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Abstract

We study both theoretically and experimentally the set of Nash equilibria of a
classical one-dimensional election game with two candidates. These candidates are
interested in power and ideology, but their weights on these two motives are not
necessarily identical. Apart from obtaining the well known median voter result and
the two-sided policy differentiation outcome, the paper uncovers the existence of
two new equilibrium configurations, called ‘one-sided’ and ‘probabilistic’ policy dif-
ferentiation, respectively. Our analysis shows how these equilibrium configurations
depend on the relative interests in power (resp., ideology) and the uncertainty about
voters’ preferences. The theoretical predictions are supported by the data collected
from a laboratory experiment, as we observe convergence to the Nash equilibrium
values at the aggregate as well as at the individual levels in all treatments, and the
comparative statics effects across treatments are as predicted by the theory.
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1 Introduction

The spatial theory of electoral competition begins with the seminal contributions of
Hotelling (1929) and Downs (1957). The basic model considers a majority rule election
where two political candidates compete for office by simultaneously and independently
proposing a platform from a unidimensional policy space (e.g., an income tax rate). As is
well known in the literature, the equilibrium predictions of this model depend crucially on
candidates’ motivations for running for office. In this paper, we study the implications of
the so called mized motivations hypothesis, according to which candidates are concerned
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not only about winning the election and being in power, but also about the ideological
position of the policy implemented afterwards.!

Although this assumption is thoroughly familiar in its symmetric version, that is,
when both candidates assign the same relative weight to their policy preference versus
their desire to win office, what happens in the asymmetric scenario remains an open
question. As we argue below, this case is not only interesting from a theoretical point
of view, but also empirically relevant. Here, we offer a full characterization of the set
of Nash equilibria for both cases, the symmetric and the asymmetric one, uncovering
interesting (and sometimes counter-intuitive) equilibrium predictions that had not been
identified yet in the literature. In addition, we conduct a laboratory experiment to assess
whether the predictions of the model possess any empirical relevance, studying in a rich
set of treatments not only convergence of subjects’ behavior to the theoretical predictions,
but also learning and a number of comparative statics effects resulting from changing the
interests in power (resp., ideology) and the uncertainty about voters’ preferences.?

An important motivation for this research is that conceptually the mixed motivations
hypothesis is more realistic than the traditional hypotheses of candidates’ motivations,
according to which candidates care in the same way and only about either winning power
or policy. In a democracy, the mixed motivations probably emerge naturally from the
fact that candidates are representatives of complex political organizations. To elaborate,
in real world politics to reach the stage of being in competition for public office, citizens
must first be nominated within the political parties; and for that to happen they need
the support of regular party members, who are arguably much more concerned about
the policies implemented after the election than about the actual winner of the contest.
Thus, although politicians as other professionals might be more interested in their ca-
reers and, therefore, in winning the elections, it seems reasonable to expect that policy
considerations will also enter into the candidate’s payoff function with some weight.3

These weights need not be the same for all candidates. They could depend for in-
stance on the features of the political organization that the candidate represents, such
as the number of regular members, the level of activism within the organization, the
internal process to nominate candidates, etc. The value of winning the election might
also vary depending on whether the party of the candidate is the incumbent in office or
a challenger. Thus, there seem to be ample reasons why one might expect asymmetric
electoral motivations to be quite general. Some evidence seems to suggest that they may
have some empirical relevance as well. An interesting case in this regard is the Radical
and the Peronist Parties in Argentina. These two parties are the main political actors
of the country. The Radical Party has been ever since its creation an ideological party,
whereas Peronism has been a “movement”, as Perén used to call it, basically motivated
by being in power. Another case is the Labour and the Conservative Party in the UK
election of 1997, in which both located on the center-right of the political spectrum.

!This was first suggested by Calvert (1985), and it has been recently used in a number of papers,
including Ball (1999), Groseclose (2001), Aragones and Palfrey (2005), Duggan and Fey (2005), Saporiti
(2008), Callander (2008), Bernhardt, Duggan and Squintani (2009), and Saporiti (2013).

2The use of experimental methods as opposite to field methods seems preferable to test the theory
because the former allow for a level of control that cannot be achieved with the latter given the large
number of confounds that influence the behaviors of interest.

3Morton (1993) reports on subjects in a laboratory experiment placing a weight of approximately
32% on winning the election, and 68% on the expected utility from the implemented platforms.



A second motivation for this work is that from a theoretical point of view, the mixed
motivations hypothesis has been shown to have nontrivial implications for the predictive
power of the theory of electoral competition. In effect, Ball (1999) pointed out that, due
to the discontinuities of the payoff functions, the electoral contest with hybrid motives
does not always possess a Nash equilibrium in pure strategies. Moreover, it has been
shown that the source of this instability can be attributed entirely to the asymmetric
nature of the political goals (Saporiti 2008). Yet, in spite of this, the analysis of the full
set of Nash equilibria under this assumption remains an open question. Clearly, filling out
this gap seems quite important, because elections play a central role in many economic
models, particularly in models of political economy and public finance.

The main results of this paper can be summarized as follows. On the one hand,
consistent with the theory already known, our equilibrium analysis shows that when the
value of being in office is the same for the two candidates, both players announce either
(i) a platform located on the estimated median ideal point (policy convergence) if the
electoral uncertainty is low compared with the interest in office, or (ii) a platform located
on their own ideological side (two-sided policy differentiation) if the uncertainty is high.*

On the other hand, when candidates have asymmetric motivations, the median voter
result still dominates for low levels of uncertainty. However, as the uncertainty increases,
i.e., as the length of the interval over which the median is distributed increases, first an
equilibrium in pure strategies fails to exist. In that region, both candidates randomize
optimally on one side of the median to avoid being copied and undercut by their rival
(probabilistic differentiation). Second, outside that region, a pure strategy equilibrium
is reestablished, but the two candidates assign all of the probability mass to a different
platform. These policies are located initially on the same ideological side (one-sided policy
differentiation), and then, as uncertainty further increases, on each candidate’s political
ground (two-sided differentiation).

The data collected from the experiment are largely supportive of these theoretical
predictions. First, we find in all treatments that the median behavior of the left- and the
right-wing subjects converge to the Nash equilibrium values. This happens even in the
probabilistic differentiation treatment, with a unique mixed strategy equilibrium (MSE).
In that treatment, we observe not only that subjects’ choices approximate the bounds
and the median of the MSE support, but also that the empirical cumulative distributions
are close to the theoretical ones, with the cumulative distribution of the left-wing players
first-order stochastically dominating the distribution of the right-wing players.

Second, in the symmetric motivations treatments, we note that the confidence inter-
vals we construct around the medians shrink over time as well, indicating behavior that is
consistent with the Nash equilibrium not only at the aggregate level but also at the indi-
vidual level. In the asymmetric treatments, with one-sided policy differentiation in either
pure or mixed strategies, some noise in the individual choices persists even after sixty
rounds (elections) of play. This is consistent with equilibrium behavior in the treatment
with a mixed strategy equilibrium, but not with equilibrium behavior in the treatment
with a pure strategy equilibrium, where, although the deviations diminish somewhat over
time, they tend to be skewed to the center of the policy space.

4In this paper, candidates’ preferred policies are assumed to be distributed on either side of the
median ideal point, so that the ideology of one candidate lies on the left and the other on the right.



Third, we find that subjects’ learning takes place mainly within the first ten periods
(elections), and that most of that learning does not vanish as subjects interchange their
roles between candidates of different ideologies. Finally, in line with the theory, the
comparative statics analysis across treatments confirm the theoretical predictions that
(i) an increase in the electoral uncertainty leads to an increase in policy divergence; (ii)
policy convergence is reestablished as both candidates become more office-motivated; (iii)
the extent of the empirical differentiation on either side of the median is independent of
candidates’ ideologies; and (iv) an asymmetric increase in candidates’ interests in power
leads to policy divergence on one side of the median.

The rest of the paper is organized as follows. Section 2 discusses the related literature.
Section 3 outlines the model of electoral competition. Section 4 derives the theoretical
results, which are proved in Appendix A. Section 5 presents the experimental design,
and Section 6 discusses the experimental evidence. Final remarks are made in Section 7.

2 Related literature

The literature on electoral competition is vast. We focus here only on those papers that
are most relevant for our work. For a more comprehensive review, the suggested references
are Osborne (1995), Roemer (2001) and Austen-Smith and Banks (2005).

On the theoretical front, this paper relates to two segments of the existing literature
that deal with, respectively, elections with office and policy motivations, and elections
with advantaged candidates. In the first segment, the first article to consider mixed
motivations is Calvert (1985), though it does not go beyond offering a continuity result
according to which small departures from office motivation and certainty lead to only
small departures from policy convergence. Ball (1999) and Bernhardt et al. (2009) fur-
ther examine the implication of this assumption. The first paper focuses on equilibrium
existence, whereas the latter analyzes mainly the implication of the symmetric mixed mo-
tivations on voters’ welfare. Differently from these contributions, our work focuses on a
full equilibrium characterization and on the empirical validity of our theoretical findings,
rather than on existence or welfare considerations.

The existence of Nash equilibrium in electoral competition with mixed motivations is
also the focus of Saporiti (2008). That article shows that, in contrast with the usual causes
behind the nonexistence of equilibria in the traditional models of electoral competition,
essentially, the multi-dimensionality of the policy space and the heterogeneity of voters’
preferences, the lack of pure strategy equilibria in one-dimensional contests with mixed
motives and electoral uncertainty is due to the heterogeneity or asymmetry of interests
of the political candidates. Saporiti (2008) proves the existence and uniqueness of a pure
strategy equilibrium when candidates possess mixed but symmetric motivations; and it
shows that the mixed extension of the hybrid election game satisfies Reny’s (1999) better-
reply security and, consequently, that a Nash equilibrium exists regardless of the nature
of candidates’ aspirations. The paper however is totally silent about the nature of the
equilibrium policies. Our analysis here extends Saporiti (2008) not only by providing
a complete characterization of the equilibrium policies, but also by testing the main
empirical restrictions in the lab.

In addition to the articles mentioned above, there is a large number of papers that



adopt the mixed motivations assumption and simultaneously alter other features of the
basic framework. To mention a few, Aragones and Palfrey (2005) study a general in-
complete information model of candidate quality allowing for heterogeneity in valence,
ideology, and motivations. Callander (2008) considers a model with either policy or office
motivated candidates, private information about candidates’ types, and partial commit-
ment at the electoral stage. In a more significant departure, Roemer (1999) analyzes
a model where parties represent different constituencies, or economic classes, with well
defined policy preferences. Parties are also integrated by opportunistic individuals who
desire only to win office. Roemer assumes that each party must reach inner-party una-
nimity to formulate a proposal, and he proves the existence of a so called party unanimity
Nash equilibrium. Finally, Snyder and Ting (2002) model political parties as informative
brands to voters, in a setup where candidates are driven by achieving office and, if elected,
policy, and they need parties to credibly signal their true policy preferences.

Insofar as a relatively more office-motivated candidate has in equilibrium a higher
probability of winning the election, this paper is also connected with the literature on
elections with advantaged candidates. Starting with Ansolabehere and Snyder (2000),
Groseclose (2001), and Aragones and Palfrey (2002), there is now a sizeable literature
that analyzes candidates’ behavior in the presence of valence advantage. This includes
the previous articles plus several recent papers, including Kartik and McAfee (2007),
Ashworth and Bueno de Mesquita (2009), Hummel (2010), and Iaryczower and Mattozzi
(2013), among others.

An interesting feature in some of these works is that, as happens in our case, equi-
libria in mixed strategies emerge because the advantaged candidate is willing to copy
the position of the disadvantaged one, forcing the latter to randomize in order to not
be predictable. Notice however that there is a slightly different flavor in our framework
from what we have in the valence models. In this paper, it is not the case that voters
have a preference for a certain candidate, whom the other tries to mimic, but rather the
electoral advantage emerges endogenously because candidates have different motivations
for power and they react differently to the uncertainty about voters’ preferences.

On the empirical front, our paper adds to the experimental literature that analyzes
elections and candidate competition.® In that literature, there is, first, a number of
early laboratory tests, surveyed by McKelvey and Ordeshook (1990), that examine the
hypothesis of policy convergence to the median ideal point in the Downsian framework
with purely office-motivated candidates. This early research has been later complemented
by Morton (1993), who conducts a laboratory experiment to assess the hypothesis that
platforms diverge when candidates are purely ideological and there is uncertainty about
voters’ preferences. More recently, Aragones and Palfrey (2004) report experimental
results about the effects of valence asymmetries on the location of the equilibrium policies.
None of the existing papers however have analyzed yet in the lab the case of mixed and,
especially, asymmetric electoral motivations, which is precisely our contribution here.

Finally, to the extent that some of the equilibria in the asymmetric motivation case are
in mixed strategies, this paper also complements the existing laboratory and field studies
that look at how people behave in games with mixed strategy equilibria. Camerer (2003)
provides an overview of the most relevant papers, with the main message being that

5See Palfrey (2006) for a recent overview of these papers.



although aggregate behavior is usually close to the equilibrium predictions, there are still
significant deviations from them.® In our experiment, subjects entered a pure strategy
in each period. Thus, we are agnostic about to what extent they actually mixed their
strategies. However, the data shows that our subject pool make choices that closely
approximate the mixed strategy predictions, ‘as if” they were changing their play in order
to avoid being predictable and exploited by their opponents.

3 The Model

Two candidates, indexed by ¢+ = L, R, compete in a winner-take-all election by si-
multaneously and independently announcing (and committing to) a policy platform
x; € X = [0,1]. The electorate is made up of a continuum of voters. Each voter
has a utility (loss) function ug(z) = —|z — 60|, where § € X denotes his preferred policy or

ideal point on X. Due to the nature of voters’ preferences (single-peaked and symmetric
around ), for every pair (z1,rr) € X? each voter votes sincerely for the platform closer
to its ideal point, voting for the alternatives with equal probabilities when indifferent.”
Candidate ¢ wins the election if his platform x; gets more than half of the votes, with ties
broken by a fair coin toss.

Apart from the uncertainty due to the possibility of a tie, candidates also have uncer-
tainty about voters’ preferences. We assume that the median voter’s ideal point, denoted
by 6, is uniformly distributed over [1/2 — ,1/2+ 3], with 8 > 0. This may be because
voters’ preferences are fixed, but candidates perceive the fraction of types supporting their
respective platforms with some noise, as happens for example in Roemer (2001, p. 45); or,
because voters’ preferences actually change after candidates have announced their plat-
forms, as is the case in Bernhardt et al. (2009). Regardless of the interpretation given to
the electoral uncertainty, it transpires from our assumptions that the probability that can-
didate L attaches to winning the election is given by p(xp,xg) = Prob (Hm € [0, %D
if z;, < xg, and by p(xp,xg) = Prob (9m € [%, 1]) if x; > xp. Candidate R’s
probability of winning is 1 — p(x, zg).

As was said in the Introduction, candidates possess mixed or hybrid motives for
running for office. Formally, the payoffs for candidate L and candidate R associated to
any pair of policy platforms (zr,zr) € X? are given by, respectively,

Hp(xn, zr) = p(wr, vr) - (ue, (vr) + x2) + [1 — p(7L, TR)] - ug, (TR), (1)
and
Hr(zrp,2r) = [1 — p(zr, 2R)] - (vop(zr) + XR) + P(TL, TR) - UL (TL), (2)

where 6; stands for candidate i’s ideological (preferred) position on X, and y; > 0
denotes candidate i’s payoff for being in power (office rents).® We assume that can-

6See also Amaldoss and Jain (2002), Palacio-Huerta (2003), Palacio-Huerta and Volij (2008), and
Levitt et al. (2010), among others.

"Since there are only two candidates and each of them enacts its proposed policy once elected, voting
for the preferred candidate is a weakly dominant strategy for every voter.

8Note that Hotelling (1929)-Downs’ (1957) office motivation hypothesis, according to which candidates
maximize the probability of winning the election, is obtained by letting x; be arbitrarily large for all 4.
Likewise, Wittman’s (1983) ideological candidates follow by setting the rents x; equal to zero.



didates’ ideological positions are distributed on either side of the (expected) median
voter’s ideal policy, i.e., 0, < 1/2 < 0g; and we identify the half-open interval [0,1/2)
(resp., (1/2,1]) with the left-wing (resp., right-wing) candidate’s ideological side. In
addition, to rule out uninteresting equilibria with large electoral uncertainty and no
trade-off between power and ideology, the essence of this investigation, we assume that
B<B=min{l/2 -0+ x1/2, Or —1/2 + xr/2}.

Let A be the space of probability measures on the Borel subsets of X. A mixed
strategy for ¢ is a probability measure p; € A, with support supp(u;) = {z € X :
Ve > 0,u((x — 6,2 +€) N X) > 0}). We extend each II; to A? by Ui(ur, ur) =
Jx2 Wi(wr, xg) d(pr(xr) x pr(zgr)). Note that U; is well defined because the set of dis-
continuities of IT;, namely {(zy,zr) € X? : x = zg # 1/2}, has measure zero.

Let G = (X,1I1;);=z r denote a mized motivation election game, and let G =
(A, U;)i=r, r be the mixed extension of G. A Nash equilibrium of G is a pair of probability
measures (u}, 1%) € A? such that for all (zp,zr) € X2, Ur(u}, 1) > Ur(zr, uy) and
Ur(us, uy) > Ur(ph,zr). We say that a Nash equilibrium (u}, u3) € A? is a mixed
strategy equilibrium (MSE) of G if at least one candidate randomizes over two or more
policies. Otherwise, if for all i = L, R, supp(u}) = {z}} for some 2} € X, then the profile
(z%,x%) represents a pure strategy equilibrium (PSE) of G.1°

4 Equilibrium Analysis

We begin the equilibrium analysis noting that G possesses neither a PSE where the left-
wing candidate chooses a platform further to the right than the right-wing candidate’s
proposal, nor a PSE where one of the candidates wins the election for sure.

Lemma 1 If the strategy profile (x%,x%) € X? is a pure strategy equilibrium for the
election game G = (X, 11;);=p g, then 0, <z} < %, < 0 and p(x},z}) € (0,1).

The previous lemma, whose proof (as well as all other proofs) is given in Appendix
A, is used to characterize each candidate’s platform in a PSE with policy differentiation,
and to provide a necessary condition for such an equilibrium to exist.

Lemma 2 The election game G = (X,11;);—1 r has a pure strategy equilibrium with x} <
oy only if xp +xr <46, x5 =1/2— B+ x1/2, and x5, = 1/2+  — xr/2.

The platforms characterized in Lemma 2 are a function of the electoral uncertainty 3
and the office rents y;, with the signs as expected. All the rest equal, as the candidates
become less certain about how moderate the median voter is (higher (), they become
more polarized in their platform choice. By contrast, a reduction of the uncertainty
(resp., an increase of office rents) moves both platforms towards the center of the political
space. Note, however, that these platforms are independent of the candidates’ ideologies.
Moreover, they are independent of each other too, in the sense that a change in candidate

9Tf that were not the case, then in an equilibrium with differentiated policies at least one candidate
would maximize its payoff at its preferred location 6;, independently of the position chosen by the other.
10When u € A assigns probability 1 to a single policy € X, we simply write 2 instead of u.



i’s equilibrium policy x} (due, for example, to a change in ;) does not affect 7. These
are mainly consequences of the linearity of the loss function.!!

The platforms of Lemma 2 are obtained from the first-order conditions; that is, they
are the stationary points of the conditional payoff functions. Unfortunately, Lemma 2
does not guarantee that these functions are quasi-concave. Therefore, a sensible question
to ask is what additional conditions ensure the policy profile to be a Nash equilibrium.
Propositions 2 and 3 are meant to shed some light into this inquiry. But first, we offer
necessary and sufficient conditions for policy convergence (i.e., equilibrium with identical
platforms), which is the classical result of electoral competition.

Proposition 1 (convergence) The election game G = (X, 11;);—1 r has a pure strategy
equilibrium with x, = x, = * if and only if x* =1/2 and x; > 2/ for alli = L, R.

One way of interpreting the condition specified in the statement of Proposition 1
is as follows. In this paper the winner enjoys an extra payoff for being elected equal
to x;. From the candidates’ viewpoint, however, hitting the median ideal point with a
particular policy platform and actually winning the election has a chance of (23)~! (the
inverse of the length of the support of 6,,). Therefore, the term x;/2/ can be viewed as
the expected benefit for moving the platform one additional unit to the center (expected
median). The cost of doing that is given by the additional unit of disutility created by
the displacement towards the center and away from the candidate’s ideology. Thus, when
X: is large enough for all ¢ (resp., § is small enough), in the sense that x;/28 > 1, the
benefits of any such deviation outweigh the costs and, consequently, candidates converge
to the median voter’s preferred policy.!?

An immediate implication of Proposition 1 and Lemma 2 is the following corollary.

Corollary 1 (uniqueness) If the election game G = (X, 11;);—1 r possesses a pure strat-
eqy equilibrium, then the equilibrium is unique.

The uniqueness result expressed in Corollary 1 is more general than the related results
found in Saporiti (2008) and Bernhardt et al. (2009), because the latter only refer to the
homogeneous motivation case (x; = xr), whereas the former also applies to cases where
X is not necessarily equal to xg. It is worth reminding, however, that the three models
are different and, therefore, that the results are not directly comparable.

The next proposition provides a necessary and sufficient condition for another well
known equilibrium configuration (suggested first by Wittman (1983), and proved later
by Roemer (1997)), where each candidates chooses a policy on its own ideological side.

Proposition 2 (two-sided differentiation) The election game G = (X,11;);,— g has
a pure strategy equilibrium with x3 < 1/2 < %, if and only if x; < 20 for alli = L, R.

1'With a nonlinear loss function, equilibrium platforms would be interdependent and sensitive (directly
or indirectly) to the ideology of each candidate.

12Two interesting instances where this occurs are: (i) when both candidates are purely opportunistic,
which provides the standard median voter result of Hotelling (1929) and Downs (1957) (under certainty)
and Calvert (1985) (under uncertainty); and (ii) when both candidates are purely ideological and they
have perfect information about the median voter’s location, as considered for example in Roemer (1994).
As a matter of fact, in the latter case the result holds independently of candidates’ motivations.



Thus, the first conclusion that can be drawn by combining Propositions 1 and 2 is that,
when candidates possess identical motivations, these two results offer a full description
of the equilibrium outcomes. To illustrate this, Fig. 1 displays the equilibrium platforms
as a function of the electoral uncertainty (5, and for a particular level of office rents
X = X1 = Xr- As Proposition 1 points out, both policies are located at the estimated
median voter’s ideal point for any level of uncertainty lower than or equal to x/2. Above
that threshold, Lemma 2 and Proposition 2 indicate that the equilibrium platforms lie
down on each candidate’s ideological ground, in accordance with the expressions x} =
1/2— B+ x1/2 and z3;, = 1/24 f — xr/2. That gives rise to a region of two-sided policy
differentiation as is shown in the graph. The symmetric location of the policies around
the median also implies that, in the identical motivation case, the probability of winning
is the same for the two candidates.
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Figure 1: Symmetric case: x; = xr = X-

Interestingly, when candidates hold asymmetric interests, Propositions 1 and 2 do not
cover the whole spectrum of possibilities. The main contribution of this paper is precisely
to analyze what happens in that case. As we will show, besides the equilibria outlined
above, there are other kind of equilibria that we will refer to as equilibria with one-sided
policy differentiation. These equilibria are such that candidates locate on a different
platform, but these platforms are on the same side of the median ideal point. When the
right-wing candidate turns out to be the relatively more policy-concerned candidate, the
conditions for one-sided differentiation are basically that the level of uncertainty be (i)
sufficiently low to ensure that L’s stationary point is above 1/2; and (ii) high enough
to discourage players to undercut their stationary points, ensuring in particular that
limsup, ;.- Hg(z},xr) < Hg(z},x%). The interpretation of the conditions when the
left-wing candidate is relatively more ideological is similar.

Proposition 3 (one-sided differentiation) The election game G = (X,11,);— r has
a pure strategy equilibrium with 1/2 < x} < x¥, (resp., x < x§, < 1/2) if and only if
(xz = xm)/2+ (xr - x£)Y? <28 < xp (resp, (xn — x2)/2+ (X - x0)'? < 28 < xn).



Postponing the interpretation of this result for the moment, we proceed by noting
that apart from one-sided PSE, the asymmetric motivation case also admits equilibria
in mixed strategies. To analyze the properties of these equilibria, the following notation
is going to be helpful. First, denote the critical values of  stated in Proposition 3 by
B¢ = %—l—@ and 8§ = %jL@. Second, consider the region of the strategy
space where p(zr,zg) € (0,1). Within that region, for any 2, < 1/2+  — xr/2 = 27,

1 /1 2
HR(SL’/L,KL’*R):@ <§+ﬁ—$}/+%) —|—(SL’/L—9R),
and | 1_ oy
. — 4
hmsupHR(at'L,:lsR) = (5 — TL) XR + (I’IL — QR)
TRr— T

Denote by Z1(8, xr) the solution to Ilg(27,2%) — limsup, .-, Hg(z],2r) = 0.
The support of the mixed strategy equilibrium when the right-wing candidate is the
relatively more ideological politician (Fig. 2a) is characterized in the next proposition.'

Proposition 4 (probabilistic differentiation) If yz/2 < 8 < 39, the election game
G = (X,11;)i=r.r has a mized strategy equilibrium (u}, k) € A% with the property that,

(a) If B < XXE then supp(u;) = [2,7] for all i = L, R, with x = Tr(8, xr) and
T=1408-%X =g} and

(b) If B > XL2XE then supp(p;) = [z,7] and supp(uf) = [z,7] U {a}}, with z =
7u(6xr) and T =4 — f+ X = a3,

Going back to the interpretation of the last two propositions, notice that in the asym-
metric motivation case the more ideological candidate (henceforth “she”) enjoys a “policy
advantage,” in the sense that the equilibrium policy ends up closer to what she prefers.
That is because, given the uncertainty, she is more willing to take the risk of being close
to her preferences. The opportunistic candidate (henceforth “he”) is willing to follow her
in order to increase his chances of winning the election, to which she reacts by random-
izing on her side. However, when the uncertainty about the median voter is really high,
the ideological candidate gets too close to her ideology, and the opportunistic guy is not
willing to follow her that far in the policy space. This is what allows for differentiation
in pure strategies on one side of the median. As a final observation, notice that so long
as PSE policies differ, this case also predicts that the ideological candidate possesses a
lower probability of winning the election; or, to put it differently, that the opportunist
candidate enjoys an “electoral advantage.”

To illustrate the results when candidates exhibit asymmetric motivations, we plot
in Fig. 2 the equilibrium platforms as a function of the electoral uncertainty. As the
graphs show, besides a range of low and high levels of uncertainty, when candidates
possess heterogeneous interests it is also possible to distinguish a range of moderate or
intermediate levels that provides distinct equilibrium predictions. The three levels of
electoral uncertainty are determined by the following ranges of values of :

13To be precise, the solution turns out to be Zr.(3, xr) = 1/2+ B+ 3/2xr £ V21/28Xr + X%-
14 An analogous characterization can be given for the case where the left-wing candidate is the relatively
more ideological candidate (see Proposition 5 at the end of Appendix A).
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1. low uncertainty: 0 < g < min{%, XTR},

2. moderate uncertainty: min {XTL, XTR} < f < max {XTL, XTR} and

3. high uncertainty: max ( Xk, &1 < 8 < 3.

As in the symmetric case, for low levels of uncertainty candidates converge to the
estimated median voter’s ideal point. However, as the length of the interval over which
the median is distributed increases, there exists a range of intermediate levels of electoral
uncertainty (namely, the values in Fig. 2a between yz/2 and 5, and the values in Fig.
2b between y7/2 and 3Y) for which the mixed motivation election game fails to possess
an equilibrium in pure strategies. Within that region, labeled in the graphs probabilistic
differentiation, the game admits an equilibrium in mixed strategies. Moreover, Proposi-
tions 4 and 5 state that the MSE support of both candidates is located on the same side
of the median ideal point, as is illustrated by the grey areas of Figs. 2a and 2b.
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Figure 2: Asymmetric case.

As the electoral uncertainty continues increasing, it eventually surpasses either the
critical threshold B¢ if xz, > &, or the threshold 3¢ if xg > xr, and the existence of a
pure strategy equilibrium is reestablished. For values of the uncertainty parameter above
these thresholds and within the range of intermediate levels, Prop. 3 shows that a PSE not
only exists, but also that the corresponding equilibrium policies are placed on the same
ideological ground, giving rise to a region of one-sided policy differentiation. Afterwards,
for high electoral uncertainty, the conditions of Prop. 2 hold, and each candidate chooses
a policy on its own ideological side, although these policies do not locate symmetrically
around the center.!?

To conclude, we compute the payoffs associated with the different equilibria, showing
how they vary with the relevant parameters. First, for policies converging to the median

15 As a matter of comparison, note that when x7, = xr, all of the critical values of 8 indicated in Figs.
2a and 2b coincide, i.e., B¢ = B = xr/2 = x1/2. That explains why Fig. 1 exhibits neither a region
with a mixed strategy equilibrium, nor one with one-sided policy differentiation.
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ideal point, the payoffs are Il (z},2%) = X + 0, — 1 and Ilg(z}, 2}) = 28 — Op + 3,
which are obviously increasing in candidates’ own interest in power, and constant with
respect to the electoral uncertainty.'® In addition, note that the left-wing (resp. right-
wing) candidate’s payoff is increasing (resp. decreasing) in the candidate’s ideology, since
being closer to the expected median reduces the utility loss of moving away from the
ideal point. Interestingly, the same equilibrium payoffs are obtained in the symmetric
motivation case, regardless of whether the equilibrium is at the expected median or with
two-sided policy differentiation.

Second, for differentiation in pure strategies with asymmetric interests, the left-wing

1

candidate’s equilibrium payoff is Iy (2], 23;) = X2+ 6, — 5 + %; and the right-wing

candidate’s is Ilp(z}, 2}) = X2 — 0 + 5 + %. These two depend on the ideologies
as before; and they are decreasing in the electoral uncertainty, since higher uncertainty
moves the policy location of the opportunistic candidate away from the relatively more
policy concerned one, and it also reduces the probability of the former of winning the
election. Regarding the office rents, both equilibrium payoffs are increasing in their own
interest in power;!” and the cross effect is positive for the ideological candidate, but
negative for the opportunistic one.!® Finally, for differentiation in mixed strategies, we
are unable to offer a general characterization of the payoffs due to the fact that we do
not possess a closed form solution for the equilibrium distributions.

5 Experimental Design

In this section, we present a laboratory experiment designed to assess the theoretical
predictions of the mixed motivation election game studied in Section 4. The experiment
consisted of seven treatments, which were determined by varying the uncertainty param-
eter 3, the ideologies #; and the office rents x;. For the convenience of the experimental
subjects we considered only integer locations, numbered from 0 to 100, which required
multiplying the relevant parameter values for g, 6, and y by 100. The values employed
in each treatment, together with the corresponding equilibrium policies and payoffs, are
displayed in Table 1. For Treatment 6, with a MSE, we report the expected equilibrium
payoffs, and the reader is referred to Table 2 for details of the MSE policies.'”

Subjects were told in the instructions a brief story of a town holding a two-candidate,
majority rule election to select the location of a new post office on the high street.
The subjects’ task was to propose simultaneously and independently an integer number
between 0 and 100 to locate the post office. They knew that voters were distributed
uniformly across the 101 locations, and they were told that although each voter would
vote for the proposal closer to its own location, for each profile of proposed locations the

16Bear in mind that to get convenient values for the experiment, the payoffs of Table 1 include a
positive constant of 90 in the utility function and a multiplication of payoffs by 10.

UTFori,j=L,R,i+# ], é”; 7)) 4B+§5 Xi which is positive because in Prop. 3 8 > X ZXJ )

BFori,j =L,R,i# j, aniéfv"z;) = Xj8TBXi, which is positive if x; > x; and non-positive otherwise.
J

9The computations were done with the software GAMBIT (McKelvey et al. 2010). Obviously, there

are differences between the (discrete) numerical results of Table 2 and the (continuous) theoretical

predictions of Proposition 4. However, these differences vanish as the grid becomes finer.
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Treatment | Uncertainty | Ideologies | Rents | NE Policies NE Payoffs
B r | Or | xo | XrR |2 | 7g L R

1 2.5 10| 90 10 | 10 | 50 50 550.0 550.0

2 15 10| 90 10 | 10 | 40 60 550.0 550.0

3 15 10| 90 | 40 | 40 | 50 50 700.0 700.0

4 15 34| 66 10 | 10 | 40 60 790.0 790.0

5 35 10| 90 10 | 10 | 20 80 550.0 550.0

6 15 10| 90 | 90 | 10 MSE 1066.08 | 578.84

7 35 10| 90 | 90 | 10 | 60 ‘ 80 1064.29 | 664.29

Table 1: Experimental treatments.

Support | Left-wing candidate | Right-wing candidate
density c.d.f. density c.d.f.
52 0.5529 0.5529 0.0919 0.0919
53 0.1048 0.6577 0.0117 0.1036
54 0.2295 0.8872 0.0409 0.1445
55 0.0000 0.8872 0.0000 0.1445
56 0.0887 0.9759 0.0225 0.1670
57 0.0000 0.9759 0.0000 0.1670
58 0.0229 0.9988 0.0117 0.1788
59 0.0012 1.0000 0.0000 0.1788
60 0.0000 1.0000 0.8212 1.0000

Table 2: Treatment 6.

percentage of votes received by each candidate was not known with certainty due to the
existence of some uncertainty about voters’ preferences.

Subjects were also informed about the preferred location on the high street for each
of the two candidates. In order to get convenient payoff values in the lab, we applied
a linear transformation adding, first, a positive constant of 90 to the loss function; and
then multiplying payoffs by 10. Subjects were told that they would receive a location
payoff corresponding to 900 minus 10 times the distance between their ideal location (6)
for the post office and the location actually realized. In addition, subjects were told that
winning the election would provide to the winning candidate an extra payoff of x - 10.2

The locations were chosen by typing in a number on the decision screen. A screenshot
of the interface is provided in Fig. 3. Before making their actual proposals, subjects
were provided with the opportunity to use an expected payoff calculator (top half of the
screen) in which they could enter several hypothetical locations for themselves and for
their opponent and calculate the associated own payoff. This calculator offered subjects
a convenient device for looking at the 101 x 101 payoff matrix, but it makes no recom-
mendation as how to play the game. There was no time limit for subjects’ decisions.

After all participants made their actual choices, in each round subjects found a feed-

20Note that we framed the experiment as a game of electoral competition, informing the subjects
about the two different motivations for the candidates, while avoiding potentially confounding political
left-right connotations. The reason for this framing is that we wanted to test precisely whether in an
election game as analyzed in the theory the subjects can learn to play the equilibrium strategies.
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Round
’7 1 outof 60

Own location Other'slocation Own Expected Paynfl

This is the expected payoff calculator. It allows you to try out different
combinztions of locations for the other candiclate and for yourself, with your
resulting expected payoff shown in the right-hand side box. These are just
irmaginary choices and you can try as many as youwant.

O location I:l
Other's lbcation I:l

[y

You are Candidate A.

Which location de you choose? l:l

~HELF
Please choose your location.

Whenyou are ready, please erter the "OK-button

Figure 3: Decision interface.

back screen with their chosen location, the location chosen by the other candidate, and the
resulting own payoff, denominated in points. Subjects were recommended to transcribe
the results of each round from the feedback window on a provided logsheet.

In each treatment there were 2 or 3 sessions, each comprising 60 rounds (elections).
At the beginning of each session, subjects were randomly and anonymously matched into
pairs. Within each pair, one subject was assigned the role of candidate A, whereas the
other played the role of candidate B. Subjects were informed that they would not know
who of the other people in the room they were paired with, and that matched pairs would
remain fixed for the entire session. They were also aware that their initial roles would be
swapped after round 30. This swapping allowed us to study some aspects of the learning
by the subjects, particularly the transfer of insights from one role to the other. It also
removed possible concerns about payoff asymmetries present in some of the treatments.

The experiment was carried out in the Spring of 2010 in the Centre for Experimental
Economics of the University of York. Subjects were recruited from a university-wide
pool of undergraduate and postgraduate students using Greiner’s (2004) Online Recruit-
ment System for Economic Experiments (ORSEE). The experiment was programmed and
conducted with the software Z-Tree (Fischbacher 2007).

Upon arrival, subjects were assigned to a computer terminal and they were given
a set of written instructions.?’ After reading the instructions, they were allowed to ask
questions by raising their hands and speaking with the experimenter in private. To ensure
that subjects understood the decision situation and the mechanics of payoff calculations,
all participants answered several computerized test questions. The experiment did not
proceed until every subject had answered these questions correctly. Subjects were not
allowed to communicate directly with one another, and they only interacted indirectly

21A copy of the instructions is available in a supplementary online appendix.

14



Treatment | Sessions | Subjects | Pairs Exchange rate Average payment

(GBP per 1000 points) (GBP)
1 3 26 13 0.60 19.80
2 2 20 10 0.60 19.80
3 2 20 10 0.50 21.00
4 2 20 10 0.45 21.30
5 2 20 10 0.60 19.81
6 2 20 10 0.40 24.56
7 3 30 15 0.40 24.85

Table 3: Overview of the experiment.

via the decisions they entered in the computer terminals.

Subjects were informed that the points accumulated throughout the 60 rounds would
determine, together with a given exchange rate, their monetary payoffs. A typical session
lasted approximately 2 hours. The average payment in each treatment, the exchange
rate, and the number of sessions, participants, and pairs are all summarized in Table 3.

6 Experimental Evidence

6.1 Equilibrium convergence

First, we look at the location choices of the Left and the Right players in the various
treatments, and we compare them with the Nash equilibrium values. The supplementary
online appendix displays disaggregated data on these variables for single periods, for
subintervals of the 60 periods, and for matching pairs.

Figure 4 shows for each treatment for which a PSE exists the per period median
location of the Left and the Right players, as well as the 95% confidence intervals. These
confidence intervals are determined as follows. Depending on the treatment, for each
period there are between ten and fifteen independent observations (pairs). Using these
observations as the unit of analysis, for every possible value m between 0 and 100, we
test the null hypothesis (two-sided binomial test) that m is the median, i.e., that the
probability to observe a location choice below m equals the probability to observe one
above m. The alternative hypothesis is that the median has either a lower or a higher
value than m, i.e., that these probabilities are not equal. For any given value m, the null
hypothesis is rejected if there are too few or too many observations on one side of m.

Two main conclusions emerge from the graphs. On the one hand, in Treatments 1 to
5 (Figs. 4a-4e) not only the median locations converge to the equilibrium values, but also
the 95% confidence intervals shrink over time. On the other hand, in Treatment 7 (Fig.
4f) with one-sided differentiation, although the median locations of the Left and the Right
players converge to the equilibrium, the 95% confidence intervals of both players tend to
be skewed towards the center of the policy space. This suggests that although most of
the players behaved in the lab as the theory predicts, some Left as well as some Right
players deviated and they tended to stay towards the left of the theoretical predictions
and closer to the center even after 60 periods of play.
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(c) Treatment 3: z} =z} = 50.

Figure 4: Median locations and 95% confidence intervals.
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Figure 4: Median locations and 95% confidence intervals (continued).
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As to Treatment 6, notice that this case is different because the unique Nash equi-
librium of the game is in mixed strategies. Therefore, besides the median locations of
the Left and the Right players, in Figs. 5a and 5b we also display for each period the
minimum and the maximum values of their locations, and we compare these values with
the theoretical lower and upper bounds of the MSE support.

We find that the median of the Left (resp. Right) players converges to 55 (resp. 60),
which is close to (resp. coincides with) the median location of the MSE (52 and 60, for
Left and Right players respectively). Moreover, the pictures show that the minimum and
the maximum locations chosen in the lab approximate the bounds of the MSE support,
which ranges from 52 to 59 for the Left player, and from 52 to 60 for the Right player.

100 100
90 4 90 +
80 - 80 -
Left median
c 5 min.
% = max.
8 H = = = support MSE
= = = support MSE
10 -
0O+ rrrrrrrrr T
31 36 41 46 51 56
period period
(a) Median, minimum and maximum locations of the Left players.
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0

31 36 41 46 51 56

period

period

(b) Median, minimum and maximum locations of the Right players.

Figure 5: Treatment 6.

Since the median and the support measure just some aspects of the distributions,
to further assess the differences between the empirical and the theoretical distributions,
we apply the Kolmogorov-Smirnov test, considering for each period ten independent
observations for the Left players and ten observations for the Right players. The test
statistic, denoted by D, represents the maximum deviation between the empirical and
the theoretical cumulative distributions. The null hypothesis is that these distributions
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are identical. The alternative hypothesis is that they are not the same. The critical
values to reject the null hypothesis at 5% and 10% significance levels are, respectively,
0.410 and 0.368 (see Siegel 1988), with values of D above the critical values leading to
the rejection of the null hypothesis.

1.00 1.00

Left
Right
== =10%CV
5% CV

0.75 0.75 4

B VA /\/\/'\V/\/\ /\“\ " /\W /\ AA _/__\K/\\L/'\ /

max. deviation D

025 | 0.25 -

0.00 +—+—rr+r T T T T T T T T

period period

(¢) Maximum deviation from the cumulative equilibrium distributions in each period.

Figure 5: Treatment 6 (continued).

For each of the 60 periods separately, Fig. 5c¢ shows the test statistic D for the Left
and the Right players as well as the critical values (CV). As we see, we cannot reject the
null hypothesis in most of the periods for the Right players. Specifically, using the 5%
critical value, the MSE distribution cannot be rejected in 27 of the first 30 periods, and
28 of the last 30 periods. For the Left players, however, the picture is somewhat different.
Still at 5% significance, the MSE distribution cannot be rejected in 11 periods in the first
half of the experiment, and 15 periods in the second half.

In Figures 5d and e we continue the analysis of Treatment 6, presenting the empirical
cumulative distributions for the 60 period interval as a whole and for a number of dif-
ferent subintervals. In conformity with the theory, the graphs show that the cumulative
distribution of the Left players first-order stochastically dominates the distribution of the
Right players. But when the Kolmogorov-Smirnov test is applied to these subintervals of
the 60 periods (see Fig. 5f), we see that the null hypothesis of the empirical distributions
being indistinguishable from the MSE distributions must be rejected in every single case.
This means that the empirical distributions of the Left and the Right players are indeed
statistically different from the theoretical ones.

The question, then, is how substantial these differences are. To answer that question,
in every period we take the empirical distribution of the ten Left (Right) players, and we
compute for each of these players how many locations they would need to move to reach
the MSE distribution (allowing for fractions of players). To do this, we only stretch,
squash and shift the empirical distribution, thus preserving the order of the location
choices. That is, if player ¢ had chosen a location smaller (greater) than player j, then
after all moves have been made to reach the MSE distribution, player ¢ still has a location
smaller (greater) than or equal to player j.

Once the number of locations each player would need to move to reach the equilibrium
distribution has been found, in any given period we take the average number of moves
of the Left and the Right player in each matching pair as the distance between the
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Figure 5: Treatment 6 (continued).

empirical and the theoretical distributions. This provides for each period ten independent
observations for this distance. Figure 5g shows that the median distance as well as the
95% confidence interval diminish over time, and that in the last subinterval, i.e., in periods
51-60, on average the median distance to be moved is only 2.0 locations. This means that
although the empirical distributions of the Left and the Right players are statistically
different from the theoretical ones, these differences are relatively small.

Up to this point we focused our analysis of the experimental data on a comparison
with the Nash equilibrium predictions.?? Interestingly, in some treatments the Left and
Right players are predicted to converge to the same location, whereas in others the
equilibrium predictions for Left and Right players are different. Therefore we now turn

22We also considered Quantal Response Equilibria (QRE). For each treatment we estimated the QRE
choice intensity parameter by minimizing the error of the QRE strategy profiles with the empirical
distribution observed in periods 41-60. Using this free parameter we obtain errors for the QRE that are
only marginally below those for the Nash equilibrium predictions, and this slightly better fit is achieved
by using widely different choice intensity parameter values across treatments.
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max. dev. D critical values

Left Right 5% 10%
1-10 0.59 0.26 0.14 0.12
11-20 0.38 0.16 0.14 0.12
21-30 0.50 0.26 0.14 0.12
1-30 0.37 0.22 0.08 0.07
31-40 0.33 0.25 0.14 0.12
41-50 0.37 0.23 0.14 0.12
51-60 0.37 0.17 0.14 0.12
31-60 0.35 0.21 0.08 0.07
1-60 0.35 0.21 0.06 0.05

(f) Kolmogorov-Smirnov test.
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Figure 5: Treatment 6 (continued).

to a comparison of the positions of the Left players with the positions of the Right players.
For each treatment and each matching pair, we compute the average position of the Left
and of the Right players in different intervals. Thus, depending on the treatment, for each
interval we have ten to fifteen independent observations, each of them being a matched
pair. We use the Wilcoxon signed-ranks test to assess whether we can reject the null
hypothesis that the position of the Left players is equal to that of the Right players. The
results (one- or two-tailed tests as indicated by H;) are shown in Table 4.

As we see, in each treatment where the Left players would be expected to be on the left
of the Right players (i.e., in Treatments 2, 4, 5, 6, and 7) this was indeed what happened.
Note that in Treatment 6, it can happen according to the MSE predictions that a Left
player chooses a location to the right of the Right player, because the supports of the
equilibrium distributions overlap. Nevertheless, for each of the intervals considered the
expected mean location for the Left player is to the left of that of the Right player.

In Treatments 1 and 3 the Left and the Right players were supposed to converge to
the same location. Nevertheless, the table shows that the position of the Left players
was often significantly to the left of that of the Right players in these two treatments.
Note that although statistically significant, these deviations were not widespread, as was
shown above in Figure 4 by the convergence of the medians to the Nash equilibrium. In as
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treat1 treat2 treat3 treat4 treat5 treat6 treat7

H, L=R L=R L=R L=R L=R L=R L=R

H, L<>R L<R L<>R L<R L<R L<R L<R
1-10 1% (<) 0.1% 1% (<) 0.1% 0.1% 0.1% 0.00%
11-20 1% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%
21-30 10% (<) 0.1% 1% (<) 0.1% 0.1% 0.1% 0.00%
1-30 1% (<) 0.1% 1% (<) 0.1% 0.1% 0.1% 0.00%
31-40 10% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%
41-50 no diff. 0.1% no diff. 0.1% 0.1% 0.1% 0.00%
51-60 10% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%
31-60 10% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%
1-60 1% (<) 0.1% 5% (<) 0.1% 0.1% 0.1% 0.00%

Table 4: Players’ median locations (significance levels for rejection of Hy).

far as there were deviations from the PSE in these treatments, they tended to be towards
the left for Left players and towards the right for Right players. This may be explained
by a bias induced by the subjects’ ideology, or by the out-of-equilibrium incentives.??

Finally, regarding the equilibrium payoffs, Table 1 shows that in the symmetric Treat-
ments 1-5, both players get equal payoffs. On the contrary, the asymmetry in the param-
eter values of Treatments 6 and 7 creates an asymmetry in the equilibrium payoffs as well,
with the more opportunistic Left player getting higher payoffs in equilibrium than her
opponent with lower office rents. One question, then, is whether this payoff asymmetry
materializes in the experiment as well.

treat1 treat2 treat3 treat4 treatd treat6 treat7
Left 552.2 550.6 704.2 788.2 545.9 1052.65 1027.92
Right 547.8 549.4 695.8 791.3 553.7 584.64 629.54
Ho L=R L=R L=R L=R L=R L=R L=R
H, L<>R L<>R L<>R L<>R L<>R L>R L>R
1-60 no dift. no diff. no dift. no diff. no diff. 1% (>) 1% (>)

Table 5: Players’ average payoffs (significance levels for rejection of Hy).

Table 5 shows for each treatment the average payoffs of the Left and of the Right
players over the 60 periods.?* We use the Wilcoxon signed-ranks test to assess whether
we can reject the null hypothesis that the payoff of the Left players is equal to that of
the Right players. The results (one- or two-tailed tests as indicated by Hj) show that
the null hypothesis of equal payoffs cannot be rejected in Treatments 1 to 5. Moreover,
as predicted by the theory, in Treatments 6 and 7 the payoffs of the Left players are
significantly greater than those of the Right players at 1% significance level.

6.2 Learning

Having studied the convergence of the subjects’ choices to the equilibrium, we now exam-
ine in which periods this convergence takes place. For each treatment, we distinguish the

231f the opponent chooses the PSE location, then deviating from the PSE towards a subject’s own
ideology leads to a less steep decline in payoffs than a deviation in the opposite direction.
24The average payoffs for each matching pair can be found in the supplementary online appendix.
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30 periods before the swapping of the roles and the 30 periods after the swap. We also
split these intervals into smaller subintervals of ten periods. For every matching pair, we
compute for each subinterval the average absolute distance from the Nash equilibrium,
and we test whether these distances are different in two specified intervals.

To do this, we use the one-tailed Wilcoxon signed-ranks test, distinguishing 1% and
5% significance levels. This is a non-parametric statistical test to assess whether there
is a difference in the median of two related samples. The only assumption made about
the underlying distribution is that these differences are independent observations from
a symmetric distribution. The null hypothesis is that the median difference between
the pairs of observations is zero. The alternative hypothesis is that the median of the
interval that comes later is lower than that of the earlier interval, reflecting the learning
and adaptive behavior of the experimental subjects.

The results are reported in Table 6. In each box, we compare the average absolute
distance in the intervals indicated on the left-hand side to those indicated at the top of
the box. Thus, if we consider for instance Treatment 1 (first box), we see that the average
absolute distance from the PSE is smaller in periods 11-20 (first column at the top) than
in periods 1-10 (first row on left-hand side) at the 1% significance level. For Treatment 6
we present two boxes: the first box (treat6a) shows the distance from the MSE support,
whereas the second (treat6b) shows the distance from the entire distribution.

First, we ask whether there has been a significant amount of learning over the entire
experiment. As the tables show, learning did happen since in every treatment the average
absolute distance from the Nash equilibrium is statistically significantly smaller in the
last ten periods, i.e., in periods 51-60, than in the first ten periods.

Second, we ask in which periods the average absolute distance actually decreases.
Looking at the main diagonal of the tables, it turns out that except in Treatment 7,
where it seems that learning happened between periods 11 and 20, in the rest of the
treatments learning took place mainly in the first ten periods (elections), which was also
the most active interval in terms of subjects’ use of the expected payoff calculator.?

Third, we ask whether players after swapping their roles between periods 30 and
31 succeed in transferring some of their findings from before the swapping to after the
swapping. The answer is largely affirmative as the distance from the Nash equilibrium is
smaller in periods 31-40 than in periods 1-10 for all treatments except Treatment 1.

Finally, we test whether the swapping as such led to an increase in the distance from
the NE right after the swapping. As we see in Table 7, in some treatments there is an
increase in the distance from the equilibrium if the intervals considered are 1 or 5 periods
before the swap, but not considering a ten period interval.

6.3 Comparisons between treatments

In Sections 6.1 and 6.2, we compared for each treatment separately the experimental data
with the Nash equilibrium values. We now perform a number of ‘comparative statics’

25These findings are confirmed by OLS regressions, where the position of the Left and the Right players
and the average absolute distance from the equilibrium are regressed against the inverse of time 1/t as the
only independent variable (see the supplementary online appendix). The analysis shows that almost all
coefficient are significant; and, in particular, the slope coefficients for the distance from the equilibrium
are significant and with the expected sign for all treatments.
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to periods:

treat1 11-20 21-30 31-40 41-50 51-60 31-60
1-10 yes (1%) yes (1%) no yes (1%) yes (1%)
from 11-20 no no no yes (5%)
periods: 21-30 no no yes (1%)
31-40 yes (1%) yes (1%)
41-50 no
1-30 yes (1%)
treat2 11-20 21-30 31-40 41-50 51-60 31-60
1-10 yes (1%) yes (1%) yes (1%) yes (1%) yes (1%)
from 11-20 no no no no
periods: 21-30 no no no
31-40 no no
41-50 no
1-30 yes (1%)
treat3 11-20 21-30 31-40 41-50 51-60 31-60
1-10 yes (1%) yes (1%) yes (5%) yes (1%) yes (1%)
11-20 no no no no
from 21-30 no no no
periods: 31-40 yes (1%) yes (5%)
41-50 no
1-30 no
treat4 11-20 21-30 31-40 41-50 51-60 31-60
1-10 yes (1%) yes (1%) yes (1%) yes (1%) yes (1%)
from 11-20 no no no yes (1%)
periods: 21-30 no no no
31-40 no yes (5%)
41-50 no
1-30 yes (1%)
treat5 11-20 21-30 31-40 41-50 51-60 31-60
1-10 yes (1%) yes (1%) yes (1%) yes (5%) yes (5%)
from 11-20 no no no no
periods: 21-30 no no no
31-40 no no
41-50 no
1-30 yes (5%)
treat6a 11-20 21-30 31-40 41-50 51-60 31-60
1-10 yes (1%) yes (1%) yes (5%) yes (1%) yes (1%)
from 11-20 no no no no
periods: 21-30 no no no
31-40 yes (5%) yes (5%)
41-50 no
1-30 yes (5%)
treat6b 11-20 21-30 31-40 41-50 51-60 31-60
1-10 yes (1%) yes (1%) yes (5%) yes (1%) yes (5%)
from 11-20 no no no yes (1%)
periods: 21-30 no yes (10%) [ yes (5%)
31-40 yes (5%) yes (1%)
41-50 no
1-30 yes (5%)
treat7 11-20 21-30 31-40 41-50 51-60 31-60
1-10 no yes (1%) yes (5%) yes (1%) yes (1%)
from 11-20 yes (1%) no yes (5%) yes (1%)
periods: 21-30 no no no
31-40 no yes (5%)
41-50 no
1-30 yes (1%)

Table 6: Decrease in the average absolute distance from the Nash equilibrium.
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to: to:

treat1 31-40 31-35 31 treat5 31-40 31-35 31
21-30 no 21-30 no
from: 26-30 no 26-30 no
30 yes (5%) 30 no
treat2 31-40 31-35 31 treat6a 31-40 31-35 31
21-30 no 21-30 no
from: 26-30 no 26-30 no
30 no 30 yes (5%)
treat3 31-40 31-35 31 treatéb 31-40 31-35 31
21-30 no 21-30 no
from: 26-30 yes (5%) 26-30 no
30 yes (5%) 30 yes (5%)
treat4 31-40 31-35 31 treat7 31-40 31-35 31
21-30 no 21-30 no
from: 26-30 no 26-30 no
30 no 30 no

Table 7: Increase in the average absolute distance from the Nash equilibrium.

tests across these treatments. For expositional convenience, all the pair-wise comparisons
are illustrated in Fig. 6, where a double arrow relating any two treatments is used to
indicate a direct statistical comparison between them.
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Figure 6: Overview of the comparisons between Treatments.

The comparative statics tests carried out here focus mainly on three variables: the
position of the Left players, the position of the Right players, and the average absolute
distance from the Nash equilibrium. In each treatment, we compute the average value of
these variables for different subintervals and for the whole session. We have, depending
on the treatment, between ten and fifteen independent observations, and we use the
robust rank-order test to compare the samples between two treatments, distinguishing
1%, 5% and 10% significance levels.?® The results found are reported in Table 8. Table

26This test statistic has the advantage that it compares the median of two unrelated samples without
making any assumptions about the higher moments of the distribution of the two samples. The critical
values are taken from Feltovich (2003).
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8a concerns the positions of the Left players, Table 8b the location of the Right players,
and Table 8c shows the average absolute distance from the Nash equilibrium.

Left treatments
periods 1v.2 2v.5 1v.5 2v.4 2v.3 2v.6 5v.7 6v.7
Ho L(1)=L(?2) L(2)=L(5) L(1)=L(5) L(2)=L(4) L(2)=L(3) L(2) =L(6) L(3) =L(7) L(6) =L(7)
H, L(1)>L(2) L(2)>L(5) L>LG) L@A<>LE4) LE2)<LE) L(2) <L(6) L(5) <L(7) L(6) <L(7)
1-10 5% 1% 1% no diff. 1% 1% 1% no diff.
11-20 1% 1% 1% no diff. 1% 1% 1% no diff.
21-30 1% 1% 1% no diff. 1% 1% 1% no diff.
1-30 1% 1% 1% no diff. 1% 1% 1% no diff.
31-40 5% 1% 1% no diff. 1% 1% 1% no diff.
41-50 1% 1% 1% no diff. 1% 1% 1% 10%
51-60 1% 1% 1% no diff. 1% 1% 1% no diff.
31-60 1% 1% 1% no diff. 1% 1% 1% no diff.
1-60 1% 1% 1% no diff. 1% 1% 1% no diff.

(a) Left players’ positions across treatments.

Right treatments
periods 1v.2 2v.5 1v.5 2v. 4 2v.3 2v.6 5v.7 6v.7
Ho R(1) =R(2) R(2) = R(5) R(1) = R(5) R(2) = R(4) R(2)=R(3) R(2)=RL(6) R(5)=R(7) R(6) = R(7)
H, R(1) <R(2) R(2) < R(5) R(1) < R(5) R(2) <> R(4) R(2) > R(3) R(2) <>R(6) R(5)<>R(7) R(6) < R(7)
1-10 5% 1% 1% no diff. 1% no diff. no diff. 1%
11-20 1% 1% 1% no diff. 1% no diff. no diff. 1%
21-30 1% 1% 1% no diff. 1% no diff. no diff. 1%
1-30 1% 1% 1% no diff. 1% no diff. no diff. 1%
31-40 1% 1% 1% no diff. 1% no diff. 1% (>) 1%
41-50 1% 1% 1% no diff. 1% no diff. 1% (>) 1%
51-60 1% 1% 1% no diff. 1% no diff. no diff. 1%
31-60 1% 1% 1% no diff. 1% no diff. 1% (>) 1%
1-60 1% 1% 1% no diff. 1% no diff. 5% (>) 1%

(b) Right players’ positions across treatments.

distance treatments
periods 1v.2 2v.5 1v.5 2v. 4 2v.3 2v.6 5v.7 6v.7
Ho d(1)=d(2) d(2) = d(5) d(1) = d(5) d(2)=d(4) d(2)=d(3) d(2) = d(6) d(5) =d(7) d(6) = d(7)
H, d(1) <>d(2) d(2)<>d(5) d(1)<>d(5) d(2)<>d(4) d(2)<>d(3) d(2)<>d(6) d(5)<>d(7) d(6) <>d(7)
1-10 no diff. no diff. no diff. no diff. no diff. no diff. no diff. 1% (<)
11-20 no diff. no diff. no diff. no diff. no diff. no diff. 5% (<) 10% (<)
21-30 10% (>) no diff. no diff. no diff. no diff. 5% (<) 10% (<) no diff.
1-30 no diff. no diff. no diff. no diff. no diff. no diff. 5% (<) 5% (<)
31-40 10% (>) no diff. no diff. no diff. no diff. 2% (<) 5% (<) no diff.
41-50 no diff. no diff. no diff. no diff. no diff. 2% (<) 10% (<) no diff.
51-60 no diff. no diff. no diff. no diff. no diff. 1% (<) no diff. no diff.
31-60 10% (>) no diff. no diff. no diff. no diff. 2% (<) 10% (<) no diff.
1-60 no diff. 10% (<) no diff. no diff. no diff. 5% (<) 5% (<) 10% (<)

(c) Average absolute distance from the Nash equilibrium across treatments.

Table 8: Differences between treatments.

First, to assess the impact on policy divergence of an increase in the electoral uncer-
tainty, Treatment 1 is compared with Treatments 2 and 5, respectively, and Treatment 2
is compared with Treatment 5. In each of these treatments, the ideologies and the office
rents remain constant, whereas the electoral uncertainty gradually increases, leading to
increasing policy divergence in theory. The results are shown in the second, third and
fourth columns of Tables 8a-8c. In conformity with the theory, in all cases and in every
interval the null hypothesis that there is no difference between the positions of the Left
(resp. Right) players across the treatments is rejected at 1% or 5% significance levels,
with the alternative hypothesis being in the direction predicted by the theory.
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As to the average absolute distance from the Nash equilibrium, the tests indicate no
significant differences in most of the intervals. However, looking at the whole session,
Treatment 5 appears to show less convergence than Treatment 2, albeit only at 10%
significance level. We conjecture that the reason could be that the equilibrium associated
with the parameter values of Treatment 5 (i.e., ] = 20 and %, = 80) is somewhat more
extreme than the one corresponding to Treatment 2 (i.e., 7 = 40 and 2}, = 60), and that
some of the subjects may have been concerned about choosing such extreme policies.?’

Second, by varying the ideologies, the comparison of Treatments 2 and 4 offers the
chance to see whether the two-sided differentiation effect present in Treatment 2 is inde-
pendent of the degree of ideological polarization 6z — ;.2 In conformity with the theory,
in every interval the null hypothesis that there is no difference between the positions of
the Left (resp. Right) players and between the average absolute distances cannot be
rejected at 1% and 5% significance levels.

Third, the issue of whether policy convergence is re-established as candidates become
more office-motivated is investigated by comparing Treatments 2 and 3. The results show
that in every interval the positions of the Left (resp. Right) players in Treatment 2 are
statistically different at 1% significance level from the positions of the Left (resp. Right)
players in Treatment 3, which is again consistent with the theory. Moreover, there are
no statistically significant differences in these two treatments with respect to the average
absolute distances from the Nash equilibrium.

Fourth, to assess the change in policy differentiation that results from raising the office
rents of one of the candidates while keeping the other constant, Treatment 5 is contrasted
with Treatment 7. The theory predicts no changes in the location of the Right candidate,
and a move of the Left candidate from the left-hand side to the right-hand side of the
median voter. The experimental results are mixed. On the one hand, in every interval the
positions of the Left players in Treatment 7 are statistically different at 1% significance
level from the positions of the Left players in Treatment 5. On the other hand, contrary
to the theoretical prediction, we find significant differences in the Right players’ positions
in several intervals, including the last 30 periods (at %1) and the whole session (at 5%).
The data show that the locations of these players in Treatment 5 tend to be more extreme.
Consistent with our previous results, convergence to the NE is also worse in Treatment
7 than in Treatment 5. In the whole session as well as in several subintervals, there are
significant differences (at 5 and 10%) in the average absolute distances from the NE, with
the distance in Treatment 5 tending to be smaller.

Fifth, we compare Treatment 6, in which there is no PSE, with Treatments 2 and 7,
to detect any significant variations in subjects’ behavior in the absence of a PSE. For a
start, comparing Treatment 6 with Treatment 2, we observe that the Left players in the
latter, in which office rents are lower, choose locations to the left of those in Treatment
6. For Right players we do not see a difference between these two treatments, which
seems related to the fact that the expected median in Treatment 6 is 59 whereas in
Treatment 2 is 60. Next, comparing Treatment 6 with Treatment 7, in which uncertainty
has increased, we see that there are no significant differences in the Left players’ behavior

2In our analysis of the experimental data we assume risk-neutrality of the experimental subjects.

28 According to the theory, given the assumption of Euclidean preferences, the only effect of the ideolo-
gies on the equilibrium policies is through expanding or contracting the region of policy differentiation.
Specifically, that region shrinks as the difference between the s gets smaller (i.e., with less polarization).
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(recall the expected median in the former is 53 and in the latter 60); whereas the Right
players, as predicted, choose locations more to the right in Treatment 7. Finally, although
with a small number of observations per period one cannot expect to hit the equilibrium
distribution exactly in Treatment 6, we see that in the first twenty periods the distance
from the equilibrium is nevertheless smaller in Treatment 6 than in Treatment 7.

Sixth, we study the effect of asymmetric office rents on the players’ payoffs, comparing
the payoffs of Treatments 2 and 6, and of Treatments 5 and 7. Table 1 shows that, as
the office rents for the Left player increase in Treatment 6 (resp. 7), his payoffs become
higher than in Treatment 2 (resp. 5). Moreover, the payoffs of the Right player become
higher than in Treatment 2 (resp. 5) as well. As was explained in Section 4, this happens
because as the more opportunistic player moves into the ideological side of his opponent,
this makes it more likely that he will win the election, offering an electoral advantage
that increases his payoffs. Simultaneously, his opponent is better off too because the
policy implemented gets closer to her ideology. This is the ideological advantage of the
relatively more policy concerned candidate, which offers her higher equilibrium payoffs.

treat2 v. treat6 treat5 v. treat?
Left Right Left Right
Ho L(2) = L(6) R(2) = R(6) L(5) = L(7) R(5) = R(7)
H, L(2) < L(6) R(2) < R(6) L(5) < L(7) R(5) < R(7)
1-60 1% 1% 1% 1%

Table 9: Players’ average payoffs (significance levels for rejection of Hy).

We use the robust rank-order test to compare the payoffs between these treatments
over periods 1-60, and to test ultimately the electoral and the ideological advantage
effects. As we can see from Table 9, introducing an asymmetry in the payoff parameters
led in all cases to differences in players’ payoffs that are consistent with the theoretical
predictions at 1% significance level.

7 Final remarks

This paper builds on the spatial literature of electoral competition, studying theoretically
and experimentally the set of Nash equilibria when candidates are interested in power and
ideology, but not necessarily in the same way. It provides a full characterization of the
set of Nash equilibria, showing how the equilibrium configurations depend on the relative
interests in power (resp., ideology) and the uncertainty about voters’ preferences. In ad-
dition, it examines the empirical content of these theoretical predictions through a series
of laboratory treatments. The experimental data show convergence to the equilibrium
values at the aggregate and at the individual levels in all treatments, and comparative
statics effects across treatments consistent with the theory. What is more, learning hap-
pens relatively quickly, especially if one takes into account that the experimental subjects
had no experience of and received no further information about electoral games.
Despite these positive results, and despite the fact that the model considered here
seems rich enough to pick up several interesting features of electoral competition that
had been overlooked in the literature, there are a number of issues that may require more
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attention in future work. First, the assumption of risk neutrality (with respect to the
distance |xr — 6;|), embedded into the assumption of Euclidean preferences of Section 3,
entails a loss of generality in the analysis. This is because in spite of being ideologically
different, risk averse candidates tend to move closer to each other and toward to the
center.?? We conjecture that the uniqueness of our equilibria and the different types of
equilibrium configurations identified in Section 4 might be a property of elections that
hold under a more general class of utility functions and electoral uncertainty. However, a
full analysis of this conjecture and a complete equilibrium characterization under different
conditions of preferences and uncertainty are beyond the scope of this paper.

Second, we noted in the experimental evidence that convergence to the Nash equilib-
rium is not equally precise across treatments, with the convergence being least precise
in the asymmetric treatments, i.e., when the two candidates have different motives. As
predicted, individual decisions were more noisy in the treatment with the MSE; and
matching the exact probability distribution seems a more demanding test of convergence
as well. But also in the asymmetric treatment with PSE, convergence was less precise
than in the symmetric treatments. It will be interesting to investigate the causes of this
difference in the degree of convergence across treatments, and to find out, for example,
whether this observation that there is less convergence in the asymmetric treatments is
due to the fact that the theoretical predictions implied one-sided policy differentiation,
or just to the fact that these equilibria are not symmetric around the center. Further
experiments may shine some light on this matter.

Third, an important element of our experimental design is the expected payoff calcu-
lator. The calculator provided information about the available payoffs. Such information
is usually presented in the form of a payoff matrix in experimental settings. We had
not made the entire 101 x 101 payoff matrix available for practical reasons. Instead,
the calculator allowed the subjects to observe snapshots of the underlying payoff matrix.
However, this did not create any bias, in the sense that it did not induce the subjects to
examine any particular areas of the strategy space. Subjects had to enter explicitly the
location choices for themselves and for their opponents, and the calculator only provided
factual information about the corresponding payoffs, without suggesting any kind of rec-
ommendation. Having said that, it may be interesting to consider alternative designs in
this type of electoral games, in particular designs in which information about the strategic
environment is conveyed in a different way to the subjects.

Finally, as is conventional in the literature, our experimental design treats voters as
artificial actors. It would be interesting, however, to organize an experiment in which the
voters are experimental subjects as well. This has been done in some of the early papers
about the median voter outcome, and it should be easier to implement nowadays thanks
to the communication tools (such as smartphones, iPads, etc.) currently available. This
may be interesting from a methodological viewpoint, as well as to assess related issues
not modeled in the current work, such as private polling and voter turnout.

29Indeed, given the position of one candidate, the rival chooses a less differentiated platform when it
is risk averse because it must compensate a higher utility loss due to the risk aversion with a rise in the
probability of winning.
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Supplementary material

The online version of this article contains additional supplementary material in the form of
disaggregated data as well as an econometric analysis corresponding to the experimental
section of the paper. Please visit http://dx.doi.org/10.1016/j.geb.201x.xx.xxX.
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A Appendix: Proofs

To simplify the notation, and given that the term wg,(x;), i # j, of candidate i’s payoff
function II; defined in (1) and (2) does not affect i’s optimal choices, in the rest of this
Appendix we work with the linear transformations m;(z;, x;) = IL;(z;, x;) — ug, ().
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Proof of Lemma 1. Let (27}, 27%) be a PSE for G. To see that p(x7,2%) € (0, 1), assume
without loss of generality that p(z},2}) = 1. Then, candidate R’s equilibrium payoff is
mr(x},x}) = 0; and it would be possible for R to increase its payoft by deviating to zj
(which would result in a payoff equal to xg/2 > 0), a contradiction.

Next, suppose that 7 < 0. If 23 > 01, it would be possible for L to increase
its payoff by choosing 6, because 7 (z},x5) = p(z;,x5) - [x] + 25 — 20, + x1] <
p(0r,2%) - (o — 0p + x1] = 7(0r,7%).3Y Alternatively, if x5 < 0, then: (i) L would
profitably deviate to ¥, if x5 < x7, because mp (x5, x%) = p(a],a%) - [¢5 — o8 + x1] <
xr/2; (ii) R would find it beneficial to move to z} if x3, < 27}, because mg(z},x%) =
1 — p(ay,z3)] - [o5 — x5 + xr) < xr/2; and (iii) L would do better by playing 60, if
xy, = a7, because x1/2 < p(0r,x%) - [0 — x5 + xz] = 70.(0L, x5;,). Therefore, x5 > 0.

Assume, by way of contradiction, that 7 = 6. Then: (i) if 2%, = 0, candidate R can
benefit by moving its proposal to zgr = 01, + J, with § > 0 small, because wg(z},xg) =
[1—p(z},zr)]- (X +9) > xr/2 = mr(z], 2}); (ii) if 2, > 01, candidate L would be able
to increase its payoff by selecting x; = 01 + €, which would result, given the assumption
on 4 and for € > 0 small enough, in a positive payoff change [p(zr,z5) —p(Or, z})] - [25 —
O + x| — € - p(xr, x%);3 finally (iii) if 2% < 07, R would find it profitable to deviate to
1, because mg(z},xy) = [1 — p(a}, zR)] - (25 — 2] + xr) < xr/2. Hence, from (i)-(iii),
we conclude that 27 > 6. A similar argument establishes that =}, < 0.

To complete the proof, it remains to be shown that 7 < x}. Assume, by way of
contradiction, that x7 > a%. There are three cases to consider.

Case 1. If 2}, € [0,0), candidate L can deviate to 61 (recall that z] > 6), which
results in a payoff change equal to 71 (01, x5) —mr(x], 25) = [p(Or, 25%) —p(z}, x5%)] - [0 —
T+ xo) +play, at,) - (23 —0L) > 0, contradicting that 2} is candidate L’s best response
to 3, (again p(0r,x%) — p(a}, x%) > 0 because of the monotonicity of p(-)).

Case 2. If 23, € [01,1/2), then L can deviate to x, = z}, + €, € > 0, which results in a
payoff change equal to 77 (v, 2}) — w1 (2}, 25) = plrz, 73) - (xi — ©) — p(eh o) - [xz —
(3 — x7,)]. By the properties of p(-) mentioned before, p(zr,x%) > p(x},x%,). Thus, for
¢ small enough, 7 (xp,z}) > m(z],x}), implying that L’s deviation is profitable and,
consequently, that (z7],x%) is not a PSE; a contradiction.

Case 3. Finally, if x5, € [1/2,0R), then p(z},x%) < 1/2; and L can achieve a payoff
greater than wp (x5, 2%) = p(ay,xy) - [xo — (¢ — x5)] by choosing %, (which actually
offers a payoff of x/2), contradicting the initial hypothesis that (z7},x%) is a PSE.

Therefore, from Cases 1-3, we conclude that 27 < 2%, as required. |

Proof of Lemma 2. Let the profile (x},2%) € X?, with 2} < 2%, be a PSE for
G. By Lemma 1, 0, < 2} < z}, < 0r and p(z},2}) € (0,1). Since the prob-
ability function p(-) is continuous at (z},x%), there must exist ¢ > 0 sufficiently
small such that, for all (zp,2p) € Re(z}) X R (z%), 0, < zp < xp < Or and

30Bear in mind that p(fr,z%) > p(z}, %), since for any two platforms z;, < zg (resp., z, > zg),
p(zr,zR) is non-decreasing (resp., non-increasing) in ;, for all i = L, R. We use this property of p(-)
several times in the rest of this proof.

31Note that p(fr, %) € (0,1) because by hypothesis 2} = 6. Hence, p(zr,z5) — p(0r, x%) > 0.
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p(rr,xr) € (0,1), where R.(x}) = (z] — €, 2] 4+ €), with i = L, R. Thus, for any profile
(xp,zR) € Re(x}) X Re(x%,), the left-wing candidate’s payoff function can be written as
mr(zr, vr) = p(Tr, TR) - (TR — 7L + X1), Where p(zp,1R) = 1/2+ (7, + 25 — 1)/48.

Fix o3, € R.(x}) and consider candidate L’s best response to x}, over R.(x} ), which
is obtained by solving the problem max,, cg, (21) T(7L, Tk). The first-order condition for
this problem provides a stationary point 1/2 — 4 x/2. Note that this point actually
maximizes 7, (-, 2}) over R.(z} ) because by hypothesis, for all x, € R.(x}), mp(z},25) >
mr(xp, a%); ie., mp(-, 25) has an interior maximum on R (z}). Moreover, since 7 (-, z75)
is strictly concave on R(z}), with 0*mp(xy, 2%) /022 = —1/28 < 0, we have that =} =
1/2 — B+ x1/2, as required. A similar argument shows that z3 = 1/2 + 8 — xg/2.

Finally, the condition x} > 0, (resp., x5, < 0g) is obtained from the early assumption
about (3, (namely, 0 < § < min{1/2—0,+x1/2, 0r—1/2+xr/2}), whereas the condition
Xz + Xr < 45 follows from the initial hypothesis, according to which z} < z7. Routine
calculations also show that xr + xr < 40 implies that (z} +2%)/2 € (1/2—38,1/2+ 5),
so that p(z3,z3) € (0,1) as needed. |

Proof of Proposition 1. To show sufficiency, fix the strategy profile (z7},z%) =
(1/2,1/2), where both candidates propose the median voter’s ideal point and receive
a payoff of m;(2},2%) = x:i/2. Consider first a deviation for the left-wing candidate to
any platform 2 € (0;,1/2). For convenience, let’s write 2, = 1/2 — §, with § > 0.

Routine calculations show that 7z (z7,2%) = % — % (% - i—é) 0 > xr/2 if and only
if 0 < 28 — xr. However, the last inequality requires 6 < 0 because by hypothesis
Xz > 28. Hence, mp(2),x%) < mp(z},z}). A similar argument proves that for any
¥y € (1/2,0R), mr(x}, o) < mr(x},a}). The careful reader should also check at this
point that any deviation above 1/2 or below 6, (resp., below 1/2 or above fg) cannot
raise candidate L’s (resp., R’s) conditional payoff any further, proving in that way that
the profile (x7,2%) = (1/2,1/2) is a PSE for G.

To show necessity, fix a PSE for G with the property that =} = 23 = 2z* for some
z* € X. If z* > 1/2, then candidate L can profitably deviate to 1/2, because p(1/2,z*) €
(1/2,1] and therefore 7 (1/2,2*) = p(1/2,2*) - [z* — 1/2 4+ xz] > 1/2- xp = 7 (", z¥).
A similar reasoning shows that candidate R can profitably deviate to 1/2 if z* < 1/2.
Therefore, z* = 1/2.

Next, suppose that xy; < 23, which in turn implies that 1/2 + x1/2 — 8 < 1/2. Since
p(+) is continuous at (1/2,1/2) and strictly positive, there must exist 6 > 0 such that for

all 2, € (1/2—6,1/2], p(xr,1/2) > 0 and 7y (g, 1/2) = (% + ”4;;/2> (1/2 =z, + x1)-
Simple calculations show that 7 (-, 1/2) achieves a unique maximum over (1/2 — §,1/2]
at £, = 1/2 4+ xr/2 — B, implying in particular that 7 (Z.,1/2) > 7.(1/2,1/2), a
contradiction. Hence, x; > 25. A similar argument proves that xz > 25. |}

Proof of Proposition 2. To prove necessity, suppose G has a PSE with the property
that 27 < 1/2 < z},. By Lemma 2, 2} = % — B+ % and x = %+B — &%, Therefore,
using the initial hypothesis, it follows that y; < 28 for all i = L, R.

To show sufficiency, fix the equilibrium candidate (27}, z73,) = (% — B+ 2, % +B8—2z).
By the initial hypothesis, i.e., x; < 26 for all ¢ = L, R, it follows that z} < 1/2 <
T, xo + xr < 46, and p(z},z5) € (0,1). By the assumption on 5, 0, < z} and
2R < Or. Applying the reasoning of the proof to Lemma 2, for some € > 0 such that
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R(77) = (27, — 6,27 +¢€) C (0p,7%), we have that 2] = argmax,, cp.(z1) 7L(L, T}),

3 * * _ 2 * * * *
with 7 (27, 2%) = 4% + (B — ) + %- Thus, 7 (2], 2%) > x1/2 = T1(Th, TR)-

Consider a deviation for the left-wing candidate to any platform 2 € [0, 1] different
from z7 and x3. On one hand, if p(2},2%) = 0, then (2}, 2%) = 0 < 7p(a}, z3),
implying that the alternative policy does not raise L’s payoff. On the other hand, if
p(a], x5) € (0,1], two cases are in order:

Case 1. Assume 27, € (a3,1]. Then: (i) if p(2},z5) = 1, it must be the case that
1 — (2} +23)/2 > 1/2+ [, which leads to the contradiction () —1/2) 4+ (5 — xr/2) <
—2, since the left-hand side of the previous inequality is strictly positive and the right-
hand side is smaller than zero; alternatively (ii) if p(z), z5) € (0,1), then 7 (2}, 23) =

(% + 1_IA:LB_J:}}) (x5, — 2], 4+ xz)- Recall that 1 — 2, — 23, <0 and z}, — 2}, < 0, because
x> ¥y > 1/2. Therefore, mp (27, 25) < 1/2- x1p < mp(z],x%,), implying once again that

candidate L’s deviation to z’ is not beneficial.

Case 2. Suppose 2} € [0,z%). Then: (i) if p(z},25) = 1, it must be that (2] +
x5)/2 > 1/2 + f and, consequently, that 2, > 1/24 8 + xg/2 > %, which supplies the
desired contradiction (because by hypothesis 2/, < z7},); alternatively (ii) if p(a/, 2%) €
(0,1), then: (ii.a) if 0, < 2} < x%, candidate L’s deviation payoff is 7y (27, z3) =
<% n IIL+4I5E_1) - (2% — 2%, + x1); and, given that the function f(x.) = <% + xﬁfg"_l)
(x5, —xr+ 1) is strictly concave on x, € [0, x},) and has a maximum at 1/2— 3+ x./2,
we conclude that 7 (2], 2}) < m(2}, 25); finally (ii.b) if 0 < 2/, < 4y, it is easy to show
that (a7, 25) < mp(0r,25) < wo(x},x}), where the last inequality follows from the
argument in (ii.a).

Summing up, Case 1 and Case 2 above, together with the fact that = (x},z}) >
(2%, k), prove that x7 = argmaxy, cjo1] 7r(2r, ;). A similar reasoning also shows
that o}, = argmax, ,cj01] Tr(27, r). Therefore, the profile (z7,2%) is a PSE for G. |1

Proof of Proposition 3. We prove the proposition for 1/2 < 27 < z%. The argument
for x; < x} < 1/2 is similar. First, assume the election game G has a PSE with the
property that 1/2 < 23 < z3,. By Lemma 2, 25 = 1/2 — 4 x1/2 and x1 + xr < 40.
That implies that X > 3 > % and, therefore, that xg < xr. Using simple algebraic
manipulation, it also follows that

XL+ XR < XL—XR VXR'XL <&

4 4 * 2 2 3)

Suppose, by way of contradiction, that 23 < (xr — x&r)/2 + (x& - xz)"/%. By def-
inition, 7r(z},2%) = 8 — (xe — xr)/2 + (x2 — xr)?/168. Fix any zp € [1/2,27).

. s % . % i +xr—1 x
Candidate R’s payoff at (x5, xg) is mr(z],2R) = <% + L+46R ) (xgr — 2} + xr). There-
fore, lim,, -+ wr(z),TR) = %. Notice that the difference between mg(z7},2}) and

limg g mr(z},xR) gives rise to a second-order polynomial equation in [, namely,
4% — 28(xr — xr) + (xr — Xr)?*/4 — xr - Xgr, which has the following two roots:

XL_XE \/x;;ﬁ Therefore, for any 5 € <XLZXR, XLZXR \/Xgﬁ» we have that
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mr(2y,2R) < limg, ,—.: mr(27,7R), contradicting that the strategy profile (27, x%) is
by hypothesis a PSE of G. Hence, 23 > (xz — x&r)/2 + (xr - xz)"?.

To carry out the second part of the proof, suppose (xz.—xr)/2+(xr-xz)"/? < 28 < X1,
and consider the equilibrium candidate (z},2%) = (5 — 8+ 2,1 + 3 — X&), By the
initial hypothesis and (3), we have that x; + xg < 4. Therefore, since by assump-
tion 25 < xy, it follows that xg < 25 and, consequently, that 1/2 < z} < a7
and p(x,z}) € (0,1). Moreover, using the argument of the proof to Proposition 2,
Ty = argmaxy, cjo,1] (L, ). To show that o} = argmax, ,cjo1] Tr(27, Tr) we proceed
as follows. First notice that, by applying the reasoning of the proof to Lemma 2, it can
be shown that for some e > 0 with the property that R.(z};) = (¢, —€, 2, +¢€) C (xL, Or),

s+0—2R = argmax, ,ep, (o )WR(xL7$R) with 7r(27, 2%) = 3+ +(6— XL)+7(XR16§L Sec-
ond, to prove that WR(IL,IR) > &, observe that £ < X2 because x1,/28 > 1. More-
over, since limg, -, mr(z},xR) = xigm’ it also follows that limg gt mr(z}, TR) > A

Thus, the desired result i.e., mr(x},xy) > AL is obtained using the fact that, by hypoth—
esis, limg, ,—,» Tr(77, xR) § Tr(z}, Th). The rest of the proof follows the argument of
the proof to Prop. 2 and is left to the readers.? |

Proof of Proposition 4. Under the hypothesis of Prop. 4, i.e., xg/2 < 8 < Y, the
existence of a MSE for the election game G = (X, I1;) follows from the following argument.
First, by Prop. 1, G does not possess a PSE with z; = xr because yg < 28. Second,
notice that 8 < B¢ implies x1/2 > B (because BY < x1/2). Thus, by Props. 2 and 3,
there exists no PSE with x; < xg either. But that means, by Lemma 1, that G does not
possess an equilibrium in pure strategies. Finally, remember that by Prop. 3 in Saporiti
(2008), the mixed extension of G is better reply secure; thereby G must admit a Nash
equilibrium where at least one candidate randomizes over two or more pure strategies.

Denote by (u},u5) € A? a MSE of G, and let z; (resp. T;) be the lower (resp.
upper) bound of supp(u}). That is, let z;, = inf(supp(p)) and T; = sup(supp(u;)), with
1 = L, R. The rest of the proof is organized in a series of claims.

Claim 1 supp(uy,) C [1/2,0g].

Claim 1 is intuitive and follows from the fact that each location xx smaller than 1/2
(resp. greater than 6g) is strictly dominated for candidate R and, therefore, it’s never
played with positive probability in a MSE. For the the sake of brevity, the details of the
proof are left for the reader, and they are available from the author upon request.

Claim 2 pj(z;) < 1.

Proof Suppose not. Two cases are possible. First, if x; < Z.(5,xr), then R’s best
response to z; is zf = 1/2 + 8 — xr/2. However, the profile (z,, %) cannot be an
equilibrium because under the hypothesis of Prop. 4, G has no equilibrium in pure
strategies. Second, if Z1(8, xr) < z; < 0g,*® then R’s best response is to undercut L’s
location by choosing a position just below z; , which is not well defined because the policy
space is a continuum. [

32 A complete version of it is available from the authors upon request.
33Given that supp(uy) C [1/2,0g], it’s never optimal for L to play above 0.
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Claim 3 Ty S TR = [L’E

Proof To start, recall that a strategy profile (uj,u}) is a MSE of G if and only if
for each candidate i # j, (1) Ui(x, ;) = Ui(y, ;) for all 2,y € supp(y]), and (2)
Ui(z, 1) > Ui(y, p;) for all @ € supp(y;) and all y & supp(u;).

To prove the first part of Claim 3, note that if T, > Tg, then candidate L can do
better by undercutting Tz from above, since for any € > 0 such that Tp < T — €

1 l—zp—=
UL(Tp, pup) :/ <§+$) (xp —Tp+x1) - dpg <

TR

1 1—wp— (T —
< /m (5 T 45(% €>) (2r — (Tp — €) + xz) - dpp = UL(Tr — € pp).

To show the second part, i.e., that Tp = 27, consider two cases.

Case 1. Suppose Tj, < Tr. On the one hand, if 7, > 2}, then T > z}. Consider any
e > 0 small enough such that 7, < Tr — €. Routine calculations show that

€
Ur(py,Tr —€) — Ur(uy, Tr) = 5 (2Tr +xr — 28— (1 +¢)),

which is strictly greater than zero because Tg > 1/2 + 5 — xr/2 = z}, a contradiction.

On the other hand, if T;, < %, then for any x;, € supp(u}), Tr(xr,Tr) < wr(zL, 25),
with strict inequality if Tr # 7, (recall Tr(x, ) has a unique maximum at x7, above
the diagonal). Integrating with respect to uj, we have that Ur(uj,ZTg) < Ugr(u}, z5),
with strict inequality if Tp # x%;. Hence, since Tp € supp(u},), it must be the case that
Tr = Tp.

Case 2. Suppose T, = Tp = 7. First, consider the case in which 7 < z},. For any z;, €

[2,,T), Tr(xL,T) < mr(xL,2}). Integrating with respect to p} and adding u} (%) - xr/2
to both sides, we have

/ wa(en, T) - duy + 13 () X < / m(en ) i+ (@) ()
T FT T FT

-~

:UR (:u'z 75)

. 2
Notice that (T, z}) = % (%T + XTR) > 2. Therefore,

* * * (= — % * * * [ XR
/ 7& TrR(TL, ¥R) - duy, + pp(T) - TR(T, 7R) > / Tr(TL, TR) - duy, + pi(T) - o (5)
T FT

T #T

(.

~~

:UR (Mz 750})

with strict inequality if u () # 0. Thus, combining (4) and (5), we get that Ugr(uj, z3,) >
Ur(u;,T), contradicting that T € supp(u}).

Second, consider the alternative case in which & > z7%. Since p} has at most countably
many atoms and X is dense in the reals, assume without loss of generality that for some
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€ > 0 small enough, uj (T —¢€) = 0. Then,

= /1 1—a; — (T—¢
Unlyi 7= | (§+ il ))-<f—e—xL+xR>-duz+
Zy,

Ap

i@ (54 755) o)

and

R B R A
Unim) = [ (54 05T ) @k ) i
ELE 1 1 T ()
—xL — — * * (= XR
+/E_E<§+T)'($—36L+XR)'dML+/~LL(SC)'7

Note that the difference between the first term in the right hand side (henceforth,
RHS) of the expression in (6) and the first term in the RHS of (7) is equal to

@ xn 28— (140 [ T ®)

<L

€
@ .

which is strictly positive for € < T — x} because by hypothesis T > x7%.
Let’s now consider the second term in the RHS of (6) and the second term in the RHS
of (7). The difference between these two terms is equal to

-

>0

r—e€
>XR

Similarly, the difference between the last terms in the RHS of (6) and (7) is

o 2m—ean XR

wy(T) - §+T '(XR_E)_7 (10)
0
>

Note that (9) and (10) are both continuous in e. Moreover, (9) is zero for € = 0,
thereby it must be approximately zero for ¢ > 0 arbitrarily small. In addition, the
expression in (10) is strictly positive for e = 0 if u} (T) # 0 (otherwise, if p} (Z) = 0, then
we can just ignore these terms); and by continuity it must be nonnegative for e sufficiently
small. Hence, combining all this with (8), we conclude that for some ¢ > 0 small enough
Ur(uj, @ —¢€) > Ur(p}, @), contradicting that T € supp(uy,). Therefore, T = z5,. ||

Claim 4 zp,=2;, =2z > 1/2.
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Proof Assume, by way of contradiction, zy # z;. On the one hand, if x5 < z;, then by
Claim 1, 1/2 < z; < g, and therefore for any € > 0 such that xp+¢€ < z;, Ug(p},25) <
Ur(i},xp + €), because x5 + € raises R’s probability of winning the election and, at the
same time, it’s closer to . But that contradicts that by definition z, = inf supp(u},).

On the other hand, if z; > x;, then we proceed as follows. Consider any € > 0 such
that z; + € < z. Routine calculations show that

Unlay + € i) = Unlegs i) = 35 (1= €= 220+ o = 26) (1)
and, since by the definition of MSE we have that Up(z; + €, u5) < Ur(zy, 1}), it follows
that ; > (1 —€)/2 — B + x1/2 and, therefore, that 2, > 1/2 — § + x1/2, where the
latter is obtained using the previous hypothesis that x, > z; and an e sufficiently small.

Fix any Zp € supp(uf). For each z;, < Zg, the conditional payoff function
mr(xp,2r) = [1/2 + (vp + 2r — 1)/468](Tr — z1 + xz) has a unique maximum at
x; = 1/2 — B+ x1/2. Therefore, np(z},2r) > mp(xy,Tr), with strict inequality if
x; # x}. Integrating with respect to uj,, we have UL (x}, uy) > Ur(zy, p15,), with strict
inequality if x; # 2. Hence, it must be that z; = z7.

Recall that by hypothesis z > z,; and that by Claim 2 (resp. Claim 3) Tp > z,
(resp. xj, = Tr > Tr). Moreover, it’s easy to show that xp < 7.4 Consider now an
€ > 0 such that z; < xp — €. Then,

o, L/l 1-7T,—x _ N v — X
UL(Tp,up) = / (5 + #) (Tr —Tp + Xx1) dpp + MR(SCL)7L+
il (12)

o] §L+$R—1 _
gL TART - _ du*
+/wL <2+ 18 )(IR T+ X1) divy,

and

i Ll mp—et+ar—1 .
nten e = [ (5+ 5 on - en - )+ ) diit
LR

1 gR_EZ—ﬁfL_l)(fL—(ﬁR—E)—FXL) L (13)

TR (] xp—e+ap—1 .
—I—/ (—+_R R )(xR—(gR—e)—I—XL)duR.
T

2 48

Notice that the difference between the first terms in the RHS of (12) and (13) is
negative, since for all zp € [z,7;) and all € > 0 small enough, (i) 3 + 1—%75—” <

%+%§R_1,and (11) xR—§L+XL<JJR—(£R—E)+XL.

310therwise, for any &g € supp(u}), 7r(z,2r) > 71 (TL, £R), and integrating with respect to u} we
would find the desired contradiction, i.e., Ur(zy, u5) > UL(TL, u5)-
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Similarly, the difference between the second terms is non-positive; that is,

£ =y | XL 1 rp—e+T,—1| _
1r(TL) o §+ = 43 (TL — (g —€) +xu) | <0,
N————
~~ d >0
>0

with strict inequality if p5(ZL) # 0. Finally, the difference between the last two terms in
the RHS of (12) and (13) is also smaller than or equal to zero. Indeed, for all xp € (T, Tg),
the conditional payoffs are such that 7. (Tr,zr) < mp(xp — €, 2R), since 7.(-,xg) has a
unique maximum at zj = z; and decreases above z} (recall x] = z; < Trp = a3
implies that 5 > (x. + xr)/4). Thus integrating with respect to uj, over (Tp,Tg| we
get that f;LR 7 (Tp, xR) dul < f;LR mr(xp — € xR) duk, as required. And combining the
three previous observations, it follows that Uy (T, u}) < Ur(xzp — €, 1h), a contradiction.
Hence, zp =z, =z; and by Claim 1, x > 1/2. |}

Claim 5 z = 71(f, xgr)-
Proof By Claims 1-4, supp(u}) C [1/2,2%] and T > z; hence, pj(z) < 1. Assume, by
contradiction, z > T (8, xg). (The other case is similar.) By the definition of MSE, for

any € > 0 small enough, Ug(u;,2%) > Ug(u;,z — €), where

Ur(py, vR) = pi(z) - mr(z, )+

1 1—xp—1z3 . N . o Xr  (14)
and
Ur(py,z —€) = pp(z) - mr(z, 2 — €)+
1 z—et+a,—1 (15)
-+ = (x—e— ~du’t.
+ /xL;ég <2 + 45 ) (& € — Iy, _'_XR) My,

Note that since by hypothesis x > 7(53, xr), we have that limsup, -, mr(z, v5) >
mr(z,z}). Therefore,

pi(z) - [rr(z, 2 — €) — mr(z, ¥5)] > 0. (16)

Applying once again the definition of a mixed strategy equilibrium, Claims 3 and 4
imply that Ug(u},25) = Ur(p}, ). Thus,

XR

2 +

[ ety = @) - et i) -
Tr#T

* * * +\ XR
+ / Tr(L, Tg) dpy + :uL(xR)?'
TLFT
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Ifz <i+p8—2%+ (xg—V2Bxr), then m(z, z}) > X&. Hence, (17) implies that

| mntanpdi > [ mona) dui + i an) 2. (18)
TLFT

TLFT
Notice that the left hand side of (18) is left continuous in xp at z, since mg(zL,z) =
(% + %ﬁg_l) - (z — xp + xr), meaning that for e > 0 sufficiently small,

| mnanz—odiz [ wnenan)du i) (19)
TLFET

TLFT

Thus, combining (16) and (19), it follows from (14) and (15) that Ugr(u;,x%) <
Ur(uj,xz — €), a contradiction.
Alternatively, if 2 > 2 + f — X& + (yg — v/20xr), then

XR

(e, 7)< X, (20)
and from (17) we have that
| melonodi < [ mlon i) i+ i ai) S (21)
TLFT TLFET

Using again the continuity of mz(xp,zr) = (% + %ﬁ’*_l) (zr —xp + xg) in xR at

z, for € > 0 small enough

/ (@0, T — €) il ~ / (@ z) itk (22)
TLFT

TLFT

By definition, Z1,(8, xr) = 1/2- (1 + 28 + 3xr — 2v/2y/2Bxr + x%). Thus, since by
the hypothesis of Prop. 4 xyg < 28, we have that (8, xg) > 1/2, which implies that
x > 1/2 as well (recall we assumed before x > 7). Hence, by the discontinuity of p(-) at
(z,z), p(x,z — €) is well above 1/2, meaning that for € > 0 sufficiently close to zero

mrlez-0 = (5+ 255 ) e -0> 3 23

Finally, from (17),

i) - [mne o) - 58] + o) = mnlan )] d + i) g =05 (20

and combining (20), (22) and (23) and comparing them with (24), the expression below
pi(z)- [me(z, vp) — mr(z, 2 — €] +

25
T / (e, @) — Tr(en, 2 — )] di, + 1 () X5 (25)
TLFT

2
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turns out to be strictly smaller than zero. However, that means that Ugr(u;,z}) <
Ur(u},z — €), contradicting that x%, € supp(u},). Therefore, x =z (5, xr)- |

Claim 6 If 5 < %, then T, = x%.

Proof Suppose, by way of contradiction, that T, < z}. (Recall that by Claim 3, 7 <
xy.) Then, for any 2/, 2" € (T, x%,), with 2’ < 2”, we have that mr(xr, 2”) > mr(xL, ')
for all x;, € supp(u}), because Tr(xy,-) is strictly increasing on (Tp,2%).>® Integrating
with respect to xy over supp(u}), we get that Ug(uj,x”) > Ug(uj,2'); and since this
holds for any 2’ < 2”, it follows that (i) R does not allocate probability mass on (T, z73,),
and (ii) by Claim 3, uj has an atom at 73, i.e., ui(z;) > 0. The rest of the proof shows
that candidate L would profitably undercut z7 from below.

To do that, first we prove that p5(Z.) = 0. That follows by considering the difference
between the left-wing candidate’s conditional expected payoff at T, and at T — €, with
€ > 0 arbitrarily small, which is equal to

T —¢
U (0 1) — Us (T — e, i) = / L (@, ) — T (T — € or)] diy

+ /mL [7L(ZTr, 2r) — 7L(Tp — €, 7R)| dup  + (26)

Ir—e€

+ pp(zg) [T, o) — 7(Te — €, 2R)]  +

+ i) | = m@ - 67

Using the continuity of the payoff function outside the main diagonal and the fact that

€ is by hypothesis arbitrarily small, the first three terms of the RHS of (26) are arbitrarily

close to zero. Therefore, since ¥+ < 7. (T; — €, %), the fact that Z; € supp(u}) implies

that ph(Zy) = 0. (Otherwise, we would have that UL (T, u5) < UL(Tr — €, pu5,), which
would contradict that (u}, u3,) is by hypothesis a MSE of G.)

Second, we work out candidate R’s probability mass on x}, by equalizing the left-wing
candidate’s conditional expected payoffs at x and T, which turns out to be

wi(z) [XTL — 7 (Tr, z } +f [mp(z, 2r) — 7L(Tp, xR)] dujy

M*R(IE) = 7TL(LL’L, 373) _ 7_‘_[/(£7 373) : (27)

Finally, notice that

ZL
sl = i) = Un@npi) = [ [rala =€) = mol@e,on)] diy +

g

<0 VSCRE(Q,EL) (28)
+ pp(eR) [TL(ak — € ak) — 7L(Tr, T3],

> 0 because 77 (-, 275) > 0

and replacing (27) into (28), we get the desired contradiction, namely, Uy (z}, — €, i5,) >
Ur(Zpr, 1y). Therefore, 7, = z5. |}

351n fact, mr(2r, ) is strictly concave with a maximum at 7.
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Claim 7 If 3 > XIXE  then Tf, = 2} < o

Proof The claim is proved following the same type of reasoning we have applied before
in the proof of Claim 6. (The fact that z] < z7, is shown in the proof of Lemma 2.) The
only main difference is that the second term in the RHS of (28) is not anymore positive
when § > XLTTXR, because the conditional payoff function 7 (-, %) is decreasing above
x7. That explains why undercutting the right-wing candidate’s upper bound policy z%
is not anymore profitable for candidate L. |

Claim 8 If 5 < XLZXR, then supp(u;) = [z, ] for alli = L, R, with x = T (5, xr) and

T=1 _ XR _— g%
T=45+8—-%=ug

Proof The fact that for all i, x; = T, (5, xr) (respectively, T; = z},) follows from Claim
5 (respectively, from Claims 3 and 6). Thus, it remains to be shown that supp(u})
is an interval. Without loss of generality, consider z € (z,7) and assume, by way of
contradiction, that x ¢ supp(u}). The other case, i.e., x & supp(u}), is analogous.

By definition of supp(u}), there exists € > 0 such that ujh([z — e,z +€¢ N X)) = 0.
Consider any two alternatives a’,z" € [x — e,z + €], with 2’ < 2”. Since 7.(-,zg) is
increasing for all zg € (x + €,2%], it is easy to show that Up(a”,uy) > Ur(2/, uf).
Therefore, 2’ & supp(p}); and repeating the argument, it follows that pj has an atom at
x+e€. But then R must find it profitable to undercut =+ € from below (recall x+€ > 7)),
contradicting that by hypothesis uh([z — e,z +€¢/ N X)) =0. |

Claim 9 If 3 > X2 then supp(uy) = [2,7] and supp(up) = [2,7] U {23}, with
z=721(B, Xr) andf:%—ﬁ+% =17,

Proof The fact that T, = z] follows from Claim 7. To show that uj,((z},2%)) = 0,
we use the argument of the proof of Claim 6. To be more precise, consider any x’, " €
(Tp, x},), with 2’ < 2”. Since for all x;, € [z, 7], the conditional payoff mr(xy, -) is strictly
increasing on (ZTp,x7y,), we have that mg(xr,2"”) > mg(zr,2’). Integrating with respect to
xr, over supp(uj ), we get that Ug(us,z”) > Ugr(u},z’). Hence, since the pair 2’ < 2"
was arbitrarily chosen, it follows that candidate R does not allocate probability mass on
(Tr,z}). The rest of the proof is similar to the proof of Claim 8. |}

To consider the analogous characterization for the case where the left-wing candidate
is the relatively more ideological candidate (Fig. 2b), define Tx(/3, x1) as the solution to
(a7, %) —limsup,, .+, I (2, o) = 0. Then:

Proposition 5 (probabilistic differentiation) If x./2 < 8 < 3¢, the election game
G = (X,11;)i=r.r has a mized strategy equilibrium (u}, k) € A% with the property that,

(a) If p < ’“;’T’“", then supp(pf) = [z, @] for alli = L, R, with x = % - B+ % =1}
and T = Tg(P, x1); and

(b) If B > XLZXE then supp(pf) = [z,7] and supp(u}) = [z,7) U {z}}, with z =
s+B8—XE =z} and T = Tr(5, x1)-

Proof of Proposition 5. Analogous to the proof of Proposition 4.
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This appendix provides supplementary material for the paper “Political motivations
and electoral competition: Equilibrium analysis and experimental evidence” by Michalis
Drouvelis, Alejandro Saporiti and Nicolaas J. Vriend.

The appendix contains disaggregated data as well as econometrics analysis corre-
sponding to the experimental section of the paper referred to above. Table 1 shows for
each of the seven treatments for each period the mean position as well as the standard
deviation for the Left players and for the Right players. The table also reports the aver-
age absolute distance from the Nash equilibrium as well as the standard deviation. For
Treatment 6 with a mixed strategy equilibrium, it reports the distance from the support
as well as the distance from the entire equilibrium distribution. The table also provides
averages of these statistics for selected intervals of the 60 periods.

Table 2 complements the information provided by Table 1 by showing for each treat-
ment for selected intervals the average position of the Left and of the Right player for
each matching pair.

Table 3 displays for each treatment the average payoff of the Left and of the Right
player for each matching pair over the 60 periods.

Table 4 displays the ordinary least square regressions corresponding to the learning
analysis found in Section 6.2 of the paper.

Finally, this appendix concludes with providing a set of instructions received by the

subjects in one the experimental treatments as well as the control questionnaire.
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position Left position Right avg. distance from NE
period(s) mean st. dev. mean st. dev. mean st. dev.

354 14.6 618 212 171 12.2

2 400 136 522 17.2 11.8 9.2
3 407 12.8 579 102 9.0 100
4 459 1.7 61.0 16.1 92 11.8
5 487 181 508 10.6 9.6 9.6
6 449 89 586 15.0 76 9.3
7 454 75 534 10.2 55 71
8 450 224 521 19.1 124 131
9 423 12 4 539 79 66 84
10 453 127 540 8.4 55 9.6
11 4437 11.9 528 438 43 8.0
12 52.4 11.6 558 7.8 49 77
13 471 6.1 528 52 31 51
14 532 14 4 527 55 37 T4
15 452 127 545 11.3 50 11.8
16 49.8 134 546 11.3 52 11.0
17 454 11.3 558 91 53 79
18 47.8 45 546 5.2 36 55
19 478 6.1 56.1 12.2 50 6.6
20 505 14 535 659 24 34
21 47.8 13.8 555 1.7 57 8.6
22 477 8.3 535 15.7 52 9.9
23 46.5 16.5 536 9.8 6.2 105
24 46.5 8.5 542 8.7 4.0 78
25 4573 9.6 520 6.9 33 71
26 48.8 58 523 49 26 47
27 475 6.2 481 85 28 449
28 526 147 556 120 56 1227
29 536 14.0 523 40 33 82
30 43.0 14.9 511 25 4.1 748
3 412 16.2 56.8 1.7 G 101
32 46.3 8.5 573 13.0 6.4 92
33 477 56 548 1.9 36 8.6
34 4772 B85 47 3 145 47 103
35 47.0 9.7 541 11.0 36 103
36 472 18.3 542 1.1 6.6 100
37 438 14.0 528 8.8 56 8.8
38 481 191 554 13.3 83 102
39 451 18.1 52.8 6.6 7.1 9.8
40 493 151 514 3.0 42 72
41 495 14 522 6.5 18 32
42 505 61 538 112 32 6.5
43 51.8 13.8 523 8.3 41 9.0
44 515 12.8 53.8 96 43 104
45 512 129 544 98 47 77
46 50.0 41 514 3.0 15 30
47 496 14 519 56 12 30
48 502 22 49 6 14 07 15
49 502 06 523 44 12 22
50 486 33 546 97 32 6.2
51 469 78 515 38 23 57
52 48.8 42 515 55 13 449
53 49.2 19 499 03 04 1.0
54 499 0.3 496 14 02 0.8
55 488 104 500 00 21 48
56 485 55 546 11.3 3.1 6.6
57 48.8 42 508 28 1.0 35
58 492 28 508 28 08 19
59 484 55 50.0 0.0 08 28
60 47.8 8.3 53.1 1.1 27 5.6
1-10 434 135 56 5 136 94 10.0
11-20 483 9.3 543 82 42 T4
21-30 48.0 11.2 528 8.5 43 8.2
1-30 46.5 11.3 54.5 10.1 6.0 8.6
31-40 46.3 133 537 10.5 59 9.5
41-50 50.3 59 526 6.9 26 53
51-60 48 6 51 512 39 15 39
31-60 48.4 8.1 52.5 71 3.3 5.2
1-60 475 9.7 53.5 8.6 46 74

(a) Treatment 1.

Table 1: Players’ positions and distance from the Nash equilibrium.



position Left position Right avy. distance from NE
period(s) mean st. dev. mean st. dev. mean st. dev.
1 375 151 6541 293 156 101
2 335 13.0 60.2 207 11.2 79
3 39.7 10.0 596 10.6 65 6.6
4 432 6.1 603 99 48 42
5 390 B4 59 4 76 48 46
6 395 96 598 82 45 70
7 420 51 614 56 33 44
8 408 33 61.2 67 22 39
9 416 58 575 42 31 40
10 405 44 57.7 56 34 a7
11 412 32 60.2 48 17 33
12 396 66 590 39 27 42
13 405 37 589 38 17 33
14 384 105 589 74 38 74
15 412 32 59.0 32 1.1 31
16 413 32 60.3 09 08 18
17 40.4 37 61.1 3 14 27
18 40.6 35 509 2.1 12 19
19 405 37 61.3 28 14 24
20 374 104 624 99 41 6.2
21 39.6 6.0 59.0 32 18 41
22 40.6 35 59.7 1.8 1.1 18
23 412 32 616 35 14 23
24 398 06 50.8 06 02 06
25 404 43 59.2 1.8 14 24
26 40.7 34 596 13 09 18
27 409 32 596 13 08 17
28 401 D3 605 16 03 08
29 405 37 590 32 13 27
30 40.6 35 651.0 32 12 26
31 420 79 59.7 4.1 29 52
32 421 63 5849 31 16 33
33 405 16 593 34 09 19
34 398 D6 59 4 35 08 18
35 397 D49 586 33 09 18
36 399 D3 60 2 48 12 21
37 39.8 06 59.8 43 1.0 21
38 403 049 58.8 32 08 17
39 402 06 58.7 32 08 17
40 39.9 0.3 596 1.6 04 08
41 398 06 500 32 06 16
42 40.0 0.0 58.7 32 07 16
43 39.9 0.3 589 3.1 06 16
44 40.0 0.0 505 37 08 17
45 40.3 08 503 34 08 18
46 401 0.3 592 33 07 16
47 402 06 58.8 32 07 16
48 40.0 0.0 589 3.1 06 16
49 37.0 95 59.0 32 20 48
50 39.8 06 592 33 07 16
51 397 049 58.7 32 08 18
52 39.8 06 504 35 08 18
53 399 0.3 591 32 06 16
54 401 0.3 58.8 32 07 16
55 401 0.3 58.7 32 07 16
56 402 06 589 3.1 07 16
57 400 0.0 592 33 06 16
58 39.9 0.3 592 33 07 16
59 40.0 0.0 59.0 32 05 16
60 40.0 0.0 58.8 32 06 16
1-10 39.7 8.1 60.1 10.9 59 56
11-20 401 52 60.1 42 20 36
21-30 404 32 599 2.1 1.0 2.1
1-30 40.1 55 650.0 57 3.0 38
31-40 404 20 593 34 1.1 22
41-50 397 1.3 59.1 33 08 19
51-60 40.0 0.3 59.0 32 07 16
31-60 40.0 1.2 59.1 33 09 19
1-60 40.1 3.3 59.6 4.5 19 29

(b) Treatment 2.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).



position Left position Right avg. distance from NE
period(s) mean st. dev. mean st. dev. mean st. dev.
1 38.2 16.0 53.1 18.8 14.6 82
2 478 75 53.3 15.4 6.8 6.1
3 46.3 13.1 508 45 44 6.0
4 440 13.1 531 46 5.1 7.0
5 504 1.7 502 22 1.0 15
6 498 08 518 47 11 23
7 479 45 504 16 14 30
8 458 126 499 6.1 36 77
9 48.0 40 51.3 25 17 26
10 485 28 506 19 1.1 22
11 504 14 51.0 28 09 20
12 494 18 501 47 14 21
13 50.0 0.0 509 28 05 14
14 50.0 0.0 509 25 05 13
15 498 06 51.0 28 06 14
16 497 0.7 50.1 03 02 03
17 494 20 50.5 1.8 09 14
18 492 25 495 16 08 20
19 49.9 0.3 534 13.1 25 6.3
20 490 32 499 03 06 16
21 490 32 534 13.0 28 78
22 490 32 493 19 09 17
23 49.0 32 520 6.3 15 34
24 495 1.3 555 15.7 30 78
25 489 31 50.0 00 06 16
26 499 06 500 00 02 02
27 499 06 500 0.0 02 02
28 50.1 0.3 509 28 05 14
29 499 03 50.1 03 0.1 03
30 50.0 00 501 03 01 02
31 493 37 524 79 22 4.1
32 49 5 16 46 6 134 31 62
33 50.2 1.9 470 95 19 47
34 50.0 0.0 480 6.3 1.0 32
35 50.0 0.0 525 42 13 21
36 496 37 520 48 19 35
37 505 16 536 81 21 48
38 50.6 1.6 53.5 94 2.1 47
39 50.5 1.6 525 6.3 15 32
40 495 1.6 515 34 1.0 24
41 49 5 13 495 37 10 22
42 495 16 504 16 06 12
43 495 1.6 506 16 06 16
44 50.0 0.0 515 34 08 17
45 50.0 0.0 50.5 16 03 08
46 500 0o 495 37 08 17
47 503 13 515 34 10 21
48 501 03 504 16 04 08
49 499 03 500 00 01 02
50 50.0 0.0 49 4 16 0.3 08
51 50.0 0.0 50.0 00 0.0 0.0
52 495 1.6 504 16 06 10
53 495 1.6 498 04 04 08
54 495 1.6 520 6.0 13 38
55 497 09 499 03 02 06
56 500 00 498 06 01 03
57 495 1.6 500 00 03 08
58 498 06 46.0 12.6 2.1 6.3
59 487 32 46.0 12.6 27 6.3
60 49.5 1.8 50.1 03 0.3 09
1-10 46.7 [ 51.5 6.2 40 a7
11-20 497 12 507 33 09 20
21-30 49.5 1.6 51.1 40 1.0 25
1-30 48.6 35 51.1 45 2.0 3.0
31-40 50.0 1.7 51.0 74 1.8 39
41-50 499 06 50.3 22 06 13
51-60 49.6 1.3 494 35 0.8 2.1
31-60 49.8 1.2 50.2 43 1.0 2.4
1-60 492 2.3 50.7 4.4 1.5 2.7

(c) Treatment 3.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).



position Left position Right avg. distance from NE
period(s) mean st. dev. mean st. dev. mean st. dev.
1 374 3.7 62.2 8.7 5.0 30
2 443 6.5 571 55 4.8 36
3 479 10.0 59.8 47 6.1 49
4 401 52 62.9 32 35 1.8
5 385 14.2 599 24 38 6.3
6 468 153 591 32 51 80
7 372 128 60.0 26 32 70
8 412 42 60.2 26 22 2.1
9 427 56 61.1 32 28 27
10 384 27 60.6 1.1 1.2 16
11 387 3.1 60.1 28 2.0 2.1
12 399 3.1 60.8 19 1.2 14
13 383 84 615 23 27 36
14 394 23 61.6 33 1.9 2.1
15 400 27 597 32 20 15
16 396 24 60 6 2.1 11 14
17 39.4 25 60.3 2.1 1.2 12
18 396 23 61.6 28 14 14
19 399 25 61.2 20 14 12
20 397 21 59.9 26 1.1 1.3
21 396 30 60.3 2.1 14 1.3
22 388 20 607 22 12 14
23 385 30 60.0 25 14 20
24 393 32 60.0 24 1.5 19
25 393 22 599 28 1.3 14
26 392 25 61.1 22 14 14
27 392 33 60.8 19 1.3 15
28 400 37 60.4 2.1 1.3 19
29 403 0.7 60.9 2.1 0.7 11
30 397 2.1 60.4 22 1.0 1.3
31 400 49 62.1 35 26 30
32 416 71 602 30 27 33
33 389 35 60.3 24 1.5 22
34 405 1.3 60.5 25 1.0 14
35 409 1.7 60.5 20 0.9 12
36 398 0.6 60.9 19 0.7 0.9
37 398 0.6 60.6 13 0.4 07
38 422 6.3 60.7 20 1.6 31
39 404 10 612 20 08 13
40 398 04 612 2.1 07 11
41 401 0.3 60.0 24 06 10
42 400 0.5 58.8 6.2 1.3 29
43 393 1.9 60.3 22 0.8 1.3
44 401 0.3 61.2 25 07 1.2
45 398 04 58.7 72 1.6 35
46 393 19 615 386 12 26
47 393 19 60 6 19 07 12
48 401 03 608 19 05 10
49 36.8 11.6 60.8 19 25 56
50 400 09 609 22 08 11
51 401 0.3 60.6 20 0.5 1.0
52 399 0.3 60.3 22 0.5 1.0
53 399 03 60 6 19 D4 09
54 415 47 61.0 32 14 28
55 400 0.0 60.6 19 0.3 0.9
56 400 0.5 61.1 23 0.7 1.2
57 402 0.6 61.1 55 1.2 26
58 403 0.9 61.0 28 07 19
59 404 1.0 60.3 22 0.7 1.2
60 40.0 0.5 58.8 5.2 1.3 3.0
1-10 415 8.0 60.3 3.7 38 41
11-20 395 3.1 60.7 25 1.6 1.7
21-30 394 26 605 22 12 15
1-30 40.1 4.6 60.5 2.8 2.2 2.5
31-40 404 2.7 60.8 23 1.3 1.8
41-50 395 20 60.4 32 1.0 2.1
51-60 402 0.9 60.5 3.0 0.7 1.7
31-60 40.0 1.9 60.6 2.8 1.0 1.9
1-60 40.1 3.2 60.5 2.8 1.6 2.2

(d) Treatment 4.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).



position Left position Right avg. distance from NE
period(s) mean st. dev. mean st. dev. mean st. dev.
1 222 9.1 68.8 238 272 79
2 240 77 716 13.3 9.7 48
3 216 37 76.8 10.5 4.8 39
4 317 214 76.0 8.1 8.4 10.2
5 18.2 47 78.6 6.3 4.1 33
6 28.1 236 78.0 58 7.5 11.9
7 228 8.0 78.1 79 50 4.8
8 252 23.1 778 7T 7.0 12.5
9 212 6.1 A 6.6 39 37
10 217 43 80.0 99 38 50
11 19.8 38 810 36 19 21
12 245 9.9 80.7 39 39 5.1
13 211 37 81.0 32 186 20
14 19.7 31 78.2 76 28 34
15 26.6 225 A 6.7 5.8 10.8
16 19.2 35 80.0 24 1.5 1.7
17 200 33 810 438 24 23
18 197 20 783 82 29 40
19 19.0 21 809 6.1 23 30
20 228 100 814 37 30 55
21 205 16 809 33 1.1 19
22 19.9 45 814 34 20 34
23 207 53 82.1 4.8 24 4.6
24 18.7 34 79.9 2.1 1.3 2.1
25 19.4 20 739 227 4.6 11.9
26 19.0 42 823 53 25 39
27 26.0 19.3 80.2 26 4.4 9.2
28 19.9 28 80.6 20 12 1.7
29 19.4 34 823 5.0 2.1 33
30 20.0 4.1 82.8 5.0 26 4.0
31 271 220 813 4.4 5.5 1086
32 26.1 19.1 79.9 22 4.1 9.2
33 203 27 80.3 1.8 1.1 1.5
34 21.3 25 80.6 35 15 25
35 214 21 80.2 24 1.3 18
36 205 21 80.7 32 14 1.9
37 19.7 19 79.8 08 0.6 0.9
38 218 44 818 38 20 34
39 202 39 80.5 28 1.7 22
40 218 10.3 809 38 3.1 5.1
41 214 6.7 819 3 23 34
42 214 6.8 805 27 19 32
43 221 76 791 33 27 39
44 213 77 801 45 31 51
45 227 70 805 24 2.1 35
46 211 6.9 80.6 1.7 19 4.0
47 229 9.5 80.3 09 1.7 4.7
48 23.1 6.9 79.5 1.6 2.1 34
49 214 8.1 804 12 25 36
50 216 70 806 24 18 33
51 220 71 80.3 09 15 35
52 226 72 800 05 14 36
53 209 8.7 g1.1 36 27 4.5
54 229 8.0 80.3 0.7 18 39
55 219 8.6 81.2 24 23 4.8
56 18.6 35 79.5 20 1.3 23
57 222 10.1 80.4 1.3 22 49
58 228 96 802 14 20 47
59 228 97 796 18 22 46
60 213 12.0 807 20 3.1 58
1-10 23.7 11.2 76.3 10.0 8.1 5.8
11-20 212 6.4 80.0 5.0 28 4.0
21-30 204 5.1 80.6 5.6 24 4.6
1-30 218 75 790 5.9 4.4 51
31-40 220 71 80.6 29 22 39
41-50 219 74 80.4 24 22 38
51-60 218 85 803 1.7 20 43
31-60 21.9 7.7 80.4 2.3 2.1 4.0
1-60 218 76 797 4.6 33 4.6

(e) Treatment 5.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).



average distance from [average distance
position Left position Right support of NE from distr. NE
period(s) mean st. dev. mean st. dev. mean st. dev. mean st. dev.
1 365 193 68.3 16.1 252 319 14.9 122
2 424 129 61.3 6.8 6.6 58 7.1 56
3 528 71 623 77 38 27 46 23
4 418 125 57.7 5.0 58 6.5 6.9 6.1
5 495 152 594 62 45 66 54 66
6 553 73 594 6.8 29 27 40 28
7 545 47 545 60 17 15 41 20
8 505 6.5 593 44 2.1 27 24 25
9 5386 37 639 141 38 66 47 64
10 504 8.7 5386 16.5 52 77 6.3 77
1 487 135 583 43 38 56 49 51
12 513 84 613 80 33 43 38 432
13 514 84 590 24 1.8 33 24 3.1
14 512 91 585 32 22 34 3.1 30
15 524 44 586 42 1.3 14 1.8 16
16 529 6.0 578 44 16 20 29 14
17 548 39 573 33 0.8 09 22 1.1
18 547 44 609 105 22 48 37 47
19 534 35 61.7 102 22 49 29 47
20 556 27 633 92 21 48 36 44
21 541 57 626 74 27 5.0 39 45
22 56.8 29 623 104 23 48 38 5.1
23 525 6.5 614 10.8 43 4.1 53 36
24 538 6.3 613 38 20 22 32 22
25 56.2 33 604 6.7 1.7 286 34 25
26 582 39 605 6.3 20 3.1 4.1 29
27 556 386 612 72 17 32 32 31
28 55.8 38 604 74 20 27 34 23
29 549 31 589 25 07 06 16 06
30 542 33 58.3 3.2 0.8 0.8 1.9 1.0
31 49.8 122 620 10.7 49 6.1 58 58
32 51.1 79 619 131 47 6.9 57 6.4
33 508 6.7 602 14.6 54 6.6 6.5 6.1
34 509 8.0 60.5 8.0 36 39 46 33
35 528 6.0 598 6.3 25 35 33 31
36 528 42 58.3 57 1.6 2.1 26 1.7
37 549 36 623 87 23 40 33 a7
38 55.7 3.1 61.5 6.7 1.5 34 29 32
39 56.1 25 604 586 1.3 24 29 23
40 553 43 58.6 50 1.1 1.8 3.0 16
41 55.0 36 592 122 26 48 42 48
42 53.0 43 572 45 1.2 16 25 1.5
43 552 27 584 36 0.7 0.7 1.9 12
44 549 3.0 59.0 27 0.6 08 20 07
45 549 32 582 45 0.8 1.1 21 12
46 534 386 580 48 11 13 21 11
47 539 42 60.1 30 1.2 1.7 22 15
48 554 27 60.7 25 0.8 11 22 11
49 557 28 612 58 13 24 27 24
50 56.9 35 571 6.7 1.3 24 33 24
51 55.0 44 593 6.8 1.8 22 27 20
52 549 40 606 42 13 18 24 22
53 559 47 596 63 16 25 29 29
54 54.8 34 597 52 1.2 1.7 21 18
55 555 33 601 40 09 16 20 21
56 55.8 3.1 61.0 59 1.2 28 27 30
57 542 38 604 67 14 29 22 32
58 547 32 61.7 75 1.8 33 26 31
59 547 3.0 56.4 42 0.5 05 23 11
60 55.3 3.2 574 39 0.7 0.9 25 0.8
1-10 487 9.8 60.0 9.0 6.1 75 6.0 54
11-20 5286 6.4 597 6.0 2.1 3.5 3.1 33
21-30 552 42 60.7 6.6 20 29 34 28
1-30 522 6.8 601 72 34 48 42 38
31-40 53.0 59 60.6 84 29 4.1 4.0 3T
41-50 54.8 33 589 50 1.1 1.8 25 18
51-60 55.1 36 596 55 1.2 20 24 22
31-60 543 43 59.7 6.3 1.7 28 3.0 28
1-60 53.2 55 59.9 6.7 2.6 3.8 3.6 3.2

(f) Treatment 6.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).



position Left ] position Right avg. distance from NE
period(s) mean st. dev. |mean st. dev. mean st. dev.
1 329 19.3 71 14.6 19.2 8.5
2 41.9 17.4 76.2 83 11.6 78
3 421 18.1 740 214 14.0 16.8
4 46.6 16.6 734 229 14.6 15.2
5 46.9 16.1 751 10.4 10.8 11.0
6 557 6.4 68.2 207 97 99
7 548 102 727 12.0 82 75
8 487 15.1 700 10.8 10.8 107
9 499 14.2 68.9 20.2 12.8 14.8
10 50.1 13.0 76.7 1.1 8.0 89
1 492 158 728 112 98 93
12 54.2 6.3 69.9 17.5 86 85
13 549 60 720 106 70 63
14 53.6 106 748 14.9 79 9.0
15 53.0 12.2 76.3 14.1 76 11.2
16 56.5 6.8 752 14.6 78 70
17 548 75 726 18.9 76 98
18 539 81 751 105 68 67
19 55.7 6.1 69.4 17.0 87 9.0
20 56.7 9.1 788 87 59 49
21 55.9 45 769 10.5 53 6.0
22 55.9 96 793 7.0 52 58
23 548 95 B1.7 77 48 6.0
24 54.6 137 713 19.9 84 109
25 55.9 104 783 99 56 6.6
26 56.1 83 775 93 51 6.9
27 56.2 92 78.1 7.1 43 58
28 57.5 83 789 10.0 57 56
29 557 107 766 10.3 67 68
30 55.7 10.0 77.9 8.6 52 7.3
31 450 213 76.3 86 103 12.0
32 50.0 155 755 10.3 82 97
33 54.1 13.9 76.1 6.9 6.3 72
34 534 103 753 105 63 76
35 51.3 138 757 84 6.5 97
36 53.1 11.2 76.8 89 58 87
37 56.8 87 747 10.3 59 71
38 54 4 75 7.7 11.4 7.0 8.4
39 545 8.1 741 10.9 6.0 79
40 524 12.3 787 8.1 58 74
41 53.0 155 79.0 32 4.1 80
42 554 103 797 40 33 6.4
43 59.3 126 771 10.3 42 76
44 56.5 124 771 6.4 42 71
45 573 44 732 101 48 59
46 56.0 6.4 747 10.7 6.0 6.9
47 553 142 720 121 78 86
48 53.0 11.4 757 97 6.7 6.8
49 50.3 15.1 75.0 80 73 92
50 54 4 6.8 773 9.1 52 59
51 55.3 8.1 755 95 53 58
52 557 6.8 779 72 39 39
53 554 83 729 113 60 70
54 54.9 80 76.7 10.7 47 6.7
55 55.9 6.7 75.3 a6 45 6.8
56 57.5 42 80.3 46 23 32
57 58.5 56 754 10.5 38 6.8
58 56.3 71 743 96 52 71
59 55.4 87 772 6.5 40 51
60 525 165 779 61 57 87
1-10 47.0 146 732 15.2 12.0 11.1
11-20 543 88 737 13.8 78 82
21-30 55.8 9.4 [N 10.0 56 6.8
1-30 52.3 11.0 749 13.0 85 87
31-40 525 123 755 94 68 86
41-50 55.1 109 76.1 84 54 72
51-60 55.7 8.0 76.3 85 4.6 6.1
31-60 54 4 10.4 76.0 8.8 56 73
1-60 53.4 10.7 75.4 10.9 7.0 8.0

(g) Treatment 7.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).



periods
1-30 31-60 1-60
matching pair Left Right Left Right Left Right
1 412 56.6 47.9 57.0 446 56.8
2 49.3 52.0 50.0 50.0 497 51.0
3 49.3 53.0 49.2 50.7 49.3 51.9
4 47.3 55.7 433 50.0 453 52.8
5 46.7 53.0 58.8 54.8 52.8 53.9
6 48.8 52.0 50.0 50.0 494 51.0
7 49.9 50.0 50.0 50.0 50.0 50.0
8 47.2 56.3 515 52.1 49.3 54.2
9 455 55.0 497 51.0 476 53.0
10 48.5 51.2 50.0 50.0 49.3 50.6
11 50.0 50.2 50.0 50.0 50.0 50.1
12 50.3 55.6 41.5 524 459 54.0
13 31.0 68.5 375 64.5 34.3 66.5
(a) Treatment 1.
periods
1-30 31-60 1-60
matching pair Left Right Left Right Left Right
1 387 61.0 40.0 60.0 393 60.5
2 413 61.5 40.0 60.0 40.7 60.8
3 49.4 58.1 40.7 50.2 45.0 54.1
4 40.3 60.3 40.0 60.0 40.2 60.2
5 38.2 59.8 40.0 60.0 391 59.9
6 34.1 59.1 40.3 60.3 37.2 59.7
7 40.8 60.4 40.0 60.0 40.4 60.2
8 40.0 57.8 40.0 60.0 40.0 58.9
9 39.5 59.9 40.7 60.0 401 59.9
10 38.7 62.5 38.7 60.6 38.7 61.6
(b) Treatment 2.
periods
1-30 31-60 1-60
matching pair Left Right Left Right Left Right
1 48.8 52.9 50.0 50.0 49.4 51.5
2 48.9 50.9 50.0 50.0 494 50.5
3 44.9 52.7 50.0 50.0 47.5 51.4
4 50.0 50.3 49.4 46.5 497 48.4
5 49.0 51.0 49.7 49.8 494 50.4
6 48.6 511 49.4 52.0 49.0 51.6
7 50.0 50.2 49.7 50.0 499 50.1
8 495 50.5 50.2 50.0 49.8 50.2
9 48.0 50.7 49.6 53.1 48.8 51.9
10 48.5 50.8 50.1 50.8 49.3 50.8
(c) Treatment 3.
periods
1-30 31-60 1-60
matching pair Left Right Left Right Left Right
1 40.2 60.6 39.7 60.2 399 60.4
2 40.8 59.5 40.0 60.2 40.4 59.9
3 39.8 63.9 40.0 60.0 399 61.9
4 40.6 59.5 395 60.0 40.1 59.8
5 40.2 59.7 40.7 60.0 40.4 59.8
6 43.0 59.4 41.0 59.6 42.0 59.5
7 39.3 60.4 39.6 59.9 394 60.2
8 40.2 59.9 40.0 60.1 40.1 60.0
9 34.6 61.5 40.0 65.7 373 63.6
10 42.3 60.6 40.0 60.0 411 60.3

(d) Treatment 4.

Table 2: Players’ average positions in the matching pairs.




periods
1-30 31-60 1-60
matching pair Left Right Left Right Left Right
1 19.8 76.6 37.9 79.8 288 78.2
2 21.0 79.6 20.0 80.0 205 79.8
3 220 771 15.5 84.1 18.8 80.6
4 20.5 77.3 20.0 80.0 203 78.7
5 20.5 794 22.0 80.0 21.3 79.7
6 235 81.3 20.9 80.5 222 80.9
7 30.3 85.0 223 80.0 26.3 825
8 19.2 80.0 20.0 79.9 19.6 79.9
9 20.0 76.8 204 80.0 20.2 78.2
10 20.6 77.3 20.0 80.0 20.3 78.7
(e) Treatment 5.
periods
1-30 31-60 1-60
matching pair Left Right Left Right Left Right
1 52.0 57.7 53.0 57.1 525 57.4
2 54.2 58.1 55.3 59.5 54.7 58.8
3 52.8 59.5 54.2 59.0 535 59.3
4 52.7 625 53.9 67.5 53.3 65.0
5 47.0 56.2 53.8 56.5 504 56.3
6 51.1 56.3 59.0 59.9 55.1 58.1
7 54.4 61.3 50.8 58.7 52.6 60.0
8 56.7 62.0 57.2 58.6 57.0 60.3
9 50.6 62.5 49.9 59.7 50.3 61.2
10 50.3 65.1 55.9 60.3 53.1 62.7
(f) Treatment 6.
periods
1-30 31-60 1-60
matching pair Left Right Left Right Left Right
1 55.8 80.2 60.0 80.0 57.9 80.1
2 52.5 80.8 60.5 77.0 56.5 78.9
3 51.7 71.3 53.3 79.0 525 75.2
4 499 76.9 49.4 68.4 497 727
5 58.0 76.8 56.7 705 574 73.7
6 61.5 78.3 56.6 725 59.0 754
7 51.0 80.0 60.7 80.0 55.8 80.0
8 56.1 744 44.3 80.5 50.2 775
9 51.3 64.5 52.2 76.0 51.7 701
10 51.6 73.3 54.5 73.9 53.1 73.6
11 56.8 80.3 60.0 80.0 58.4 80.2
12 435 66.8 57.7 80.0 50.6 734
13 493 70.7 38.5 771 439 73.9
14 58.2 80.7 60.0 80.0 59.1 80.3
15 38.0 68.2 52.2 64.6 451 66.4

(g) Treatment 7.

Table 2: Players’ average positions in the matching pairs (continued).
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average payoffs periods 1-60

matching| Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5 Treatment 6 Treatment 7
pair Left Right Left Right Left Right Left Right Left Right Left Right Left Right
1 548.0 552.0 549.7 550.3 704.8 695.2 790.8 789.1 537.9 562.1 1018.56 | 579.00 | 1063.10 | 654.05
2 554.2 545.8 549.9 550.1 700.1 699.9 789.9 790.1 549.8 550.2 1011.79 | 593.54 | 1036.22 | 649.31
3 548.4 551.6 555.9 544.1 698.0 702.0 791.9 788.1 546.8 551.5 1038.82 | 584.29 | 1037.62 | 619.52
4 540.0 560.0 550.0 550.0 724.2 675.8 785.2 794.8 551.5 548.5 1134.99 | 570.56 | 1009.15 | 612.47
5 539.2 560.8 546.4 553.6 694.7 705.3 788.7 790.9 544.7 555.3 978.97 576.58 | 1011.44 | 640.75
6 554.6 545.4 545.6 554.4 706.2 693.8 787.7 791.9 554.7 543.4 1071.76 | 596.91 | 1022.92 | 656.99
7 551.5 548.5 550.4 549.7 701.7 698.3 790.5 788.0 514.6 585.4 1053.54 | 579.34 | 1042.02 | 651.31
8 5505 | 5495 | 5528 | 5472 | 6980 | 7020 | 7900 | 790.0 | 5497 | 5503 | 1093.64 | 600.36 | 1033.48 | 621.18
9 554.2 545.8 555.1 544.9 7010 | 699.0 | 7785 | 7996 | 557.3 | 542.7 | 1039.88 | 578.34 | 1009.20 | 607.85
10 555.0 545.0 550.5 549.5 713.7 686.3 788.5 790.9 552.2 547.8 1084.54 | 587.46 | 1009.16 | 621.70
1 550.8 549.2 1062.18 | 658.20
12 548.4 551.6 1053.37 | 612.65
13 584.2 515.8 999.90 590.45
14 1065.33 | 659.91
15 963.76 | 586.71
Table 3: Players’ average payoffs in the matching pairs.
|position Left position ﬁight avg. distance NE

Coeff. t stat Coeff. t stat Coeff. t stat

treat1 1-30 Intercept 48475 75.539 53415 95.008 4041 10.240

Slope -14.483 5232 8418 3471 14.631 8.594

31-60 Intercept 49510 137 199 51677 117 054 2297 5430

Slope -8.202 5.269 6.222 3.267 7.573 4.151

treat2 1-30 Intercept 40.686 119.715 59.597 222063 0.811 3748

Slope -4 452 3037 3330 2876 16 211 17 365

31-60 Intercept 39.687 282685 59.028 718.785 0.575 8756

Slope 2.599 4291 0.617 1.742 2076 7.324

treat3 1-30 Intercept 50.063 174.333 50.741 162.951 0.089 0.403

Slope -10.807 5.724 21721 2.026 14.000 14.704

31-60 Intercept 49.843 541.038 50.166 110.982 0.733 4.495

Slope -0.276 0.694 0.483 0.248 2291 3.255

treatd 1-30 Intercept 39 864 73908 60 472 259 823 1459 6495

Slope 1.747 0.751 0.137 0.137 5.464 5638

31-60 Intercept 39.955 193.912 650.423 372.260 0.740 6.456

Slope 0.587 0.661 1.127 1.609 2.081 4211

treats5 1-30 Intercept 21.259 30.350 80.803 196.757 1.318 3418

Slope 371 1.228 -13.536 T.641 23.396 14.068

31-60 Intercept 21.208 72428 80.341 569.673 1.741 10,139

Slope 5.246 4153 0.642 1.055 3.046 4112

treaté 1-30 Intercept 54 854 91.656 59214 105.804 2660 10.595

Slope -20.077 7777 6.829 2.829 11.371 10.499

31-60 Intercept 55233 214370 59.255 180.738 2365 14.051

Slope -7.029 6.324 3.289 2.326 4 797 6.607

treat? 1-30 Intercept 55.817 103.139 74.854 94 680 6.548 14.957

Slope -26 060 11163 0031 0009 14 378 7613

31-60 Intercept 55.881 128.415 75989 159.904 4797 18.131

Slope -10.818 5.763 -0.133 0.065 5.868 5141

Table 4: OLS regressions y = a + b - 1/t.
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Instructions
All participants in this session have the following identical instructions
Introduction

. Welcome to this session, and thank you for participating in this experiment. The
instructions for this experiment are simple, and if you pay attention, you can gain some
money that will be paid to you in cash at the end of the experiment. From now on till the
end of this experimental session you are not allowed to talk to each other. If you have a
question, please raise your hand.

. The experiment involves playing games with another participant. To form pairs of players,
each player will be randomly and anonymously matched to another player. Note that you
will never know the identity of the person you are matched with, nor will (s)he be aware of
yours. Nor will you be told the payoffs of other players.

. The payoffs in this experiment are expressed in points. The total points earned in the
experiment will be exchanged into Pound Sterling at the end of the session using the
following exchange rate: £ 0.45 per 1000 points.

. In the following pages we describe the experiment in detail. At the end of these
instructions we ask you to do several control exercises which are designed to check that
you have understood the decision situation.

Experiment

. The basic game:

There are two candidates (called "A" and "B") competing in a local election. In each basic
game, each of you will play the role of one of these candidates. These roles will be
assigned to you by the experimenter. The issue at stake is the location of a new post
office. There are 101 possible locations on the high street, numbered from 0 to 100. Each
candidate independently and simultaneously proposes a location. The citizens in town
vote for either of the two candidates, and the post office will be built at the location that
had been chosen by the winning candidate. A candidate wins the election if he gets more
than half of the votes. If both candidates get the same number of votes, the winner will be
determined by a random draw (fair coin toss).

. Citizens:
All citizens live on the high street, and they are evenly (uniformly) spread along the high
street. Each citizen is expected to vote for the proposed location that is closer to his own
position. The following graph illustrates this.

citizens citizens
voting for B voting for A

A
v
A
v

0 B's proposed A's proposed 100
location location



Thus, given a pair of proposed locations, the candidates, knowing that citizens are
uniformly distributed and that they vote for the alternative closer to their own position,
have a good idea of the percentage of votes that each of them can expect. However, they
are not perfectly sure about these percentages. The reason is that, besides distance,
there are additional, unknown factors determining the preference of the voters as well.
More precisely, if we denote by X the expected percentage of votes for a candidate, then
the actual percentage for that candidate will be somewhere between X-15 and X+15, with
each value within that range of values being equally likely (and, of course, the actual
percentage of votes cannot be lower than 0% or higher than 100%). This uncertainty
about the behaviour of the voters applies to each round, independently from what
happened in other rounds.

Payoffs for candidates:

When deciding upon their location, there are two payoff considerations for each
candidate.

First, each candidate has his own preference for the location of the post office, no matter
which of the two candidates is the actual winner of the election. The ideal post office
location for candidate "A" is 34, whereas the ideal location for "B" is 66. A post office at
the ideal location would give a candidate a 'location payoff' of 900 points. However, as the
distance between the actual location and his ideal location increases with one unit, the
location payoff diminishes at a constant rate of 10 points. Thus, for example, if the
eventual location of the post office has a distance of 17 unit steps to the candidate's ideal
location, then the location payoff of this candidate is 900 - 17 * 10 = 730 points.

Second, each candidate receives a payoff simply from winning the election, independent
of the location of the post office. For candidate A this payoff of winning as such is 100,
and for candidate B it is 100. There is no additional payoff for the candidate that loses the
election.

Rounds:

You will play 30 rounds of the same game, playing the same role, against the same other
player. All payoffs in all rounds will be accumulated.

After 30 rounds, the two roles will be swapped. The "A" candidate becomes the "B"
candidate, and the "B" candidate becomes "A". You will play, then, another 30 rounds
with these new roles, all the time against the same other player, and again all payoffs in
all rounds will be accumulated.



Interface:
You will face two different screens.

The first screen is a decision screen as shown in the following screenshot:

~Round

1 outof GO

Own location Other’s location Own Expected Payoff

This is the expected payoff calculator. It allows you ta try out different
combinations of locations for the other candidate and for yourself, with your
resulting expected payoff shown in the right-hand side box. These are just

imaginary choices and you can try as many as you want

O location l:l
Other's location l:l

calculate I

You are Candidate A.

Which location do you choose? I:l

~HELF
Please choose your location.

When you are ready, please enter the "OK'-button

In the top half you will find an expected payoff calculator. This will allow you to try out
different combinations of locations for the other candidate and for yourself, with your
resulting expected payoff shown once you press the 'calculate’ button. These are just
imaginary choices and you can try as many as you want.

On the bottom half of this screen you must also choose your actual proposal. Once you
have entered it you must press the OK button using the mouse. After you have done this,
your decision can no longer be revised. There is no time limit for your decisions.

After all participants have made their choices, in each round you will find a feedback
screen with your chosen location, the location chosen by the other candidate and your
resulting payoff.

Logsheet:
We recommend that you transcribe the results of each round from the feedback window

on the logsheet provided.

Do you have any questions?



Control questionnaire

3)

10)

11)

After how many rounds will the roles of the two candidates be swapped? ...........

If the expected proportion of votes for a candidate is 40%, then, because of the
uncertainty of voter behavior, what is the maximum proportion of voters that the candidate
could get? ...........

If the expected proportion of votes for a candidate is 40%, then, because of the
uncertainty of voter behavior, what is the minimum proportion of voters that the candidate
could get? ...........

What is the ideal post office location for candidate A? ...........

Suppose that the post office is located at location 30. What is, then, the distance from the
ideal post office location for candidate A? ...........

What is the ‘location payoff' that candidate A derives from the post office being located at
location 307 ........... points

What is the ideal post office location for candidate B? ...........

Still supposing that the post office is located at location 30, what is the distance from the
ideal post office location for candidate B? ...........

What is the ‘location payoff' that candidate B derives from the post office being located at
location 307 ........... points

What is the payoff of winning as such for candidate A? ........... points

What is the payoff of winning as such for candidate B? ........... points
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