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Abstract 

For every 200 births in the UK, one will end in a stillbirth. Stillbirth is classified as a baby 

born dead after 24 weeks gestation. Mutations in genes that cause ion channelopathies are 

known to cause sudden cardiac death in adults and children. Prenatal diagnosis of LQT has been 

possible for decades, creating a disease spectrum where channelopathies may fatally influence 

pregnancy. We sequenced 35 candidate genes in 70 unexplained stillbirth cases. Thirty-nine 

cases harboured a predicted damaging protein missense variant. Two novel and two rare 

variants were observed in the transient receptor potential melastatin 7 (TRPM7) gene and five 

rare genetic variants were found in A-kinase anchor protein 9 (AKAP9). The aim of this PhD was 

to perform functional studies of these variants in TRPM7 and AKAP9.  

TRPM7 is an ion channel indispensable for mouse cardiogenesis. Two TRPM7 variants 

(p.G179V and p.T860M) showed significantly reduced current compared to wild-type channels. 

Conversely, cells expressing p.R494Q TRPM7, had a significant increase in current compared to 

WT channels, but only in CHO-K1 cells. Western blot analyses failed to detect full length TRPM7 

in cells transfected with either p.G179V or p.T860M compared to wild-type expressing cells. 

Proteosomal inhibition using MG132 produced a small but visible band in p.T860M transfected 

cells. Expression of TRPM7 in iPSC-derived cardiomyocytes increases during cell maturation, and 

TRPM7-like current was measured in 20-23 day old cardiomyocytes.  

AKAP9 is required to couple adrenergic stimulation in the heart with faster cardiac 

repolarisation. Cells expressing WT AKAP9 alongside the KCNQ1/KCNE1 potassium channel 

responded to β-adrenergic stimulation, however those transfected with p.A3043T AKAP9 did 

not respond to treatment with forskolin.  

Our analyses supports two deleterious variants in TRPM7 and one in AKAP9 in 

unexplained stillbirth cases. These heterozygous variants could lead to haploinsufficiency and 

may be a cause of stillbirth. 
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1 Introduction 

1.1 Stillbirth 

Over the past few decades there has been a remarkable shift in healthcare policy aimed 

at improving the outcome of pregnancies across the world. This involved increasing attention to 

maternal mortality, neonatal survival and the causes of death in children 1-3. An approach which 

has received less attention however, is investigation into the causes of child loss before birth. 

Stillbirth is a foetal death at or later than 22 weeks of gestation. It is surprisingly common even 

in the developed world; in the UK there were 4.64 stillbirths per 1000 total births reported in 

2013 4. More than 1 in every 200 births in the US ends with stillbirth despite highly-rated levels 

of antenatal care 5.  

 

1.1.1 Epidemiology 

Across the globe, there is a wide range of stillbirth rates; in countries with less antenatal 

care or little drive to reduce stillbirth the occurrence is alarmingly high 6. In middle- and low-

income countries recent analysis of stillbirth occurrence estimated a total of 2.6 million 

stillbirths in 2015, with only 2% occurring in high income countries 7. Over half of stillbirths occur 

in rural sub-Saharan Africa and South Asia where in 2008 there were 29.0 and 26.7 stillbirths per 

1000 births, respectively 6. Of almost four million live births in China between 2012 and 2014 

there were 37,855 stillbirths, equating to 8.8 per 1000 births 8. 

 

1.1.2 Causes of Stillbirth 

There have been numerous studies investigating known, probable and possible causes 

of stillbirth alongside work to discover factors that increase risk 9-13. Current data produce an 

unclear picture, not least because of the disparate reporting methods used by clinicians to report 
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stillbirths. Over 30 different systems have been used to classify the causes of stillbirth, 

prompting Flenady et al. to test the performance of the six most robust and well known 14. 

Analysis of 857 stillbirth cases across 7 countries showed significant differences in how they 

were classified. The ‘Wigglesworth’ criteria giving 50.2% as unexplained against the most 

stringent, CODAC, that reported 9.5%. These classification systems corroborate clinical findings, 

other relevant conditions and placental pathology to produce a verdict on the cause of death. 

The most commonly identified causes of stillbirth are obstetric complications, placental disease, 

genetic anomalies, umbilical cord accidents, foetal and maternal haemorrhage and infection 

9,15,16.   

In 2011, Bukowski et al. reported complete post-mortem examinations in 512 cases and 

were able to find possible causes in 390 (70%) of these, with some having more than one 

possible cause (Figure 1.1 & Table 1.1) 9. The two most common causes were obstetric 

complications and placental insufficiency accounting for 29.3% and 23.6%, respectively.  

Bukowski et al. classified all intrapartum stillbirths (occurred during delivery) as 

obstetric complications, which including placental abruption, multiple gestations and cervical 

insufficiency. An abruption occurs when the placenta separates from the uterus, leading to 

vaginal bleeding and abdominal pain. The higher the degree of separation, the more likely foetal 

demise 17. Placental insufficiency is a progressive deterioration of function over time, leading to 

reduced transfer of oxygen and nutrients to the foetus 18. This leads to growth restriction, 

perturbing the development of multiple organs. Genetic causes of stillbirth can include 

chromosomal monosomy or trisomy, while structural abnormalities denote a malformed foetus. 

Multiple complications can be attributed to a cord anomaly, including cord entrapment, vasa 

previa (vessel rupture) or evidence of vessel occlusion.  

Earlier work by Varli et al. created a ‘Stockholm’ classification of stillbirth by evaluating 

382 cases. Varli et al. noted placental insufficiency and infection as the most common cause of 

stillbirth 19. This classification system identified 17 separate causes of death, each split into a 
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definite, probable and possible cause of stillbirth. The most common groups being chromosomal 

abnormalities, infections, transfusion abnormalities, hypoxia, placental insufficiency, placental 

abruption, pre-eclampsia and umbilical cord complications. The Stockholm classification does 

not mention multiple gestations as a cause of stillbirth and reports placental abruption 

individually – under representing obstetric complications in comparison to the work by Bukowski 

et al. 9,19.  

More recent work by Bring et al. encompassing not just Stockholm but all of Sweden 

reported on the causes of stillbirth in 2013 20. The group’s findings mirrored their previous data, 

showing that placental insufficiency and infection were the two major causes in Sweden. Parast 

et al. in 2007 reviewed placental slides from 62 stillbirth cases, with 25 of these going 

unexplained. However, 13 of the 25 had significant cord compression 21. Due to a lack of 

autopsies and placental pathology in developing nations, there is little data covering the possible 

cause of the majority of stillbirths 22. It is believed that the majority of these could be prevented 

through folate supplementation, malarial prevention and generally improved healthcare for 

pregnant mothers 6. 

These studies by Bukowski et al., Varli et al. and Bring et al. whilst informative also 

highlight the relative lack of published data into the causes of stillbirth based upon post-mortem 

analysis 9,20,22. There is no unified definition of stillbirth, and little consensus in classifying its 

causes, making definitive epidemiological work difficult in the developed world and impossible 

elsewhere 6,9,14,19,23. While many stillbirths go unexplained, significant research has been carried 

out to identify factors that increase risk. This has provided some evidence as to the possible 

mechanisms that cause it 11,24. 
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Figure 1.1. Causes of stillbirth following post-mortem. Charts from three separate studies tallying the possible cause 
of premature foetal death. Figures are adapted from data published by Bukowski et al., Varli et al. and Bring et al. 
9,19,20. 

 

 

 

 

Cause of Stillbirth 
Bukowski 2011 9 

N = 512 (%) 

Varli 2008 19 

N = 382 (%) 

Bring 2013 20 

N = 1089 (%) 

Obstetric Complication / 

Placental Abruption 
150 (29.3) 31 (8.1) 114 (10.5) 

Placental Insufficiency 121 (23.6) 86 (22.5) 242 (22.2) 

Genetic/Structural 70 (13.7) 44 (11.5) 112 (10.3) 

Infection 66 (12.9) 74 (19.4) 239 (21.9) 

Umbilical Cord Anomaly 53 (10.3) 28 (7.3) 85 (7.8) 

Hypertension 47 (9.2) 15 (3.9) 57 (5.2) 

Other 56 (10.9) 34 (8.9) 106 (9.8) 

Unexplained or Unknown 122 (23.8) 70 (18.3) 134 (12.3) 

Table 1.1. Statistics of stillbirth following post-mortem analysis. Statistics adapted from Bukowski et al., 
Varli et al. and Bring et al. 9,19,20. Total occurrence and (percentages) of the total are given. Bukowski et al 
identified multiple causes of death for some cases resulting in more causes of death than total stillbirths. 
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1.1.3 Risk Factors of Stillbirth 

As noted, few studies have attempted to tackle the pathological causes of stillbirth using 

in-depth post-mortem analysis 9,20,22. Observing lifestyle choices and maternal factors associated 

with foetal death rates can give mechanistic insight into what causes a healthy pregnancy to 

become stillborn. 

Gestational Age 

Bukowski et al. found a marked difference in the proportion of placental and obstetric 

disorders thought to be the probable cause of stillbirth when their study population was split 

into early (<24 weeks) and late (>24 weeks) stillbirths 9. In 52.4% of early stillbirths, obstetric 

complication was the most likely cause, compared to only 17.8% in stillbirths after 24 weeks. 

Conversely placental disorders were found to account for 28.4% of late stillbirths, compared to 

14.1% in early stillbirths. Bring et al. found that 18.7% of stillbirths were due to infection 

between the 22nd and 36th week of gestation compared to 26.3% at ages over 37 weeks. 

A much larger scale study, conducted from 1987 to 1989 by George Feldman studied 

the links between gestational age, ethnicity and maternal age on the likelihood of pregnancy 

ending in stillbirth 12. Studying a huge cohort of 367,597 live births and 2,454 stillbirths after 25 

weeks gestation, Feldman showed how multiple risk factors interact to potentially precipitate 

stillbirth. Of 822 births at 26 weeks of gestation, 151 were stillborn, 18.4% of the total births 

(Figure 1.2). However, by 36 weeks only 0.1% of the 12,717 births were stillborn, and this rate 

remained low with 0.2% of births at 40 weeks being stillbirths. Interestingly, after this point and 

up to 43 weeks of gestation, the rate of stillbirth appeared to increase marginally to 0.3% of live 

births. A key observation is that although the risk of stillbirth halves from 26 weeks onward every 

2.9 weeks (95% CI, 3.2 – 2.7), the number of stillbirths each gestational week remains 

remarkably constant despite over 92% of births occurring after 35 weeks (Figure 1.2B). 
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Figure 1.2. Link between gestational age and stillbirth. A The proportion of pregnancies ending in stillbirth at 

gestational ages from 26 weeks. B Cumulative proportions of total stillborn (blue) and live births (red) in New York 

between 1987-1989. Created from data published by Feldman et al. 8.
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Maternal Factors 

A meta-analysis of 96 separate studies published in 2011 highlighted a large number of 

lifestyle related risk factors that can adversely affect pregnancy outcome 11. Maternal obesity 

had the largest effect on stillbirth occurrence, contributing to roughly 8000 stillbirths annually 

across a range of high income countries. Flenady et al. showed that having a BMI between 25-

30 kg/m2 increased risk of stillbirth by 23%, while being over 30 kg/m2 increased it by 63% 11. 

Maternal age over 35 years significantly increased the likelihood of stillbirth by 65%, while 

primiparity (a first pregnancy) was associated with a 42% increase. This study noted maternal 

smoking in disadvantaged populations could account for up to 20% of stillbirths. Data from 

Mohsin et al. from Australia also showed smoking during pregnancy increased risk of stillbirth 

by between 5-17% depending on whether gestational age was taken into account 25. Maternal 

diabetes and hypertension also increased stillbirth rates by 82% and 20% respectively. Mothers 

of low and medium economic status also had a significantly higher risk of stillbirth compared to 

those who had a higher economic status 25. This effect is mirrored in Sweden, where population-

based data from 702 stillbirths and 702 controls showed ‘blue-collar’ skilled or unskilled workers 

are more than twice as likely to have a stillborn child compared to high level ‘white-collar’ 

workers 26.  

Antenatal Care 

 The provision of care for pregnant mothers has a huge statistical effect on stillbirth rate. 

Mohsin et al. found those that received no antenatal care were twice as likely to have a stillborn 

child, while reports in 2016 from China show mothers with no antenatal visits are 14.97 times 

as likely to have a stillbirth compared to those with more than 10 visits 8,25. The quality of care 

mothers receive in hospitals also appears to influence stillbirth rates. Mothers who attended 

poorer hospitals (those that had fewer beds) were 54% more likely to have a stillbirth compared 

to those in large, well-funded hospitals. 
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1.1.4 Unexplained Stillbirth 

Despite extensive post-mortem investigation of cases in the study by Bukowski, 30% 

could not be given a ‘probable’ cause of death and therefore were completely unexplained 9. In 

a smaller study of 310 stillbirths, Horn et al. found that in 15.2% of cases, despite ‘systematic 

examination of all major cranial, thoracic and abdominal organs’, the cause of death could not 

be found 10. Data from Sweden found over 18% (Figure 1.1) of stillbirths were unexplained or 

the cause of death was unknown 19,20. Many other studies have noted the alarmingly high rate 

of unexplained stillbirths 13,27,28. These unexplained stillbirths appear to also follow a similar 

trend to explainable stillbirths in terms of risk factors. A study of single pregnancies in Oslo 

between 1986 and 1995 showed that sudden unexplained stillbirth risk increased when mothers 

were older, smoked or were overweight and obese 24. 

Unexplained intrauterine death or stillbirth is a disease of exclusion. Only after detailed 

post mortem analysis and genetic karyotyping can a stillborn baby be classified as unexplained. 

This is unusual for many diseases, where specific symptoms and autopsy findings are hallmarks 

of certain pathologies, for example chest pain and coronary artery occlusion in myocardial 

infarction (MI). However, a specific area of cardiac pathology draws similar parallels to 

unexplained stillbirth - cases of sudden cardiac death (SCD). Initially, like unexplained stillbirth, 

SCD was a disease of exclusion. For a death to be classified as a SCD, post mortem analysis must 

show a complete lack of underlying disease in any other organ. Now, increased knowledge of 

cardiac biology and genetic variants that cause disease can provide explanations for these 

sudden deaths. 
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1.2 Sudden Cardiac Death  

Sudden cardiac death is one of the most common causes of death worldwide, and is 

commonly attributable to cardiovascular disease or myocarditis 29. Common causes of stillbirth 

normally involve congenital abnormalities or placental problems. Apart from pre-eclampsia, few 

if any are related to a cardiovascular specific defect. However, like unexplained stillbirth, SCDs 

go completely unexplained despite post-mortem analysis and are also known as sudden 

unexplained deaths (SUDs) 30,31. In contrast to unexplained stillbirth, genetic and molecular 

autopsy of key genes associated with SCD can provide a likely mechanism of death 32. 

 

1.2.1 Incidence 

 Reporting of SCD varies greatly, but most studies refer to a sudden collapse followed 

rapidly by death, or an unexpected death known to have been acute 33. The incidence of SCD 

across the globe is estimated to be between 180,000 and 450,000 cases a year 34. Prospective 

studies in Ireland report that 51.2 SCDs per 100,000 people occur annually. A similar study from 

the Netherlands also reported that in 1000 people from the general population, one will have a 

cardiac arrest every year 35,36 .  

Coronary artery disease (CAD) is one of the biggest causes of morbidity and mortality in 

the world, and SCD accounts for more than 50% of deaths in patients with CAD 37. A study on 

out of hospital cardiac arrests showed how devastating this condition can be, in 44% of males 

and 53% of women this was the first manifestation of any heart disease 36. Alarmingly 18.5% of 

people who have a sudden cardiac arrest (SCA) died suddenly and only 6% of patients who 

received resuscitation were discharged alive from hospital. Secondly, the survival rate from SCAs 

witnessed at home was only 8%, compared to 18% outside of the home. 
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1.2.2 Causes of SCD 

 The very nature of SCD makes it difficult to dissect mechanistically as it is sudden, with 

very few chronic symptoms to suggest a likely acute episode leading to death. It is hypothesised 

that a transient event and underlying electrical instability of the myocardium precipitates lethal 

ventricular arrhythmia – producing a complete loss of synchronous contraction and rapid 

hemodynamic collapse 29,37. There are several possible arrhythmogenic substrates that 

precipitate lethal SUDs, but these can be grouped into coronary disease, cardiomyopathies and 

channelopathies. 

Coronary disease is believed to be responsible for the vast majority of SCDs 38. Compared 

to 2.4% of sudden deaths attributable to cerebral haemorrhage in a study of 584 acute sudden 

deaths, 91% of white males and 48% of white females were reported to have suffered from CAD 

38. Narrowing of coronary vasculature is very common in survivors of cardiac arrest, and patients 

resuscitated from ventricular fibrillation often show evidence of MI 37. Coronary thrombi and 

vulnerable plaques have been found in men who have died suddenly, showing a clear role for 

vascular inflammation in some SCDs 39.  

The mechanism by which CAD produces a fatal arrhythmia is assumed to be triggered 

by ischemic areas of the heart, however because of the acute nature of the disease it is 

impossible to be certain 40. Although these findings suggest a clear link between heart disease 

and SCD, 48% of people who arrest will have a functionally normal heart, with a left ventricular 

ejection fraction (LVEF) over 55% 41. The heart acts as a pump that is controlled synchronously 

by electrical excitation of cardiac myocytes. These electrical signals can be measured and relate 

to the activity of different compartments in the heart. Many electrophysiological studies have 

shown a clear link between the perturbation of synchronous electrical activity of the heart, the 

altered activity of ion channels that underlie this, and sudden cardiac death. 

 



26 

 

1.2.3 Risk Factors for SCD 

 Like stillbirth, age noticeably affects the incidence of SCD independent of ethnicity and 

gender, with men aged 80 eight times more likely to have a SCA than 50 year old males 42. The 

female gender also appears to play a protective role against SCD independent of age 43. However 

64% of SCD in women will occur with no prior CAD compared to only 50% of men, denoting a 

more ‘unexplained’ phenotype in women despite a reduced incidence on the whole. Furthering 

this idea, 10% of women who survive SCAs have structurally normal hearts compared to only 3% 

of men 29.  

 Ethnicity influences not only the probability of suffering a SCA but also the chance of 

surviving 42. In Seattle the age-adjusted incidence of cardiac arrest was more than twice as likely 

in people of African American ancestry compared to Caucasians (3.4 vs 1.6 per 1000, 

respectively) 44. Initial resuscitation success (17.1% vs 40.7%) and hospital survival (9.4% vs 

17.1%) are both roughly halved. The effect ethnicity has on SCD has been replicated in Chicago, 

with survival rates 67.5% lower than those recorded in Caucasians.  

Alongside this, many other risk factors have been shown to influence rates of SCD in 

patients. In 7,735 middle aged British males, ischemic heart disease, arrhythmia, systolic blood 

pressure, cholesterol level, elevated heart rate and lack of physical activity all increased the risk 

of SCD 45. The Framingham Study is a cross-generational study established in 1948 to identify 

the causes of CVD by following 5,209 participants throughout their lives. This study suggested 

CAD increases SCD risk, while congestive heart failure (CHF) also increases the chances of SCD 

46. 

 

  



27 

 

1.2.4 Electrophysiology and SCD 

A powerful predictor of cardiac arrest is analysis of a patient’s electrocardiogram (ECG). 

Twelve lead ECGs record the heart’s electrical activity from electrodes placed on the skin and 

give an insight into the electrical activity of different sections of the myocardial tissue. As well 

as heart rate, ECGs reveal a vast amount of information about the activity of the heart (Figure 

1.3), including: atrial depolarisation (P wave), ventricular depolarisation (QRS complex), 

ventricular repolarisation (QT interval) and the time between atrial and ventricular 

depolarisation (PR interval). Anomalous ECG readings have been associated with SCD incidence; 

elevated resting heart rate is a clear risk factor for sudden death in middle-aged men 47.  

Prolongation of ventricular depolarisation, seen as a QRS longer than 120ms on an ECG 

trace, is significantly associated with both mortality and sudden death in patients with heart 

failure 48. A larger prospective study of 2,049 men aged between 42 and 60 provided data to 

suggest QRS duration over 110ms had a 2.5 fold risk of SCD compared to those whose QRS 

duration was less than 96ms 49. Specific case studies also provide evidence to suggest an 

abnormal ECG  can lead to sudden death. In an 18-year old male who suffered a near death SCA, 

abnormal morphology of the QRS complex was observed 50. Polymorphic ventricular tachycardia 

was visible during examination which could be normalised by quinidine prescription. After drug 

treatment, no further arrhythmias were observed until the patient discontinued their 

medication and died shortly afterwards. 
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Figure 1.3. Ventricular action potentials shape the ECG. A Archetypal shape of the ventricular action potential above 

a temporally matched ECG. B Surface ECG depicting the corresponding electrical activity that can be measured in A. 

Ventricular depolarisation occurs during the QRS complex, while the T wave indicates repolarisation.   



29 

 

To accurately compare the QT interval scientifically between individuals involves the 

base QT value being corrected for differences in the patient’s heart rate – which will naturally 

influence the shape and length of each cycle. The physiologist Henry Cuthbert Bazett formulated 

a basic correction in 1920: QTc = QT/√RR interval. Although commonly used, this correction 

overcorrects QT length at fast heart rates and undercorrects at low rates. In 1992, analysis of 

baseline electrocardiogram data from 5,018 subjects from the Framingham Heart Study yielded 

a more reliable formula: QTc = QT + 0.15(1-RR) 51. Prolongation of ventricular repolarisation, 

seen as a long QTc interval, is an independent risk factor for sudden death in the general 

population 52.  

Long QT syndrome (LQTS) is a disorder characterised by a prolonged QT interval due to 

a specific mutation in one of 15 genes 53-57. A large number of well characterised mutations lie 

within the 15 LQTS genes, many of which encode for ion channels involved in the depolarisation 

and repolarisation of the myocardium 58. There are two ‘classical’ monogenic forms of LQTS – 

the autosomal dominant Romano-Ward (RW) syndrome and autosomal recessive Jervell and 

Lange-Nielsen syndrome (JLNS) 59,60. At the population level, the QT interval has a clear heritable 

component and genome-wide association studies (GWAS) have found single nucleotide 

polymorphisms (SNPs) at 35 genetic loci that clearly demonstrate an effect on the duration of 

the QT interval 61-63. A prolonged QT interval infers a slowly and spatially dispersed repolarising 

ventricular myocardium, which is highly susceptible to early afterdepolarisations, producing 

fatal ventricular arrhythmias and ultimately SCA 64. Collectively, these data confirm that the 

electrical activity of cardiomyocytes is intrinsically linked to SCD, as perturbed cellular 

electrophysiology can clearly provoke arrhythmia and ultimately SCD. 
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1.3 Sudden Infant Death Syndrome 

1.3.1 Introduction 

 Despite SUD in adults being a diagnosis of exclusion, there is growing evidence to explain 

causes and risk factors in this previously unexplainable pathology 37. An emerging area of 

medical research is now devoted to elucidating the biological cause of sudden infant death 

syndrome (SIDS) 65. SIDS is the leading cause of mortality in the first year of human life and the 

third most common cause of infant mortality in the USA 66.  

Defined in 1991 by Willinger et al. a death is classified as SIDS when it is sudden, and 

despite complete autopsy and clinical review remains unexplained 67. Alarmingly, in a study of 

all SUDs in children aged between 1 week and 18 months, 80% are diagnosed as SIDS after 

autopsy 68. Negative autopsy findings have not prevented researchers from developing multiple 

models to predict the causes of SIDS. Since 1972 the accepted paradigm of a ‘triple risk 

hypothesis’ to explain sudden deaths has been used 69-71. These models state that SIDS is a 

combination of a vulnerable infant, in a critical developmental period which undergoes an 

exogenous stress such as respiratory infection. Guntheroth & Spiers proposed in 2002 that these 

triple risk models do not necessarily conform to the actual situation in SIDS 72. Firstly, the reliance 

of ‘exogenous stress’ such as a viral infection causing SIDS is tenuous due to the large number 

of healthy infants who survive these events every year. Secondly, a small proportion of SIDS 

occur in the first month of life, this distribution of deaths according to age does not match other 

congenital abnormalities, where the vast majority of deaths occur in the first month of life. This 

casts doubt the likelihood of vulnerability in early development being a vital part of SIDS. Lastly, 

there is little consensus on what constitutes a ‘vulnerable infant’. Triple risk models mention 

central nervous system (CNS) abnormalities, neonatal neurologic abnormalities, post-natal 

abnormalities and pregnancy-related factors. Despite continuing debate over the requirement 

of these abnormalities in causing sudden infant death, these factors have shown 

epidemiologically that there are risks associated with increased SIDS occurrence 72. 
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1.3.2 Risk Factors for SIDS 

Many factors are associated with increasing the chance of sudden death in infants, these 

include: ethnicity, age of mother, alcohol use, gender of foetus, low birth weight and sleeping 

position 73. This portrays a complex disease, of which the two most common risk factors are 

cigarette smoking during pregnancy and sleeping position. Cigarette smoking has been 

demonstrated to have a clear link to SIDS occurrence and is of course, easily preventable. Of 

infants who survived the first week of life, Haglund & Cnattingius found 0.49 sudden deaths in 

1,000 from non-smoking mothers 74. However, in mothers who smoked 1-9 cigarettes a day 

there were 0.93 SIDs per 1,000. In those who smoked more than 10 cigarettes per day, this 

increased to 1.47 sudden deaths per 1,000 births 74. 

Analysis of sleeping position in SIDS has revealed a relative risk of 2.02 in infants asleep 

on their sides compared to those placed on their backs 75. Following a number of prospective 

and interventional studies aimed at avoiding prone sleeping, multiple health services worldwide 

addressed this common association, with the USA launching it’s ‘Back to Sleep’ campaign in 1994 

76-78. Although seemingly simple, this intervention led to a 50% reduction in SIDS, from 1.2 in 

1,000 to 0.55 in 1,000. Maternal alcohol consumption initially appeared to promote sudden 

death in infants. However, this consumption is strongly correlated to smoking and following 

multivariate analysis appeared to have no independent effect on SIDS 79. Further work in 1999 

by Alm et al. found postnatal alcohol consumption, but not prenatal intake predisposed children 

to SIDS 80. Alm also showed there is little interaction between caffeine consumption >800mg/day 

and SIDS risk after adjustment for maternal smoking, maternal age and education. In contrast 

Ford et al. showed >400mg/day of caffeine increased risk of SIDS by 65% 81. 

While sleeping position and maternal smoking are environmental factors that have been 

targeted by multiple healthcare campaigns, SIDS rates vary greatly between different ethnic 

groups even when corrected for these aforementioned risk factors. Reportedly, SIDS is twice as 

likely in African American or American Indian mothers compared to Caucasians in the USA, 
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despite both groups co-existing in the developed world 78. Initial post-mortem cell culture 

studies of SIDS cases in 1970 also revealed genetic abnormalities in 10 of 11 karyotyped 

leukocytes 82. These initial findings propose the paradigm of genetic variation coupled with 

environmental stimulation acting together on precipitating SIDS in infants.  

 

1.3.3 Genetic Risk Factors 

 Common polymorphisms and rare genetic variation have, over many years, been linked 

to promoting or causing SIDS through a wide range of possible mechanisms. Genetic variability 

in interleukin genes such as IL-1β and IL-6 have been associated, in experimental models and 

children with SIDS 83,84. These inflammatory responses affect several physiological responses and 

have been postulated as possible causes of sudden death. The c.C-511T polymorphism within 

the IL-1β promoter is associated with a higher cytokine response in people of Bangladeshi and 

Australian Aboriginal descent but with an intermediate or low profile in Caucasians 85. These 

findings tie in with observations that Bangladeshi and Aboriginal infants are at much greater risk 

for SIDS than Caucasians. Similarly, in Australian populations a homozygous IL-6 c.G-174C 

promotor polymorphism was observed in 38% of controls compared to 58% of SIDS infants 86.  

 SNPs in the autonomic nervous system also associate with increased SIDS risk. 

Polymorphisms in the 5’ regulatory region of the serotonin transporter (5-HTT) were shown in 

2001 by Narita et al. who found that 13.9% of age-matched control participants possessed a long 

or extra-long promoter region compared to 27.8% of SIDS victims 87. The study linked this 

elongated promoter to increased transportation of serotonin outside of the cell and the lower 

excitatory function in the respiratory centre of the brain. Further studies of 92 SIDS cases and 

92 gender/ethnic-matched controls investigated the frequency of genetic polymorphisms linked 

to SIDS. Weese-Mayer et al. identified nonsynonymous variation in five genes associated with 

the autonomic nervous system: PHOX2a, RET, ECE1, TLX3, and EN1 88. 
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 Perturbation of metabolic homeostasis has also been explored as a possible route to 

SIDS. Of 38 SIDS victims in 1989, Burchell et al. found 10 with raised hepatic glycogen, 8 of which 

had glucose-6-phosphatase deficiency while 2 had transport protein T2 deficiency – indicating 

that disrupted glycogen storage mechanisms may be involved in SIDS 89. More recently in 2005, 

Forsyth et al. presented corroborating data showing three novel polymorphisms in the 

glucokinase gene in infants who died suddenly 90.  

 

1.3.4 Channelopathies and SIDS 

 Interest in linking inflammatory, neuronal and metabolic pathways to SIDS have 

produced promising results that may explain sudden deaths in infants, however it is in the area 

of cardiovascular disease that the most progress has been made in identifying and potentially 

treating children at risk of SIDS. Evidence to suggest a link between sudden infant death and 

cardiac conduction was put forward first by Keeton et al. who reported six infants delivered at 

term and of average birth weight who were found either collapsed in their cots or found 

cyanosed in their hospital ward 91. The illness occurred unexpectedly and without immediate 

treatment it is likely that all six infants would have died. Keeton found ECG abnormalities in all 

six infants, one had altered sinus rhythm, two had sinoatrial block whilst three showed 

ventricular tachycardia. Keeton et al. proposed that in five of these infants, cardiac arrhythmia 

caused their acute illness, while in the sixth an arrhythmia associated with Wolff-Parkinson-

White syndrome likely produced the near fatal cerebral hypoxia she suffered from. Treatment 

by digoxin or atropine after diagnosis by ECG was successful at removing symptoms, however 

one infant suffered ischaemic brain damage which produced severe psychomotor retardation. 

These near-miss cases highlighted the importance of neonatal ECG screening, as aberrant ECG 

recordings could have highlighted the benefits of a prophylactic treatment, circumventing these 

life-threatening attacks. 
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 Peter Schwartz proposed one year prior to the study by Keeton et al. that sympathetic 

imbalance may underlie SIDS by increasing the likelihood of ventricular fibrillation 92. 

Prolongation of the QT interval in infants, as previously described in adults, is measurable 

clinically and is pathologically important in producing arrhythmia, in particular in infants with a 

higher heart rate than adults 92,93. In 1976 Maron et al. obtained ECG data from 42 parental sets 

with one infant who had died suddenly, 15 of which showed a prolonged QT interval 94. The ECGs 

from the siblings of SIDS infants also suggested inheritance of the long QT phenotype, with 39% 

having a prolonged QT interval. One infant with “near-miss” SIDS also showed prolonged QT in 

the Maron et al. study. Interestingly siblings of SIDS infants whose parents had normal QT 

intervals showed no sign of a prolonged QT.  

In contrast to the findings by Keeton et al. and Maron et al., several studies have also 

reported findings that failed to find a link between abnormal ECG recordings and SIDS 95-97. These 

include 21 near-miss SIDS infants whose QT intervals were no different to age and sex matched 

controls, and a prospective study of 15 SIDS infants from a cohort of 7,254 newly born infants 

where no significant difference in QTc could be found. In 1982 Schwartz et al. published the 

findings of their prospective study measuring the QT interval in 4,205 newborns 98. Alongside 

the finding that QT interval lengthens significantly during the first months of life, at 1 year three 

infants had suffered an unexpected sudden death. All three had a prolonged QTc intervals four 

days after birth, with one whose QTc was more than 9 standard deviations above the mean 

(563ms). Sadeh et al. in 1987 published data that appeared to validate this hypothesis that a 

proportion of SIDS victims are due to dysrhythmia brought on by impaired handling of cardiac 

repolarisation 99. Sadeh’s data showed that of 10 SIDS infants, five were unable to shorten their 

QT interval in response to an increase in heart rate, and this prolonged repolarisation 

predisposed them to fatal ventricular arrhythmia.  

Although evidence suggested a strong positive link between long QT and SIDS, in 1989 

eminent paediatric cardiologist Warren Guntheroth published a review repudiating the 



35 

 

hypothesis of Schwartz et al. 100. Guntheroth highlighted a number of prospective studies that 

found no prolongation of QTc intervals in SIDS cases compared to control infants 101. He also 

argued that Sadeh et al. in not finding one arrhythmia in any 6 hour ECG tapes and finding a 

shorter QTc interval in SIDS cases before altering the Bazett’s exponent to give an apparent 

prolonged QT interval compared to controls – failed to provide sufficient evidence to equate QT 

interval in causing SIDS 100. 

 In 1998 Schwartz et al. published their ECG study containing data from 34,442 infants, 

33,034 of which had follow-up data collected at one year of life 98,102. This study cohort contained 

24 SIDS cases, whose QTc interval was significantly longer than that of infants who had died of 

known causes. Of these, 50% showed a QTc interval that would be reported clinically as 

prolonged (>440ms). This was in comparison to infants with a known cause of death, where their 

QTc was shorter than 440ms. Using this data, the risk of SIDS in infants showing a normal QTc is 

0.037%, compared to those with prolonged QTc who are 41.3 times as likely to suffer a sudden 

death. A follow-up study in 44,596 infants published later in 2009 investigated the prevalence 

of genetic variants associated with LQTS in 29 infants with a QTc >450ms 103. Screening 7 genes 

thought to cause prolonged QT, 12 neonates possessed mutations thought to have a deleterious 

effect on ion channel function – causing LQTS. 28 of the 29 infants were treated successfully 

with β-blockers. Genetic variants that alter the function of cardiac ion channels are also linked 

to SCD in adults. These diseases are a form of heritable electrical cardiac diseases known as 

“channelopathies”.  

This evidence was supported by further data from a clinical case study where a 44 day 

old infant presented with ventricular fibrillation and would surely have died if not for 

defibrillation at a hospital 65. A de novo SCN5A mutation was identified in the infant and he 

showed a prolonged QT interval. Further molecular proof of a link between channelopathies and 

SIDS was shown a year later, when Wedekind et al. identified another de novo SCN5A mutation, 

p.A1330P, in a 9 week old infant who had died suddenly 104. Functional testing of the variant 
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showed a LQT3-like mechanism of slowed channel inactivation which would lead to a prolonged 

QT interval. 

 

1.4 Ion Channels and the Heart 

1.4.1 Introduction 

 Ion channels are a key protein family responsible for the synchronous contraction of 

cardiac myocytes throughout the heart. It is the opening and closing of these channels which 

allows ions to enter and exit the cell in an organised fashion. Ionic fluxes produce the action 

potential, allowing contraction and relaxation of cardiomyocytes. In inherited disorders such as 

LQTS, genetic variants occur that adversely affect protein function. These alterations can 

produce asynchrony in the heart - which can lead to death. This disruption of the shape of the 

action potential produces arrhythmias, it can be caused by multiple factors but is chiefly due to 

dysregulated ion channel function. 

 

1.4.2 Ion Channels In Cardiomyocytes 

 The cardiac action potential is the key determinant of cellular contraction and consists 

of five key phases (Figure 1.4). Myocardial cells at rest are hyperpolarised (known as phase 4), 

with a negative membrane potential of -90mV. During depolarisation the membrane potential 

increases rapidly to over +40mV (phase 0). Phase 1 consists of a short period of repolarisation 

followed immediately by phase 2, a plateau of membrane potential during which calcium enters 

the cell. Phase 3 entails rapid repolarisation back to the initial resting membrane potential. 

Sodium, potassium and calcium are the three key ions whose electro-chemical gradient 

cardiomyocytes exploit to control their excitatory state. Ion channels allow the movement of 

these ions across the lipophilic cell membrane, while ion transporters and exchangers maintain 

specific concentrations of ions in the cytoplasm and extracellular milieu.   
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Due to high concentrations of intracellular potassium (>140mM), before depolarisation 

two currents (IK1 and IKAch) allow the efflux of potassium ions to maintain the resting 

membrane potential. The IK1 current consists of two potassium channel subunits, Kir2.1 and 

Kir2.2, transcribed by the KCNJ2 and KCNJ12 genes respectively 105,106. The acetylcholine-

activated K+ channel responsible for the IKAch current is coupled to a G protein and is highly 

expressed in atrial and nodal cells, but is expressed less in the ventricle. 

Rapid depolarisation is conducted by the opening of the cardiac sodium channel Nav1.5. 

The gene SCN5A encodes the key pore-forming α-subunit, which in the heart forms functional 

channels in complex with multiple β1-subunits 107. Nav1.5 exists in a closed state at resting 

membrane potential, however they open extremely rapidly (<2ms) when the membrane 

potential depolarises 108. This allows the influx of Na+ ions to raise the membrane voltage from -

90mV to over +40mV. These channels then inactivate rapidly, to limit the length of 

depolarisation and to allow repolarisation, although there are reports of delayed and slow 

currents through the Nav1.5 channel 108. 

Early depolarisation or phase 1 of the action potential is shaped by the opening of 

transient outward potassium currents Ito,f 109. This current is voltage-gated and activates and 

inactivates rapidly in response to depolarisation. Ito,f outwardly rectifies to allow potassium ions 

to leave the cell, producing a short reduction in membrane voltage. 
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Figure 1.4. Comparison of action potential morphology in adult ventricular and atrial myocytes. A Ventricular and 

B Atrial cell types share similarities in voltage gated sodium and calcium channel expression. The distinction in action 

potential shape is primarily dictated by their distinct expression of potassium channels. Figure is adapted from 110. 

40 mV 
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 After early repolarisation, the plateau phase of the action potential is determined by 

two competing currents, the delayed outward rectifying potassium currents and the inward 

calcium currents. Distinctly in the ventricle, Ito,s opens rapidly alongside Ito,f after 

depolarisation. This current inactivates slower than Ito,f. By comparison, in the atria the delayed 

potassium current (IKur) activates rapidly while inactivating slowly - it is responsible for their 

shorter atrial action potential duration (APD) compared to that in the ventricles 111. The influx of 

calcium during this plateau is split between L- and T- type calcium channels (low threshold and 

transient) respectively. The L-type calcium channel can be found in all cardiac cells while T-type 

channels mainly reside in pacemaker, atrial and Purkinje fibre cells. Both calcium channels are 

voltage-gated, with the T-type opening at -60mV while L-type channels open later at -50mV. 

Calcium entry during phase 2 of the cardiac action potential is vital in coupling membrane 

excitation to contraction 112. In the heart, the L-type calcium channel α-subunit is encoded by 

the CACNA1C gene, while CACNA1G produces the T-type calcium current α-subunit 113.  

 Following calcium entry and during subsequent myocardial contraction, two separate 

outward potassium currents are responsible for restoring the cell’s membrane voltage back to 

its resting state. These two components are IKr and IKs, the rapid and slow potassium currents, 

respectively. The KCNH2 gene encodes the HERG potassium channel α-subunit, and is 

responsible for the rapidly activating current 114. HERG channels are found in abundance in the 

left atrium and ventricular endocardium. β-subunits such as KCNE1 and KCNE2, encoded by the 

KCNE1 and KCNE2 genes respectively, confer changes in gating and response to adrenergic 

stimulation 115. The KCNQ1 gene encodes the α-subunit (protein also called KCNQ1) of the slowly 

rectifying potassium current. This potassium channel is expressed in all cardiomyocytes but is 

markedly reduced in sub-endocardial cells 116. KCNE1 encodes the key β-subunit of IKs, by 

interacting with the pore region to reduce channel conductance but increase open channel 

probability – ultimately increasing cellular current 117. Both IKr and IKs activate during the 

plateau phase to bring about delayed repolarisation back to the resting membrane potential. 
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1.4.3 Electrical Cardiac Diseases 

Long QT Syndrome 

 A long QT interval is a strong predictive factor for SCD and SIDS. As ECG peaks and 

troughs mirror electrical changes in the states of specific heart regions, identification of the ion 

channels and genes that shape it can elucidate the causes of pathological ECG changes such as 

LQTS. It is through studying genetic mutations in patients with LQTS and other electrical 

disorders of the heart that permit an explanation of SCD and create an opportunity for novel 

therapies.   

There are over 15 genes linked to LQTS (Table 1.2) by deleterious genetic mutations. 

The most common lie within the three key genes that determine the APD: the sodium channel 

gene SCN5A, and the two delayed rectifying potassium channels KCNQ1 and KCNH2. In 1957 the 

first family with LQTS was reported, and in 1997 they were shown to possess a dominant 

homozygous mutation in the KCNQ1 gene 118,119. Mutations in KCNQ1 cause LQTS1 and are due 

to a loss-of-function in the channel, this can be due to altered trafficking inside the 

cardiomyocyte, directly affecting the pore domain or interrupting its interaction with KCNE1 or 

other proteins 120,121. Reducing outward potassium current and therefore prolonging the 

repolarisation phase of the action potential can lead to fatal arrhythmia 64.  

The second LQTS gene identified was KCNH2, the gene encoding the HERG protein 55. 

Loss of function in this gene leads to LQT2, where reduced IKr perturbs correct cardiomyocyte 

repolarisation. The majority of LQT2 mutations appear to reduce potassium current by altering 

trafficking of the channel to the membrane where it can effectively efflux K+ ions 122. In contrast 

to LQT1 & LQT2, it is gain-of-function mutations in SCN5A that are responsible for prolonging 

APD in LQT3 patients 57. Responsible for the inward sodium current, LQT3 mutations can 

produce persistent currents that depolarise the cell, prolonging action potential duration. 
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Although there are now 15 genes (Table 1.2) associated with congenital LQTS, of 

patients who suffer a SCA and possess a known LQT mutation, it will lie within KCNQ1, KCNH2 

or SCN5A in 90% of cases 58,103. Of note is the severity of LQT3 compared to LQT1 & LQT2, with 

patients suffering more severe events and having a higher chance of SCD 123.  

Variants in many genes can delay cardiac repolarisation and cause LQTS, but there is 

marked variation between what can precipitate SCD. Work by Schwartz et al. dissecting 

genotype-phenotype interaction in LQT1-3 showed that of 392 cardiac events in LQT1 mutation 

carrying patients, 62% occurred during exercise, while only 3% occurred during sleep or rest 54. 

Contrast this to the LQT2 mutation carrier group where only 13% of events occurred during 

exercise and 43% occurred during heighted periods of emotion (stress, shock and or arousal). 

Lastly, LQT3 patients had similar cardiac arrest rates during periods of exercise, but only 19% 

had cardiac events due to emotional stress. In these 39% of patients with damaging sodium 

channel mutations, the trigger for cardiac events usually occurred during sleep or periods of rest 

– the polar opposite of LQT1 patients. This is an interesting paradigm, where clinically all patients 

present with long QT on an ECG due to delayed onset of repolarisation, but the substrate for 

arrhythmia appears to differ greatly.  
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 Table 1.2. Summary of genes associated with LQTS and the proteins they encode. Currently there are 15 genes that 

harbour genetic variants which are attributed to prolonging the QT interval. Listed are the gene and protein names, 

and the subsequent ion currents they conduct, modify or contribute to. Also listed are the published effects that disease 

causing variants have on the protein’s function. 

 

  

LQTS Gene Protein Current Functional Effect 

LQT1 KCNQ1 KCNQ1 or Kv7.1 IKs Loss of Function124 

LQT2 KCNH2 HERG IKr Loss of Function55 

LQT3 SCN5A Nav1.5 INa Gain of Function57 

LQT4 ANK2 Ankyrin-B - Loss of Function56 

LQT5 KCNE2 
KCNE2 (Originally 

MiRP1) 
IKr Loss of Function125 

LQT6 KCNE1 
KCNE1 (Originally 

Mink) 
IKs Loss of Function126 

LQT7 KCNJ2 Kir2.1 IK1 Loss of Function127 

LQT8 CACNA1C Cav1.2 ICa,L Gain of Function128 

LQT9 CAV3 Caveolin 3 INa Gain of Function129 

LQT10 SCN4B Navβ INa Gain of Function130 

LQT11 AKAP9 Yotiao/AKAP9 
IKs - 

Adrenergic 
Loss of Function131 

LQT12 SNTA1 Α-Syntrophin INa Gain of Function132 

LQT13 KCNJ5 Kir3.4 IKAch Loss of Function133 

LQT14 CALM1 Calmodulin 1 ICa,L Gain of Function134,135 

LQT15 CALM2 Calmodulin 2 ICa,L Gain of Function134,135 
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The list of genes associated with LQTS represent a deeper understanding of the disease 

compared to other channelopathies, with studies finding non-ion channel genetic variants 

plausibly prolonging repolarisation 56,62,131,136. The fourth gene causally linked to LQTS in 2003 

was the Ankyrin-B gene 56. Prior to the work by Mohler et al. the accepted paradigm of 

channelopathies relied upon mutations purely affecting ion channels. Ankyrin-B is a 200kDa 

adaptor protein which interacts with numerous proteins including the voltage-gated sodium 

channel, Na+/Ca2+ exchanger, Na+/K+ ATPase and the inositol triphosphate receptor found in the 

sarcoplasmic reticulum (SR). A presumed loss-of-function dominant mutation p.E1425G was 

found in a large French family which appeared to segregate with a prolonged QT phenotype. 

Further work on ANKB heterozygous knockout mice demonstrated a clear role in heart rate 

variability and sudden cardiac death. Two years later Mohler et al. showed numerous 

nonsynonymous variants within the N-terminal regulatory domain of Ankyrin B that severely 

perturbed calcium handling and contractility in cardiomyocytes 137. 

Long QT types 5 and 6 relate to LQT 1 & 2, with variants in the KCNE1 and KCNE2 genes 

leading to reductions in IKs and IKr respectively 125,126. Up to four KCNE1 β-subunits complex with 

four KCNQ1 α-subunits, with relative densities controlling the voltage-dependence and gating 

kinetics of the potassium channel 138.  

 

Brugada Syndrome 

Brugada syndrome (BrS) is an inherited channelopathy but in comparison to LQTS, is 

characterised by an elevated ST segment on the ECG 139. Most cases are identified during 

adulthood, with the youngest patient diagnosed at the age of 2 days, while the oldest being 84 

years 140. Prevalence of BrS has proven difficult to calculate with Pedro, Josep and Ramon 

Brugada estimating that it is responsible for 4-12% of sudden deaths and >20% of deaths with 

structurally normal hearts 140. Other estimates of BrS have reported a 1 in 2,000 prevalence, but 

this brings it in line with LQTS, which is generally believed to be more widespread 141. Brugada 
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syndrome positive patients are at high risk of SCD and recent work has identified genetic variants 

thought to cause the disease 142.  

Seven years after Brugada and Brugada characterised their eponymous syndrome, 

Dumaine et al. published patch-clamp data involving an SCN5A missense mutation (p.T1620M) 

previously linked to BrS 143,144. At 32˚C the p.T1620M variant recovered from inactivation slower 

and right shifted steady-state activation compared to wild-type sodium currents. Unlike many 

potassium channel mutations, the arrhythmogenic potential of this mutation only revealed itself 

closer to physiological temperatures. When examined at room temperature, wild-type (WT) and 

p.T1620M channels showed similar normalised current and rate of recovery from fast 

inactivation. Bezzina et al. presented another SCN5A mutation p.1795insD, which when 

expressed in Xenopus oocytes produced a positive shift of steady-state activation compared to 

wild-type channels 145. These findings were interpreted initially as reducing outward sodium 

current, accentuating the action potential notch in phase 1, consequently losing the epicardial 

action potential dome and shortening repolarisation 145,146. Since the initial findings in SCN5A, 

several other genes have been linked to BrS: GPD1L a sodium channel trafficking protein, SCN1B 

and SCN3B the β-subunits of sodium channels, and several calcium channel subunit genes 147-151. 

Larger scale genetic testing of 12 BrS-linked genes in unrelated patients with possible BrS 

identified putative pathogenic mutations in 20% of the cohort 152. These results depict BrS as a 

complex channelopathy involving sodium, calcium and potassium ion channel gene variability.  

 

Cathecholaminergic Polymorphic Ventricular Tachycardia  

 Cathecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare but lethal 

condition first described in a single case study in 1975 153. Arrhythmias induced by 

catecholamines are usually lethal, but treatment with β-blockers is very effective at preventing 

these SCDs. Without treatment, mortality of CPVT is >30% by the age of 30. The initiation of 

tachycardia is linked to physical exercise or emotional stress, therefore blockage of adrenergic 
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drive has proven an effective, if not ideal therapy 154. A hall mark of CPVT is syncope or near-SCD 

without structural heart disease alongside normal ECG traces at rest. However, significant 

ventricular ectopy is observed during patient exercise or infusion of isoproterenol, which if 

prolonged can lead to sudden cardiac death.  

 Current molecular analysis points to rare variants in three genes causing CPVT: RYR2, 

encoding the cardiac ryanodine receptor (RyR2), CASQ2 a major SR calcium binding protein and 

TRDN which transcribes triadin, a protein involved in regulating RyR2 in the heart 155. RyR2 is 

found in the SR, the major Ca2+ store in the cell, and is critical in calcium-induced calcium release 

after the cardiomyocyte is flooded with calcium from the L-type calcium channel. Following 

calcium entry the channel opens, allowing calcium to leave the SR and bind Troponin C, which 

enables sliding of myofilaments and cellular contraction. This is followed by calcium reuptake 

back into the SR 156. Unsurprisingly dysregulation of this calcium release cycle can significantly 

affect the heart. The first RYR2 mutations were found in CPVT patients with no structural cardiac 

abnormalities in 2001 157. Deleterious RYR2 variants are thought to increase open probability 

during diastole – resulting in delayed afterdepolarisations or sudden depolarisations triggering 

arrhythmia 158. Mouse models have highlighted Purkinje cells as being particularly vulnerable to 

generating these delayed afterdepolarisations (DADs) in response to adrenergic stimulation 159. 

 

Short QT Syndrome 

 In contrast to LQTS, short QT syndrome (SQTS) is characterised by a short QT interval 

and a shortened action potential duration in cardiomyocytes. Expectedly, genetic variants 

thought to cause the disease are found in LQTS genes but produce an opposite effect. SQTS 

patients are characterised by having a rate-corrected QT-interval <320ms and there have been 

reported cases of familial SCD, representing an inheritable trait 160. The first two genes identified 

as harbouring SQTS-causing mutations were KCNH2 and KCNQ1, incidentally the first two genes 

found to cause LQTS 161,162. Gain-of-function mutations in these repolarising potassium channel 
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currents will increase potassium efflux during phase 3 of the action potential. Most commonly 

this short QT manifests as atrial fibrillation. From the initial patient cohort of 13, nine had a form 

of atrial fibrillation 163. Harmful genetic variation in channels conducting the outward 

depolarising currents, specifically the L-type calcium channel are also associated with SQTS 

164,165.  

 

Channelopathy Genes involved Cellular Processes 

Brugada 

SCN5A 145 

SCN1B 

SCN3B 149 

Sodium Current 

CPVT 

RYR2 158 

CASQ2 

TRDN 

Calcium Uptake into 

SR 

Calcium Storage 

SQTS 

KCNH2 161 

KCNQ1 162 

KCNJ2 

CACNB2b1 165 

CACNA1C 

Potassium Current 

 

 

Calcium Influx 

 
Table 1.3. Summary of other ion channelopathies and the genes thought to cause them. Genetic variants in some 
genes have been identified in patients with distinct clinical conditions, these are highlighted in bold. Cellular processes 
are listed as those pathways perturbed by deleterious variants in the preceding genes. SR – Sarcoplasmic Reticulum. 

 

Other Conduction Disorders  

 LQTS, BrS, CPVT and SQTS are genetically well characterised channelopathies, however 

there are many other intermediate phenotypes and conditions implicated in SCD without 

underlying heart complications. Sick sinus syndrome (SSS) is a disorder stemming from failure of 

sinoatrial node action potential firing which can lead to arrest or dysrhythmia 166. In 2003, 

Bensonet al. provided familial hereditary and whole-cell patch-clamp data implicating recessive 

mutations in SCN5A as being a likely culprit in SSS in some cases 167. Transfection of the Na+ 
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channel into tsA201 embryonal kidney cells showed a wide spectrum of delayed channel 

inactivation compared to wild-type current. Two variants, p.R1623X and p.G1408R, produced a 

non-functional sodium channel, highlighting the variable expressivity of sodium 

channelopathies – a non-functional channel can lead to SSS, reduced or increased current can 

lead to LQTS or BrS, even the same variant can produce BrS, SSS or a cardiac conduction-like 

defect 53,168.  

The J point of the ECG covers the interface between depolarisation (QRS complex) and 

repolarisation in the ventricle (T wave). As previously noted for LQTS and other channelopathies, 

it is these abnormal ECG features that implicate detrimental ionic handling in cardiac cells 169. 

First observed in hypothermic dogs in the early 50s, elevated J waves have been extensively 

studied in hypothermic humans 170,171. Raised J waves are a spectrum of diseases named early 

repolarisation syndromes (ERS), they have been difficult to define with separate data reporting 

contrasting results. Ventricular fibrillation (VF) has clearly been linked to prominent J waves on 

a case study basis, contrasting to early work showing a notched QRS and ST-segment elevation 

in healthy young males 172-174. More recent, large population association studies comparing J-

point elevation to survival free of cardiac related death and arrhythmia showed clear trends 

suggesting J-point elevation increased risk of SCD 175.   

While LQTS and BrS have genetic association with variants within ion channels, the 

genetic basis of J wave syndromes is less clear 176. The Framingham Heart Study showed that 

siblings of an ERS patient were at least twice as likely to have ERS, alongside work by Reinhard 

et al. who found parents with an ERS positive child had a 2.5-fold increased chance of having 

ERS themselves 177. As of 2013, genetic variation in six genes had been linked to causing ERS, 

with the first rare variant found within the KCNJ8 gene 176,178. KCNJ8 transcribes the Kir6.1 α-

subunit of an ATP-sensitive potassium channel found in cardiomyocytes 179. This inwardly 

rectifying K+ channel, in comparison to voltage-gated channels, is gated directly by cytoplasmic 

ATP and ADP. The p.S422L KCNJ8 variant found in both a BrS and an ERS patient showed marked 
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gain-of-function in heterologous expression systems, it was hypothesised that a significant 

inward potassium current in the epicardial myocytes could shorten APD – a sure substrate for 

arrhythmogenesis 178. Interestingly, work by Antzelevitch has also highlighted loss-of-function 

mutations in L-type calcium channel subunits 180. Two of these genes, CACNA1C and CACNB2, 

are also known to cause short QT syndrome when harbouring loss of function mutations. By now 

unsurprisingly, SCN5A mutations (this time loss-of-function) have been found in patients with 

VT due to early repolarisation 181.  

The final channelopathy covered will be isolated cardiac conduction defects (ICCD) or 

Lenègre disease. ICCD is characterised by slow conduction between the atria and ventricles, and 

widening of the QRS complex on an ECG. Between 1999 and 2001, three papers showed how 

SCN5A mutations associated strongly with ICCD, and in heterologous cell expression systems a 

p.G514C variant increased channel inactivation kinetics 168,182,183. Interestingly, in the report by 

Kyndt et al. the group showed both BrS and ICCD patients possessed a complete loss of current 

p.G1406R mutation 168. The other gene implicated in ICCD, SCN1B also codes for a subunit of the 

inward sodium channel – the β1 subunit. SCN1B mutations have been implicated not only in 

cardiac conduction defects but BrS as well, highlighting the pleiotropic nature of inward sodium 

channel variation. 

 

1.4.4 Ion Channelopathies and Age of Event 

 The INTERHEART case-control study across 52 countries and with over 30,000 

participants reported that only 6% of myocardial infarctions occurred before the age of 40 184. 

This is not the case for channelopathies however, which appear to show an inverse association 

with age and the likelihood of a cardiac event. Large scale studies by Schwartz et al. following 

479 probands with a long QT interval found 74% of males and 51% of females had a cardiac 

event before the age of 15 185. Of these 479, 162 patients carried a known pathological variant 

in long QT genes 1-3.  
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Similarly, the mean age of a cardiac event in 200 BrS patients was 33 years 186. Giustetto 

et al. reported that in 29 SQTS patients the median age of diagnosis was 30 years with two having 

a cardiac arrest in the first 8 months of life 187. Sub-group analysis by Zareba et al. in 243 

genotype positive LQTS patients has shown that the age and severity of cardiac events is 

genotype dependant 188. Males with LQT1, 2 or 3 had a median age of a first cardiac event at 8, 

11 and 16 respectively, with the female median age at event as 12, 16 and 19 respectively. 

Before the age of 15, males had cardiac events significantly earlier only if they were LQT1 

positive (P = 0.030), while over the age of 15 both LQT1 & 2 positive females were much more 

likely to have a cardiac event (P = 0.035 & P = 0.001, respectively). While LQT3 positive patients 

had less cardiac events and at an older age, they were markedly more severe, as 19% of events 

in males and 18% in females resulted in death, compared to 5% and 2% in LQT1, or 6% and 2% 

in LQT2 positive males and females respectively. 

 

1.4.5 Dominant Negative Mutations 

 Harmful hereditary mutations that alter ion channel activity often show a 

pathophysiological effect despite only occurring on one allele, the other allele inherited from 

the other parent being functionally normal. This effect is known as a dominant negative 

mutation, whereby the detrimental effect of a variant on one allele is able to harmfully 

compensate for the otherwise normally functioning allele 189.  

 Examples of this have been characterised in calcium, potassium and sodium channels in 

a range of clinical settings. A dominant negative form of LQT2, p.A561V was characterised in 

2000 by Kagan et al. 190. Co-expression with WT channel resulted in rapid proteolysis of 

functional HERG channels formed by WT and p.A561V subunits. Proteasome inhibition rescued 

the resulting loss of current usually observed when mutant and wild-type current were 

expressed in equal proportions by heterologous cell lines. Harmful mutations in KCNA5, a 
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voltage gated potassium channel expressed in the atria have also shown significant dominant 

negative effects 191. While WT channels showed outward current density of >0.3nA/pF when 

cells were patch-clamped at +80mV, cells co-transfected with both WT and p.E375X showed 

significant reduction to <0.15nA/pF.  

 Sodium channel dominant negative mutations have also been documented, one being 

an SCN3B variant p.A130V linked to atrial fibrillation in the Chinese population 192. This gene 

codes for a β-subunit of Nav1.5. Wang et al. provided data to show p.A130V, when transfected 

into cells expressing Nav1.5, significantly reduced sodium current. Transfection of these cells 

with WT and p.A130V SCN3B also inhibited sodium currents but to a lesser extent, whereas 

transfection with the WT subunit alone did little to affect current-voltage relationships. This 

effect did little to alter trafficking or expression, and therefore formation of WT-mutant proteins 

were directly altering or blocking the sodium channel’s ability to conduct sodium ions. 

Harmful mutations in the calcium channel gene, CACNA1A, which encodes a pore-

forming subunit of Cav2.1 have been associated with a dominant negative form of episodic 

ataxia, a neuronal channelopathy 193. Expression of p.R1279X Cav2.1 alongside WT Cav2.1 results 

in significant inhibition of calcium currents compared to cells transfected purely with the WT 

calcium channel. Interestingly, surface expression was markedly reduced in fluorescently tagged 

cells, representing competition for cell trafficking machinery by non-functional channels – 

reducing observable current at the membrane. 

Mutations have been observed in multiple ion channels that alter cell trafficking, 

expression and conductance in sodium, potassium, calcium and other ion channels that result 

in pathology through a dominant negative mechanism 191-194. This way, heterozygotic mutations 

that adversely alter ion channel function can potentially lead to harmful pathology despite the 

presence of a functioning wild-type protein. 
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1.5 Cardiac Ion Channelopathies and Intrauterine Foetal Death 

1.5.1 Evidence for Cardiac Causes of Foetal Death 

Due to the criteria of exclusion in diagnosing a sudden death, it has been proposed that 

many SIDS and SCD cases are the result of ion channelopathies in the heart leading to 

arrhythmia. Patients carrying a harmful LQTS variant may appear asymptomatic, while the onset 

of significant cardiac events is age-dependant, with over 50% of LQT1-3 carriers experiencing 

syncope or cardiac arrest before they are 16 54. Many deaths thought to be caused by ion 

channelopathies occur at a very early age independent of which ion channel may be affected 

102,187,188.  

There have been two anecdotal studies which attempted to link recurrent foetal loss 

and long QT syndrome. In 2004 Miller et al. reported on a male infant diagnosed with ventricular 

arrhythmias in utero at 28 weeks post gestation, who had LQTS after birth and ultimately 

required a heart transplantation 195. The mother showed no symptoms of LQTS but genetic 

analysis revealed mosaicism for an SCN5A variant, p.R1623Q. A subsequent pregnancy ended 

with stillbirth at 7 months. The surviving infant, following their heart transplantation, was also 

found to be heterozygous for the p.R1623Q variant.  

Four years later Bhuiyan et al. described a family with recurring early miscarriages and 

two intrauterine foetal losses 196. ECG recordings of the father and mother showed no 

symptoms, but low heart rate (~90bpm) in the first foetus was detected at 22 weeks. Later 

echocardiography of the foetus showed ventricular tachycardia. At 28 weeks gestation labour 

was induced and resulted in a stillborn child, who showed a fully formed sinus node and no 

structural abnormalities. A second pregnancy also developed ventricular tachycardia at 29 

weeks. By 30 weeks there was a diagnosis of LQT syndrome and 2 weeks later the child was born 

through caesarean. After 12 hours the child underwent surgery for the insertion of a pacemaker. 

After one month the child was discharged, but will be on β-blocker treatment for the remainder 
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of their life. Sequencing the HERG gene identified a homozygous nonsense mutation p.Q1070X 

which leads to the translation of a truncated protein ~10kDA smaller than the wild-type. 

Interestingly the p.Q1070X-HERG current inactivated faster and at -50 to -30mV recovered 

significantly faster from inactivation compared to WT channels. As other parameters were not 

significantly different (peak currents, activation rates and fast/slow deactivation), biophysically 

there is little difference compared to WT channels. However by investigating nonsense-

mediated mRNA decay (NMD) Bhuiyan et al. found 88% less p.Q1070X mRNA compared to WT 

HERG 196. 

 

1.5.2 Population-based Studies 

 Due to the unexplained nature of stillbirth, and the high prevalence of channelopathies 

in the general population, Crotti et al. evaluated the prevalence of LQT1-3 variants in 91 

unexplained intrauterine foetal deaths 197. Through the use of high-performance liquid 

chromatography and Sanger sequencing they identified 14 genetic variants in 18 individuals not 

observed in a large panel of ethnically similar controls from the Helmholtz Zentrum exome 

database and 3 publicly available databases: 1000 (1,094 individuals) Genomes Project, NHLBI 

GO Exome Sequencing Project (5,379 individuals) and the Exome Chip Design (12,000 

individuals) 198-200. Three variants (KCNQ1, p.A283T and p.R397W and KCNH2, p.R25W) found in 

the LQT 1 & 2 genes were considered putative pathogenic variants due to absence in the 

aforementioned databases and adverse biophysical findings compared to WT channels. Both 

KCNQ1 p.A283T and p.R397W significantly reduced peak and tail current density by 70% when 

compared to WT when transfected into CHO cells. The KCNH2 p.R25W similarly produced a 

~40% reduction in current density compared to WT.  

Six nonsynonymous SCN5A variants were identified, three (p.T220I, p.R1193Q, and 

p.P2006A) of which had been previously reported as affecting ion channel function. Two of the 
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SCN5A variants were categorized as variants of uncertain clinical significance as two (p.D772N 

and p.R1116Q) showed no functional difference compared to WT. Crotti et al. reported the 

minor allele frequency of p.R1116Q in African Americans was 0.07, unexpectedly high for a 

variant linked to stillbirth 197. While the ClinVar database reports the SCN5A p.R1116Q variant 

as a likely benign allele, the ExAC database with coverage in 31,272 individuals reports allele 

frequency of 0.0012 in African Americans – significantly lower than stated by Crotti et al. three 

years ago. 

Crotti’s work in 2013 showed that a proportion of unexplained intrauterine foetal 

deaths could be attributed to LQTS, as 8.8% of sequenced cases possessed a dysfunctional ion 

channel mutation. These data may have underestimated the true prevalence of channelopathies 

associated with intrauterine foetal death. The differences, specifically in the age of event 

between different LQT genes may play a significant role in how potentially arrhythmic variants 

precipitate lethal arrhythmias in the developing foetus 185. Phenotypically the population 

contained not only stillbirths but also late abortions and miscarriages. This represented a wide 

range of foetal ages, ranging from 14 to 41 weeks of gestation. Interestingly both KCNQ1 

putative pathogenic mutations reported in the paper were found in cases whose estimated 

gestational age was less than 17 weeks.  

Crotti et al. only interrogated the three most common LQTS genes found in adults, 

compared to the 15 currently known LQTS genes, notwithstanding genes associated with BrS, 

CPVT, SQTS and other conduction disorders 103,141,154,201. Pathogenic mutations in KCNQ1 and 

KCNH2, although relatively common in the general LQT adult patient population precipitate less 

severe cardiac events than those reported in patients with sodium channel related LQT 188. 

Patients with JLNS have complete IKs loss and are born, representing a possible redundancy 

during development or requirement of secondary variants to trigger events. Indeed, even in a 

mouse model of JLNS (KCNQ1 knockout), homozygotes appear at normal Mendelian frequencies 

202.  
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Conversely, variants in genes known to regulate cardiac electrophysiology in the adult 

may play a more pronounced, detrimental role during cardiogenesis. Work by Pfeufer et al. in 

2010 studied the role of common genetic variation in determining PR interval variability 62. 

Interestingly, alongside an association with voltage gated sodium channel genes, a number of 

genetic loci were found near genes involved in cardiac development (NKX2-5, SOX5, WNT11, 

MEIS1 and TBX5/3). In 2014 Arking et al. identified several genetic loci that explain ~9% of QT 

variation 63. This study also identified 11 nonsynonymous variants in symptomatic LQTS patients 

without a known causative mutation. These variants were absent in controls from online exome 

sequencing databases (Esp6500 203) and resided within genes not previously associated with 

LQTS. These tools provide a powerful way of identifying genes involved in cardiomyocyte 

electrophysiological control, without the need to identify adult patients with symptomatic 

cardiac disease. Genetic variants that cause or predispose pregnancies to stillbirth may not 

reside in genes commonly attributed to adult ion channelopathies. Therefore it is important to 

study not just the most commonly associated channelopathy genes, but any genes thought to 

contribute to cardiac development and electrophysiology in the setting of sudden death – 

particularly foetal.  
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1.6 Cardiac Ion Channelopathies in Unexplained Stillbirth 

1.6.1 CICUS Study 

 To investigate whether deleterious genetic variation in ion channel genes were 

associated with unexplained stillbirth, our group established the Cardiac Ion Channelopathies in 

Unexplained Stillbirth (CICUS) study. Crotti et al. had recently shown that 8.8% of unexplainable 

stillbirths possess harmful variants in LQTS ion channel genes.  

Initially the study intended to prospectively collect samples, allowing access to parental 

DNA. However due to difficulties in acquiring a sufficient number of samples, retrospective case 

DNA was also collected. Retrospective samples were fresh frozen tissue samples from Sheffield 

Children’s Hospital. As these samples were taken before the CICUS study began – no access to 

parental DNA was possible. DNA from 70 unexplained stillbirth cases was available, this was 

obtained from muscle, liver, spleen or heart tissue and processed for sequence analysis. An 

experienced perinatal pathologist classified these cases as completely unexplained, unexplained 

but with placental abnormalities and partly explained. In contrast to previous work with stillbirth 

and LQT, an expanded sequence panel was used to assess variation in 35 genes. This included 

known genes associated with LQTS, BrS, SQTS and SCD alongside 21 genes linked to a prolonged 

QT interval through GWAS (Table 1.4) 61-63,204. 

The aim of this study was to investigate the link between reported and suspected LQT 

genes and unexplained stillbirth. CICUS recruited 70 unexplained stillbirth cases where DNA was 

readily available. The gene panel included the known long QT genes and 23 new genes 

associated with SCD and LQTS by recent genome-wide association studies 63.  
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Gene 
Sequenced 

Exon 
Count 

Link to Channelopathy 
Gene 

Sequenced 
Exon 

Count 
Link to Channelopathy 

AKAP9 50 LQTS9 131 NDRG4 16 GWAS 

ANK2 47 LQTS4 56 NKX2-5 2 GWAS 

ATP1B1 6 GWAS NOS1AP 10 GWAS 

ATP2A2 21 GWAS PLN 2 GWAS 

BAZ2B 37 SCD PRKCA 17 GWAS 

CACNA1C 50 LQTS8/SQTS/BrS 164,180 RYR2 105 BrS/CPVT 157 

CASQ1 11 Calcium Handling 205 SCN10A 27 BrS 

CAV1 3 GWAS SCN4B 5 LQTS10 130 

CAV2 3 GWAS SCN5A 28 LQT3/BrS 57,145 

CAV3 3 LQTS9 129 SLC8A1 10 GWAS 

CREBBP 31 GWAS SMARCAD1 24 GWAS 

KCNAB2 16 GWAS SNTA1 8 LQTS12 132 

KCNE1 3 LQTS5 125 SP3 7 GWAS 

KCNE2 2 LQTS 126 SRL 6 GWAS 

KCNH2 15 LQTS2/SQTS 55 TCEA3 11 GWAS 

KCNJ2 2 LQTS7/SQTS 127 TRPM7 39 GWAS 

KCNQ1 16 LQTS1/SQTS 124 TTN 363 GWAS 

MKL2 17 GWAS    

Table 1.4. List of 35 genes selected for the custom CICUS sequencing panel. Gene name and exon counts are listed 

alongside which channelopathies are caused by variants within that gene, or how the gene has been linked to causing 

channelopathies. 
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1.6.2 Predicted Damaging Variants Found in the CICUS Study 

A miSeq Multiplexed Sequencing Platform was used to sequence a custom panel of 35 

genes (Table 1.4). After sequencing quality checks, 311 nonsynonymous, exonic single 

nucleotide variants (SNVs) were identified in the cases that differed to the reference genome 

(hg 19). Variants more likely to have a functional effect on the protein of interest were sorted 

from these 311 variants using a variety of computational tools. These tools rank nonsynonymous 

variants using base pair conservation, amino acid chemistry and protein secondary structure 

(detailed in Methods Section 2.2). 

We found 18 variants predicted to be damaging in established LQT genes: one novel in 

CACNA1C and 17 rare (AKAP9, ANK2, CACNA1C, KCNE1, KCNE2, KCNJ2 and SCN5A)206. In the two 

most commonly associated genes with LQTS (KCNQ1 and KCNH2) we did not identify any 

predicted damaging variants. Twenty-five predicted damaging variants in non-LQT (GWAS 

candidate) genes were discovered, six were novel while 19 were rare 206.  

Of the rare LQT gene variants found in the CICUS population, three had deleterious 

functional data previously associated with them. One case was heterozygous for variants in both 

KCNE1 (p.D85A) and KCNE2 (p.T8A) genes, these variants lead to susceptibility to drug-induced 

arrhythmia 207,208. 

 

1.6.3 Functional Testing of Variant Associated with Stillbirth in CICUS Study – KCNJ2 

 The first genetic variant to be functionally tested from the CICUS project was a novel (at 

the time) nonsynonymous mutation in KCNJ2, p.R40Q 206. This variant was located in a highly 

conserved amino acid residue within the N-terminal domain of the inward rectifying potassium 

channel, Kir2.1 (Figure 1.5). Loss-of-function mutations in KCNJ2 are associated with LQT7 and 

many of them act in a dominant negative manor 127,209. Gain-of-function variants have also been 

reported, p.D172N and p.V93I, which cause SQT3 and atrial fibrillation, respectively 210,211. These 
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loss-of-function mutations are associated with ~60% of Andersen-Tawil syndrome (Type 1) cases 

and LQT can occur alongside micrognathia, widely spaced eyes and clinodactyly. Some patients 

have short stature or abnormal spine curvature – clearly indicating a developmental facet to the 

disease. 

 When this variant was transfected into CHO-K1 cells, inward potassium current density 

below -100mV was significantly reduced compared to wild-type KCNJ2 transfected cells (Figure 

1.5E). Many of the published KCNJ2 variants that cause loss-of-function result in a dominant 

negative phenotype that is thought to significantly prolong the QT interval. This variant could 

predispose developing foetal hearts to arrhythmia, if this occurred during a vulnerable stage in 

development and may have precipitated the stillbirth. 
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Figure 1.5. The KCNJ2 CICUS variant p.R40Q leads to significantly reduced current density when expressed in 

heterologous cells. A Genomic map of KCNJ2’s two exons denoting base pair length and start ATG codon. B Protein 

domain map of KCNJ2, numbers listing amino acid length of specific domains. C Graphical representation of KCNJ2 

inside the plasma membrane, both N and C termini are cytoplasmic. D Scale of current/time used in E and voltage 

protocol for whole-cell patch-clamp of transfected cells. E Representative traces of cells expressing WT, putative 

pathogenic p.R40Q and p.T353A KCNJ2 plasmids. For comparison, pcDNA3.1 transfected cells were also analysed. 

Figure taken from 206. 
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1.6.4 Selection of Variants in AKAP9 and TRPM7 for Functional Testing 

 Sequencing of AKAP9 and TRPM7 in 70 unexplained stillbirth cases resulted in 25 distinct 

nonsynonymous SNVs in the exons of these genes. The genes TRPM7 and AKAP9 were included 

in the sequencing panel based on the following factors. 

 TRPM7 has been demonstrated through GWAS findings to be a gene involved in 

regulating adult myocardial repolarisation 63. This included the identification of multiple 

nonsynonymous variants in symptomatic LQT patients, who were genotype negative for classic 

LQTS variants. Alongside these human data, several studies in mice have demonstrated that 

TRPM7 is indispensable to mouse development – in particular cardiogenesis 212-214.  

 AKAP9 has an established role in associating with KCNQ1/KCNE1 in cardiomyocytes to 

couple adrenergic stimulation with increased IKs current 131. Prolongation of the QT interval by 

variants located in the AKAP9 gene are designated as LQT11. LQTS patients have a lower median 

age of first cardiac event if they are LQT1 genotype-positive compared to LQT2 or LQT3 

(mentioned in 1.5.2) 123. Interestingly, cardiac events in LQT1 patients are primarily precipitated 

during exercise or stress (covered in 1.4.3). Clearly this indicates a key role for proteins whose 

function lies in regulating adrenergic control of IKs. However no predicted damaging variants 

were sequenced in KCNQ1 or KCNE1 in any CICUS cases. A genetic study by Villiers et al. has 

shown that in a founder LQT1 population (168 mutation carriers & 181 non-carriers), divergent 

AKAP9 genotypes were able to double or halve the risk of cardiac events 215.  
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1.6.5 Prioritising AKAP9 and TRPM7 Variants for Functional Analysis 

 In total 17 missense SNVS were sequenced in the AKAP9 gene in the CICUS study (Table 

1.5). Only those variants which were highly conserved and predicted to be damaging by at least 

one of the following predictive software was prioritised for functional studies: SIFT, Polyphen 

and Mutation Taster. After excluding all variants not predicted to affect protein function, five of 

the 17 initial AKAP9 variants remained to be taken forward for functional analyses (Table 1.6). 

Of these five, p.T155N was predicted to be damaging only by PolyPhen, whilst p.D1507H was 

listed as ‘possibly’ damaging by PolyPhen and Mutation Taster.  

In the CICUS study population we identified six heterozygous nonsynonymous SNVs 

(Table 1.7) in TRPM7. These variants were sorted to prioritise those most likely to functionally 

effect the TRPM7 protein as previously mentioned for AKAP9 variants. Two variants, p.E1205G 

and p.T860M were novel variants not found in either of the 1000G or Esp6500 databases. The 

remaining two, p.R494Q and p.G179V had not been found in the 1000g database and were 

reported at very low frequency in the Esp6500 data set. Interestingly, all TRPM7 variants that 

lay within constrained nucleotides and were novel/rare were predicted to be damaging by at 

least two predictive tools. 

There was an apparent bias towards favouring pathogenicity in TRPM7 variants over 

those in AKAP9. Annotation tools take into account known functional/structural domains and 

studied functional epitopes. Therefore TRPM7’s polypeptide sequence has been annotated with 

a number of functional protein domains and predictive tools are more likely to interpret variants 

within or near them as damaging.  

In comparison, AKAP9 is annotated with a single putative PKA subunit binding domain 

and there is a single variant thought to cause pathological disease 131. All CICUS TRPM7 variants 

were novel in the 1000g database, and in the case of esp6500 either extremely rare (p.G179V 

and p.R494Q) or novel.  
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AKAP9 Variant 

DNA : Protein 
GERP++ Score 

Esp6500 

Frequency 

1000g 

Frequency 

CICUS 

Frequency 

C464A : T155N 5.37 0.0003 0.0002 1 

G6037A : E2013K 5.72 0.003 0.0004 1 

G4127C : S1376T -1.51 0.001 0.0002 1 

A6176G : E2059G 5.62 0.0005 0.0002 1 

G4519C : D1507H 4.36 0.004 0.003 1 

A10672G : I3558V 0.64 0.001 0.001 1 

G4841A : R1614Q 1.43 0.0085 0.01 1 

G9929A : R3310Q -3.44 0.007 0.008 1 

T6556C : S2186P 3.2 0.002 0.002 1 

T4199C : M1400T 0.25 0.037 0.05 1 

G9127A : A3043T 4.89 0.0009 0.0004 2 

C139T : H47Y 0.48 0.01 0.002 3 

A10840G : M3614V 1.11 0.01 0.007 3 

A7451G : K2484R -8.74 0.0945 0.066 15 

A8375G : N2792S -2.13 0.36 0.3 46 

G1389T : M463I -3.46 0.44 0.37 48 

C8935T : P2979S 2.47 0.99 0.99 70 

Table 1.5. List of all 17 AKAP9 nonsynonymous SNVs found In CICUS cases. Variants are listed as both genomic DNA 
alteration and protein substitution compared to hg 19. GERP++ Score is a scale of conservation. Esp6500 and 1000g 
frequency represent the incidence of that specific variant in the Exome Sequencing Project and 1000 Genome Project 
databases respectively. CICUS Frequency reports the amount of cases which carried the variant listed.   

 

AKAP9 Variant 

DNA : Protein 
SIFT Polyphen 

Mutation 
Taster 

Predicted 
Damaging 

G4519C : D1507H 0.31 0.874 1 0-2/3 

C464A : T155N 0.06 0.967 0.566 1/3 

G9127A : A3043T 0.34 0.999 1 2/3 

A6176G : E2059G 0 1 1 3/3 

G6037A : E2013K 0 0.998 1 3/3 

Table 1.6. Five AKAP9 variants to be carried forward for functional testing. Variants are listed as both genomic DNA 
alteration and protein substitution. Mutational analysis scores rating the likelihood of a variant being damaging from 
the three mutational software are listed. Entries in red are considered damaging using the algorithm indicated, those 
in blue are possibly damaging. Each tool reports a variant as deleterious on different score parameters: SIFT < 0.05 
and Polyphen > 0.85, while Mutation Taster scores are not wholly indicative of its predictive output. 
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TRPM7 Variant 

DNA : Protein 
GERP++ Score Esp6500 Freq 1000g Freq CICUS Freq 

A3614G : E1205G 5.3 - - 1 

C2579T : T860M 5.59 - - 1 

G1481A : R494Q 4.11 0.000086 - 1 

G536T : G179V 4.65 0.000084 - 1 

A223G : I75V -2 0.0013 - 1 

C4445T : T1482I 2.19 0.0797 0.075879 15 

Table 1.7. List of TRPM7 nonsynonymous SNVs found In CICUS cases. GERP++ Score is a scale of conservation. Esp6500 
and 1000g frequency represent the incidence of that specific variant in the Exome Sequencing Project and 1000 
Genome Project databases respectively. CICUS Frequency reports the amount of cases which possess the variant listed. 
A “-“ shows that variant has not been sequenced in this population. 

 

TRPM7 Variant 

DNA : Protein 
SIFT Polyphen 

Mutation 

Taster 

Predicted 

Damaging 

G536T : G179V 0 1 1 3/3 

G1481A : R494Q 0.21 1 1 2/3 

C2579T : T860M 0 1 1 3/3 

A3614G : E1205G 0 0.561 1 2-3/3 

Table 1.8. The four TRPM7 variants prioritised for further functional testing. Variants are listed as both genomic DNA 
alteration and protein substitution. Mutational analysis scores rating the likelihood of a variant being damaging from 
the three mutational software are listed. Entries in red are considered damaging using the algorithm indicated, those 
in blue are possibly damaging. Each tool reports a variant as deleterious on different score parameters: SIFT < 0.05 
and Polyphen > 0.85, while Mutation Taster scores are not wholly indicative of its predictive output. 
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1.7 Transient Receptor Potential Melastatin 7 

1.7.1 Introduction 

Transient receptor potential channels (TRP) are classically characterised as a primordial 

family of ion channels that act as cellular sensors 216. First described in Drosophila as calcium 

channels responsive to light, it is now understood that TRP channels play a role in many areas 

of tissue and cellular biology 217. These range from allowing mice to discriminate between 

genders to the regulation of macrophage polarisation 218,219. There are currently 28 TRP channels 

divided into 6 families, Vanilloid, Canonical, Mucolipin, Polycystin, Ankyrin and Melastatin, the 

majority being ubiquitously expressed. Although there is little similarity in terms of biological 

function between the families, all channels are non-selective.  

The TRP melastatin family (TRPM) are named as a consequence of conserved sequence 

homology of the N-terminal region. TRPM6 and 7 are unique in that they are cation channels 

fused to functional serine/threonine kinases 220. The channel consists of six transmembrane 

domains, and it is assembled as a tetramer to form the active pore in the plasma membrane 

(Figure 1.6). Human TRPM7 is 1865 amino acids long, with a mass of 212 kDa. This channel is 

non-selective and predominantly conducts divalent cations under physiological conditions. 

Although all cell types constitutively express TRPM7, the highest levels of protein are found in 

the heart, liver, bone and adipose tissues 221. TRPM7’s C-terminal domain is a functioning α-

kinase domain capable of phosphorylating a number of specific targets such as annexin-1A 222,223. 
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Figure 1.6. Schematic of TRPM7 and annotated domains. Amino acid positions for each domain are listed, figure 

based upon a previously published figure 224. 
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1.7.2 Conduction and Gating 

As a non-selective ion channel, under normal physiologically relevant conditions TRPM7 

conducts divalent cations such as Ca2+ and Mg2+ 225. However, it also allows Zn2+, Mn2+ and Co2+ 

to enter and leave the cell alongside the toxic divalent cations Ni2+, Cd2+, Ba2+ and Sr2+ 226. The 

channel is constitutively open, but sensitive to inhibition by intracellular (millimolar) 

concentrations of Mg2+ and Mg2+-nucleotides 227. Depletion of intracellular Mg2+ leads to 

activation of TRPM7 currents showing a nonlinear current-voltage (I-V) relationship: negative 

voltage resulting in inward divalent current and positive voltage producing an outward 

monovalent flux.  

Mutation of residues in the TRPM7 C-terminus have produced evidence for regulatory 

Mg2+ binding sites 227. In addition to Mg2+, TRPM7 current is regulated by several secondary 

signals including PIP2, fluid flow and lipids 228-230. While the mechanisms behind this regulation 

are not fully understood, increased fluid flow speed across the surface of a patch-clamped cell 

appeared to upregulate vesicular transport of ion channels into the plasma membrane. While 

there is no known small molecule inhibitor specific to TRPM7, the compound 2-

aminoethyldiphenylborinate (2-APB) inhibits TRPM7 currents in the micromolar range, but 

potentiates them at millimolar concentrations. Interestingly 2-APB increases TRPM6 currents at 

micromolar concentrations and is a key method in differentiating between TRPM6 and TRPM7 

currents 231.  

 

1.7.3 TRPM7 and Magnesium Biology 

 Initial reports of TRPM7 knock-out in mice revealed the ion channel as vital to embryonic 

development, and the key regulator of Mg2+ homeostasis alongside its close homolog TRPM6 

232,233. Schmitz et al. showed cells deficient in TRPM7 become Mg2+ deficient, affecting viability 

and proliferation which is rescued by supplementation of extracellular magnesium 232. 
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Ryazanova et al. more recently created TRPM7-kinase domain specific knock-out mice 233. 

Homozygous deletion resulted in embryonic lethality, but heterozygous mice were viable, 

showing symptoms of hypomagnesaemia and lacking intestinal Mg2+ absorption. Homozygous 

TRPM7 knock-out embryonic stem cells were unable to grow unless growth media was 

supplemented with 10mM Mg2+.  

Data from the Clapham laboratory also demonstrated that TRPM7 deletion prevents 

embryonic development 214. However, tissue specific TRPM7 knockout in T cells disrupted 

thymopoiesis in a non-Mg2+ dependant mechanism. Total cellular and acute uptake of Mg2+ was 

similar between knock-out and WT T cells despite dysregulated mRNA transcription in 12 growth 

factors known to regulate tissue growth. There remains conflicting opinion surrounding the 

importance of TRPM7 in regulating cellular magnesium levels. While it is clear TRPM7 allows 

Mg2+ entry into cells and is itself inhibited by intracellular magnesium, the channel is also 

permeable to a number of other divalent cations to a greater extent 226. 

 

1.7.4 Regulating Cell Death 

 In 2003 Aarts et al. showed TRPM7 channels have a key role in regulating anoxic 

neuronal death 234. Following prolonged oxygen glucose deprivation, a non-selective cation 

channel caused neuronal calcium overload and exacerbated reactive oxygen species production. 

By supressing TRPM7 expression or blocking the nonselective cation channel, Aarts et al. were 

able to reduce calcium uptake of cells and significantly improve neuronal survival during oxygen 

glucose deprivation.  

 Recently, cleavage of the TRPM7 channel-kinase has been implicated in regulating Fas-

induced apoptosis 235. Fas-induced apoptosis is a vital pathway to cell death, and is mediated in 

response to cell damage, particularly DNA-damaging agents but also when induced by Fas-ligand 

released by cytotoxic T cells 236. Desai et al. reported that cleavage between the TRPM7 channel 
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and its kinase releases the C-terminus, leaving the pro-apoptotic channel peptide which 

regulates internalisation of the Fas Receptor, a key step in initiating the caspase cascade. 

 

1.7.5 Cardiac Biology 

 A key study demonstrated TRPM7’s central role in heart function and development 

through the elegant generation of three cardiac-targeted TRPM7 knock-out mice 213. By using 

three separate cre promotors which activate at embryonic days 7, 9 and 12.5 Sah et al. 

demonstrated the exquisite temporal importance of the TRPM7 ion channel in cardiac growth 

and conduction. Cardiac deletion of TRPM7 at E7 or E9 led to fatal congestive heart failure due 

to a lack of myocardial compaction at E11.5. Deletion of TRPM7 at E13.5 led to viable mice with 

normal ventricular morphology and function. However, knockout of TRPM7 at E12.5 in mice 

possessing only one TRPM7 allele leads to a markedly different cardiac phenotype 213. Half of 

these mice developed cardiomyopathy and heart block, showed impaired repolarisation and 

ventricular arrhythmia. In these cardiomyopathic mice, there was evidence of transcriptional 

changes, in particular reduced Kcnd2 expression - a component of the transient outward 

potassium current.  

 In the same year Sah et al. also reported on the effect of TRPM7 knockout on cardiac 

automaticity 212. In vitro knock-down of TRPM7 in embryonic cardiomyocytes reduced Ca2+ 

transient firing rates and reduced expression of the pacemaker current Hcn4, T-type calcium 

current Cav3.1 and SR calcium transport ATPase isoform SERCA2a. Adult mice lacking TRPM7 

showed atrioventricular (AV) block and sinus pauses (SP), while zebrafish treated with a 

morpholino targeted to TRPM7 showed a significant reduction in heart rate. Interestingly, 

postnatal targeting of TRPM7 deletion in the sinoatrial and AV node recapitulated these 

phenotypes of SP and AV block. This demonstrates that not only does TRPM7 regulate cardiac 

conduction throughout the heart but this occurs throughout adult life. 
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 Prior to the work by Sah et al. in 2010, Du et al. linked TRPM7-mediated Ca2+ entry in 

cardiac fibroblasts to atrial fibrillation 237. Atrial fibroblasts from patients with atrial fibrillation 

(AF) showed significantly higher TRPM7 currents compared to those found in patients without 

AF. These fibroblasts were also more prone to myofibroblast differentiation, cells thought of as 

central regulators in fibrogenesis 238. TRPM7 knockdown by shRNA reduced the rate of 

differentiation and inhibited transforming growth factor-β1 induced proliferation, another key 

driver of atrial fibrosis. 

 

1.7.6 TRPM7 C-terminal Kinase 

Recently the Clapham laboratory published the observation that TRPM7 is cleaved in a 

cell-specific manner to allow the C-terminal kinase to translocate to the nucleus where it binds 

transcription factors 223. The process of cleaved kinase binding to these chromatin modifying 

proteins appeared to rely on the cytosolic free [Zn2+]. As TRPM7’s conductance of zinc is 

significantly higher than that of magnesium, it could be reasoned that this mechanism is central 

to how the channel-kinase exerts its control of cation homeostasis and gene regulation across 

an abundance of tissues and cell types 212-214,232-234. 

The TRPM7 ion channel is therefore vital in cardiac heart development and the creation 

of a functioning conduction system 213. However, the channel is also required for atrial and 

ventricular myocardial function, with its deletion in early embryonic development fatally 

impacting cardiogenesis. It also clearly plays a role in adult pathophysiology, with increased 

TRPM7 current correlated to AF while knock-out in adult mice leads to a conduction disorder-

like phenotype 212,238. TRPM7’s central role in the cardiac system occurs alongside significant 

contribution to cellular divalent cation homeostasis and apoptosis, and it is therefore clear that 

predicted damaging DNA variants in TRPM7 are of interest not only as a possible cause of 

unexplained stillbirth but to scientific interest in these areas as a whole 224.  
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1.8 A-kinase Anchoring Protein 9 

1.8.1 Adrenergic Stimulation  

 During periods of exercise or stress, there is increased sympathetic tone in the heart 

resulting in raised heart rate, conduction velocity, stroke volume and increased lusitropy – the 

rate of relaxation. The raised level of catecholamines, primarily adrenaline and noradrenaline 

are ligands for β-adrenoceptors. Activation of these G-protein coupled receptors (GPCRs) is 

required to increase the outward potassium current that repolarise the cardiomyocyte during 

high heart rates. In particular the IKs current significantly increases following β-adrenergic 

receptor stimulation, as shown by Volders et al. in using canine ventricular myocytes 239. This 

effect has also been seen in frog atrial cells, rabbit SA node cells and guinea-pig ventricular 

myocytes 240,241. 

Following GPCR activation, the Gαs effector protein activates adenylyl cyclase - 

producing raised cAMP levels. Cytosolic cAMP binds to the regulatory subunit of Protein Kinase 

A (PKA), releasing a catalytic subunit capable of phosphorylation – and activating a vast array of 

target proteins throughout the cell. Despite the ubiquitous nature of increased cAMP levels 

throughout the cell, cardiomyocytes respond by targeted phosphorylation of the KCNQ1 

membrane-bound protein. Until 2002, the precise molecular mechanism of coupling β-

adrenergic stimulation to increased IKs current was unknown.  

 

1.8.2 Yotiao and Adrenergic Coupling 

It is clear that patients who possess a prolonged QT interval and are positive for a 

pathological variant in KCNQ1 (LQT1) are more likely to have a cardiac event during exercise or, 

more broadly, sympathetic nervous stimulation 123. In 2002, Robert Kass’s group published that 

the β-adrenergic response of the IKs current required an accessory protein - Yotiao 109. Yotiao 

co-transfected cell’s IKs tail current doubled when treated with cAMP, mimicking activation of 
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PKA through the binding of the β-receptor by adrenaline, in comparison to untransfected CHO 

cells which did not respond. Marx et al. postulated that Yotiao was required to coordinate 

phosphorylation of the KCNQ1/KCNE1 channel complex by PKA in response to β-adrenergic 

stimulation. Yotiao is classified as an A-Kinase Anchoring Protein (AKAP), a family of proteins 

that compartmentalise enzymes regulated by secondary messengers 242. 

Importantly, the protein described by Kass et al. (“Yotiao” in their paper) as required for 

β-adrenergic coupling, is an isoform produced by the larger AKAP9 gene 243. Full length AKAP9 

(NM_005751) is 3,907 amino acids in length and approximately 450kDa in size. The protein 

identified in Kass’s paper likely refers to the 1637 amino acid isoform, which shows sequence 

homology to the N-terminus of the full-length protein.  

 

1.8.3 Discovery of LQTS11 

Five years later the same group identified a putative LQTS-causing variant p.S1570L in 

AKAP9, believed to lie within the KCNQ1 binding domain of the channel 131. The mutation 

reduced KCNQ1-Yotiao binding affinity and eliminated the response of IKs to cAMP stimulation. 

Mathematical modelling of this effect during maximal adrenergic stimulation predicted an APD 

increase of 121ms in homozygote p.S1570L cardiomyocytes. Interestingly, while the p.S1570L 

mutation lies expectedly within the short and long isoform, the single putative PKA binding 

domain is at amino acid residues 2554 - 2567, a site not contained in the smaller isoform. 

While mechanistically it is believed that activation of KCNQ1/KCNE1 by β-adrenergic 

stimulation is required for meaningful K+ influx by IKs to contribute to APD, only one case of 

definitive LQT11 has been found. However, investigation of AKAP9 variation in LQTS1 

populations has revealed interesting associations with cardiac event risk. De Villiers et al. 

reported that in a South African LQTS1 founder population, certain AKAP9 haplotypes were 

associated with a doubling of cardiac event chances 215.  
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These population-based approaches have called into question the validity of AKAP9 

variants being the sole contributing factor to LQTS11 and subsequent cardiac events. 

Interestingly, Imredy et al. showed HEK293 cells transfected with IKs alone respond to 

adrenergic stimulation with forskolin 244. They found a PKA-dependent response similar to that 

observed in native cardiomyocytes. This data suggests an intact signalling pathway that couples 

PKA activation to the targeted phosphorylation of KCNQ1 in HEK293 cells. Whilst the group did 

not discover the key protein responsible for this interaction, analysis of mRNA from HEK293 cells 

in the ENCODE database reveals significant AKAP9 exon expression across the full length of the 

gene (Figure 1.7A). Evidence for the presence of AKAP9 protein can be found in the Human 

Proteome Atlas, with peptides identified by mass spectrometry residing across the whole length 

of the protein (Figure 1.7B). 

With only one reported case of LQTS due to genetic variation in AKAP9, the discovery of 

five predicted damaging variants in this gene in the CICUS population make it an interesting 

target for follow-up functional studies to ascertain pathological significance. 
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Figure 1.7. HEK293 mRNA and proteome found in online databases. A Exon sequencing data from HEK293 cells 

sequenced for the ENCODE project (top) compared to AKAP9 genome map (below) 245. Large blue blocks denote exons, 

the arrow depicts the direction of transcription. Total RNA was harvested from 5 x 106 cells. B AKAP9 full length amino 

acid sequence with peptides present in human foetal heart tissue in red from the Human Proteome Map 246. Proteins 

were quantified using high resolution mass spectrometry. The highlighted blue section shows the most abundant 

peptide found in the tissue. 
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1.9 Modelling Cardiovascular Disease with Pluripotent Stem Cells 

1.9.1 Generating Pluripotent Stem Cells 

 Modelling the effect of deleterious ion channelopathy variants on the cardiovascular 

system can be difficult in comparison to other diseases due to the difficulty in obtaining and 

culturing adult cardiomyocytes. These cells do not proliferate readily and rapidly commit to 

anoikis when left unattached to a surface for long periods of time 247,248. Using small animals to 

model cardiovascular diseases has provided numerous insights into human physiology 249, but 

substantial differences exist on the cellular level between the cardiomyocytes of large mammals 

and small rodents 250. For example, the repolarising K+ currents expressed in mammal 

cardiomyocytes varies greatly across species and accounts for major electrophysiological 

differences in action potential duration. While slowly activating K+ currents such as IKs are 

thought to be key in repolarising human cardiomyocytes, it is unlikely to contribute to 

repolarisation in mice whose rapid heart rate (>500bpm) means ion channels opening after 

50ms will have no meaningful effect. Mouse models where the KCNQ1 gene has been deleted 

show few abnormal AP characteristics under normal conditions (+8ms QTc); prolonged QT was 

exacerbated by only adrenergic challenge 251. However, these slight differences are not 

comparable to Jervell and Lange-Nielsen Syndrome in humans, where patients present with 

significantly prolonged QT at rest (557ms QTC) and have a severe history of cardiac arrest and 

sudden death 252.  

 Breakthroughs in developmental biology yielded a viable alternative to relying on mice 

to model cardiomyocyte biology, generating contractile heart cells from human pluripotent 

embryonic stem cells 253. This was limited initially to the generation of contractile aggregates, 

these spontaneously contracting bodies that stain positive for human cardiac structural proteins 

and expressed genes associated with early human cardiomyocytes. These cells had calcium 

transients lasting ~130ms and showed delayed relaxation, which were sensitive to isoproterenol 
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and carbamylcholine treatment. However, efficiency of this process was low, with 

spontaneously contracting sections only occurring in 8.1% of stem cell embryoid bodies. 

The recent advances of human induced pluripotent stem cell (iPSC) technology in 2007 

by Shinya Yamanaka now allows pluripotent stem cells to be derived from human somatic cells 

instead of human embryos 254. By transducing skin fibroblasts with four reprogramming factors 

(Oct3/4, sox2, Klf4 and c-Myc), Yamanaka et al. transformed fibroblasts into pluripotent stem 

cells capable of differentiating into cell types of all three germ layers. This has given laboratories 

the ability to generate iPSC cell lines from any cell line, and therefore a possible supply of human 

cardiomyocytes to assay and model human cardiovascular disease. Progress in stem cell biology 

has been coupled with improved protocols to differentiate cells into cardiomyocytes, from 

simple monolayers to 3-dimensional printed cardiac muscle patches 255,256. These cells have been 

used to repair damaged myocardium in animals, study early cardiac development, investigate 

cell metabolism and screen drugs for arrhythmia-related side effects 257. Characterisation of 

these cells from the Burridge et al. protocol shows that stem cell-derived cardiomyocytes 

express cardiac structural proteins, express cardiac specific genes and appear to be a 

heterogenous population of nodal, atrial and ventricular-like cells. However, these cells do not 

reach the structural and electrophysiological maturity of adult human cardiomyocytes, and 

transcriptionally they are less mature than foetal human cardiomyocytes 258,259. 

 

1.9.2 Modelling Channelopathies with iPSC-CMs 

Despite these drawbacks, several groups have studied a multitude of different ion 

currents in iPSC-CMs. In a seminal paper in 2010, Moretti et al. published patch-clamp recordings 

from cardiomyocytes derived from iPSCs reprogrammed from healthy and a LQTS1 patient 260. 

The iPSCs were heterozygous for a p.R190Q variant in the KCNQ1 gene. Action potential 

recordings from ventricular and atrial-like cells showed significantly prolonged APD compared 
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to control cells. Whole-cell recording of IKs showed significantly decreased current density 

recordings from LQTS patient iPSC-CMs. This recapitulated the expected phenotype seen in 

patients, albeit observed KCNQ1/KCNE1 current densities even in control patients were 

extremely low (<3 pA/pF).  

 One year later, Itzhaki et al. published whole-cell patch-clamp recordings of CMs 

differentiated from iPSC cells derived from a patient with p.A614V LQTS2 261. Action potential 

duration in LQTS2 iPSC-CMs (atrial and nodal) was strikingly prolonged compared to control 

cells. There was also evidence of EADs and triggered arrhythmias recorded in cells possessing 

the mutant allele, but not in controls. These two studies showed that iPSC-derived 

cardiomyocytes can be used to model cardiac ion channelopathies. Cells derived from mutant 

cells did have prolonged APDs and reduced potassium currents, but these results only 

recapitulated data previously seen from heterologous cell work and predicted computational 

modelling, although in a more physiologically relevant system 262,263. 

 In 2012 Davis et al. used mouse- and patient-derived iPSC cells with a heterozygous 

p.1798insD SCN5A mutation to recapitulate LQTS3 264. Action potentials had reduced upstroke 

velocity and prolonged duration, similar to primary cells isolated from mice with the same 

mutation. In iPSC-CMs heterozygotic for p.1798insD, inward sodium currents were reduced and 

APD90 was significantly reduced compared to WT cells. The rare autosomal dominant LQTS8, or 

Timothy syndrome has also been modelled with iPSC-CMs 265. Cardiomyocytes derived from 

iPSCs with a p.G406R variant in CACNA1C showed reduced calcium currents, prolonged APD and 

increased putative DAD rate compared to WT cells. These results were consistent with the 

properties of mutant channels observed in heterologous cells 128.   
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1.10 Hypothesis and Aims 

 Unexplained stillbirth is common across the world, with diagnosis made by exclusion of 

any known causes. It would be a significant step to identify pathological genetic variants that 

increase risk, or cause stillbirth.  

 

Hypothesis: nonsynonymous variants discovered from unexplained stillbirth cases in AKAP9 and 

TRPM7 may functionally affect protein function, potentially causing stillbirth. 

 

The aim of my PhD project was to carry out functional analysis on the effect of nine 

nonsynonymous variants, four in TRPM7 and five in AKAP9 by: 

1. Procurement of plasmids expressing TRPM7 and AKAP9, followed by site-directed 

mutagenesis to insert the nonsynonymous variants into the genes 

2. Establish protocols to assay normal function of wild-type TRPM7 ion channel and the 

anchoring protein AKAP9 

3. Compare the effect of CICUS variants in TRPM7 and AKAP9 against their wild-type 

proteins to investigate possible functional effects 

4. Investigate the expression and importance of TRPM7 in human cardiogenesis using in 

vitro cardiomyocyte differentiation from iPSCs 
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2 Methods & Materials 

2.1 Ethical Approval 

 We prospectively collected fresh tissue (heart, muscle, kidney) from unexplained 

stillbirths (>22 weeks) where no definite cause of death could be identified after a full autopsy, 

from four National Health Service (NHS) hospitals (University College London Hospital, Great 

Ormond Street Hospital, Southampton University Hospital and Sheffield Children’s Hospital) 

between 2007 and 2013, after informed parental consent. In addition, we included previously 

archived fresh frozen tissue from a stillbirth cohort from Sheffield Children’s Hospital.  

The Central London Research Ethics Committee 2 approved the study (code - 

10/H0713/26). Patient samples for stem cell work were used with informed consent (code - 

13/LO/0224) and approved by the UK’s National Research Ethics Service. 

 

2.2 Variant Prioritisation 

In total, 311 nonsynonymous SNVs were present in the CICUS population of unexplained 

stillbirths. Therefore it was important to prioritise variants to allow for the functional testing of 

those most likely to be deleterious 266. 563 samples from the 1000 Genomes project were 

selected as a “control” sample for burden testing 267. The samples were randomly selected to 

reflect the same ethnic super code profile as the stillbirth samples; 69.6% European, 3.3% East 

Asian, and 1.4% African with the remaining 25.7% being randomly selected from the remaining 

samples in the 1000 Genomes project.   

We first filtered variants based upon nucleotide constraint using the GERP++ scoring 

tool 268. A higher GERP++ score reflects base pairs across species that have fewer substitutions 

than would occur during natural selection. Nucleotides within exons that resist evolutionary 

pressure across multiple species (said to be conserved or constrained) are more likely to be 



79 

 

important to the function of the protein. We used a GERP++ score of ≥2 as a cut-off to discern 

variant substitutions that occurred in conserved regions. Although an arbitrary value, it has been 

used in prior work investigating genetic variants and infant sudden cardiac death 269. This value 

selects for variants that occur in nucleotides above the average level of constraint in coding 

regions (GERP++ ~2).  

Constrained variants were removed if they occurred at a frequency above 0.1 in either 

the 1000g or Esp6500 project databases 270. For a severe pathological phenotype like stillbirth, 

it can be assumed that genetic variants that predispose for the condition will be completely 

novel or very rare in the general population. As no studies have conclusively linked 

channelopathies to stillbirth, it is not known whether it is a Mendelian or complex genetic 

disorder. Studies into LQTS have shown a complex trait-like phenotype – a highly variable QT 

interval has been found in an LQTS population with an identical KCNQ1 variant (p.A341V) but 

diverse AKAP9 genotype 215. Lastly we excluded any variants deemed not likely to be damaging 

by three separate mutation analysis tools – SIFT, PolyPhen and Mutation Taster 271,272.  

 

2.3 Plasmid Preparation 

2.3.1 Expression Vectors 

 To functionally test the effect nonsynonymous variants have on protein function it is 

vital to have an effective measure of a protein’s basal function. The first stage in interrogating 

the effect of TRPM7 and AKAP9 CICUS variants is to establish a cellular system that measures 

ion channel activity or β-adrenergic coupling respectively. The first step in this aim is to 

heterologously express the relevant components in cell lines. This was accomplished through 

the use of DNA expression vectors that upon entry into a cell translocate into the nucleus where 

transcription of the gene of interest can occur. Following mRNA translation in homologous 

mammalian cells, the resultant protein is modified and transported to its intended subcellular 

location due to transport motifs inside the protein.  
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 The TRPM7 cDNA cloned into a pcDNA4/TO plasmid was gifted to our lab by Professor 

Schmitz 222. The tetracycline repressor plasmid, pcDNA6/TR was also supplied by Professor 

Schmitz. An eGFP plasmid from (Clontech) was used to identify successfully transfected cells.  

Due to its large size (11,724bp mRNA) and there being no reports of an available plasmid 

from other research groups, the AKAP9 expression plasmid was constructed by Genscript (Clone 

ID: OHu26045, USA). 

 

2.3.2 Bacterial Transformation 

 The use of expression vectors on an experimental scale requires a large quantity of DNA 

that will require constant replenishment. To scale up quantities of DNA, the vector is commonly 

transformed into a recipient bacteria that copies the invasive DNA using their own replication 

machinery. This process occurs alongside rapid bacterial growth – allowing micrograms of DNA 

to be harvested over the course of a few days. Plasmids contain a number of specific elements 

that allow targeted replication of vector DNA (Figure 2.1). For example, a pUC plasmid will be 

readily replicated in E.coli at a high copy number. Antibiotic resistant genes give transformants 

antibiotic resistance while others allow for selection of stable mammalian transfectants. 

Bacteria are grown in agar or nutrient broth containing an antibiotic specifically 

matched to the gene product found within the experimental vector. This targeted selective 

pressure ensures that only transformant bacteria carrying the plasmid are able to replicate. 



81 

 

O rig in  o f R e p lic a t io n

B -L a c ta m a s e

Z e o c in

G e n e  O f In te re s t

 

Figure 2.1. Simplified bacterial plasmid map depicting key DNA elements. An origin of replication allows DNA 

replication inside transformed bacteria. Resistant genes β-lactamase and zeocin (also called Sh ble) confer resistance 

to media containing ampicillin (or carbenicillin) and zeocin, respectively. This allows selection for transformed bacteria 

and transfected mammalian cells, respectively. Transcription of a gene of interest is usually controlled through a 

combination of CMV/T7 enhancer/promoter. Without a gene of interest insertion standard expression plasmids are 

usually 5000 to 6000bp in circumference.  

 

 Six tablets of LB were added to 300ml of double distilled water (ddH2O) to make LB 

broth, and four LB tablets and 3g agar was added to 200ml ddH2O. 200µl of carbenicillin 

(100mg/ml) was added to the agar before it was allowed to set in plastic petri dishes. Competent 

top ten (TT) E coli (Invitrogen, USA) cells were thawed from -80˚C on ice for 30 minutes. 100µg 

of expression vector DNA was added to 50µl of TT. These underwent a 90 second heat shock at 

42˚C on a heated block. Then, TTs were placed back on ice for 2 minutes before mixing with 

800µl of LB broth. Following incubation at 37˚C for 45 minutes cells were centrifuged at 

13,200rpm for 1 minute and resuspended in 100µl LB. This LB/cell mixture was then plated 

overnight on cooled agar plates containing the expression vector specific antibiotic.  

 The following day single colonies were picked from the agar plates and incubated in 5ml 

of LB plus 5µl antibiotic (100mg/ml) at 37˚C. Following this initial growth phase, this starter 

culture was mixed with 45ml LB and 5µl antibiotic (100mg/ml) and left overnight at 37˚C to grow 

to confluency. The resulting 50ml cultures were centrifuged at 4000rpm for 30 minutes, chilled 
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at 4˚C to give a large bacterial pellet. The supernatant was removed and the pellets frozen at -

20˚C until harvesting. 

 DNA vectors were isolated from bacterial pellets using the Qiagen Midi kit. Pellets were 

frozen before sequential re-suspension in 4ml of buffer P1 and buffer P2. The solution was 

inverted 6 times and incubated at room temperature for 5 minutes to ensure complete lysis of 

bacteria. 4ml of chilled buffer P3 was added, the solution was then inverted 6 times and 

incubated on ice for 15 minutes to allow precipitation of bacterial genomic DNA, proteins and 

cellular debris. This precipitate was filtered out using 150mm Whatman filter paper. A qiagen-

tip-100 was equilibrated by the addition of 4ml Buffer QBT and the filtered supernatant poured 

through. The column was washed twice with 10ml Buffer QC before elution of DNA with 5ml 

Buffer QF. 3.5ml 2-propanol was then added to precipitate out the DNA and the solution was 

then centrifuged for 90 minutes at 4000rpm, 4˚C. The supernatant was removed and the DNA 

pellet washed with 1ml 70% ethanol, this solution was then centrifuged at 14,000rpm for 10 

minutes. The ethanol wash was repeated following removal of the supernatant and the DNA 

pellet was air-dried for 10 minutes. Nuclease free water was then added to dissolve the DNA 

before its concentration determined by Nanodrop (ThermoScientific, USA). 

 

2.3.3 Sanger Sequencing 

 Prior to the use of expression vectors it was important to ascertain their sequence 

identity, this was done using the Sanger method. Although pioneered in 1977 by Fred Sanger, 

the chain-termination technique is still considered the ‘gold-standard’ in reporting sequencing 

data 273. Sanger sequencing involves DNA polymerase copying single-stranded DNA through the 

extension of a growing chain of nucleotides. When dideoxynucleotides (ddNTPs) are 

incorporated by DNA polymerase, subsequent chain extension is impossible. When specific 

ddNTPs are added in sequence to these reactions, DNA chains are terminated at specific lengths 
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corresponding to the final ddNTP. By incorporating fluorescent dye-conjugated terminator 

ddNTPs, automated sequencing can detect fluorescent signals at specific wavelengths in 

sequential order during sequencing.  

 10µl of plasmid DNA at 100ng/µl was submitted to the William Harvey Research Institute 

Genome Centre per sequencing reaction alongside 5µl of sequence specific primers at 

10pmol/µl. After Sanger sequencing the resulting chromatogram was analysed using 

GenomeCompiler (USA). All sequencing primers used in this thesis are listed in Table 2.1. To 

ascertain sequence identity, the received DNA vectors were aligned to their reference genes 

using EMBOSS Needle (www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html).  

  

http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html
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Primer 
Target 

Nucleotide Sequence 5’ – 3’ 
Primer 
Target 

Nucleotide Sequence 5’ – 3’ 

CMV CGCAAATGGGCGGTAGGCGTG 

TRPM7 
Reverse 

Sequencing 
Primers 

GCCTGTTCCTTCACACACAA 

AAGGAAAGCGCTTGGTTTCT 

TGGTTTACTTTCCCAGCTTCA 

TTGACACGATCTCCAACTTCTTT 

CAATCCGGTATTAAAGCTGC 

GAATTACAGTGATGTTTTGCTCTGA 

TRPM7 
Forward 

Sequencing 
Primers 

GTCCCTGTGGTGGCACTTAT 

AGCCCTACCGACCAAAGATT 

CCTTCAGTTCAAGAATGGATTG 

GATGACAAATTTCATTCTGGGA 

TGTCACAGAACTTCCATTCCTG 

GCAGAAGAAAAGAGATCCTGTGA 

AKAP9 
Forward 

Sequencing 
Primers 

CAAGCAAGAAGAGAAAAGGATGA 

AGACAACACATGGCACAGATG 

GCAGTTTGAAAAGGACAATTTGA 

TCTGTCTTTGATGAAGACAAAACTT 

GCTCAAGAGGAAAAGATCAAGG 

CAAGCTTACCTGTTGATTCGG 

AGACAGCGAGAAGACCAGGA 

CGACTACAAGCAGCAGTTGA 

TGTATTCCAACAGGAAATACAGAAA 

AAATGAACTGATAAGGGATCTTGAA 

AAAGTGGCTGCTGCTCTTGT 

CAGATGGGACTCTGAAGATCA 

AGAGCTTCTCAGACTGGCGA 

TCAGAAACAAAGGAATCTTCAGC 

GAAGGAGAAACAAAAGAATCAAA 

ATACCTGCTGCTGTTACTGGG 

AKAP9 
Reverse 

Sequencing 
Primers 

TCACTAGCCTGTAATTGCTGAAA 

ATTTGAATATGACCTTAAAGCATTC 

TGACTTTGAATTTACAAGAGACTGC 

TTCTCTCGCTTGGTTACCTCA 

AGGCTTTCCTTCATCACCTG 

CCAGAAAACTCTATTGTACCATCAAT 

CCAGGTTTTCATTATCTATGGAGG 

CTCACGCATCAACTCTGTCTG 

TGATTTGCTAACTGTTCAACCTC 

TGAGCTGCTCTATTTCTTCTTCTC 

CAGGTTCTGATGAAATTGTTTGA 

TCTGAGGAACATTCACTCTGTAAA 

CGTCCGAAATGCTGCTAGTAA 

AGCATTCTCTGTGATTCTATTTTT 

TTTCTAATTCATGATTACAGCCG 

CTAGATCCGTGAAAGCTGGC 

Table 2.1. List of all sequencing primers used during this thesis. All primers are listed in their 5’ to 3’ direction. 
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2.3.4 Site-directed Mutagenesis 

 To investigate the effect of amino acid substitution on protein function, targeted specific 

nucleotide changes are required in the expression construct. The QuikChange II Site-Directed 

Mutagenesis Kit was used to insert nonsynonymous mutations into the TRPM7 gene. Primers 

that anneal to the mutation site ~10-15bp both up- and down-stream of a single mismatch 

variant were synthesised by IDT (Iowa, USA) according to Table 2.2.  

Denaturing wild-type DNA allows binding of mutagenic primers, this is followed by DNA 

extension of the oligonucleotides by the provided PfuUltra DNA polymerase. Followed by 

thermal cycling, both strands of the vector will be replicated incorporating the new primer, and 

will hopefully generate a mutated plasmid. Treatment of the sample by Dpn 1 digests any 

methylated DNA, as all E. coli strains methylate their DNA after replication this removes any DNA 

strands not arising from both primers. The mutagenesis reaction mixture reagents are listed in 

Table 2.4. 

The mutagenesis reaction mixture was made and tubes inserted into a thermal cycler, 

which upon heating to 95˚C cycled through a 30 second step at 95˚C, one minute at 55˚C and 11 

minutes at 68˚C. The protocol lasted for 12 cycles. Tubes were then placed on ice for 2 minutes 

to cool before addition of 1µl of Dpn I. The reaction was mixed by pipetting before incubation 

at 37˚C for 1 hour to allow parental DNA to be digested. This product was transformed into 

competent bacterial cells as previously described in 2.3.2. 
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Target Mutation 

TRPM7 

Forward Primer Nucleotide Sequence (5’ – 3’) 

Reverse Primer Nucleotide Sequence (5’ – 3’) 

c.G536T:p.G179V 
CTGGAGGAGTAAACACAGTTGTGGCAAAACATGTTG  

CAACATGTTTTGCCACAACTGAGTTTATTCTTCAAG  

c.G1481A:p.R494Q 
CTGTTTCATCTTGTTCAAGACTGTCAAACAGG  

CCTGTTTGACAGTCTTGAACAAGATGAAACAG  

c.C2579T:p.T860M 
GTAAAATTCTGGTTTAACATGTTGGCATATTTAGGATTTC’ 

GAAATCCTAAATATGCCAACATGTTAAACCAGAATTTTAC  

c.A3614G:p.E1205G 
CTTTTGAAAGAGTGGGACAGATGTGCATTCAG  

CTGAATGCACATCTGTCCCACTCTTTCAAAAG  

Table 2.2. Site-directed mutagenesis primers targeting TRPM7 CICUS variants. Both forward and reverse primers are 

listed with the altered nucleotide labelled in bold. All primers are shown 5’ to 3’. 

 

AKAP9 
Forward Primer Nucleotide Sequence (5’ – 3’) 

Reverse Primer Nucleotide Sequence (5’ – 3’) 

c.C464A:p.T155N 
GGAGCACAAGACAGTCCGAATCATCTAGAGATGATG  

CATCATCTCTAGATGATTCGGACTGTCTTGTGCTCC  

c.G4519Cp.D1507H 
GGTTTTCAGACTTTTGAGACAGTGCATGTGAAATTTAAAGAAGAATTTAA  

TTAAATTCTTCTTTAAATTTCACATGCACTGTCTCAAAAGTCTGAAAACC  

c.A6176G:p.E2059G 
GACAGCAAAACCAAGCATTGGGAAAGCAGTTAGAAAAAATGAG  

CTCATTTTTTCTAACTGCTTTCCCAATGCTTGGTTTTGCTGTC  

c.T6556C:p.S2186P 
TAGAAGCTAAACCAGAATTGCCCCTAGAAGTACAATTGCAG  

CTGCAATTGTACTTCTAGGGGCAATTCTGGTTTAGCTTCTA  

c.G9127A:p.A3043T 
GAAGAGCGTAGTGTTTTACTAACAGCATTTCGGACGGAGC  

GCTCCGTCCGAAATGCGGTTAGTAAAACACTACGCTCTTC  

Table 2.3. Site-directed mutagenesis primers targeting AKAP9 CICUS variants.  
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Component Volume  

10X RT Buffer 5µL 

TRPM7/AKAP9 expression vector 2µL 

Forward Mutagenesis Primer 125ng 

Reverse Mutagenesis Primer 125ng 

dNTP mix 10mM 1µL 

Nuclease-Free H2O Up to 50µL 

Pfu DNA polymerase 2.5 U/µL 1µL 

Table 2.4. Recipe for a single QuikChange II Mutagenesis reaction. 

 

2.4 Cell Culture 

2.4.1 Cell Selection 

 To investigate the effect of predicted harmful nonsynonymous variants on protein 

function, a cellular system is required to transcribe and translate the expression plasmid DNA 

into a recombinant protein. Two cell lines, human embryonic kidney 293 (HEK293) and Chinese 

hamster ovary – K1 (CHO-K1) were used for all cellular experiments. Due to TRPM7’s ubiquitous 

expression in mammalian cells, it is impossible to select a cell system that does not express 

TRPM7. Therefore HEK293 and CHO-K1 were selected due to their low background ion channel 

expression, and due to their well characterised nature in patch-clamp experiments 

223,226,227,274,275.  

 To examine the effect that AKAP9 CICUS variants had on wild-type protein, we required 

a cell line responsive to adrenergic stimulation but initially lacking the capacity to couple PKA 

activation to KCNQ1 phosphorylation. This would ensure we could measure a robust effect of 

wild-type AKAP9 transfection before comparison between mutants. Initially IKs was measured 

in a stable HEK293 cell line expressing KCNQ1/KCNE1, however this current responded to 

adrenergic stimulation without AKAP9 transfection. Therefore we used CHO-K1 cells to measure 



88 

 

adrenergic-coupling to IKs as this response was only found following co-transfection of 

KCNQ1/KCNE1 and AKAP9. 

 

2.4.2 Cell Culture 

Mammalian cell transfection is most efficient when cells are growing in an 

approximately physiological environment with sufficient surface area to proliferate unimpeded. 

To ensure this, cells are cultured in heated incubators injected with gaseous 5% CO2. HEK293 

cells were grown in MEM supplemented with FBS (10%) and penicillin-streptomycin (1,000 

units/ml). CHO-K1 cells were cultured in HAM F-12 also supplemented with FBS and penicillin-

streptomycin (10% & 1,000 units/ml respectively). All cells were cultured in T75 flasks in ~12ml 

of media at 37˚C with 5% CO2 before growth to >95% confluency. When cells reached confluency 

they were passaged to ensure cells were kept in growth phase – required for efficient 

transfection. 

 The T75 flask media was removed before a single 7ml PBS wash to remove any 

remaining media. Trypsin (3ml) was added to the flasks before incubation at 37˚C for five 

minutes. Using a light microscope, cell detachment was monitored and after 5-10 minutes 7ml 

of media was added to inactivate the trypsin and ensure cell viability. From the resulting 10ml, 

1ml of HEK293 cells (1:10) was added to 12ml MEM media in fresh T75 flasks. Due to their rapid 

proliferation, 0.3ml of CHO-K1 cells (1:30) were added to 12ml HAM F-12. These new flasks were 

incubated at 37˚C for 4-5 days before growth to confluency. The remaining cells were reseeded 

in 6-well dishes at 70% confluency for transfection experiments. 

 

2.4.3 Transfection 

A number of transfection reagents were employed in a cell specific manner to facilitate 

the entry of plasmid DNA into the cells. There are biological, chemical and physical methods 
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available to facilitate the uptake of foreign DNA by mammalian cells 276. FuGENE® Transfection 

Reagent is a nonliposomal formulation that has been documented to successfully transfect both 

HEK293 and CHO-K1 cells, it was used to transfect HEK293 cells. NovaCHOice Transfection 

reagent (Merck, USA) was specifically designed for efficient CHO cell transfection and was used 

to transfect CHO-K1 cells. Vector DNA was co-transfected alongside an eGFP expression plasmid 

to identify successful transfected cells. All transfections were incubated for 15 minutes in 37˚C 

Opti-MEM (ThermoFisher, USA) media prior to pipetting into 6-well dishes. The proportions of 

vector DNA, eGFP and transfection reagent are given in Table 2.5. 

 

Transfection Component Amount Concentration 

TRPM7 plasmid construct 500 ng 5ng/µl 

Tetracycline Repressor 1800 ng 18ng/µl 

eGFP plasmid 50 ng 0.5 ng/µl 

FuGENE 6 µl  

NovaCHOice / Booster Reagent 2 µl / 1µl  

Opti-MEM 100 µl  

Table 2.5. Standard transfection reaction in 6-well dish using FuGENE or NovaCHOice. 
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2.4.4 Cell Harvesting 

Following transfection, cells were either harvested for analysis or dissociated into single 

cells to allow for patch-clamp experiments. To harvest cell pellets, the media was removed and 

adherent cells washed with 2ml of PBS. After the wash step 100µl of ice cold PBS was added to 

cells before scraping the bottom of the dish with cell scrapers. The resulting 100µl cell 

suspension was centrifuged at 10,600 g at 4˚C for 10 minutes and the supernatant removed. All 

pellets were stored at -20˚C before further experimentation. 

Native proteins, particularly ion channels may not present an epitope to allow antibody 

binding unless the cell lysates have been properly prepared. Cell pellets were mixed with 100µl 

NP40 lysis buffer (0.15nM NaCl, 1% NP40 and 0.05mM Tris) diluted in ddH2O. The solution was 

kept on ice for 20 minutes followed by centrifugation at 10,600 g for 20 minutes to pellet any 

remaining cellular debris. NP40 is a mild non-ionic detergent and removes plasma membrane 

attached to proteins. The supernatant was removed and its protein concentration determined 

using the bicinchoninic acid (BCA) assay. 

 

2.4.5 BCA Assay 

The BCA assay relies upon colorimetric detection to quantify the concentration of 

protein in a cell lysate sample. The reduction relies upon the reduction of Cu2+ to Cu+ by protein 

in alkaline solutions. The product of this reaction, produces a purple product which absorbs light 

at 562nm. A linear relationship between increased protein concentration and absorbance at 

562nm allows known protein concentrations to generate a standard curve, and allow 

interpolation of unknown protein concentrations by comparing them to this plot. 

Standards were prepared using Bovine Serum Albumin (BSA) ranging in concentration 

from 25µg/ml to 2mg/ml, diluted in NP40 lysis buffer. A working reagent containing Cu2+ and 

bicinchoninic acid was prepared, which was used to dilute 10µl of standards and unknown 
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lysates (in duplicate) in a ratio of 1:20. These were then pipetted into 96-well plates and 

incubated at 37˚C for 30 minutes. The plate was then cooled and absorbance measured at 

562nm using a Victor Multilabel Plate Reader (PerkinElmer, USA).  

 

2.5 Western Blotting 

2.5.1 Introduction 

 Developed in 1979 by Harry Towbin, the western blot is a laboratory technique that 

enables the detection of denatured proteins from tissue or cellular lysates 277. Quantifiable 

expression of a protein is vital if it is to function on a cellular basis. Detectable protein levels will 

ensure not only that transfection is occurring successfully, but quantification of expression may 

show significant differences between wild-type transfected cells and those expressing harmful 

variant DNA.  

 

2.5.2 Protein Lysate Preparation 

 Before protein can be analysed by western blot, first lysates were mixed with a 6X 

loading buffer containing: 4% sodium dodecyl sulfate (SDS), 20% glycerol, 0.004% bromophenol 

blue and either 100mM β-mercaptoethanol or dithiothreitol (DTT) at pH 6.8. This solution was 

heated at 95˚C for 5 minutes to denature any higher order peptide structures. Polyacrylamide 

gels (Precast 4-20% gradient gels or 4% stacking – 8% running polyacrylamide gels) were cast 

and inserted into gel tanks filled with running buffer (25mM Tris base, 190mM glycine and 0.1% 

SDS). To allow bands that appear in the sample lanes to be quantified by size, 10µl of pre-stained 

protein ladder (Spectra Multicolour High Range Protein Ladder) was loaded into the first well. In 

subsequent lanes 100µg of sample (concentration measured by BCA assay) was loaded into each 

well. 



92 

 

 Due to proteins negative charge, passing electrical voltage across the gel will cause 

denatured proteins to run towards the cathode in the gel tank. Gels were ran at 60V for 10 

minutes to allow the gels to stack before increasing the voltage to 100V. After gel separation by 

size, to visualize protein bands, lysates are transferred to PVDF to allow antibody blotting. PVDF 

membranes were primed in methanol for 30 seconds, washed in ddH2O before equilibrating in 

transfer buffer (25mM Tris base, 190mM glycine) for at least 5 minutes. 

 

2.5.3 Gel Separation and Membrane Transfer 

 The polyacrylamide gel, with PVDF membrane on top was sandwiched between blotting 

paper and placed inside a transfer tank filled with 1L of transfer buffer (25mM Tris and 192mM 

glycine) and placed in the cold room at 4˚C. Transfers were run at 90mA overnight. Membranes 

were then removed, and non-specific binding blocked by agitating with 10ml PBS-T (0.1% Tween 

20) and 5% non-fat milk for one hour at room temperature. The membrane was then incubated 

with a primary antibody (Table 2.6) at room temperature for a further hour. Membranes were 

then washed to remove any non-bound primary antibody, with 10ml PBS, 10ml PBS-T and finally 

10ml PBS, each for 5 minutes. 

2.5.4 Developing using Chemiluminescence 

To visualize protein bands on X-ray film, secondary antibodies conjugated to horse 

radish peroxidase (HRP) were used. 2µl of IgG HRP mouse or rabbit targeting secondary 

antibodies were added to 10ml PBS-T 5% non-fat milk and incubated with membranes at room 

temperature for one hour. PVDF membranes were washed with PBS/PBS-T as previously 

mentioned and dried briefly before addition of Amersham ECL Prime detection reagent for two 

minutes. In the presence of HRP hydrogen peroxide is oxidised alongside luminol, producing 

light. This is absorbed by X-ray film and appears as a band corresponding to the secondary 
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antibody’s position. Polyvinylidene fluoride (PVDF) membranes were gently rinsed in ddH2O and 

imaged in a dark room using Amersham Hyperfilm and a Konica SRX-101A processor. 

Primary Antibody 

(product code) 
Clonality Origin Supplier 

TRPM7 (N74/25) Monoclonal Mouse Neuromab 

TRPM7 (ACC 047) Polyclonal Rabbit Alomone 

TRPM7 (sc271099) Monoclonal Mouse Santa Cruz 

FLAG (F3165) Monoclonal Mouse Sigma-Aldrich 

β-Actin (ab8226) Monoclonal Mouse Abcam 

Calnexin (sc11397) Monoclonal Mouse Santa Cruz 

AKAP9 (ab32679) Monoclonal Mouse Abcam 

Table 2.6. List of primary antibodies used for western blot. 
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2.6 Patch-clamp 

2.6.1 Introduction 

 The ionic current passing through ion channels, or the fluctuating membrane potential 

of a cardiomyocyte are governed by Ohm’s Law. The movement of ionic charge is called current 

and is measured in amps (I). The potential difference between two charged solutions is 

measured in volts (V), and the ease at which the current flows between these two solutions is 

known as conductance (g, measured in siemens). Ohm’s law states: 

𝐼 = 𝑔𝐸 

The reciprocal of conductance is called resistance (R, measured in ohms or Ω), and Ohm’s law 

can be rewritten as: 

𝑉 = 𝐼𝑅 

 The cell’s plasma membrane has a very high resistance due to a low conductance - the 

hydrophobic core strongly inhibits ionic movement. When ion channels open, the membranes 

resistance is dramatically reduced by pores that allow ions to pass through the membrane, this 

resulting movement of ions can be measured using the patch-clamp technique. Hodgkin and 

Huxley won the Nobel prize in 1963 for their work on the giant squid axon, these experiments 

went on to lay the groundwork for the modern method 278. Their findings provided a 

mathematical model with clear rules to govern the passage of ions in a nerve cell during action 

potentials. Three years previously Ling and Gerard, using glass microelectrodes, had measured 

the membrane voltages of frog Sartorius fibres 279. In 1981, Neher and Sakmann investigated 

ionic currents through single acetylcholine-activated channels, once again in frog muscle fibres 

280. Patch-clamp requires glass microelectrodes filled with specific ionic solutions (usually 

mimicking intracellular concentrations) being pressed against single cell membranes. Following 

light suction an electrical seal, usually >1GΩ, will form between the cell membrane and the glass, 
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this allows the measurement of currents between the inside of a cell and the patch pipette 

(Figure 2.2).  

Through the use of a piezo-electric manipulator, polished micropipettes are attached 

onto the cell membrane and suction applied to form a seal between glass and membrane. Small 

bursts of suction can burst the attached area of membrane but leave the adjacent annealing 

membrane attached – this allows electrical access of the internal pipette electrode into the 

‘whole-cell’ and permits control of a cell’s membrane voltage or current. 
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Figure 2.2. Schematic of Patch-Clamp Experiments. A Cells adhering to glass coverslips are submerged in extracellular 

solution before a borosilicate glass pipette is gently pushed onto the cell membrane using a manipulator. Current is 

measured through two electrodes, one inside the bath, and the other inside the micropipette. B Pipette attachment to 

the plasma membrane followed by slight suction results in a seal, ensuring currents are measured through plasma 

membrane. C Following light suction the membrane is broken to allow dialysis this is called the whole-cell 

configuration. 
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2.6.2 Modelling Cells using Basic Electrical Circuits 

 The purpose of the patch-clamp technique is to measure either current or voltage 

changes across a cell’s membrane when voltage or current is altered. These measurements are 

made by the patch-clamp amplifier through a simple electrical circuit (Figure 2.3). Current 

measurements are initially recorded between the pipette and bath electrodes after the pipette 

tip enters the bath solution (Figure 2.3A). Rapid +10mV voltage steps at this stage confirm 

electrical access through the bath solution – normally a low resistance <3MΩ. The pipette also 

acts as a capacitor because it separates the two conducting solutions. 

After pipette-cell attachment, a high resistance seal is formed between the cell’s 

membrane and the pipette tip. Ideally this seal is greater than 1GΩ, significantly reducing current 

between both electrodes via the bath. After membrane breakthrough, the pipette-bath 

electrode circuit is reformed – but passes through two new resistors (Figure 2.3B). Firstly ‘access’ 

through the cell’s cytoplasm acts as a resistor, while the membrane ideally acts as a high ohmic 

resistor. Ideal whole-cell conditions rely upon low access resistance while seal and membrane 

resistance remain high. Current flow across the membrane can now be measured in response 

to voltage changes by the amplifier. 

A cell’s membrane also acts as a capacitor, whose surface area can be measured. Voltage 

pulses build charge across the plasma membrane, whose decay can be measured to 

approximate cell surface area. Recorded whole-cell currents can then be normalised to cell 

surface area – giving standardised current readings between cells.  
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Figure 2.3. Whole-cell patch-clamp schematic represented as an electric circuit. A Upon entering the bath, a low 

resistance circuit between the pipette and recording device is formed. Some charge build-up is observed between the 

pipette and bath. Rpip – Pipette Resistance, Cpip – Pipette Capacitance. B Whole-cell after membrane breakthrough 

circuitry. The strength of the seal between the membrane and pipette can adversely affect the amplifier’s ability to 

clamp a cell’s voltage. Complete membrane breakthrough ensures low electrical resistance into the cell, while 

membrane resistance is usually high. A cell’s membrane acts as a capacitor, holding charge. When the amplifier 

clamps specific current or voltage across the cell’s membrane, the resulting voltage or current change is measured. 

Rseal – seal resistance, Ra – access resistance, Rm – membrane resistance, Cm – membrane capacitance, Em – 

membrane voltage. 
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 During whole-cell patch-clamp, it is assumed that the voltage applied to the pipette is 

equal to the voltage applied across the cell membrane. For this to be true, the theoretical 

voltages applied across the membrane must be compensated for cell capacitance and series 

resistance – chiefly arising from the pipette and access resistance. Whole-cell compensation 

removes the large current transients observed when the cell’s membrane accumulates charge 

in response to artificial voltage steps. 

The effect of resistance in ‘series’ between the patch-clamp amplifier and membrane 

results in a temporal voltage difference between the pipette electrode and cell membrane. 

Membrane voltage changes slowly, leading to slow changes in observed currents. The amplifier 

can correct for this resistance by artificially increasing the initial voltage applied to the pipette, 

this results in membrane voltage changing at a greater rate. As membrane voltage more closely 

limits the voltage set by the patch-clamp rig, the current measured corresponds to the voltage 

protocol more accurately. However, series resistance compensation increases noise due to large 

artificial voltage changes, and can cause current oscillations. 

 

2.6.3 Perforated Patch-Clamp 

 Whole-cell patch-clamp recording is a convenient method to measure ion channel 

current density especially if buffering intracellular ions, as in the case of TRPM7, is required to 

record conductivity. This is due to the small volume of cellular cytosol in comparison to the 

pipette. There can be specific drawbacks to this method, which are a direct result of dialysis by 

the intracellular pipette solution 281. After initial membrane break-in, the concentration of 

endogenous intracellular signalling molecules such as cAMP, drastically reduces as they are 

dialysed out of the cell. β-adrenergic stimulation initiates accumulation of cAMP due to 

activation of adenylyl cyclase at the plasma membrane drastically raising cAMP levels. This cAMP 

accumulation binds the regulatory subunit of PKA, freeing the catalytic subunit which goes on 
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to phosphorylate a huge number of downstream targets. These targets include the slow delayed 

rectifier potassium current and the L-type voltage-gated calcium channel. 

To test the effect of adrenergic drive in heterologous cells, the perforated patch-clamp 

technique was used to limit the disruption of cytosolic signalling molecules, maintain 

endogenous calcium, reduce the rundown of IKs and allow for stable, long term recordings. 

Disadvantages of using the perforated patch technique include the higher access resistance 

encountered compared to whole-cell and the significantly prolonged time required to gain 

electrical access to the cell (>15 minutes). 

 The first example of perforated patch recordings used nyastatin in the intracellular 

solution to slowly perforate the plasma membrane after forming a gigaohm electrical seal 

between the cell and pipette 282. Three years later Rae et al. showed that another antibiotic, 

amphotericin B could also be used to create pores in the membrane and due to its faster 

perforation rate will be used in perforated patch-clamp experiments in this thesis 283. 

Amphotericin B forms pores (0.8nm radius) over time in cell membranes, these pores conduct 

small monovalent cations and anions while excluding larger signalling molecules 284. Another 

pore forming reagent, β-escin, has also been used to gain electrical access to cells without 

membrane rupture in neurons to study voltage-gated calcium currents without rundown 285. 

 

2.6.4 Recording Current 

 Currents were recorded using a Multiclamp 700B Amplifier (Molecular Devices) and 

digitised with a Digidata 1550B (Molecular Devices). Micropipettes were pulled from thin walled 

filament borosilicate glass and fire polished at 2-4MΩ resistance when backfilled with 

intracellular solution. Internal solution for TRPM7 consisted of: 145mM Cs-methanesulfonate 

(CsSO3CH3), 8mM NaCl, 10mM EGTA and 10mM HEPES, adjusted to pH 7.2 with CsOH. The 

contents of these solutions allow the measured ionic currents to be attributed to TRPM7 at the 
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plasma membrane. Caesium methanesulfonate at a high concentration is a substitute for 

intracellular potassium, whilst also acting as an endogenous potassium channel blocker. This 

solution also contains physiologically low levels of sodium. Intracellular EGTA chelates 

magnesium, as TRPM7 is inhibited by cytosolic Mg2+, only after removal of divalent cations will 

current be seen. Therefore any immediate current recorded following cell break-in is not TRPM7. 

The organic buffer HEPES maintains cell viability by maintaining constant pH values during 

recording. 

 The extracellular solution for TRPM7 patch-clamp recordings consisted of: 145mM NaCl, 

5mM KCl, 2mM CaCl2, 10mM glucose and 10mM HEPES at pH 7.4 adjusted with NaOH as seen 

in work by Qin et al. 230. The external bath solution aims to mimic extracellular physiological salt 

concentrations; with high sodium and calcium combined with low potassium. Glucose in the 

bath ensures cells remain healthy during recordings whilst HEPES buffers extracellular pH. All 

patch-clamp experiments were done over the course of at least three individual transfections. 

 The voltage ramp protocol to record TRPM7 was delivered every 5 seconds and lasted a 

total of 250ms. Holding potential was at 0mV while the voltage ramp initiated at -100mV and 

reached +100mV before returning to 0mV (Figure 2.4). Recordings were corrected for whole-

cell capacitance and were compensated at 70% to account for series resistance. Only cells with 

membrane resistance >800 MΩ and access resistance <12 MΩ were used for data analysis. All 

recordings except action potentials were carried out at room temperature, sampled at 10kHz 

and filtered at 1kHz.  

To record potassium current through KCNQ1/KCNE1 channels and how they respond to 

β-adrenergic stimulation, a step protocol was used (Figure 2.5). Resting membrane potential at 

-80mV was raised, according to sweep number for two seconds, before returning to -40mV to 

record tail current for two seconds before returning back to -80mV. This occurred nine times, 

with each sweep increasing the peak voltage by 20mV up to +80mV. The protocol was repeated 

every minute, to allow for five similar recordings to have been taken before addition of 
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isoprenaline or forskolin in the case of perforated patch or halted in the case of whole-cell. 

Alongside whole-trace analysis, current measurements are made 200ms into the voltage step to 

discern rapid current, at the end of the voltage step to measure peak current and at the start of 

the ‘tail’ step to calculate currents that would occur following cell repolarisation (Figure 2.5). 
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Figure 2.4. TRPM7 voltage ramp profile and representative trace. A Voltage protocol as seen in Clampfit, from initial 

-100mV depolarisation to +100mV peak is 250ms, this ramp occurs every 5 seconds following whole-cell current break-

in. B Typical TRPM7 recording, showing small initial current at negative potentials before increasing to a large current 

at +100mV. 

 

 

0 2 0 0 0 4 0 0 0 6 0 0 0

-1 0 0

-5 0

0

5 0

1 0 0

V
 (

m
V

)

T im e  (m s )

2 0 0 0 4 0 0 0 6 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

p
A

T im e  (m s )

A B

 

Figure 2.5. Voltage protocol and representative recording of the KCNQ1/KCNE1 potassium channel. A Typical 

recording of IKs current, showing slow activation of the channel up to a plateau, over 2 seconds followed by a slowly 

inactivating ‘tail’ current at -40mV. B Voltage protocol depicting +20mV steps from -80mV to +80mV followed by -

40mV tail current. Measurements are made at three points, initial current 200ms into the voltage step (black arrow), 

peak current (red) and tail current following the -40mV step immediately (blue). 
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For perforated patch recordings the intracellular solution consisted of (mM): 70 K2SO4, 10 HEPES, 

1 MgCl2, 1 CaCl2 and 10 NaCl at pH 7.2 with KOH. Intracellular whole-well patch-clamp solution 

contained (mM): 150 KCl, 5 EGTA, 10 HEPES, 2 MgCl2, 1 CaCl2 and 5 (Na)2ATP at pH 7.2 with KOH. 

Extracellular solution for all IKs recordings was made up of (mM): 150 NaCl, 5 KCl, 10 HEPES, 2 

MgCl2 and 1 CaCl2 at pH 7.4 with NaOH. When filled with intracellular solution pipette resistance 

was between 1.6MΩ and 2.2MΩ. Successfully transfected cells were identified by expression of 

fluorescently tagged KCNQ1 protein.  

 

2.7 RNA Harvesting and qPCR 

2.7.1 Total RNA Isolation from Cells 

To measure transcribed mRNA message of specific genes, total RNA was harvested from 

adherent cell cultures using an RNeasy mini kit (QIAGEN, USA). Cells were initially homogenized 

in the presence of guanidine-thiocyanate containing buffer – minimizing the activity of RNases 

before being centrifuged through a spin column capable of binding RNA molecules. After several 

washes to remove impurities, RNA is eluted using water.  

All reagents used to isolate RNA were provided in the RNeasy mini kit unless otherwise 

stated. All centrifugation steps were carried out at 10,600 g for 15 seconds using a 5424 

eppendorf centrifuge. Monolayer cultures of cells were lysed by addition of 350µL RLT before 

mechanical homogenisation with a pipette and then mixed with 350µL of 70% ethanol. The 

sample was added to an RNeasy spin column and centrifuged. After flow-through was discarded, 

RNA was washed by addition of 350µL Buffer RW1, before 80µL of DNase I incubation mix 

(DNase I, diluted 1:7 with Buffer RDD) was directly pipetted onto RNeasy spin column 

membrane. DNase digestion was carried out using an RNase-Free DNase Set (QIAGEN, USA) to 

ensure only RNA was present for qPCR experiments.  
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After a 15 minute incubation at room temperature, DNase I was removed by washing 

the spin column with 350µL Buffer RW1, followed by another 500µL wash with Buffer RPE. A 

final wash of 500µL Buffer RPE was added and centrifuged for 2 minutes to dry the column 

membrane. RNA was eluted using 30µL of RNase-free water and the concentration was 

measured using a nanodrop. Only RNA samples with concentrations >50ng/µL and 260/280 

absorbance >1.9 were used for further reverse transcription reactions. All RNA samples were 

immediately stored at -80˚C to prevent sample digestion or degradation. 

 

2.7.2 cDNA Synthesis 

To quantify relative mRNA signals from lysed cells, RNA was converted to cDNA using 

the High-Capacity cDNA Reverse Transcription Kit (Thermofisher, USA). This process involves the 

conversion of up to 2µg of input RNA (harvested as stated in 2.7.1) into single-strand cDNA, 

allowing quantification of specific mRNA messages using Taqman probes (outlined in 2.7.3). All 

reactions were carried out in 20µL volumes, processing up to 2µg of RNA if possible, depending 

on input RNA concentrations. The RNA-cDNA conversion reaction was made as noted in Table 

2.7. 

PCR tubes were sealed and placed in a thermal cycler, the conditions for the cDNA 

synthesis reaction are listed in Table 2.8. Following cDNA synthesis, all samples were stored at -

20˚C to preserve DNA stability. 

 

2.7.3 Quantitative PCR 

 Quantitative reverse transcription polymerase chain reaction (qPCR) allows the precise 

quantification of RNA in samples between each cycle of a PCR reaction using fluorescent 

quantification. All gene expression assays (Applied Biosystems, USA) were carried out using the 

TaqMan® system with the probes shown in Table 2.5.  
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Each qPCR expression assay was carried out in triplicate inside a 96-well plates 

(Thermofisher, USA) at a total volume of 20µL. The components of each reaction are listed in 

Table 2.7. Plates were sealed and centrifuged at 2400 g for 3 minutes at room temperature. 

Thermal cycling was conducted using the protocol listed in Table 2.11 and carried out using a 

CFX Real-Time PCR Detection System (Bio-rad, USA). 

Quantification is achieved through the measurement of the fluorescence levels between 

every cycling stage. Unbound TaqMan® probes consist of a gene-specific target DNA sequence 

that allows homologous binding to complementary ssDNA, bookended by a fluorophore and 

quenching molecule (Figure 2.6). Under normal conditions, probes do not fluoresce due to the 

close proximity of quencher to fluorophore. During qPCR reactions, probes that bind to 

complementary target sequences are cleaved by DNA polymerisation during the amplification 

step of the reaction. The intensity of fluorescence measured in each reaction well is 

representative of cleaved qPCR probes and is correlated to the abundance of that target.  
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Figure 2.6. Taqman qPCR fluorescent measurement occurs in three distinct phases. Initially denatured cDNA strands 

are bound by sequence specific probes when the mix is cooled. These probes are fluorescently inert due to the close 

proximity of fluorophore and quencher molecule. The reaction mixture is heated to activate DNA polymerase, which 

amplifies DNA using non-specific PCR primers. During chain extension, attached probes are degraded by extending 

DNA polymerase, releasing the fluorophore into the reaction mixture where intensity can be measured. This reaction 

is repeated 40 times, with fluorescence measured between each cycle. 
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The cycle threshold (Ct) value defines the number of PCR cycles required to cross a set 

fluorescence value. When comparing relative amounts of mRNA in samples, the comparative Ct 

method was used 286. Ct values were normalised to that of endogenous housekeeping genes 

(GAPDH or 18S) and then to that of control samples, with control sample expression normalised 

to 1. For these comparative experiments expression was listed as relative units based on 2-∆∆Ct. 

Experiments where there is no control sample, relative RNA amounts are expressed as 

target/control ratios.  

For the majority of qPCR experiments measuring mRNA in heterologous cell lines, 

GAPDH was chosen as a housekeeping gene. However, for all qPCR experiments performed using 

stem cell-derived cardiomyocytes, a probe measuring the expression of 18S ribosomal RNA was 

used. 18S rRNA expression has been reported as a reliable housekeeping marker in a number of 

publications. This includes the paper documenting the differentiation protocol used in this 

thesis, as well as recent work investigating the transcriptomic profile of differentiating 

cardiomyocytes 255,287. 
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Component Volume  

10X RT Buffer 2µL 

25X dNTP Mix 0.8µL 

10X RT Random Primers 2µL 

MultiscribeTM Reverse Transcriptase 1µL 

RNA 
RNA sample concentration 

/ 2µg 

Nuclease-Free H2O 3.2 + (10 – RNA volume) µL 

Total Reaction Volume 20µL 

Table 2.7. Recipe for single cDNA synthesis reaction. 

 

Step Temperature (˚C) Time (mm:ss) 

1 Primer Binding 25 10:00 

2 cDNA Synthesis 37 120:00 

3 Stop Reaction 85 05:00 

4 Storage 4 - 

Table 2.8. Thermal cycling reaction program for cDNA synthesis. 
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Target Gene Assay ID Target Exons 
Amplicon Length 

(bp) 

TRPM7 Hs00559080_m1 5-6 69 

18S rRNA Hs99999901_s1 1 187 

GAPDH Hs02786624_g1 7 157 

AKAP9 (Short isoform) Hs01091035_m1 5-6 92 

AKAP9 (Long isoform) Hs00323978_m1 39-40 107 

OCT4 (POU5F1) Hs04260367_gH 5 77 

NANOG Hs02387400_g1 1-2 109 

SOX2 Hs01053049_s1 1 91 

Table 2.9. List of all TaqMan Expression Probe sets used in this thesis. 

 

qPCR Component Volume per reaction (µL) 

20X TaqMan Expression Probe 1 

2X Taqman Gene Expression Master Mix 10 

cDNA Template (50ng) diluted in RNase-free Water 9 

Table 2.10. Reagents used to make a single 20µL qPCR reaction. 

 

Step Temperature (˚C) Time (mm:ss) 

1 Hold 50 02:00 

2 Hold 95 10:00 

3 Cycle (x40) 

95 00:15 

60 01:00 

Table 2.11. Thermal cycling conditions for qPCR experiments.  
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2.8 Cell Staining  

2.8.1 Immunocytochemistry 

 Fluorescent staining techniques were used to visualise protein location in cells 

transfected with fluorescently tagged proteins or washed with conjugated antibodies. 48 hours 

after transfection (if required) adherent cells were first washed with PBS three times to remove 

media and serum. Cells were fixed with 4% formaldehyde solution (Sigma-Aldrich, USA) at room 

temperature for 15 minutes to preserve DNA and protein structural integrity. To allow antibody 

access to intracellular epitopes, samples were permeabilised with PBS containing 0.1% Triton X-

100 (Sigma-Aldrich, USA) for 10 minutes. After three PBS washes, slides were incubated for 30 

minutes in 1% BSA PBS-T to block any possible unspecific binding of antibodies. Following 

removal of blocking solution, primary antibodies with 1% BSA PBS-T were added to cell samples 

at a concentration, time and temperature noted below (Table 2.12). 

Primary antibody solution was decanted before cells were washed with PBS, then 

incubated with fluorescent secondary antibody for 1 hour at room temperature. The secondary 

antibody was diluted with PBS-T with 1% BSA. After three PBS washes, nuclei were 

counterstained with 0.5µg/ml 4’,6-diamidino-2-Phenylindole, dihydrochloride (DAPI, 

ThermoFisher, USA) before a final rinse with PBS. Cells were stored at 4˚C before imaging 

fluorescently with either an EVOS FL Auto microscope (ThermoFisher, USA) or LSM710 confocal 

scanning microscope (Zeiss, Germany). 
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Primary 

Antibody 

Target 

(reference) 

Raised In 

Epitope 

Amino 

Acids 

Dilution in 1% 

BSA PBS-T 

Incubation 

Time 

Incubation 

Temperature 

TRPM7 (sc-

271099) 
Mouse 1251-1550 1:100 

Overnight 

(>12hrs) 
4 ˚C 

Cardiac 

Troponin T 

(ab8295) 

Mouse 171-190 1:200 1 Hour 20-25˚C 

Tra-1-60 

(ab16288) 
Mouse Not Listed 1:200 1 Hour 20-25˚C 

Table 2.12. List of primary antibodies used to for immunocytochemistry. 

 

2.8.2 Live Cell Imaging 

 CHO-K1 cells were seeded at a density of 1:5 onto 6 well plates. The following day 

adherent cells were transfected with 250ng KCNQ1-GFP and 250ng KCNE1 expression plasmids 

in 250ul Opti-MEM. The transfection reagent NovaCHOice (0.5µL) and NovaCHOice booster 

reagent (0.25µL) were added to the mixture and incubated at room temperature for between 

10 and 30 minutes as per manufacturer’s instructions, before addition to cells. Six hours later, 

cells were trypsinised and seeded into Nunc glass bottom dishes (ThermoFisher, USA) at a 

density of 1:10. After 36 hours live adherent cells were imaged using an LSM710 confocal 

scanning microscope.  

 

2.8.3 Fluorescent Microscopy 

 Visualisation of tagged/antibody bound proteins is achieved through illumination of 

samples with filtered light of a specific wavelength. For example, DAPI-stained DNA absorbs 

358nm light strongly, this absorption leads to electron excitation to a higher energy level. Excited 
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electrons will subsequently lower their energy state, emitting light at a higher wavelength 

(461nm in DAPI’s case) that is filtered into a detector. The relative excitation and emission 

wavelengths of fluorophores used in this thesis are listed below in Table 2.13. The relevant 

information of the lasers used to excite the corresponding fluorophore in confocal microscopy 

are listed in Table 2.14. 

 

Fluorophore Excitation (nm) 
Dichroic 

beamsplitter (nm) 
Emission (nm) 

DAPI 365/60 Peak/FWHM 395 420-470 BP 

GFP 450-490 BP 495 500-550 BP 

DsRed 545/25 Peak/FWHM 570 570-640 BP 

Table 2.13. List of fluorescent filters used, with their corresponding excitation and emission wavelengths. Peak – 
Peak of excitation wavelength. FWHM (Full Width at Half Maximum) – wavelength width equal to half maximal 
excitation. BP (Bandpass) – wavelength of transmitted light range. 

 

Laser Used to excite Excitation (nm) 

Diode DAPI 405 

Argon GFP 488 

Helium/Neon DsRed 543 

Table 2.14. Lasers used for confocal microscopy in this thesis. All lasers were used simultaneously, with switching 
time <5µs. 
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2.8.4 TUNEL Assay 

  Since 1993, a widely used method to detect cell death has been the labelling and 

detection of 3’-OH fragmented DNA in apoptotic cells 288. This assay uses terminal 

deoxynucleotidyl transferase to bind exposed 3’OH DNA bases generated during the apoptotic 

cascade and add biotinylated nucleotides. These are detected using a HRP conjugate, which 

reacts with diaminobenzidine (DAB) to generate an insoluble brown substrate visible with a light 

microscope.  

To recognize apoptotic nuclei, cells fixed to tissue culture dishes or slides were treated 

using an in situ Apoptosis Detection Kit (Abcam, 206386). All reagents mentioned are supplied 

with the In Situ Apoptosis kit unless otherwise stated. Following cell treatment, samples were 

fixed with 4% paraformaldehyde as previously noted. Proteinase K was diluted 1:100 in 10mM 

Tris buffer and specimens were covered for 5 minutes at room temperature before three Tris-

buffered saline (TBS) washes. Endogenous peroxidases that could interfere with staining were 

quenched using 3% H2O2 (Sigma-Aldrich, USA) for 5 minutes at room temperature. After a single 

TBS wash, samples were treated with TdT Equilibration Buffer for 30 minutes at room 

temperature. This buffer was carefully blotted before application of 40µL of TdT Labeling 

Reaction Mixture (1µL TdT Enzyme to 39µL TdT Labeling Reaction Mix). Samples were incubated 

in a humidified cell culture incubator at 37˚C for 90 minutes. The labelling reaction was 

terminated by an initial TBS wash before addition of 100µL of Stop Buffer for five minutes. To 

prevent non-specific binding of the HRP-conjugate antibody, samples were treated with 100µL 

of Blocking Buffer for 10 minutes. Conjugate antibody solution diluted in Blocking Buffer (1:25) 

was added to cell samples before being placed in a humidified chamber for 30 minutes. Slides 

were then rinsed with TBS and treated with development solution: 4µL DAB Solution 1 mixed 

with 116µL DAB solution 2 per slide/well. Cells were covered with DAB solution and incubated 

at room temperature for 15 minutes before being rinsed with dH2O. To counterstain cell 

morphology, slides were covered with Methyl Green Counterstain for 3 minutes before 
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repeated rinsing in 100% ethanol. Finally slides were dipped into 100% xylene before coverslip 

mounting. Live and apoptotic cells were counted using a light microscope. 

 

2.9 Collection of Human Heart RNA 

2.9.1 Introduction 

 The published literature regarding full length-AKAP9 and TRPM7 rarely references their 

relative abundance in human heart tissue. For AKAP9, publications focus solely on the small 

Yotiao isoform which lacks any putative PKA binding domain 131,215. Conversely, the abundance 

of TRPM7 and its temporal importance in development and function has been thoroughly 

investigated in the mouse 212-214,233. Our laboratory has access to human heart RNA samples from 

three separate donors obtained from the four heart chambers. This provided a novel 

opportunity to confirm the expression of AKAP9 and TRPM7 in the adult human heart, as well 

as explore any differences in chamber specific expression. 

2.9.2 Sample Information 

Twelve samples of total human RNA was acquired from Amsbio (UK) consisting of four 

heart chamber samples from three male donors, additional information can be found in Table 

2.15. Each 50µg sample was DNase I treated before shipment, and transported using dry ice. 

Samples were thawed upon arrival and stored as 10µL aliquots at -80˚C. 
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Donor ID (Sex) Age Chamber 
 RNA 

Concentration 
(µg/µL) 

C711147 (M) 49 

Right 
Atrium 2.82 

Ventricle 1.96 

Left 
Atrium 2.09 

Ventricle 1.76 

C709084 (M) 69 

Right 
Atrium 0.72 

Ventricle 1.69 

Left 
Atrium 1.22 

Ventricle 1.87 

C109121 (M) 65 

Right 
Atrium 1.75 

Ventricle 1.89 

Left 
Atrium 1.72 

Ventricle 1.91 

Table 2.15. Human heart chamber RNA information.  

 

2.9.3 Preparation of cDNA and qPCR Analysis 

 Human heart RNA samples were converted to cDNA libraries as mentioned previously 

in section 2.6.2 using a High-Capacity cDNA Reverse Transcription Kit. Briefly, 1µg of RNA was 

added to a reaction mixture containing dNTPs and reverse transcriptase to make a 20µL reaction 

(Table 2.7). The thermal cycling conditions for cDNA synthesis are described in Table 2.8. From 

these reactions, 20µL qPCR reactions were made using 50ng of cDNA per well (Table 2.10). 

GAPDH expression was used as an endogenous housekeeping control. The Taqman qPCR probes 

used to measure GAPDH, AKAP9 and TRPM7 expression are listed in Table 2.9. Gene expression 

was calculated using the comparative Ct method – firstly between target housekeeping genes 

within samples, and then between samples (explained in 2.7.3). 
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2.10 Induced Pluripotent Stem Cell Culture 

2.10.1 Introduction  

 There is significant evidence to suggest that most cardiomyocytes are mitotically locked, 

and those that are capable of cell division do so at a drastically lower rate compared to most 

other cell types 247,289. Therefore the ability to generate and analyse significant numbers of 

human cardiomyocytes has relied upon expensive post-mortem tissue biopsies. The discovery 

of human iPSC technology in 2007 revolutionised the capacity of generating human stem cells 

in laboratories 254. If cultured properly these cells provide a ready source of pluripotent cells that 

can be differentiated towards a cardiac phenotype. As these cells differentiate from a 

pluripotent to cardiac phenotype, they can be used as a model of cardiovascular development 

to investigate the expression and importance of genes during cardiogenesis. 

 

2.10.2 Pluripotent Cell Generation 

A healthy human pluripotent stem cell line (named - HS1M) was generated in our 

laboratory by Duncan Miller. Human dermal fibroblast (HDF) cultures were derived from 4mm 

skin punch biopsies from a healthy ‘control’ individual following overnight digestion with 

collagenase I (Sigma, USA). After two to five passages, HDFs were reprogrammed by lentiviral 

transduction of a polycistronic vector hSTEMCCA or nucleofection of three plasmids containing 

reprogramming factors 290,291. Colonies were isolated and expanded clonally in DMEM:F12 

medium containing 20% knock-out serum replacement and 20 ng/ml FGF2 (Peprotech, USA) on 

mitotically inactivated mouse embryonic fibroblasts (MEFs), and characterised for pluripotency. 

hPSC lines were generally maintained and expanded on MEFs, and transitioned onto Matrigel 

(Corning, Netherlands) in mTeSR1 for several passages prior to differentiation 292. 
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2.10.3 Maintaining Induced Pluripotent Stem Cells 

Cell stocks (~1million cells) frozen in liquid nitrogen were warmed rapidly in a 37˚C water 

bath before being added dropwise to 9ml of mTeSR1 with 5µM Y27632 (Merck, USA) to inhibit 

the Rho-associated, coiled-coil containing protein kinase (ROCK). The ROCK protein is a key 

driver of anoikis-induced cell death in dissociated stem cells 293. This suspension was centrifuged 

for 5 minutes at 100 g, 37˚C and the supernatant removed. The cell pellet was resuspended with 

5ml mTeSR1 plus 5µM Y27632 and added to a T25 flask, the media was changed every day until 

approaching confluency. To store cell stocks following expansion, cells from three confluent T25 

flasks were washed and dissociated with Accutase before being centrifuged at 100 g for 5 

minutes. When the supernatant was removed, cell pellets were resuspended in 3ml freezing 

medium composed of 60% Hyclone FBS (GE Healthcare, USA), 30% mTesR1, 10% DMSO 

Hybrimax and 5µM Y27632. This suspension was aliquoted into 3 cryo-vials and frozen at -80˚C 

inside a Nalgene® Mr. Frosty container overnight. The next day vials were stored in liquid 

nitrogen.  

Prior to differentiation into cardiomyocytes, iPSCs were expanded as feeder-free 

cultures with mTeSR1 media. Cells were grown on growth factor reduced Matrigel T25 coated 

flasks (Sarstedt, Germany)294. Matrigel was initially thawed on ice before dilution to 9µg/cm2 in 

DMEM/PenStrep and pipetted into 24-well plates or T25 flasks. At room temperature Matrigel 

sets within one hour, and the remaining liquid media removed by PBS washes. Adherent stem 

cells were dissociated by treatment of Accutase (Bd Biosciences, USA) at 37˚C for 7 minutes. 

Detached stem cells were centrifuged at 100 g for 5 minutes and resuspended in 5ml of mTeSR1 

supplemented with 5µM Y27632 (Merck, USA). If cells counted were >14 million, cells were 

reseeded in T25 flasks, otherwise cells were seeded 300,000 per well into Matrigel coated 24-

well plates for differentiation. Media was changed daily after cells were seeded, but without 

Y27632, 5ml for T25 flasks and 0.5ml per well in a 24-well plate.  
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2.10.4 Cardiomyocyte Differentiation 

 Cardiomyocytes were differentiated by a protocol based upon previous work published 

by Burridge et al 255. Pluripotent stem cells were seeded at 300,000 cells per well in a 24-well 

plate with 0.5ml of mTeSR1 with 5µM Y27632. Media was changed daily until cells reached >80% 

confluency, usually 1-2 days. Differentiation was initiated by changing the cell medium to 

‘CDM3’, a basic media consisting of three components plus penicillin/streptomycin. CDM3 

consists of RPMI1640 (Thermofisher, USA), 500µg/ml O.sativa-derived recombinant human 

albumin (Sigma Aldrich, USA) and 213µg/ml L-ascorbic acid 2-phosphate (Sigma Aldrich, USA). 

When stem cell density approached confluency (>80%) CDM3 supplemented with 6µM 

CHIR99021 was added to the cells in place of mTeSR1 – this is noted as day 0. CHIR99021 is a 

small molecule that inhibits GSK3B and activates the Wnt signalling pathway 295. This is critical 

in inducing cardiac differentiation by creating an initial mesodermal phenotype in stem cells 296. 

At day 2, the cell culture media is replaced with CDM3 supplemented with C59, a Wnt signalling 

inhibitor – to induce cardiac differentiation. From day 4 onwards, media was changed every two 

days with CDM3 alone. Individual beating cells can be observed by 7 days, with increased beating 

observed until day 12.  

To re-plate human stem cell-derived cardiomyocytes for further experiments, cells were 

washed with PBS to remove residual media before the addition of 500µL of Accutase or TrypLE 

Express Enzyme (ThermoFisher, USA). Cells were incubated for ~15 minutes at 37˚C to allow for 

detachment, then centrifuged at 130 g for 4 minutes. The cell pellet was resuspended in CDM3 

plus penicillin/streptomycin and supplemented with 10% FBS to aid in cell survival and 

attachment. Cells were seeded onto 0.1% gelatin coated wells with 10mm coverslips (60,000 

cells per well) or without them (300,000 cells). This procedure was carried out at either day 10 

or day 15 of differentiation depending on the appearance of large beating clusters. One day later 

media was changed to CDM3 and changed every 48 hours afterwards. 
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Figure 2.7. Induced pluripotent stem cell-derived cardiomyocyte differentiation. 
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2.10.5 siRNA Transfection of Stem Cell-derived Cardiomyocytes 

 RNA silencing in eukaryotic organisms was serendipitously discovered by Guo and 

Kemphues in 1995 while investigating C. elegans embryonic polarity 297. A sense par-1 RNA was 

able to target endogenous par-1 transcript for degradation. Three years later Andrew Fire and 

Craig Mello provided evidence to show that contaminating dsRNA (which could be formed by 

hybridisation of sense and antisense ssRNA) was responsible for the observed gene silencing 298. 

It was shown that dsRNA was cleaved into 21-23nt small interfering RNA (siRNA) molecules, 

which targeted homologous sequences when bound in vivo 299. Using this system, it is therefore 

possible to transfect siRNA into recipient cells, transiently reducing mRNA expression levels due 

to homology-directed cleavage of RNA molecules. 

To knockdown mRNA levels of TRPM7 in iPSC derived cardiomyocytes, siRNA 

transfection was used. 5nmol of SMARTpool: ON-TARGETplus siRNA targeted to either TRPM7 

or a scrambled control was used (Dharmacon, USA). Upon receipt siRNA, was resuspended in 

RNase-free water at 20µM. Transfection was carried out 72 hours before cardiomyocytes were 

due to undergo patch-clamp analysis.  

 Stocks of 2µM siRNA solution were prepared in RNase-free water and diluted in 45µL 

serum-free Opti-MEM, 2.5µL of siRNA per well. To confirm successful transfection for patch-

clamp experiments, 2.5µL of 2µM siGLO (Dharmacon, USA) was also added to transfection 

mixture. DharmaFECT transfection reagent 1 was also diluted 2.5:47.5µL Opti-MEM per well. 

Following five minute incubation at room temperature both tubes were mixed and incubated 

for a further 20 minutes. CDM3 was removed from cells and antibiotic-free CDM3 (400µL per 

well) was added to the siRNA transfection mixture before being aliquoted between wells. To 

reduce cytotoxicity and prevent infection, CDM3 supplemented with 1% pencillin/streptomycin 

was added 24 hours later. 
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2.10.6 Whole-Cell Patch-Clamp of Stem Cell-derived Cardiomyocytes 

 Cardiomyocytes plated onto coverslips underwent patch-clamp analysis between 

differentiation days 21-23. Whole-cell current measurements of TRPM7 in cardiomyocytes were 

carried out as stated in section 2.6, however different extracellular and intracellular solutions 

were used to better mimic the physiological make-up of these distinct cells compared to the 

heterologous systems previously described. Internal TRPM7-CM solution consisted of (mM): 120 

L-aspartic acid, 20 CsCl, 2.5 EGTA, 2.5 EDTA, 10 HEPES, 120 CsOH, 5 Na2ATP, 0.5 Na2GTP at pH 

7.2 with CsOH. Extracellular solution: 135 NaCl, 5.4 CsCl, 10 HEPES, 10 Glucose, 0.1 CdCl2 and 1 

CaCl2 at pH 7.4 adjusted with NaOH as done by Sah et al. 213. The ramp protocol previously used 

to measure TRPM7 current in CHO-K1 and HEK293 cells was used in these experiments. 

 Action potential recordings were taken from cardiomyocytes plated onto coverslips as 

mentioned above. Internal pipette ‘AP-lowEGTA solution’ consisted of (mM): 110 K-Gluconate, 

20 KCl, 10 HEPES, 0.05 EGTA, 0.5 MgCl2, 5 MgATP, 0.3 Na2-GTP and 5 Na2phosphocreatine at pH 

7.4 with KOH. Extracellular solution for action potential recordings (mM): 140 NaCL, 2.7 KCl, 1 

MgCl2, 2 CaCl2, 0.5 Na2HPO4 and 5 glucose at pH 7.4 with NaOH. Recordings were done in 

current-clamp mode – measuring changes in membrane voltage, only cells with membrane 

resistance >800MΩ and access resistance <10MΩ were used in action potential analysis.  

When measuring action potential membrane voltage, it is important to correct results 

for the natural voltage imbalance that occurs between bath and intracellular solutions – known 

as the liquid junction potential (LJP) after results are recorded. In all previously mentioned 

voltage-clamp recordings, LJP is corrected by the amplifier automatically. The LJP arises due to 

the contact of two solutions with different ionic mobility and concentrations. The bath solution 

has a high concentration of NaCl, whereas inside the pipette K-gluconate is abundant. Although 

equal in charge, Cl- ions are more mobile than gluconate whereas K+ is more mobile than Na+. 

The net effect of this (alongside the movement of less abundant ions) leads to the bath being 

more positive than the pipette. 
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The LJP was calculated as +16.3mV using pCLAMP 10.6 software supplied with the patch-

clamp amplifier and all voltage recordings altered accordingly. Following whole-cell access and 

two minute dialysis, possible spontaneous activity was recorded for one minute before one 

minute of triggered action potentials using current injections of 400-900pA depending on cell 

capacitance with a frequency of 1Hz. Action potential duration and voltage measurements were 

made, when possible, on the average of the final 10 triggered beats. A schematic of these 

measurements on a representative action potential trace is shown in Figure 2.8. 
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Figure 2.8. Diagram of measurements taken from action potential recordings of iPSC-CMs. RMP: Resting Membrane 
Potential, MDP: Maximum Diastolic Potential, Peak: Maximum recorded voltage, Delta: Voltage difference between 
RMP and peak, APD50/90: Action potential duration at 50%/90%/maximum of delta voltage.  
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2.11 Statistics and Data Analysis 

 All quantitative data was analysed with GraphPad Prism 6. Grouped data were tested 

with one-way ANOVA, using Dunnett’s multiple comparison to test variants vs wild-type unless 

otherwise stated. For individual analysis of two groups, unpaired t-testing was used to calculate 

statistical differences. When comparing two independent variables, two-way ANOVA with 

Sidak’s multiple comparison test was used. Significance was denoted by an adjusted P value 

<0.05. All group data is presented as mean ± S.E.M. Electrophysiological recordings were made 

with pCLAMP v10.5 software (Axon Instruments, USA), and were analysed with Clampfit v10.5 

(Molecular Devices, USA). Data is presented as mean ± S.E.M. Significant genetic variant 

enrichment between cases and controls was calculated using a two-tailed Fisher’s exact test. 

 

2.12 Materials used in this Thesis 
 

Material Reference Code Supplier 
Country of 
Origin 

13mm Glass Cover Slips 631-0149 VWR USA 

2-Propanol 190764 Sigma-Aldrich USA 

30% Hydrogen peroxide 
Solution 

H1009-100ML Sigma-Aldrich USA 

4-20% Mini-PROTEAN TGX 
Precast Protein Gels 

4561094 Bio-Rad USA 

Absolute qPCR Plate Seals AB1170 
ThermoFisher 
Scientific 

USA 

Accutase Cell Detachment 
Solution 

561527 BD Biosciences USA 

Agar 05038 Sigma Aldrich USA 

Amersham ECL Prime 
Detection Reagent 

RPN2232 GElifesciences UK 

Amersham Hyperfilm 28-9068 GElifesciences UK 

Bovine Serum Albumin A2934-25G Sigma-Aldrich USA 

Carbenicillin disodium salt C3416 Sigma Aldrich USA 

Cell Scrapers 15621-005 VWR USA 

Corning Matrigel (Growth 
Factor Reduced) 

356230 Corning Netherlands 

DAPI (4',6-Diamidino-2-
Phenylindole, 
Dihydrochloride) 
 

D1306 
ThermoFisher 
Scientific 

USA 
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Material Reference Code Supplier 
Country of 
Origin 

DharmaFECT 1 Transfection 
Reagent 

T-2001-03 Dharmacon USA 

Dithiothreitol D0632 Sigma-Aldrich USA 

DMSO Hybri-Max™ D2650-5X5ML Sigma-Aldrich USA 

Dulbecco’s Phosphate 
Buffered Saline  

D8537 Sigma Aldrich USA 

Falcon 6-well clear flat 
bottom culture dishes 

10110151 
ThermoFisher 
Scientific 

USA 

Fetal Bovine Serum 10500064 
ThermoFisher 
Scientific 

USA 

Formaldehyde solution 37 
wt. % in H20 

25249-100ML Sigma-Aldrich USA 

FuGENE HD Transfection 
Reagent 

E2311 Promega USA 

Glycine G8898 Sigma-Aldrich USA 

HAM-F12 Media 11765-054 Gibco USA 

High-Capacity cDNA Reverse 
Transcription Kit 

4368814 
ThermoFisher 
Scientific 

USA 

Human Heart RNA 
R1234126-50-D03 
R1234138-50-D03 
R1234139-50-D03 

Amsbio UK 

HyClone™ Fetal Bovine 
Serum 

SH30088.02 GE Healthcare USA 

IgG HRP-linked Antibodies 
Mouse/Rabbit 

NA931/ NA934 GElifesciences UK 

Immobilon-P PVDF 
membrane 

IPFL00010 Merck Millipore USA 

In situ Apoptosis Detection 
Kit  

Ab206386 Abcam UK 

InSolutionTM Y-27632 in 
DMSO 

688002 Merck USA 

L-ascorbic acid 2-phosphate A8960-5G Sigma-Aldrich USA 

Luria Bertani L3022 Sigma Aldrich USA 

MEM 11095-080 Gibco USA 

mTeSRTM1 #85850 
STEMCELL 
Technologies 
Canada Inc 

Canada 

Nanodrop  
ThermoFisher 
Scientific 

USA 

NovaCHOice Transfection Kit 72622 Merck Millipore USA 

NuncTM Glass Bottom Dishes 150680 
ThermoFisher 
Scientific 

USA 

Opti-MEM Reduced Serum 
Medium  

11058021 ThermoFisher USA 

pcDNA4/TO V1020-20 AddGene USA 

PCR Plate, 96-well, semi-
skirted, flat deck 

AB1400 
ThermoFisher 
Scientific 

USA 

Penicillin and Streptomycin 15140122 Gibco USA 
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Material Reference Code Supplier 
Country of 
Origin 

Pierce BCA Protein Assay Kit 23227 
ThermoFisher 
Scientific 

USA 

QIAGEN Plasmid Midi Kit 12145 Qiagen USA 

QuickChange II Site-Directed 
Mutagenesis Kit 

200523 Agilent USA 

Recombinant Human 
Albumin 

A9731-5G Sigma-Aldrich USA 

RNase-Free DNase Set 79254 QIAGEN USA 

RNeasy Mini Kit 74104 Qiagen USA 

RNeasy Mini Kit 74104 QIAGEN USA 

RPMI 1640 11875-093 
ThermoFisher 
Scientific 

USA 

siGLO Green Transfection 
Indicator 

D-001630-01-05 Dharmacon USA 

SMARTpool: ON-TARGETplus 
TRPM7/ctrl 

L-005393-00-0005 
5nmol / L-006233-00-
0005 

Dharmacon USA 

Spectra Multicolour High 
Range Protein Ladder 

26625 
ThermoFisher 
Scientific 

USA 

T25 Flasks 83.3910.002 Sarstedt Germany 

T75 Flasks 83.3911.002 Sarstedt Germany 

Top Ten Competent E. Coli C404006 
ThermoFisher 
Scientific 

USA 

Tris Base T1503 Sigma-Aldrich USA 

Triton X-100 T8787-100ML Sigma-Aldrich USA 

TrypLETM Express Enzyme 
(1X), no phenol red 

12604013 
ThermoFisher 
Scientific 

USA 

Trypsin 15090046 
ThermoFisher 
Scientific 

USA 

Tween 20 P2287 Sigma Aldrich USA 

Whatman Quantitative Filter 
Paper 

Z241407 Sigma-Aldrich USA 
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3 Results – Functional studies of TRPM7 CICUS Genetic Variants in 

Heterologous Cell Systems 

3.1 Sequencing of TRPM7 Vector 

 Upon receipt of the TRPM7 vector, sequencing and alignment against the reference 

mRNA sequence (NM_017672.5) was performed. Sequence homology showed 99.98% 

(5597/5598) similarity between the reference sequence and the gene cloned into the 

pcDNA4/TO plasmid. The single DNA nucleotide difference (c.C4986T: p.Y1662Y) was a 

synonymous mutation (Figure 3.). This variant did not alter the primary amino acid sequence 

and was >1200bp from the nearest point mutations for testing, therefore it was unlikely to affect 

the following mutagenesis or experimental work. 

  

3.2 TRPM7 Variant Mutagenesis 

Sanger sequencing following site-directed mutagenesis of the TRPM7 expression vector 

revealed successful insertion of a nonsynonymous variant into four separate plasmids (Figure 

3.1B). The first variant, p.G179V, showed that in contrast to the reference glycine, following 

mutagenesis a valine will be translated. This represents a large structural change, from the 

hydrogen side chain of glycine to the hydrophobic valine. Secondly, p.R494Q altered the reading 

of an arginine codon to a glutamine. This meant substituting the positively charged polar amino 

acid for an uncharged amino acid. At c.2579, a cytosine was replaced by a thymine, producing 

the nonsynonymous variant c.C2579T:p.T860M. The threonine codon was replaced by a 

hydrophobic amino acid side chain that is capable of binding to metals. Finally, a guanine was 

sequenced at position c.3614 instead of an adenine, resulting in a glycine replacing a glutamic 

acid – p.E1205G. The large, negatively charged side chain was replaced by a hydrogen, 

representing a significant structural change.
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Figure 3.1. Sanger sequencing of TRPM7 expression vector. A Sanger sequencing of the received DNA plasmid 
revealed a single synonymous variant at c.C4971T. All other nucleotides showed sequence homology to the reference 
mRNA sequence of human TRPM7. B Chromatograms depict dye signal strength and the equivalent nucleotide 
sequence below. In orange is the reference mRNA transcript NM_017672 and below corresponding amino acid 
sequence depicted in codons.
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3.3 Measuring TRPM7-like Ion Channel Current in Heterologous Cells 

 CHO-K1 cells were transfected with 500ng of TRPM7 wild-type plasmid, 1800ng of the 

tetracycline repressor plasmid and 50ng of eGFP. 24 hours later, cells were incubated in 

tetracycline to induce expression of TRPM7, allowing for patch-clamp experiments. Whole-cell 

patch-clamp recordings from eGFP-positive cells 48 hours after transfection showed significantly 

increased TRPM7 current following current run-up compared to untransfected cells. 

 Due to its ubiquitous expression, TRPM7 current was observed in untransfected CHO-

K1 cells (Figure 3.2). Following whole-cell break-in current density measured at +80mV and -

80mV peaked at 49.70 ± 6.34pA/pF and -7.42 ± 1.33pA/pF, respectively. Transfection of CHO-K1 

cells with wild-type TRPM7 current increased outward current, at 110.0 ± 13.24 pA/pF while 

inward current (-80mV) showed no significant increase, measured at -5.77 ± 0.86.  
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Figure 3.2. TRPM7 current in untransfected and transiently transfected CHO-K1 cells 24 hours post tetracycline 
induction. A TRPM7 current from untransfected CHO-K1 cell at initial whole-cell break-in (black) and after 5 minutes 
(red). B TRPM7 current from wild-type transfected CHO-K1 cell at initial whole-cell break-in (black) and after 5 minutes 
(red). C Mean data of current density at +80mV in untransfected cells (n=10) and WT transfected cells (n=30). D Group 
data of current density at -80mV in untransfected (n=7) and WT transfected (n=28) CHO-K1 cells. * - P<0.05. 
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3.4 Validating the Identity of TRPM7 Ionic Currents using Specific Inhibitors  

 To confirm that TRPM7 was being specifically recorded, two known inhibitors of the ion 

channel were used in further patch-clamp experiments. Millimolar concentrations of 

magnesium have been reported to block TRPM7 channel current, and micromolar 

concentrations of extracellular 2-APB have been reported to inhibit TRPM7 but potentiate 

TRPM6 current 226,231. Addition of 10mM magnesium to TRPM7 extracellular solution reduced 

currents significantly in both untransfected and cells transfected with TRPM7 (Figure 3.3A & B). 

Mean TRPM7 current at +80mV decreased from 129.9 pA/pF to 7.764 pA/pF after 10mM 

magnesium was added to the bath (P<0.0001, Figure 3.3C). Magnesium also significantly 

inhibited a presumed endogenous TRPM7 current in untransfected cells (P<0.0001, Figure 3.3C). 

Analysis of the inward TRPM7 current at -80mV showed similar inhibition of current density in 

both WT transfected and untransfected cells (P<0.0001, Figure 3.3D). This current was also 

inhibited by application of 50µM 2-APB (Figure 3.3E & F).  
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Figure 3.3. Characteristic inhibition of TRPM7 by Mg2+ and 2-APB. A Current traces before (black) and after (red) 
addition of 10mM magnesium to extracellular solution during whole-cell recording of WT TRPM7 transfected CHO-K1 
cell. B Time course of cell from A showing immediate reduction in current at +80mV following 10mM magnesium 
treatment. C Mean current density at +80mV comparison between wild-type transfected (n=13) and untransfected 
(n=6) CHO-K1 cells before and after treatment with 10mM Mg2+. D Corresponding current density at -80mV from cells 
analysed in C. E Current traces before (black) and after (red) addition of 50µM 2-APB to extracellular solution during 
patch-clamp recording of CHO-K1 transiently transfected with TRPM7 WT. F Time course of current at +80mV from 
cell shown in (E), showing current reduction over 300seconds following 2-APB addition. *** - P<0.0005, **** - 
P<0.0001. 
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3.5 Investigating the Effect of CICUS Variants on TRPM7 Current Density in CHO-

K1 Cells 

 Transient transfection of TRPM7 ion channels into CHO-K1 cells yielded measurable 

TRPM7 current from all four transfected variants (Figure 3.4). Mean current density of mutant 

TRPM7 channels was as follows: p.G179V at +80mV was 34.03 ± 3.02 pA/pF, p.R494Q 273.6 ± 

51.88 pA/pF, p.T860M 44.5 ± 9.91 pA/pF and p.E1205G 60.74 ± 4.27 pA/pF (Figure 3.5A). 

Corresponding current density at -80mV was as follows: p.G179V -4.29 ± 0.79 pA/pF, p.R494Q 

transfected 14.40 ± 2.15 pA/pF, p.T860M -8.24.69 ± 1.91 pA/pF and cells transfected with 

p.E1205G was -6.29 ± 1.01 pA/pF (Figure 3.5B). 

 Analysis of the mean data using one-way ANOVA with Dunnett’s multiple comparisons 

test reported that compared to wild-type, p.R494Q resulted in a statistically significant increase 

in outward current (110.0 vs 273.6 ± 31.96 pA/pF, P<0.0001). This was mirrored by a significant 

increase in inward current at -80mV as well (-5.77 vs -14.40 ± 1.752 pA/pF, P<0.0001). There was 

a significant decrease in outward current at +80mV in cells transfected with p.G179V TRPM7 

(Figure 3.5A). 

The other two variants, p.T860M and p.E1205G were not statistically significant 

compared to wild-type transfected cells. This warranted further investigation, as changes in 

current density due to genetic variation have been reported previously in the setting of 

neurodegenerative disease 300.  
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Figure 3.4. Traces of whole-cell recordings from CHO-K1 cells transiently transfected with four different CICUS 
variants for TRPM7. A-D Whole-cell patch-clamp recordings from cells transfected with G179V (A), R494Q (B), T860M 
(C) and E1205G (D) mutant TRPM7 channels. 

 

 

Figure 3.5. Transiently transfected CHO-K1 TRPM7 current is increased by the p.R494Q variant. A Whole-cell patch-
clamp data from CHO-K1 cells transiently transfected with wild-type (n=30) and four different TRPM7 variants (n=9-
13) measured at +80mV. B Patch-clamp data from CHO-K1 cells transfected with wild-type and four CICUS TRPM7 
variants measured at -80mV. * - P<0.05, **** - P<0.0001. 
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3.6 Investigation of how TRPM7 CICUS Variants Respond to Magnesium Inhibition 

To assess how TRPM7 channels responded to Mg2+ inhibition, transfected cells were 

patch-clamped in extracellular solutions containing a range (0mM – 6mM) of magnesium 

concentrations (Figure 3.6). At 0mM Mg2+, WT TRPM7 current was measured as 129.95 pA/pF 

at +80mV, and -5.49 pA/pF at -80mV. The p.G179V variant significantly decreased +80mV 

current density at 0mM magnesium to  36.49 pA/pF (P<0.005, Figure 3.6A). In concordance to 

Figure 3.5, p.R494Q significantly increased current density at 0mM magnesium to 297.71 pA/pF 

for outward (+80mV) and by -17.56 pA/pF inward (-80mV) currents (P<0.0001, Figure 3.6C & D). 

This variant also increased outward current when compared to wild-type when treated with 

0.5mM Mg2+, (P<0.001). p.R494Q increased inward current density significantly compared to 

wild-type at 0.5mM Mg2+ to -14.18 pA/pF and at 1.0mM Mg2+ to -10.44 pA/pF (Figure 3.6D, 

P<0.0001 and P<0.05, respectively). The p.T860M variant decreased outward current when 

compared to wild-type at 0mM Mg2+ to 53.34 pA/pF (P<0.05, Figure 3.6E). 

To assess whether these changes in current density were due to an altered dose-

response to magnesium, the data were normalised to show how magnesium concentrations 

reduced TRPM7 outward current in relation to initial peak current (Figure 3.7). Normalised 

outward currents compared to peak current before magnesium treatment were not significantly 

different from wild-type TRPM7 transfected cells at any magnesium concentration when 

transfected with p.G179V, p.R494Q, p.T860M and p.E1205G TRPM7 variants (Figure 3.7). 
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Figure 3.6. Magnesium inhibition curves of CHO-K1 cells transfected with wild-type or CICUS variant TRPM7. A, C, 
E, G Current recorded at +80mV from cells transfected with p.G179V, p.R494Q, p.T860M and p.E1205G at +80mV 
compared to untransfected and wild-type TRPM7 transfected CHO-K1 cells. B, D, F, H Inward current recorded at -
80mV from the same cells as in A, C, E and G. * = P<0.05, ** = P<0.005, *** = P<0.0005, **** = P<0.0001 vs WT, n = 
7-8. 
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Figure 3.7. Normalised outward current recordings from CHO-K1 cells transfected with TRPM7 and CICUS mutants. 
A-D Whole-cell patch-clamp current data from Figure 3.6, WT and p.G179V (A), p.R494Q (B), p.T860M (C) and 
p.E1205G (D). TRPM7 transfected CHO-K1 cells exposed to a range of extracellular magnesium concentrations (0 – 6 
mM) n = 7-8. 
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3.7 Investigating the Effect of CICUS Variants on TRPM7 Current Density in HEK293 

Cells 

We sought to verify these findings in an alternative cellular system to ensure the 

observed current density differences were not due to artefacts of using purely a CHO-K1 

heterologous expression system. HEK293 cells transfected with TRPM7 showed similar 

recordings to those seen in CHO-K1 cells (Figure 3.8). Compared to CHO-K1 cells transfected with 

TRPM7 (n=30), HEK293 cells (n=15) had larger peak currents at +80mV (163.2 ± 27.87 pA/pF vs 

110.0 ± 13.24 pA/pF). HEK293 cells showed greater inward current at -80mV (-9.78 ± 2.22 pA/pF 

vs -5.77 ± 0.86 pA/pF). Although an apparent increase in both inward and outward current was 

observed when transfected with wild-type TRPM7 channel, this was not statistically significant 

(P=0.56 for +80mV and P=0.051 for -80mV)(Figure 3.8B). 

HEK293 cells transfected with wild-type, p.G179V, p.R494Q, p.T860M and p.E1205G 

TRPM7 were patch-clamped and whole-cell currents recorded (Figure 3.9). Strikingly, HEK293 

mean data showed in p.R494Q transfected cells, TRPM7 current recorded at +80mV and -80mV 

was not statistically different to wild-type transfected cells (P=0.95 and P=0.91 respectively).  

 In contrast to data recorded from transfected CHO-K1 cells, patch-clamp recordings 

from HEK293 cells showed that both p.G179V and p.T860M, significantly reduced outward ion 

channel current compared to wild-type channel. Outward current density of WT TRPM7 at 

+80mV  was 133.20 pA/pF , while p.G179V was significantly reduced, at 39.26 pA/pF (P=0.005). 

HEK293 cells transfected with p.T860M recorded 36.32 pA/pF at +80mV (P=0.007). Current 

density measured at -80mV however was no different in p.G179V or p.T860M cells compared to 

wild-type (P>0.99 and P=0.99 respectively). 
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Figure 3.8. TRPM7 current recorded from HEK293 and CHO-K1 cells 24-48 hours after transfection. A Comparison of 
current density recorded at +80mV between HEK293 and CHO-K1 cells. B Current density at -80mV recorded from 
transfected HEK293 and CHO-K1 cells. C Representative traces from a HEK293 cell transiently transfected with wild-
type TRPM7 at whole-cell break-in (black) and after magnesium chelation (red). 
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Figure 3.9. CICUS variant HEK293 mean current density data. A Whole-cell patch-clamp data from HEK293 cells 
transiently transfected with wild-type (n=28) and four different TRPM7 variants (n=8-12) measured at +80mV. B Patch-
clamp data from HEK293 cells transfected with wild-type and four CICUS TRPM7 variants measured at -80mV. ** = 
P<0.001. 
 

A B 
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3.8 Investigating TRPM7 Wild-type and CICUS Variant Protein Expression 

 In parallel to patch-clamp experiments, the lysates of cells transfected with TRPM7 were 

analysed using the western blot technique to look at cellular expression. Initially, CHO-K1 cells 

were transfected with 500ng of WT TRPM7, 500ng of each of the CICUS variant vectors or left 

untransfected. Lysates from these cells were collected and blotted using calnexin as a loading 

control. The Neuromab N74/25 antibody initially did not produce any discernible bands from 

any lysates from multiple experiments (n=3; Figure 3.10). Recordable current from WT 

transfected cells was significantly greater than untransfected cells (Figure 3.2), supporting the 

presence of the TRPM7 channel albeit at low protein concentrations following cell harvest. 

Therefore CHO-K1 cells were transfected with increasing amounts of TRPM7 DNA prior to 

tetracycline induction and lysate harvesting. Increasing amounts up to 2.0µg of DNA produced 

no discernible TRPM7 ion channel band (~230kDa) even following long film exposure times of 

>35minutes (Figure 3.11). Of note, calnexin gene expression was highly variable (Figure 3.10A) 

despite protein concentration calculation using the BCA assay and therefore β-actin was used 

for further loading controls. 
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Figure 3.10. Initial western blot of CHO-K1 lysates for calnexin and TRPM7 antibody N74/25. Lysates were run into 
8% polyacrylamide gels. A Calnexin antibody staining of CHO-K1 cell lysates either untransfected or transfected with 
500ng of WT TRPM7 or one of the CICUS variants. B Western blot of the same lysates in A showing lack of TRPM7 
staining in all lysates after probing using the N74/25 Neuromab antibody. 

 

  

Figure 3.11. Increasing amount of TRPM7 DNA does not produce visible protein staining in CHO-K1 cells. Lysates of 
CHO-K1 cells run into 8% polyacrylamide gels. CHO-K1 cells were transfected with between 2 and 0 µg of vector DNA 
as noted above each column. TRPM7 antibody, N74/25 from Neuromab with 40 minutes of exposure showing 
background noise.  
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The use of different reducing agents may adversely affect protein unfolding and 

therefore which epitopes are available for antibody binding. An alternative to β-

mercaptoethanol, DTT, was used to provide alternative protein reducing conditions to attempt 

to see if ineffective unfolding was masking the TRPM7-antibody epitope. However, despite 

visible β-actin staining, no visible TRPM7 bands were identifiable in either the β-

mercaptoethanol treated lysates or those treated with DTT (Figure 3.12). Another facet of the 

reduction process is heating, multi-pass membrane proteins can aggregate when lysates are 

boiled at 95˚C. Reducing the reaction temperature to 55˚C or 70˚C and prolonging the time to 

10 minutes did not produce visible bands after lysate western blotting (Figure 3.13). Due to 

repeated failure at identifying quantifiable amounts of TRPM7 protein using the western blot 

technique despite patch-clamp analysis of the current, two different lysate buffers were used to 

harvest cellular proteins alongside using an alternative Alomone (ACC-047) antibody (Figure 

3.14). When using NP40 lysis buffer and the Alomone antibody, a <250kDa signal was visible, 

albeit very faint despite >30minute film exposure. Blotting of CHO-K1 cell lysates using 

Neuromab antibody N74/25 showed only aggregate signal at the top of the wells in both NP40 

and RIPA harvested samples. 
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Figure 3.12. Optimisation of reducing agents β-mercaptoethanol and dithiothreitol with new loading control β-
actin. A HEK 293 cell lysates transfected with 500ng of WT TRPM7 DNA were run on a 4-20% gradient gel. Β-actin 
staining of protein lysates reduced in either Β-mercaptoethanol or DTT as noted above. B TRPM7 antibody N74/25 
staining of the same lysates as in A 

 

 

Figure 3.13. Denaturing temperature does not affect TRPM7 blotting. Protein lysates were reduced with two different 
temperatures as noted, 55˚C or 70˚C for 10minutes. Lysates were run through a 4-20% polyacrylamide gradient gel. A 
Β-actin staining showing clear bands. B TRPM7 blotting of corresponding lysates seen in A using Neuromab TRPM7 
antibody. 
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Figure 3.14. Alomone and Neuromab antibody staining of TRPM7 transfected CHO-K1 cell lysates. Protein lysates 
were harvested in either 100µL of NP40 or 100µL RIPA buffer as shown. Lysates were run into polyacrylamide 4-20% 
gradient gel. A Alomone antibody (ACC-047) TRPM7 staining. B Neuromab N74/25 antibody staining for TRPM7 of the 
same protein lysates used in A. 

 

Figure 3.15. FLAG-epitope targeting antibody identifies cleaved N-terminal protein in TRPM7 transfected HEK293 
cells. Lysates were harvested from HEK293 transfected cells and ran into 4-20% gradient polyacrylamide gels. A β-
actin loading control. B Cleaved FLAG-tagged N-terminal domain <40kDa in size visible only in TRPM7 transfected 
cells. 
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The TRPM7 expression plasmid received from Schmitz et al. contains an N-terminal FLAG 

tag. Using a well-characterised antibody in our lab (F3165), TRPM7 transfected CHO-K1 cell 

lysates were blotted. The only visible bands using a FLAG targeting antibody were small cleavage 

products of the N-terminus <30kDa - not full length ion channels (Figure 3.15). Although both 

TRPM7 antibodies produced by Alomone and Neuromab were unable to successfully identify 

TRPM7 proteins in a variety of conditions, a mouse monoclonal antibody produced by Santa-

Cruz showed TRPM7 to be present in CHO-K1 cells transfected with 500ng of TRPM7 compared 

to untransfected cells which showed a complete lack of staining. Interestingly, small C-terminally 

cleaved kinases were also visible in these lysates ~40kDa and 100kDa (Figure 3.16). While 

untransfected cells showed no protein present, wild-type transfected cells showed a clear 

~250kDa band and either a glycosylated product or dimerised form of the ion channel (Figure 

3.17).  

In contrast, p.G179V and p.T860M TRPM7 cells showed expression profiles similar to 

untransfected cells, in-line with the significantly reduced current observed in single-cell patch-

clamp experiments of these cells (Figure 3.9). The p.R494Q and p.E1205G transfected cells had 

expression profiles similar to WT cells, although showing less un-aggregated TRPM7 ion channel. 

Interestingly, in comparison to the CHO-K1 system, no visible cleaved C-terminal kinases were 

observed, in keeping with published observations of the cell-specific manner of this process 223. 
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Figure 3.16. TRPM7 and its cleaved products are detectable following HEK293 cell transfection when using Santa 
Cruz sc271099 antibody. Cell lysates were run into 8% polyacrylamide gel. The lysates show TRPM7 ion channel ~ 
250kDa as well as small cleaved C-terminal kinases. 

 

Figure 3.17. CICUS variants p.G179V and p.T860M produce no quantifiable protein when transfected into HEK293 
cells. Western blot of cell lysates A β-actin blotting showing equal loading control expression when 30µg of protein 
loaded into gel. B Protein lysates probed with Santa Cruz TRPM7 antibody on 8% polyacrylamide gel showing full 
length TRPM7 protein.  
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3.9 Analysis of TRPM7 mRNA following WT and CICUS Variant Transfection 

To ascertain whether this observed lack of protein expression in p.G179V or p.T860M 

transfected cells was caused by transcriptional or translational perturbation we performed qPCR 

analysis to measure TRPM7 mRNA expression following cell transfection. Total RNA isolation 

was performed as in Methods and Materials (2.7.1).  

Briefly, HEK293 cells were seeded onto 6-well dishes for 24 hours before transfection 

with 500ng of TRPM7 WT or CICUS variant and 1800ng of tetracycline repressor plasmids. The 

following morning, media was changed to contain 1µg/ml tetracycline. At 24 hours post 

tetracycline treatment cells were harvested using an RNeasy mini kit (QIAGEN, USA).  

 Following reverse transcription, qPCR was carried out using cDNA samples from five 

independent experiments and TRPM7 expression normalised to housekeeping gene GAPDH 

(Figure 3.18). Compared to untransfected cells, TRPM7 mRNA increased ~20 fold 48 hours after 

transfection with WT expressing plasmid (Figure 3.18B; 0.06± vs 1, P < 0.0001). When each 

individual experiment was normalised to WT TRPM7 experiments, no significant difference was 

observed between HEK293 cells transfected with WT or any of the four CICUS variants (G179V, 

P = 0.76, R494Q, P = 0.68, T860M, P = 0.89, E1205G, P = 0.85).  
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Figure 3.18. qPCR analysis of TRPM7 mRNA 48 hours after transfection. A Schematic of TRPM7 gene located on 
chromosome 15. The coding sequence of TRPM7 consists of 39 exon, shown in yellow of representative sizes. Intronic 
regions are shown in blue while both 5’ and 3’ areas are illustrated green. The exons 5 and 6, targeted by the probe 
are boxed in red. B Comparison of TRPM7 mRNA between untransfected (black), wild-type (white) and four CICUS 
variant (red) transfected HEK293 cells. Untransfected cells show reduced expression compared to WT while all four 
variants do not. Data was analysed using repeated measures one-way ANOVA using Dunnett’s multiple comparison 
test vs WT value. ****- P < 0.0001. 
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3.10 Analysis of MG132 Proteasomal Inhibitor Following TRPM7 Variant 

Transfection 

 Cell transfection with p.G179V or p.T860M TRPM7 showed a lack of protein expression 

but similar mRNA levels to wild-type transfected cells. To investigate whether this was due to 

degradation we inhibited protein degradation following transfection. Cells were transfected 

with 500ng of WT TRPM7 or 500ng of CICUS variant DNA alongside 1800ng of tetracycline 

repressor plasmid (Figure 3.19). After transfection (5 hours) media was changed and the 

following day substituted with 1µg/ml tetracycline, at 5pm media was supplemented with 

MG132 (5µM final concentration) to inhibit degradation of proteins through the 26S 

proteasomal pathway. 

 Following MG132 treatment, even in untransfected cells smaller fragments of TRPM7 

were detected in whole-cell lysates. In wild-type and p.E1205G transfected cells there were 

similar amounts of full length TRPM7 ion channel protein visible (~250kDa, Figure 3.19C). 

Interestingly in cells transfected with p.R494Q TRPM7 a much greater proportion of full length 

protein was visible following MG132 treatment compared to WT (Figure 3.17B, Figure 3.19C). 

MG132 treatment did not rescue TRPM7 ion channel expression, however a faint visible band 

>250kDa was seen when cells were transfected with p.T860M. 
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Figure 3.19. MG132 rescues the protein expression of p.T860M TRPM7 in transfected HEK293 cells. A Methodology 
for TRPM7 transfection and induction of transcription followed by proteosomal inhibition with MG132. Cells were 
plated in HAM F-12 before transfection with TRPM7 and tetracycline for 5 hours. Following overnight media change 
tetracycline was added to media to induce transcription before overnight MG132 treatment and subsequent protein 
harvest. B Western blot of β-actin loading control on 6% polyacrylamide gel. C Primary antibody (sc271099) targeting 
TRPM7 from same lysates used in B. 
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3.11 Investigating Dominant Negative Effects of Functionally Harmful TRPM7 

Variants 

 To establish whether transfection of p.G179V or p.T860M TRPM7 could influence 

transcription or translation of WT protein in heterologous cells, HEK293 cells were transfected 

with a mixture of WT and CICUS plasmid. Briefly, cells were plated in 6-well dishes and 

transfected at ~70% confluency for 4-6 hours with 500ng or 250ng of WT vector, or a 500ng mix 

of WT and variant plasmid (plus 1800ng tetracycline repressor plasmid and 50ng eGFP). Cells 

were then split onto glass coverslips overnight and incubated with 1µg/ml tetracycline to induce 

transcription. Adherent cells underwent whole-cell patch-clamp analysis as previously 

mentioned for TRPM7 transfected cells. Positively transfected cells were identified using green 

fluorescence. 

 Although there was a marked current density increase in HEK293 cells transfected with 

500ng WT TRPM7 vector compared to 250ng WT vector, this did not reach statistical significance 

(Figure 3.20; 334.4±119.8 pA/pF vs 169.2±56.38 pA/pF, P = 0.3941). At both +80mV and -80mV, 

there was no significant difference between any combination of TRPM7 transfections containing 

either WT or CICUS variant TRPM7 vectors (one-way ANOVA Tukey’s multiple comparison, P > 

0.2066). 
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Figure 3.20. G179V and T860M TRPM7 variants do not influence wild-type TRPM7 current. A TRPM7 ion channel 
current measured in HEK293 cells at +80mV following chelation of Mg2+ removal. B Corresponding current density at 
-80mV from cells measured in A. n = 7-12. 
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3.12 Investigation of Apoptosis following Transfection of TRPM7 and CICUS 

Variants 

 The TRPM7 ion channel has been shown to participate in Fas-induced apoptosis. We 

wanted to investigate whether any of the CICUS variants may affect this signalling pathway. To 

do this we transfected cells with TRPM7 wild-type and CICUS variants for 48 hours, before using 

light microscopy to count apoptotic cell bodies. Visualising apoptotic cells following TRPM7 

transfection was carried out as described in Methods and Materials (2.8.4). Briefly, HEK293 cells 

were transfected with WT TRPM7 or CICUS variant expressing vector at ~70% confluency 

alongside 1800ng of tetracycline repressor plasmid. The following day 1µg/ml tetracycline was 

added to the media and cells fixed after 24 hours with 3.7% formaldehyde. Identification of 

apoptotic bodies (dark brown) was performed using light microscopy following staining of cells 

using an In Situ Apoptosis detection assay (Figure 3.21A). Pictures were taken from two separate 

experiments in 12-well dishes. Random images of each well were taken for analysis using an 

EVOS FL Auto Cell Imaging microscope. 

 In total 2,527 cells were counted, on average 13.9±1.46% were apoptotic across 9 

groups. The average number of cells counted in each group was 361±42.96 cells. There was no 

significant difference between cells transfected with WT TRPM7 vector and any CICUS variant (P 

> 0.99), cells transfected but without TRPM7 (P = 0.6) or untransfected cells (P = 0.17, One-way 

ANOVA using Dunnett’s multiple comparisons, all values compared to wild-type TRPM7 

transfection). A detailed break-down of cell count, apoptotic cells and statistical significance vs 

wild-type transfected cells is listed in (Figure 3.21C).   
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Figure 3.21. CICUS variants do not influence apoptosis in transfected HEK293 cells. A Representative image of 3 
apoptotic cell bodies (white circle) identified following In Situ labelling of fragmented DNA. Live cells are depicted by 
light brown colour and flattened morphology. B CICUS variants do not alter the prevalence of apoptotic HEK293 cells 
following TRPM7 transfection. One-way ANOVA using Dunnett’s multiple comparisons, from two separate 
transfections. C Summary of data presented in B. All images were taken at random by microscope software prior to 
analysis. 
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3.12 Fluorescent Analysis of TRPM7 Transfected Cells 

 To confirm lack of expression in cells transfected with p.G179V and p.T860 TRPM7, we 

used immunocytochemistry to fluorescently label transfected cells. Initially we did this using an 

epifluorescent microscope to confirm we could successfully image TRPM7 in vitro. CHO-K1 cells 

were transfected with TRPM7 as previously mentioned in Methods and Materials. Briefly, cells 

were transfected in 6-well dishes at ~70-80% confluency with 250ng WT TRPM7 expressing 

plasmid alongside 1800ng tetracycline repressor. Four to six hours later cells were split using 

trypsin onto glass coverslips for imaging. The following morning TRPM7 transfection was 

induced by supplementing media with 1µg/ml tetracycline. 24 hours later cells were fixed with 

3.7% formaldehyde. Cells were permeabilised with Triton-x 100 and either incubated with PBS-

T and 1% BSA alone or with primary anti-TRPM7 antibody overnight. After removal of any 

remaining primary antibody all cells were stained with an Alexa-488 anti-mouse antibody for 

one hour. 

 CHO-K1 cells transfected with TRPM7 but not incubated with anti-TRPM7 antibody 

stained positive for DAPI but were negative for TRPM7 staining (Figure 3.22A-D). Conversely, 

cells positive for TRPM7 were found in transfected CHO-K1 cells after incubation with an anti-

TRPM7 primary antibody (Figure 3.22E-L). Quantification of fluorescence was analysed from a 

cross-section of positively stained cells (Figure 3.23A). TRPM7 green fluorescent intensity was 

distributed throughout the cell, but was reduced in the area occupied by the nucleus. 
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Figure 3.22. Immunocytochemical analysis of transfected CHO-K1 cells following TRPM7 transfection using 
sc271099. A – D CHO-K1 cells transfected with TRPM7 but treated without primary antibody to TRPM-7 adhere to 
glass coverslips (A, phase), show nuclei positive for DAPI staining (B) and lack non-specific off-target secondary 
antibody signal (C). E-H Positive TRPM7 staining in cells following treatment with primary antibody showing positive 
cells throughout the glass coverslip. I – L Cropped image from H showing lack of nuclear localisation in TRPM7 +ve cell. 
Magnification A – H: x10, I – L x40. Scale bar D & H: 40µm, L: 5µm. 

 

 

Figure 3.23. Distribution of TRM7 48hours after transfection in CHO-K1 cells using fluorescent microscopy. A 
Fluorescent image of cell taken from Figure 3.22K & J. DAPI is stained in blue, green represents TRPM7 antibody. Red 
line indicates where pixel intensity measurements were taken. Scale bar: 5µm B Relative intensity of each pixel from 
panel A (red line) from left to right. 
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3.13 Confocal Analysis of TRPM7 Transfected CHO-K1 Cells 

After confirming successful fluorescent staining, we wanted to use confocal microscopy 

to analyse in more detail the cellular localisation of TRPM7, and any effect CICUS variants may 

have on it. Alongside this, we transfected cells with DsRed, a red fluorescent tag that localises 

to the endoplasmic reticulum. Co-transfection alongside TRPM7 will allow us to confirm 

transfection in experiments where we see a lack of expression, and to look at co-localisation 

between TRPM7 and the ER. CHO-K1 cells were transfected with TRPM7 as mentioned in 

Methods and Materials and section 3.12. Briefly, cells were grown to ~70% confluency before 

TRPM7 transfection before expression was induced the following day with 1µg/ml tetracycline 

for 24 hours. In addition to TRPM7 vector transfection, cells were also transfected with 250ng 

of a fluorescently tagged DsRed-endoplasmic reticular (DsRed-ER) targeting plasmid. After 

fixation with 3.7% formaldehyde cells were stained with 1:200 diluted anti-TRPM7 antibody 

overnight at 4˚C followed by treatment with secondary Alexa-488 anti-mouse antibody for one 

hour. Confocal image analysis was performed using a Zeiss 710 Confocal Laser Scanning 

Microscope. DAPI fluorescence was excited at 405nm, emission measured at 454nm. Alexa-488 

excited at 488nm, emission measured at 528nm while DsRed fluorescence was excited at 543nm 

and emitted at 620nm. 

Fluorescently tagged DsRed and TRPM7 staining was seen at x63 magnification outside 

of the nucleus (Figure 3.24). Quantification of this fluorescence in CHO-K1 cells showed 

cytoplasmic TRPM7 staining around the cell’s nucleus (Figure 3.25). Cells transfected solely with 

DsRed showed strong intracellular fluorescent signal throughout CHO-K1 cell bodies, mostly 

distinct from DAPI emission (Figure 3.26).  

In all slides transfected with DsRed-ER, there were multiple cells positive for red 

fluorescence distinct from the nucleus, indicating successful transfection (Figure 3.27 C, G, K & 

O). There were several cells in wells transfected with p.R494Q and p.E1205G that stained double 

positive for both TRPM7 and DsRed-ER (Figure 3.27 E-H & M-P). However in wells transfected 
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with p.G179V or p.T860M, only cells single positive for DsRed-ER were seen (Figure 3.27 A-D & 

I-L). When cells were transfected with WT TRPM7 and stained with secondary Alex Fluor 488 but 

without the primary mouse antibody to TRPM7, no cells were fluorescent after staining. 
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Figure 3.24. TRPM7 localises to the cell cytoplasm in transfected CHO-K1 cells. A DAPI staining of CHO-K1 cell nuclei. 
B DsRed fluorescence is reduced in the nuclear area and occupies the ER of the cell. C TRPM7 resides in the cell 
cytoplasm but avoids the nucleus. D All fluorescent channels merged together. 

 

 

Figure 3.25. Fluorescent signal quantification of transfected CHO-K1 cell. A Cell from Figure 3.24 where fluorescence 
was measured, indicating where measurements were taken (white line). B Quantification of fluorescence from cell in 
A. 
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Figure 3.26. CHO-K1 cells transiently transfected with DsRed-ER. A DAPI nuclear staining of CHO-K1 cells. B DsRed 
fluorescence observed in a transfected cluster of five cells. C Fluorescence measured at wavelengths used to excite 
Alexa-488, showing a lack of signal. D Overlay of three merged channels indicating successfully transfected CHO-K1 
cells and three of which whose fluorescence was quantified. E Quantified fluorescent measurements of three cells from 
D. 
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Figure 3.27. The two CICUS variants P.G179V and p.T860M produce no protein following transfection. CHO-K1 cells 
transfected with 500ng p.G179V (A-D), p.R494Q (E-H), p.T860M (I-L) and p.E1205G (M-P) TRPM7 alongside 250ng 
DsRed-ER. DAPI cell staining A, E, I, M. Alexa Fluor 488 B, F, J, N. DsRed fluorescence C, G, J, O. Merged image of three 
channels D, H, L, P. Scale bars have length listed above them and range from 5 - 20 µm. 
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3.14 Discussion 

The role that predicted damaging genetic variants may play in perturbing the function 

of the TRPM7 ion channel was examined. Four nonsynonymous variants were sequenced from 

four unexplained stillbirth cases: p.G179V, p.R494Q, p.T860M, p.E1205G. Using heterologous 

cell systems, the effects of the variants on channel function, magnesium response, expression, 

cellular distribution and apoptosis were scrutinised.  

Firstly, the WT TRPM7 construct was sequenced to ascertain sequence homology to 

online published databases. We found a single synonymous nucleotide difference at c.C4986T, 

amino acid tyrosine 1662 in the C-terminal domain. A previously published TRPM7 variant 

(p.T1482I) shown to alter magnesium sensitivity is located within the cytoplasmic domain, 

illustrating the role this region plays in controlling channel function 300. However, this was 

unlikely to alter the TRPM7 channel activity, being outside of published ATP/metal binding 

domains and not altering protein sequence. This mutation is also over four hundred amino acids 

away from the nearest CICUS mutant so had no influence on possible mutagenesis reactions. 

The four CICUS TRPM7 variants sequenced in unexplained stillbirth cases represent a 

variety of structural changes. Two variants, p.G179V and p.R494Q lie within the N-terminal 

domain, whose structure and function is still currently unknown. The p.G179V variant would 

represent a large amino side chain size change. While the p.R494Q mutation substitutes a 

positively charged arginine for an uncharged glutamine – which may disturb protein-protein 

interactions. The p.T860M variant may be a small structural change, this takes place inside the 

second transmembrane domain which may be critical in controlling tetramer folding. Lastly, 

p.E1205G resides within the coiled-coil domain of TRPM7, while our data show this variant had 

no effect on TRPM7 function here, the loss of this charged amino acid in this dub-domain may 

have other deleterious effects. 

The cell lines used in this study, HEK293 and CHO-K1, were chosen for numerous 

reasons. Due to the ubiquitous nature (in mammals) of the TRPM7 ion channel it was not 
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possible to find a cell line that lacks channel expression completely. HEK293 and CHO-K1 cells 

are extensively used throughout cell biology due to their rapid proliferation and the relative ease 

at which they can be transfected 274,275. Alongside this there are numerous studies regarding 

successful characterisation of TRPM7 expression in HEK293 230,301 and CHO-K1 228,302 cells 

following transient transfection. Although TRPM7 is known to play a vital role in mouse cardiac 

development 213, the basic function of the channel in human cells is still widely debated. To test 

whether variants sequenced from unexplained stillbirth cases lead to perturbed channel 

function, heterologous cell lines were chosen to provide a relatively noise-free system to isolate 

TRPM7 channel expression and function.  

Firstly CHO-K1 cells were transiently transfected with TRPM7 and current density at 

±80mV measured. Current ramps were recorded between ±100mV and typical TRPM7 

conductance observed in line with published literature 228,302. Initial currents measured shortly 

after whole-cell membrane break-in were low across all voltages, however over time 

(~5minutes) large outward currents were measured in all transfected cells. This was likely due 

to chelation of intracellular magnesium by EDTA and EGTA inside the pipette solution. Current 

traces in CHO-K1 cells showed characteristically low inward current at -80mV, but large outward 

current when the ramp voltage increased past +50mV. Reintroducing high (10mM) Mg2+ to the 

bath resulted in rapid inhibition of the observed current, reinforcing the likelihood of TRPM7 

being responsible for the measured conductance. Furthermore, current density was significantly 

reduced by addition of micromolar concentrations of 2-APB, thought to inhibit conductance 

through cytoplasmic acidification 303. Taken together these data indicates that using 

heterologous cells we can successfully transfect and measure WT TRPM7 in a cellular system. 

Being able to measure ion channel conductance equates to successful transfection, transcription 

of the TRPM7 cDNA, translation and trafficking to the cell surface. Due to its ubiquitous 

expression, even in untransfected CHO-K1 cells, outward current could be measured after 

allowing time for cytoplasmic magnesium to be chelated. 
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The four CICUS variants were successfully generated in the pcDNA4/TO vector using site-

directed mutagenesis and this was confirmed using Sanger sequencing. The first two, p.G179V 

and p.R494Q reside in the N-terminal cytoplasmic domain. The third, p.T860M results in a 

mutation inside the second transmembrane domain. Lastly, p.E1205G is a nonsynonymous 

mutation in the C-terminal domain. These CICUS variant TRPM7 expressing constructs were 

transfected into CHO-K1 cells and current ran-up over time following whole-cell access. After 

current run-up CHO-K1 cells transfected with p.R494Q had significantly increased current 

densities at ±80mV compared to wild-type channels. Both inward and outward current densities 

were at least twice that of WT channels, indicating increased open probability of channels or 

abundance of ion channels at the cell surface. The current density of p.G179V was significantly 

reduced, with outward currents less than a third of WT values. Outward currents for p.T860M 

and p.E1205G were lower than WT but greater than untransfected cells. As a previous disease 

associated variant in TRPM7 was thought to alter magnesium sensitivity, it was important to 

measure how CICUS variants responded to varying concentrations of magnesium. 

Whole-cell patch-clamp experiments have shown that although intracellular magnesium 

can be removed by chelation using EDTA/EGTA, application of 10mM external magnesium 

reverses this potentiation. CHO-K1 cells were transfected with WT TRPM7 and the four CICUS 

variants and the subsequent current density recorded after current run-up. The bath 

extracellular solution was then changed with 5 serial dilutions of magnesium (0.5, 1, 2, 4, 6mM) 

until full inhibition was reached. Interestingly, at low concentrations of magnesium (0.5mM for 

+80mV, 0.5 & 1mM for -80mV) transfecting CHO-K1 cells with p.R494Q TRPM7 increased current 

density compared to WT. Cytosolic free magnesium is thought to vary between 0.5 and 1mM, 

indicating that under physiological conditions p.R494Q would be functioning differently to WT 

TRPM7 in cells 304. The resting membrane potential of a cardiomyocyte can be as low as -80 to -

90mV, and therefore able to conduct inward current of divalent cations if TRPM7 is expressed 

in human cells. During time-course experiments, both p.G179V and p.T860M showed reduced 

outward conductance compared to cells expressing WT channel at 0mM Mg2+. This indicates a 
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significant lack of functional TRPM7 at low concentrations of intracellular magnesium when 

p.G179V and p.T860M are present, similar to that observed later in transfected HEK293 cells.   

When magnesium concentration was increased to 0.5mM this effect was abrogated, 

although p.G179V’s response to increased magnesium at +80mV closely mimicked that of 

untransfected cells. Apart from p.R494Q expressing cells, no differences were observed 

between any CICUS TRPM7 variants and WT channels at -80mV. This was due to inward 

conductance being very low (<-10pA/pF), making it hard to identify differences between WT 

channels, loss of function CICUS variants and recording noise. When outward current data was 

normalised to maximum current before magnesium, there was no difference between any CICUS 

variants and WT TRPM7 channel. All groups showed ~50% inhibition of outward current at 

0.5mM magnesium and total inhibition by 6mM. 

Studies into how TRPM7 responds to various inhibitors, genetic modification and how it 

plays a role in cell biology are often carried out in multiple cell systems to eliminate possible cell 

type differences in expression, post translational modification and trafficking 223,232,234,305. 

Therefore, HEK293 cells were used to confirm whether observed current density changes in 

CHO-K1 cells were replicated in another cellular system. Following transient transfection, 

TRPM7 current was detected in HEK293 cells. This current built up over 5-10minutes, as 

previously observed in CHO-K1 cells, with a similar voltage-current profile. Interestingly, larger 

currents at ±80mV were seen in HEK293, cells despite CHO-K1 cells being widely used in industry 

to produce large amounts of protein 275. This may be due to HEK293 cell’s ability to modify and 

transport native human protein to the cell surface in comparison to CHO-K1 cells response to 

transfection with a non-native protein.  

Strikingly, in HEK293 cells transfected with p.R494Q there was no difference in current 

density compared to the WT ion channel. This contrasts with that observed in CHO-K1 cells 

where current density at +80mV was more than doubled. Conversely, both p.G179V and 

p.T860M significantly reduced outward current density compared to WT channels. Whereas in 
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CHO-K1 mean data this difference was not significant, perhaps due to lower WT current 

therefore reducing the difference seen in loss of function variants. In HEK293 cells p.G179V and 

p.T860M outward current was at least 100pA/pF below that observed in WT transfected cells 

indicating a marked difference in current. Once again at -80mV, there was little difference in the 

current between WT and any of the CICUS variants. As there was no significant difference in 

current density measured at -80mV between untransfected and WT transfected CHO-K1 cells, 

and no difference at -80mV between HEK293 cells expressing WT, p.G179V or p.T860M, there is 

likely  small but significant endogenous currents present in both cellular systems that mask small 

changes in inward current. Larger inward currents were observed in CHO-K1 cells transfected 

with p.R494Q, this could be inhibited by millimolar concentrations of magnesium so is likely to 

be TRPM7 current. While p.E1205G did not alter TRPM7 currents at ±80mV, in CHO-K1 cells 

p.R494Q current significantly increased. In both HEK293 and CHO-K1 cells, p.G179V and 

p.T860M in low magnesium conditions showed stark reductions in current density at +80mV. To 

explore whether this was due to altered protein channel expression, western blotting was 

performed on cell lysates from transfected cells.  

Due to their nature as multi-pass membrane proteins, commercially available TRP 

channel antibodies have caused frustration amongst the scientific field and have led to 

controversial research results being published 306,307. It was therefore of little surprise that 

lysates from transfected CHO-K1 cells did not show any bands when probing for TRPM7, but 

showed calnexin staining around ~65kDa size in all lanes. Increasing the amount of DNA 

transfected into CHO-K1 cells also did not result in visible TRPM7 bands. Faint bands were 

observed at the 55kDa mark, corresponding to some observed cleaved C-terminal fragments 

previously reported 223. No full length ion channel (~250kDa) was blotted in any CHO-K1 lysates 

despite observing ion channel current in transfected cells. We therefore decided to use HEK293 

cells to measure TRPM7 protein expression as even in untransfected cells there will be human 

TRPM7 present, with more detectable WT in transfected cells. Despite using both DTT or β-

mercaptoethanol as reducing agents, no visible TRPM7 band could be seen despite a strong 



166 

 

loading control signal even in HEK293 cells. Subsequent protein harvesting involving lower 

reduction temperatures and using both RIPA and NP40 lysis buffers gave no visible signal. An 

alternative polyclonal antibody (Alomone, Israel) was also unsuccessful in blotting full length 

TRPM7 protein. Interestingly, using a FLAG-epitope targeting monoclonal antibody resulted in 

seeing a small <40kDa fragment in western blot gels. This was likely a small cleavage product 

present in cells transfected with TRPM7, but is below the expected and published size of the full 

length channel (+200kDa) 223,305,308. Although TRPM7 is predicted to be 213kDa in size, 

publications always show smeared signal and/or smaller cleavage products, indicating either 

autophosphorylation and/or C-terminal kinase cleavage when using antibodies specific for 

TRPM7 epitopes223,308,309.  

Using an alternative mouse monoclonal antibody (sc271099) targeting the area 

immediately after the final transmembrane domain, full length TRPM7 ion channel alongside 

cleaved downstream products could be seen in whole-cell lysates. This allowed analysis of 

protein expression in cells transfected with CICUS variant TRPM7. 

HEK293 cells were transfected with CICUS variant TRPM7 and subsequent protein lysate 

harvesting. Western blot analysis of these lysates showed full length TRPM7 ion channel 

(>210kDa) present in large quantities in cells transfected with WT, p.R494Q and p.E1205G 

TRPM7. There was no discernible ion channel present in untransfected cells or cells transfected 

with p.G179V or p.T860M despite equal loading of protein between all wells. These data 

corroborated whole-cell patch-clamp data, indicating that cells transfected with p.G179V or 

p.T860M TRPM7 do not express full length functional ion channels or are degraded rapidly. This 

lack of expression could arise due to a lack of mRNA transcription in the nucleus or perturbed 

protein translation by the ribosome. Therefore it was important to analyse cells upstream of the 

TRPM7 protein and investigate the levels of TRPM7 mRNA in transfected cells. 

To ascertain whether p.G179V and p.T860M TRPM7 variants were successfully 

expressing mRNA, HEK293 total cell RNA was isolated from transfected cells. To ensure genomic 
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DNA was not processed, a probe that spans exons 5-6 was used to ensure that elongation of PCR 

products would only occur across exons. During harvesting, any residual plasmid DNA was 

digested by treating samples with a DpnI restriction enzyme. This enzyme recognizes the DNA 

sequence Gm6ATC and cleaves it, this ensured only mRNA could be analysed by downstream 

qPCR. All TRPM7 measurements were normalised to an internal GAPDH control before being 

normalised to the WT transfected cells in that qPCR plate. Due to its ubiquitous nature, TRPM7 

mRNA could be quantified by qPCR in untransfected HEK293 cells. Although present, this was 

significantly lower (at least >20x) than cells transfected with WT TRPM7. When comparing the 

four CICUS TRPM7 to WT transfected cells, there was no significant difference between any of 

the four variants and WT. These experiments were relatively variable, despite five repeats, 

probably due to the stochastic nature of cell transfection efficiency. However, all CICUS variants 

were of an equal order of magnitude to WT transfected cells and quite distinct from 

untransfected HEK293 TRPM7 levels. This suggested that the respective mRNA was present in 

cells transfected with p.G179V or p.T860M TRPM7. Interestingly this meant that TRPM7 mRNA 

for these variants was not being translated into protein or that protein levels were undetectable 

by western blot and whole-cell patch-clamp.  

There is evidence that the variant p.Q141K in ABCG2 influences proteasomal 

degradation 310. TRPM4 variant p.E7K attenuates deSUMOylation of the channel, increasing its 

density at the cell surface and is associated with familial heart block 311. Because of these 

previous reports implicating membrane proteins (especially TRPM4) with degradation and 

genetic variation, the effect of proteosomal blockage following transfection was investigated. 

The proteasomal inhibitor MG132 has been extensively characterised in a number of 

systems to block the degradation of protein, as it acts by inhibiting the assembly of the 26S 

proteasome 310,312,313. When cells were transfected with TRPM7 CICUS variants alongside 

overnight treatment with MG132, even in untransfected cells small C-terminal cleavage 

products were seen in western blots. These cleaved kinases are known to be present in all cells 
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at cell-type specific levels 223. Proteosomal blockade overnight appeared to be sufficient to allow 

an accumulation of C-terminal fragments but insufficient to visualize significant amounts of full 

length protein in p.G179V cells. Interestingly, faint bands >210kDa were visible in cells 

transfected with p.T860M, indicating that the full length TRPM7 ion channel is present. This 

appears to suggest that the p.T860M nonsynonymous variant predisposes TRPM7 for proteolytic 

degradation by the 26S proteasome. Conversely, while all transfected cells received 500ng of 

TRPM7, there was a significant amount of full length TRPM7 in p.R494Q lysates compared to 

both WT and p.E1205G. Although protein expression experiments were carried out in HEK293 

cells, this appears to support a potential gain-of-function phenotype consistent with increased 

current density observed in transfected CHO-K1 cells. A plausible hypothesis is that excess 

TRPM7 protein transcribed in HEK293 cells overloads transport to the plasma membrane. This 

would explain why no increase in current density was observed in HEK293 cells despite there 

being a large increase in abundant protein following MG132 treatment compared to wild-type. 

In cells transfected with p.G179V no bands were present above the 100kDa fragments 

as also seen in the untransfected lane. All CICUS TRPM7 variants were heterozygotes, therefore 

whether loss-of-function variants p.G179V and p.T860M can influence co-expressed WT TRPM7 

was worthy of exploration. Dominant negative effects are well documented in ion 

channelopathies, whereby wild-type channel is adversely affected by the presence of the loss-

of-function allele 189. This is thought to be a key mechanism in the pathophysiology of certain 

LQT1 and LQT2 variants that are symptomatic despite the presence of one fully functioning copy 

of the gene 190,262. Due to their multimeric nature, a single point mutation in one allele can 

adversely affect the formation of purely wild-type ion channel multimers. Other dominant 

negative mechanisms can include competition for accessory proteins at the cell membrane, 

rapid degradation when forming complexes with wild-type channel and retention in the 

endoplasmic reticulum 192,314. Cells were transfected with 500 or 250ng TRPM7 plasmid or 250ng 

TRPM7 plasmid and either p.G179V or p.T860M. There was a discernible difference in current 

density in cells that received 500ng or TRPM7 over the other groups at ±80mV but this was not 
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significant. There was no difference in current density in cells transfected with 250ng WT TRPM7 

alone or those with WT and either CICUS variant – indicating that these two loss-of-function 

variants did not appear to influence the expression, translation or trafficking of WT TRPM7.  

TRPM7 has been shown to regulate a variety of cellular functions, notably apoptosis 235. 

This TRPM7-mediated process is thought to be independent of the C-terminal kinase and 

therefore of interest due to the fact that all four CICUS variants lie upstream of this domain. We 

decided to investigate whether there was a discernible difference in the prevalence of apoptotic 

cells following transfection of wild-type TRPM7 or those harbouring CICUS variants. While there 

was an increase in apoptotic cells that underwent transfection (even without TRPM7 vector), it 

appeared that no CICUS variants had an effect on the prevalence of apoptosis in cultured 

HEK293 cells.  

Recent studies have highlighted the importance of TRPM7’s subcellular location in 

distinct vesicles that may contain the majority of TRPM7 protein 305. It was therefore important 

to analyse any possible consequence that CICUS TRPM7 variants may have on the localisation of 

the ion channel in cells. Immunocytochemistry analysis of Alexa Fluor 488 positive, transfected 

cells indicated disperse localisation throughout the cytoplasm (Figure 3.22). Following on from 

this, transfected CHO-K1 cells were analysed with confocal microscopy to more closely examine 

the distribution of TRPM7. For these confocal experiments, DsRed-ER, a fluorescently tagged 

construct that is trafficked into the endoplasmic reticulum was co-transfected alongside TRPM7. 

Firstly, this allows confirmation of successfully transfected cells without any antibody treatment, 

and is a useful means to compare the location of transfected TRPM7. Analysis of transfected 

CHO-K1 cells with TRPM7 and DsRed-ER showed a similar pattern of cell distribution, 

surrounding the cell’s nucleus. Quantification of the DAPI, DsRed-ER and Alexa 488 signals 

showed TRPM7 to be distinct from the nucleus and strongest at the edge of the cell, but not 

distinctly membrane bound. This was in agreement to other published data, either highlighting 

TRPM7’s role outside of the cell membrane or showing distinct retention inside the ER. Analysis 
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of multiple DsRed-ER positive cells confirmed a lack of nuclear staining and distinct cytoplasmic 

distribution. This all provided a methodology to confirm successful transfection of cells and 

analyse the location of TRPM7 staining in CHO-K1 cells. 

Unsurprisingly, in cells transfected with p.G179V or p.T860M TRPM7, a strong TRPM7 

positive signal was lacking. There was however a number of DsRed-ER positive cells, indicating 

that transfection of dsDNA was occurring in these cells. Double positive cells were found in wells 

transfected with both p.R494Q and p.E1205G. Notably, in some cells transfected with p. clearly 

visible clusters of protein appeared, indicating possible aggregates or large vesicles. The 

previously published data on TRPM7 by Clapham et al. used super-resolution microscopy to 

identify minute (<400nm) TRPM7 vesicles. At this resolving power it is not clear whether these 

are aggregated vesicles or simply clusters of channel at the membrane, but it does confirm that 

p.R494Q transfection results in significant amounts of TRPM7 protein created in CHO-K1 cells.  

Taken together with the patch-clamp data, two TRPM7 CICUS variants p.G179V and 

p.T860M adversely affect the creation of TRPM7 despite successful transfection into HEK293 

and CHO-K1 cell systems. This results in a lack of TRPM7 current measured at the cell surface, 

but does not appear to affect cell apoptosis. Interestingly, HEK293 cells transfected with 

p.T860M TRPM7 incubated overnight with the proteosomal inhibitor MG132 appeared to result 

in a small amount of full length TRPM7 protein, indicating that this variant may predispose the 

protein to rapid degradation by the 26S proteasome. The p.R494Q variant significantly increased 

current density recordings in CHO-K1 cells and confocal microscopy analysis showed strong 

vesicular-like aggregates. However, TRPM7 current did not increase when transfected into 

HEK293 cells, implicating possible cell-type specific effects.   
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Variant G179V R494Q T860M E1205G 

Current 
Density 

Reduced 
Increased 

(In CHO-K1) 
Reduced - 

mRNA - - - - 

Protein Reduced Increased Reduced - 

Apoptosis - - - - 

Table 3.1. Summary of functional differences found between CICUS TRPM7 variants compared to wild-type.  
“–“ indicates  difference to wild-type 
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4 Results – Investigating the Functional Effect of CICUS AKAP9 

Variants 

4.1 Sequencing the AKAP9 Expression Vector 

Due to its large size (>9kbp) and lack of availability, a custom AKAP9 expression vector 

was synthesised commercially for our group (by Genscript Biotech, USA). Following receipt of 

the vector, it underwent Sanger sequencing of both reverse and forward strands using 16 pairs 

of sequencing primers (Table 2.1). Following amalgamation of 17 pairs of forward and reverse 

reads, the sequence was aligned alongside the reference sequence (NM_005751). Sequence 

homology was 100% identical to the online reference sequence. Including the N-terminal FLAG 

tag epitope, homology between the AKAP9 plasmid and NM_005751 was 11720/11724 

(0.99966). 

 

Figure 4.1. AKAP9 gene in the pcDNA3.1 expression vector. A Shows the sequenced AKAP9 gene (11724bp) inserted 

into the FLAG-tagged expression vector pcDNA3.1(+) containing a neomycin resistance cassette (795bp). The AKAP9 

mRNA is highlighted in blue, green arrows depict the putative reading frames. B Shows the vector map of the pcDNA3.1 

plasmid without an insert, highlighting neomycin resistance, DYK tag and ampicillin resistance. 
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4.2 AKAP9 CICUS Mutagenesis 

To test whether CICUS variants had an effect on the function of AKAP9, in vitro 

mutagenesis was carried out using the Qiagen XL Site-Directed Mutagenesis Kit. Mutagenesis 

primers were synthesised (Table 2.3) and incubated with the wild-type AKAP9 plasmid and 

mutagenesis reagents as per kit instructions before PCR cycling (outlined in 2.3.4). After 

digesting non-mutated parental DNA with the Dpn I restriction enzyme, mutated dsDNA was 

transformed into XL10-Gold ultracompetent cells and grown on carbenicillin-containing agar 

plates overnight. After several attempts at mutagenesis and transformation, only cells incubated 

with p.D1507H and p.A3043T DNA grew colonies that could be prepared for Qiagen Midi plasmid 

kit growth. 

 

4.3 Measuring IKs Current in a HEK293 Cell Line Stably KCNQ1/KCNE1 

 To establish whether AKAP9 variants found in CICUS cases had an affect on the coupling 

of IKs to β-adrenergic drive, a suitable model system had to be created to measure potassium 

channel currents and then analyse their response to PKA activation. The first studies on IKs 

current and adrenergic stimulation were conducted on CHO-K1 cells either untransfected or 

transfected with the small AKAP9 isoform Yotiao 131,243.  

We selected a HEK293 cell line to model the IKs current and its response to adrenergic 

stimulation, as it is widely used as an in vitro model of KCNQ1/KCNE1 by our group. These cells 

(known as s5.3 cells) stably express both KCNQ1-GFP and KCNE1, providing an ideal platform to 

analyse changes in IKs current. These cells were cultured in media containing both G418 and 

zeocin, which allowed for selection of only double-positive cells. Cells were subjected to whole-

cell patch-clamp, using a voltage protocol that measured current between -80mV and +80mV in 

10mV increments. After each voltage ramp of two seconds, voltage was reduced to -40mV for 

two seconds before reverting to the holding potential of -80mV (Figure 4.2A).  
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Characteristic IKs recordings were observed in all cells analysed, with slowly activating 

peak currents and signature deactivating tail current morphology of KCNQ1/KCNE1 (Figure 4.2C-

D) 111. This stable cell line showed consistent IKs recordings when using the whole-cell patch-

clamp methodology and thus would be a suitable system for studying the response to adrenergic 

stimulation. 
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Figure 4.2. Voltage protocol and recorded currents from a HEK293 cell line stably expressing KCNQ1-GFP and KCNE1. 

A Voltage-clamp protocol used to measure IKs current from cells. All currents were measured after 2minutes of dialysis. 

B Representative current recording from HEK293 cells showing characteristic slow sloping activation and expected 

slow deactivation. C Close-up of trace showing characteristic slow activation over 2s. D Slowly deactivating ‘tail’ 

current typical of IKs current. E Mean current recorded at peak activation. F Mean peak tail current before 

deactivation. n = 8 cells. 
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4.4 Identifying a Native Adrenergic Response in HEK293 Cell 

 In contrast to HEK293 cells, published data from CHO-K1 cells transiently expressing 

KCNQ1/KCNE1 show lack of any robust response to raised cellular cAMP 131,243. To investigate 

how IKs current in HEK293 is affected during β-adrenergic stimulation we used a short voltage 

protocol of one step at +30mV, which repeated every 10 seconds during continuous patch-clamp 

recording. HEK293 cells were seeded onto coverslips before patch-clamp analysis 48-72 hours 

later, only fluorescent cells were chosen.  

Due to the prolonged nature of these experiments (>10 minutes), the perforated patch-

clamp technique was used to measure IKs current during β-adrenergic stimulation. Briefly, 

intracellular solution was mixed with amphotericin-B before insertion into the glass pipette. 

When electrical sealing occurred between the cell plasma membrane and pipette, the seal was 

left for ~15-30minutes to allow electrical access to develop through membrane pores. Access 

resistance was allowed to stabilise before recording occurred, the five current sweeps preceding 

isoprenaline treatment were analysed as the baseline. Isoprenaline was added after current was 

stable for ~5 minutes and final current was measured as an average of five sweeps after current 

plateau. 

 Surprisingly, Iks in HEK293 cells was exquisitely sensitive to even 1nM of isoprenaline 

treatment (Figure 4.3). IKs current rapidly increased following isoprenaline treatment, at 

concentrations ranging from 1nM-100nM, at 1µM current density plateaued and then returned 

to baseline after extracellular solution (EC) wash-off (Figure 4.3B). Current-voltage relationships 

from subsequent cells showed a large increase in current density following 100nm isoprenaline 

treatment (Figure 4.3C-D). Whole-cell patch-clamp analysis of current density at peak and tail 

currents showed a significant increase in current compared to untreated cells above +20mV and 

+30mV respectively (Figure 4.3E-F). At +80mV, peak current density was increased by 

335.6pA/pF (P<0.001, two-way ANOVA, Sidak’s multiple comparison). Peak tail current at 
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+80mV was significantly increased by 214.8pA/pF (P<0.001, two-way ANOVA, Sidak’s multiple 

comparison). 

 

 

  



178 

 

 

Figure 4.3. Iks in HEK293 cells responds to treatment with isoprenaline. A Voltage step protocol used to measure IKs 

current in the perforated patch-clamp configuration. B Measuring IKs current in HEK293 cells stably expressing KCNQ1 

and KCNE1 following addition of increasing concentrations of isoprenaline to the extracellular solution. C Current-

voltage profile before addition of 100nM isoprenaline. D Current density after addition of 100nM isoprenaline for 5 

minutes. E-F Whole-cell current density at peak (E) and tail (F) following two minutes of dialysis with (red) or without 

(black) pre-treatment with 100nM isoprenaline. Two-way ANOVA with Sidak’s multiple comparison, n = 6-8, ** - 

P<0.01, **** - P<0.0001. EC – Extracellular solution. Iso – Isoprenaline. 
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4.5 Perforated Patch-clamp Analysis of HEK293 Adrenergic Response Using 

Forskolin 

 To validate that this was a robust response to adrenergic stimulation, we substituted 

isoprenaline with an adenylate cyclase activator, forskolin 315. Perforated patch-clamp 

recordings were carried out on HEK293 cells stably expressing KCNQ1-GFP/KCNE1. After 

cytoplasmic electrical access was stabilised, a current-voltage step protocol was repeated every 

minute, measuring current between -80mV and +80mV in 20mV steps (Figure 4.4A). As seen 

during isoprenaline treatment, 10µM forskolin, when added to extracellular solution transiently 

increased IKs current (Figure 4.4B). Alongside large increases in peak and tail current density, 

peak current activation was visibly steeper following forskolin treatment (Figure 4.4C-F). Mean 

current density at +40mV in 7 cells showed stable IKs current recordings indicative of the 

perforated patch-clamp technique. Following forskolin treatment currents rapidly increased to 

plateau after ~5minutes of exposure (Figure 4.4G).  

Further detailed analysis of the KCNQ1/KCNE1 current-voltage profiles showed that 

following 10µM forskolin treatment, peak current density at +40mV was almost equal (93%) to 

peak current density at +80mV before β-adrenergic stimulation (Figure 4.5A). There was a 

significant difference in normalised current at +40, +60 and +80mV after forskolin treatment 

(two-way ANOVA, Sidaks Multiple comparison, P=0.001, P<0.0001, P<0.0001 respectively). 

Significant forskolin-dependent increases in peak tail current were also observed at +40, +60 

and +80mV (two-way ANOVA, Sidaks Multiple comparison, P=0.01, P<0.01, P<0.01 respectively, 

Figure 4.5B).  

Averaged deactivation voltages were fitted with a Boltzmann equation before and after 

treatment with forskolin (Figure 4.5C). Before treatment, V50 was +29.22 ± 4 .968 mV compared 

to 16.75 ± 2.242mV after forskolin. Analysis of steady-state inactivation with two-way ANOVA 

reveals significant divergence of relative peak tail currents at 0, +20, +40mV during deactivation 

(two-way ANOVA, Sidaks Multiple comparison, P=0.01, P<0.01, P<0.01 respectively). There was 
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no statistical difference in deactivation time constants observed before or after forskolin 

treatment (Figure 4.5D). Time to half activation however, was significantly reduced by forskolin 

treatment at voltage steps higher than -40mV (two-way ANOVA, Sidaks Multiple comparison, 

P<0.0001, Figure 4.5E). Forskolin was used for all further β-adrenergic experiments.  These data 

show the effect adrenergic stimulation has on IKs current, however this model system is 

unsuitable to investigate how specific AKAP9 genetic variants influence this coupling due to the 

unknown endogenous elements clearly already present in HEK293 cells. 
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Figure 4.4. IKs current in HEK293 cells responds robustly to 10µM Forskolin treatment in perforated patch-clamp. A 

One minute voltage protocol of nine 6.5 second sweeps continuously repeated during IKs recordings. B Representative 

current timecourse depicting time of forskolin treatment and subsequent washout. C-D Current-voltage profile before 

(C) and after (D) treatment of 10µM forskolin in HEK293 cells. E Representative trace of current recordings before 

(black) and after (red) treatment of 10µM forskolin at +40mV. F Enlarged tail current from (E) showing slow 

deactivation at -40mV after a +80mV step. G Mean time-course data from 7 cells showing peak current recorded at 

+40mV every minute for five minutes before treatment with forskolin and the effect of forskolin perfusion into the EC 

solution. Data are represented as current normalised to initial current level at t=1min. EC – Extracellular solution, For 

= Forskolin. 
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Figure 4.5. Analysis of IKs biophysics before and after treatment with forskolin. A-B Normalised peak (A) and tail (B) 

current before (black) and after (red) forskolin treatment. Current normalised to average current before forskolin 

addition. C Boltzmann curve fitted to tail currents before (black) and after (red) forskolin treatment. Data are 

normalised to maximum average current before (black) and after (black) forskolin. Before forksolin: V1/2 = 29.22mV 

slope = 20.1, after forskolin V1/2 = 16.75mV slope = 17.49. D-E Deactivation (D) and activation (E) constants normalised 

to before (black) and after (red) forskolin treatment. Two-way ANOVA with Sidak’s multiple comparison test **** - 

P<0.0001. EC – Extracellular solution. 
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4.6 Analysing Adrenergic Response in KCNQ1/KCNE1 Transfected CHO-K1 Cells 

 Due to its previously unknown ability to couple adrenergic stimulation to increased 

KCNQ1\KCNE1 potassium current, we were unable to use our well characterised HEK293 cell 

line stably expressing KCNQ1-GFP/KCNE1. We therefore transiently transfected the CHO-K1 cell 

line (previously published to not respond to cAMP 131) with KCNQ1-GFP/KCNE1 and used the 

perforated patch-clamp technique to record IKs current following addition of forskolin to the 

extracellular solution.  

 Transfected cells were initially incubated on glass-bottomed culture dishes for live 

confocal image analysis (Figure 4.6A). Protein was evenly distributed throughout the cytoplasm, 

in particular on the basal surface of the plasma membrane, there was a distinct lack of 

fluorescence in the centre of the cell – characteristics of a membrane associated protein. CHO-

K1 cells were successfully transfected with KCNQ1-GFP/KCNE1, all but one GFP+ cell showed 

characteristic IKs current traces following establishment of electrical cytosol access (Data not 

shown). Using the perforated patch-clamp technique, stable currents were recorded with typical 

activation peaks and slowly deactivating tail currents (Figure 4.6B-C). 

During perforated patch-clamp recordings, activation of PKA using forskolin did little to 

alter IKs current recorded, even after 5+ minutes of treatment (Figure 4.7A). This was in 

agreement to previous work by Kass et al. who used a cAMP analog (CPT-cAMP) to directly 

stimulate PKA 131. Both tail and peak currents in cells changed little over the course of forskolin 

treatment in CHO-K1 cells expressing KCNQ1-GFP/KCNE1 (Figure 4.7E-F). 
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Figure 4.6. CHO-K1 cells transiently transfected with KCNQ1-GFP/KCNE1 display IKs current. A Transiently 

transfected CHO-K1 cell live imaging of KCNQ1-GFP. Image is a composite of Z-stacked confocal images showing top-

down view (main panel) and views from either angle (side panels). Cells were transfected into glass bottomed culture 

dishes before live confocal imaging on an LSM710 microscope. Scale bar is 5µm. B One minute voltage protocol of nine 

6.5 second steps continuously repeated during CHO-K1 IKs recordings. C Representative current recording after 

membrane perforation showing typical slow activation followed by slowly deactivating tail current. 
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Figure 4.7. IKs in CHO-K1 cells does not respond to β-adrenergic stimulation. A Representative trace of perforated 
patch-clamp recording of IKs in CHO-K1 cells during the application of 10µM forskolin after five minutes of stable 
current recording. B Mean timecourse data from 8 cells following forskolin treatment after five minutes of current 
recordings. These data are from peak recordings at +40mV. C-D Representative current-voltage relationship before 
(C) and after (D) 10µM forskolin. E-F Superimposed image of representative tail (E) and peak (F) current before (black) 
and after (red) forskolin treatment at the +80mV step. EC – Extracellular solution, For – Forskolin. 
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4.7 Response to β-adrenergic Stimulation in CHO-K1 Cells Transfected with AKAP9 

or Yotiao 

 CHO-K1 cells were transiently transfected with 250ng KCNQ1-GFP, KCNE1 and 500ng 

AKAP9. After 4-6 hours cells were split onto coverslips and incubated for at least 24 hours before 

perforated patch-clamp analysis of the resulting IKs current. In contrast to cells expressing purely 

KCNQ1-GFP/KCNE1, cells co-expressing AKAP9 responded to adrenergic stimulation with 

forskolin (Figure 4.8A). We also found that  a cell transiently transfected with KCNQ1-GFP/KCNE1 

and 500ng of a Yotiao expressing plasmid also responded to forskolin stimulation (Figure 4.8B).  

Mean time course data of 12 cells showed a robust response to 10µM forskolin, with 

peak current at +40mV 2.05 ± 0.59 fold compared to initial current 15 minutes after forskolin 

treatment (Figure 4.8C). In contrast to forskolin treatment in HEK293 cells, while raw current 

increases were visible there was little change in the apparent shape of I-V relationships (Figure 

4.8D-E). This confirmed that accessory proteins were required to couple IKs current expressed 

transiently in CHO-K1 cells with PKA activation via forskolin treatment. 
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Figure 4.8. AKAP9 and Yotiao couple IKs to adrenergic drive in CHO-K1 cells. A  Representative time course trace of 

IKs in CHO-K1 cell co-transfected with AKAP9. B Representative time course trace of IKs in CHO-K1 cell co-transfected 

with Yotiao. C Mean data from 12 cells transiently transfected with KCNQ1-GFP/KCNE1/AKAP9. All timecourse data is 

recorded at +40mV. D-E Representative current-voltage relationship of IKs before (D) and after (E) forskolin treatment. 

F Superimposed traces at +80mV step before (black) and after (red) forskolin addition to extracellular solution. EC – 

Extracellular solution, For – Forskolin, Q1 – KCNQ1, E1 – KCNE1. 
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4.8 Analysis of AKAP9’s effect on Transfected IKs Current in CHO-K1 Cells following 

10µM Forskolin Treatment 

 IKs responded robustly to forskolin treatment when co-expressing AKAP9. Further 

comparative analysis was carried out to identify the exact effect of AKAP9 transfection across a 

range of voltages following forskolin treatment. These cells underwent perforated patch-clamp 

analysis (Figure 4.7 & Figure 4.8). At both +40mV and +80mV peak current, there was clear 

divergence between cells transfected with KCNQ1-GFP/KCNE1 alone compared to those co-

expressing AKAP9 (Figure 4.9A-B).  

No significant difference between IKs peak current recorded before or after forskolin 

treatment was found at any voltages without AKAP9 co-transfection, the greatest difference 

being at +80mV (Figure 4.9C-D, two-way ANOVA, Sidak’s multiple comparison, P>0.36). 

Correspondingly forskolin treatment did not significantly alter tail current in these cells, the 

largest observed effect was seen after a +40mV step (Figure 4.9D, two-way ANOVA, Sidak’s 

multiple comparison, P>0.83). Conversely, when AKAP9 was co-expressed alongside IKs, peak 

current was significantly increased following forskolin treatment at voltage steps +40, +60 and 

+80mV (Figure 4.9E, two-way ANOVA, Sidak’s multiple comparison, P=0.0004, P<0.0001 & 

P<0.0001 respectively). There was also an increase in relative peak tail current following 

adrenergic stimulation at -40mV following voltage steps +40, +60 and +80mV (Figure 4.9F, two-

way ANOVA, Sidak’s multiple comparison, P=0.0047, P=0.0002 & P<0.0001 respectively). In 

contrast to HEK293 data, analysis of Boltzmann fitted curves to the steady state of deactivation 

found no significant difference in V1/2 or slope parameters, before or after forskolin treatment 

in AKAP9 transfected cells (Figure 4.9G).
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Figure 4.9. IKs responds to adrenergic stimulation in CHO-K1 cells when co-expressed alongside AKAP9. A-B Mean 

normalised timecourse data from IKs current recorded during forskolin treatment at +40mV (A) and +80mV (B) voltage 

steps. Data from CHO-K1 cells transfected with AKAP9 (red) or without it (black) is shown. C-D Current-voltage 

relationships from CHO-K1 cells transfected with KCNQ1-GFP/KCNE1, recorded at peak (C) and tail (D) before (black) 

or after (red) treatment with 10µM forskolin. E-F Current-voltage relationships from CHO-K1 cells transfected with 

KCNQ1-GFP/KCNE1/AKAP9, recorded at peak (E) and tail (F) before (black) or after (red) treatment with 10µM 

forskolin. EC – Extracellular solution, Q1 – KCNQ1, E1 – KCNE1. G Boltzmann curve fitted to tail currents before (black) 

and after (red) forskolin treatment. Data are normalised to maximum average current before (black) and after (black) 

forskolin. Before forksolin: V1/2 = 42.12mV slope = 21.35, after forskolin V1/2 = 37.16mV slope = 21.39.
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4.9 Effect of p.D1507H on AKAP9’s Ability to Couple β-adrenergic Stimulation to 

IKs 

 The first CICUS AKAP9 variant tested was p.D1507H, it lies within 70 residues of the one 

known pathogenic LQT11 variant, p.S1570L 131. This variant lies between two of the 13 coiled 

coil domains predicted to form in the AKAP9 protein. Interestingly, this variant is also less than 

60 amino acids from the ‘C-terminal binding site’ of the smaller isoform Yotiao, also shown 

previously to interact with KCNQ1 243. 

We investigated whether the p.D1507H variant had an effect on the ability of AKAP9 to 

modulate IKs in response to adrenergic stimulation. CHO-K1 cells were transfected with KCNQ1-

GFP/KCNE1 alongside p.D1507H AKAP9 plasmid for 4-6 hours before being plated onto glass 

coverslips. After 24 hours cells underwent perforated patch-clamp analysis to measure IKs 

currents. After five minutes of stable recording, cells were perfused with extracellular solution 

with 10µM forskolin. Previous work on the smaller AKAP9 isoform, Yotiao, has reported that a 

nearby p.S1570L mutation reduced its interaction with KCNQ1 131. 

 Analysis of time-course I-V recordings at +40mV showed transfected CHO-K1 cells 

responded robustly to forskolin (Figure 4.10A-B). Although there was an apparent increase in 

currents recorded at voltage steps greater than +20mV, there was little noticeable change in the 

shape of I-V traces (Figure 4.10C-D). Superimposition of a representative traces looking at peak 

and tail currents clearly indicated the effect of forskolin treatment in increasing IKs activation 

and deactivation (Figure 4.10E-F).  
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Figure 4.10. Transfection with p.D1507H AKAP9 allows IKs to respond to forskolin. A Representative trace of IKs 

recording in CHO-K1 cell following KCNQ1-GFP/KCNE1/AKAP9 p.D1507H transfection, forskolin was added after five 

minutes of stable recording where indicated. B Mean time course data of IKs recorded at peak +40mV current from 

transiently transfected cells showing the effect of forskolin. Data is normalised to current observed five minutes before 

addition of drug. N = 8. C-D Current-voltage relationship from cell in (A) before (C) and after (D) 10 minutes of forskolin 

treatment. E-F Superimposed current traces from C/D at +80mV highlighting increase in peak (E) and tail (F) currents 

after addition of 10µM forskolin (red). EC – Extracellular solution, Q1 – KCNQ1, E1 – KCNE1.
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4.10 Effect of p.A3043T on AKAP9’s Ability to Couple β-adrenergic Stimulation to 

IKs 

 We next investigated whether the p.A3043T mutation had an effect on the ability of 

AKAP9 to modulate IKs in response to adrenergic stimulation. This variant lies within 500 

residues of the known PKA subunit binding domain at amino acids 2554-2567, and is close to a 

small coiled coil domain at residues 3065-3092.  

CHO-K1 cells were transfected with KCNQ1-GFP/KCNE1 alongside the p.A3043T AKAP9 

plasmid. Cells were then being split onto glass coverslips 4-6 hours following transfection. After 

24 hours cells underwent perforated patch-clamp analysis to measure IKs currents. After five 

minutes of stable recording, cells were perfused with extracellular solution containing 10µM 

forskolin.  

 Analysis of time-course I-V recordings at +40mV peak current steps showed transfected 

CHO-K1 cells did not respond to adrenergic stimulation (Figure 4.11A-B). Strikingly, at no voltage 

steps was there any noticeable increase or modulation of current recorded after forskolin 

treatment (Figure 4.11C-D). Peak current during the +80mV step showed no change following 

addition of 10µM forskolin (Figure 4.11E). There was no discernible effect on peak tail currents 

recorded at -40mV following an +80mV voltage step (Figure 4.11F). 
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Figure 4.11. Transfection with p.A3043T AKAP9 does not allow IKs to respond to forskolin. A Representative trace of 

IKs recording in CHO-K1 cell following KCNQ1-GFP/KCNE1/AKAP9 p.A3043T transfection, forskolin was added after 

five minutes of stable recording where indicated. N = 6. B Mean time course data of IKs recorded at peak +40mV 

current from transiently transfected cells indicating effect of forskolin. Data is normalised to current observed five 

minutes before addition of drug. C-D Current-voltage relationship from cell in (A) before (C) and after (D) 10 minutes 

of forskolin treatment. E-F Superimposed current traces from C/D at +80mV highlighting peak (E) and tail (F) currents 

after addition of 10µM forskolin (red). EC – Extracellular solution, For – Forskolin, Q1 – KCNQ1, E1 – KCNE1. 
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4.11 Comparison of p.D1507H AKAP9 and p.A3043T AKAP9’s Ability to Couple β-

adrenergic Drive to Increased IKs Current 

 In addition to timecourse current measurements, the current-voltage relationship of IKs 

in CHO-K1 cells was investigated when co-expressed with p.D1507H or p.A3043T AKAP9. Current 

traces recorded at voltage steps between -80mV and +80mV were normalised to initial 

maximum current five minutes before forskolin treatment.  

 When compared to current recorded before 10µM forskolin treatment, normalised IKs 

was indistinguishable at all voltages after at least five minutes in KCNQ1-GFP/KCNE1/A3043T 

AKAP9 transfected cells (Figure 4.12A). Similarly, tail current recordings from these cells also 

showed a lack of response to forskolin treatment (Figure 4.12B). Conversely, in CHO-K1 cells 

transfected with IKs and p.D1507H AKAP9 a robust response in peak and tail current was 

observed at voltages >20mV and >0mV respectively. Normalised peak current in these cells was 

significantly greater at +40mV, +60mV and +80mV steps following 10µM forskolin treatment 

(Figure 4.12A, two-way ANOVA, Sidak’s multiple comparison, P=0.0017, P<0.0001, P<0.0001 

respectively). Correspondingly, peak tail current in these was significantly increased following 

adrenergic stimulation at -40mV following voltage steps at +20, +40, +60 and +80mV (Figure 

4.12D, two-way ANOVA, Sidak’s multiple comparison, P=0.0022, P<0.0001, P>0.0001 and 

P>0.0001 respectively). 
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Figure 4.12. Comparison between the effects of p.D1507H and p.A3043T AKAP9 on IKs current following adrenergic 

stimulation with forskolin. A-B Normalised IKs peak (A) and tail (B) current in CHO-K1 cells co-expressing p.A3043T 

AKAP9. C-D Normalised IKs peak (C) and tail (D) current in CHO-K1 cells co-expressing p.D1507H AKAP9. The two traces 

depict current with extracellular solution alone (black) or supplemented with 10µM forskolin. EC – Extracellular 

solution, Q1 – KCNQ1, E1 – KCNE1.N = 6-8.
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4.12 Relative Abundance of AKAP9 Expression in the Human Heart 

 Previous experimental work in human myocardial tissue homogenates demonstrated 

the presence of Yotiao and its interaction with KCNQ1 243. Our data suggests a loss of function 

in p.A3043T AKAP9, however little is known about the abundance of the full length isoform in 

human myocardium. Therefore we wanted to investigate the expression of full length AKAP9 

expression in the human myocardium and discern the ratio of Yotiao : Full Length AKAP9 

present. Unfortunately, our laboratory lacks access to foetal myocardial tissue/RNA samples. 

Instead we investigated healthy adult human RNA samples available in our laboratory, to 

ascertain whether full length AKAP9 transcript can be seen in the human myocardium. Heart 

RNA samples were obtained from three males, aged 49, 65 and 69 who died of non-

cardiovascular causes (obtained from Amsbio, UK). Each sample was split between the four 

heart chambers (Atria, Ventricles, Left and Right), allowing analysis of each separately. These 

RNA libraries were converted to cDNA by reverse transcription before qPCR analysis using 

probes targeting early and late AKAP9 exons. The short probe spanned exons 5-6 (Ref: 

Hs01091034_m1) while the long probe targeted exon boundary 39-40 (Ref: Hs00323978_m1). 

The large isoform of AKAP9 (NM_005751) contains both exon boundaries, therefore the ‘short’ 

probe measures expression of both short and long isoforms. All expression signals were 

normalised to the housekeeping gene GAPDH. 

 Full length AKAP9 expression was highest in the left ventricle (4.5 ± 2.9% of GAPDH, 

Figure 4.13A). In both the left and right atrium expression was lower (1.8 ± 0.5% and 1.7 ± 0.8%, 

respectively), while the right ventricle showed the lowest levels of expression (1 ± 0.5%). The 

total expression of all AKAP9 isoforms revealed a similar relationship between separate heart 

chambers (LV > LA > RA > RV, Figure 4.13B). A proportion of this total AKAP9 signal, the 

proportion of full-length mRNA was highly consistent between the three hearts sampled (Figure 

4.13C). In the left ventricle 35.3 ± 6.2% of total transcript contained the 39-40 exon boundary, 

whilst in the right ventricle this was slightly higher at 38.5 ± 2.8%. In atrial samples this 
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proportion was lower, with 32.5 ± 2.3% of right atrial AKAP9 being full length, whereas this is 

only 26.7 ± 2.4% in the left atrium. 
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Figure 4.13. Human myocardial RNA AKAP9 expression levels. A Full length AKAP9 expression from adult human 

heart chambers. B Addition of alternative probe signal to graph A. The short isoform probe targeted an exon found in 

all isoforms of AKAP9. C Comparison of long : total AKAP9 isoform signal observed in C between specific heart 

chambers. Total heart chamber RNA was harvested from three adult donors, divided into the four heart chambers. For 

each experiment n = 3. Data is shown as mean ± SEM.  LV = Left Ventricle, LA = Left Atria, RA = Right Atria, RV = Right 

Ventricle. 
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4.13 Testing for an Enrichment of Predicted Damaging Variants in the CICUS Study 

 We performed an enrichment analysis to investigate whether there was a significant 

increase in the number of predicted damaging variants found in CICUS cases compared with a 

healthy control population. This was to check for further evidence of association with stillbirth 

with the selected candidate gene. A control population consisting of 563 randomly chosen 

genomes from the 1000g database was used. This control population’s ancestry was matched 

to that of the CICUS population; 69.6% European, 3.3% East Asian and 1.4% African with the 

remaining 25.7% randomly selected from the remaining samples in the 1000 Genomes project. 

All nonsynonymous SNVs from the CICUS and control populations were sorted based upon our 

variant prioritising methodology. 

 All variants from non-conserved residues were removed from the analysis as previously 

described for AKAP9 and TRPM7. For the enrichment statistical test, we used a frequency cut-

off point of 0.01% compared to 1% in prior analysis. We expect harmful variants that precipitate 

stillbirth in a population-based test to be very rare – below our initial 1% cut-off point to gather 

a sample of variants to test. We found 52 predicted damaging variants in 18 genes in the CICUS 

cases (Table 4.1). In the control population, we found 410 variants in these 18 genes.  

Fisher’s exact test was used to calculate whether there was a statistically significant 

difference in the number of cases or controls possessing a predicted damaging genetic variant. 

TRPM7 showed a significant difference in the number of variants found between controls and 

cases. Of the 70 CICUS cases, four possessed TRPM7 variants, compared to only 9 variants in 563 

1000g controls (P = 0.047). Although it did not reach significance, there was nominal enrichment 

of putative damaging CREBBP variants in CICUS cases (P = 0.074). No significant enrichment for 

AKAP9 predicted damaging variants was found between CICUS cases and the control population 

(P = 0.72).  

  



200 

 

Gene 
CICUS cases with a 

variant (%) 

Controls with a 

variant (%) 
P Value 

AKAP9 3 (4.2) 18 (3.2) 0.72 

ANK2 2 (2.8) 22 (3.9) 1 

BAZ2B 2 (2.8) 13 (2.3) 0.68 

CACNA1C 2 (2.8) 9 (1.6) 0.35 

CREBBP 5 (7.0) 16 (2.8) 0.074 

KCNE1 0 2 (0.4) 1 

KCNE2 0 2 (0.4) 1 

KCNJ2 1 (1.4) 1 (0.2) 0.21 

MKL2 0 5 (0.9) 1 

NDRG4 1 (1.4) 4 (0.7) 0.45 

RYR2 3 (4.2) 26 (4.6) 1 

SCN10A 3 (4.2) 15 (2.7) 0.44 

SCN5A 2 (2.8) 15 (2.7) 1 

SLC8A1 2 (2.8) 5 (0.9) 0.18 

SMARCAD1 1 (1.4) 1 (0.2) 0.21 

SRL 1 (1.4) 6 (1.1) 0.57 

TRPM7 4 (5.6) 9 (1.6) 0.047* 

Table 4.1. Summary of rare predicted damaging variant enrichment found in the CICUS study cases compared to 
563 controls from the 1000g database. The total number of cases with variants is specific genes in shown alongside 
the population percentage for both cases and controls. Calculated Fisher’s exact test p values are listed for each gene. 
* - P<0.05. Cases n = 70, Controls n = 563. 
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4.14 Discussion 

Protein Kinase A anchoring proteins are vital in the formation of large complexes that 

coordinate localised cAMP inputs with regulatory enzymes and their targets 316. Yotiao or its 

larger isoform AKAP9 are thought to direct activated PKA molecules to phosphorylation of the 

KCNQ1 potassium channel. Coupling of adrenergic stimulation to increased slowly-rectifying 

potassium current output is required to shorten the action potential and repolarisation during 

periods of exercise or stress 54. Maintaining PKA at the cell surface is believed to allow rapid 

translation of β-adrenergic stimulation, through cAMP and PKA to increase phosphorylated IKs 

at the cell surface. Under basal (low heart rate) conditions, IKs is likely unable to contribute 

significantly to hyperpolarisation due to its slowly activating kinetics. This was recently 

confirmed by the finding that in adult canine ventricular myocytes, KCNQ1 has been shown to 

largely reside in an intracellular reservoir under basal conditions 317. Although acute stimulation 

was not investigated, chronic stress did boost IKs amplitude in this model, and represents the 

cells ability to increase KCNQ1 channel conductance at the membrane in response to exogenous 

factors. Despite initial data suggesting that in healthy human myocardium there was no slowly 

activating IKs potassium channel, IKs has been shown to activate slowly and deactivate rapidly 

in adult myocytes 318,319. Therefore deleterious AKAP9 variants may render IKs immune to 

adrenergic stimulation, promoting a pro-arrhythmogenic state due to delayed repolarisation 

during times of stress in the developing foetus. 

The first stage of in vitro analysis of CICUS variants on the function of AKAP9 was to 

acquire an expression vector for the gene and then insert the five different variants found in 

unexplained stillbirth cases into this DNA backbone. Despite several rounds of site-directed 

mutagenesis, only two CICUS variants could be grown using competent cells to a sufficient 

quantity to allow mammalian cell transfection. Both p.D1507H and p.A3043T transformed 

bacterial cells grew in larger 50ml bacterial cultures – sufficient for large-scale DNA harvesting. 

The other three variants (p.D155N, p.E2059G and p.S2186P) rarely grew colonies after 
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transformation and never grew to sufficient quantities in liquid cultures despite expanded (up 

to 72hours) incubation times. This is likely due to the large size of the AKAP9 vector construct 

resulting in extremely long mutagenesis steps and the difficulty in competent cells firstly 

accepting the backbone and subsequently synthesising it in order to survive in an antibiotic 

environment. Despite this, p.D1507H and p.A3043T AKAP9 transformations that did produce 

sizeable bacterial cultures, and were harvested in sufficient quantity and concentration 

(>400ng/µL) to allow a large number of mammalian cell transfections. 

In order to examine the effect of β-adrenergic stimulation on the IKs current, we initially 

used the s5.3 cell line in our laboratory that stably expresses KCNQ1-GFP/KCNE1. These currents 

were measured using the whole-cell patch-clamp configuration, which confirmed classical IKs 

kinetics in these cells. Strikingly, in this cell line 1nM of isoprenaline added to the extracellular 

solution was capable of rapidly increasing IKs current without transfection of any vectors. Peak 

and peak tail currents measured following voltage steps over +10mV were significantly increased 

compared to cells incubated with extracellular solution alone. 

However, although cAMP-dependent PKA phosphorylation of KCNQ1 occurs locally at 

the membrane, there is significant washout of intracellular components during dialysis after 

whole-cell access is acquired. Therefore we transitioned to using the perforated patch-clamp 

technique which would preserve the cytoplasmic environment of cells during recording. This 

would allow comparison of IKs currents before and after β-adrenergic stimulation, allowing 

paired comparisons of cells rather than independent grouped analysis. However, due to the 

prolonged nature of these experiments, where the pipette can be attached to cells for upwards 

of 90 minutes, the effect of isoprenaline was not predictable. Undiluted solutions of isoprenaline 

hydrochloride are stable at room temperature, nonetheless dilution of isoprenaline with 

extracellular solution leads to rapid oxidation of the drug. Although supplementation of 

isoprenaline containing solutions with ascorbic acid have been shown to increase stability, this 

requires pH adjustment to 2.8, which is not feasible in pH7.4 extracellular solutions 320. Forskolin 



203 

 

which acts through direct stimulation of adenylyl cyclase was used as a PKA activator instead of 

isoprenaline. 

Measuring IKs current in s5.3 cells following treatment with 10µM forskolin showed a 

robust response to adrenergic stimulation. Peak currents measured at +40mV steps showed 

currents almost doubled after five minutes of drug treatment. At voltage steps higher than 

+40mV, both peak and peak tail currents were significantly increased compared to baseline 

measurements. Fitting tail current, steady-state deactivation with a Boltzmann equation 

showed a V1/2 leftward shift of 12.47mV, indicating that during channel deactivation, 50% of 

channels are still open at a lower voltage. There was no difference in the rate of deactivation 

observed following forskolin treatment, but at step voltages over -40mV, normalised activation 

constants were significantly reduced. This demonstrated that forskolin treatment was a 

preferred alternative to using isoprenaline to mimic adrenergic stimulation, as it reliably 

increased IKs amplitude while being stable at room temperature. Secondly, isoprenaline binds 

and activates both β1 and β2 adrenergic receptors on the cells surface while forskolin directly 

acts upon adenylyl cyclase to raise cytosolic cAMP levels. The predominant form of 

adrenoreceptors in the heart are β1, that when bound by a ligand increase adenylyl cyclase 

activity through the Gs effector protein 321,322. This is the proposed mechanism by which AKAP9 

regulates formation of the complex that oversees KCNQ1 phosphorylation. However, 

heterologous cells have been used to study adrenergic stimulation involving chiefly β2 related 

mechanisms 323,324.  

When KCNQ1/KCNE1 were stably expressed in HEK293 cells, the IKs current was 

responsive to transient adrenergic stimulation. While not previously reported, this finding 

provided a barrier to accessing the function of AKAP9 as there is no data on what proteins are 

responsible for coupling adrenergic stimulation with increased IKs current in HEK293 cells. 

Previous work on the smaller AKAP9 isoform Yotiao was conducted in CHO-K1 cells, therefore 
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we transiently transfected these cells with KCNQ1-GFP/KCNE1 and studied IKs current and its 

response to adrenergic stimulation 131.  

After transfecting CHO-K1 cells with GFP tagged KCNQ1, we were able to measure 

typical IKs current using the perforated patch-clamp technique. In concordance with previous 

published data, adrenergic stimulation increased relative IKs current recordings after ~5 

minutes 131,243. Interestingly, initial studies by the Kass laboratory have used a cell permeable 

cAMP analog (CPT-cAMP) alongside okadaic acid to promote KCNQ1 phosphorylation by PKA 

instead of isoprenaline or forskolin 243. Separate heterologous cell work by Baro et al. used 

400µM CPT-cAMP and 10µM forskolin in combination to increase KCNQ1 phosphorylation in a 

mix of whole-cell and perforated patch-clamp techniques 325,326. We were able to observe a rapid 

and reproducible increase in IKs current to treatment with forskolin alone, meaning adenylyl 

cyclase activation alone is capable of promoting significant channel phosphorylation without 

other signalling molecules. 

The observed response in CHO-K1 cells was in stark contrast to HEK293 cells stably 

expressing KCNQ1-GFP/KCNE1, denoting a distinct lack of sufficient signalling/scaffolding 

proteins to allow PKA activation to lead to channel phosphorylation. Cells transfected with 

KCNQ1-GFP/KCNE1 and either full length AKAP9 responded to forskolin treatment compared to 

those expressing KCNQ1-GFP/KCNE1 alone. After 10+ minutes of forskolin in solution, current 

at +40mV steps was almost doubled indicating that phosphorylation of KCNQ1-GFP at the 

membrane was capable of significantly increasing IKs conductance. Anecdotally, a cell 

transfected with small length AKAP9 isoform Yotiao alongside KCNQ1-GFP/KCNE1 were 

subjected perforated patch-clamp analysis. Although used extensively to characterize the one 

known LQT11 mutation (p.S1570L), this small isoform theoretically does not contain the single 

putative PKA-RII binding domain (2554-2567aa). Also of note, initial experiments in CHO-K1 cells 

looking at how Yotiao couples cellular responses to cAMP were done in the whole-cell patch-

clamp configuration, using a dialysis step of 13 minutes 243. This is likely to result in significant 
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current run-down and marked disruption to intracellular signalling pathways. When recording 

IKs in cells expressing KCNQ1-GFP/KCNE1 and Yotiao, we found that perfusing the extracellular 

solution with forskolin led to an immediate increase in current – indicating signal transduction 

and probable channel phosphorylation.  

Further analysis in AKAP9 co-transfected cells showed significantly increased peak 

current and peak tail currents at voltage steps at and above +40mV, broadly in-line with the 

response to forskolin in HEK293 cells. This provided a preferable heterologous cell system to test 

whether CICUS variants in transiently transfected AKAP9 alter protein function compared to 

wild-type. Using the CHO-K1 cell system we were able to prove that PKA anchoring proteins 

alone are capable of coordinating PKA stimulation with increased IKs conductance. 

Consequently, this allowed us to use the CHO-K1 cell system to interrogate the effect of 

CICUS AKAP9 mutants may have in functionally influencing the coupling of β-adrenergic 

stimulation to increased IKs current through channel phosphorylation. The first variant to 

undergo this analysis was p.D1507H. This variant is within 70 amino acids of the one known 

LQT11 disease-causing mutation and lies in the centre of the AKAP9 protein. CHO-K1 cells were 

transfected with KCNQ1-GFP/KCNE1 alongside p.D1507H AKAP9 before undergoing perforated 

patch-clamp analysis. Under normal conditions CHO-K1 cells expressing IKs cannot couple 

treatment with forskolin to channel phosphorylation and increased conductance. However, 

when p.D1507H AKAP9 was co-transfected, we found that 10µM forskolin did result in an 

increase in IKs currents. This effect was observed within ~2minutes of treatment but persisted 

for 10+ minutes. Peak current at +80mV was noticeably increased, almost doubling whilst peak 

tail currents were noticeably increased. Further analysis of current-voltage relationships 

revealed significant peak current and peak tail current increases following adrenergic 

stimulation at voltages above +20mV. In summary, cells transfected with IKs and p.D1507H 

AKAP9 displayed similar responses to forskolin as those expressing wild-type AKAP9 protein. 

This data demonstrate that the p.D1507H variant sequenced in an unexplained stillbirth case 
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does not alter the ability of AKAP9 to couple β-adrenergic stimulation to increased IKs output. 

The gestation period for this case lasted 25 weeks, and the stillbirth was reported as occurring 

before or during birth (Intrapartum). The p.D1507H genetic variant occurs at very low frequency 

in both Esp6500 and 1000g (below 0.05% in both databases) and no predicted damaging genetic 

variants were found in any sequenced genes. 

The effect of a second CICUS variant, p.A3043T, on AKAP9 was investigated using the 

CHO-K1 cell system. This genetic variant lies closer to the C-terminal region of AKAP9 than other 

variants we and others have studied.   We transfected CHO-K1 cells with KCNQ1-GFP/KCNE1 

alongside p.A3043T AKAP9 and measured IKs responses to 10µM forskolin using the perforated 

patch-clamp technique. We measured typical IKs currents with slowly activating currents in 

response to positive voltage steps (+20 to +80mV) and typical deactivating tail currents after 

these steps. In these cells, we found that activation of adenylyl cyclase using forskolin did not 

result in increased current after 10+ minutes of constant current recordings. Superimposed 

current traces before and after forskolin treatment were identical, indicating no interaction 

between forskolin addition and channel phosphorylation. Further analysis of I-V trace 

relationships showed that a complete lack of divergence between current recorded before or 

after forskolin treatment, indicating that transfected p.A3043T AKAP9 was not producing a 

functional macromolecular complex capable of functional KCNQ1 phosphorylation.  

The first AKAP9 CICUS mutant tested, p.D1507H represents a minor change in amino 

acid primary structure, as both aspartate and histidine are have charged side chains. While 

aspartate is usually listed as an ‘acidic’ amino acid, histidine is expected to be negatively charged 

at physiological pH (pKa around pH 6.5). Both amino acids, due to their charged side chains are 

commonly found in protein binding domains, representing a small physiological change. 

Therefore is not surprising to see a lack of functional effect between WT and p.D1507H AKAP9. 

The p.A3043T variant represents a more severe amino acid substitution, with the small non-

polar alanine amino acid swapped for a polar threonine. While alanine contains a small and non-
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reaction side-chain, the hydroxyl group of threonine is able to form hydrogen bonds to other 

polar substrates, alongside being a target for phosphorylation or glycosylation depending on it’s 

neighbouring protein structure. This substitution may interfere with the folding of the AKAP9 

protein due to steric hindrance during folding. 

In the CICUS study we found two cases with p.A3043T AKAP9 variants. The gestation 

period for the first case was 26 weeks, the second 40. The first case (identified as GOSH14M) 

was identified by a neonatal pathologist as “IUD with lesions” – growth restriction was observed, 

but no cause was found. Interestingly, data from the international mouse phenotyping 

consortium has shown significantly reduced body weight in both male and female mouse where 

one AKAP9 gene has been silenced though exon deletion. The second case (identified as 

SHUT15) had increased foetal subcutaneous adipose tissue, but was classified as unexplained. 

The p.A3043T genetic variant occurs at very low frequency in both Esp6500 and 1000g (below 

0.01% in both databases).  

In both cases, predicted damaging variants were sequenced in cardiac ion 

channelopathy genes. Alongside the AKAP9 variant found in GOSH14M, a novel p.H513Y 

nonsynonymous variant within the Ryanodine Receptor 2 gene (RYR2). This ion channel releases 

calcium from the sarcoplasmic reticulum in response to calcium influx, a fundamental step in 

cardiac muscle contraction. Several harmful variants in RYR2 have been associated/attributed 

to causing CPVT, with the vast majority residing towards the 6 C-terminal transmembrane 

domains (amino acids 4282 – 4870) 156,327. A predicted damaging variant in SCN10A was 

sequenced in the second case, SUHT15. This gene transcribes the α-subunit of sodium current 

Nav1.8; most commonly associated with nociception. Interestingly, several GWAS have linked 

SNPs within the SCN10A gene to arrhythmogenesis 328. More recent work has shown large 

numbers of BrS patients harbour SCN10A mutations, and that SCN10A expression increases INa 

in cells expressing SCN5A or SCN3B – genes responsible for controlling cardiac depolarisation 

104,149,329. However, enrichment analysis of SCN10A variation in symptomatic BrS patients by a 
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different group has demonstrated a lack of significant enrichment 330. This specific variant, 

p.A1235V, occurs rarely with a 0.001 frequency in the general population. It is positioned within 

the 5th transmembrane domain of the third pore forming unit, within 70 residues of a known 

gain-of-function mutation associated with hyperexcitability in neurons 331. 

All AKAP9 variants sequenced from the CICUS cases were heterozygous, these isoforms 

will be present alongside fully functional wild-type protein transcribed from the second allele. 

There are numerous examples of how genetic haploinsufficiency of potassium channels, 

specifically those regulated by PKA, can lead to disease. Work from Gouas et al. demonstrated 

how two heterozygous KCNQ1 variants could be responsible for drug-induced arrhythmia 

amongst the general population 332. Two variants, p.Y148X and p.∆S276, reduced IKs current in 

COS-7 cells due to haploinsufficiency. The carriers showed borderline QT interval prolongation, 

however, during 24h ECG recording the p.Y148X carrier showed marked QT prolongation. In 

1998 Shroeder et al. demonstrated that haploinsufficiency of heteromeric KCNQ2/KCNQ3 

channels can cause epilepsy 333. These channels were susceptible to PKA phosphorylation in 

HEK293 cells, showing significant current increases after PKA wash or cAMP treatment. 

Functional analysis of several epilepsy specific variants showed that a 25% reduction in channel 

expression was sufficient to cause electrical hyperexcitability in the brain.  

Palmiter et al. showed in 1995 that mice incapable of synthesising noradrenaline or 

adrenaline died in utero which could be prevented by treatment with a noradrenaline precursor 

334. Although the authors postulated that death ‘might be due to cardiovascular failure’, this 

finding reinforces the importance of catecholamines to correct mammalian development. 

Mutant embryos showed a similar phenotype to previously published data investigating how 

catecholamines are required for correct heart development, with knock-out mice showing thin 

malformed atria and highly heterogeneous ventricular cardiomyocyte morphology 335. Alongside 

this catecholamine dependence, data from the 1980’s depicted clear responses to sympathetic 

drive in foetal rabbit and rat heart tissues 336,337. Together, these data implicate clearly the 
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presence of sympathetic tone in the developing myocardium and show it is required for 

successful cardiovascular development and function.   

While we did not have access to foetal heart RNA during the study, we did have access 

to an adult heart chamber specific RNA resource. These samples allowed us to measure AKAP9 

gene expression in the human myocardium. Alongside this, we investigated any chamber 

specific differences in AKAP9 and calculated the ratio of short to long AKAP9 isoform expression. 

We found full length AKAP9 expression throughout the adult myocardium. Chamber specific 

analysis showed a bias toward greater levels of AKAP in the left ventricle, although this was not 

statistically significant. Other chambers when compared to the left ventricle were markedly 

lower, possibly influencing chamber specific differences in β-adrenergic stimulation. This is in 

contrast to the relative expression of KCNQ1/KCNE1 found in human adult myocardium, which 

has been shown to be remarkably similar between the left atrium and ventricle 338.  

We used a second AKAP9 qPCR probe targeted between exons 5 and 6 to measure total 

mRNA expressed from the AKAP9 gene. Interestingly, the relative amount of full length AKAP9 

was consistent throughout the four heart chambers, indicating that a regulatory mechanism 

ensures a specific proportion of full length AKAP9 mRNA is transcribed. Controversially, protein 

based predictions have suggested that the putative PKA binding site of AKAP9 is positioned at 

amino acids 2554-2567. Initial data suggested this makes up the 1600 N-terminal amino acids of 

the full length protein, theoretically unable to bind PKA. Our preliminary data however supports 

Kass’s findings, as CHO-K1 cells expressing KCNQ1/KCNE1 alongside Yotiao respond to 

stimulation with Forskolin despite lacking this theoretical motif.   

A-kinase anchoring proteins are found in a multitude of cardiac molecular scaffolds and 

have been shown to be indispensable in regulating hypertrophy, calcium cycling, repolarisation, 

cardiac rhythm, sarcomere contraction and organizing the cytoskeleton 316. In particular, AKAP9 

couples PKA-dependent phosphorylation of the voltage-dependent outward rectifying 

potassium channel to regulation of cardiac repolarisation. Harmful genetic variants that prevent 
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PKA phosphorylation of KCNQ1 during periods of increased sympathetic tone are likely to be 

pathogenic due to prolongation of the cardiac action potential, a known cause of after 

depolarisations 64,250. The AKAP9 variant p.A3043T, sequenced in a case of unexplained stillbirth, 

could uncouple sympathetic drive to increased repolarisation, proving fatal to the developing 

foetus.  

Burden testing has previously been used to analyse the occurrence of multiple rare 

coding variants in arrhythmia-associated genes in patients with BrS 330. This analysis investigated 

the coding regions of 45 previously reported arrhythmia-susceptibility genes in 167 BrS cases 

compared to 167 healthy controls with no history of arrhythmia. Compared to the control 

population, only the SCN5A gene had an increased burden of rare predicted functionally 

damaging variants in BrS patients. This result confirmed the importance of variation at the 

SCN5A locus in causing BrS, and that dysfunctional sodium handling is likely the mechanism. 

We further analysed our sequencing data to test for further evidence that variants 

within TRPM7 or AKAP9 may play a functional role in unexplained stillbirth. We calculated 

whether there was a significant enrichment of predicted damaging variants in CICUS cases for 

each candidate gene compared to a control population. The control population was comprised 

563 genomes from the 1000g database roughly matched to the CICUS study in ethnicity. For this 

population based approach we used a more stringent allele frequency threshold of 0.01. We 

found a statistically significant enrichment of TRPM7 variants in the CICUS study compared to 

healthy controls, highlighting a reduced frequency of predicted damaging variants in controls. 

Due to its ubiquitous cellular nature and involvement in multiple physiological processes, it is 

reasonable to assume in healthy individuals harmful TRPM7 variants will be rarer 216,224,233.  

Variant prioritisation relies upon accessing variant allele frequency in the ‘general’ 

population. During the variant annotation phase, both the 1000g and Esp6500 databases were 

used to provide frequency data for the CICUS studies. The amount of available sequencing data 

is constantly expanding. Novel variants highly likely to be predicted damaging can be sequenced 
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in healthy subjects and uploaded, changing allele frequencies attributed to the ‘normal’ 

population. Such dynamic changes to allele frequency will influence the number of predicted 

damaging variants in both case and control population studies that undergo secondary analysis. 

With the publication of the Exome Aggregation Consortium (ExAC) database, genetic variation 

in over 60,000 humans is publically available 339. Indeed, one TRPM7 predicted damaging novel 

genetic variant found in a CICUS case (p.E1205G) is now not novel, having been found 2 times in 

the ExAC population (Frequency: 0.000017). The second novel TRPM7 variant identified in the 

CICUS cases, p.T860M still remains novel, but the ExAC database has found two alleles carrying 

a p.T860A mutation. These retrospective frequency changes make re-analysis of data 

increasingly more important. The relative frequency of predicted damaging variants can 

fluctuate dramatically as available sequencing data rapidly expands. 

 While we did find a significant enrichment for predicted damaging variants in TRPM7 in 

the CICUS study cases, after adjusting for multiple testing we found no evidence of an 

enrichment of rare predicted damaging variants in any of the genes from our selected panel in 

CICUS stillbirth cases. 
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5 Results – TRPM7’s Importance in Induced Pluripotent Stem Cell-

Derived Cardiomyocyte Electrophysiology 

5.1 Introduction 

 Advances in somatic cell reprogramming towards an induced pluripotent stem cell (iPSC) 

has greatly increased usefulness and availability of cellular models of development 254. The 

recent progress in targeted cardiac differentiation has allowed the study of early human foetal-

like cardiomyocytes using iPSCs 255. These cells have been used extensively to study initial 

development in vitro, test new drugs or to model hereditary conditions such as LQTS 257,261,340,341. 

While there is significant data documenting the importance of TRPM7 expression throughout 

mouse development, little is known of its importance or presence during human cardiogenesis 

212-214. 

In the context of human disease, TRPM7 is often associated with atrial myocytes, where 

it may significantly contribute to calcium signals in atrial fibrosis and fibrillation 237,342. In the 

mouse, TRPM7 has been measured in adult/embryonic ventricular cardiomyocytes and SAN 

cells, where it is thought to determine automaticity 212,213. 

 By using in vitro cardiomyocyte differentiation from iPSCs to model cardiogenesis, our 

aim was to study the expression of TRPM7 in iPSCs as they differentiate. After differentiation, 

single-cell patch-clamp analysis would allow us to investigate whether TRPM7 currents can be 

observed in a human model of cardiomyocyte development. Both TRPM7 CICUS variants 

thought to be pathogenic, p.G179V and p.T860M appear to act through haploinsufficiency. By 

using siRNA to mimic reductions in TRPM7 we hope to model haploinsufficiency in a 

physiological system and study any perturbations to cardiomyocyte electrophysiology. 
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5.2 Culturing Induced Human Pluripotent Stem Cells 

 Induced pluripotent stem cells can be differentiated toward a cardiomyocyte-like 

phenotype 255,257,261. After optimising a recently published differentiation protocol, we used 

these cells to model early cardiac development and analyse the importance of TRPM7 in the 

process. Human pluripotent stem cells were generated in our laboratory by Duncan Miller from 

healthy donors and patients with Brugada syndrome 292. These iPSCs were named HS1M cells 

(after the healthy donor) and were reprogrammed from fibroblasts using a lentiviral 

transduction of a polycistronic vector hSTEMCCA or nucleofection of three plasmids 290,291. These 

stem cells underwent G-band staining, showing a normal karyotype. Immunofluorescent 

staining of differentiating embryoid bodies showed mesodermal, neuroectodermal and 

endodermal markers 292. Frozen cell pellets were thawed and seeded onto Matrigel coated 

dishes without feeder cells (Figure 5.1A) 294. These cells proliferated rapidly and were 

morphologically similar to published stem cell images (Figure 5.B-E) 291,343. 

 To ensure that these proliferative cells were pluripotent and capable of differentiation 

we analysed protein and mRNA transcripts from HS1Ms. Immunocytochemical staining of cells 

for the membrane protein TRA-1-60 using a mouse monoclonal antibody was successful (Figure 

5.2). This cell surface antigen is widely used to confirm pluripotency in cells. All cells stained 

positively with heterogenous signal observed throughout the population as seen in other well 

documented iPSC populations 254,344,345.  Harvesting total RNA from iPSCs showed high levels of 

Nanog, Oct4 and SOX2 (Figure 5.3A), three key transcription factors crucial for maintaining 

pluripotency in stem cells 254,344,346. 
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Figure 5.1. iPSC colonies maintained feeder free using mTESR1 and growth-factor reduced Matrigel. A Pluripotent 
stem cells adhering to Matrigel one day after thawing, showing small colonies. B-D iPSCs colonies expand rapidly and 
become confluent in <6 days. Cells are shown at 3 (B), 4 (C) and 5 (D) days after initial seeding. E Magnified (x20) 
image of iPSC cell cluster depicting compact morphology. F Seven minutes of accutase treatment is sufficient to 
completely degrade Matrigel and allow cell resuspension. All images taken at x4 magnification apart from E, scale bar 
= 40µm. 

 

Figure 5.2. HS1-1M iPSC cells stain positively for the cell surface marker TRA-1-60. A-C Negative control showing lack 
of positive staining when TRA-1-60 antibody is excluded from the protocol. Although significant numbers of cell nuclei 
stain positively for DAPI, there is a clear absence of background signal. D-F HS1M cells show marked heterogeneity for 
TRA-1-60. G-I Magnified image of dotted box from F, reduced TRA-1-60 signal corresponds to mitotic cells (white 
arrows). A, D, G – DAPI. B, E, H – Alexa Fluor 488. C, F, I – Composite Image. Scale bar A-F 40µm, G-I 10µm. 
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5.3 Cardiomyocyte Differentiation from iPSCs 

 We used the previously published Burridge protocol to differentiate pluripotent stem 

cells toward a cardiomyocyte fate 255. This method employs a basal media supplemented only 

with albumin and ascorbic acid. Two small molecular inhibitors CHIR99021 and C59, a Wnt 

activator and inhibitor respectively are added to the differentiation media at days 0-2 and days 

2-4, respectively. Wnt activation sends cells toward a mesodermal lineage, while the subsequent 

Wnt inhibition produces cardiac mesodermal cells. To transcriptionally confirm differentiation 

from pluripotent cells, RNA samples were taken (days 0, 2, 4, 7, 14 & 21) for qPCR analysis. By 

day seven mRNA levels of Nanog, Oct4 and Sox2 were at 2.6, 3.8 and 1.6% respectively, of their 

expression levels before differentiation began (Figure 5.3A). Interestingly, TRPM7 gene 

expression steadily increased as cells differentiated towards a more cardiac-like phenotype 

(Figure 5.3B). Expression peaked at day 4, with mRNA levels 2.6 times that observed in day 0, 

but was variable between seven differentiations (SEM = 2.78). Before differentiation, the 

expression of Nanog, Oct4 and Sox2 were higher than TRPM7 (Figure 5.3c). After seven days of 

differentiation, this had reversed, with significant reductions in Oct4 and Sox2 (two-way ANOVA, 

Sidak’s multiple comparisons, P<0.005 and P<0.0005, respectively). 

 Alongside analysing the decrease in pluripotent specific transcription factors, we used a 

cardiomyocyte specific protein marker, cTnT, to ascertain successful differentiation. Cells began 

to contract spontaneously at days 7-10 following differentiation, indicating sufficient muscle 

protein structure to distort the cell membrane. Waves of contractility began to develop over the 

following week, whereupon any remaining non-beating cells would likely not develop 

contractions. Using a mouse monoclonal antibody to cTnT (ab8295), cells were fixed as a 

monolayer and underwent immunocytochemical staining. Contractile cells stained positively for 

cardiac troponin T after three weeks of differentiation (Figure 5.4). Differentiation was 

successful across the entire well, with large beating sheets clearly visible with light microscopy 

that stained positively for cTnT (Figure 5.4D).  
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 To estimate the total area covered by cTnT positive, contractile cells, 18 random 

fluorescent images (by automated microscopy) were taken in individual wells from three 

independent differentiation batches (Figure 5.5A). Processing of these images using ImageJ 

software showed an average cTnT area coverage of 73.8±8.8%, 77.0±6.2% and 76.8±5.2% in 

three differentiations (Figure 5.5F).  
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Figure 5.3. Quantitative PCR of pluripotency markers and TRPM7 during iPSC-cardiomyocyte differentiation. A 
Quantification of pluripotent transcription factor mRNA signals at days 0, 2, 4, 7, 14 and 21 during differentiation. B 
Relative TRPM7 levels during monolayer cell differentiation towards a cardiac phenotype. All data was initially 
normalised to 18S RNA levels. Data is relative to signal observed in quiescent HS1M stem cells prior to differentiation. 
C Total mRNA gene expression of pluripotency factors and TRPM7 before differentiation (Day 0) and when the first 
beating clusters of cells become visible (Day7). ** = P<0.005, *** = P<0.0005. n = 3. 
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Figure 5.4. Cardiac Troponin T staining of human iPSC-derived cardiomyocytes 14 days after start of differentiation. 
A-C Immunostaining of cTnT (A), DAPI (B) and a composite image (C) in previously contractile cell clusters following 
differentiation. Scale bar 80µm. D Stitched composite image of entire well from a 24-well plate (area = 1.9cm2) 
showing cardiac differentiation across the entire monolayer surface. Cells shown have been differentiating for 21 days.
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Figure 5.5. Quantification of cardiac purity following differentiation. A Example image of cTnT staining used in Figure 
5.4. B ImageJ converted black & white image. C Boundary of fluorescent intensity where positive staining meets 
negative. D Overlaid image showing positive cTnT staining (green) with automatic border (red) annotation. E Graphical 
representation of pixel fluorescent intensity, depicting positively stained fluorescent pixels (green box). F Six randomly 
taken images from each of three separate differentiations were assessed automatically for coverage of cTnT positive 
staining. Scale bar = 800µm. Cells shown have been differentiating for 21 days. 
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5.4 Measuring a TRPM7-like Current in iPSC-CMs 

After two weeks of differentiation, iPSC-CMs were dissociated and seeded onto glass 

coverslips. At 21-23 days post-differentiation cells underwent whole-cell patch-clamp analysis.    

Before cell-pipette contact was established, cells were perfused with Tyrode’s solution to allow 

observation of spontaneous contraction, this allowed only cardiomyocyte-like cells to be patch-

clamped.  After establishing whole-cell electrical access, the extracellular solution was switched 

with a solution previously published to allow measurement of TRPM7 current in mouse 

cardiomyocytes (Methods 2.9.5) 213.   

Linear, pA-currents were observed between -100mV and +100mV when recording 

began following membrane rupture. Similarly to heterologous cells transfected with TRPM7, 

after 5-10minutes of intracellular dialysis with EGTA/EDTA significant current-run up could be 

detected above +50mV (Figure 5.6A). At ±80mV, current density was significantly reduced by 

the addition of 10mM Mg2+ to the extracellular solution (Figure 5.6B-C). Both 10mM Mg2+ and 

50µM 2-APB rapidly reduced outward current at +80mV to <5 pA/pF. Analysis of the effect of 

magnesium supplementation showed this inhibition was rapid and transient, with current 

density returning to its original peak when standard solution was returned to the bath (Figure 

5.6D).  Similarly, 50µM 2-APB present in the bath solution transiently attenuated current density 

at +80mV (Figure 5.6E). 
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Figure 5.6. Measuring and characterising a TRPM7-like current in iPSC-CMs. A Initial current recording (black) from 

cell following whole-cell membrane breakthrough in 21 day post differentiation iPSC-CM. Current measured after 

500seconds of cell dialysis shows characteristic TRPM7 currents above +50mV. Inset -100mV to +100mV voltage ramp 

protocol. B Paired individual cell current measurements at +80mV peak during extracellular solution perfusion, and 

subsequent addition of 10mm Mg2+. C Inward current recorded at -80mV in the same cells analysed in B. D 

Representative recording at ±80mV, showing current run-up and transient inhibition of 10mM Mg2+.  E Time course 

current measurements depicting the effect of 50µM 2-APB when included in the extracellular solution. All recordings 

were done in 20-23 day old iPSC-CMs at room temperature.
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5.5 iPSC-CM Electrophysiology and Analysing the Effect of TRPM7-siRNA 

Knockdown  

 To ascertain the electrical identity of contractile cells, cardiomyocytes derived from 

iPSCs after 21-23 days of differentiation were subjected to current-clamp analysis. 

Spontaneously contracting cells were identified using light microscopy before the whole-cell 

patch-clamp configuration was established. After recording spontaneous action potentials, 

action potentials were triggered at a frequency of 1Hz, using current pulses between 300-800pA 

for (depending on cell capacitance) over the course of one minute. The final action potential 

shape analysed was constructed from the final 10 action potentials recorded during the one 

minute protocol.  

 Electrophysiological analysis revealed that at days 21-23 post differentiation, the three 

main sub-types of human cardiomyocytes found in the heart were present (Figure 5.7D-F). The 

cellular identity of these cardiomyocytes appears similar to nodal-, atrial- and ventricular-like 

cardiomyocytes. These cells represent a board spectrum of contractile cellular identities due to 

the significant range of electrophysiological data, similar to that of previously published data 255. 

These cells showed relative immaturity compared to adult cardiomyocytes, with small 

membrane capacitances (data not shown), disorganised structure and rounded shape (Figure 

5.7A) and high resting membrane potentials (Figure 5.9D) 347. Average APD was 138.7 ± 10.2ms, 

the lowest recorded at 68.3ms while the maximum was 238.5ms (Figure 5.7C).  

 To ascertain what role TRPM7 plays in mediating the electrophysiological development 

of cardiomyocytes, a TRPM7 targeting siRNA was transfected into iPSC-CMs at day 15 of 

differentiation before patch-clamp analysis. Current density in iPSC-CMs treated with TRPM7 

siRNA was significantly reduced compared with control recordings at +80mV (Figure 5.8D, one-

way ANOVA Tukey’s comparison, P<0.0001). There was no significant difference between 

TRPM7 current at +80mV from wild-type iPSC-CMs treated with 10mM magnesium and those 
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transfected with TRPM7 siRNA (P=0.84). Although there was a decrease in average inward 

current measured at -80mV in cells transfected with TRPM7 siRNA, this was not statistically 

significant (Figure 5.8E, P=0.65).  

Whole-cell current-clamp recordings were analysed from differentiated cells 

transfected with either a TRPM7 targeting siRNA or a scrambled siRNA. After gaining electrical 

access to the cell and allowing time for dialysis (2 minutes), triggered action potentials were 

recorded for one minute at a rate of 1Hz. From these recordings, action potential duration, 

resting membrane potential (RMP), minimum diastolic potential (MDP), peak voltage and 

upstroke velocity were calculated. Although there was an increase in mean APD following 

TRPM7 siRNA treatment compared to scrambled siRNA, this was not significant (P=0.89) due to 

the high variability of APD in transfected iPSCs: 196 ± 29.6ms (Figure 5.9A). There was no 

significant difference in RMP, MDP, peak voltage and upstroke velocity between wild-type iPSC-

CMs and those treated with either scrambled or TRPM7 targeting siRNA (Figure 5.9B-E).  
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Figure 5.7. Appearance and electrophysiological properties of iPSC-CMs. A Staining of iPSC-CMs at day 21 with cTnT 

and DAPI. B Schematic of where different measurements were obtained from action potential recordings. C Analysis 

of triggered action potential duration from three individual differentiations. Data shown as mean ±SEM. All recordings 

were done in 20-23 day old iPSC-CMs at room temperature. D-F Current-clamp recordings from spontaneously beating 

cells revealed a diverse array of action potential morphologies. We observed nodal, atrial and ventricular-like 

recordings. n = 17. 
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Figure 5.8. The effect of TRPM7 siRNA knockdown on TRPM7 current in iPSC-CMs. A TRPM7 current trace from 

untransfected cell at membrane break-in (black) and after run-up (red). B Current recorded from iPSC-CM transfected 

with TRPM7 siRNA before (black) and after (red) run-up. C Comparison of TRPM7 currents after run-up in iPSC-CMs 

with (black) or without TRPM7 siRNA transfection (red).  D TRPM7 current measured at +80mV following current run-

up in control iPSC-CMs and the effect of magnesium addition or transfection with TRPM7 siRNA. E Inward -80mV 

current measured from the same cells as in D. **** = P<0.0001. Data shown as mean ±SEM. All recordings were done 

in 20-23 day old iPSC-CMs at room temperature. N = 6-12. 
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Figure 5.9. Action potential analysis of iPSC-CMs and the effect of TRPM7 siRNA knockdown. A Triggered action 

potential duration in iPSC-CMs. B Resting membrane potential recorded immediately before triggered action potential. 

C Maximum diastolic potential. D Peak membrane voltage achieved following current pulse. E Upstroke velocity in 

control or transfected iPSC-CMs. Data shown as mean ±SEM. All recordings were done in 20-23 day old iPSC-CMs at 

room temperature. Scrb = Scrambled. 

  



227 

 

5.6 Discussion 

 We used an in vitro model of cardiac development to confirm whether TRPM7 can be 

found in differentiating cardiomyocytes. Secondly, if present we wanted to attempt to model 

possible haploinsufficiency in this system, mimicking the effect of TRPM7 reduction due to the 

p.G179V and p.T860M variants.  

Since 2001, cardiomyocyte differentiation protocols have existed to allow the targeted 

creation of these cells from stem cells 253. These methods can range from embryoid body 

formation, protein supplementation, transfection or small molecule treatment 248,253,255,348. The 

TRPM7 ion channel has been shown to be required for successful mouse cardiac development 

and maintaining automaticity 212,213. We decided to use an iPSC-CM model of in vitro cardiac 

development to study the temporal expression of TRPM7 in ‘human’ cardiogenesis and record 

TRPM7 currents in immature cardiomyocytes. Lastly we wanted to ascertain the importance of 

TRPM7 expression in the maturation of iPSC-CM electrophysiology. 

We cultured iPSC cells using growth factor-reduced Matrigel for several weeks before 

adapting a recently published differentiation protocol to produce cardiomyocytes 255. This 

procedure was relatively simple and inexpensive, using RPMI media supplemented with albumin 

and ascorbic acid alongside two small molecular interactors of the Wnt pathway. This is in 

contrast to other published differentiation techniques which require expensive hormone 

supplementation 254,296. Reported extensively in the 1990s in the context of embryonal cancer, 

TRA-1-60 is a commonly used cell surface marker for pluripotency 346,349,350. 

Immunocytochemical staining for TRA-1-60 using a monoclonal antibody showed all cells were 

positive, albeit in a highly heterogeneous manner. We found that reduced TRA-1-60 staining 

correlated with condensed DAPI staining, in-line with similar staining reported elsewhere in 

iPSCs derived from different cell lines 254,344,345. These compact nuclei denote the early phases of 

mitotic cell division, before anaphase separates sister chromatids. Transcriptionally, cultured 

iPSCs were pluripotent due to their expression of Nanog, Oct4 and Sox2, DNA-binding proteins 
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known to maintain cells in a quiescent, undifferentiated state 346. Within seven days of 

differentiation transcription of these genes was clearly repressed, with significant reductions in 

mRNA levels. Of note, as cells differentiated, there was a notable increase in TRPM7 expression. 

TRPM7 has been investigated in mouse ESCs whilst investigating the function of the C-terminal 

kinase, but our data noted a clear trend for increased TRPM7 transcription in differentiating 

human stem cells toward a cardiac phenotype 223. 

 Spontaneously beating cells were visible after seven days of differentiation, consistent 

with the published literature 255. Over the course of two more weeks, beating clusters developed 

and synchronous waves of contraction were clearly visible across the cell monolayer surface. 

Initially we attempted to quantify the efficiency of cardiac differentiation by counting the 

proportion of cTnT positive cardiomyocyte cells in the population using flow cytometry. 

However due to the syncytial nature of the cell clusters, contractile clusters of cells rarely 

separated from the culture chamber or each other, despite extensive TrypLE treatment 

(>30minutes at 37˚C) and mechanical dissociation using a pipette. Non-contractile cells rapidly 

detached from the Matrigel surface, while previously beating clusters formed large clumps that 

could not be fed into the flow cytometer. Instead we used fluorescent analysis of cTnT stained 

cells using a microscope that randomly took four images per well. We found that cTnT positive 

cells covered over 75% of the culture surface, with only small areas of negative staining present 

with DAPI positive nuclei. This in in keeping with published literature showing that cardiac 

differentiation using CDM3 media produces relatively ‘pure’ populations of cardiac cells. This is 

likely due to iPSC-cardiomyocytes enduring conditions where metabolites are scarce, recently 

highlighted by their ability to survive in media depleted of glucose and glutamine but 

supplemented with lactate 351. 

 Cardiomyocytes seeded onto coverslips underwent whole-cell patch-clamp to measure 

TRPM7 current. In all contractile cells analysed, we found a characteristic ‘run-up’ of current 

over 5-10 minutes as the cell’s magnesium was chelated by the intracellular solution. This 
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current was sensitive to inhibition by extracellular magnesium or 50µM 2-APB, confirming its 

identity as TRPM7. This result was in-line with our qPCR data that suggested TRPM7 was 

expressed in these cells. Although TRPM7 current has been measured in the setting of the 

diseased adult myocardium or developing mouse heart, this iPSC-CM data suggest that that 

TRPM7 is likely to be expressed during human heart development 213,237. In chapter 3 we showed 

two CICUS TRPM7 variants (p.G179V and p.T860M) that significantly reduced TRPM7 protein 

expression and whole-cell ion channel conductance. Total knockout of TRPM7 in mouse 

cardiomyocytes leads to embryonic lethality; haploinsufficiency due to reduced TRPM7 ion 

channel expression could precipitate unexplained stillbirth. 

Alongside TRPM7 current measurements, current-clamp recordings of contractile iPSC-

CMs illustrated a heterogeneous mix of different electrophysiological identities. Even between 

cells differentiated on the same coverslips, we recorded atrial, ventricular and nodal-like action 

potentials. Our data found that all iPSC-CMs contain a TRPM7-like current, implicating the 

channels’ presence in the development of all cardiomyocyte subtypes. 

Transfection of cells with siRNA has been used extensively to test the effect of post-

transcriptional knockdown of mRNA. We found that siRNA targeted to TRPM7 significantly 

reduced ion channel currents measured in cells but did not adversely affect differentiation of 

contractile cells and did not lead to a change action potential characteristics. While TRPM7 

knockout has been shown to significantly influence electrophysiology in developing mice, it is 

through transcriptional regulation of specific ion channels that its influence is seen, not through 

direct movement of ions across the plasma membrane. Only in the diseased atrial myocardium, 

where TRPM7 gene expression increases, is it thought to contribute significantly to calcium ion 

influx in fibroblasts. We transfected cells with TRPM7 siRNA 5-6 days before action potential and 

current measurements (day 20-22). We measured significantly lower TRPM7 current, 

demonstrating successful knockdown. However, action potentials from transfected cells were 

unchanged, it may be that the developmental timing of TRPM7 knockdown is crucial in adversely 
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affecting the regulation of cardiomyocyte ion channel gene expression. Of importance, 

conditional knockout of TRPM7 in embryonic mice before E9 is lethal to the embryo due to 

congestive heart failure, however deletion later than E13 produces viable mice with heart size 

and function similar to wild-type mice 213. Although TRPM7 knockout in adult mice has shown to 

dysregulate certain ion channel gene expression in SA nodal cells, these phenotypes are mild in 

comparison to the effect of early embryonic knockout. In the future, to test the role of TRPM7 

in regulating human cardiogenesis using an iPSC-CM model, siRNA transfection at specific time 

points post-differentiation would provide insights into when TRPM7 is involved in human cardiac 

development, and how haploinsufficiency of TRPM7 could adversely affect foetal gestation. 
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6 Conclusion - Remarks and Future Work 

 Unexplained stillbirth is classified as a baby born dead after 24 weeks of gestation, 

where no cause of death can be found after a full post-mortem analysis. Between 15-30% of 

stillbirths are ultimately classified as unexplained 9,20. Previously, the CICUS study sequenced 35 

genes in 70 unexplained stillbirth cases. Variants in these genes were known to cause LQTS or 

were either associated with cardiac ion channelopathies or discovered from GWASs of the QT 

interval in the general population. The CICUS study reported several predicted damaging genetic 

variants – four within the TRPM7 gene, five within AKAP9 206. TRPM7 is a non-selective ion 

channel expressed ubiquitously and is required for mammalian heart development 213. AKAP9 is 

responsible for coupling β-adrenergic stimulation to increased outward potassium current in 

cardiomyocytes and damaging variation is thought to cause LQT11 131. The aim of this thesis was 

to test whether the nonsynonymous variants in TRPM7 and AKAP9 perturb the function of these 

WT proteins, potentially being a risk factor or cause of stillbirth. 

 Using both HEK293 and CHO-K1 heterologous cell lines, TRPM7 current was recorded 

and inhibited with both Mg2+ and 2-APB. When transfected into CHO-K1 cells, p.G179V TRPM7 

significantly decreased outward current density compared to wild-type channels. The second 

variant, p.R494Q, markedly increased both outward and inward currents. Two other variants, 

p.T860M and p.E1205G had no influence on current density recordings compared to wild-type. 

All four variants did not affect magnesium inhibition of the current. When transfected into 

HEK293 cells, both p.G179V and p.T860M significantly reduced outward current density, while 

p.R494Q current was similar to that recorded from wild-type TRPM7. Quantification of mRNA 

levels following transfection in HEK293 cells found equal levels of transcribed TRPM7 mRNA 

despite large differences in recorded TRPM7 current. Western blot analysis of translated protein 

expression found full-length wild-type, p.R494Q and p.T860M channel present in transfected 

HEK293 cell lysates. Transfected HEK293 cells treated overnight with 26S proteosomal inhibitor 

MG132 revealed that p.T860M TRPM7 was being degraded rapidly, as after treatment a faint 
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band was present in western blots. To ascertain whether p.G179V or p.T860M showed a 

dominant negative effect on wild-type TRPM7 channel function we transfected both wild-type 

and variant channel simultaneously. No dominant negative effect was observed, leading us to 

believe that both variants lead to haploinsufficiency due to rapid proteosomal degradation in 

the case of p.T860M and lack of translation of p.G179V. Analysis of an apoptosis assay and 

confocal imaging following transfection with TRPM7 variants found no difference between 

mutants and wild-type channel. Further statistical analysis of rare predicted damaging variants 

in the CICUS study found that TRPM7 contained a significantly greater number of predicted 

damaging variants compared to the number found in a randomly selected cohort from the 1000g 

study database. 

 These data point towards a pathogenic role of p.G179V and p.T860M TRPM7 by 

perturbing ion channel function. Both variants are very rare in public databases (<0.0001 allele 

frequency), while p.T860M resides within a key transmembrane domain. Whilst this suggests 

perturbed function of TRPM7 is due to these genetic variants, there are further opportunities to 

explore how this can lead to unexplained stillbirth. Recent papers have shown how important 

TRPM7 ion channels are in regulating zinc cellular homeostasis 223,305. TRPM7 is now believed to 

be a key channel responsible for inward zinc uptake. Discovering whether these mutations 

influence TRPM7’s ability to conduct zinc across the plasma membrane may give mechanistic 

insights into a possible pathogenic mechanism 226. This is of importance in this setting, due to 

the increasing knowledge of how zinc affects heart physiology and pathology 305,352.  

As mentioned previously, a large proportion of TRPM7 protein resides within unique 

intracellular vesicles 305. Shown to act as an organelle that accumulates zinc, these vesicles 

release this zinc in response to reactive oxygen species. This may represent a network of 

protective membranes that buffer cytoplasmic zinc; TRPM7 may also allow the targeted release 

of zinc to specific cellular locations akin to how the sarcoplasmic reticulum sequesters and 

releases calcium in cardiomyocytes. This provides another possible setting to further investigate 
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how TRPM7 variants perturb the function of this ubiquitous ion channel. Genetic variants in 

TRPM7 that do not perturb its expression or transport to the plasma membrane could disturb 

its ability to conduct zinc across the TRPM7 vesicle network. Alongside the central role zinc plays 

in allowing DNA binding protein to function; deficiency in zinc has been associated with DNA 

damage and apoptosis 353. 

Apoptosis was investigated here under basal conditions, investigating whether 

transcription of mutant TRPM7 ion channels induces cell death. TRPM7 has been implicated in 

inducing apoptosis by activating multiple pathways in a cell-specific manner 235,354,355.  Ideally, 

stable cell-lines expressing TRPM7 CICUS variants could be generated, and selective activation 

of apoptosis pathways using distinct mechanisms performed (Fas activation, reactive oxygen 

species exposure or serum deprivation for example). Spatial and temporal control of apoptosis 

during development (especially in the myocardium where uniform cellular orientation and 

connection are paramount) is vital to ensure the human foetus can survive gestation. 

 To analyse how full-length AKAP9 couples β-adrenergic stimulation to increased 

outward IKs current, and whether CICUS variants influenced this, we used a heterologous CHO-

K1 cell system. All previously published cell data investigating LQT11 variant p.S1570L have 

involved the small AKAP9 isoform Yotiao; no work as yet has focussed on the full-length protein. 

It has been shown in this thesis and elsewhere, that HEK293 cells expressing IKs respond to β-

adrenergic stimulation (isoprenaline or forskolin) in vitro 244. We found significant increases in 

peak and peak tail currents after forskolin treatment, a leftward shift in voltage activation and a 

slower rate of deactivation. Publically available data sets show that full length AKAP9 mRNA is 

present in HEK293 cells, whilst peptides corresponding to the C-terminus of AKAP9 are found in 

human foetal cardiac lysates. Future experiments using siRNA targeting short or full length 

AKAP9 (and other AKAPs) could help isolate the isoforms responsible for IKs β-adrenergic 

coupling in HEK cells. This response to β-adrenergic stimulation has been shown to mimic what 

is observed in cardiomyocytes 244. Whilst robust and reproducible IKs currents were observed 
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from transiently transfected CHO-K1 cells, these did not respond to forskolin treatment. This 

data demonstrates that CHO-K1 cells lack the sufficient protein scaffolding/macro-molecular 

complex to couple activated PKA to IKs phosphorylation. Crucially, co-transfection with a full 

length AKAP9 plasmid in these cells rendered IKs currents susceptible to β-adrenergic 

stimulation through forskolin treatment.  

Unfortunately we were only able to generate two of the five AKAP9 variants (p.D1507H 

and p.A3043T) sequenced from the CICUS project despite numerous rounds of site-directed 

mutagenesis. Following mutagenesis, bacterial transformation of the three remaining variants 

was attempted using three distinct strains of competent cells. This failure may be due to total 

DNA degradation during the reaction or failure to transform the resulting reaction. The AKAP9 

expression vector exceeds 17,000bp, presenting a large construct to manipulate. Future 

attempts to create the remaining three variants will require a different mutagenesis strategy. 

Either redesigning the primers (likely elongation), or using restriction endonucleases to remove 

the target fragment and conduct site-directed mutagenesis on a smaller section of DNA. 

 When CHO-K1 cells were transfected with KCNQ1-GFP/KCNE1 alongside p.D1507H 

AKAP9, the IKs current remained responsive to treatment with 10µM forskolin. When p.A3043T 

AKAP9 was co-transfected instead, IKs current in these cells did not respond to prolonged 

forskolin treatment in any cells that underwent perforated patch-clamp analysis. While the 

p.D1507H AKAP9 protein appears capable of coordinating activated catalytic PKA to 

KCNQ1/KCNE1 at the membrane, p.A3043T AKAP9 does not. This may either be due to a lack of 

expression, or the variant renders the protein incapable of co-ordinating PKA phosphorylation. 

Although the AKAP9 vector was N-terminally FLAG tagged, western blots using a FLAG or AKAP9 

specific antibody were unsuccessful after several attempts (data not shown). Proteins of this 

size (>400kDa) may find it difficult to migrate into the resolving gel, and subsequently exit the 

gel to bind the PVDF membrane for western analysis. The only published western blot data of 

full length AKAP9 was obtained using a non-commercially obtainable rabbit anti-AKAP9 antibody 
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in HUVEC cell lysates 356. Despite having access to HUVEC protein lysates, we were unable to see 

any AKAP9 protein using western blot (not shown). Immunocytochemical analysis of transfected 

cells would provide data to support successful translation and also reveal the sub-cellular 

localisation of WT AKAP9. By overlaying KCNQ1-GFP and AKAP9 fluorescent signals in these cells, 

their localisation at the plasma membrane, and the possible perturbation of their interaction by 

p.A3043T could be investigated. Phosphorylation of KCNQ1 to augment IKs requires interaction 

with the cytoskeleton and AKAP9 deletion has been shown to affect microtubule dynamics 325,356. 

The effect of colchicine treatment (inhibiting microtubule polymerisation) on CHO-K1 cells 

transfected with AKAP9 would demonstrate how important this interaction is when full length 

AKAP9 is present. Similar experiments in iPSC-CMs would provide a more physiologically 

relevant platform, but the well-documented diverse expression profiles of the ion channel genes 

in these immature cells make this a difficult prospect 255. The expression of KCNQ1 in iPSC-CM 

has been shown to be highly cell line dependant 287.  

We demonstrated robust AKAP9 gene expression in all four adult human heart 

chambers; where mRNA levels were highest in the left ventricle. Using two qPCR probes 

measuring both long isoform and total AKAP9 gene expression we showed that in the human 

heart approximately 30% of mRNA is the full length 12471bp transcript. Therefore, while Kass 

et al. demonstrated the presence of Yotiao in human cardiac homogenates, here we show that 

the full length transcript is present in the human heart and is capable of coupling IKs to β-

adrenergic stimulation. Further investigation into which AKAP9 isoforms contribute to IKs/β-

adrenergic coupling in the human cardiomyocyte is required. The majority of LQTS1 patients 

have cardiac events that occur during β-adrenergic stimulation, highlighting how this molecular 

coupling is a key component of cardiac arrhythmia 54. Here we identified a loss-of-function 

genetic variant that uncouples this signalling pathway, representing not only a possible cause of 

unexplained stillbirth, but a second genetic variant that can cause fatal arrhythmia in this gene.  
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 The importance of TRPM7 in mouse development has been well studied 213,214. Using 

iPSC-derived cardiomyocytes we measured the temporal expression of TRPM7 during an in vitro 

model for cardiogenesis. One week after differentiation, the expression of Nanog, Oct4 and Sox2 

was significantly reduced. As cells transitioned towards an immature cardiomyocyte-like, 

contractile phenotype, TRPM7 gene expression increased, doubling by 21 days post-

differentiation. We were able to measure characteristic TRPM7 currents when cells were 

subjected to whole-cell patch-clamp analysis. While these currents were not observed initially 

during membrane break-in; as divalent cations were chelated by EGTA/EGTA in the solution, 

characteristic currents were measured. These currents were inhibited by the addition of 

extracellular magnesium and 2-APB. Every cell had TRPM7 current that could be inhibited by 

either of these treatments.  

Current-clamp recordings of action potentials in contractile cells revealed a diverse 

electrophysiological phenotype. Therefore, while cells may be nodal-like, atrial-like or 

ventricular-like, all subsets of developing immature cardiomyocytes have significant numbers of 

active TRPM7 channel present in the plasma membrane. We were able to show robust 

knockdown of TRPM7 using siRNA, but there was little evidence to suggest this significantly 

perturbed the action potential morphology of the iPSC-CMs analysed. Previous work in mice has 

shown how critical the timing of TRPM7 insufficiency has on successful cardiac embryonic 

gestation 213. By transfecting siRNA at specific points of differentiation, the temporal importance 

of TRPM7 expression in cardiogenesis could be elucidated. Furthermore, CRISPR-cas9 knock-in 

or base editing technology could be used to genetically construct transgenic p.G179V and 

p.T860M TRPM7 iPSC cell lines. This would provide a platform to ascertain how haploinsuffiency 

of TRPM7 deleteriously influences gene expression, morphology and electrophysiology in the 

developing heart. 

 While this study focused on functionally investigating genetic variants found in the 

CICUS study within AKAP9 and TRPM7, there were a large numbers of predicted damaging 
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variants in other genes. Many of these could warrant further follow-up experimentation to 

ascertain whether they are functionally damaging and potential genetic causes of unexplained 

stillbirth. For example, we identified a novel genetic variant in the cAMP response element 

binding protein – binding protein (CREBBP) gene, which we found in five unidentified stillbirth 

cases. The CREBBP protein is pivotal in the transcriptional regulation of numerous cAMP-

responsive genes 357. Harmful genetic mutations in CREBBP are known to cause Rubinstein-Taybi 

syndrome and acute lymphoblastic leukaemia 358-360. We also found three novel variants in three 

separate cases within the KCNAB2 gene. The gene encodes the voltage-gated, shaker-related 

potassium channel beta-2 subunit. Mice that do not express KCNAB2 have been shown to have 

shortened lifespans, seizures and cold swim-induced tremors 361. 

Unfortunately, during the sequencing stage of the CICUS study we were unable to obtain 

parental DNA access. Therefore it is impossible to know whether the variants found are inherited 

from the parents or are de novo mutations unique to the foetus. While we found deleterious 

genetic mutations in both TRPM7 and AKAP9, interpreting the data in a clinical setting is difficult 

due to lacking parental genetic data. Genetic variation that causes unexplained stillbirth is more 

likely to occur de novo, as hereditary mutations that lead to stillbirth will struggle to persist from 

generation to generation.  

 All variants investigated in the CICUS study and throughout this thesis were 

nonsynonymous variants – they are amino acid altering changes within exons. The affordability 

of large scale whole-exome and whole-genome sequencing projects is rapidly increasing, and 

several papers have demonstrated the power of these approaches across a number of different 

fields 269,362. Sequencing all transcribed exons from unexplained stillbirth cases would allow 

mutational analysis of missense variants in over 19,000 genes. This greatly increases the scope 

for detecting predicted damaging variants or copy-number variation in unexplained stillbirth 

cases. Recent work by Bagnall et al. found a clinically relevant cardiac mutation in 27% of 

unexplained SCD cases where exome-sequencing was performed 269. The advantage of whole-
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genome sequencing allows the identification of pathogenic synonymous variants. Non-coding 

variation has been implicated in reducing the incidence of ischaemic heart disease, increasing 

the risk of macular degeneration and can lead to congenital heart disease 363-365. Intronic regions, 

especially promotors and enhancers can harbour genetic variation, however their effect is more 

difficult to predict as they do not directly alter protein structure, but instead act through 

DNA/RNA-binding protein interactions. Exome- and genome-wide studies are able to produce 

vast quantities of genetic data, however their usefulness is reduced by the lack of efficient 

methods to prioritise which variants are most likely to be damaging 366.  

Future work in this field should sequence parental (if possible), alongside pro-band DNA, 

allowing the elimination of any inherited (and presumed non-causal) variants. This would limit 

the analysis to unique de novo variants, and greatly enhance the likelihood of identifying causal 

genetic variants that lead to unexplained stillbirth. Ideally this would be coupled with an 

increased number of sequenced cases, to find more predicted damaging mutations that can be 

functionally analysed.  
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