
Non-Commutative Logic for Compositional
Distributional Semantics

Karin Cvetko-Vah1, Mehrnoosh Sadrzadeh2, Dimitri Kartsaklis3, and
Benjamin Blundell4

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
karin.cvetko@fmf.uni-lj.si

2 School of Electronic Engineering and Computer Science, Queen Mary University of London
m.sadrzadeh@qmul.ac.uk

3 School of Electronic Engineering and Computer Science, Queen Mary University of London
d.kartsaklis@qmul.ac.uk

4 ITS Research, Queen Mary University of London
b.blundell@qmul.ac.uk

Abstract. Distributional models of natural language use vectors to provide a
contextual foundation for meaning representation. These models rely on large
quantities of real data, such as corpora of documents, and have found applications
in natural language tasks, such as word similarity, disambiguation, indexing, and
search. Compositional distributional models extend the distributional ones from
words to phrases and sentences. Logical operators are usually treated as noise by
these models and no systematic treatment is provided so far. In this paper, we
show how skew lattices and their encoding in upper triangular matrices provide
a logical foundation for compositional distributional models. In this setting, one
can model commutative as well as non-commutative logical operations of con-
junction and disjunction. We provide theoretical foundations, a case study, and
experimental results for an entailment task on real data.

Keywords: non-commutative logic, compositional semantics, distributional se-
mantics, vector semantics, skew lattices, meaning, entailment

1 Introduction

Distributional semantics is a model of natural language that works with vector
representations of words embedded in a vector space of features. The vector rep-
resentations are formalisations of insights of Firth and Harris [8, 10] that words
that occur in similar contexts have similar meanings. These models are con-
trasted with traditional approaches to formal semantics where words are treated

∗Karin Cvetko-Vah acknowledges the financial support from the Slovenian Research Agency
(research core funding No. P1-0222). Mehrnoosh Sadrzadeh, Dimitri Kartsaklis and Benjamin
Blundell acknowledge financial support from AFOSR International Scientific Collaboration
Grant FA9550-14-1-0079.

2 Cvetko-Vah et al.

as indices in a dictionary or vocabulary list, a string of letters, or the set of their
denotations. The vector representations of words are built from co-occurrence
matrices [23], the columns of which are features of a text, the rows of which are
words, and the entries of which contain degrees of co-occurrences of the two.
Vector space models provide different ways of modelling similarity relations
between words [25, 21, 24], a concept that has found applications in areas such
as question answering, summarisation and classification.

In [4] a mathematical framework for a unification of the distributional method
and a compositional theory of grammatical types was introduced. This unifi-
cation is important because the insights on which the distributional method is
built mostly make sense for words. In order to obtain vector representations
for phrases and sentences and to reason about their degrees of similarity, one
needs to extend the distributional method from words to phrases and sentences.
The unified model combines the formal grammar models of language [3, 16, 15]
with the distributional theories of meaning. The result is a vector space model
where the meaning of a sentence is represented by a vector computed from the
vectors corresponding to the meanings of the words therein and the grammatical
structure of the sentence. In [4], the two approaches are connected by the use
of compact closed categories, which admit purely diagrammatic computations.
These computations are related to the work by Abramsky and Coecke on the
flow of information in the context of quantum information protocols [1].

Several questions were posed in [4], including extending the fragment cov-
ered there by adding their natural language coordination words to it and find
proper operators corresponding to the logical connectives “and”, “or”, “but”,
“unless”. This question turned out to be a challenge, since the category does not
have separate products and coproducts, neither do the usual vector product and
sum are fully distributive. hence they will not correspond to logical conjunction
and disjunction and their variants.

In the present paper, we connect the vector model of words and sentences to
skew lattice theory. Skew lattices present a non-commutative generalization of
lattices, they were introduced in 1949 by Jordan [11], the author of the quantum
field theory. The idea to study algebras of non-commutative idempotents arised
from the realization that a pair of observables A, B corresponding to properties
studied in quantum mechanics is compatible (i.e. they can be simultaneously
observed) if and only if any projection corresponding to A commutes with any
projection corresponding to B. The theory of skew lattices was later developed
mostly by Leech, cf. [17] and [20]. The idea that the conjunction and disjunction
in the natural language are sometimes non-commutative is not new. For instance,
in [9] the authors argue that: “A candle was burning on the table and the room
was brightly lit is not the same as The room was brightly lit and the candle was
burning on the table”. ([9], p. 76–77.)

Non-Commutative Logic for Compositional Distributional Semantics 3

This paper is structured as follows. In Section 2, we briefly recall the case
of Boolean vectors when the connectives “and”, “or” are commutative. In Sec-
tion 3, we generalize this setting to the non-Boolean non-commutative case.
We represent our data by vectors, or more generally by matrices, so that they
form a skew lattice. Then we use the skew lattice operations to represent the
non-commutative connectives “and”, “or”. We present a case study from real
data and show how entailment can be used to distinguish the non-commutative
conjunction from the commutative one. We use this case study as a pilot and
perform an experiment on real data. The experiment is an entailment task on a
dataset of verb-object conjuncts with the two types of conjunctions. The results
show that the non-commutative conjunction operator of skew lattices recognises
the non-commutative conjunctive entailments better than the commutative ones.

2 Commutative connectives and, or

We assume that pieces of information are encoded as vectors. Let n be a natural
number and consider the vector space Zn

2 . The connectives NOT, AND, OR are
encoded by the following operations:

NOT ¬(x1, x2, . . . xn) = (1− x1, 1− x2, . . . , 1− xn),
AND : (x1, x2, . . . , xn) ∧ (y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn),
OR : (x1, x2, . . . , xn) ∧ (y1, y2, . . . , yn) = (x1 ◦ y1, x2 ◦ y2, . . . , xn ◦ yn),

where u ◦ v = u+ v − uv.
It is an easy exercise to verify that (Zn

2 ;∧,∨) is a distributive lattice. In
fact, it is a bounded distributive lattice with bottom b = (0, 0, . . . , 0) and top
t = (1, 1, . . . , 1) in which every element is complemented (¬x being the com-
plement of x). Hence (Zn

2 ;∧,∨, b, t) is a Boolean algebra.

Example 1. Assume that we measure the properties “love” and “see”, like in
John loves Mary or John sees Mary. The information about the pair (John,
Mary) is encoded by a 4-dimensional vector (i, j, k, l), where each property is
encoded by a two-dimensional vector. More precisely, (i, j) = (1, 0) if John
loves Mary and (i, j) = (0, 1) if he hates her (which we consider to be the
negation of loving her), and (k, l) = (1, 0) if John can see Mary and (k, l) =
(0, 1) otherwise. Consider the statements:
s1 : John loves Mary and sees her. s2 : John doesn’t love Mary and he sees her.

What is the conjunction of statements s1, s2 with respect to the above definition?

s1 AND s2 : (1, 0, 1, 0) ∧ (0, 1, 1, 0) = (0, 0, 1, 0).

How are we to interpret this result? Denoting ⊥ = (0, 0) and likewise ⊥ =
(⊥, j, k) = (i, j,⊥) which is interpreted by false, we obtain that s1ANDs2 = ⊥
which sounds reasonable. Similarly, the disjunction of s1, s2 is obtained by:

4 Cvetko-Vah et al.

s1 OR s2 : (1, 0, 1, 0) ∨ (0, 1, 1, 0) = (1, 1, 1, 0).

Denoting > = (1, 1) and (>, j, k) = (j, k), (i, j,>) = (i, j) we obtain s1 ∨
s2 = (1, 0) which corresponds to the statement John sees Mary.

3 Non-commutative connectives and, or

There are examples in everyday life where the meaning of the connective and is
essentially non-commutative. Consider the following sentences:

Sentence 1: Alice found gold and ran away.
Sentence 2: Alice ran away and found gold.

Although the above two sentences are both composed from the same pair of
simple sentences, ie. Alice found gold. and Alice ran away. which are connected
by the connective and, their meaning is not the same. In the case of Sentence 1,
Alice most probably found gold and then ran away in order not to get caught or
get the gold stolen from her, while in the case of Sentence 2, she first ran away
from something that we are not aware of and for the reason that we don’t know,
and then while running away she ran into gold and found it. In the above exam-
ple we saw that the connective AND as used in the natural language can have
a time component implicit in it. The first action might be implicitly assumed to
come before the second one, and that can effect the meaning of the sentence.
There are cases in the natural language where given two actions that are con-
nected by an AND it is natural to assume that the second one has a deeper
impact. For instance, consider the following sentences:

Sentence 1: I drank the wine and filled the glass.
Sentence 2: I filled the glass and drank the wine.

While I drank a glass of wine in both cases, when the action of sentence s1
was completed I still had a full glass, while I ended up with an empty glass
when the action of sentence s2 was completed. As we shall see below there are
other instances when it is natural to glue together pieces of information by a
non-commutative connective AND.

There are also situations where a non-commutative version of the connective
OR is used in the natural language. To see this, consider the connective unless
in the sentence: Buy a blue car unless you can get a red car. If we want to
follow the above instruction, we are going to end up with either a red or a blue
car, however if both colours are available, we are going to choose the red one.
However, if the instruction was: Buy a red car unless you can get a blue car, in
the case that cars of both colours were available, we would choose a blue car.

What is the right mathematical frame to encapture the above situations where
the connectives AND, OR can be non-commutative? We adopt the definition
below from [17].

Non-Commutative Logic for Compositional Distributional Semantics 5

Definition 1. A skew lattice is an algebra (S;∧,∨) satisfying the following:

– associativity of ∧: (x ∧ y) ∧ z = x ∧ (y ∧ z),
– associativity of ∨: (x ∨ y) ∨ z = x ∨ (y ∨ z),
– idempotency of ∧: x ∧ x = x,
– idempotency of ∨: x ∨ x = x,
– absorptions: x∨(x∧y) = x = x∧(x∨y) and (x∧y)∨y = y = (x∨y)∧y.

A skew lattice is called strongly distributive if it satisfies the identites

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z).

The following result is due to Leech [19] and [18].

Proposition 1. Let P(A,B) be the set of all partial functions from A to B, for
A and B non-empty sets. Given partial functions f, g ∈ P(A,B) we set:

Restriction: f ∧ g = g|domf∩domg, Override: f ∨ g = f ∪ g|domg\domf .

Then (P(A,B);∧,∨) is a strongly distributive skew lattice.

Notice that given f, g ∈ P(A,B) as above then if domf = dom then
f ∧ g = g and f ∨ g = f . The algebras with operations restriction and override
were first studied in [2], while their connection to skew lattices was established
in [7].

One more example of non-commutative conjunction, this time between ad-
verbs: to paint the fence white and (then) brown vs. to paint the fence brown
and (then) white. In the first case we end up with a brown fence, while in the
second case the fence is white after we finish painting it. Again, the right one
won, just like in our definition of the operation restriction above.

Although the connective unless can be seen as a non-commutative OR it
is not consistent with the definition of the override operation above. That is be-
cause unless prefers the second statement, while override prefers the first. An in-
tepretation of non-commutative OR that is consistent with our setting was estab-
lished in [6] where the override operation was interpreted as x∨ y = q(x, x, y),
where q(x, y, z) is the Church algebra operation satisfying the fundamental
properties of the if-then-else connective: q(1, x, y) = x and q(0, x, y) = y.
Thus the override q(x, x, y) can be interpreted as if x then x else y. In everyday
language we may encounter an instance of override in a situation like: Buy a
blue car or else buy a red car. Our interpretation of this sentence is: Buy a blue
car if there is one; if not, then buy a red one. Hence, the first option is preferred.

Example 2. Assume that we observe our information by measuring the colour
(or the wavelength) of an object and its size. We assign to each measurement a
pair (x, y), where x is either 3 (blue), 2 (red), 1 (green) or 0 (not seen); and y is

6 Cvetko-Vah et al.

a positive real number (in meters, for example) or 0 (not seen). Applying AND
(restriction), OR (override) and interpreting 0 (not seen) as not-defined we get:

(3, 2) ∧ (0, 1) = (0, 1), (3, 2) ∨ (0, 1) = (3, 2)

(0, 1) ∧ (3, 2) = (0, 2), (0, 1) ∨ (3, 2) = (3, 1)

The first conjunction corresponds to (blue, 2m) AND (not seen, 1m) = (not seen,
1m), others are similarly unfolded. Notice that “blue and two meters high” is
denoted by (blue, 2m), while “blue and 2m high, and not seen and 1m high” is
denoted by (blue, 2m) AND (not seen, 1m). The connective AND is used for the
connection between vectors, ie. pieces of full information (although some of it
might be partial in that it may contain “not seen”).

Another way to encode the information of Example 2 is by use of upper-
triangular matrices (over the reals, for example) with 0-1 diagonals and possibly
non-zero elements in the last column (0 elsewhere). Each 1 on the diagonal
denotes that the property was observed (0: not observed), the element that lies
in the far right column and in the row of the particular 1 denotes the value of
the observed property. When we wish to encode more information we can also
allow non-zero elements in the first row of the matrices.

Given the matrix ring Mn(R) of all n×n real matrices, a subset S ⊆Mn(R)
is called a band if it is closed under multiplication and A2 = A holds for all
A ∈ S. Let S be such a band and let A,B ∈ S. We denote:

A ◦B = A+B −AB

A∇B = (A ◦B)2 = A+B +BA−ABA−BAB.

Note that if S is closed under ◦ then A ◦B = A∇B holds for all A,B ∈ S.

Proposition 2 ([5]). Let S consist of all (k+2)×(k+2) real matrices of following
form, then (S; ·,∇) is a skew lattice.

0 a1 ... ak c
0 e1 ... 0 b1
...

...
...

...
...

0 0 ... ek bk
0 0 ... 0 0

 where:
(i) each ei = 0 or 1,

(ii) bi = 0 for all i s.t. ei = 0,
(iii) ai = 0 for all i s.t. ei = 0,
(iv) c = a1b1 + · · ·+ akbk.

Corollary 1. Let S consist of all (k + 1)× (k + 1) real matrices of the following
form, then (S; ·, ◦) is a skew lattice.

e1 0 ... 0 b1
0 e2 ... 0 b2
...

...
...

...
...

0 0 ... ek bk
0 0 ... 0 0

 where: (i) each ei = 0 or 1,
(ii) bi = 0 for all i s.t. ei = 0,

Non-Commutative Logic for Compositional Distributional Semantics 7

Fig. 1. Examples of commutative versus non-commutative conjunction and disjunction

(blue, 2m) AND (not seen, 1m) (blue, 2m) OR (not seen, 1m)

u =

1 0 3
0 1 2
0 0 0

 1 0 3
0 1 2
0 0 0

 ·
0 0 0
0 1 1
0 0 0

 =

0 0 0
0 1 1
0 0 0

1 0 3
0 1 2
0 0 0

 ◦
0 0 0
0 1 1
0 0 0

 =

1 0 3
0 1 2
0 0 0


(not seen, 1m) AND (blue, 2m) (not seen, 1m) OR (blue, 2m)

v =

0 0 0
0 1 1
0 0 0

 0 0 0
0 1 1
0 0 0

 ·
1 0 3
0 1 2
0 0 0

 =

0 0 0
0 1 2
0 0 0

0 0 0
0 1 1
0 0 0

 ◦
1 0 3
0 1 2
0 0 0

 =

1 0 3
0 1 1
0 0 0



Example 3. We interpret the data from Example 2 in upper triangular 3× 3 ma-
trices from Corollary 1. The first row corresponds to colour, the second one to
height, and the third is zero (always, we need it so that the usual multiplica-
tion of matrices works). We assign to the vectors (blue, 2m) and (not seen, 1m)
matrices from which we then obtain the correspondence between vectors and
matrices. These are shown in Figure 1.

4 Boolean and skew semantics for natural language

For demonstration purposes, consider a simple fragment of English generated
by the context free grammar of Figure 2.

Fig. 2. An exemplary context free grammar for a simple fragment of English

S → NP VP
VP → V NP
S → S and/or S

NP → Adj NP
VP → VP Adv

NP → John, Mary, · · ·
Adj → lucky, tall, red, · · ·
Adv → deeply, slowly, quickly, · · ·
VP → sneeze, sleep,· · ·
V → love, kiss, · · ·

A model for the language generated by this grammar minus the logical rule
S→ S and/or S, is a pair (U, [[]]), where U is universal reference set and [[]] is an
interpretation function defined by induction as follows. For terminals we have:

– The interpretation of a terminal y ∈ {np, adj, adv, vp} generated by either
NP → np, Adj → adj, VP → vp, Adv → adv, is [[y]] ⊆ U . That is, noun
phrases, adjectives, verb phrases, and adverbs are interpreted as unary pred-
icates over the reference set.

– The interpretation of a terminal y generated by V → y is [[y]] ⊆ U × U ;
verbs are interpreted as binary predicates over the reference set.

8 Cvetko-Vah et al.

For non-terminals, for all rules except for S→ S and/or S, we have:

[[V NP]] = [[v]]([[np]]) [[NP VP]] = [[vp]]([[np]])

[[Adj NP]] = [[adj]]([[np]]) [[VP Adv]] = [[adv]]([[vp]])

Here, for R ⊆ U × U and A ⊆ U , by R(A) we mean the forward image of
R on A, that is R(A) = {y | (x, y) ∈ R, for x ∈ A}. To keep the notation
unified, for R a unary relation R ⊆ U , we use the same notation and define
R(A) = {y | y ∈ R, for x ∈ A}, i.e. R ∩A.

In order to interpret the logical rule S→ S and/or S, we have to move to a
lattice over U . If our connectives are Boolean, this lattice is P(U) and we have:

[[S and/or S]] = [[S]] ∧ / ∨ [[S]]

for∧/∨ the Boolean lattice operations. In this case, we are working in a Boolean
model (P(U), [[]]). For non-Boolean non-commutative logical operations, we
work with a skew lattice over U .

Definition 2. A skew lattice semantics for the language generated by the gram-
mar of Figure 2 is (S(U);∧,∨; [[]]), where U is a universal reference set, S(U)
consists of the real matrices defined in Proposition 2 and [[]] is an interpretation
function defined by induction as follows. To terminals we assign:

– to each np, vp a skew matrix [[np]] := unp, [[vp]] := uvp satisfying e1 =
· · · = ek = 1 and all ai = bi 6= 0,

– to each v a diagonal matrix [[v]] := uv of the form (1) with at least one 1 on
the diagonal (and all other entries 0),

– to each adj a skew matrix [[adj]] := uadj of the form e1 = · · · = ek = 1,
a1 = · · · = ak 6= 0 and b1 = · · · = bk = 0,

– to each adv a skew matrix [[adv]] := uadv of the form e1 = · · · = ek = 1,
a1 = · · · = ak = 0 and b1 = · · · = bk 6= 0.

To non-terminals we assign:

– to each x→ y z, the skew matrix [[x]] = ux := [[y]]× [[z]],
– to S→ S and/or S, the skew matrix [[S]] := [[S]] ∧ / ∨ [[S]], for ∧,∨.

Note that each ei-position in the verb item corresponds to a particular verb.
We call an index i a defining index for a skew matrix A if aii 6= 0. The product
A ·B can only be nonzero if A and B have at least one common defining index.

Consider the set of terminals “John, loves, sees, Mary, sleeps, lucky, deeply”.
We encode our data by the 5× 5 matrices, presented in Figure 3. The ∗ element
in uMary equals 3m2 and the ∗ element in uJohn equals 3j2. All our matrices are
idempotent, i.e. they satisfy A2 = A. So we have [[Mary]] = uMary, [[John]] =
uJohn, [[loves]] = uloves, and [[John loves Mary]] := uJohn × uloves × uMary.

Non-Commutative Logic for Compositional Distributional Semantics 9

Fig. 3. Example skew matrices for words

uMary =


0 m m m ∗
0 1 0 0 m
0 0 1 0 m
0 0 0 1 m
0 0 0 0 0

 , uJohn =


0 j j j ∗
0 1 0 0 j
0 0 1 0 j
0 0 0 1 j
0 0 0 0 0

 , uloves =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

usleeps =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 , ulucky =


0 l l l 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 , udeeply =


0 0 0 0 0
0 1 0 0 d
0 0 1 0 d
0 0 0 1 d
0 0 0 0 0

 ,

[[Mary loves John]] =


0 m 0 0 mj
0 1 0 0 j
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , [[Mary sleeps]] =


0 0 0 m 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 ,

[[lucky Mary]] =


0 l l l 3lm
0 1 0 0 m
0 0 1 0 m
0 0 0 1 m
0 0 0 0 0

 , [[Mary sleeps deeply]] =


0 0 0 m 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 d
0 0 0 0 0

 .

5 A case study from real data

In this section, we use real data to build our matrices and detail the computations
for one set of the example sentences of the paper. We perform a case study with
2 verbs, two nouns, and one adjective. We work with 5× 5 matrices, where one
dimension of each verb matrix is reserved such that the two verbs of the example
have a common defining index.

Consider the lemmatised versions of the sentences“filled glass and drank
wine” and “drank wine and filled glass” of Section 3. We fill the matrices of
words of these sentences with real data and compute their conjunction, in the
two presented orders. After the first conjunct, the glass will be full and after the
second conjunct, the glass will be empty. We verify if this fact indeed follows
from real data, by computing each entailment and observing which one of the
conjuncts entails “full glass” with a larger degree.

The terminals of our sentences are “filled, drank, glass, wine, full, empty”.
We build skew matrices for these. The ai, bi entries for nouns and adjective
matrices are obtained from the PPMI-normalised version (see Appendix for the
PPMI formula and its explanation) of the degree of co-occurrence of each word
with the two features of “full” and “empty”. The entries a2 = b2 correspond to
the feature “empty” and the entries a3 = b3 to the feature “full”. Dimension 4

10 Cvetko-Vah et al.

records the common defining index. We copy the information corresponding to
the feature “full” in this dimension. The reason we are copying this dimension
and not dimension 2 is because we are verifying the degree of entailment with
the phrase “full glass” (and not with “empty glass”), thus entries a4 = b4 should
be the same as a3 = b3. This is important for matrices of the verbs, where cell
c33 records the common defining index of the “drank’” and “filled”matrix.

Note that, in a Boolean setting the two properties of being full and being
empty are opposites of each other: if one of them is 1, the other will be 0. In
real scenarios, however, this is not necessarily the case. For instance, i the data
is presented in Figure 4, in the matrix of “glass”, the PPMI-normalised versions
of the number of times “glass” occurred 5 words close to features “full” and
“empty” are 11 and 10.2, respectively. This is because a glass can be empty and
it can be full in different contexts.

Fig. 4. A set of word matrices derived from data

glass =


0 10.2 11 11 346
0 1 0 0 10.2
0 0 1 0 11
0 0 0 1 11
0 0 0 0 0

wine =


0 8.7 10.9 10.9 313.3
0 1 0 0 8.7
0 0 1 0 10.9
0 0 0 1 10.9
0 0 0 0 0

 full glass =


0 1 1 1 32.2
0 1 0 0 10.2
0 0 1 0 11
0 0 0 1 11
0 0 0 0 0



drank =


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 filled =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 full =


0 1 1 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0



We compose these word matrices an obtain matrices for phrases, we then
form their two possible conjunctions, resulting in matrices of Figure 5. We see
that “drank wine and filled glass” is closer (although very slightly so) to “full
glass” than “filled glass and drank wine”. This is because the entry b3 of the first
conjunct is 11, this is closer to the same entry in “full glass” that is, 11, than
the b3 of the second conjunct, which is 10.9. All the other entries are of equal
distance of the entries of “full glass”. The difference is small due to the fact
that we took the features “full” and “empty” to be the same as the words “full”
and “empty” and that these words are examples of words that do often occur in
similar contexts, thus we get very similar numbers for them, i.e. 11 and 10.2. A
more refined analysis on features that are not similar will reflect better on data.

Non-Commutative Logic for Compositional Distributional Semantics 11

Fig. 5. The set of conjunctive phrase matrices built from word matrices Figure 4.

drank wine and filled glass =


0 0 0 0 0
0 1 0 0 8.7
0 0 1 0 10.9
0 0 0 0 0
0 0 0 0 0

 ·

0 0 0 0 0
0 0 0 0 0
0 0 1 0 11
0 0 0 1 11
0 0 0 0 0

 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 11
0 0 0 0 0
0 0 0 0 0



filled glass and drank wine =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 11
0 0 0 1 11
0 0 0 0 0

 ·

0 0 0 0 0
0 1 0 0 8.7
0 0 1 0 10.9
0 0 0 0 0
0 0 0 0 0

 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 10.9
0 0 0 0 0
0 0 0 0 0



6 Large scale entailment experiment

In previous work [13, 12], we developed theory for and experimented with en-
tailment in compositional distributional semantics. We built three entailment
datasets from real data by using linguistic resources such as WordNet. These
datasets consist of subject-verb and verb-object phrases and subject-verb-object
sentences. We worked with different degrees of feature inclusion on the vec-
tors and matrices of these phrases and sentences and measured the entailments
thereof based on these degrees. In this section, we repeat the experiment of the
previous section on a logical extension of the verb-object part of this dataset.

Our skew matrices are 300 × 300 and their entries are normalised using
probabilistic versions of raw co-occurrences and their non-negative logarithms,
a measure known as Positive Pointwise Mutual Information (PPMI); the formu-
lae and explanations for these are given in the Appendix. The raw co-occurrence
counts (before normalisation) were collected in the context of a 5-word window
around the words. The verb-object dataset has 436 verb-object pairs, 218 of
which stand in a positive entailment relationship with each other and 218 in a
negative one. A snapshot of the positive entailments is presented in Figure 6.
The negative entries are the reverses of the positive ones. For an explanation on
how these datasets are built, please see [12].

We extended the above dataset with commutative and non-commutative
conjunctions in the following way. From each two entries of the dataset vo1 `
vo2 and vo′1 ` vo′2, we form two conjunctive entries, of the following forms

vo1 ∧ vo′1 ` vo2 ∧ vo′2 and vo′1 ∧ vo1 ` vo2 ∧ vo′2

We then compute a matrix for each of the vo’s (i.e. for vo1, vo2, vo′1, vo
′
2). We

compute their skew conjunctions, with the goal of verifying whether this non-
commutative conjunction does perform better on recognising the conjunctive

12 Cvetko-Vah et al.

entailments of the first case above. In the first case, vo1 entails vo2 and vo′1
entails vo′2, hence vo1 ∧ vo′1 should entail vo2 ∧ vo′2. This entailment fails for
second case, because the conjunction is non-commutative, that is vo′1 does entail
vo2, similarly, vo1 does not entail vo′2, thus the entailment between their non-
commutative conjunctions fails.

Fig. 6. Examples from the verb-object entailment dataset and results of the non-commutative
conjunction experiment with the PPMI and probability ratio on the 1st sample of dataset.

V O ` V ′O′

sign contract ` write agreement
publish book ` produce publication
sing song ` perform music
reduce number ` decrease amount
promote development ` support event

Inclusion APinc BAPinc SAPinc SBAPinc
PPMI

non-comm.
0.52 0.67 0.60 0.82 0.82

comm.
0.51 0.63 0.58 0.81 0.80

Probability
non-comm.

0.58 0.65 0.61 0.80 0.79
comm.

0.56 0.60 0.57 0.79 0.77

The results are evaluated by a binary classification of the existing entailment
measures: APinc, BAPinc, SAPinc, SBAPinc. These are from the distributional
literature on degrees of entailment between words and sentences, the formulae
for computing them and explanations thereof are presented in the Appendix. As
we are not working with Boolean models, we will have degrees of entailment
and report Area Under Curve; this returns an evaluation of the entailment at ev-
ery possible non-zero threshold. The baseline is labelled “Inclusion”: the binary
entailment between the features. Since our sample size is large (about 6000, ob-
tained by recasting all of the conjuncts against each other), we performed the
experiments on random subsets of the dataset, each with size 1000. The results
of the first sample are in right hand table of Figure 6. The results of the second
sample are in the Appendix.

With all of the measures and in both normalisation schemes, the non-commutative
conjunction comes out as a more appropriate operation for judging the non-
commutative entailments. These results are preliminary, they are based on word-
word matrices. A more appropriate empirical evaluation will be obtained by
working on word-feature matrices, where the columns are not just word, but a
set of words clustered together using feature induction techniques such as Single
Value Decomposition (SVD).

Non-Commutative Logic for Compositional Distributional Semantics 13

7 Conclusions and future work

We reviewed the theory of skew lattices, which formalise a logic with non-
commutative conjunction and disjunction. We motivated the existence of these
operations in natural language. We presented an account of compositional dis-
tributional semantics where meanings of words, phrases, and sentences are vec-
tors. We then showed how the data represented by skew lattices is encoded in
matrices and developed a skew lattice semantics for compositional distributional
models. Treating logical operators has been a challenge to these models and this
paper provides a solution. We related our work to real data by first recasting one
of the examples of the paper against co-occurrence matrices and then performed
an experiment on a conjunctive entailment task. A similar experiment can be
performed for the non-commutative disjunction, this is left to future work. On
the theoretical side, with the current definitions, the matrices of verbs have to
have 0-1 entries. We aim to generalise the setting, either by changing the matri-
ces of nouns and adjectives, or the definition of the non-commutative conjunc-
tion, so we can populate all the matrices with real co-occurrence counts.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: In: Proceed-
ings of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS?04), IEEE
Computer Science. Press. Arxiv:quant-ph/0402130 (2004)

2. Berendsen, J., Jansen, D.N., Schmaltz, J., Vaandrager, F.W.: The axiomatization of override
and update. J. Applied Logic 8, 141–150 (2010)

3. Chomsky, N.: Three models for the description of language. IRE Transactions on Informa-
tion Theory 2, 113–124 (1956)

4. Coecke, B., Sadrzadeh, M., Clark, S.: Mathematical Foundations for Distributed Composi-
tional Model of Meaning. Lambek Festschrift. Linguistic Analysis 36, 345 – 384 (2010)

5. Cvetko-Vah, K.: Skew lattices of matrices in rings. Algebra Universalis 53, 471–479 (2005)
6. Cvetko-Vah, K., Salibra, A.: The connection of skew boolean algebras and discriminator

varieties to church algebras. Algebra Universalis 73, 369–390 (2015)
7. Cvetko-Vah, K., Leech, J., Spinks, M.: Skew lattices and binary operations on functions. J.

Applied Logic 11, 253–265 (2013)
8. Firth, J.: A synopsis of linguistic theory 1930–1955. In: Studies in Linguistic Analysis (1957)
9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at

Substructural Logics, Studies in logic and the foundations of mathematics, vol. 151. Elsevier,
Amsterdam (2007)

10. Harris, Z.: Distributional structure. Word (1954)
11. Jordan, P.: Über nichtkommutative verbände. Arch. Math. 2, 56–59 (1949)
12. Kartsaklis, D., Sadrzadeh, M.: A compositional distributional inclusion hypothesis. In: Log-

ical Aspects of Computational Linguistics. Celebrating 20 Years of LACL (1996-2016) - 9th
International Conference, LACL 2016, Nancy, France, December 5-7, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 10054, pp. 116–133. Springer (2016)

13. Kartsaklis, D., Sadrzadeh, M.: Distributional inclusion hypothesis for tensor-based compo-
sition. In: COLING 2016, 26th International Conference on Computational Linguistics, Pro-
ceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan. pp.
2849–2860. ACL (2016)

14 Cvetko-Vah et al.

14. Kotlerman, L., Dagan, I., Szpektor, I., Zhitomirsky-Geffet, M.: Directional distributional
similarity for lexical inference. Natural Language Engineering 16(04), 359–389 (2010)

15. Lambek, J.: Type grammars revisited. In: proceedings of LACL 97. Lecture Notes in Artifi-
cial Intelligence, vol. 1582, pp. 1–27. Springer Verlag (1997)

16. Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65,
154–170 (1958)

17. Leech, J.: Skew lattices in rings. Algebra Universalis 26, 48–72 (1989)
18. Leech, J.: Skew boolean algebras. Algebra Universalis 27, 497–506 (1990)
19. Leech, J.: Normal skew lattices. Semigroup Forum 44, 1–8 (1992)
20. Leech, J.: Recent developments in the theory of skew lattices. Algebra Universalis 52, 7–24

(1996)
21. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 17th

international conference on Computational linguistics-Volume 2. pp. 768–774. Association
for Computational Linguistics (1998)

22. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the International
Conference on Machine Learning. pp. 296–304 (1998)

23. Rubenstein, H., Goodenough, J.: Contextual Correlates of Synonymy. Communications of
the ACM 8(10), 627–633 (1965)

24. Schuetze, H.: Automatic word sense discrimination. Computational Linguistics 24(1), 97–
123 (1998)

25. Weeds, J., Weir, D., McCarthy, D.: Characterising measures of lexical distributional simi-
larity. In: Proceedings of the 20th International Conference on Computational Linguistics.
COLING ’04, Association for Computational Linguistics (2004)

8 Appendix

8.1 Normalisation schemes

The raw co-occurrence counts are normalised using two measures:

– Probability Ratio
P (w, f)

P (w)P (f)

where P (w, c) is the probability that words w and feature f have occurred
together, and P (w) and P (f) are probabilities of occurrences of w and f .
This measure tells us how often w and f were observed together in compar-
ison to how often they would have occurred were they independent.

– Positive Pointwise Mutual Information (PPMI)

max(log(
P (w, f)

P (w)P (f)
), 0)

This is the positive version of the logarithm of probability ratio, where the
negative logarithmic values are sent to 0.

Non-Commutative Logic for Compositional Distributional Semantics 15

8.2 Formulae for computing entailment

APinc is the average precision applied to feature inclusion. It measures a ranked
version of feature inclusion on vectors −→u and −→v , from highest to lowest:

APinc(u, v) =
∑

r [P (r) · rel′(fr)]
|F (−→u)|

(1)

In the above, fr is the feature in −→u , denoted by F (−→u), with rank r; P (r) is the
precision at rank r, which measures how many of −→v ’s features are included at
rank r in the features of −→u , and rel′(fr) is a relevance measure reflecting how
important fr is in −→v . It is computed as follows:

rel′(f) =

{
1− rank(f,F (−→v))

|F (−→v)|+1
f ∈ F (−→v)

0 o.w.
(2)

BAPinc balances APinc with the LIN degree of similarity between the vectors.
BAPinc was developed in [14] after realising that APinc returns poor results
when the vectors had a radically different number of non-zero features; the LIN
measure was included to balance out the extra dimensions of the longer vector.

BAPinc(u, v) =
√

LIN(u, v) · APinc(u, v) (3)

LIN is a similarity measure between vectors and was defined in [22]. It can be
replaced with any other similarity measure, such as the cosine measure.

SAPinc is a measure developed in [12], based on BAPinc, but for dense
vectors. Whereas APinc and BAPinc were developed to compute the degree of
entailment between word vectors, which are usually sparse since word vectors
live in high dimensional spaces (e.g. 5000), SAPinc was developed to deal with
phrase and sentence vectors. These are obtained by composing the vectors of
words in lower dimension (e.g. 300), where the compositional operators accu-
mulate the information and return dense results.

SAPinc(u, v) =
∑

r [P (r) · rel′(fr)]
|−→u |

(4)

Here, P (r) and rel′(fr) are defined differently, as shown below:

P (r) =

∣∣{f (u)
r |f (u)

r ≤ f
(v)
r , 0 < r ≤ |−→u |}

∣∣
r

(5)

rel′(fr) =

{
1 f

(u)
r ≤ f

(v)
r

0 o.w.
(6)

For more explanations on these measures please see [12, 13].

16 Cvetko-Vah et al.

8.3 Experimental results for a second sample

The results of the experiment of Section 6, with PPMI and probability ratio
matrices on the second 1000 sample of the dataset are presented in Figure 7.

Fig. 7. Results of the non-commutative conjunction experiment with the PPMI and probability
ratio on the 2nd sample of dataset.

inclusion APinc BAPinc SAPinc SBAPinc
PPMI non-comm.

0.58 0.64 0.60 0.81 0.80
PPMI: comm.

0.57 0.61 0.58 0.79 0.78
Prob: non-comm.

0.57 0.63 0.60 0.82 0.80
Prob: comm.

0.56 0.60 0.58 0.80 0.78

Similar to the results presented in the paper, the non-commutative operation
perfoms better on recognising the non-commutative conjunctive entailments.

