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⋆ Computer Science Department, The Technion, Haifa 32000, Israel
† INRIA, Centre Inria Rennes - Bretagne Atlantique, 35042 Rennes Cedex, France

⋄ Queen Mary University of London, Centre for Digital Music,
School of Electronic Engineering and Computer Science, London E1 4NS, U.K

ABSTRACT

We present a novel sparse representation based approach for the

restoration of clipped audio signals. In the proposed approach, the

clipped signal is decomposed into overlapping frames and the declip-

ping problem is formulated as an inverse problem, per audio frame.

This problem is further solved by a constrained matching pursuit al-

gorithm, that exploits the sign pattern of the clipped samples and

their maximal absolute value. Performance evaluation with a collec-

tion of music and speech signals demonstrate superior results com-

pared to existing algorithms, over a wide range of clipping levels.

Index Terms— Audio, Clipping, Inpainting, Sparsity, OMP

1. INTRODUCTION

Audio clipping is a signal degradation process in which an undis-

torted audio waveform is truncated whenever the maximum input

range of a digital acquisition system is exceeded, as illustrated in

Fig. 1. Although clipped audio signals are often encountered in tele-

phony systems, low-cost digital audio/video recorders and other de-

vices, restoring clipped signals has attracted substantially limited re-

search efforts [1–4] compared to other audio restoration tasks such

as click removal (see [5] for a review). In the click removal problem,

samples randomly distorted by impulsive noise or small spikes (typi-

cal to old recordings or scratched CDs) are recovered. In the clipped

audio case, the problem is even more challenging as the clipped

samples are arranged in groups and their location is not random but

rather determined by the amplitude of the signal. As a consequence,

the information carried by the largest-amplitude samples in the orig-

inal signal is missing, the number of consecutive clipped samples

may be large and these clipped intervals may occur frequently.

Audio declipping has been mainly addressed by linear prediction

techniques [1–3]. In [3], declipping is addressed via a straightfor-

ward and basic usage of linear prediction: the autoregressive (AR)

filter coefficients computed from the undistorted samples preceding

clipping are used to predict the clipped samples. A more advanced

approach has been proposed in [1] for the general problem of filling

several gaps of consecutive missing samples simultaneously. While

no explicit application is mentioned, the method is naturally appro-

priate for declipping. A single autoregressive model is considered

for the region embedding the missing samples where the set of AR

coefficients and the set of missing samples are alternately estimated

by an Expectation Maximization-like iterative algorithm. Another

approach based on linear prediction has been proposed in [2] where
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Fig. 1. A speech signal (gray) and its clipped version (black).

the autoregressive model is time-varying. In [4], the audio declip-

ping problem was formulated as an l2-norm minimization problem

subject to a band-limited assumption, i.e. to the existence of zeros in

the discrete Fourier transform of the original signal. Cubic interpo-

lation has also been proposed for declipping in the ClipFix plug-in1.

In this paper, we utilize Sparse Representation (SR) modeling of

audio signals [6] – i.e. approximating audio frames by linear com-

binations of few atomic signals (columns of a dictionary matrix) –

and leverage the image inpainting framework [7] where missing or

masked pixel groups in an image are filled in. The audio declipping

problem is formulated as an inverse problem, where one observes

only a partial set consisting of reliable audio data – the un-clipped

samples – while the remaining data to be estimated is treated as

unknown. We employ an overlap-add (OLA) approach in conjunc-

tion with a constrained version of the Orthogonal Matching Pursuit

(OMP) algorithm [8], to recover the sparse representation vectors of

overlapping audio frames. The complete recovered signal is formed

by filling in the missing audio samples in each frame and merging

all frames in the OLA process.

The contributions of this paper are two-fold: 1) The formulation

of the audio declipping problem as a SR recovery problem is, to the

best knowledge of the authors, an original approach that enables the

utilization of the rich theory and tools of SR modeling [9]. 2) A con-

strained OMP algorithm is introduced, which provides significantly

improved results over its unconstrained (standard) version, by incor-

porating additional information inherent to the declipping problem.

Performance evaluation over a collection of music and speech sig-

nals demonstrate superior results compared to existing methods.

This paper is organized as follows. The audio declipping prob-

lem is formulated in Sec. 2. The SR model and the constrained ap-

proach are detailed in Sec. 3. Experimental results are presented in

Sec. 4. Conclusions are finally drawn in Sec. 5.

1See http://www.gaclrecords.org.uk/audacity.html



2. PROBLEM STATEMENT

We observe a clipped version y ∈ R
L of an undistorted audio signal

s ∈ R
L. The samples affected by clipping are located on the subset

Ic ⊂ I of the signal support I , {1, 2, · · · , L}, such that

Ic , {n |1 ≤ n ≤ L, |s (n)| ≥ θclip } , (1)

where θclip is the clipping level. We thus consider the partition

{Ic, Ir} of the support I , {1, 2, · · · , L}, where Ir , I\Ic , such

that the observed signal y is partitioned into the reliable (unclipped)

yr and clipped yc portions as follows

(
yr , y (Ir) = s (Ir)

yc , y (Ic) = sign (s (Ic)) θclip,
(2)

where sign (·) is the element-wise sign function. In matrix form, the

observed reliable and clipped signal portions are given by

(
yr = Mry = Mrs

yc = Mcy = Mc sign (s) θclip,
(3)

where Mr is the reliable data measurement matrix obtained from the

L×L identity matrix IL by selecting the rows Ir associated with the

reliable samples in s. In a similar way, the clipped data measurement

matrix Mc consists of the rows Ic in IL.

The audio declipping problem is an inverse problem, defined as

the recovery of the original samples s from the observation y. The

detection of {Ic, Ir} and the estimation θ̂clip of the clipping level θclip

can be achieved by locating and selecting the maximum absolute

value of the observed samples. We thus focus on the restoration of

the clipped samples s (Ic) given y, {Ic, Ir} and θclip.

3. PROPOSED METHOD

We propose audio declipping algorithms for single channel wave-

forms. The proposed algorithms rely on frame-based processing, as

detailed in Sec. 3.1, and emerge from SR modeling of audio signals,

as presented in Sec. 3.2. A basic OMP algorithm is discussed in

Sec. 3.3 and a constrained OMP algorithm is developed in Sec. 3.4.

3.1. Frame-based processing and reconstruction

Declipping is locally performed using a frame-by-frame processing.

Every frame is independently restored and the full restored signal

is formed utilizing an OLA approach [10]. We decompose the ob-

served signal into overlapping frames yi ∈ R
N , N ≪ L, starting

at time ti, using a rectangular weighting window with length N :

yi (t) , y (t + ti) , 0 ≤ t ≤ N − 1. By adapting the full sig-

nal problem statement to the local frames formulation, the reliable

samples in the i-th frame are

y
r
i = M

r
isi, (4)

where Mr
i is the reliable data measurement matrix of the i-th frame

obtained from Mr and si (t) , s (t + ti) is the i-th frame defined

for 0 ≤ t ≤ N − 1. We further define the supports {Ic
i , I

r
i} of

the clipped and reliable samples in the i-th frame, which can be

simply computed from the full signal supports pair {Ic, Ir}. Once

the estimation bsi of si is completed by any of the algorithms pre-

sented below, the reconstruction of the full signal is obtained as

bs(t) ,
P

i
ws(t−ti)bsi(t−ti)
P

i
ws(t−ti)

. In the proposed approaches, we utilize

64ms-frames with 75% overlap and sine windows for ws.

3.2. Sparse Representations modeling of audio frames

In the SR modeling framework [9], it is assumed that each frame is

well approximated by a sparse linear combination of the columns of

a given (possibly overcomplete) dictionary

si ≈ Dxi, (5)

where D ∈ R
N×KD is the dictionary, N ≤ KD , and xi ∈ R

KD×1

is a sparse vector: ‖xi‖0 ≪ L, where the l0 norm2 ‖xi‖0 counts the

non-zero components in xi. As a consequence, we can also utilize

the SR model for the observed reliable samples in each frame

y
r
i , M

r
isi ≈ M

r
iDxi. (6)

We propose to estimate the unknown samples si (Ic
i ) by recovering

the SR vector of each frame xi, given only the reliable observed

samples yr
i, the support partition {Ic

i , I
r
i} and the estimated clip-

ping level θ̂clip. Once the SR vector is recovered as x̂i, the unknown

samples are estimated according to

ŝi (Ic
i ) ≈ M

c
iDx̂i, (7)

where Mc
i is the clipped data measurement matrix of the i-th frame

obtained from Mc. In the following we overview two approaches to

solve this problem, based on approximate solutions to the l0 norm

minimization problem.

3.3. A basic Matching Pursuit algorithm for audio declipping

The proposed approaches seek for the sparsest representation of each

audio frame, by approximating a solution to the following optimiza-

tion problem

x̂i = arg min
xi

‖xi‖0 s.t. ‖yr
i − M

r
iDxi‖

2
2 ≤ θ

ǫ
i . (8)

A direct solution of (8) is infeasible since the l0 norm leads to

an NP-hard problem. An approximate solution is given by applying

the OMP algorithm [8], which successively approximates the spars-

est solution. The inpainting OMP algorithm [7], detailed in Table 1,

is a slightly modified version of the classical OMP algorithm [8] in

the sense that all dictionary columns are internally re-normalized to

unit norm due to the availability of only the reliable samples. The

algorithm stops iterating as soon as either the number of non-zero

components exceeds the maximum sparsity level Kmax, or the resid-

ual energy drops below the threshold θǫ
i .

3.4. Algorithmic enhancements for audio declipping

Recovering clipped signals can be performed with the algorithm pre-

sented in Sec. 3.3, by treating the clipped samples as completely un-

known. However, side information inherent to this problem can be

integrated as additional constraints into equation (8). Let Mc+
i (resp.

Mc-
i ) be the matrix such that Mc+

i si (resp. Mc-
i si) is the vector of

positive (resp. negative) clipped samples. The matrices Mc+
i and

Mc-
i are known according to the sign of each clipped sample, and

the following set of of constraints can be defined for the set of miss-

ing samples3

2Note that the l0 norm is not a standard norm as it does not obey ‖αx‖0 =

α ‖x‖0 for any positive scalar α, however, the term ”norm” is traditionally
associated with this quantity.

3Inequalities are defined element-wise for notation convenience.



Table 1. OMP Inpainting Algorithm

Input: yr
i, Mr

i, D, Kmax, θǫ
i

Initialize :

• Dictionary eD =
h

ed1, . . . , edKD

i
= Mr

i ×D × W, where

W is a diagonal matrix such that diagonal component j equals

the inverse of the norm of column j of the matrix Mr
i ×D.

• Iteration counter k = 0
• Support set Ω0 = ∅
• Residual r0 = yr

i

Repeat until k = Kmax OR ‖rk‖
2
2 < θǫ

i

• Increment iteration counter k = k + 1

• Select atom: find j = arg maxj | < rk−1, edj > |
• Update Support Ωk = Ωk−1 ∪ j

• Update current solution xk = arg minu ‖yr
i − eDΩk

u‖
2

• Update Residual rk = yr
i − eDΩk

xk

Output: xi = Wxk

8
<
:

Mc+
i si ≥ θ̂clip

Mc-
i si ≤ −θ̂clip.

(9)

This set of constraints can be further augmented by introducing an

upper limit on the absolute value of the recovered samples θ̂max as

8
<
:

Mc+
i si ≤ θ̂max

Mc-
i si ≥ −θ̂max.

(10)

The upper limit θ̂max is an optional parameter, that can be roughly

approximated as θ̂max , Q × θ̂clip for some positive scalar Q.

The declipping version of the l0 norm minimization problem (8)

is given by

bxi = arg min
xi

‖xi‖0 s.t.

8
>><
>>:

‖yr
i − Mr

iDxi‖
2
2 ≤ θǫ

i

θ̂max ≥ Mc+
i Dxi ≥ θ̂clip

−θ̂max ≤ Mc-
i Dxi ≤ −θ̂clip

(11)

We propose to approximate the solution of (11) by incorporating the

constraints (9) and (10) into the final solution update stage of the

OMP Inpainting algorithm, as presented in Table 2. In the following,

the algorithm including (9) only and the one including both (9) and

(10) will be referred to as the single-constraint OMP algorithm and

the dual-constraint OMP algorithm respectively.

4. EXPERIMENTAL RESULTS

The experiments are conducted on a dataset of ten phone-quality

speech signals sampled at 8 kHz and a dataset of ten music signals

sampled at 16 kHz (i.e. with higher quality than phone speech).

Each test signal is 5-second long and is part of the freely avail-

able material of the 2008 Signal Separation Evaluation Campaign 4.

The test data shows a large diversity of audio mixtures and isolated

sources, including male and female speech from different speakers,

singing voice, pitched and percussive musical instruments. Each

4http://sisec2008.wiki.irisa.fr/

Table 2. Constrained OMP Declipping Algorithm

Input: yr
i, Mr

i, D, Kmax, θǫ
i , θ̂clip, θ̂max

Initialize :

• eD = Mr
i × D ×W

• k = 0, Ω0 = ∅, r0 = yr
i

Repeat until k = Kmax OR ‖rk‖
2
2 < θǫ

i

• Increment iteration counter k = k + 1

• Select atom: find j = arg maxj | < rk−1, edj > |
• Update Support Ωk = Ωk−1 ∪ j

• Update current solution xk = arg minu ‖yr
i − eDΩk

u‖
2

• Update Residual rk = yr
i − eDΩk

xk

Final solution update :xk = arg minu ‖yr
i − eDΩk

u‖
2

s.t.

(
θ̂max ≥ Mc+

i DWu ≥ θ̂clip

−θ̂max ≤ Mc-
i DWu ≤ −θ̂clip

Output: xi = Wxk
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Fig. 2. Restoration of a music signal by the dual-constraint algo-

rithm: original (light gray), clipped (black), estimate (dark gray).

original signal is normalized so that the maximum amplitude is 1.

Each sound is then artificially clipped with successive clipping lev-

els, from 0.2 up to 0.9 with a 0.1-step.

In the proposed algorithms, an overcomplete Discrete Cosine

Transform (DCT) dictionary was used. This choice is motivated by

the wide usage of DCT to code or estimate audio signals [6]. A

specific training dataset was used to tune the parameters of the in-

painting algorithms. The following values were obtained: the frame

length is set to 64 ms (i.e. N , 512 and N , 1024 samples at

8 kHz and 16 kHz respectively); a 75% frame overlap is used; the

number of atoms – columns – in the overcomplete DCT dictionary

is set to twice the number of samples in a frame; fixed values are

set to the stopping criteria of the OMP algorithm: Kmax , N

4
and

θǫ
i , θǫ × #I r

i, where θǫ , 10−6 is a fixed parameter and #Ir
i is

the number of reliable samples in the ith frame. The dual constraint

was used with Q = 4.

For comparison purposes, we implemented the method [1] by

Janssen et al. based on linear prediction. In each frame, a single AR

model is considered for both the reliable observed samples and the

latent missing samples, which are estimated in an iterative algorithm.

The AR order was set to 3m + 2, as recommended by the authors,

where m is the number of missing samples. The ClipFix plug-in

based on cubic interpolation (see Sec.1) was also tested.

Clipping restoration is illustrated in Fig. 2 when the clipping

level is 0.2. Here, the dual-constraint OMP algorithm is applied to

an example of music signal, where one can observe that the recon-



structed samples are close to the original signal.
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Fig. 3. Performance of the proposed algorithms, as a function of

the clipping level: the SNR is averaged for the music (left) and the

speech (right) datasets. Curve specification: unconstrained OMP

(“♦”); single (“o”) and dual (“+”) constraint OMP; initial clipped

signal (dashed gray).

The performance on the overall datasets is assessed by the

signal-to-noise ratio (SNR) computed on the clipped samples

SNRc (s,bs) , 10 log
‖s (Ic)‖2

2

‖s (Ic) − bs (Ic)‖2
2

(12)

which reflects the reconstruction performance per estimated sample

and differs from the SNR computed on the full signals by an offset

10 log
‖s‖2

2

‖s(Ic)‖2

2

that does not depend on the declipping algorithm.

The performance of the proposed algorithms are reported in

Fig. 3. The single-constraint and dual-constraint algorithms enhance

the SNR by 4 dB and 4.5 dB on the average, respectively. For

almost all test sounds, they significantly improve the unconstrained

OMP algorithm: indeed, the latter algorithm happens to reach poor

results, even degrading the distorted signal in the case of the speech

dataset. This shows that methods based on SR, if efficient under

random-measurement conditions [7], cannot straightforwardly re-

cover partially-sampled signals when groups of missing samples

are involved. The dual-constraint OMP algorithm reaches better

results than the single-constraint algorithm when the clipping level

is about 0.2 − 0.3. This corresponds to the range where the ap-

proximate value θ̂max is close to the actual maximum value as well

as to the most degraded signals. A close analysis of the individual

restored sounds reveals that large spikes are avoided thanks to the

maximum value constraint. In a practical application, the maxi-

mum value θ̂max should be adjusted by the user until the best audio

quality is achieved. In Fig. 4 the dual-constraint algorithm is com-

pared against existing methods. It outperforms Janssen’s method by

1.9 dB on the average. The ClipFix plug-in reaches poor results,

below all the reported ones.

5. CONCLUSIONS

We presented a novel sparse representation based approach for the

restoration of clipped audio signals. In the proposed approach,

the sign pattern of the clipped samples and their maximum absolute

value are integrated into a constrained OMP algorithm. Performance
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Fig. 4. Comparison with existing methods: Dual constraint OMP

(“+”); Janssen’s approach [1] (“∗”); ClipFix plug-in (“¤”); initial

clipped signal (dashed gray).

evaluation with a relatively simple dictionary - an overcomplete

DCT - demonstrated an advantage compared to existing methods

and the unconstrained OMP. In future research our approach could

be adapted to address other audio restoration problems such as click

removal and packet loss concealment.
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