR-C KO 

mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=4-6. *p<0.05 using 2-way ANOVA followed by Bonferroni post-hoc test.   
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene profile 

in pressure overload-induced heart failure 

 

Figure 74. Effect of cmCNP, fbCNP and NPR-C deletion on MMP-2 mRNA expression in pressure overload-

induced heart failure. 

MMP-2 mRNA expression from left ventricles isolated from littermate WT, cmCNP KO, fbCNP KO and NPR-C KO 

mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=4-6. *p<0.05 using 2-way ANOVA followed by Bonferroni post-hoc test.   
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene profile 

in pressure overload-induced heart failure 

 

Figure 75. Effect of cmCNP, fbCNP and NPR-C deletion on Col1a1 mRNA expression in pressure overload-

induced heart failure. 

Col1a1 mRNA expression from left ventricles isolated from littermate WT, cmCNP KO, fbCNP KO and NPR-C KO 

mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=4-6. ***p<0.001 using 2-way ANOVA followed by Bonferroni post-hoc test.    
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Effect of cmCNP, fbCNP and NPR-C deletion on cardiac hypertrophic gene profile 

in pressure overload-induced heart failure 

 

Figure 76. Effect of cmCNP, fbCNP and NPR-C deletion on fibronectin mRNA expression in pressure overload-

induced heart failure. 

Fibronectin mRNA expression from left ventricles isolated from littermate WT, cmCNP KO, fbCNP KO and NPR-C 

KO mice subjected to sham or abdominal aortic constriction (AAC) for 6 weeks. Data are represented as the 

mean±SEM. n=4-6.  
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4.8 Summary of key findings 

The production of CNP from cardiomyocytes and cardiac fibroblasts in unison contributes 

to cardiac protection during HF. The cardiac dysfunction and morphology observed in 

cmCNP KO and fbCNP KO were replicated by the loss of NPR-C signalling, which was worse, 

per se, than each individual cell-specific CNP deletion. More importantly, administration of 

CNP rescued the deterioration of cardiac function and structure in WT mice, but this 

protective effect was absent in NPR-C KO mice. This indicates the importance of NPR-C 

signalling in CNP-mediated cardiac protection. 
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Chapter 5 – Discussion 

5 Discussion 

5.1 Summary of key findings 

In the first part of my thesis, I investigated the role of endogenous CNP in the coronary 

vasculature. My data showed the coronary reactivity is attenuated in ecCNP KO mice in 

response to endothelium-dependent vasodilators and reperfusion-induced vasodilatation 

compared to WT animals. This indicates endothelium-derived CNP is involved in the 

regulation of coronary vascular function. However, the production of CNP in the 

endothelium did not protect against IR injury, whilst cardiomyocyte-derived CNP displayed 

cardioprotective effects. These data suggest CNP has dual functions in the heart, i.e. 

regulates coronary vascular reactivity and protects against ischaemic myocardial damage. 

The reduced vascular responses and aggravated IR injury observed in ecCNP KO and cmCNP 

KO mice, respectively, were replicated in NPR-C KO mice, indicating endogenous CNP 

mediates its biological activity, at least in part, via NPR-C activation.  

In the second part of this thesis, I explored the role of endogenous CNP in cardiac function, 

with focus on cardiac stress. I have demonstrated that mice lacking cardiomyocyte CNP 

exhibit worse cardiac dysfunction, accompanied by greater cardiac hypertrophy and 

fibrosis in both ISO- and pressure overload-induced HF models. This indicates that 

cardiomyocyte-derived CNP regulates cardiac function during cardiac stress via anti-

remodelling and anti-fibrotic actions. This exacerbated response to cardiac stress was 

replicated in NPR-C KO mice.  However, the phenotype observed in NPR-C KO was worse 

than cmCNP KO. This may stem from incomplete deletion of CNP (my data suggest an 

approximate 80% reduction in CNP mRNA expression in cardiomyocytes), activation of 

NPR-C by another natriuretic peptide (i.e. ANP or BNP), or that another cellular course of 

CNP is important. To investigate the latter hypothesis, I generated mice with fibroblast-

restricted CNP deletion. This genetic alteration resulted in similar cardiac dysfunction to 

that observed in cmCNP KO mice following AAC. This indicates the production of CNP from 

both cardiomyocytes and cardiac fibroblasts in concert contributes to the cardioprotective 

effects during the development of HF. In addition, exogenous CNP attenuated the increase 

of hypertrophy in response to Ang II in isolated neonatal cardiomyocytes. In line with this 

finding, infusion of CNP normalised cardiac dysfunction following AAC in WT mice. 
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However, this protective effect was lost in mice lacking NPR-C. Taken together, the data 

suggest endogenous CNP has cardioprotective effects in the setting of HF and these are 

mediated via NPR-C activation. 

5.2 CNP as a regulator of coronary vascular function 

5.2.1 Endothelial derived CNP regulates coronary vascular reactivity 

EDHF activity is of critical importance to cardiovascular physiology especially when 

production of NO/PGI2 are compromised in CVDs (Luksha et al., 2009). This is illustrated in 

female eNOS/COX-1 double KO mice in which no alteration in resistance vascular reactivity 

and BP remains at basal levels (Scotland et al., 2005). Chauhan et al. 2003 showed that CNP 

is indistinguishable from EDHF, suggesting CNP plays a prominent role in endothelial 

function. In fact, recent studies have demonstrated that CNP is essential for multiple 

aspects of vascular regulation by influencing peripheral vascular resistance and systemic 

BP, vascular integrity, leukocyte infiltration and platelet aggregation (Moyes et al., 2014, 

Nakao et al., 2017). Indeed, CNP relaxes coronary arteries in vitro (Wei et al., 1994, Wright 

et al., 1996) and ex vivo (Hobbs et al., 2004). These observations provide support for the 

role of CNP in the coronary vasculature and, potentially, as a therapeutic target for CAD 

and MI. 

In this study, I have demonstrated that ACh evokes the release of CNP from endothelial 

cells into the coronary circulation and induces vasodilatation. This corresponds with 

previous research in mesenteric arteries (Chauhan et al., 2003) and isolated hearts (Hobbs 

et al., 2004). The response to BK in male ecCNP KO was similar to its WT littermates but 

significantly reduced in female ecCNP KO, indicating a sex difference for the role of CNP in 

coronary vascular function. However, the response to ACh is equally blunted in both male 

and female ecCNP KO, suggesting CNP contributes to coronary endothelial function in both 

sexes. The reason why responses to BK were not altered in male ecCNP KO mice remains 

unclear, but previous work has shown that mesenteric artery responses to BK in male 

eNOS/COX-1 double KO are abolished, but 55% relaxation is preserved in female animals 

(Scotland et al., 2005). This suggests that male rodents predominantly release NO and/or 

PGI2 in response to BK.  

Shear-stress upregulates CNP expression in human endothelial cells (Chun et al., 1997, 

Okahara et al., 1995). Reperfusion following a transient cessation of flow creates shear 

force that can induce vasodilatation. In the isolated heart model, vasodilatation in response 
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to rapid reperfusion in female ecCNP KO mice was significantly blunted, indicating CNP is 

involved in shear-induced vasodilatation. This observation is particularly important in the 

context of MI as CNP could be released in response to shear force during the initial 

reperfusion of the ischaemic heart. The release of CNP potentially can provide a protective 

mechanism to offset IR injury (investigated in the later chapter of this thesis). The multi-

faceted role of CNP, including vasodilatation, preventing leukocyte infiltration and platelet-

aggregation, and inhibiting VSMC proliferation (Scotland et al., 2005, Khambata et al., 

2011, Moyes et al., 2014) would undoubtedly be beneficial in preventing progression of 

CAD and/or as a secondary prevention after MI. Taking together, these data suggest 

endothelial release of CNP plays a role in regulating blood flow in the coronary vasculature 

and could be protective in ischaemic heart disease. 

5.2.2 NPR-C as the cognate receptor that coveys CNP-mediated coronary reactivity 

CNP binds to and activates both NPR-B and NPR-C. Early studies showed that CNP-induced 

relaxation of vascular smooth muscle is mediated via NPR-B activation in aorta (Drewett et 

al., 1995). However, ACh-induced vasodilatation in the mesenteric arteries is preserved in 

mice lacking NPR-B and such animals are normotensive (Nakao et al., 2017, Tamura et al., 

2004). This suggests NPR-B is not the predominant receptor mediating the 

vascular/hypotensive actions of CNP. In contrast, endothelium-dependent dilatation to ACh 

is diminished in the resistance arteries of NPR-C KO mice and these animals display a 

hypertensive phenotype that is similar to ecCNP KO mice (Moyes et al., 2014). These 

observations indicate NPR-C is involved in conveying CNP biological signalling in the 

resistance vasculature. The distinct receptor responsible for the vasodilator actions of CNP 

is therefore likely to be specific to the vascular bed investigated, i.e. conduit (NPR-B) vs. 

resistance vessels (NPR-C). 

In the present study, the coronary reactivity in NPR-C KO mice was markedly blunted in 

response to endothelium-dependent vasodilators and the response to reperfusion-induced 

vasodilatation compared to WT littermates, suggesting NPR-C activation is involved in 

coronary reactivity. These data are in line with previous studies that have demonstrated 

CNP bioactivity is mimicked by a selective NPR-C agonist, cANF4-23, whilst the selective NPR-

C inhibitor, M372049, attenuated the activity of both CNP and cANF4-23 (Villar et al., 2007).  

However, my work has shown that the coronary response to exogenous CNP was not 

completely abolished in NPR-C KO mice, suggesting there is a NPR-B component in 

mediating CNP-induced vasodilatation. In addition, the reduced coronary reactivity in NPR-
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C KO mice is more pronounced compared to ecCNP KO. This may due to incomplete 

deletion of endothelial production of CNP (~80%; (Moyes et al., 2014)) or that an additional 

natriuretic peptide could be secreted from the endothelium (although there is little or no 

precedence for this in the literature). 

5.3 CNP protects against ischaemia-reperfusion injury 

5.3.1 Endogenous CNP attenuates ischaemia-reperfusion injury 

IR injury is the combination of cell damage caused by the initial ischaemic period and the 

process of reperfusion.  This is characterised by endothelial dysfunction that leads to the 

loss of protective NO and PGI2 signalling, resulting in vasoconstriction and infiltration of 

inflammatory cells. Experimental and clinical studies have demonstrated that short or long 

periods of myocardial ischaemia are associated with the rapid release of natriuretic 

peptides and induction of de novo peptide synthesis (Baxter, 2004). These responses 

possibly act as an innate cardioprotective mechanism to cardiac stress. Previous studies 

have shown that pharmacological administration of CNP or other natriuretic peptides 

including ANP, BNP and urodilatin, provides a protective effect against IR injury across 

different species (Hobbs et al., 2004, Jin et al., 2014, D'Souza et al., 2003, Padilla et al., 

2001, Rastegar et al., 2000). A randomised clinical trial (J-WIND) has also demonstrated 

that infusion of ANP in patients with acute MI reduces infarct size, fewer reperfusion 

injuries and better cardiac function at 6-12 months follow-up compared to the placebo 

group (Kitakaze et al., 2007). However, some patients experience severe hypotension with 

ANP treatment. CNP is known to have less haemodynamic effects compared to ANP and 

BNP. Herein, I investigated the pathophysiological role of CNP in IR injury to examine if it 

has similar injury-limiting action. My findings have revealed that deletion of endothelial-

derived CNP does not affect infarct size and recovery of LVDP, indicating endothelial CNP 

does not have a direct cardioprotective effect against acute IR injury. This is at odds with 

the protective effect observed following exogenous infusion of CNP in a previous study 

(Hobbs et al., 2004). This discrepancy could be due to the amount of endogenous CNP 

released that produced by shear stress at the beginning of reperfusion may not be 

sufficient to have a protective effect compared to exogenous CNP administration. The 

latter might be argued would have promoted greater vasorelaxations and/or able to 

penetrate into the myocardium, exerting direct protective effects on cardiomyocytes. 

Nevertheless, the importance of endothelial CNP in the maintenance of endothelium 

function, for example, reducing platelet aggregation, leukocyte adhesion and infiltration 
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(such cells are well established to exacerbate IR injury (Bonaventura et al., 2016) but are 

not present in isolated heart preparations perfused with Krebs-Henseleit buffer), may have 

a long-term cardioprotective mechanism in patients that experience an MI. Further studies 

with in vivo models of MI would be needed to confirm this hypothesis.  

Although endothelium-derived CNP does not appear to protect against acute IR injury, I 

have demonstrated that mice with cardiomyocyte CNP deletion have significantly 

exacerbated infarct size and a reduction in LVDP recovery following IR injury in both female 

and male animals. These findings suggest cardiomyocyte-derived CNP acts in an autocrine 

fashion and protects myocytes from injury, possibly against necrosis/apoptosis. The 

mechanism of this cardioprotective effect exerted by CNP is unclear. Previous studies have 

demonstrated that BNP limits infarct size in isolated hearts (D'Souza et al., 2003, Burley and 

Baxter, 2007). This protective effect is abolished by KATP channel blockers, implying 

BNP/cGMP/KATP channel signalling may be responsible for the injury-limiting mechanism 

mediated by natriuretic peptides (D'Souza et al., 2003, Burley and Baxter, 2007).  

5.3.2 NPR-C activation is involved in the cardioprotective effects of CNP against IR 

injury 

In ischaemic conditions, the low intracellular pH induces a profound depressant effect on 

pGC in cultures of cardiomyocytes and endothelial cells (Agullo et al., 2003), suggesting 

NPR-A/B activity may not be the main contributor to IR protection. Hence, there may be a 

role for NPR-C signalling in IR injury. The present study has shown that NPR-C KO mice 

exhibit worse IR injury compared to WT controls; an observation that is equivalent to 

cmCNP KO animals. This indicates CNP/NPR-C signalling protect against acute IR injury, 

which is in agreement with previous study that reported blockade of NPR-C abolishes CNP-

mediated cardiac protection in IR injury (Hobbs et al., 2004). This cardioprotective effect 

may be the results of increased coronary dilation, inhibition of L-type Ca2+ current and 

reduction of HR, which significantly increases myocardial perfusion (Rose et al., 2004, 

Hobbs et al., 2004).  

Furthermore, it is well established that KATP channel opening on either cytoplasmic or 

mitochondrial membrane is protective in IR injury (Loukogeorgakis et al., 2007, Tinker et 

al., 2014, Suzuki et al., 2002). In fact, most neural, autocrine or paracrine mediators of 

ischaemic preconditioning signal via a transduction pathway involving putative 

mitochondrial KATP channel opening (Baxter, 2004). KATP channels can be modulated by CNP 

in the vasculature and cardiomyocytes (Umaru et al., 2015, Burley et al., 2014) that is likely 
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via activation of NPR-C receptor as its signalling is required for hyperpolarisation, 

vasorelaxation and endothelial proliferation (Villar et al., 2007, Khambata et al., 2011, Kun 

et al., 2008). Thus, KATP channel opening a plausible mechanism for the protective effects of 

cardiomyocyte-derived CNP demonstrated in this thesis. The opening of GIRK channels 

induces similar changes in K+ influx as KATP channel activation and thus, CNP-induced 

opening of GIRK channel via NPR-C activation may be able to mediate a similar 

cardioprotective effect. In fact, there is evidence demonstrating that reduced Kir channel 

activity exacerbates IR injury (Aziz et al., 2017). Furthermore, CNP signalling contributes to 

the activity of KATP channel in isolated myocardium (Burley et al., 2014) and KATP channel 

belongs to the Kir channel superfamily. This suggests the beneficial effect of CNP against IR 

injury can be mediated via activating KATP channels directly or by opening of Kir channel 

through NPR-C signalling. Interestingly, heart samples from patients with ischaemic 

cardiomyopathy have elevated levels of Nppc and Npr3 mRNA expression, supporting the 

role of CNP/NPR-C in ischaemic CVD (Tarazon et al., 2014). 

Nevertheless, one cannot exclude the possibility that NPR-B/cGMP transduction signalling 

may also contributes to the protective mechanism exerted by CNP. Previous studies have 

shown that elevations of cGMP by NPR-A activation or over-expression of eNOS attenuate 

IR injury (D'Souza et al., 2003, Okawa et al., 2003, Brunner et al., 2003). In addition, the 

protective action of BNP is blocked by NPR-A/B antagonism, KATP channel inhibitors and L-

NAME (Burley and Baxter, 2007), indicating a cross-talk between NPRs/eNOS/KATP channel 

opening. However, in the same model, the NO donor SNP is not protective, illustrating the 

cardioprotective effect is result of a more complex mechanism that is not solely due to a 

general increase in intracellular cGMP. In fact, cGMP compartmentation is well 

documented and the generation of specific pools of cGMP “in the right place, and at the 

right time” could account for the differential responses to sGC and pGC stimulation 

triggered by NO and natriuretic peptides, respectively. CNP is the sole intrinsic agonist for 

NPR-B, so it would be interesting to investigate if NPR-B transduction participates in the 

cardioprotective mechanism of CNP. However, a selective NPR-B antagonist or agonist is 

not available, thus, generation of a cell-specific NPR-B KO mouse is merited as global NPR-B 

deletion results in dwarfism (Tamura et al., 2004), making evaluation of cardiovascular 

homeostasis difficult. 
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5.3.3 CNP has potential therapeutic benefits in MI 

Microvascular dysfunction occurs post-MI and ultimately leads to CHF. It has been reported 

that microvascular dysfunction is found in the infarcted territory as well as the non-

infarcted regions (Yong and Fearon, 2013). The presence of more widespread 

microvascular dysfunction in the injured heart is an independent predictor of long-term 

cardiac mortality in STEMI patients (van de Hoef et al., 2013). The loss of CNP signalling 

may contribute to microvascular dysfunction observed in patients with MI. In fact, 

diminished CNP-dependent signalling induced by a dominant negative NPR-B mutant 

exhibits cardiac hypertrophy at basal level (Langenickel et al., 2006). CNP mRNA expression 

in infarcted hearts is elevated (Soeki et al., 2005) and animals with over-expression of CNP 

are resistant to ventricular hypertrophy induced by MI (Wang et al., 2007). This chronic 

elevation of CNP expression in infarcted myocardium probably counteracts the pro-

hypertrophic and pro-fibrotic signalling activated by other mediators such as Ang II, 

catecholamines and cytokines during cardiovascular pathology. Moreover, increase of 

plasma CNP levels by osterin, an endogenous peptide that competitively bound to NPR-C 

with natriuretic peptides, suppresses the progression of congestive heart failure after MI in 

mice (Miyazaki et al., 2018). Furthermore, the ability of CNP to promote endothelial growth 

while inhibiting VSMC proliferation undoubtedly can protects the heart from 

atherosclerosis and restenosis in MI patients who have undergone PCI. The acute and 

chronic actions of CNP in myocardial ischaemia suggest a profile of activity that may be 

therapeutically beneficial in the management of patients with acute coronary syndromes 

and in preventing post-infarction remodelling that leads to CHF.  

In summary of my data from the isolated heart model, I have identified that endogenous 

CNP modulates coronary perfusion and has cardioprotective effects against acute IR injury. 

These biological activities of CNP are, at least in part, via NPR-C signalling.  

5.4 CNP in chronic heart failure 

5.4.1 CNP maintains cardiac structure and function in pathological conditions 

Although ANP and BNP act on the same receptor, NPR-A, their role in the regulation of 

myocardial structure is not straightforward. Mice lacking ANP or NPR-A display salt-

resistant arterial hypertension, with a disproportionate ventricular hypertrophy and cardiac 

fibrosis (John et al., 1995, Kuhn et al., 2002, Lopez et al., 1995). Whereas, BNP null mice do 

not exhibit cardiomyocyte hypertrophy, despite BNP being the predominant ventricular 
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natriuretic peptide; but they do exhibit a marked cardiac fibrosis (Tamura et al., 2000). 

Therefore, a better understanding of the complex signalling pathways underlying the 

natriuretic peptides in the regulation of myocardial architecture and cardiac function is 

required. Earlier studies have reported that ANP prevents ventricular remodelling via 

inhibition of the RAAS since cardiac hypertrophy induced by deletion of NPR-A is blocked by 

Ang II receptor deficiency (Li et al., 2009). Moreover, clinical studies also have shown that 

infusion of ANP supresses Ang II and ET-1, which could be responsible for the 

cardioprotective effects (Hayashi et al., 2001). In Japan, a recombinant ANP analogue, 

carperitide, has been approved for intravenous administration in patients with HF (Saito, 

2010). While BNP (nesiritide), which has similar cardioprotective effects by acting on the 

same receptor (NPR-A), has been approved in the US (Burnett, 2005). In addition, BNP 

administration to isolated perfused rat hearts prior to and during an ischaemic insult 

reduces infarct size in a concentration-dependent fashion (D'Souza et al., 2003). 

The role of CNP in cardiac function had been overlooked due to a failure to detect its 

presence in the heart and in the plasma of patients with CHF in early studies (Takahashi et 

al., 1992, Cargill et al., 1994). Only in recent years has it been confirmed that CNP and NPR-

B are co-localised in the heart, and the plasma levels of CNP are increased in relation to the 

severity of CHF (Kalra et al., 2003, Del Ry et al., 2005, Del Ry et al., 2008a). It is well 

established that pharmacological administration of CNP has anti-hypertrophic and anti-

fibrotic actions, and prevents cardiac remodelling in in vivo HF models (Soeki et al., 2005, 

Wang et al., 2007, Izumiya et al., 2012). In fact, studies showed that CNP has more potent 

anti-fibrotic and anti-hypertrophic effects than ANP (Tokudome et al., 2004, Horio et al., 

2003). These findings might be due to the relative abundance of NPR-B over NPR-A in 

cardiac fibroblasts and in cardiomyocytes (Tokudome et al., 2004, Horio et al., 2003). Such 

evidence intimates a pathophysiological role of CNP in CHF and thus, suggests a novel 

therapeutic target. The present study demonstrated for the first time that cardiomyocyte-

derived CNP exerts cardioprotective effects during cardiac stress, including aetiologically 

distinct models of HF.  

Regardless of the pathological stimulus (AAC or ISO infusion), cmCNP KO mice exhibited a 

worse cardiac phenotype than littermate controls, i.e. LV dilatation, greater reduction in EF 

and FS, accompanied by higher collagen deposition (and a more modest effect on LV 

hypertrophy and cardiomyocyte size). Yet, isolated cardiomyocytes from cmCNP KO mice 

exhibited greater hypertrophic response to Ang II in vitro, which was reversed with 
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pharmacological administration of CNP. These observations in concert with previous work 

(Rosenkranz et al., 2003, Tokudome et al., 2004) imply CNP can play a fundamental, 

autocrine role in the regulation of cardiomyocyte hypertrophy.  

More importantly, pharmacological infusion of CNP reverses the decline of cardiac function 

and fibrosis following AAC without affecting haemodynamics. This illustrates a critical role 

for CNP in maintaining cardiac structure and performance during cardiac stress. This 

corroborates early studies demonstrating CNP has positive inotropic, lusitropic, 

chronotropic and dromotropic effects in intact animals, isolated hearts, cardiac muscle 

preparations and isolated cardiomyocytes from different species (Beaulieu et al., 1997, 

Hirose et al., 1998, Brusq et al., 1999, Pierkes et al., 2002). In accord, the plasma levels of 

CNP in patients with chronic HF correlate with LV dp/dt and EF (Del Ry et al., 2008b), 

indicating CNP production is associated with cardiac contractility. Correspondingly, CNP 

infusion at pharmacological dose significantly increases maximum dP/dt, LV end-diastolic 

pressure and cardiac output (Obata et al., 2007, Soeki et al., 2005). These data illustrate 

that CNP is involved in the regulation of cardiovascular homeostasis and the fact that CNP 

concentrations increase with clinical severity support a compensatory effect to maintain 

cardiac function. Whereas, a loss/reduction of CNP production i.e. cmCNP KO mice, is more 

susceptible to the development of HF. 

5.4.2 Different sources of CNP contribute to cardiac function 

It has been reported that CNP is produced and secreted from cardiac fibroblasts in the 

failing heart and has a suppressive effect on fibroblast proliferation and ECM production 

(Kalra et al., 2003, Horio et al., 2003). Thus, one of the possible sources of increased CNP 

levels in patients with HF could be the cardiac fibroblast. In this regard, I have developed 

fbCNP KO mice and subjected them to pressure-overload to investigate the role of cardiac 

fibroblast-derived CNP in cardiac function. At baseline, the ablation of CNP from fibroblast 

has no adverse effect. But when exposing to AAC, those mice developed enhanced 

maladaptive cardiac hypertrophy and fibrosis with greater decline in cardiac function 

similar to cmCNP KO mice. This indicates cardiac fibroblast-derived CNP, likewise, prevents 

pathological cardiac remodelling. These observations are unsurprising. Previous in vitro 

studies have demonstrated that CNP is synthesised and secreted from cardiac fibroblast 

and act as an autocrine regulator, inhibiting excess collagen production (Horio et al., 2003). 

In addition, CNP prevents cardiac fibroblast differentiation and migration (Li et al., 2014b). 

These imply endogenous CNP might participate in fibroblast-myocyte communication 
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during cardiac remodelling and in concert, negatively regulate hypertrophy and fibrosis. 

Since different sources of CNP are playing a part in cardiovascular homeostasis, perhaps 

cm/fbCNP double KO mouse would be permitted to examine a wider effect of endogenous 

CNP in cardiovascular (patho)physiology?   

5.5 Mechanistic delineation of CNP-mediated cardioprotection 

5.5.1 NPR-B vs. NPR-C activation  

Elevations in cGMP, for example following PDE5 inhibition (Takimoto et al., 2005) or NOS 

activation (Janssens et al., 2004), have shown to be cardioprotective and hence NPR-

B/cGMP transduction signalling has been thought to play a key role in CNP-mediated 

beneficial effects. Previous studies have shown that CNP modulates the growth, 

proliferation, and hypertrophy of VSMCs, cardiomyocytes and fibroblasts via NPR-B 

activation (Rosenkranz et al., 2003, Horio et al., 2003, Furuya et al., 1991). Furthermore, 

transgenic rats expressing a dominant-negative mutant of NPR-B develop progressive, BP-

independent cardiac hypertrophy (Langenickel et al., 2006). However, those mice did not 

exhibit an increased interstitial or perivascular fibrosis, while infusion of CNP attenuates 

cardiac fibrosis (Soeki et al., 2005). This discrepancy in CNP biology suggests a non NPR-B 

signalling pathway maybe involved. Moreover, the protective effect of ANP and CNP is 

thought to mediate via cGKI (or PKG). However, chronic ISO administration has no adverse 

effect in cardiac-specific PKG KO mice (Frantz et al., 2013). This suggests the cardiac 

dysfunction induced by ISO infusion in cmCNP KO mice is not due to the loss of cGMP/PKG 

signalling.  

BNP has been shown to inhibit human fibroblast growth that is not affected by the 

application of the NPR-A/B blocker, HS-142-1, but surprisingly antagonised by a NPR-C 

ligand, cANF4-23, suggesting BNP acts on NPR-C and regulates fibroblast proliferation. In 

addition, NPR-C has also been implicated in anti-hypertrophic effects in VSMCs (Cahill and 

Hassid, 1994, Khambata et al., 2011) and protects against cardiomyocyte apoptosis (Lin et 

al., 2016). These findings suggest NPR-C signalling may counteract cardiac remodelling and 

prevent ventricular wall thinning.  

5.5.2 NPR-C activation is involved in CNP-mediated cardioprotective effects 

In the present study, I have demonstrated that the cardiac dysfunction in cm/fbCNP KO 

mice is recapitulated in NPR-C KO animals, suggesting NPR-C signal transduction is 
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responsible for the cardioprotective mechanism of CNP. A recent study has demonstrated 

that an endogenous NPR-C ligand, osteocrin, suppresses infiltration of M1 macrophages 

and prevents cardiac remodelling following MI (Miyazaki et al., 2018). Such protective 

effects are thought to be attributed to the inhibition of ANP clearance when osteocrin 

binds to NPR-C. However, my thesis suggests NPR-C transduction pathway has a positive 

protective role in cardiovascular pathology as the NPR-C null mice exhibit an adverse 

response to cardiac stress, despite the removal of a clearance system for natriuretic 

peptides. Thus, osteocrin may exert cardioprotective effect directly via NPR-C activation. 

Indeed, the cardiac phenotype was worse following global deletion of NPR-C compared to 

individual cell-specific CNP KO (demonstrated by an additional increased in LV chamber, 

collagen deposition and cardiomyocyte size). Hence, activation of NPR-C offers more than 

just a clearance role; its signalling can be critical in mediating anti-remodelling 

mechanism(s). This notion is further supported by my study evaluating phenotypic rescue 

using pharmacological administration of CNP. A sub-pressor dose of CNP was able to 

prevent LV remodelling and preserve cardiac performance in WT mice subjected to 

pressure overload. However, the protective effect was lost in NPR-C KO mice, confirming 

the requirement of NPR-C activation in CNP-mediated cardiac protection. These data 

suggests that although CNP production is elevated in patients with HF (Del Ry et al., 2005) 

(likely as an endogenous protective mechanism), it is possible to further increase NPR-C-

dependent signalling for therapeutic gain. Therefore, the development of NPR-C agonists 

may represent a novel approach for HF treatment.  

5.5.3 Pro-hypertrophic and pro-fibrotic pathways inhibited by CNP/NPR-C signalling  

Mechanistic delineation of CNP-mediated cardioprotection in response to cardiac stress 

was investigated by study of the pro-hypertrophic and pro-fibrotic markers in the hearts 

from cmCNP, fbCNP and NPR-C KO mice. The depressed cardiac performance in cmCNP KO 

and NPR-C KO animals in response to AAC was accompanied by up-regulation of ANP and 

β-MHC mRNA expressions, confirming an enhanced hypertrophic response. These 

hypertrophic genes are also correlate with the severity of HF (Koentges et al., 2017). It is 

possible that the loss of clearance function in NPR-C KO mice is partly responsible for the 

increase in ANP mRNA expression. However, studies in NPR-C KO mice detected no change 

in steady levels of plasma ANP although the ANP half-life was increased (Matsukawa et al., 

1999). This indicates that ANP production (i.e. ANP mRNA level) in NPR-C KO mice is, if 

anything, decreased to match the reduced clearance rate. Hence, the increased ANP mRNA 
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expression in NPR-C KO mice in this study reflects the pathological severity. Mice with 

deletion of CNP or NPR-C also have a trend towards to a reduction in the expression of 

SERCA2a mRNA that encodes for SERCA. Myocyte Ca2+ cycling is primarily governed by 

SERCA, which mediates Ca2+ sequestration into the SR and regulates cardiac contractility. 

Alternated levels in SERCA is associated with human HF (Schwinger et al., 1999, Frank et al., 

2002, Hayward et al., 2015), and observed in murine pressure-overload models (Zolk et al., 

1998, Nagayama et al., 2009). The downregulation of SERCA2a expression in the KO mice 

subjected to AAC indicates impaired myocyte Ca2+ handling and accounts for diminished 

cardiac contractility. This hypothesis is supported by studies that showed CNP improves 

Ca2+ handling and contractile function in isolated adult myocytes (Wollert et al., 2003), and 

that plasma levels of CNP in patients with HF correlates with cardiac contractility (Del Ry et 

al., 2008b).  

The worse cardiac fibrosis observed in cm CNP KO mice was explained by upregulation of 

fibrotic gene expression including Col1a1, fibronectin and MMP-2. This observation 

corresponds with previous studies that showed CNP directly inhibits both DNA and collagen 

synthesis in cardiac fibroblasts (Horio et al., 2003). Indeed, CNP expression tends to 

decrease as cardiac fibrosis increases (Sangaralingham et al., 2011, Ichiki et al., 2014). 

Furthermore, CNP mRNA expression is elevated in the fibrotic area of the infarct region 

following MI. Taken together, the findings indicate the release of CNP from cardiomyocytes 

may exert inhibitory action(s) on the adjacent cardiac fibroblasts and reduce the 

production of collagen/ECM.  

In addition, cmCNP KO mice displayed increases in hypertrophic gene expression such as 

ANP, β-MHC and MMP-2 at basal level, suggesting that the deletion of cardiac CNP is prone 

to cardiac remodelling and dysfunction innately, and may potentially develop progressive 

HF with age. Indeed, natural aging hearts have progressive decline in CNP levels and 

associate with increase in LV fibrosis that leads to impairment of diastolic and systolic 

function. 

5.6 The possible mechanisms of NPR-C-mediated cardioprotection 

5.6.1 NPR-C couples with Gi-protein 

NPR-C is traditionally known as a clearance receptor. However, the cytoplasmic domain of 

NPR-C comprises several PTx-sensitive Gi activator sequences implying it can elicit 
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physiological functions via inhibition of AC/cAMP signal transduction and/or through 

activation of PLC (Pagano and Anand-Srivastava, 2001, Anand-Srivastava et al., 1996). 

Consistent with this notion, Anand-Srivastava et al. (1991) have shown that ANP and the 

NPR-C agonist, cANF4-23, inhibit AC activity in platelets that express only NPR-C. The group 

also demonstrated that NPR-C activation is sufficient for the inhibition of AC signalling by 

using an antibody raised against the NPR-C cytoplasmic domain (Anand-Srivastava et al., 

1996). Furthermore, studies reported that NPR-C-mediated decreases in cAMP contribute 

to the activation of PLC signalling (Mouawad et al., 2004), which promotes cell proliferation 

(Schmidt et al., 1999, Hayashi et al., 2000) that suggests NPR-C activation may not 

attributes to the anti-hypertrophic effects. On the other hand, cAMP activity promotes 

cardiac hypertrophy and inotropy, explaining the contraindication of PDE3 inhibitors and β-

agonists in HF. Thus, inhibitory action of NPR-C/Gi on cAMP may be cardioprotective.  

Moreover, dys-regulation of the autonomic nervous system has been implicated in both 

animal model of CVD and in human HF (van Bilsen et al., 2017). Buttgereit et al. 2016 has 

demonstrated that CNP via NPR-B signalling reduces sympathetic activation that could have 

beneficial effects.  However, inhibition of cAMP via NPR-C/Gi-protein signalling may also be 

involved in sympatho-inhibition that could also be cardioprotective. 

Giα activation is implicated in hypertrophic cardiomyopathy (Ruan et al., 2007). In vivo 

treatment of cANF4-23 attenuates high BP in SHR through inhibition of enhanced Giα level 

and oxidative stress (Li et al., 2014a, Rahali et al., 2018). Similarly, cANF4-23 attenuates Ang 

II-induced enhanced overexpression of Giα protein, which leads to inhibition of MAPK 

signalling and attenuates hyper-proliferation (El Andalousi et al., 2013, Rahali et al., 2018, 

Madiraju et al., 2018). These data suggest NPR-C-mediated cardioprotective effects might 

be via inhibition of oxidative stress, suppression of Giα protein expression and the 

associated pathways. 

5.6.2 NPR-C and NOS cross-talk 

It is well established that NO production by NOS activation increases cGMP levels and 

maintains cardiovascular homeostasis. Several studies have supported the importance of 

the cross-talk between NO and the natriuretic peptide system. Costa et al. (2006) have 

demonstrated that ANP and cANF4-23 increase NOS activity, which is blunted by Gi 

inhibition, L-type Ca2+ channel blockers and calmodulin antagonists, indicating NPR-C/Gi-

coupling mediates the activation of Ca2+-dependent NOS (Costa et al., 2006). Moreover, 

NPR-A/B blockade induces no change in NOS stimulation via CNP (Caniffi et al., 2010), 
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confirming that CNP interacts with NPR-C, activating Ca2+–calmodulin and eNOS via Gi 

proteins. Other mechanisms of cross-talk between NPR-C and eNOS have been proposed. 

Activation of NPR-C induces the release of Gβγ -subunits that leads to PLC stimulation and 

subsequent PKC activation (Sabbatini et al., 2007). This leads to the generation of IP3 and 

DAG from PIP2 that results in intracellular Ca2+ mobilisation and activation of calmodulin 

(Murthy et al., 2000). Gi coupling also activates PI3 kinase, which triggers Akt and in turn 

phosphorylates NOS. In a parallel study in the Hobbs lab, mice with infusion of CNP 

subjected to AAC were administrated L-NAME in the drinking water to investigate whether 

CNP/NOS cross-talk is involved in the cardioprotective mechanism exerted by CNP. The 

rescue of cardiac function by CNP was unaffected by inhibition of NOS (data not shown), 

demonstrating CNP/NPR-C/NOS transduction is not responsible for the cardioprotective 

effects of CNP seen in this thesis. This corresponds to a recent study that demonstrated 

NPR-C activation by cANF4-23 attenuates high BP in spontaneous hypertensive rat (SHR) but 

concomitantly decreases levels of eNOS and NO, suggesting NPR-C acts through an 

eNOS/cGMP independent pathway (Li et al., 2014a). 

5.6.3 NPR-C and Gqα interaction 

Activation of Gqα contributes to cardiomyocyte hypertrophy in cell culture and in vivo 

models (Akhter et al., 1998, Dorn et al., 2000, Filtz et al., 2009, Mende et al., 1998). 

Hormones such as Ang II, ET-1, and phenylephrine can activate Gq-coupled receptors, and 

have been implicated in the development and progression of cardiac hypertrophy and HF 

(Wettschureck et al., 2001, Dorn et al., 2000, Atef and Anand-Srivastava, 2014). Transgenic 

mice with cardiac overexpression of Gq have an intrinsic hypertrophic gene expression 

profile and develop a maladaptive form of eccentric hypertrophy in response to pressure-

overload (Sakata et al., 1998). Consistent with this observation, cardiac-specific 

overexpression of a Gq dominant negative mini-gene causes resistance to cardiac 

hypertrophy following TAC (Akhter et al., 1998). These studies demonstrated Gq signalling 

is critical in triggering cardiac hypertrophy after the hemodynamic stress of pressure 

overload.  

Gq signalling is implicated in MAPK/PI3K signalling upon NPR-C activation (Li et al., 2006, 

Jain and Anand-Srivastava, 2018). Also, alternation of Giα protein levels has been 

implicated in MAPK/PI3K signalling (Bou Daou et al., 2016). These suggest NPR-C-mediated 

anti-proliferation could be achieved via attenuating Giα activity that in turns suppress Gq 

and MAPK transduction signalling (El Andalousi et al., 2013, Hashim et al., 2006). Taken 
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together, it is likely that NPR-C activation exerts a critical brake against the upregulated 

Gq/PLC-β/MAPK pathway in response to AAC, and this cascade is worth to be investigated 

further in cmCNP and NPR-C KO hearts. 

5.6.4 Regulator of G-protein signalling 

Previous work has shown that activation of regulator of G-protein signalling (RGS) inhibits 

Gq/PLC-β signalling and mediates cardiac compensation to pressure-overload (Takimoto et 

al., 2009). RGS proteins are a set of negative controllers of GPCR activity that work by 

accelerating Gα-dependent GTP hydrolysis to reconstitute the heterotrimeric G protein 

complex, and hence inactivate the G-protein. RGS proteins can also directly antagonise the 

activity of G protein subunits by competing for the binding site of the effectors and 

inhibiting the downstream signalling. Among more than 30 RGS proteins, RGS2 and RGS4 

have been implicated in cardiovascular pathophysiology and suppress Gq-mediated cardiac 

hypertrophy (Zhang et al., 2006, Takimoto et al., 2009, Tokudome et al., 2008, Rogers et al., 

1999, Rogers et al., 2001). In addition, it has been reported RGS4 enhances anti-

hypertrophic effects of natriuretic peptides by stimulating the translocation of RGS4 to the 

cell membrane, and enhance their association with Gα subunit leading to inactivation of Gq 

transduction signalling (Tokudome et al., 2008). This mechanism is proposed to be via the 

activation of cGMP/PKG cascade. In addition, G protein activation is also negatively 

modulated by phosphorylation of Gi (Pfeifer et al., 1995). Hence, it could be speculated that 

inactivation of Gq and stimulation of Gi contributes to the overall effect of CNP.  

5.6.5 Sodium-hydrogen exchanger 

Na+/H+ exchanger activation has been associated with Ca2+-dependent activation of 

calcineurin, which leads to hypertrophic responses (Nakamura et al., 2008). Natriuretic 

peptides can inhibit Na+/H+ exchanger activity via a cGMP-dependent cascade, possibly 

involving PKG-dependent phosphorylation (Kilic et al., 2005, Tajima et al., 1998). The 

potency of CNP compared to ANP or BNP for blocking the exchanger is greater (Fidzinski et 

al., 2004). CU-NP, a chimeric peptide consisting of the ring structure and disulfide bond of 

CNP in combination with the N-terminus and the C-terminus of Urodilatin (Lisy et al., 2008), 

has been demonstrated to have direct anti-hypertrophic effects via Na+/H+ exchanger 

inhibition and prevents calcineurin activation and NFAT nuclear import (Kilic et al., 2010). 

This effect was mimicked by CNP (Kilic et al., 2010).  
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5.6.6 Transforming growth factor-β1/SMAD signalling 

TGF-β1 is secreted by both cardiomyocytes and myofibroblasts. It also stimulates the 

transformation of cardiac fibroblasts into myofibroblasts that elevate the production of 

ECM. Hence, TGF-β1 plays a fundamental role in fibrotic remodelling of the heart. TGF-β1 

expression is upregulated in patients with idiopathic hypertrophic, dilated cardiomyopathy 

and HF (Li et al., 1997, Sanderson et al., 2001, Lim and Zhu, 2006). Functional blockade of 

TGF-β1 signalling by neutralising antibodies or by inducible dominant-negative mutation 

prevents myocardial fibrosis in pressure overload model (Kuwahara et al., 2002, Hein et al., 

2003, Chen et al., 2006, Teekakirikul et al., 2010). Binding of TGF-β1 to its receptor, TGFβR1 

and TGFβR2, causes phosphorylation of Smad2 and Smad3 which forms homomeric and 

heteromeric complex with Smad4. The activated Smad complex subsequently translocates 

into the nucleus and activates the pro-fibrogenic genes. Studies have shown that the 

ANP/cGMP/PKG pathway inhibits cardiac fibrosis by counteracting the TGF-β1 signalling by 

blocking nuclear translocation of Smad (Li et al., 2008, Li et al., 2007). In addition, TGF-β1 

significantly stimulates CNP secretion (Horio et al., 2003). This feedback mechanism 

suggests endogenous CNP may provide a brake on TGF-β1 signalling and suppress fibrosis. 

5.7 CNP/NPR-C as a therapeutic target 

GWAS in the general population have shown polymorphisms in the CNP (nppc) and NPR-C 

(npr3) gene are associated with hypertension and prone to CVDs (Ono et al., 2002, Ren et 

al., 2017). In addition, mutations in furin, an enzyme that is involved in pro-CNP cleavage, 

also associate with higher BP, indicating CNP production is important in human 

cardiovascular haemostasis (Ehret et al., 2011). Furthermore, both ecCNP KO and NPR-C KO 

mice have impaired endothelium functions in the mesenteric and coronary vasculature, 

and display a hypertensive phenotype (Moyes et al., 2014). These data hinting CNP/NPR-C 

transduction pathway could be a novel intervention for vascular diseases, including CAD.  

CAD is caused by the development of atherosclerosis and can lead to MI, HF and death. 

Although many more patients survive the initial ischaemic insult, the reperfusion 

procedure itself (revascularisation) causes additional damage to the vasculature and 

myocardium that results in poorer prognosis and predisposes to the development of CHF. 

In addition, IR injury is not limited to MI, it also arises in stroke or organ transplantations. 

Thus, strategies to minimise IR injuries are critical in terms of longer-term morbidity and 

mortality. IR injury is characterised by micro-vascular dysfunction, leading to an 

inflammatory response, including increased leukocyte activation, cellular and fluid 
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extravasation, capillary constriction and decreased perfusion (Carden and Granger, 2000). 

The ability of CNP to inhibit leukocyte infiltration and induce vasodilatation seems 

promising in terms of improving IR injury. This thesis has shown that lack of either cardiac 

CNP production or NPR-C exacerbates the final infarct size and recovery of LV contractility. 

In concert with another study that demonstrated administration of CNP during the 

reperfusion period reduces IR injury (Hobbs et al., 2004), these observations suggest 

CNP/NPR-C transduction signalling may be beneficial in patients experiencing an ischaemia 

insult. Perhaps, CNP or CNP-mimicking molecules can be administrated to patients at the 

time of reperfusion, e.g. coating on the stent or intravenously, to improve perfusion and 

limit IR injury? 

There is increasing evidence to suggest CNP has therapeutic potential post MI. In 

experimental models of MI, genetic knockdown of CNP aggravates myocardial damage (Wu 

et al., 2017a), whereas cardiac specific overexpression of CNP prevents cardiac 

hypertrophy, preserves cardiac contractility, reduces necrosis and inflammation following 

MI (Wang et al., 2007). Consistent with these findings, CNP infusion also reduces cardiac 

hypertrophy and fibrosis caused by MI without affecting BP (Soeki et al., 2005).  

Furthermore, administration of CNP also attenuates cardiac remodelling induced by other 

pathological stimuli, such as volume overload, Ang-II and ET-1 (Rosenkranz et al., 2003, 

Langenickel et al., 2006, Izumiya et al., 2012). These observations collectively support the 

beneficial effects of CNP treatment in HF. However, whether CNP mediates 

cardioprotective effects via NPR-B or/and NPR-C is still in question. Numerous studies have 

shown that the CNP-induced anti-hypertrophic effect is associated with elevation of cGMP 

level (Rosenkranz et al., 2003, Kilic et al., 2010), and dominant-negative mutant of NPR-B in 

rat displays progressive BP-independent cardiac hypertrophy (Langenickel et al., 2006). 

However, CNP/NPR-B signalling is involved in bone growth so targeting this directly may 

bring unwanted skeletal side effects.  

I have demonstrated that CNP infusion in WT mice prevented the development of HF 

following AAC. This reversal study demonstrated a therapeutic potential of 

pharmacological administration of CNP or CNP mimicking molecules. In addition, the 

protective effects of CNP were lost in NPR-C KO mice, suggesting NPR-C mediates the 

biological activity of CNP in cardiac function and this merits the development of NPR-C 

activating agents.  Furthermore, interaction of such NPR-C agonists might be expected to 

compete with endogenous natriuretic peptides for clearance and could lead to a moderate 

increase in the circulating native natriuretic peptide concentration that would provide an 
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additional beneficial effect to the CVS. Furthermore, long-term natriuretic peptide 

treatment may lead to changes in other endogenous natriuretic peptides. For example, a 

clinical study showed infusion of BNP causes a rise in CNP and NT-proCNP levels but fall in 

ANP and pro-ANP levels (Hillock et al., 2008). Therefore, CNP infusion in the pressure-

overload HF model should be investigated further to examine how CNP treatment could 

affect other peptide responses; regardless, the overall effect of CNP is positive.  

In sum, NPR-C is widely distributed in the CVS and its density in tissues is higher than other 

NPRs. Indeed, NPR-C contributes to 95% of all NPRs expression (Rose and Giles, 2008), 

suggesting NPR-C could be an effective pharmacological target. Nonetheless, the 

development of protein/peptides as therapeutic agents is challenging due to technical and 

compliance issues. Innovative bioencapsulation and nanotechnology can be used to 

effectively deliver physiologically active peptides orally to increase patient compliance and 

therapeutic efficacy and reduce cost (Kwon and Daniell, 2015, Crombez et al., 2008). 

Adapting these techniques to deliver NPR-C agonists, e.g. cANF3-24, orally could be the next 

step in providing conceptual support for the therapeutic potential of CNP/NPR-C signalling. 

Alternatively, small non-peptide molecules can be developed to activate NPR-C for cardiac 

protection. 

5.8 Limitations and future work 

The Langendorff isolated heart system represents a quick and reproducible model that is 

widely used for cardiovascular physiological and pharmacological studies. However, it is 

described as a ‘dying preparation’ as the contractile and chronotropic function deteriorates 

at rates of 5-10% per hour (Sutherland and Hearse, 2000). Thus, the length of experiment is 

limited to approximately 2 hours and the time from heart excision to cannulation has to be 

fast (2-3 minutes) to avoid the potential effect of ischaemic preconditioning and injury. In 

addition, normoxic myocardium preferentially uses free fatty acid as the energy source 

(Bing, 2001), but glucose in the Krebs-Henseleit buffer is the main metabolite substrate. A 

further limitation of the buffer solution is the low oxygen carrying capacity and a low 

oncotic pressure that can induce tissue oedema and damage, especially following 

ischaemia reperfusion injury (Walters et al., 1992, Qiu and Hearse, 1992). This can be 

resolved by using whole blood perfusion or by adding red blood cell mixed with 

dextran/albumin into the buffer to obtain a near normal osmolality and oncotic pressure 

(Bell et al., 2011). However, haemolysis, technical complexity and expense of such 

preparations are huge drawbacks and thus, Krebs-Henseleit buffer remains a practical and 
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useful method of maintaining an isolated perfused heart for several hours. In addition, 

coronary flow with blood-free perfusion is much higher than blood flow in vivo due to 

lower viscosity of the fluid. This can be modified with a constant flow mode i.e. flow rate of 

2ml/min is used in this thesis to match the coronary flow with whole blood perfusion (Bell 

et al., 2011). However, constant flow over-rides the vascular auto-regulatory mechanisms 

and does not inherently alter the amount of perfusate delivered to the heart when there 

are changes in heart rate or work, or when regional ischaemia is imposed (Sutherland and 

Hearse, 2000). Nevertheless, global ischaemia is applied in this thesis and constant flow 

provides an element of constancy and permits straightforward measurements of vascular 

tone/resistance. Yet, constant flow limits the investigation of reactive hyperaemia, which is 

the transient increase in flow that occurs following a brief period of ischaemia. Although, a 

similar protocol is used to study human forearm vasodilatation in which reactive 

hyperaemia is induced by blood pressure cuff inflation and deflation (Linder et al., 1990). 

Increased flow was not achievable in the constant flow mode, yet, I have observed 

prolonged delays of CPP returning to the baseline when flow was re-started following 80 

seconds of ischaemia. This indicates a transient reduction of vascular resistance in response 

to the initial reperfusion after ischaemia. More importantly, this protocol potentially 

mimics the clinical setting when patients undergo reperfusion after MI. Furthermore, the 

Langendorff isolated heart model omits the confounding effect from other organ systems, 

autonomic regulation and peripheral neurohormonal factors thereby, enabling direct study 

of cardiac responses. This may be considered as an investigational advantage but it makes 

the model less representative of the in vivo setting.  Nonetheless, it provides an essential 

bridge between in vitro and in vivo experiments. To validate the observed beneficial effects 

of CNP in IR injury, an in vivo model of MI will be the next step, i.e. by reversibly ligating the 

LADCA.  

Infusion of CNP protects against IR injury in rats (Hobbs et al., 2004). It would be interesting 

to examine if exogenous CNP can rescue the IR injury in hearts lacking CNP production. It 

will also be plausible to infuse CNP in NPR-C KO mice to confirm if the protective effects of 

CNP require NPR-C transduction. Likewise, the NPR-C agonist, c-ANF4-23 could be employed.   

In the CVS, CNP is predominantly produced and secreted in endothelial cells, but also in 

cardiomyocytes and cardiac fibroblasts. In this thesis, I have demonstrated that CNP 

derived from each cell type has a distinct role but collectively protects cardiac function. 

How the secretion of CNP from one cell type affecting its neighbouring cell type is unclear. 

To investigate this intercellular interaction, a co-culture preparation of cardiomyocyte and 
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cardiac fibroblast could be employed (i.e. cardiomyocyte from cmCNP KO culturing with 

cardiac fibroblast from WT, or vice versa).  

In order to investigate the overall role of CNP in cardiovascular function, generating a 

global CNP KO mouse is merited. In addition, a recent study has demonstrated that CNP 

contributes to metabolism, inflammation and diabetes (Bae et al., 2017). This suggests CNP 

has a widespread systemic role that is worth investigating. However, global CNP KO is 

detrimental during development. Hence, a timed CNP deletion is required, e.g. by using 

tamoxifen-induced activation of Cre, to bypass the early developmental defects. 

The global NPR-C KO strain used in this study exhibits bone malformation due to reduced 

clearance of CNP. This can be avoided by generating cell-specific NPR-C KO (i.e. in 

endothelial cells, cardiomyocyte and fibroblasts). The undesired bone malformation 

phenotype will be avoided in these mouse lines and allow investigation of which cell type(s) 

CNP is acting on to produce the most favourable effects.  

5.9 Conclusion 

First, I have demonstrated that endothelium-derived CNP regulates coronary vascular 

function and is released in response to shear stress. Secondly, cardiomyocyte-derived CNP 

protects the heart against acute IR injury, and ameliorates cardiac dysfunction caused by β-

adrenergic over-stimulation or pressure-overload. In addition, cardiac fibroblast-derived 

CNP also contributes to the cardioprotective effects. Taken together, endogenous CNP 

from different cell sources has distinct, complementary roles in the heart, modulating 

cardiac function by influencing coronary vascular tone, protecting against IR injury and HF.  

This thesis also demonstrated pharmacological administration of CNP is proven to be 

beneficial in response to hemodynamic stress, which could potentially translate to patients 

with chronic hypertension to prevent the development of HF. The anti-ischaemic, anti-

hypertrophic and anti-fibrotic profile of CNP make it an attractive therapeutic target for 

further investigation as a potential treatment in acute coronary syndromes, MI and HF.  

Finally, the present study has shown that the protective effects of CNP are mediated, at 

least in part, via NPR-C activation. Thus, developing specific NPR-C agonists would be a 

promising therapeutic intervention in CVDs. 
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