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Abstract

We study both theoretically and experimentally the set of Nash equilibria of a
classical one-dimensional election game with two candidates. These candidates are
interested in power and ideology, but their weights on these two motives are not
necessarily identical. Apart from obtaining the well known median voter result and
the two-sided policy differentiation outcome, the paper uncovers the existence of
two new equilibrium configurations, called ‘one-sided’ and ‘probabilistic’ policy dif-
ferentiation, respectively. Our analysis shows how these equilibrium configurations
depend on the relative interests in power (resp., ideology) and the uncertainty about
voters’ preferences. The theoretical predictions are supported by the data collected
from a laboratory experiment, as we observe convergence to the Nash equilibrium
values at the aggregate as well as at the individual levels in all treatments, and the
comparative statics effects across treatments are as predicted by the theory.
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1 Introduction

The spatial theory of electoral competition begins with the seminal contributions of
Hotelling (1929) and Downs (1957). The basic model considers a majority rule election
where two political candidates compete for office by simultaneously and independently
proposing a platform from a unidimensional policy space (e.g., an income tax rate). As is
well known in the literature, the equilibrium predictions of this model depend crucially on
candidates’ motivations for running for office. In this paper, we study the implications of
the so called mixed motivations hypothesis, according to which candidates are concerned
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not only about winning the election and being in power, but also about the ideological
position of the policy implemented afterwards.1

Although this assumption is thoroughly familiar in its symmetric version, that is,
when both candidates assign the same relative weight to their policy preference versus
their desire to win office, what happens in the asymmetric scenario remains an open
question. As we argue below, this case is not only interesting from a theoretical point
of view, but also empirically relevant. Here, we offer a full characterization of the set
of Nash equilibria for both cases, the symmetric and the asymmetric one, uncovering
interesting (and sometimes counter-intuitive) equilibrium predictions that had not been
identified yet in the literature. In addition, we conduct a laboratory experiment to assess
whether the predictions of the model possess any empirical relevance, studying in a rich
set of treatments not only convergence of subjects’ behavior to the theoretical predictions,
but also learning and a number of comparative statics effects resulting from changing the
interests in power (resp., ideology) and the uncertainty about voters’ preferences.2

An important motivation for this research is that conceptually the mixed motivations
hypothesis is more realistic than the traditional hypotheses of candidates’ motivations,
according to which candidates care in the same way and only about either winning power
or policy. In a democracy, the mixed motivations probably emerge naturally from the
fact that candidates are representatives of complex political organizations. To elaborate,
in real world politics to reach the stage of being in competition for public office, citizens
must first be nominated within the political parties; and for that to happen they need
the support of regular party members, who are arguably much more concerned about
the policies implemented after the election than about the actual winner of the contest.
Thus, although politicians as other professionals might be more interested in their ca-
reers and, therefore, in winning the elections, it seems reasonable to expect that policy
considerations will also enter into the candidate’s payoff function with some weight.3

These weights need not be the same for all candidates. They could depend for in-
stance on the features of the political organization that the candidate represents, such
as the number of regular members, the level of activism within the organization, the
internal process to nominate candidates, etc. The value of winning the election might
also vary depending on whether the party of the candidate is the incumbent in office or
a challenger. Thus, there seem to be ample reasons why one might expect asymmetric
electoral motivations to be quite general. Some evidence seems to suggest that they may
have some empirical relevance as well. An interesting case in this regard is the Radical
and the Peronist Parties in Argentina. These two parties are the main political actors
of the country. The Radical Party has been ever since its creation an ideological party,
whereas Peronism has been a “movement”, as Perón used to call it, basically motivated
by being in power. Another case is the Labour and the Conservative Party in the UK
election of 1997, in which both located on the center-right of the political spectrum.

1This was first suggested by Calvert (1985), and it has been recently used in a number of papers,
including Ball (1999), Groseclose (2001), Aragones and Palfrey (2005), Duggan and Fey (2005), Saporiti
(2008), Callander (2008), Bernhardt, Duggan and Squintani (2009), and Saporiti (2013).

2The use of experimental methods as opposite to field methods seems preferable to test the theory
because the former allow for a level of control that cannot be achieved with the latter given the large
number of confounds that influence the behaviors of interest.

3Morton (1993) reports on subjects in a laboratory experiment placing a weight of approximately
32% on winning the election, and 68% on the expected utility from the implemented platforms.
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A second motivation for this work is that from a theoretical point of view, the mixed
motivations hypothesis has been shown to have nontrivial implications for the predictive
power of the theory of electoral competition. In effect, Ball (1999) pointed out that, due
to the discontinuities of the payoff functions, the electoral contest with hybrid motives
does not always possess a Nash equilibrium in pure strategies. Moreover, it has been
shown that the source of this instability can be attributed entirely to the asymmetric
nature of the political goals (Saporiti 2008). Yet, in spite of this, the analysis of the full
set of Nash equilibria under this assumption remains an open question. Clearly, filling out
this gap seems quite important, because elections play a central role in many economic
models, particularly in models of political economy and public finance.

The main results of this paper can be summarized as follows. On the one hand,
consistent with the theory already known, our equilibrium analysis shows that when the
value of being in office is the same for the two candidates, both players announce either
(i) a platform located on the estimated median ideal point (policy convergence) if the
electoral uncertainty is low compared with the interest in office, or (ii) a platform located
on their own ideological side (two-sided policy differentiation) if the uncertainty is high.4

On the other hand, when candidates have asymmetric motivations, the median voter
result still dominates for low levels of uncertainty. However, as the uncertainty increases,
i.e., as the length of the interval over which the median is distributed increases, first an
equilibrium in pure strategies fails to exist. In that region, both candidates randomize
optimally on one side of the median to avoid being copied and undercut by their rival
(probabilistic differentiation). Second, outside that region, a pure strategy equilibrium
is reestablished, but the two candidates assign all of the probability mass to a different
platform. These policies are located initially on the same ideological side (one-sided policy
differentiation), and then, as uncertainty further increases, on each candidate’s political
ground (two-sided differentiation).

The data collected from the experiment are largely supportive of these theoretical
predictions. First, we find in all treatments that the median behavior of the left- and the
right-wing subjects converge to the Nash equilibrium values. This happens even in the
probabilistic differentiation treatment, with a unique mixed strategy equilibrium (MSE).
In that treatment, we observe not only that subjects’ choices approximate the bounds
and the median of the MSE support, but also that the empirical cumulative distributions
are close to the theoretical ones, with the cumulative distribution of the left-wing players
first-order stochastically dominating the distribution of the right-wing players.

Second, in the symmetric motivations treatments, we note that the confidence inter-
vals we construct around the medians shrink over time as well, indicating behavior that is
consistent with the Nash equilibrium not only at the aggregate level but also at the indi-
vidual level. In the asymmetric treatments, with one-sided policy differentiation in either
pure or mixed strategies, some noise in the individual choices persists even after sixty
rounds (elections) of play. This is consistent with equilibrium behavior in the treatment
with a mixed strategy equilibrium, but not with equilibrium behavior in the treatment
with a pure strategy equilibrium, where, although the deviations diminish somewhat over
time, they tend to be skewed to the center of the policy space.

4In this paper, candidates’ preferred policies are assumed to be distributed on either side of the
median ideal point, so that the ideology of one candidate lies on the left and the other on the right.
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Third, we find that subjects’ learning takes place mainly within the first ten periods
(elections), and that most of that learning does not vanish as subjects interchange their
roles between candidates of different ideologies. Finally, in line with the theory, the
comparative statics analysis across treatments confirm the theoretical predictions that
(i) an increase in the electoral uncertainty leads to an increase in policy divergence; (ii)
policy convergence is reestablished as both candidates become more office-motivated; (iii)
the extent of the empirical differentiation on either side of the median is independent of
candidates’ ideologies; and (iv) an asymmetric increase in candidates’ interests in power
leads to policy divergence on one side of the median.

The rest of the paper is organized as follows. Section 2 discusses the related literature.
Section 3 outlines the model of electoral competition. Section 4 derives the theoretical
results, which are proved in Appendix A. Section 5 presents the experimental design,
and Section 6 discusses the experimental evidence. Final remarks are made in Section 7.

2 Related literature

The literature on electoral competition is vast. We focus here only on those papers that
are most relevant for our work. For a more comprehensive review, the suggested references
are Osborne (1995), Roemer (2001) and Austen-Smith and Banks (2005).

On the theoretical front, this paper relates to two segments of the existing literature
that deal with, respectively, elections with office and policy motivations, and elections
with advantaged candidates. In the first segment, the first article to consider mixed
motivations is Calvert (1985), though it does not go beyond offering a continuity result
according to which small departures from office motivation and certainty lead to only
small departures from policy convergence. Ball (1999) and Bernhardt et al. (2009) fur-
ther examine the implication of this assumption. The first paper focuses on equilibrium
existence, whereas the latter analyzes mainly the implication of the symmetric mixed mo-
tivations on voters’ welfare. Differently from these contributions, our work focuses on a
full equilibrium characterization and on the empirical validity of our theoretical findings,
rather than on existence or welfare considerations.

The existence of Nash equilibrium in electoral competition with mixed motivations is
also the focus of Saporiti (2008). That article shows that, in contrast with the usual causes
behind the nonexistence of equilibria in the traditional models of electoral competition,
essentially, the multi-dimensionality of the policy space and the heterogeneity of voters’
preferences, the lack of pure strategy equilibria in one-dimensional contests with mixed
motives and electoral uncertainty is due to the heterogeneity or asymmetry of interests
of the political candidates. Saporiti (2008) proves the existence and uniqueness of a pure
strategy equilibrium when candidates possess mixed but symmetric motivations; and it
shows that the mixed extension of the hybrid election game satisfies Reny’s (1999) better-
reply security and, consequently, that a Nash equilibrium exists regardless of the nature
of candidates’ aspirations. The paper however is totally silent about the nature of the
equilibrium policies. Our analysis here extends Saporiti (2008) not only by providing
a complete characterization of the equilibrium policies, but also by testing the main
empirical restrictions in the lab.

In addition to the articles mentioned above, there is a large number of papers that
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adopt the mixed motivations assumption and simultaneously alter other features of the
basic framework. To mention a few, Aragones and Palfrey (2005) study a general in-
complete information model of candidate quality allowing for heterogeneity in valence,
ideology, and motivations. Callander (2008) considers a model with either policy or office
motivated candidates, private information about candidates’ types, and partial commit-
ment at the electoral stage. In a more significant departure, Roemer (1999) analyzes
a model where parties represent different constituencies, or economic classes, with well
defined policy preferences. Parties are also integrated by opportunistic individuals who
desire only to win office. Roemer assumes that each party must reach inner-party una-
nimity to formulate a proposal, and he proves the existence of a so called party unanimity
Nash equilibrium. Finally, Snyder and Ting (2002) model political parties as informative
brands to voters, in a setup where candidates are driven by achieving office and, if elected,
policy, and they need parties to credibly signal their true policy preferences.

Insofar as a relatively more office-motivated candidate has in equilibrium a higher
probability of winning the election, this paper is also connected with the literature on
elections with advantaged candidates. Starting with Ansolabehere and Snyder (2000),
Groseclose (2001), and Aragones and Palfrey (2002), there is now a sizeable literature
that analyzes candidates’ behavior in the presence of valence advantage. This includes
the previous articles plus several recent papers, including Kartik and McAfee (2007),
Ashworth and Bueno de Mesquita (2009), Hummel (2010), and Iaryczower and Mattozzi
(2013), among others.

An interesting feature in some of these works is that, as happens in our case, equi-
libria in mixed strategies emerge because the advantaged candidate is willing to copy
the position of the disadvantaged one, forcing the latter to randomize in order to not
be predictable. Notice however that there is a slightly different flavor in our framework
from what we have in the valence models. In this paper, it is not the case that voters
have a preference for a certain candidate, whom the other tries to mimic, but rather the
electoral advantage emerges endogenously because candidates have different motivations
for power and they react differently to the uncertainty about voters’ preferences.

On the empirical front, our paper adds to the experimental literature that analyzes
elections and candidate competition.5 In that literature, there is, first, a number of
early laboratory tests, surveyed by McKelvey and Ordeshook (1990), that examine the
hypothesis of policy convergence to the median ideal point in the Downsian framework
with purely office-motivated candidates. This early research has been later complemented
by Morton (1993), who conducts a laboratory experiment to assess the hypothesis that
platforms diverge when candidates are purely ideological and there is uncertainty about
voters’ preferences. More recently, Aragones and Palfrey (2004) report experimental
results about the effects of valence asymmetries on the location of the equilibrium policies.
None of the existing papers however have analyzed yet in the lab the case of mixed and,
especially, asymmetric electoral motivations, which is precisely our contribution here.

Finally, to the extent that some of the equilibria in the asymmetric motivation case are
in mixed strategies, this paper also complements the existing laboratory and field studies
that look at how people behave in games with mixed strategy equilibria. Camerer (2003)
provides an overview of the most relevant papers, with the main message being that

5See Palfrey (2006) for a recent overview of these papers.
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although aggregate behavior is usually close to the equilibrium predictions, there are still
significant deviations from them.6 In our experiment, subjects entered a pure strategy
in each period. Thus, we are agnostic about to what extent they actually mixed their
strategies. However, the data shows that our subject pool make choices that closely
approximate the mixed strategy predictions, ‘as if’ they were changing their play in order
to avoid being predictable and exploited by their opponents.

3 The Model

Two candidates, indexed by i = L,R, compete in a winner-take-all election by si-
multaneously and independently announcing (and committing to) a policy platform
xi ∈ X = [0, 1]. The electorate is made up of a continuum of voters. Each voter
has a utility (loss) function uθ(x) = −|x−θ|, where θ ∈ X denotes his preferred policy or
ideal point on X . Due to the nature of voters’ preferences (single-peaked and symmetric
around θ), for every pair (xL, xR) ∈ X2 each voter votes sincerely for the platform closer
to its ideal point, voting for the alternatives with equal probabilities when indifferent.7

Candidate i wins the election if his platform xi gets more than half of the votes, with ties
broken by a fair coin toss.

Apart from the uncertainty due to the possibility of a tie, candidates also have uncer-
tainty about voters’ preferences. We assume that the median voter’s ideal point, denoted
by θm, is uniformly distributed over [1/2− β, 1/2+ β], with β > 0. This may be because
voters’ preferences are fixed, but candidates perceive the fraction of types supporting their
respective platforms with some noise, as happens for example in Roemer (2001, p. 45); or,
because voters’ preferences actually change after candidates have announced their plat-
forms, as is the case in Bernhardt et al. (2009). Regardless of the interpretation given to
the electoral uncertainty, it transpires from our assumptions that the probability that can-
didate L attaches to winning the election is given by p(xL, xR) = Prob

(
θm ∈

[
0, xL+xR

2

])

if xL ≤ xR, and by p(xL, xR) = Prob
(
θm ∈

[
xL+xR

2
, 1
])

if xL > xR. Candidate R’s
probability of winning is 1− p(xL, xR).

As was said in the Introduction, candidates possess mixed or hybrid motives for
running for office. Formally, the payoffs for candidate L and candidate R associated to
any pair of policy platforms (xL, xR) ∈ X2 are given by, respectively,

ΠL(xL, xR) = p(xL, xR) · (uθL(xL) + χL) + [1− p(xL, xR)] · uθL(xR), (1)

and
ΠR(xL, xR) = [1− p(xL, xR)] · (uθR(xR) + χR) + p(xL, xR) · uθR(xL), (2)

where θi stands for candidate i’s ideological (preferred) position on X , and χi > 0
denotes candidate i’s payoff for being in power (office rents).8 We assume that can-

6See also Amaldoss and Jain (2002), Palacio-Huerta (2003), Palacio-Huerta and Volij (2008), and
Levitt et al. (2010), among others.

7Since there are only two candidates and each of them enacts its proposed policy once elected, voting
for the preferred candidate is a weakly dominant strategy for every voter.

8Note that Hotelling (1929)-Downs’ (1957) office motivation hypothesis, according to which candidates
maximize the probability of winning the election, is obtained by letting χi be arbitrarily large for all i.
Likewise, Wittman’s (1983) ideological candidates follow by setting the rents χi equal to zero.
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didates’ ideological positions are distributed on either side of the (expected) median
voter’s ideal policy, i.e., θL < 1/2 < θR; and we identify the half-open interval [0, 1/2)
(resp., (1/2, 1]) with the left-wing (resp., right-wing) candidate’s ideological side. In
addition, to rule out uninteresting equilibria with large electoral uncertainty and no
trade-off between power and ideology, the essence of this investigation, we assume that
β < β̄ ≡ min{1/2− θL + χL/2, θR − 1/2 + χR/2}.9

Let ∆ be the space of probability measures on the Borel subsets of X . A mixed
strategy for i is a probability measure µi ∈ ∆, with support supp(µi) ≡ {x ∈ X :
∀ǫ > 0, µi((x − ǫ, x + ǫ) ∩ X) > 0}. We extend each Πi to ∆2 by Ui(µL, µR) =∫
X2 Πi(xL, xR) d(µL(xL) × µR(xR)). Note that Ui is well defined because the set of dis-
continuities of Πi, namely {(xL, xR) ∈ X2 : xL = xR 6= 1/2}, has measure zero.

Let G = (X,Πi)i=L,R denote a mixed motivation election game , and let G =
(∆, Ui)i=L,R be the mixed extension of G. A Nash equilibrium of G is a pair of probability
measures (µ∗

L, µ
∗
R) ∈ ∆2 such that for all (xL, xR) ∈ X2, UL(µ

∗
L, µ

∗
R) ≥ UL(xL, µ

∗
R) and

UR(µ
∗
L, µ

∗
R) ≥ UR(µ

∗
L, xR). We say that a Nash equilibrium (µ∗

L, µ
∗
R) ∈ ∆2 is a mixed

strategy equilibrium (MSE) of G if at least one candidate randomizes over two or more
policies. Otherwise, if for all i = L,R, supp(µ∗

i ) = {x∗
i } for some x∗

i ∈ X , then the profile
(x∗

L, x
∗
R) represents a pure strategy equilibrium (PSE) of G.10

4 Equilibrium Analysis

We begin the equilibrium analysis noting that G possesses neither a PSE where the left-
wing candidate chooses a platform further to the right than the right-wing candidate’s
proposal, nor a PSE where one of the candidates wins the election for sure.

Lemma 1 If the strategy profile (x∗
L, x

∗
R) ∈ X2 is a pure strategy equilibrium for the

election game G = (X,Πi)i=L,R, then θL < x∗
L ≤ x∗

R < θR and p(x∗
L, x

∗
R) ∈ (0, 1).

The previous lemma, whose proof (as well as all other proofs) is given in Appendix
A, is used to characterize each candidate’s platform in a PSE with policy differentiation,
and to provide a necessary condition for such an equilibrium to exist.

Lemma 2 The election game G = (X,Πi)i=L,R has a pure strategy equilibrium with x∗
L <

x∗
R only if χL + χR < 4β, x∗

L = 1/2− β + χL/2, and x∗
R = 1/2 + β − χR/2.

The platforms characterized in Lemma 2 are a function of the electoral uncertainty β
and the office rents χi, with the signs as expected. All the rest equal, as the candidates
become less certain about how moderate the median voter is (higher β), they become
more polarized in their platform choice. By contrast, a reduction of the uncertainty
(resp., an increase of office rents) moves both platforms towards the center of the political
space. Note, however, that these platforms are independent of the candidates’ ideologies.
Moreover, they are independent of each other too, in the sense that a change in candidate

9If that were not the case, then in an equilibrium with differentiated policies at least one candidate
would maximize its payoff at its preferred location θi, independently of the position chosen by the other.

10When µ ∈ ∆ assigns probability 1 to a single policy x ∈ X , we simply write x instead of µ.
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i’s equilibrium policy x∗
i (due, for example, to a change in χi) does not affect x

∗
j . These

are mainly consequences of the linearity of the loss function.11

The platforms of Lemma 2 are obtained from the first-order conditions; that is, they
are the stationary points of the conditional payoff functions. Unfortunately, Lemma 2
does not guarantee that these functions are quasi-concave. Therefore, a sensible question
to ask is what additional conditions ensure the policy profile to be a Nash equilibrium.
Propositions 2 and 3 are meant to shed some light into this inquiry. But first, we offer
necessary and sufficient conditions for policy convergence (i.e., equilibrium with identical
platforms), which is the classical result of electoral competition.

Proposition 1 (convergence) The election game G = (X,Πi)i=L,R has a pure strategy
equilibrium with x∗

L = x∗
R ≡ x∗ if and only if x∗ = 1/2 and χi ≥ 2β for all i = L,R.

One way of interpreting the condition specified in the statement of Proposition 1
is as follows. In this paper the winner enjoys an extra payoff for being elected equal
to χi. From the candidates’ viewpoint, however, hitting the median ideal point with a
particular policy platform and actually winning the election has a chance of (2β)−1 (the
inverse of the length of the support of θm). Therefore, the term χi/2β can be viewed as
the expected benefit for moving the platform one additional unit to the center (expected
median). The cost of doing that is given by the additional unit of disutility created by
the displacement towards the center and away from the candidate’s ideology. Thus, when
χi is large enough for all i (resp., β is small enough), in the sense that χi/2β ≥ 1, the
benefits of any such deviation outweigh the costs and, consequently, candidates converge
to the median voter’s preferred policy.12

An immediate implication of Proposition 1 and Lemma 2 is the following corollary.

Corollary 1 (uniqueness) If the election game G = (X,Πi)i=L,R possesses a pure strat-
egy equilibrium, then the equilibrium is unique.

The uniqueness result expressed in Corollary 1 is more general than the related results
found in Saporiti (2008) and Bernhardt et al. (2009), because the latter only refer to the
homogeneous motivation case (χL = χR), whereas the former also applies to cases where
χL is not necessarily equal to χR. It is worth reminding, however, that the three models
are different and, therefore, that the results are not directly comparable.

The next proposition provides a necessary and sufficient condition for another well
known equilibrium configuration (suggested first by Wittman (1983), and proved later
by Roemer (1997)), where each candidates chooses a policy on its own ideological side.

Proposition 2 (two-sided differentiation) The election game G = (X,Πi)i=L,R has
a pure strategy equilibrium with x∗

L < 1/2 < x∗
R if and only if χi < 2β for all i = L,R.

11With a nonlinear loss function, equilibrium platforms would be interdependent and sensitive (directly
or indirectly) to the ideology of each candidate.

12Two interesting instances where this occurs are: (i) when both candidates are purely opportunistic,
which provides the standard median voter result of Hotelling (1929) and Downs (1957) (under certainty)
and Calvert (1985) (under uncertainty); and (ii) when both candidates are purely ideological and they
have perfect information about the median voter’s location, as considered for example in Roemer (1994).
As a matter of fact, in the latter case the result holds independently of candidates’ motivations.

8



Thus, the first conclusion that can be drawn by combining Propositions 1 and 2 is that,
when candidates possess identical motivations, these two results offer a full description
of the equilibrium outcomes. To illustrate this, Fig. 1 displays the equilibrium platforms
as a function of the electoral uncertainty β, and for a particular level of office rents
χ ≡ χL = χR. As Proposition 1 points out, both policies are located at the estimated
median voter’s ideal point for any level of uncertainty lower than or equal to χ/2. Above
that threshold, Lemma 2 and Proposition 2 indicate that the equilibrium platforms lie
down on each candidate’s ideological ground, in accordance with the expressions x∗

L =
1/2− β +χL/2 and x∗

R = 1/2+ β −χR/2. That gives rise to a region of two-sided policy
differentiation as is shown in the graph. The symmetric location of the policies around
the median also implies that, in the identical motivation case, the probability of winning
is the same for the two candidates.

0

0.5

χ
2

Convergence

β̄

x∗i

x
∗

R

=
0.5

+
β −

χR
/2

x ∗

L =
0.5

− β
+ χ

L/2

Two-sided differentiation

β

Figure 1: Symmetric case: χL = χR ≡ χ.

Interestingly, when candidates hold asymmetric interests, Propositions 1 and 2 do not
cover the whole spectrum of possibilities. The main contribution of this paper is precisely
to analyze what happens in that case. As we will show, besides the equilibria outlined
above, there are other kind of equilibria that we will refer to as equilibria with one-sided
policy differentiation. These equilibria are such that candidates locate on a different
platform, but these platforms are on the same side of the median ideal point. When the
right-wing candidate turns out to be the relatively more policy-concerned candidate, the
conditions for one-sided differentiation are basically that the level of uncertainty be (i)
sufficiently low to ensure that L’s stationary point is above 1/2; and (ii) high enough
to discourage players to undercut their stationary points, ensuring in particular that
lim supxR→x∗

L

ΠR(x
∗
L, xR) ≤ ΠR(x

∗
L, x

∗
R). The interpretation of the conditions when the

left-wing candidate is relatively more ideological is similar.

Proposition 3 (one-sided differentiation) The election game G = (X,Πi)i=L,R has
a pure strategy equilibrium with 1/2 < x∗

L < x∗
R (resp., x∗

L < x∗
R < 1/2) if and only if

(χL − χR)/2 + (χR · χL)
1/2 ≤ 2β < χL (resp., (χR − χL)/2 + (χR · χL)

1/2 ≤ 2β < χR).
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Postponing the interpretation of this result for the moment, we proceed by noting
that apart from one-sided PSE, the asymmetric motivation case also admits equilibria
in mixed strategies. To analyze the properties of these equilibria, the following notation
is going to be helpful. First, denote the critical values of β stated in Proposition 3 by
βC
1 ≡ χL−χR

4
+

√
χLχR

2
and βC

2 ≡ χR−χL

4
+

√
χLχR

2
. Second, consider the region of the strategy

space where p(xL, xR) ∈ (0, 1). Within that region, for any x′
L < 1/2 + β − χR/2 = x∗

R,

ΠR(x
′
L, x

∗
R) =

1

4β

(
1

2
+ β − x′

L +
χR

2

)2

+ (x′
L − θR),

and

lim sup
xR→−x′

L

ΠR(x
′
L, xR) =

(
1

2
− 1− 2x′

L

4β

)
χR + (x′

L − θR).

Denote by x̃L(β, χR) the solution to ΠR(x
′
L, x

∗
R) − lim supxR→−x′

L

ΠR(x
′
L, xR) = 0.13

The support of the mixed strategy equilibrium when the right-wing candidate is the
relatively more ideological politician (Fig. 2a) is characterized in the next proposition.14

Proposition 4 (probabilistic differentiation) If χR/2 < β < βC
1 , the election game

G = (X,Πi)i=L,R has a mixed strategy equilibrium (µ∗
L, µ

∗
R) ∈ ∆2 with the property that,

(a) If β ≤ χL+χR

4
, then supp(µ∗

i ) = [x, x] for all i = L,R, with x = x̃L(β, χR) and
x = 1

2
+ β − χR

2
= x∗

R; and

(b) If β > χL+χR

4
, then supp(µ∗

L) = [x, x] and supp(µ∗
R) = [x, x] ∪ {x∗

R}, with x =
x̃L(β, χR) and x = 1

2
− β + χL

2
= x∗

L.

Going back to the interpretation of the last two propositions, notice that in the asym-
metric motivation case the more ideological candidate (henceforth “she”) enjoys a “policy
advantage,” in the sense that the equilibrium policy ends up closer to what she prefers.
That is because, given the uncertainty, she is more willing to take the risk of being close
to her preferences. The opportunistic candidate (henceforth “he”) is willing to follow her
in order to increase his chances of winning the election, to which she reacts by random-
izing on her side. However, when the uncertainty about the median voter is really high,
the ideological candidate gets too close to her ideology, and the opportunistic guy is not
willing to follow her that far in the policy space. This is what allows for differentiation
in pure strategies on one side of the median. As a final observation, notice that so long
as PSE policies differ, this case also predicts that the ideological candidate possesses a
lower probability of winning the election; or, to put it differently, that the opportunist
candidate enjoys an “electoral advantage.”

To illustrate the results when candidates exhibit asymmetric motivations, we plot
in Fig. 2 the equilibrium platforms as a function of the electoral uncertainty. As the
graphs show, besides a range of low and high levels of uncertainty, when candidates
possess heterogeneous interests it is also possible to distinguish a range of moderate or
intermediate levels that provides distinct equilibrium predictions. The three levels of
electoral uncertainty are determined by the following ranges of values of β:

13To be precise, the solution turns out to be x̃L(β, χR) = 1/2 + β + 3/2χR ±
√
2
√
2βχR + χ2

R.
14An analogous characterization can be given for the case where the left-wing candidate is the relatively

more ideological candidate (see Proposition 5 at the end of Appendix A).
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1. low uncertainty : 0 ≤ β ≤ min
{

χL

2
, χR

2

}
;

2. moderate uncertainty : min
{

χL

2
, χR

2

}
< β < max

{
χL

2
, χR

2

}
; and

3. high uncertainty : max
{

χL

2
, χR

2

}
≤ β ≤ β̄.

As in the symmetric case, for low levels of uncertainty candidates converge to the
estimated median voter’s ideal point. However, as the length of the interval over which
the median is distributed increases, there exists a range of intermediate levels of electoral
uncertainty (namely, the values in Fig. 2a between χR/2 and βC

1 , and the values in Fig.
2b between χL/2 and βC

2 ) for which the mixed motivation election game fails to possess
an equilibrium in pure strategies. Within that region, labeled in the graphs probabilistic
differentiation, the game admits an equilibrium in mixed strategies. Moreover, Proposi-
tions 4 and 5 state that the MSE support of both candidates is located on the same side
of the median ideal point, as is illustrated by the grey areas of Figs. 2a and 2b.

0

0.5

χR

2

C
o
n
v
er

g
en

ce

O
n
e

si
d
ed

d
iff

.

Two sided

differentiation

χL+χR

4

χL

2
β̄βC

1

x∗

i

x
∗

R

= 0.5
+ β −

χR
/2

x ∗

L = 0.5
− β + χ

L/2

x̃L(β, χR)

Probabilistic diff.

(a) χL > χR.

0

0.5

χL

2

C
o
n
v
er

g
en

ce

Probabilistic diff. O
n
e

si
d
ed

d
iff

.

Two sided

differentiation

χL+χR

4

χR

2
β̄βC

2

x∗

i

x ∗

L = 0.5
− β + χ

L/2

x
∗

R

= 0.5
+ β −

χR
/2

x̃R(β, χL)

(b) χR > χL.

Figure 2: Asymmetric case.

As the electoral uncertainty continues increasing, it eventually surpasses either the
critical threshold βC

1 if χL > χR, or the threshold βC
2 if χR > χL, and the existence of a

pure strategy equilibrium is reestablished. For values of the uncertainty parameter above
these thresholds and within the range of intermediate levels, Prop. 3 shows that a PSE not
only exists, but also that the corresponding equilibrium policies are placed on the same
ideological ground, giving rise to a region of one-sided policy differentiation. Afterwards,
for high electoral uncertainty, the conditions of Prop. 2 hold, and each candidate chooses
a policy on its own ideological side, although these policies do not locate symmetrically
around the center.15

To conclude, we compute the payoffs associated with the different equilibria, showing
how they vary with the relevant parameters. First, for policies converging to the median

15As a matter of comparison, note that when χL = χR, all of the critical values of β indicated in Figs.
2a and 2b coincide, i.e., βC

1 = βC
2 = χR/2 = χL/2. That explains why Fig. 1 exhibits neither a region

with a mixed strategy equilibrium, nor one with one-sided policy differentiation.
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ideal point, the payoffs are ΠL(x
∗
L, x

∗
R) = χL

2
+ θL − 1

2
and ΠR(x

∗
L, x

∗
R) = χR

2
− θR + 1

2
,

which are obviously increasing in candidates’ own interest in power, and constant with
respect to the electoral uncertainty.16 In addition, note that the left-wing (resp. right-
wing) candidate’s payoff is increasing (resp. decreasing) in the candidate’s ideology, since
being closer to the expected median reduces the utility loss of moving away from the
ideal point. Interestingly, the same equilibrium payoffs are obtained in the symmetric
motivation case, regardless of whether the equilibrium is at the expected median or with
two-sided policy differentiation.

Second, for differentiation in pure strategies with asymmetric interests, the left-wing

candidate’s equilibrium payoff is ΠL(x
∗
L, x

∗
R) =

χL

2
+ θL− 1

2
+ (χL−χR)2

16β
; and the right-wing

candidate’s is ΠR(x
∗
L, x

∗
R) =

χR

2
− θR + 1

2
+ (χL−χR)2

16β
. These two depend on the ideologies

as before; and they are decreasing in the electoral uncertainty, since higher uncertainty
moves the policy location of the opportunistic candidate away from the relatively more
policy concerned one, and it also reduces the probability of the former of winning the
election. Regarding the office rents, both equilibrium payoffs are increasing in their own
interest in power;17 and the cross effect is positive for the ideological candidate, but
negative for the opportunistic one.18 Finally, for differentiation in mixed strategies, we
are unable to offer a general characterization of the payoffs due to the fact that we do
not possess a closed form solution for the equilibrium distributions.

5 Experimental Design

In this section, we present a laboratory experiment designed to assess the theoretical
predictions of the mixed motivation election game studied in Section 4. The experiment
consisted of seven treatments, which were determined by varying the uncertainty param-
eter β, the ideologies θi and the office rents χi. For the convenience of the experimental
subjects we considered only integer locations, numbered from 0 to 100, which required
multiplying the relevant parameter values for β, θ, and χ by 100. The values employed
in each treatment, together with the corresponding equilibrium policies and payoffs, are
displayed in Table 1. For Treatment 6, with a MSE, we report the expected equilibrium
payoffs, and the reader is referred to Table 2 for details of the MSE policies.19

Subjects were told in the instructions a brief story of a town holding a two-candidate,
majority rule election to select the location of a new post office on the high street.
The subjects’ task was to propose simultaneously and independently an integer number
between 0 and 100 to locate the post office. They knew that voters were distributed
uniformly across the 101 locations, and they were told that although each voter would
vote for the proposal closer to its own location, for each profile of proposed locations the

16Bear in mind that to get convenient values for the experiment, the payoffs of Table 1 include a
positive constant of 90 in the utility function and a multiplication of payoffs by 10.

17For i, j = L,R, i 6= j,
∂Πi(x

∗

i ,x
∗

j )

∂χi
=

4β+χi−χj

8β , which is positive because in Prop. 3 β >
χi+χj

4 .

18For i, j = L,R, i 6= j,
∂Πi(x

∗

i ,x
∗

j )

∂χj
=

χj−χi

8β , which is positive if χj > χi and non-positive otherwise.
19The computations were done with the software GAMBIT (McKelvey et al. 2010). Obviously, there

are differences between the (discrete) numerical results of Table 2 and the (continuous) theoretical
predictions of Proposition 4. However, these differences vanish as the grid becomes finer.
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Treatment Uncertainty Ideologies Rents NE Policies NE Payoffs

β θL θR χL χR x∗L x∗R L R

1 2.5 10 90 10 10 50 50 550.0 550.0

2 15 10 90 10 10 40 60 550.0 550.0

3 15 10 90 40 40 50 50 700.0 700.0

4 15 34 66 10 10 40 60 790.0 790.0

5 35 10 90 10 10 20 80 550.0 550.0

6 15 10 90 90 10 MSE 1066.08 578.84

7 35 10 90 90 10 60 80 1064.29 664.29

Table 1: Experimental treatments.

Support Left-wing candidate Right-wing candidate

density c.d.f. density c.d.f.

52 0.5529 0.5529 0.0919 0.0919

53 0.1048 0.6577 0.0117 0.1036

54 0.2295 0.8872 0.0409 0.1445

55 0.0000 0.8872 0.0000 0.1445

56 0.0887 0.9759 0.0225 0.1670

57 0.0000 0.9759 0.0000 0.1670

58 0.0229 0.9988 0.0117 0.1788

59 0.0012 1.0000 0.0000 0.1788

60 0.0000 1.0000 0.8212 1.0000

Table 2: Treatment 6.

percentage of votes received by each candidate was not known with certainty due to the
existence of some uncertainty about voters’ preferences.

Subjects were also informed about the preferred location on the high street for each
of the two candidates. In order to get convenient payoff values in the lab, we applied
a linear transformation adding, first, a positive constant of 90 to the loss function; and
then multiplying payoffs by 10. Subjects were told that they would receive a location
payoff corresponding to 900 minus 10 times the distance between their ideal location (θ)
for the post office and the location actually realized. In addition, subjects were told that
winning the election would provide to the winning candidate an extra payoff of χ · 10.20

The locations were chosen by typing in a number on the decision screen. A screenshot
of the interface is provided in Fig. 3. Before making their actual proposals, subjects
were provided with the opportunity to use an expected payoff calculator (top half of the
screen) in which they could enter several hypothetical locations for themselves and for
their opponent and calculate the associated own payoff. This calculator offered subjects
a convenient device for looking at the 101× 101 payoff matrix, but it makes no recom-
mendation as how to play the game. There was no time limit for subjects’ decisions.

After all participants made their actual choices, in each round subjects found a feed-

20Note that we framed the experiment as a game of electoral competition, informing the subjects
about the two different motivations for the candidates, while avoiding potentially confounding political
left-right connotations. The reason for this framing is that we wanted to test precisely whether in an
election game as analyzed in the theory the subjects can learn to play the equilibrium strategies.
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Figure 3: Decision interface.

back screen with their chosen location, the location chosen by the other candidate, and the
resulting own payoff, denominated in points. Subjects were recommended to transcribe
the results of each round from the feedback window on a provided logsheet.

In each treatment there were 2 or 3 sessions, each comprising 60 rounds (elections).
At the beginning of each session, subjects were randomly and anonymously matched into
pairs. Within each pair, one subject was assigned the role of candidate A, whereas the
other played the role of candidate B. Subjects were informed that they would not know
who of the other people in the room they were paired with, and that matched pairs would
remain fixed for the entire session. They were also aware that their initial roles would be
swapped after round 30. This swapping allowed us to study some aspects of the learning
by the subjects, particularly the transfer of insights from one role to the other. It also
removed possible concerns about payoff asymmetries present in some of the treatments.

The experiment was carried out in the Spring of 2010 in the Centre for Experimental
Economics of the University of York. Subjects were recruited from a university-wide
pool of undergraduate and postgraduate students using Greiner’s (2004) Online Recruit-
ment System for Economic Experiments (ORSEE). The experiment was programmed and
conducted with the software Z-Tree (Fischbacher 2007).

Upon arrival, subjects were assigned to a computer terminal and they were given
a set of written instructions.21 After reading the instructions, they were allowed to ask
questions by raising their hands and speaking with the experimenter in private. To ensure
that subjects understood the decision situation and the mechanics of payoff calculations,
all participants answered several computerized test questions. The experiment did not
proceed until every subject had answered these questions correctly. Subjects were not
allowed to communicate directly with one another, and they only interacted indirectly

21A copy of the instructions is available in a supplementary online appendix.
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Treatment Sessions Subjects Pairs Exchange rate Average payment
(GBP per 1000 points) (GBP)

1 3 26 13 0.60 19.80

2 2 20 10 0.60 19.80

3 2 20 10 0.50 21.00

4 2 20 10 0.45 21.30

5 2 20 10 0.60 19.81

6 2 20 10 0.40 24.56

7 3 30 15 0.40 24.85

Table 3: Overview of the experiment.

via the decisions they entered in the computer terminals.
Subjects were informed that the points accumulated throughout the 60 rounds would

determine, together with a given exchange rate, their monetary payoffs. A typical session
lasted approximately 2 hours. The average payment in each treatment, the exchange
rate, and the number of sessions, participants, and pairs are all summarized in Table 3.

6 Experimental Evidence

6.1 Equilibrium convergence

First, we look at the location choices of the Left and the Right players in the various
treatments, and we compare them with the Nash equilibrium values. The supplementary
online appendix displays disaggregated data on these variables for single periods, for
subintervals of the 60 periods, and for matching pairs.

Figure 4 shows for each treatment for which a PSE exists the per period median
location of the Left and the Right players, as well as the 95% confidence intervals. These
confidence intervals are determined as follows. Depending on the treatment, for each
period there are between ten and fifteen independent observations (pairs). Using these
observations as the unit of analysis, for every possible value m between 0 and 100, we
test the null hypothesis (two-sided binomial test) that m is the median, i.e., that the
probability to observe a location choice below m equals the probability to observe one
above m. The alternative hypothesis is that the median has either a lower or a higher
value than m, i.e., that these probabilities are not equal. For any given value m, the null
hypothesis is rejected if there are too few or too many observations on one side of m.

Two main conclusions emerge from the graphs. On the one hand, in Treatments 1 to
5 (Figs. 4a-4e) not only the median locations converge to the equilibrium values, but also
the 95% confidence intervals shrink over time. On the other hand, in Treatment 7 (Fig.
4f) with one-sided differentiation, although the median locations of the Left and the Right
players converge to the equilibrium, the 95% confidence intervals of both players tend to
be skewed towards the center of the policy space. This suggests that although most of
the players behaved in the lab as the theory predicts, some Left as well as some Right
players deviated and they tended to stay towards the left of the theoretical predictions
and closer to the center even after 60 periods of play.
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(a) Treatment 1: x∗
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R = 50.
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(b) Treatment 2: x∗
L = 40 & x∗
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Figure 4: Median locations and 95% confidence intervals.
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(d) Treatment 4: x∗
L = 40 & x∗

R = 60.
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(e) Treatment 5: x∗
L = 20 & x∗

R = 80.

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26

period

lo
c
a
ti
o
n

0

10

20

30

40

50

60

70

80

90

100

31 36 41 46 51 56

period

Left

95% conf. int.

95% conf. int.

Right

95% conf. int.

95% conf. int.

(f) Treatment 7: x∗
L = 60 & x∗

R = 80.

Figure 4: Median locations and 95% confidence intervals (continued).
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As to Treatment 6, notice that this case is different because the unique Nash equi-
librium of the game is in mixed strategies. Therefore, besides the median locations of
the Left and the Right players, in Figs. 5a and 5b we also display for each period the
minimum and the maximum values of their locations, and we compare these values with
the theoretical lower and upper bounds of the MSE support.

We find that the median of the Left (resp. Right) players converges to 55 (resp. 60),
which is close to (resp. coincides with) the median location of the MSE (52 and 60, for
Left and Right players respectively). Moreover, the pictures show that the minimum and
the maximum locations chosen in the lab approximate the bounds of the MSE support,
which ranges from 52 to 59 for the Left player, and from 52 to 60 for the Right player.
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(a) Median, minimum and maximum locations of the Left players.
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(b) Median, minimum and maximum locations of the Right players.

Figure 5: Treatment 6.

Since the median and the support measure just some aspects of the distributions,
to further assess the differences between the empirical and the theoretical distributions,
we apply the Kolmogorov-Smirnov test, considering for each period ten independent
observations for the Left players and ten observations for the Right players. The test
statistic, denoted by D, represents the maximum deviation between the empirical and
the theoretical cumulative distributions. The null hypothesis is that these distributions
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are identical. The alternative hypothesis is that they are not the same. The critical
values to reject the null hypothesis at 5% and 10% significance levels are, respectively,
0.410 and 0.368 (see Siegel 1988), with values of D above the critical values leading to
the rejection of the null hypothesis.
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(c) Maximum deviation from the cumulative equilibrium distributions in each period.

Figure 5: Treatment 6 (continued).

For each of the 60 periods separately, Fig. 5c shows the test statistic D for the Left
and the Right players as well as the critical values (CV). As we see, we cannot reject the
null hypothesis in most of the periods for the Right players. Specifically, using the 5%
critical value, the MSE distribution cannot be rejected in 27 of the first 30 periods, and
28 of the last 30 periods. For the Left players, however, the picture is somewhat different.
Still at 5% significance, the MSE distribution cannot be rejected in 11 periods in the first
half of the experiment, and 15 periods in the second half.

In Figures 5d and 5e we continue the analysis of Treatment 6, presenting the empirical
cumulative distributions for the 60 period interval as a whole and for a number of dif-
ferent subintervals. In conformity with the theory, the graphs show that the cumulative
distribution of the Left players first-order stochastically dominates the distribution of the
Right players. But when the Kolmogorov-Smirnov test is applied to these subintervals of
the 60 periods (see Fig. 5f), we see that the null hypothesis of the empirical distributions
being indistinguishable from the MSE distributions must be rejected in every single case.
This means that the empirical distributions of the Left and the Right players are indeed
statistically different from the theoretical ones.

The question, then, is how substantial these differences are. To answer that question,
in every period we take the empirical distribution of the ten Left (Right) players, and we
compute for each of these players how many locations they would need to move to reach
the MSE distribution (allowing for fractions of players). To do this, we only stretch,
squash and shift the empirical distribution, thus preserving the order of the location
choices. That is, if player i had chosen a location smaller (greater) than player j, then
after all moves have been made to reach the MSE distribution, player i still has a location
smaller (greater) than or equal to player j.

Once the number of locations each player would need to move to reach the equilibrium
distribution has been found, in any given period we take the average number of moves
of the Left and the Right player in each matching pair as the distance between the
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Figure 5: Treatment 6 (continued).

empirical and the theoretical distributions. This provides for each period ten independent
observations for this distance. Figure 5g shows that the median distance as well as the
95% confidence interval diminish over time, and that in the last subinterval, i.e., in periods
51-60, on average the median distance to be moved is only 2.0 locations. This means that
although the empirical distributions of the Left and the Right players are statistically
different from the theoretical ones, these differences are relatively small.

Up to this point we focused our analysis of the experimental data on a comparison
with the Nash equilibrium predictions.22 Interestingly, in some treatments the Left and
Right players are predicted to converge to the same location, whereas in others the
equilibrium predictions for Left and Right players are different. Therefore we now turn

22We also considered Quantal Response Equilibria (QRE). For each treatment we estimated the QRE
choice intensity parameter by minimizing the error of the QRE strategy profiles with the empirical
distribution observed in periods 41-60. Using this free parameter we obtain errors for the QRE that are
only marginally below those for the Nash equilibrium predictions, and this slightly better fit is achieved
by using widely different choice intensity parameter values across treatments.
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 max. dev. D critical values

Left Right 5% 10%

1-10 0.59 0.26 0.14 0.12

11-20 0.38 0.16 0.14 0.12

21-30 0.50 0.26 0.14 0.12

1-30 0.37 0.22 0.08 0.07

31-40 0.33 0.25 0.14 0.12

41-50 0.37 0.23 0.14 0.12

51-60 0.37 0.17 0.14 0.12

31-60 0.35 0.21 0.08 0.07

1-60 0.35 0.21 0.06 0.05

(f) Kolmogorov-Smirnov test.
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Figure 5: Treatment 6 (continued).

to a comparison of the positions of the Left players with the positions of the Right players.
For each treatment and each matching pair, we compute the average position of the Left
and of the Right players in different intervals. Thus, depending on the treatment, for each
interval we have ten to fifteen independent observations, each of them being a matched
pair. We use the Wilcoxon signed-ranks test to assess whether we can reject the null
hypothesis that the position of the Left players is equal to that of the Right players. The
results (one- or two-tailed tests as indicated by H1) are shown in Table 4.

As we see, in each treatment where the Left players would be expected to be on the left
of the Right players (i.e., in Treatments 2, 4, 5, 6, and 7) this was indeed what happened.
Note that in Treatment 6, it can happen according to the MSE predictions that a Left
player chooses a location to the right of the Right player, because the supports of the
equilibrium distributions overlap. Nevertheless, for each of the intervals considered the
expected mean location for the Left player is to the left of that of the Right player.

In Treatments 1 and 3 the Left and the Right players were supposed to converge to
the same location. Nevertheless, the table shows that the position of the Left players
was often significantly to the left of that of the Right players in these two treatments.
Note that although statistically significant, these deviations were not widespread, as was
shown above in Figure 4 by the convergence of the medians to the Nash equilibrium. In as
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treat1 treat2 treat3 treat4 treat5 treat6 treat7

H0 L=R L=R L=R L=R L=R L=R L=R

H1 L<>R L<R L<>R L<R L<R L<R L<R

1-10 1% (<) 0.1% 1% (<) 0.1% 0.1% 0.1% 0.00%

11-20 1% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%

21-30 10% (<) 0.1% 1% (<) 0.1% 0.1% 0.1% 0.00%

1-30 1% (<) 0.1% 1% (<) 0.1% 0.1% 0.1% 0.00%

31-40 10% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%

41-50 no diff. 0.1% no diff. 0.1% 0.1% 0.1% 0.00%

51-60 10% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%

31-60 10% (<) 0.1% no diff. 0.1% 0.1% 0.1% 0.00%

1-60 1% (<) 0.1% 5% (<) 0.1% 0.1% 0.1% 0.00%

Table 4: Players’ median locations (significance levels for rejection of H0).

far as there were deviations from the PSE in these treatments, they tended to be towards
the left for Left players and towards the right for Right players. This may be explained
by a bias induced by the subjects’ ideology, or by the out-of-equilibrium incentives.23

Finally, regarding the equilibrium payoffs, Table 1 shows that in the symmetric Treat-
ments 1-5, both players get equal payoffs. On the contrary, the asymmetry in the param-
eter values of Treatments 6 and 7 creates an asymmetry in the equilibrium payoffs as well,
with the more opportunistic Left player getting higher payoffs in equilibrium than her
opponent with lower office rents. One question, then, is whether this payoff asymmetry
materializes in the experiment as well.

treat1 treat2 treat3 treat4 treat5 treat6 treat7

Left 552.2 550.6 704.2 788.2 545.9 1052.65 1027.92

Right 547.8 549.4 695.8 791.3 553.7 584.64 629.54

H0 L=R L=R L=R L=R L=R L=R L=R

H1 L<>R L<>R L<>R L<>R L<>R L>R L>R

1-60 no diff. no diff. no diff. no diff. no diff. 1% (>) 1% (>)

Table 5: Players’ average payoffs (significance levels for rejection of H0).

Table 5 shows for each treatment the average payoffs of the Left and of the Right
players over the 60 periods.24 We use the Wilcoxon signed-ranks test to assess whether
we can reject the null hypothesis that the payoff of the Left players is equal to that of
the Right players. The results (one- or two-tailed tests as indicated by H1) show that
the null hypothesis of equal payoffs cannot be rejected in Treatments 1 to 5. Moreover,
as predicted by the theory, in Treatments 6 and 7 the payoffs of the Left players are
significantly greater than those of the Right players at 1% significance level.

6.2 Learning

Having studied the convergence of the subjects’ choices to the equilibrium, we now exam-
ine in which periods this convergence takes place. For each treatment, we distinguish the

23If the opponent chooses the PSE location, then deviating from the PSE towards a subject’s own
ideology leads to a less steep decline in payoffs than a deviation in the opposite direction.

24The average payoffs for each matching pair can be found in the supplementary online appendix.
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30 periods before the swapping of the roles and the 30 periods after the swap. We also
split these intervals into smaller subintervals of ten periods. For every matching pair, we
compute for each subinterval the average absolute distance from the Nash equilibrium,
and we test whether these distances are different in two specified intervals.

To do this, we use the one-tailed Wilcoxon signed-ranks test, distinguishing 1% and
5% significance levels. This is a non-parametric statistical test to assess whether there
is a difference in the median of two related samples. The only assumption made about
the underlying distribution is that these differences are independent observations from
a symmetric distribution. The null hypothesis is that the median difference between
the pairs of observations is zero. The alternative hypothesis is that the median of the
interval that comes later is lower than that of the earlier interval, reflecting the learning
and adaptive behavior of the experimental subjects.

The results are reported in Table 6. In each box, we compare the average absolute
distance in the intervals indicated on the left-hand side to those indicated at the top of
the box. Thus, if we consider for instance Treatment 1 (first box), we see that the average
absolute distance from the PSE is smaller in periods 11-20 (first column at the top) than
in periods 1-10 (first row on left-hand side) at the 1% significance level. For Treatment 6
we present two boxes: the first box (treat6a) shows the distance from the MSE support,
whereas the second (treat6b) shows the distance from the entire distribution.

First, we ask whether there has been a significant amount of learning over the entire
experiment. As the tables show, learning did happen since in every treatment the average
absolute distance from the Nash equilibrium is statistically significantly smaller in the
last ten periods, i.e., in periods 51-60, than in the first ten periods.

Second, we ask in which periods the average absolute distance actually decreases.
Looking at the main diagonal of the tables, it turns out that except in Treatment 7,
where it seems that learning happened between periods 11 and 20, in the rest of the
treatments learning took place mainly in the first ten periods (elections), which was also
the most active interval in terms of subjects’ use of the expected payoff calculator.25

Third, we ask whether players after swapping their roles between periods 30 and
31 succeed in transferring some of their findings from before the swapping to after the
swapping. The answer is largely affirmative as the distance from the Nash equilibrium is
smaller in periods 31-40 than in periods 1-10 for all treatments except Treatment 1.

Finally, we test whether the swapping as such led to an increase in the distance from
the NE right after the swapping. As we see in Table 7, in some treatments there is an
increase in the distance from the equilibrium if the intervals considered are 1 or 5 periods
before the swap, but not considering a ten period interval.

6.3 Comparisons between treatments

In Sections 6.1 and 6.2, we compared for each treatment separately the experimental data
with the Nash equilibrium values. We now perform a number of ‘comparative statics’

25These findings are confirmed by OLS regressions, where the position of the Left and the Right players
and the average absolute distance from the equilibrium are regressed against the inverse of time 1/t as the
only independent variable (see the supplementary online appendix). The analysis shows that almost all
coefficient are significant; and, in particular, the slope coefficients for the distance from the equilibrium
are significant and with the expected sign for all treatments.

23



to periods:

treat1 11-20 21-30 31-40 41-50 51-60 31-60

1-10 yes (1%) yes (1%) no yes (1%) yes (1%)

from 11-20 no no no yes (5%)

periods: 21-30 no no yes (1%)

31-40 yes (1%) yes (1%)

41-50 no

1-30 yes (1%)

treat2 11-20 21-30 31-40 41-50 51-60 31-60

1-10 yes (1%) yes (1%) yes (1%) yes (1%) yes (1%)

from 11-20 no no no no

periods: 21-30 no no no

31-40 no no

41-50 no

1-30 yes (1%)

treat3 11-20 21-30 31-40 41-50 51-60 31-60

1-10 yes (1%) yes (1%) yes (5%) yes (1%) yes (1%)

11-20 no no no no

from 21-30 no no no

periods: 31-40 yes (1%) yes (5%)

41-50 no

1-30 no

treat4 11-20 21-30 31-40 41-50 51-60 31-60

1-10 yes (1%) yes (1%) yes (1%) yes (1%) yes (1%)

from 11-20 no no no yes (1%)

periods: 21-30 no no no

31-40 no yes (5%)

41-50 no

1-30 yes (1%)

treat5 11-20 21-30 31-40 41-50 51-60 31-60

1-10 yes (1%) yes (1%) yes (1%) yes (5%) yes (5%)

from 11-20 no no no no

periods: 21-30 no no no

31-40 no no

41-50 no

1-30 yes (5%)

treat6a 11-20 21-30 31-40 41-50 51-60 31-60

1-10 yes (1%) yes (1%) yes (5%) yes (1%) yes (1%)

from 11-20 no no no no

periods: 21-30 no no no

31-40 yes (5%) yes (5%)

41-50 no

1-30 yes (5%)

treat6b 11-20 21-30 31-40 41-50 51-60 31-60

1-10 yes (1%) yes (1%) yes (5%) yes (1%) yes (5%)

from 11-20 no no no yes (1%)

periods: 21-30 no yes (10%) yes (5%)

31-40 yes (5%) yes (1%)

41-50 no

1-30 yes (5%)

treat7 11-20 21-30 31-40 41-50 51-60 31-60

1-10 no yes (1%) yes (5%) yes (1%) yes (1%)

from 11-20 yes (1%) no yes (5%) yes (1%)

periods: 21-30 no no no

31-40 no yes (5%)

41-50 no

1-30 yes (1%)

Table 6: Decrease in the average absolute distance from the Nash equilibrium.
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to: to:

treat1 31-40 31-35 31 treat5 31-40 31-35 31

21-30 no 21-30 no

from: 26-30 no 26-30 no

30 yes (5%) 30 no

treat2 31-40 31-35 31 treat6a 31-40 31-35 31

21-30 no 21-30 no

from: 26-30 no 26-30 no

30 no 30 yes (5%)

treat3 31-40 31-35 31 treat6b 31-40 31-35 31

21-30 no 21-30 no

from: 26-30 yes (5%) 26-30 no

30 yes (5%) 30 yes (5%)

treat4 31-40 31-35 31 treat7 31-40 31-35 31

21-30 no 21-30 no

from: 26-30 no 26-30 no

30 no 30 no

Table 7: Increase in the average absolute distance from the Nash equilibrium.

tests across these treatments. For expositional convenience, all the pair-wise comparisons
are illustrated in Fig. 6, where a double arrow relating any two treatments is used to
indicate a direct statistical comparison between them.

Rents

L = 90, R = 10 L = R = 10 L = R = 40

 = 2.5

treatment 1: 

xL* = 50      

xR* = 50

Uncertainty
treatment 4:   

xL* = 40       

xR* = 60

Ideology

 = 15
treatment 6:  

mixed NE

treatment 2: 

xL* = 40      

xR* = 60

treatment 3: 

xL* = 50      

xR* = 50

L = 10, R = 90 

(except treatment 4:     

L = 34, R = 66)

 = 35

treatment 7: 

xL* = 60      

xR* = 80

treatment 5: 

xL* = 20      

xR* = 80

Figure 6: Overview of the comparisons between Treatments.

The comparative statics tests carried out here focus mainly on three variables: the
position of the Left players, the position of the Right players, and the average absolute
distance from the Nash equilibrium. In each treatment, we compute the average value of
these variables for different subintervals and for the whole session. We have, depending
on the treatment, between ten and fifteen independent observations, and we use the
robust rank-order test to compare the samples between two treatments, distinguishing
1%, 5% and 10% significance levels.26 The results found are reported in Table 8. Table

26This test statistic has the advantage that it compares the median of two unrelated samples without
making any assumptions about the higher moments of the distribution of the two samples. The critical
values are taken from Feltovich (2003).
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8a concerns the positions of the Left players, Table 8b the location of the Right players,
and Table 8c shows the average absolute distance from the Nash equilibrium.

Left treatments

periods 1 v. 2 2 v. 5 1 v. 5 2 v. 4 2 v. 3 2 v. 6 5 v. 7 6 v. 7

H0 L(1) = L(2) L(2) = L(5) L(1) = L(5) L(2) = L(4) L(2) = L(3) L(2) = L(6) L(5) = L(7) L(6) = L(7)

H1 L(1) > L(2) L(2) > L(5) L(1) > L(5) L(2) <> L(4) L(2) < L(3) L(2) < L(6) L(5) < L(7) L(6) < L(7)

1-10 5% 1% 1% no diff. 1% 1% 1% no diff.

11-20 1% 1% 1% no diff. 1% 1% 1% no diff.

21-30 1% 1% 1% no diff. 1% 1% 1% no diff.

1-30 1% 1% 1% no diff. 1% 1% 1% no diff.

31-40 5% 1% 1% no diff. 1% 1% 1% no diff.

41-50 1% 1% 1% no diff. 1% 1% 1% 10%

51-60 1% 1% 1% no diff. 1% 1% 1% no diff.

31-60 1% 1% 1% no diff. 1% 1% 1% no diff.

1-60 1% 1% 1% no diff. 1% 1% 1% no diff.

(a) Left players’ positions across treatments.

Right treatments

periods 1 v. 2 2 v. 5 1 v. 5 2 v. 4 2 v. 3 2 v. 6 5 v. 7 6 v. 7

H0 R(1) = R(2) R(2) = R(5) R(1) = R(5) R(2) = R(4) R(2) = R(3) R(2) = RL(6) R(5) = R(7) R(6) = R(7)

H1 R(1) < R(2) R(2) < R(5) R(1) < R(5) R(2) <> R(4) R(2) > R(3) R(2) <> R(6) R(5) <> R(7) R(6) < R(7)

1-10 5% 1% 1% no diff. 1% no diff. no diff. 1%

11-20 1% 1% 1% no diff. 1% no diff. no diff. 1%

21-30 1% 1% 1% no diff. 1% no diff. no diff. 1%

1-30 1% 1% 1% no diff. 1% no diff. no diff. 1%

31-40 1% 1% 1% no diff. 1% no diff. 1% (>) 1%

41-50 1% 1% 1% no diff. 1% no diff. 1% (>) 1%

51-60 1% 1% 1% no diff. 1% no diff. no diff. 1%

31-60 1% 1% 1% no diff. 1% no diff. 1% (>) 1%

1-60 1% 1% 1% no diff. 1% no diff. 5% (>) 1%

(b) Right players’ positions across treatments.

distance treatments

periods 1 v. 2 2 v. 5 1 v. 5 2 v. 4 2 v. 3 2 v. 6 5 v. 7 6 v. 7

H0 d(1) = d(2) d(2) = d(5) d(1) = d(5) d(2) = d(4) d(2) = d(3) d(2) = d(6) d(5) = d(7) d(6) = d(7)

H1 d(1) <> d(2) d(2) <> d(5) d(1) <> d(5) d(2) <> d(4) d(2) <> d(3) d(2) <> d(6) d(5) <> d(7) d(6) <> d(7)

1-10 no diff. no diff. no diff. no diff. no diff. no diff. no diff. 1% (<)

11-20 no diff. no diff. no diff. no diff. no diff. no diff. 5% (<) 10% (<)

21-30 10% (>) no diff. no diff. no diff. no diff. 5% (<) 10% (<) no diff.

1-30 no diff. no diff. no diff. no diff. no diff. no diff. 5% (<) 5% (<)

31-40 10% (>) no diff. no diff. no diff. no diff. 2% (<) 5% (<) no diff.

41-50 no diff. no diff. no diff. no diff. no diff. 2% (<) 10% (<) no diff.

51-60 no diff. no diff. no diff. no diff. no diff. 1% (<) no diff. no diff.

31-60 10% (>) no diff. no diff. no diff. no diff. 2% (<) 10% (<) no diff.

1-60 no diff. 10% (<) no diff. no diff. no diff. 5% (<) 5% (<) 10% (<)

(c) Average absolute distance from the Nash equilibrium across treatments.

Table 8: Differences between treatments.

First, to assess the impact on policy divergence of an increase in the electoral uncer-
tainty, Treatment 1 is compared with Treatments 2 and 5, respectively, and Treatment 2
is compared with Treatment 5. In each of these treatments, the ideologies and the office
rents remain constant, whereas the electoral uncertainty gradually increases, leading to
increasing policy divergence in theory. The results are shown in the second, third and
fourth columns of Tables 8a-8c. In conformity with the theory, in all cases and in every
interval the null hypothesis that there is no difference between the positions of the Left
(resp. Right) players across the treatments is rejected at 1% or 5% significance levels,
with the alternative hypothesis being in the direction predicted by the theory.
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As to the average absolute distance from the Nash equilibrium, the tests indicate no
significant differences in most of the intervals. However, looking at the whole session,
Treatment 5 appears to show less convergence than Treatment 2, albeit only at 10%
significance level. We conjecture that the reason could be that the equilibrium associated
with the parameter values of Treatment 5 (i.e., x∗

L = 20 and x∗
R = 80) is somewhat more

extreme than the one corresponding to Treatment 2 (i.e., x∗
L = 40 and x∗

R = 60), and that
some of the subjects may have been concerned about choosing such extreme policies.27

Second, by varying the ideologies, the comparison of Treatments 2 and 4 offers the
chance to see whether the two-sided differentiation effect present in Treatment 2 is inde-
pendent of the degree of ideological polarization θR−θL.

28 In conformity with the theory,
in every interval the null hypothesis that there is no difference between the positions of
the Left (resp. Right) players and between the average absolute distances cannot be
rejected at 1% and 5% significance levels.

Third, the issue of whether policy convergence is re-established as candidates become
more office-motivated is investigated by comparing Treatments 2 and 3. The results show
that in every interval the positions of the Left (resp. Right) players in Treatment 2 are
statistically different at 1% significance level from the positions of the Left (resp. Right)
players in Treatment 3, which is again consistent with the theory. Moreover, there are
no statistically significant differences in these two treatments with respect to the average
absolute distances from the Nash equilibrium.

Fourth, to assess the change in policy differentiation that results from raising the office
rents of one of the candidates while keeping the other constant, Treatment 5 is contrasted
with Treatment 7. The theory predicts no changes in the location of the Right candidate,
and a move of the Left candidate from the left-hand side to the right-hand side of the
median voter. The experimental results are mixed. On the one hand, in every interval the
positions of the Left players in Treatment 7 are statistically different at 1% significance
level from the positions of the Left players in Treatment 5. On the other hand, contrary
to the theoretical prediction, we find significant differences in the Right players’ positions
in several intervals, including the last 30 periods (at %1) and the whole session (at 5%).
The data show that the locations of these players in Treatment 5 tend to be more extreme.
Consistent with our previous results, convergence to the NE is also worse in Treatment
7 than in Treatment 5. In the whole session as well as in several subintervals, there are
significant differences (at 5 and 10%) in the average absolute distances from the NE, with
the distance in Treatment 5 tending to be smaller.

Fifth, we compare Treatment 6, in which there is no PSE, with Treatments 2 and 7,
to detect any significant variations in subjects’ behavior in the absence of a PSE. For a
start, comparing Treatment 6 with Treatment 2, we observe that the Left players in the
latter, in which office rents are lower, choose locations to the left of those in Treatment
6. For Right players we do not see a difference between these two treatments, which
seems related to the fact that the expected median in Treatment 6 is 59 whereas in
Treatment 2 is 60. Next, comparing Treatment 6 with Treatment 7, in which uncertainty
has increased, we see that there are no significant differences in the Left players’ behavior

27In our analysis of the experimental data we assume risk-neutrality of the experimental subjects.
28According to the theory, given the assumption of Euclidean preferences, the only effect of the ideolo-

gies on the equilibrium policies is through expanding or contracting the region of policy differentiation.
Specifically, that region shrinks as the difference between the θs gets smaller (i.e., with less polarization).
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(recall the expected median in the former is 53 and in the latter 60); whereas the Right
players, as predicted, choose locations more to the right in Treatment 7. Finally, although
with a small number of observations per period one cannot expect to hit the equilibrium
distribution exactly in Treatment 6, we see that in the first twenty periods the distance
from the equilibrium is nevertheless smaller in Treatment 6 than in Treatment 7.

Sixth, we study the effect of asymmetric office rents on the players’ payoffs, comparing
the payoffs of Treatments 2 and 6, and of Treatments 5 and 7. Table 1 shows that, as
the office rents for the Left player increase in Treatment 6 (resp. 7), his payoffs become
higher than in Treatment 2 (resp. 5). Moreover, the payoffs of the Right player become
higher than in Treatment 2 (resp. 5) as well. As was explained in Section 4, this happens
because as the more opportunistic player moves into the ideological side of his opponent,
this makes it more likely that he will win the election, offering an electoral advantage
that increases his payoffs. Simultaneously, his opponent is better off too because the
policy implemented gets closer to her ideology. This is the ideological advantage of the
relatively more policy concerned candidate, which offers her higher equilibrium payoffs.

               treat2 v. treat6               treat5 v. treat7

Left Right Left Right

H0 L(2) = L(6) R(2) = R(6) L(5) = L(7) R(5) = R(7)

H1 L(2) < L(6) R(2) < R(6) L(5) < L(7) R(5) < R(7)

1-60 1% 1% 1% 1%

Table 9: Players’ average payoffs (significance levels for rejection of H0).

We use the robust rank-order test to compare the payoffs between these treatments
over periods 1-60, and to test ultimately the electoral and the ideological advantage
effects. As we can see from Table 9, introducing an asymmetry in the payoff parameters
led in all cases to differences in players’ payoffs that are consistent with the theoretical
predictions at 1% significance level.

7 Final remarks

This paper builds on the spatial literature of electoral competition, studying theoretically
and experimentally the set of Nash equilibria when candidates are interested in power and
ideology, but not necessarily in the same way. It provides a full characterization of the
set of Nash equilibria, showing how the equilibrium configurations depend on the relative
interests in power (resp., ideology) and the uncertainty about voters’ preferences. In ad-
dition, it examines the empirical content of these theoretical predictions through a series
of laboratory treatments. The experimental data show convergence to the equilibrium
values at the aggregate and at the individual levels in all treatments, and comparative
statics effects across treatments consistent with the theory. What is more, learning hap-
pens relatively quickly, especially if one takes into account that the experimental subjects
had no experience of and received no further information about electoral games.

Despite these positive results, and despite the fact that the model considered here
seems rich enough to pick up several interesting features of electoral competition that
had been overlooked in the literature, there are a number of issues that may require more
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attention in future work. First, the assumption of risk neutrality (with respect to the
distance |x − θi|), embedded into the assumption of Euclidean preferences of Section 3,
entails a loss of generality in the analysis. This is because in spite of being ideologically
different, risk averse candidates tend to move closer to each other and toward to the
center.29 We conjecture that the uniqueness of our equilibria and the different types of
equilibrium configurations identified in Section 4 might be a property of elections that
hold under a more general class of utility functions and electoral uncertainty. However, a
full analysis of this conjecture and a complete equilibrium characterization under different
conditions of preferences and uncertainty are beyond the scope of this paper.

Second, we noted in the experimental evidence that convergence to the Nash equilib-
rium is not equally precise across treatments, with the convergence being least precise
in the asymmetric treatments, i.e., when the two candidates have different motives. As
predicted, individual decisions were more noisy in the treatment with the MSE; and
matching the exact probability distribution seems a more demanding test of convergence
as well. But also in the asymmetric treatment with PSE, convergence was less precise
than in the symmetric treatments. It will be interesting to investigate the causes of this
difference in the degree of convergence across treatments, and to find out, for example,
whether this observation that there is less convergence in the asymmetric treatments is
due to the fact that the theoretical predictions implied one-sided policy differentiation,
or just to the fact that these equilibria are not symmetric around the center. Further
experiments may shine some light on this matter.

Third, an important element of our experimental design is the expected payoff calcu-
lator. The calculator provided information about the available payoffs. Such information
is usually presented in the form of a payoff matrix in experimental settings. We had
not made the entire 101 × 101 payoff matrix available for practical reasons. Instead,
the calculator allowed the subjects to observe snapshots of the underlying payoff matrix.
However, this did not create any bias, in the sense that it did not induce the subjects to
examine any particular areas of the strategy space. Subjects had to enter explicitly the
location choices for themselves and for their opponents, and the calculator only provided
factual information about the corresponding payoffs, without suggesting any kind of rec-
ommendation. Having said that, it may be interesting to consider alternative designs in
this type of electoral games, in particular designs in which information about the strategic
environment is conveyed in a different way to the subjects.

Finally, as is conventional in the literature, our experimental design treats voters as
artificial actors. It would be interesting, however, to organize an experiment in which the
voters are experimental subjects as well. This has been done in some of the early papers
about the median voter outcome, and it should be easier to implement nowadays thanks
to the communication tools (such as smartphones, iPads, etc.) currently available. This
may be interesting from a methodological viewpoint, as well as to assess related issues
not modeled in the current work, such as private polling and voter turnout.

29Indeed, given the position of one candidate, the rival chooses a less differentiated platform when it
is risk averse because it must compensate a higher utility loss due to the risk aversion with a rise in the
probability of winning.
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Supplementary material

The online version of this article contains additional supplementary material in the form of
disaggregated data as well as an econometric analysis corresponding to the experimental
section of the paper. Please visit http://dx.doi.org/10.1016/j.geb.201x.xx.xxx.
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A Appendix: Proofs

To simplify the notation, and given that the term uθi(xj), i 6= j, of candidate i’s payoff
function Πi defined in (1) and (2) does not affect i’s optimal choices, in the rest of this
Appendix we work with the linear transformations πi(xi, xj) ≡ Πi(xi, xj)− uθi(xj).
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Proof of Lemma 1. Let (x∗
L, x

∗
R) be a PSE for G. To see that p(x∗

L, x
∗
R) ∈ (0, 1), assume

without loss of generality that p(x∗
L, x

∗
R) = 1. Then, candidate R’s equilibrium payoff is

πR(x
∗
L, x

∗
R) = 0; and it would be possible for R to increase its payoff by deviating to x∗

L

(which would result in a payoff equal to χR/2 > 0), a contradiction.
Next, suppose that x∗

L < θL. If x∗
R ≥ θL, it would be possible for L to increase

its payoff by choosing θL, because πL(x
∗
L, x

∗
R) = p(x∗

L, x
∗
R) · [x∗

L + x∗
R − 2θL + χL] <

p(θL, x
∗
R) · [x∗

R − θL + χL] = πL(θL, x
∗
R).

30 Alternatively, if x∗
R < θL, then: (i) L would

profitably deviate to x∗
R if x∗

L < x∗
R, because πL(x

∗
L, x

∗
R) = p(x∗

L, x
∗
R) · [x∗

L − x∗
R + χL] <

χL/2; (ii) R would find it beneficial to move to x∗
L if x∗

R < x∗
L, because πR(x

∗
L, x

∗
R) =

[1 − p(x∗
L, x

∗
R)] · [x∗

R − x∗
L + χR] < χR/2; and (iii) L would do better by playing θL if

x∗
R = x∗

L, because χL/2 < p(θL, x
∗
R) · [θL − x∗

R + χL] = πL(θL, x
∗
R). Therefore, x

∗
L ≥ θL.

Assume, by way of contradiction, that x∗
L = θL. Then: (i) if x

∗
R = θL, candidate R can

benefit by moving its proposal to xR = θL + δ, with δ > 0 small, because πR(x
∗
L, xR) =

[1−p(x∗
L, xR)] · (χR+ δ) > χR/2 = πR(x

∗
L, x

∗
R); (ii) if x

∗
R > θL, candidate L would be able

to increase its payoff by selecting xL = θL + ǫ, which would result, given the assumption
on β and for ǫ > 0 small enough, in a positive payoff change [p(xL, x

∗
R)−p(θL, x

∗
R)] · [x∗

R−
θL + χL]− ǫ · p(xL, x

∗
R);

31 finally (iii) if x∗
R < θL, R would find it profitable to deviate to

θL because πR(x
∗
L, x

∗
R) = [1 − p(x∗

L, x
∗
R)] · (x∗

R − x∗
L + χR) < χR/2. Hence, from (i)-(iii),

we conclude that x∗
L > θL. A similar argument establishes that x∗

R < θR.
To complete the proof, it remains to be shown that x∗

L ≤ x∗
R. Assume, by way of

contradiction, that x∗
L > x∗

R. There are three cases to consider.

Case 1. If x∗
R ∈ [0, θL), candidate L can deviate to θL (recall that x∗

L > θL), which
results in a payoff change equal to πL(θL, x

∗
R)−πL(x

∗
L, x

∗
R) = [p(θL, x

∗
R)−p(x∗

L, x
∗
R)] · [θL−

x∗
R +χL] + p(x∗

L, x
∗
R) · (x∗

L − θL) > 0, contradicting that x∗
L is candidate L’s best response

to x∗
R (again p(θL, x

∗
R)− p(x∗

L, x
∗
R) > 0 because of the monotonicity of p(·)).

Case 2. If x∗
R ∈ [θL, 1/2), then L can deviate to xL = x∗

R + ǫ, ǫ > 0, which results in a
payoff change equal to πL(xL, x

∗
R)− πL(x

∗
L, x

∗
R) = p(xL, x

∗
R) · (χL − ǫ)− p(x∗

L, x
∗
R) · [χL −

(x∗
L − x∗

R)]. By the properties of p(·) mentioned before, p(xL, x
∗
R) ≥ p(x∗

L, x
∗
R). Thus, for

ǫ small enough, πL(xL, x
∗
R) > πL(x

∗
L, x

∗
R), implying that L’s deviation is profitable and,

consequently, that (x∗
L, x

∗
R) is not a PSE; a contradiction.

Case 3. Finally, if x∗
R ∈ [1/2, θR), then p(x∗

L, x
∗
R) < 1/2; and L can achieve a payoff

greater than πL(x
∗
L, x

∗
R) = p(x∗

L, x
∗
R) · [χL − (x∗

L − x∗
R)] by choosing x∗

R (which actually
offers a payoff of χL/2), contradicting the initial hypothesis that (x∗

L, x
∗
R) is a PSE.

Therefore, from Cases 1-3, we conclude that x∗
L ≤ x∗

R, as required.

Proof of Lemma 2. Let the profile (x∗
L, x

∗
R) ∈ X2, with x∗

L < x∗
R, be a PSE for

G. By Lemma 1, θL < x∗
L < x∗

R < θR and p(x∗
L, x

∗
R) ∈ (0, 1). Since the prob-

ability function p(·) is continuous at (x∗
L, x

∗
R), there must exist ǫ > 0 sufficiently

small such that, for all (xL, xR) ∈ Rǫ(x
∗
L) × Rǫ(x

∗
R), θL < xL < xR < θR and

30Bear in mind that p(θL, x
∗
R) ≥ p(x∗

L, x
∗
R), since for any two platforms xL < xR (resp., xL > xR),

p(xL, xR) is non-decreasing (resp., non-increasing) in xi, for all i = L,R. We use this property of p(·)
several times in the rest of this proof.

31Note that p(θL, x
∗
R) ∈ (0, 1) because by hypothesis x∗

L = θL. Hence, p(xL, x
∗
R)− p(θL, x

∗
R) > 0.
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p(xL, xR) ∈ (0, 1), where Rǫ(x
∗
i ) ≡ (x∗

i − ǫ, x∗
i + ǫ), with i = L,R. Thus, for any profile

(xL, xR) ∈ Rǫ(x
∗
L) × Rǫ(x

∗
R), the left-wing candidate’s payoff function can be written as

πL(xL, xR) = p(xL, xR) · (xR − xL + χL), where p(xL, xR) = 1/2 + (xL + xR − 1)/4β.
Fix x∗

R ∈ Rǫ(x
∗
R) and consider candidate L’s best response to x∗

R over Rǫ(x
∗
L), which

is obtained by solving the problem maxxL∈Rǫ(x∗

L
) πL(xL, x

∗
R). The first-order condition for

this problem provides a stationary point 1/2 − β + χL/2. Note that this point actually
maximizes πL(·, x∗

R) over Rǫ(x
∗
L) because by hypothesis, for all xL ∈ Rǫ(x

∗
L), πL(x

∗
L, x

∗
R) ≥

πL(xL, x
∗
R); i.e., πL(·, x∗

R) has an interior maximum on Rǫ(x
∗
L). Moreover, since πL(·, x∗

R)
is strictly concave on Rǫ(x

∗
L), with ∂2πL(xL, x

∗
R)/∂x

2
L = −1/2β < 0, we have that x∗

L =
1/2− β + χL/2, as required. A similar argument shows that x∗

R = 1/2 + β − χR/2.
Finally, the condition x∗

L > θL (resp., x∗
R < θR) is obtained from the early assumption

about β, (namely, 0 < β < min{1/2−θL+χL/2, θR−1/2+χR/2}), whereas the condition
χL + χR < 4β follows from the initial hypothesis, according to which x∗

L < x∗
R. Routine

calculations also show that χL + χR < 4β implies that (x∗
L + x∗

R)/2 ∈ (1/2− β, 1/2+ β),
so that p(x∗

L, x
∗
R) ∈ (0, 1) as needed.

Proof of Proposition 1. To show sufficiency, fix the strategy profile (x∗
L, x

∗
R) =

(1/2, 1/2), where both candidates propose the median voter’s ideal point and receive
a payoff of πi(x

∗
L, x

∗
R) = χi/2. Consider first a deviation for the left-wing candidate to

any platform x′
L ∈ (θL, 1/2). For convenience, let’s write x′

L = 1/2 − δ, with δ > 0.

Routine calculations show that πL(x
′
L, x

∗
R) ≡ χL

2
− δ2

4β
+

(
1
2
− χL

4β

)
δ > χL/2 if and only

if δ < 2β − χL. However, the last inequality requires δ < 0 because by hypothesis
χL ≥ 2β. Hence, πL(x

′
L, x

∗
R) ≤ πL(x

∗
L, x

∗
R). A similar argument proves that for any

x′
R ∈ (1/2, θR), πR(x

∗
L, x

′
R) ≤ πR(x

∗
L, x

∗
R). The careful reader should also check at this

point that any deviation above 1/2 or below θL (resp., below 1/2 or above θR) cannot
raise candidate L’s (resp., R’s) conditional payoff any further, proving in that way that
the profile (x∗

L, x
∗
R) = (1/2, 1/2) is a PSE for G.

To show necessity, fix a PSE for G with the property that x∗
L = x∗

R ≡ x∗ for some
x∗ ∈ X . If x∗ > 1/2, then candidate L can profitably deviate to 1/2, because p(1/2, x∗) ∈
(1/2, 1] and therefore πL(1/2, x

∗) = p(1/2, x∗) · [x∗ − 1/2 + χL] > 1/2 · χL = πL(x
∗, x∗).

A similar reasoning shows that candidate R can profitably deviate to 1/2 if x∗ < 1/2.
Therefore, x∗ = 1/2.

Next, suppose that χL < 2β, which in turn implies that 1/2 + χL/2− β < 1/2. Since
p(·) is continuous at (1/2, 1/2) and strictly positive, there must exist δ > 0 such that for

all xL ∈ (1/2− δ, 1/2], p(xL, 1/2) > 0 and πL(xL, 1/2) =
(

1
2
+ xL−1/2

4β

)
· (1/2− xL + χL).

Simple calculations show that πL(·, 1/2) achieves a unique maximum over (1/2− δ, 1/2]
at x̂L = 1/2 + χL/2 − β, implying in particular that πL(x̂L, 1/2) > πL(1/2, 1/2), a
contradiction. Hence, χL ≥ 2β. A similar argument proves that χR ≥ 2β.

Proof of Proposition 2. To prove necessity, suppose G has a PSE with the property
that x∗

L < 1/2 < x∗
R. By Lemma 2, x∗

L = 1
2
− β + χL

2
and x∗

R = 1
2
+ β − χR

2
. Therefore,

using the initial hypothesis, it follows that χi < 2β for all i = L,R.
To show sufficiency, fix the equilibrium candidate (x∗

L, x
∗
R) = (1

2
−β+ χL

2
, 1
2
+β− χR

2
).

By the initial hypothesis, i.e., χi < 2β for all i = L,R, it follows that x∗
L < 1/2 <

x∗
R, χL + χR < 4β, and p(x∗

L, x
∗
R) ∈ (0, 1). By the assumption on β, θL < x∗

L and
x∗
R < θR. Applying the reasoning of the proof to Lemma 2, for some ǫ > 0 such that
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Rǫ(x
∗
L) ≡ (x∗

L − ǫ, x∗
L + ǫ) ⊂ (θL, x

∗
R), we have that x∗

L = argmaxxL∈Rǫ(x∗

L
) πL(xL, x

∗
R),

with πL(x
∗
L, x

∗
R) =

χL

2
+ (β − χR

2
) + (χL−χR)2

16β
. Thus, πL(x

∗
L, x

∗
R) > χL/2 = πL(x

∗
R, x

∗
R).

Consider a deviation for the left-wing candidate to any platform x′
L ∈ [0, 1] different

from x∗
L and x∗

R. On one hand, if p(x′
L, x

∗
R) = 0, then πL(x

′
L, x

∗
R) = 0 < πL(x

∗
L, x

∗
R),

implying that the alternative policy does not raise L’s payoff. On the other hand, if
p(x′

L, x
∗
R) ∈ (0, 1], two cases are in order:

Case 1. Assume x′
L ∈ (x∗

R, 1]. Then: (i) if p(x′
L, x

∗
R) = 1, it must be the case that

1− (x′
L + x∗

R)/2 ≥ 1/2 + β, which leads to the contradiction (x′
L − 1/2) + (β − χR/2) ≤

−2β, since the left-hand side of the previous inequality is strictly positive and the right-
hand side is smaller than zero; alternatively (ii) if p(x′

L, x
∗
R) ∈ (0, 1), then πL(x

′
L, x

∗
R) =(

1
2
+

1−x′

L
−x∗

R

4β

)
· (x∗

R − x′
L + χL). Recall that 1− x′

L − x∗
R < 0 and x∗

R − x′
L < 0, because

x′
L > x∗

R > 1/2. Therefore, πL(x
′
L, x

∗
R) < 1/2 ·χL < πL(x

∗
L, x

∗
R), implying once again that

candidate L’s deviation to x′
L is not beneficial.

Case 2. Suppose x′
L ∈ [0, x∗

R). Then: (i) if p(x′
L, x

∗
R) = 1, it must be that (x′

L +
x∗
R)/2 ≥ 1/2 + β and, consequently, that x′

L ≥ 1/2 + β + χR/2 > x∗
R, which supplies the

desired contradiction (because by hypothesis x′
L < x∗

R); alternatively (ii) if p(x′
L, x

∗
R) ∈

(0, 1), then: (ii.a) if θL ≤ x′
L < x∗

R, candidate L’s deviation payoff is πL(x
′
L, x

∗
R) =(

1
2
+

x′

L
+x∗

R
−1

4β

)
· (x∗

R − x′
L + χL); and, given that the function f(xL) =

(
1
2
+

xL+x∗

R
−1

4β

)
·

(x∗
R−xL+χL) is strictly concave on xL ∈ [θL, x

∗
R) and has a maximum at 1/2−β+χL/2,

we conclude that πL(x
′
L, x

∗
R) < πL(x

∗
L, x

∗
R); finally (ii.b) if 0 ≤ x′

L < θL, it is easy to show
that πL(x

′
L, x

∗
R) < πL(θL, x

∗
R) < πL(x

∗
L, x

∗
R), where the last inequality follows from the

argument in (ii.a).

Summing up, Case 1 and Case 2 above, together with the fact that πL(x
∗
L, x

∗
R) >

πL(x
∗
R, x

∗
R), prove that x∗

L = argmaxxL∈[0,1] πL(xL, x
∗
R). A similar reasoning also shows

that x∗
R = argmaxxR∈[0,1] πR(x

∗
L, xR). Therefore, the profile (x∗

L, x
∗
R) is a PSE for G.

Proof of Proposition 3. We prove the proposition for 1/2 < x∗
L < x∗

R. The argument
for x∗

L < x∗
R < 1/2 is similar. First, assume the election game G has a PSE with the

property that 1/2 < x∗
L < x∗

R. By Lemma 2, x∗
L = 1/2 − β + χL/2 and χL + χR < 4β.

That implies that χL

2
> β > χL+χR

4
and, therefore, that χR < χL. Using simple algebraic

manipulation, it also follows that

χL + χR

4
<

χL − χR

4
+

√
χR · χL

2
<

χL

2
. (3)

Suppose, by way of contradiction, that 2β < (χL − χR)/2 + (χR · χL)
1/2. By def-

inition, πR(x
∗
L, x

∗
R) = β − (χL − χR)/2 + (χL − χR)

2/16β. Fix any xR ∈ [1/2, x∗
L).

Candidate R’s payoff at (x∗
L, xR) is πR(x

∗
L, xR) =

(
1
2
+

x∗

L
+xR−1

4β

)
(xR − x∗

L + χR). There-

fore, limxR→−x∗

L
πR(x

∗
L, xR) = χLχR

4β
. Notice that the difference between πR(x

∗
L, x

∗
R) and

limxR→−x∗

L
πR(x

∗
L, xR) gives rise to a second-order polynomial equation in β, namely,

4β2 − 2β(χL − χR) + (χL − χR)
2/4 − χL · χR, which has the following two roots:

χL−χR

4
±

√
χR·χL

2
. Therefore, for any β ∈

(
χL+χR

4
, χL−χR

4
+

√
χR·χL

2

)
, we have that
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πR(x
∗
L, x

∗
R) < limxR→−x∗

L
πR(x

∗
L, xR), contradicting that the strategy profile (x∗

L, x
∗
R) is

by hypothesis a PSE of G. Hence, 2β ≥ (χL − χR)/2 + (χR · χL)
1/2.

To carry out the second part of the proof, suppose (χL−χR)/2+(χR·χL)
1/2 ≤ 2β < χL,

and consider the equilibrium candidate (x∗
L, x

∗
R) = (1

2
− β + χL

2
, 1
2
+ β − χR

2
). By the

initial hypothesis and (3), we have that χL + χR < 4β. Therefore, since by assump-
tion 2β < χL, it follows that χR < 2β and, consequently, that 1/2 < x∗

L < x∗
R

and p(x∗
L, x

∗
R) ∈ (0, 1). Moreover, using the argument of the proof to Proposition 2,

x∗
L = argmaxxL∈[0,1] πL(xL, x

∗
R). To show that x∗

R = argmaxxR∈[0,1] πR(x
∗
L, xR) we proceed

as follows. First notice that, by applying the reasoning of the proof to Lemma 2, it can
be shown that for some ǫ > 0 with the property that Rǫ(x

∗
R) ≡ (x∗

R−ǫ, x∗
R+ǫ) ⊂ (x∗

L, θR),
1
2
+β− χR

2
= argmaxxR∈Rǫ(x∗

R
) πR(x

∗
L, xR), with πR(x

∗
L, x

∗
R) =

χR

2
+(β− χL

2
)+ (χR−χL)

2

16β
. Sec-

ond, to prove that πR(x
∗
L, x

∗
R) >

χR

2
, observe that χR

2
< χLχR

4β
because χL/2β > 1. More-

over, since limxR→−x∗

L
πR(x

∗
L, xR) =

χLχR

4β
, it also follows that limxR→−x∗

L
πR(x

∗
L, xR) >

χR

2
.

Thus, the desired result, i.e., πR(x
∗
L, x

∗
R) >

χR

2
is obtained using the fact that, by hypoth-

esis, limxR→−x∗

L
πR(x

∗
L, xR) ≤ πR(x

∗
L, x

∗
R). The rest of the proof follows the argument of

the proof to Prop. 2 and is left to the readers.32

Proof of Proposition 4. Under the hypothesis of Prop. 4, i.e., χR/2 < β < βC
1 , the

existence of a MSE for the election game G = (X,Πi) follows from the following argument.
First, by Prop. 1, G does not possess a PSE with xL = xR because χR < 2β. Second,
notice that β < βC

1 implies χL/2 > β (because βC
1 < χL/2). Thus, by Props. 2 and 3,

there exists no PSE with xL < xR either. But that means, by Lemma 1, that G does not
possess an equilibrium in pure strategies. Finally, remember that by Prop. 3 in Saporiti
(2008), the mixed extension of G is better reply secure; thereby G must admit a Nash
equilibrium where at least one candidate randomizes over two or more pure strategies.

Denote by (µ∗
L, µ

∗
R) ∈ ∆2 a MSE of G, and let xi (resp. xi) be the lower (resp.

upper) bound of supp(µ∗
i ). That is, let xi = inf(supp(µ∗

i )) and xi = sup(supp(µ∗
i )), with

i = L,R. The rest of the proof is organized in a series of claims.

Claim 1 supp(µ∗
R) ⊆ [1/2, θR].

Claim 1 is intuitive and follows from the fact that each location xR smaller than 1/2
(resp. greater than θR) is strictly dominated for candidate R and, therefore, it’s never
played with positive probability in a MSE. For the the sake of brevity, the details of the
proof are left for the reader, and they are available from the author upon request.

Claim 2 µ∗
L(xL) < 1.

Proof Suppose not. Two cases are possible. First, if xL ≤ x̃L(β, χR), then R’s best
response to xL is x∗

R = 1/2 + β − χR/2. However, the profile (xL, x
∗
R) cannot be an

equilibrium because under the hypothesis of Prop. 4, G has no equilibrium in pure
strategies. Second, if x̃L(β, χR) < xL ≤ θR,

33 then R’s best response is to undercut L’s
location by choosing a position just below xL, which is not well defined because the policy
space is a continuum.

32A complete version of it is available from the authors upon request.
33Given that supp(µ∗

R) ⊆ [1/2, θR], it’s never optimal for L to play above θR.
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Claim 3 xL ≤ xR = x∗
R.

Proof To start, recall that a strategy profile (µ∗
L, µ

∗
R) is a MSE of G if and only if

for each candidate i 6= j, (1) Ui(x, µ
∗
j ) = Ui(y, µ

∗
j) for all x, y ∈ supp(µ∗

i ), and (2)
Ui(x, µ

∗
j ) ≥ Ui(y, µ

∗
j) for all x ∈ supp(µ∗

i ) and all y 6∈ supp(µ∗
i ).

To prove the first part of Claim 3, note that if xL > xR, then candidate L can do
better by undercutting xR from above, since for any ǫ > 0 such that xR < xL − ǫ

UL(xL, µ
∗
R) =

∫

xR

(
1

2
+

1− xR − xL

4β

)
· (xR − xL + χL) · dµ∗

R <

<

∫

xR

(
1

2
+

1− xR − (xL − ǫ)

4β

)
· (xR − (xL − ǫ) + χL) · dµ∗

R = UL(xL − ǫ, µ∗
R).

To show the second part, i.e., that xR = x∗
R, consider two cases.

Case 1. Suppose xL < xR. On the one hand, if xL ≥ x∗
R, then xR > x∗

R. Consider any
ǫ > 0 small enough such that xL < xR − ǫ. Routine calculations show that

UR(µ
∗
L, xR − ǫ)− UR(µ

∗
L, xR) =

ǫ

4β
· (2xR + χR − 2β − (1 + ǫ)),

which is strictly greater than zero because xR > 1/2 + β − χR/2 = x∗
R, a contradiction.

On the other hand, if xL < x∗
R, then for any xL ∈ supp(µ∗

L), πR(xL, xR) ≤ πR(xL, x
∗
R),

with strict inequality if xR 6= x∗
R (recall πR(xL, ·) has a unique maximum at x∗

R above
the diagonal). Integrating with respect to µ∗

L, we have that UR(µ
∗
L, xR) ≤ UR(µ

∗
L, x

∗
R),

with strict inequality if xR 6= x∗
R. Hence, since xR ∈ supp(µ∗

R), it must be the case that
xR = x∗

R.

Case 2. Suppose xL = xR ≡ x. First, consider the case in which x < x∗
R. For any xL ∈

[xL, x), πR(xL, x) < πR(xL, x
∗
R). Integrating with respect to µ∗

L and adding µ∗
L(x) · χR/2

to both sides, we have

∫

xL 6=x

πR(xL, x) · dµ∗
L + µ∗

L(x) ·
χR

2︸ ︷︷ ︸
=UR(µ∗

L
,x)

<

∫

xL 6=x

πR(xL, x
∗
R) · dµ∗

L + µ∗
L(x) ·

χR

2
. (4)

Notice that πR(x, x
∗
R) =

1
β

(
x∗

R
−x

2
+ χR

2

)2

> χR

2
. Therefore,

∫

xL 6=x

πR(xL, x
∗
R) · dµ∗

L + µ∗
L(x) · πR(x, x

∗
R)

︸ ︷︷ ︸
=UR(µ∗

L
,x∗

R
)

≥
∫

xL 6=x

πR(xL, x
∗
R) · dµ∗

L + µ∗
L(x) ·

χR

2
, (5)

with strict inequality if µ∗
L(x) 6= 0. Thus, combining (4) and (5), we get that UR(µ

∗
L, x

∗
R) >

UR(µ
∗
L, x), contradicting that x ∈ supp(µ∗

R).
Second, consider the alternative case in which x > x∗

R. Since µ
∗
L has at most countably

many atoms and X is dense in the reals, assume without loss of generality that for some
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ǫ > 0 small enough, µ∗
L(x− ǫ) = 0. Then,

UR(µ
∗
L, x− ǫ) =

∫ x−ǫ

x
L

(
1

2
+

1− xL − (x− ǫ)

4β

)
· (x− ǫ− xL + χR) · dµ∗

L+

+

∫ x

x−ǫ

(
1

2
+

xL + (x− ǫ)− 1

4β

)
· (x− ǫ− xL + χR) · dµ∗

L+

+ µ∗
L(x) ·

(
1

2
+

2x− ǫ− 1

4β

)
· (χR − ǫ) ,

(6)

and

UR(µ
∗
L, x) =

∫ x−ǫ

x
L

(
1

2
+

1− xL − x

4β

)
· (x− xL + χR) · dµ∗

L+

+

∫ x

x−ǫ

(
1

2
+

1− xL − x

4β

)
· (x− xL + χR) · dµ∗

L + µ∗
L(x) ·

χR

2
.

(7)

Note that the difference between the first term in the right hand side (henceforth,
RHS) of the expression in (6) and the first term in the RHS of (7) is equal to

ǫ

4β
· (2x+ χR − 2β − (1 + ǫ)) ·

∫ x−ǫ

x
L

dµ∗
L, (8)

which is strictly positive for ǫ < x− x∗
R because by hypothesis x > x∗

R.
Let’s now consider the second term in the RHS of (6) and the second term in the RHS

of (7). The difference between these two terms is equal to

∫ x

x−ǫ

(
xL + x− 1

2β

)

︸ ︷︷ ︸
>0

· (x− xL + χR)︸ ︷︷ ︸
>χR

·dµ∗
L +

ǫ

4β
· (1 + ǫ− 2x− χR − 2β) ·

∫ x

x−ǫ

dµ∗
L. (9)

Similarly, the difference between the last terms in the RHS of (6) and (7) is

µ∗
L(x) ·






1

2
+

2x− ǫ− 1

4β︸ ︷︷ ︸
>0


 · (χR − ǫ)− χR

2


 . (10)

Note that (9) and (10) are both continuous in ǫ. Moreover, (9) is zero for ǫ = 0,
thereby it must be approximately zero for ǫ > 0 arbitrarily small. In addition, the
expression in (10) is strictly positive for ǫ = 0 if µ∗

L(x) 6= 0 (otherwise, if µ∗
L(x) = 0, then

we can just ignore these terms); and by continuity it must be nonnegative for ǫ sufficiently
small. Hence, combining all this with (8), we conclude that for some ǫ > 0 small enough
UR(µ

∗
L, x− ǫ) > UR(µ

∗
L, x), contradicting that x ∈ supp(µ∗

R). Therefore, x = x∗
R.

Claim 4 xR = xL ≡ x ≥ 1/2.
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Proof Assume, by way of contradiction, xR 6= xL. On the one hand, if xR < xL, then by
Claim 1, 1/2 < xL ≤ θR, and therefore for any ǫ > 0 such that xR+ ǫ < xL, UR(µ

∗
L, xR) <

UR(µ
∗
L, xR + ǫ), because xR + ǫ raises R’s probability of winning the election and, at the

same time, it’s closer to θR. But that contradicts that by definition xR = inf supp(µ∗
R).

On the other hand, if xR > xL, then we proceed as follows. Consider any ǫ > 0 such
that xL + ǫ < xR. Routine calculations show that

UL(xL + ǫ, µ∗
R)− UL(xL, µ

∗
R) =

ǫ

4β
· (1− ǫ− 2xL + χL − 2β); (11)

and, since by the definition of MSE we have that UL(xL + ǫ, µ∗
R) ≤ UL(xL, µ

∗
R), it follows

that xL ≥ (1 − ǫ)/2 − β + χL/2 and, therefore, that xR > 1/2 − β + χL/2, where the
latter is obtained using the previous hypothesis that xR > xL and an ǫ sufficiently small.

Fix any x̂R ∈ supp(µ∗
R). For each xL < x̂R, the conditional payoff function

πL(xL, x̂R) = [1/2 + (xL + x̂R − 1)/4β](x̂R − xL + χL) has a unique maximum at
x∗
L = 1/2 − β + χL/2. Therefore, πL(x

∗
L, x̂R) ≥ πL(xL, x̂R), with strict inequality if

xL 6= x∗
L. Integrating with respect to µ∗

R, we have UL(x
∗
L, µ

∗
R) ≥ UL(xL, µ

∗
R), with strict

inequality if xL 6= x∗
L. Hence, it must be that xL = x∗

L.
Recall that by hypothesis xR > xL; and that by Claim 2 (resp. Claim 3) xL > xL

(resp. x∗
R = xR ≥ xL). Moreover, it’s easy to show that xR ≤ xL.

34 Consider now an
ǫ > 0 such that xL < xR − ǫ. Then,

UL(xL,µ
∗
R) =

∫ xL

x
R

(
1

2
+

1− xL − xR

4β

)
(xR − xL + χL) dµ

∗
R + µ∗

R(xL)
χL

2
+

+

∫ xR

xL

(
1

2
+

xL + xR − 1

4β

)
(xR − xL + χL) dµ

∗
R,

(12)

and

UL(xR − ǫ,µ∗
R) =

∫ xL

x
R

(
1

2
+

xR − ǫ+ xR − 1

4β

)
(xR − (xR − ǫ) + χL) dµ

∗
R+

+ µ∗
R(xL)

[(
1

2
+

xR − ǫ+ xL − 1

4β

)
(xL − (xR − ǫ) + χL)

]
+

+

∫ xR

xL

(
1

2
+

xR − ǫ+ xR − 1

4β

)
(xR − (xR − ǫ) + χL) dµ

∗
R.

(13)

Notice that the difference between the first terms in the RHS of (12) and (13) is
negative, since for all xR ∈ [xR, xL) and all ǫ > 0 small enough, (i) 1

2
+ 1−xL−xR

4β
<

1
2
+

x
R
−ǫ+xR−1

4β
, and (ii) xR − xL + χL < xR − (xR − ǫ) + χL.

34Otherwise, for any x̂R ∈ supp(µ∗
R), πL(xL, x̂R) > πL(xL, x̂R), and integrating with respect to µ∗

R we
would find the desired contradiction, i.e., UL(xL, µ

∗
R) > UL(xL, µ

∗
R).
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Similarly, the difference between the second terms is non-positive; that is,

µ∗
R(xL)



χL

2
−



1

2
+

xR − ǫ+ xL − 1

4β︸ ︷︷ ︸
>0


 (xL − (xR − ǫ)︸ ︷︷ ︸

>0

+χL)


 ≤ 0,

with strict inequality if µ∗
R(xL) 6= 0. Finally, the difference between the last two terms in

the RHS of (12) and (13) is also smaller than or equal to zero. Indeed, for all xR ∈ (xL, xR],
the conditional payoffs are such that πL(xL, xR) ≤ πL(xR − ǫ, xR), since πL(·, xR) has a
unique maximum at x∗

L = xL and decreases above x∗
L (recall x∗

L = xL < xR = x∗
R

implies that β > (χL + χR)/4). Thus integrating with respect to µ∗
R over (xL, xR] we

get that
∫ xR

xL

πL(xL, xR) dµ
∗
R ≤

∫ xR

xL
πL(xR − ǫ, xR) dµ

∗
R, as required. And combining the

three previous observations, it follows that UL(xL, µ
∗
R) < UL(xR− ǫ, µ∗

R), a contradiction.
Hence, xR = xL ≡ x; and by Claim 1, x ≥ 1/2.

Claim 5 x = x̃L(β, χR).

Proof By Claims 1-4, supp(µ∗
L) ⊆ [1/2, x∗

R] and xR > x; hence, µ∗
R(x) < 1. Assume, by

contradiction, x > x̃L(β, χR). (The other case is similar.) By the definition of MSE, for
any ǫ > 0 small enough, UR(µ

∗
L, x

∗
R) ≥ UR(µ

∗
L, x− ǫ), where

UR(µ
∗
L, x

∗
R) = µ∗

L(x) · πR(x, x
∗
R)+

+

∫

xL 6=x

(
1

2
+

1− xL − x∗
R

4β

)
· (x∗

R − xL + χR) · dµ∗
L + µ∗

L(x
∗
R)

χR

2
,

(14)

and

UR(µ
∗
L, x− ǫ) = µ∗

L(x) · πR(x, x− ǫ)+

+

∫

xL 6=x

(
1

2
+

x− ǫ+ xL − 1

4β

)
· (x− ǫ− xL + χR) · dµ∗

L.
(15)

Note that since by hypothesis x > x̃L(β, χR), we have that lim supxR→−x πR(x, xR) >
πR(x, x

∗
R). Therefore,

µ∗
L(x) · [πR(x, x− ǫ)− πR(x, x

∗
R)] > 0. (16)

Applying once again the definition of a mixed strategy equilibrium, Claims 3 and 4
imply that UR(µ

∗
L, x

∗
R) = UR(µ

∗
L, x). Thus,

∫

xL 6=x

πR(xL, x) dµ
∗
L = µ∗

L(x) ·
[
πR(x, x

∗
R)−

χR

2

]
+

+

∫

xL 6=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
.

(17)
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If x < 1
2
+ β − χR

2
+ (χR −

√
2βχR), then πR(x, x

∗
R) >

χR

2
. Hence, (17) implies that

∫

xL 6=x

πR(xL, x) dµ
∗
L >

∫

xL 6=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
. (18)

Notice that the left hand side of (18) is left continuous in xR at x, since πR(xL, x) =(
1
2
+ xL+x−1

4β

)
· (x− xL + χR), meaning that for ǫ > 0 sufficiently small,

∫

xL 6=x

πR(xL, x− ǫ) dµ∗
L ≥

∫

xL 6=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
. (19)

Thus, combining (16) and (19), it follows from (14) and (15) that UR(µ
∗
L, x

∗
R) <

UR(µ
∗
L, x− ǫ), a contradiction.

Alternatively, if x ≥ 1
2
+ β − χR

2
+ (χR −

√
2βχR), then

πR(x, x
∗
R) ≤

χR

2
; (20)

and from (17) we have that

∫

xL 6=x

πR(xL, x) dµ
∗
L ≤

∫

xL 6=x

πR(xL, x
∗
R) dµ

∗
L + µ∗

L(x
∗
R)

χR

2
. (21)

Using again the continuity of πR(xL, xR) =
(

1
2
+ xL+xR−1

4β

)
· (xR − xL + χR) in xR at

x, for ǫ > 0 small enough

∫

xL 6=x

πR(xL, x− ǫ) dµ∗
L ≈

∫

xL 6=x

πR(xL, x) dµ
∗
L. (22)

By definition, x̃L(β, χR) ≡ 1/2 · (1 + 2β + 3χR − 2
√
2
√
2βχR + χ2

R). Thus, since by
the hypothesis of Prop. 4 χR < 2β, we have that x̃L(β, χR) > 1/2, which implies that
x > 1/2 as well (recall we assumed before x > x̃L). Hence, by the discontinuity of p(·) at
(x, x), p(x, x− ǫ) is well above 1/2, meaning that for ǫ > 0 sufficiently close to zero

πR(x, x− ǫ) =

(
1

2
+

2x− (1 + ǫ)

4β

)
(χR − ǫ) >

χR

2
. (23)

Finally, from (17),

µ∗
L(x) ·

[
πR(x, x

∗
R)−

χR

2

]
+

∫

xL 6=x

[πR(xL, x
∗
R)− πR(xL, x)] dµ

∗
L + µ∗

L(x
∗
R)

χR

2
= 0; (24)

and combining (20), (22) and (23) and comparing them with (24), the expression below

µ∗
L(x)· [πR(x, x

∗
R)− πR(x, x− ǫ)] +

+

∫

xL 6=x

[πR(xL, x
∗
R)− πR(xL, x− ǫ)] dµ∗

L + µ∗
L(x

∗
R)

χR

2

(25)
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turns out to be strictly smaller than zero. However, that means that UR(µ
∗
L, x

∗
R) <

UR(µ
∗
L, x− ǫ), contradicting that x∗

R ∈ supp(µ∗
R). Therefore, x = x̃L(β, χR).

Claim 6 If β ≤ χL+χR

4
, then xL = x∗

R.

Proof Suppose, by way of contradiction, that xL < x∗
R. (Recall that by Claim 3, xL ≤

x∗
R.) Then, for any x′, x′′ ∈ (xL, x

∗
R), with x′ < x′′, we have that πR(xL, x

′′) > πR(xL, x
′)

for all xL ∈ supp(µ∗
L), because πR(xL, ·) is strictly increasing on (xL, x

∗
R).

35 Integrating
with respect to xL over supp(µ∗

L), we get that UR(µ
∗
L, x

′′) > UR(µ
∗
L, x

′); and since this
holds for any x′ < x′′, it follows that (i) R does not allocate probability mass on (xL, x

∗
R),

and (ii) by Claim 3, µ∗
R has an atom at x∗

R, i.e., µ
∗
R(x

∗
R) > 0. The rest of the proof shows

that candidate L would profitably undercut x∗
R from below.

To do that, first we prove that µ∗
R(xL) = 0. That follows by considering the difference

between the left-wing candidate’s conditional expected payoff at xL and at xL − ǫ, with
ǫ > 0 arbitrarily small, which is equal to

UL(xL, µ
∗
R)− UL(xL − ǫ, µ∗

R) =

∫ xL−ǫ

x

[πL(xL, xR)− πL(xL − ǫ, xR)] dµ
∗
R +

+

∫ xL

x−ǫ

[πL(xL, xR)− πL(xL − ǫ, xR)] dµ
∗
R +

+ µ∗
R(x

∗
R) [πL(xL, x

∗
R)− πL(xL − ǫ, x∗

R)] +

+ µ∗
R(xL)

[χL

2
− πL(xL − ǫ, xL)

]
.

(26)

Using the continuity of the payoff function outside the main diagonal and the fact that
ǫ is by hypothesis arbitrarily small, the first three terms of the RHS of (26) are arbitrarily
close to zero. Therefore, since χL

2
< πL(xL − ǫ, xL), the fact that xL ∈ supp(µ∗

L) implies
that µ∗

R(xL) = 0. (Otherwise, we would have that UL(xL, µ
∗
R) < UL(xL − ǫ, µ∗

R), which
would contradict that (µ∗

L, µ
∗
R) is by hypothesis a MSE of G.)

Second, we work out candidate R’s probability mass on x∗
R by equalizing the left-wing

candidate’s conditional expected payoffs at x and xL, which turns out to be

µ∗
R(x

∗
R) =

µ∗
R(x)

[
χL

2
− πL(xL, x)

]
+
∫ xL
x

[πL(x, xR)− πL(xL, xR)] dµ
∗
R

πL(xL, x∗
R)− πL(x, x∗

R)
. (27)

Finally, notice that

UL(x
∗
R − ǫ, µ∗

R)− UL(xL, µ
∗
R) =

∫ xL

x

[πL(x
∗
R − ǫ, xR)− πL(xL, xR)]︸ ︷︷ ︸

<0 ∀xR∈(x,xL)

dµ∗
R +

+ µ∗
R(x

∗
R) [πL(x

∗
R − ǫ, x∗

R)− πL(xL, x
∗
R)]︸ ︷︷ ︸

> 0 because π′
L(·, x∗

R) > 0

,
(28)

and replacing (27) into (28), we get the desired contradiction, namely, UL(x
∗
R − ǫ, µ∗

R) >
UL(xL, µ

∗
R). Therefore, xL = x∗

R.

35In fact, πR(xL, ·) is strictly concave with a maximum at x∗
R.
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Claim 7 If β > χL+χR

4
, then xL = x∗

L < x∗
R.

Proof The claim is proved following the same type of reasoning we have applied before
in the proof of Claim 6. (The fact that x∗

L < x∗
R is shown in the proof of Lemma 2.) The

only main difference is that the second term in the RHS of (28) is not anymore positive
when β > χL+χR

4
, because the conditional payoff function πL(·, x∗

R) is decreasing above
x∗
L. That explains why undercutting the right-wing candidate’s upper bound policy x∗

R

is not anymore profitable for candidate L.

Claim 8 If β ≤ χL+χR

4
, then supp(µ∗

i ) = [x, x] for all i = L,R, with x = x̃L(β, χR) and
x = 1

2
+ β − χR

2
= x∗

R.

Proof The fact that for all i, xi = x̃L(β, χR) (respectively, xi = x∗
R) follows from Claim

5 (respectively, from Claims 3 and 6). Thus, it remains to be shown that supp(µ∗
i )

is an interval. Without loss of generality, consider x ∈ (x, x) and assume, by way of
contradiction, that x 6∈ supp(µ∗

R). The other case, i.e., x 6∈ supp(µ∗
L), is analogous.

By definition of supp(µ∗
R), there exists ǫ > 0 such that µ∗

R([x − ǫ, x + ǫ] ∩ X)) = 0.
Consider any two alternatives x′, x′′ ∈ [x − ǫ, x + ǫ], with x′ < x′′. Since πL(·, xR) is
increasing for all xR ∈ (x + ǫ, x∗

R], it is easy to show that UL(x
′′, µ∗

R) > UL(x
′, µ∗

R).
Therefore, x′ 6∈ supp(µ∗

L); and repeating the argument, it follows that µ∗
L has an atom at

x+ ǫ. But then R must find it profitable to undercut x+ ǫ from below (recall x+ ǫ > x̃L),
contradicting that by hypothesis µ∗

R([x− ǫ, x+ ǫ] ∩X)) = 0.

Claim 9 If β > χL+χR

4
, then supp(µ∗

L) = [x, x] and supp(µ∗
R) = [x, x] ∪ {x∗

R}, with
x = x̃L(β, χR) and x = 1

2
− β + χL

2
= x∗

L.

Proof The fact that xL = x∗
L follows from Claim 7. To show that µ∗

R((x
∗
L, x

∗
R)) = 0,

we use the argument of the proof of Claim 6. To be more precise, consider any x′, x′′ ∈
(xL, x

∗
R), with x′ < x′′. Since for all xL ∈ [x, x], the conditional payoff πR(xL, ·) is strictly

increasing on (xL, x
∗
R), we have that πR(xL, x

′′) > πR(xL, x
′). Integrating with respect to

xL over supp(µ∗
L), we get that UR(µ

∗
L, x

′′) > UR(µ
∗
L, x

′). Hence, since the pair x′ < x′′

was arbitrarily chosen, it follows that candidate R does not allocate probability mass on
(xL, x

∗
R). The rest of the proof is similar to the proof of Claim 8.

To consider the analogous characterization for the case where the left-wing candidate
is the relatively more ideological candidate (Fig. 2b), define x̃R(β, χL) as the solution to
ΠL(x

∗
L, x

′
R)− lim supxL→+x′

R

ΠL(xL, x
′
R) = 0. Then:

Proposition 5 (probabilistic differentiation) If χL/2 < β < βC
2 , the election game

G = (X,Πi)i=L,R has a mixed strategy equilibrium (µ∗
L, µ

∗
R) ∈ ∆2 with the property that,

(a) If β ≤ χL+χR

4
, then supp(µ∗

i ) = [x, x] for all i = L,R, with x = 1
2
− β + χL

2
= x∗

L

and x = x̃R(β, χL); and

(b) If β > χL+χR

4
, then supp(µ∗

R) = [x, x] and supp(µ∗
L) = [x, x] ∪ {x∗

L}, with x =
1
2
+ β − χR

2
= x∗

R and x = x̃R(β, χL).

Proof of Proposition 5. Analogous to the proof of Proposition 4.
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This appendix provides supplementary material for the paper “Political motivations

and electoral competition: Equilibrium analysis and experimental evidence” by Michalis

Drouvelis, Alejandro Saporiti and Nicolaas J. Vriend.

The appendix contains disaggregated data as well as econometrics analysis corre-

sponding to the experimental section of the paper referred to above. Table 1 shows for

each of the seven treatments for each period the mean position as well as the standard

deviation for the Left players and for the Right players. The table also reports the aver-

age absolute distance from the Nash equilibrium as well as the standard deviation. For

Treatment 6 with a mixed strategy equilibrium, it reports the distance from the support

as well as the distance from the entire equilibrium distribution. The table also provides

averages of these statistics for selected intervals of the 60 periods.

Table 2 complements the information provided by Table 1 by showing for each treat-

ment for selected intervals the average position of the Left and of the Right player for

each matching pair.

Table 3 displays for each treatment the average payoff of the Left and of the Right

player for each matching pair over the 60 periods.

Table 4 displays the ordinary least square regressions corresponding to the learning

analysis found in Section 6.2 of the paper.

Finally, this appendix concludes with providing a set of instructions received by the

subjects in one the experimental treatments as well as the control questionnaire.
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(a) Treatment 1.

Table 1: Players’ positions and distance from the Nash equilibrium.

2



(b) Treatment 2.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).
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(c) Treatment 3.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).
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(d) Treatment 4.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).
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(e) Treatment 5.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).
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(f) Treatment 6.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).
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(g) Treatment 7.

Table 1: Players’ positions and distance from the Nash equilibrium (continued).
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(a) Treatment 1.

(b) Treatment 2.

(c) Treatment 3.

(d) Treatment 4.

Table 2: Players’ average positions in the matching pairs.
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(e) Treatment 5.

(f) Treatment 6.

(g) Treatment 7.

Table 2: Players’ average positions in the matching pairs (continued).
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average payoffs periods 1-60

matching     Treatment 1     Treatment 2    Treatment 3    Treatment 4    Treatment 5    Treatment 6    Treatment 7

pair Left Right Left Right Left Right Left Right Left Right Left Right Left Right

1 548.0 552.0 549.7 550.3 704.8 695.2 790.8 789.1 537.9 562.1 1018.56 579.00 1063.10 654.05

2 554.2 545.8 549.9 550.1 700.1 699.9 789.9 790.1 549.8 550.2 1011.79 593.54 1036.22 649.31

3 548.4 551.6 555.9 544.1 698.0 702.0 791.9 788.1 546.8 551.5 1038.82 584.29 1037.62 619.52

4 540.0 560.0 550.0 550.0 724.2 675.8 785.2 794.8 551.5 548.5 1134.99 570.56 1009.15 612.47

5 539.2 560.8 546.4 553.6 694.7 705.3 788.7 790.9 544.7 555.3 978.97 576.58 1011.44 640.75

6 554.6 545.4 545.6 554.4 706.2 693.8 787.7 791.9 554.7 543.4 1071.76 596.91 1022.92 656.99

7 551.5 548.5 550.4 549.7 701.7 698.3 790.5 788.0 514.6 585.4 1053.54 579.34 1042.02 651.31

8 550.5 549.5 552.8 547.2 698.0 702.0 790.0 790.0 549.7 550.3 1093.64 600.36 1033.48 621.18

9 554.2 545.8 555.1 544.9 701.0 699.0 778.5 799.6 557.3 542.7 1039.88 578.34 1009.20 607.85

10 555.0 545.0 550.5 549.5 713.7 686.3 788.5 790.9 552.2 547.8 1084.54 587.46 1009.16 621.70

11 550.8 549.2 1062.18 658.20

12 548.4 551.6 1053.37 612.65

13 584.2 515.8 999.90 590.45

14 1065.33 659.91

15 963.76 586.71

Table 3: Players’ average payoffs in the matching pairs.

Table 4: OLS regressions y = a + b · 1/t.
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Instructions 
 
All participants in this session have the following identical instructions 
 
Introduction 
 
• Welcome to this session, and thank you for participating in this experiment. The 

instructions for this experiment are simple, and if you pay attention, you can gain some 
money that will be paid to you in cash at the end of the experiment. From now on till the 
end of this experimental session you are not allowed to talk to each other. If you have a 
question, please raise your hand. 

• The experiment involves playing games with another participant. To form pairs of players, 
each player will be randomly and anonymously matched to another player. Note that you 
will never know the identity of the person you are matched with, nor will (s)he be aware of 
yours. Nor will you be told the payoffs of other players. 

• The payoffs in this experiment are expressed in points. The total points earned in the 
experiment will be exchanged into Pound Sterling at the end of the session using the 
following exchange rate: £ 0.45 per 1000 points. 

• In the following pages we describe the experiment in detail. At the end of these 
instructions we ask you to do several control exercises which are designed to check that 
you have understood the decision situation. 

 
Experiment 
 
• The basic game: 
 There are two candidates (called "A" and "B") competing in a local election. In each basic 

game, each of you will play the role of one of these candidates. These roles will be 
assigned to you by the experimenter. The issue at stake is the location of a new post 
office. There are 101 possible locations on the high street, numbered from 0 to 100. Each 
candidate independently and simultaneously proposes a location. The citizens in town 
vote for either of the two candidates, and the post office will be built at the location that 
had been chosen by the winning candidate. A candidate wins the election if he gets more 
than half of the votes. If both candidates get the same number of votes, the winner will be 
determined by a random draw (fair coin toss). 

 
• Citizens: 
 All citizens live on the high street, and they are evenly (uniformly) spread along the high 

street. Each citizen is expected to vote for the proposed location that is closer to his own 
position. The following graph illustrates this. 

 
citizens citizens

voting for B voting for A

0 B's proposed A's proposed 100

location location

 
  



 
 
  

 Thus, given a pair of proposed locations, the candidates, knowing that citizens are 
uniformly distributed and that they vote for the alternative closer to their own position, 
have a good idea of the percentage of votes that each of them can expect. However, they 
are not perfectly sure about these percentages. The reason is that, besides distance, 
there are additional, unknown factors determining the preference of the voters as well. 
More precisely, if we denote by X the expected percentage of votes for a candidate, then 
the actual percentage for that candidate will be somewhere between X-15 and X+15, with 
each value within that range of values being equally likely (and, of course, the actual 
percentage of votes cannot be lower than 0% or higher than 100%). This uncertainty 
about the behaviour of the voters applies to each round, independently from what 
happened in other rounds. 

 
• Payoffs for candidates: 
 When deciding upon their location, there are two payoff considerations for each 

candidate. 
 First, each candidate has his own preference for the location of the post office, no matter 

which of the two candidates is the actual winner of the election. The ideal post office 
location for candidate "A" is 34, whereas the ideal location for "B" is 66. A post office at 
the ideal location would give a candidate a 'location payoff' of 900 points. However, as the 
distance between the actual location and his ideal location increases with one unit, the 
location payoff diminishes at a constant rate of 10 points. Thus, for example, if the 
eventual location of the post office has a distance of 17 unit steps to the candidate's ideal 
location, then the location payoff of this candidate is 900 - 17 * 10 = 730 points. 

 Second, each candidate receives a payoff simply from winning the election, independent 
of the location of the post office. For candidate A this payoff of winning as such is 100, 
and for candidate B it is 100. There is no additional payoff for the candidate that loses the 
election. 

 
• Rounds: 
 You will play 30 rounds of the same game, playing the same role, against the same other 

player. All payoffs in all rounds will be accumulated. 
 After 30 rounds, the two roles will be swapped. The "A" candidate becomes the "B" 

candidate, and the "B" candidate becomes "A". You will play, then, another 30 rounds 
with these new roles, all the time against the same other player, and again all payoffs in 
all rounds will be accumulated. 



 
 
  

• Interface: 
 You will face two different screens. 
 
 The first screen is a decision screen as shown in the following screenshot: 
 

 
 
 In the top half you will find an expected payoff calculator. This will allow you to try out 

different combinations of locations for the other candidate and for yourself, with your 
resulting expected payoff shown once you press the 'calculate' button. These are just 
imaginary choices and you can try as many as you want.  

 On the bottom half of this screen you must also choose your actual proposal. Once you 
have entered it you must press the OK button using the mouse. After you have done this, 
your decision can no longer be revised. There is no time limit for your decisions. 

 
 After all participants have made their choices, in each round you will find a feedback 

screen with your chosen location, the location chosen by the other candidate and your 
resulting payoff. 

 
• Logsheet: 
 We recommend that you transcribe the results of each round from the feedback window 

on the logsheet provided. 
 
 
 
Do you have any questions? 



 
 
  

 
Control questionnaire 
 
1) After how many rounds will the roles of the two candidates be swapped?   ........... 
 
2) If the expected proportion of votes for a candidate is 40%, then, because of the 

uncertainty of voter behavior, what is the maximum proportion of voters that the candidate 
could get?   ........... 

 
3) If the expected proportion of votes for a candidate is 40%, then, because of the 

uncertainty of voter behavior, what is the minimum proportion of voters that the candidate 
could get?   ...........  

 
4) What is the ideal post office location for candidate A?   ...........  
 
5) Suppose that the post office is located at location 30. What is, then, the distance from the 

ideal post office location for candidate A?   ...........  
 
6) What is the 'location payoff' that candidate A derives from the post office being located at 

location 30?   ........... points  
 
7) What is the ideal post office location for candidate B?   ...........  
 
8) Still supposing that the post office is located at location 30, what is the distance from the 

ideal post office location for candidate B?   ...........  
 
9) What is the 'location payoff' that candidate B derives from the post office being located at 

location 30?   ........... points  
 
10) What is the payoff of winning as such for candidate A?   ........... points  
 
11) What is the payoff of winning as such for candidate B?   ........... points  
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