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Poly(methyl	methacrylate)	(PMMA)	bone	cement	is	used	to	anchor	the	majority	of	
total	 joint	 replacements	 (TJRs).	 Many	 brands	 of	 cement	 are	 used,	 both	 with	 and	
without	the	addition	of	antibiotics	to	reduce	the	risk	of	infection.	The	present	study	
involved	determination	of	various	parameters	in	tensile	fatigue	loading:		
1)		 energy	absorbed	(U)	vs	number	of	loading	cycles	(N)	and	creep	strain	(e)	vs	

N,	 during	 fatigue	 tests	 on	 specimens	 of	 an	 antibiotic-containing	 cement	
(SmartSet	GHV)	and	a	plain	cement	(CMW1)	and		

2)		 crack	length	(a)	vs	fatigue	loading	cycles	(N)	and	crack	growth	rate	(da/dN)	
vs	 Mode	 I	 stress	 intensity	 factor	 range	 (DKI),	 during	 Fatigue	 Crack	
Propagation	(FCP)	tests.		

In	 the	 fatigue	 tests,	 four	 different	 sample	 types	 (round,	machined;	 round,	 directly	
moulded;	 rectangular,	 machined,	 and	 rectangular,	 directly	moulded)	 and	 tension-
tension	 loading	 were	 used.	 In	 the	 FCP	 tests,	 compact	 tension	 specimens	 under	
tension-tension	loading	were	used.		
It	was	 found	 that	 there	were	 limited	 effects	 of	 sample	 type,	 except	 at	 the	 highest	
stress	 levels,	 but	 that	 these	 two	cements	had	different	 rates	of	 crack	propagation.	
These	 differences	 were	 reflected	 in	 the	 fracture	 surfaces	 with	 SmartSet	 GHV	
showing	 accumulation	 of	 opacifier	 around	 the	 particles	 and	 crack	 progression	
around	 the	 intial	beads,	while	 for	CMW1	 the	opacifier	was	evenly	distributed	and	
the	cracks	went	through	the	initial	beads.		

	

	
1.	 INTRODUCTION	
	

In	 the	 majority	 of	 total	 joint	 replacement	 (TJRs),	 poly(methyl	
methacrylate)	 (PMMA)	 bone	 cement	 is	 used	 as	 the	 grouting	 agent	 to	
anchor	 one	 or	 both	 of	 the	 components	 [19].	 Fatigue	 fracture	 at	 the	
cement/bone	 interface,	 within	 the	 cement	 layer	 itself,	 and/or	 at	 the	
cement-prosthesis	interface	has	been	cited	as	a	cause	of	or	implicated	
in	loosening	of	the	prosthesis	in	vivo	[13,39].	Therefore,	there	are	many	
reports	in	the	literature	on	in	vitro	determination	of	fatigue	properties	
of	 bone	 cement,	 with	 the	 results	 typically	 presented	 as	 number	 of	
cycles	to	fracture	(Nf)	at	specified	applied	fatigue	stress	level(s)	usually	
in	 the	 form	of	 S-N	 or	Wöhler	 curves.	 These	 results	 are	 influenced	 by	
many	 factors	 [22],	 such	 as	 composition	 of	 the	 cement	 [12,23,30],	
specimen	 configuration	 [20,21,35,36],	 type	 of	 applied	 stress	 [35,36],	
and	 specimen	 surface	 finish	 [37].	 Additionally,	 there	 have	 been	 a	
number	 of	 literature	 reports	 on	 the	 in	 vitro	 determination	 of	 fatigue	
crack	 propagation	 (FCP)	 behaviour	 of	 bone	 cement	
[4,8,14,24,28,29,40].	The	results	are	usually	presented	as	crack	length	
(a)	 vs	 number	 of	 loading	 cycles	 (N),	 at	 a	 given	 applied	 stress	 level	
and/or	 crack	 growth	 rate	 (da/dN)	 vs	 stress	 intensity	 factor	 range,	
typically	Mode	I	(ΔKI),	at	specified	fatigue	stresses	[4,8,10,12].	In	many	
reports	morphologies	of	fracture	surfaces	at	the	end	of	a	fatigue	test	or	
a	 FCP	 test	 are	 also	 presented	 and	 used	 to	 clarify	 the	mechanisms	 of	
failure	(for	example	[8,30]).		
In	 the	 fatigue	 testing	 of	 bone	 cement,	 information	 on	 relevant	
characteristics,	such	as	the	energy	absorbed	by	a	specimen	(U)	and	the	
creep	deformation	(ε)	have	been	reported	in	only	a	few	studies	[14,36].	
Wheeler	 et	 al.	 [45]	 showed	 that	 creep	 movement	 of	 cement	 is	
beneficial	 in	 allowing	 re-distribution	 of	 stresses	 as	would	 occur	with	
changes	 in	 the	 bone	 surrounding	 an	 implant.	 Jeffers	 et	 al.	 [14]	 used	
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acoustic	 emission	 to	 detect	 crack	 growth	 events	 to	 elucidate	 the	
progresses	of	cement	reaction	to	loading.	Although	the	fatigue	and	FCP	
behaviour	 of	 a	 material	 are	 related,	 in	 the	 case	 of	 bone	 cement	
knowledge	of	 the	relationship	between	 these	 factors	 is	 limited.	These	
new	 results	 could	 provide	 valuable	 insight	 into	 the	 mechanisms	
involved	 in	 fatigue	 and	 FCP	 of	 bone	 cement,	 informing	 both	 crack	
initiation	 processes	 and	 crack	 propagation.	 This	 knowledge	 may	 be	
used	 in	developing	a	new	generation	of	bone	cements	with	 increased	
resistance	to	fatigue	loading	thus	contributing	to	increased	 in	vivo	 life	
of	 cemented	 TJRs.	 In	 the	 longer	 term	 this	 will	 reduce	 the	 rate	 of	
revision	surgery	and	lead	to	improved	patient	satisfaction	and	implant	
longevity.		

The	present	study	has	two	purposes.	The	first	was	to	determine	the	
influence	of	the	specimen	fabrication	method,	specimen	cross-sectional	
shape	 and	 cement	 type	 on	 energy	 absorbed	 per	 load	 cycle	 (U)	 vs	
number	 of	 load	 cycles	 (N)	 relationship,	 and	 the	 creep	 strain	 (ε)	 vs	
number	of	 load	cycles,	 as	obtained	 from	tension-tension	 fatigue	 tests.	
The	second	was	 to	determine	 the	 influence	of	cement	brand	on	crack	
length	(a)	vs	number	of	load	cycles	(and,	hence,	change	in	crack	growth	
rate	(da/dN)	versus	stress	intensity	factor),	as	obtained	using	compact	
tension	 specimens	 in	 tension-tension	 loading.	 One	 of	 these	 brands	
(SmartSet	 GHV)	 is	 antibiotic-loaded,	 used	 for	 the	 vast	 majority	 of	
revision	surgery	and	many	primary	operations	and	the	other	[19].		
	
2.	 Materials	and	methods	
	
2.1.				Materials	

	
Two	different	brands	of	PMMA	bone	cement	were	used	to	evaluate	

the	 fatigue	 behaviour,	 both	 produced	 and	 supplied	 by	 DePuy	 CMW,	
Blackpool,	 UK.	 For	 both	 cements,	 each	 pack	 contains	 40g	 polymer	
powder	 and	 18.88g	 liquid	 monomer	 that	 are	 mixed	 together	 and	
moulded,	as	described	below.	Details	of	the	two	cements	are	provided	
in	a	previous	study	 [35]	but,	briefly,	 the	major	differences	are	 that	 in	
SmartSet	 GHV,	 the	 powder	 phase	 constituents	 include	 poly(methyl	
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methacrylate,	 methacrylate	 copolymer,	 P(MMA-MA))	 beads,	 ZrO2	
particles	 as	 the	 radiopacifier	 and	 an	 antibiotic	 (gentamicin	 sulphate),	
whereas	 in	 CMW1,	 the	 corresponding	 constituents	 are	 poly(methyl	
methacrylate,	PMMA)	beads	thus	no	copolymer,	BaSO4	particles	and	no	
antibiotic.	The	liquid	monomer	phase	is	the	same.		
	
2.2.			Mixing	of	cement	components	
	

The	 cement	 components	 were	 mixed	 at	 room	 temperature	
(21±2°C)	using	a	CEMVAC	mixing	system	(DePuy	CMW,	Blackpool,	UK).	
The	 mixing	 process	 was	 performed	 as	 per	 the	 manufacturer’s	
instructions	 concentrating	 on	mixing	 time,	waiting	 time	 and	working	
time.	During	mixing,	reduced	pressure	(~	-70	kPa)	was	applied	to	the	
CEMVAC	system	using	mixing	speed	of	about	1	beat/s	for	a	total	mixing	
time	of	30-45	seconds.	Once	the	components	were	mixed,	the	mixture	
was	left	in	the	mixing	system	syringe	for	the	waiting	time	specified	by	
the	manufacturer,	considering	room	temperature	and	cement	type.		
	
2.3.			Fatigue	life	measurement	specimens	
	

As	previously	described	 in	Sheafi	 and	Tanner	 [35,36],	 the	 cement	
mixture	was	 injected	 into	previously	prepared	PTFE	moulds	 that	had	
either	 cavities	 of	 the	 required	 test	 specimen	 geometries	 or	 oversized	
cavities.	 These	 were	 either	 rectangular	 waisted	 cavities	 to	 produce	
specimens	with	rectangular	cross	sections	(R)	according	to	 ISO	527-2	
(half	size)	for	direct	moulding	(DM)	or	rectangular	oversized	cavities	to	
produce	moulded	rods	that	were	subsequently	machined	to	size	(MM).	
Similarly,	 specimens	 with	 circular	 cross	 sections	 (C)	 were	 prepared	
according	 to	 ASTM	 F2118-03	 [2]	 using	 the	 direct	 moulding	 (DM)	 or	
moulding	and	machining	(MM)	production	methods.	It	should	be	noted	
that	 a	 later	 version	 of	 this	 standard	 (ASTM	 F2118-14)	 [3]	 requires	
preparing	all	specimens	by	direct	moulding.	In	total,	for	each	of	the	two	
cement	 brands,	 four	 types	 of	 specimens	 were	 obtained:	 RDM,	 RMM,	
CDM	and	CMM.	Pressure	was	applied	on	the	moulds	immediately	after	
the	injection	process,	using	a	hydraulic	press,	for	20-30	minutes.	Prior	
to	testing,	the	specimens	were	aged	in	saline	at	37°C	for	1	to	6	weeks	
(7-42	days),	ASTM	F2118-14	suggests	7	to	60	days,	so	slightly	longer.		

Specimens	were	tested	in	stress	control	and	at	3Hz	under	a	flow	of	
saline	at	37	°C,	to	model	the	physiological	environment	and	control	the	
specimen	temperature.	Testing	used	a	servo	hydraulic	testing	machine	
(MTS	 –	 858	 Mini	 Bionix®	 II)	 and	 subjected	 to	 either	 tension-tension	
loading	 (max	 stress	 =	 20	 MPa;	 R	 =	 0.1)	 as	 reported	 in	 Sheafi	 and	
Tanner	[36]	and	used	by	other	authors	including	Harper	et	al	[12]	and	
Tanner	et	al.	[38]	or	fully	reversed	tension-compression	[37].	While	2-
20	MPa	is	above	physiological	stress	levels,	it	typically	leads	to	fatigue	
in	 less	 than	100,000	 load	cycles,	allowing	specimens	 to	be	 tested	 in	a	
sensible	 time	 [12,38].	Being	a	viscoelastic	material,	 and	 thus	 liable	 to	
heating,	the	test	frequency	has	to	be	limited	when	testing	bone	cement.	
At	 each	 stress	 type	 and	 level,	 a	 minimum	 of	 10	 specimens	 were	
fatigued	 to	 failure,	 any	 that	 had	macro-pores	 (≥1mm)	 in	 the	 fracture	
surface	were	discarded	and	replaced.		

The	 data	was	 collected	 using	 the	MTS	 software	 (TestStar	 II)	 that	
was	 programmed	 to	 record	 the	 force	 and	 crosshead	 displacement	
during	loading	and	the	number	of	cycles	to	fracture	(Nf).		The	program	
recorded	 the	 fatigue	data	 logarithmically,	 that	 is	 during	 cycles	 1-100,	
200-210,	 300-310,	 …	 1000-1010,	 2000-2010,	 etc,	 plus	 recording	 the	
last	1,000	cycles	before	failure.	For	each	of	the	recorded	loading	cycles,	
10	 data	 points	 of	 the	 instantaneous	 force	 and	 displacement	 were	
recorded.	 After	 testing,	 the	 force	 and	 displacement	 data	 for	 the	
specimen	with	median	fatigue	life	for	that	group	was	used	to	generate	
stress-strain	 curves	 (hysteresis	 loops)	 for	 the	 pre-selected	 loading	
cycles	and	 the	 instantaneous	absorbed	energy	per	 load	 cycle	 (U)	was	
calculated	 in	Microsoft	Excel	using	 the	Trapezoid	 Integration	Rule	 for	
the	determination	of	the	area	of	an	enclosed	(polygonal)	shape,	that	is	
of	 the	 difference	 between	 the	 loading	 and	 the	 unloading	 curves,	
allowing	plots	of	U	vs	N	to	be	generated.	For	these	median	specimens,	
the	fatigue	and	strain	data	was	used	to	compare	the	creep	deformation	
that	occurred	during	loading	to	give	strain	(e)	vs	N	graphs.	These	were	
used	to	assess	whether	creep	affects	to	the	fatigue	crack	growth.		

The	morphologies	of	the	fractured	surfaces	were	obtained	using	a	
scanning	 electron	microscope	 (SEM,	Hitachi,	 Tokyo,	 Japan,	 S4700	FE-
SEM)	 at	 an	 acceleration	 voltage	 of	 5kV	 on	 specimens	 from	 both	
cements	to	compare	the	topography	of	the	fracture	surfaces.										
										
	
	

2.4.		Fatigue	crack	growth	measurement	(CT)	specimens	
	

A	flat	PTFE	mould,	3mm	thick,	with	38mm	by	40mm	cavities,	was	
used	 to	 produce	 blank	 specimens	 by	 injecting	 and	 pressurising	 the	
cement	 mixture	 into	 the	 mould	 cavities,	 as	 described	 above.	 After	 a	
minimum	of	24	hours,	the	notch	and	loading	holes	shown	in	Fig.	1	were	
machined	 in	 the	 moulded	 specimens	 to	 produce	 CT	 specimens	 as	
described	by	ASTM-E647-13	[1].	The	use	of	a	plain	rectangular	mould	
and	 then	 machining	 to	 produce	 the	 notches	 and	 loading	 holes	
simplifies	 flow	 leading	 to	more	uniform	distribution	of	 the	 cement	 in	
the	moulds.	Similar	to	the	dumbbell	specimens,	the	CT	specimens	were	
soaked	 in	 saline	 at	 37°C	 for	 1	 to	 6	 weeks	 before	 testing.	 A	 crack	
propagation	 gauge	 (Model	 TK-09-CPA01-005/DP,	 Vishay	 Precision	
Group)	was	glued	to	the	specimen	to	cover	the	area	where	the	fatigue	
crack	was	expected	to	grow	and	connected	to	an	electrical	circuit	used	
as	 an	 external	 input	 to	 the	 MTS	 data	 logging	 system.	 This	 crack	
measurement	 gauge	 has	 20	 grid	 lines	 (strands)	 with	 a	 distance	 of	
0.25mm	 between	 each	 two	 adjacent	 strands,	 providing	 a	 total	 grid	
width	 of	 5mm.	 As	 each	 strand	 fractured	 the	 resistance	 of	 the	 gauge	
increased,	 the	 voltage	 dropped	 and	 the	 time	 between	 these	 step	
changes	indicated	the	time	required	for	the	crack	to	grow	0.25mm.	To	
electrically	isolate	the	gauge	from	the	flow	of	the	saline	solution	on	the	
specimen,	 the	 gauge	 was	 covered	 by	 a	 thin	 waterproof	 layer	
(transparent	 nail	 varnish).	 ASTM	 E647-13	 [1]	 requires	 “a	 pre-crack	
that	has	been	growing	at	or	below	the	test	load”,	so	a	distance	of	1mm	
was	left	between	the	“artificial”,	that	is	machined,	crack	tip	and	the	first	
strand	 of	 the	 gauge	 to	 ensure	 the	 gauge	 was	 measuring	 crack	
propagation	 in	 the	 stable	 region.	 The	 setup	 of	 the	 CT	 fatigue	 testing	
protocol	is	shown	in	Fig.	2.		

For	each	cement	type,	a	minimum	of	five	specimens	were	subjected	
to	uniaxial	 tension-tension	 cyclic	 loading	 at	 a	 frequency	of	 2	Hz	until	
failure.	To	allow	sufficient	time	to	track	the	crack	growth,	loading	was	
performed	 between	 0.1𝑃!"#  and	 0.5𝑃!"#  where	 𝑃!"# 	 is	 the	 force	
required	to	break	a	CT	specimen	under	quasistatic	tensile	loading.	𝑃!"# 	
was	 obtained	 by	 testing	 two	 randomly	 selected	 CT	 specimens	 from	
each	of	the	bone	cements	subjecting	them	to	tensile	loading	of	speed	of	
1	mm/min	until	failure,	recording	the	failure	force	as	𝑃!"# .	As	with	the	
fatigue	testing	if	a	specimen	was	found	to	have	macro-porosity	or	other	
defects	on	the	fracture	surface,	a	replacement	specimen	was	tested.	 It	
should	 be	 noted	 that,	 due	 to	 the	 presence	 of	 the	 pre-cracked	 knotch	
accelerating	 crack	 initiation	 and	 propagation,	 the	 maximum	 applied	
stress	was	above	that	calculated	to	occur	 in	vivo	[5,20].	However,	due	
to	 the	 presence	 of	 the	 pre-cracked	notch	 accelerating	 crack	 initiation	
and	 propagation,	 the	 aim	 was	 only	 to	 monitor	 fatigue	 crack	
propagation	and	its	growth	rate.	Once	the	fatigue	test	had	started,	the	
data	 was	 collected	 in	 the	 manner	 specified	 within	 the	 selected	 test	
procedure,	 including	 recording	 the	 force,	 displacement	 and	N	 against	
time	 in	 conjunction	 with	 the	 sudden	 changes	 in	 voltage.	 The	
instantaneous	crack	length,	a,	was	identified	using	Eq.	(1).		

	
𝑎 = 𝑎! + 𝑛 ∆𝑎 	 	 	 	 	 	 	 	 	 (1)	

	
where,	𝑛	 is	the	number	of	gauge	strands	broken	at	a	certain	stage	

and	∆𝑎	is	the	crack	growth	increment	that	represents	increase	in	crack	
length	after	the	fracture	of	each	strand	(∆𝑎 = 0.25	mm).	
	

Once	the	crack	length	was	obtained	at	each	stage,	the	crack	growth	
per	loading	cycle	was	determined	using	Eq.	(2).		

	

(!"
!"
)! =

!! ! !!!! 
!! ! !!!!

	 	 	 	 	 	 	 (2)	

	
where,	!"

!"
	is	the	crack	growth	rate	and	𝑖	is	the	strand	number	(𝑖 =	

1,	 2,	 3,…, 20).	 The	 Mode	 I	 stress	 intensity	 factor	 range	 (∆𝐾!)	 was	
determined	at	each	crack	increment	point	according	to	Eq.	(3)	[1].			
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∆!

!√!
 
(!! !!)

(!! !
!)

!
!

 [0.886 + 4.64( !
!
) − 13.32 !

!

!
+ 14.72 !

!

!
−

5.6 !

!

!
]	 	 	 	 	 	 	 	 	 	 (3)	

	
where,	∆𝑃	is	the	difference	between	the	maximum	and	minimum	

load	levels,	W	 is	 the	specimen	width,	defined	as	the	distance	between	
the	centre	line	of	the	loading	holes	and	the	edge	of	the	sample,	B	is	the	
specimen	thickness,	as	shown	in	Fig.	1.	
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1		Geometry	and	nominal	dimensions	of	the	CT	specimen	(ASTM-E647-13)	[1]	used	for	crack	growth	rate:	(a)	specimen	and	(b)	notch	details	

	

	

Figure	2		A	CT	specimen	with	a	crack	measurement	gauge	during	testing	
 

Two	 graphs	 were	 generated.	 The	 first	 graph	 shows	 the	 crack	
length,	 a,	 measured	 by	 strand	 breakage,	 against	 N,	 describing	 the	
relation	 between	 crack	 growth	 and	 loading	 cycles.	 The	 other	 graph,	
which	 has	 been	 widely	 related	 to	 the	 use	 of	 the	 CT	 specimens,	

describes	 the	 crack	 propagation	 rate	 (𝑑𝑎/𝑑𝑁)	 as	 a	 function	 of	 the	
stress	 intensity	 factor	 (∆𝐾!).	 It	 has	 been	 reported	 that	 when	 load	
amplitude	 is	 constant,	 the	 stress	 intensity	 factor	 increases	with	 crack	
propagation	 for	 most	 specimen	 geometries	 [6]).	 It	 was	 considered	
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therefore,	 the	 values	 of	 the	 stress	 intensity	 range	 should	 show	 an	
increase	 as	 the	 crack	 propagates.	 Paris’	 power	 law	 (Eq.	 (4))	 was	
subsequently	 used	 to	 compare	 the	 findings	 for	 the	 CT	 specimens.	 To	
generate	 a	 power	 law	 fit,	 the	data	was	presented	on	 a	 log-log	plot	 of	
𝑑𝑎/𝑑𝑁	versus	∆𝐾! .	The	data	 from	the	 five	specimens	 for	each	cement	
was	combined	and	used	to	generate	a	single	 line	to	allow	comparison	
of	the	behaviour	of	the	two	cements.	

	
!"
!"
= 𝐶(𝛥𝐾!)! 	 	 	 	 	 	 	 	 (4)	
	

where	!"
!"
	is	the	fatigue	crack	growth	rate,	𝛥𝐾! 	is	the	stress	intensity	

factor	range	=	𝐾! !"# − 𝐾! !"# 	(maximum	and	minimum	stress	intensity	
factors,	respectively)	and	𝐶 and	𝑚 are	material	constants.	
	
		
3.	 Results	
	
	
3.1.	Estimation	of	fatigue	damage	accumulation	under	fatigue	loading	
	

Under	 tension-tension	 (Fig.	 3)	 and	 tension-compression	 loading	
(Fig.	4),	for	each	cement,	similar	absorbed	energy	behaviour	was	found	
for	the	different	specimen	types	under	the	various	loading	regimes.	For	
all	 the	 SmartSet	 GHV	 specimens,	 the	 absorbed	 energy	 increased	
gradually	through	loading	until	just	before	failure	when	the	amount	of	
absorbed	 energy	 increased	 more	 rapidly,	 typically	 by	 approximately	
50%	 of	 the	 initial	 value	 (Fig.	 3a	 and	 4a).	 In	 contrast	 for	 the	 CMW1	
specimens,	there	were	minimal	changes	in	energy	absorbed	per	fatigue	
cycle	 throughout	 the	 testing	 period	 until	 close	 to	 failure	 where	 the	
absorbed	energy	increased	only	slightly	(Fig.	3b	and	4b).		

Under	fully	reversed	tension-compression,	the	amount	of	absorbed	
energy	per	loading	cycle	varied	depending	on	the	cement	composition,	
specimen	 type	 and	 stress	 parameters	 (Fig.	 4).	 Fatigue	 longevity	 was	
largely	controlled	by	specimen	type,	however,	 the	gradual	 increase	 in	
the	absorbed	energy,	and	thus	the	increase	in	fatigue	crack	length,	was	
more	 obvious	 in	 the	 SmartSet	 GHV	 specimen	 types	 than	 the	 CMW1	
specimens.	 The	 SmartSet	 GHV	 specimen	 types	 showed	 variations	 in	
energy	absorbed	between	each	other	that	was	not	found	for	the	CMW1	
specimens.	For	SmartSet	GHV	(Fig.	4a)	 the	variations	 in	 the	absorbed	
energy	 between	 the	 four	 specimen	 types	 were	 seen	 to	 be	 mainly	
affected	 by	 the	 stress	 level.	 At	 the	 lower	 stresses	 and	 more	
physiological	stresses	of	±12.5	and	±15	MPa,	the	absorbed	energy	per	
loading	 cycle	 increased	 gradually	 and	 slowly	 throughout	 the	 testing	
period.	At	the	higher	stress	of	±20	MPa,	the	energy	absorption	progress	
in	 the	 moulded	 specimens	 was	 similar	 to	 that	 for	 the	 lower	 stress	
levels	whereas	in	the	machined	specimens,	particularly	the	circular,	the	
absorbed	 energy	 amount	 started	 to	 increase	 rapidly	 well	 before	
reaching	 failure.	 At	 the	 highest	 stress	 of	 ±30	MPa,	 the	 rapid	 increase	

started	 earlier	 for	 all	 specimen	 types,	 but	 the	 circular	 machined	
specimens	 provided	 remarkably	 higher	 increases	 in	 the	 energy	
absorption	rate.	For	CMW1	(Fig.	4b)	all	specimen	types	showed	similar	
behaviour,	 which	 was	 steady	 throughout	 the	 fatigue	 testing	 period,	
with	minimal	 changes	 in	 energy	 per	 loading	 cycle	 until	 very	 close	 to	
failure	when	 the	 absorbed	 energy	 increased	 obviously.	 The	 absorbed	
energy	 per	 loading	 cycle	 at	 the	 highest	 stress	 level	 of	 ±30MPa	 was,	
however,	 almost	 three	 times	 higher	 than	 the	 other	 stress	 levels,	
indicating	the	change	from	high	cycle	to	low	cycle	fatigue.		

The	 creep	 behaviour	 of	 the	 different	 specimens	 of	 these	 cements	
tested	 in	 tension-tension	 fatigue	 is	 shown	 in	 Fig.	 5.	 The	 creep	
behaviour	of	 different	 specimens	of	 the	 same	 cement	 are	 similar,	 but	
again	remarkably	different	for	the	two	cements.	Although	how	much	of	
the	 apparent	 “creep”	 is	 true	 creep	 and	 how	 much	 is	 damage	
accumulation	 by	 the	 cement	 during	 the	 fatigue	 process	 cannot	 be	
stated.	Fig.	6	shows	SEMs	of	 the	 fracture	surfaces	of	 the	 two	cements	
showing	 the	accumulation	of	 the	zirconia	opacifier	around	 the	PMMA	
beads	 in	 SmartSet	 GHV	 at	 the	 fracture	 surface	 while	 opacifier	
agglomeration	 does	 not	 occur	with	 the	 barium	 sulphate	 in	 CMW1.	 It	
can	be	seen	that	for	the	SmartSet	GHV	the	crack	has	propagated	around	
the	 pre-polymerised	 PMMA	 beads	 where	 the	 zirconia	 opacifier	 has	
accumulated	 at	 these	beads	 and	debonding	of	 opacifier	has	occurred,	
whereas	 the	 fracture	 has	 progressed	 through	 the	 pre-polymerised	
CMW1	 beads	 and	 the	 barium	 sulphate	 opacifier	 which	 is	 evenly	
distributed	throughout	the	matrix	phase	of	the	cement.	
	
3.2.		Measurement	of	fatigue	crack	growth	in	cements		
	

As	indicated	by	the	changes	in	absorbed	energy,	a	similar	trend	of	
differences	 in	 fatigue	 crack	 growth	 behaviour	 between	 these	 two	
cements	was	found	with	the	CT	specimens	in	fatigue.	The	fatigue	crack	
started	 to	 propagate	 in	 SmartSet	 GHV	 specimens	 earlier	 (and	 well	
before	 failure),	 showing	 slowly	 increasing	 crack	 length	 with	 fatigue	
cycles,	 in	 contrast	 the	 cracks	 either	 did	 not	 appear	 to	 propagate	 or	
propagated	at	extremely	slowly	for	the	CMW1	specimens	until	close	to	
failure,	 ending	 with	 rapid	 crack	 propagation.	 Over	 the	 crack	
propagation	length	of	5mm	(the	width	of	the	crack	gauge	starting	from	
1mm	after	the	CT	pre-crack	tip),	all	the	SmartSet	GHV	specimens	(Fig.	
7a)	showed	similar	and	constantly	accelerating	crack	growth	rate	over	
the	 last	 approximately	 3mm.	 CMW1	 specimens	 (Fig.	 7b),	 in	
comparison,	showed	no	obvious	increase	in	the	crack	length	indicating	
significantly	 greater	 resistance	 to	 crack	 development.	 However,	 once	
the	 crack	 initiated	 in	 CMW1	 specimens	 rapid	 crack	 propagation	
occurred	 leading	 to	 failure.	Table	1	 shows	 the	 crack	 lengths	at	which	
failure	 occurred	 for	 the	 CT	 test	 specimens.	 Clearly,	 SmartSet	 GHV	
allowed	longer	fatigue	cracks	to	grow	before	reaching	the	failure	point	
compared	to	CMW1	so	that,	in	addition	to	showing	fast	crack	growth,	it	
underwent	failure	at	shorter	crack	lengths.	

	

	

Figure	3		Variations	in	the	absorbed	energy	per	loading	cycle	for	median	fatigue	life	samples	for	the	different	specimen	types	tested	in	2-20MPa	tension-
tension,	comparing	(a)	SmartSet	GHV	and	(b)	CMW1	(Reproduced	with	permission	from	Sheafi	and	Tanner,	2015)	
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Figure	4		Variations	in	the	increase	in	absorbed	energy	per	loading	cycle	for	the	different	specimen	types	tested	in	tension-compression,	showing	(a)	
SmartSet	GHV	and	(b)	CMW1	(note:	RDM±30	refers	to	the	RDM	specimen	type	tested	at	stress	levels	of	±30	MPa	etc.)	

	

Figure	5		Creep	strain	behaviour	of	median	fatigue	life	samples	of	(a)	SmartSet	GHV	and	(b)	CMW1	under	2-20	MPa	tension-tension	fatigue	(R=0.1)

	

Figure	6		Morphologies	of	fatigue	fracture	specimens,	under	tension-tension	loading	(a)	the	disconnection	of	the	P(MMA-MA)	beads	without	being	
fractured,	(b)	the	interaction	between	a	P(MMA-MA)	bead	and	accumulated	ZrO2	particles	for	SmartSet	GHV	(marker	bars	=	100µm	and	10µm,	
respectively)	and	(c	&	d)	for	CMW1	showing	fracture	through	the	individual	PMMA	beads	(marker	bars	=	200µm	and	10µm,	respectively)	
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Figure	7		Comparison	between	the	fatigue	crack	propagation	in	(a)	SmartSet	GHV	and	(b)	CMW1	for	low	(Specimen	1),	median	(Specimen	3)	and	high	
(Specimen	5)	performance	specimens	for	each	cement	–	the	arrows	show	early	failure	points	in	CMW1	

 

Most	of	the	calculated	fatigue	crack	growth	rates	were	within	the	
required	range	provided	by	ASTM	E647-13	[1]	which	recommends		
𝑑𝑎/𝑑𝑁 > 1.0×10!!	 mm/cycle	 at	 constant	 load	 amplitude.	 While	 the	
lowest	 crack	 growth	 rates	were	 slightly	 above	 this	 limit	 for	 SmartSet	
GHV	 specimens	 (between	 2.2×10!!	 and	 2.2×10!!	 mm/cycle),	 they	
were	well	above	the	limit	for	CMW1	specimens	(between	1.0×10!!	and	
1.9×10!!	 mm/cycle).	 Crack	 propagation	 rates	 below	 this	 limit	 are	
‘near-threshold’	 that	 correspond	 to	 early	 stages	 of	 crack	 propagation	
where	 the	 threshold	 stress	 intensity	 factor	 range	 (∆𝐾!")	 is	
representative	of	 the	value	below	which	 the	 crack	will	 not	propagate	
[6].	 However	 it	 should	 be	 noted	 that	 the	 lowest	 crack	 growth	 rates	
were	 higher	 for	 CMW1	 than	 SmartSet	 GHV,	 because	 they	 largely	
describe	 crack	 growth	 in	 CMW1	 specimens	 over	 the	 last	 few	 fatigue	
cycles	before	failure.		

Fig.	 8	 shows	 the	 relationship	 between	 the	 crack	 growth	 rate	 and	
the	 stress	 intensity	 range	 for	 the	 two	 cements.	The	data	obtained	 for	
the	 five	 data	 sets	 of	 each	 cement	 are	 plotted	 together	 with	 the	
regression	 line	 for	 each	 cement.	 The	 Paris’	 Law	 representative	
equations	for	these	cements	were	

	 da
dN

= 2×107 ΔK( )16.77 	for	CMW1	and	
da
dN

= 0.875 ΔK( )9.25 for	

SmartSet	 GHV.	 The	 lower	 number	 of	 data	 points	 for	 CMW1	 in	 Fig.	 8	
reflects	the	effect	of	the	fast	crack	growth	reducing	the	number	of	data	
points	 for	 this	 cement	 due	 to	 the	 breakage	 of	 more	 than	 one	 gauge	
strand	over	a	 single	 fatigue	 cycle	period,	particularly	during	 the	 later	
loading	cycles.	
	

	
	
	

Table	1		Comparison	of	fatigue	crack	lengths	at	the	failure	point	for	SmartSet	GHV	and	CMW1	cements	
 

	 SmartSet	GHV	 CMW1	

Specimen	
No.	

Total	
cycles	to	
failure	(Nf)	

No.	of	gauge	
strands	broken	at	
failure		

Crack	length	
at	failure	
/mm	

Total	cycles	
to	failure	
(Nf)	

No.	of	gauge	
strands	broken	at	
failure		

Crack	length	at	
failure	/mm	

1	 7,072	 20*	 ~	6.00	 3,286	 12	 4.00	

2	 9,085	 20*	 ~	6.00	 3,628	 18	 5.50	

3	 10,225	 20	 				6.00	 7,724	 13	 4.25	

4	 35,585	 20	 				6.00	 10,613	 17	 5.25	

5	 49,393	 20*	 ~	6.00	 11,348	 15	 4.75	

	
Failure	of	marked	specimens	(*)	occurred	at	cycles	to	failure	count	just	after	that	relevant	to	strand	No.	20	
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	Figure	8	 Summary	of	the	da/dN	versus	ΔKI	results,	with	the	best-fit	to	the	Paris	equation	for	SmartSet	GHV	(blue	diamonds)	and	CMW1	(red	squares).	
 
4.	 Discussion	
	
4.1	 Absorbed	energy	as	a	fatigue	damage	indictor	
	

Investigating	 the	 stress-strain	 curves	 of	 the	 specimen	 types	 for	
these	 two	 bone	 cements	 shows	 noticable	 differences	 between	 the	
fatigue	 crack	 damage	 progresses.	 At	 the	 higher	 stress	 levels	 the	
progressive	change	 in	 the	absorbed	energy	 (shown	by	changes	 in	 the	
area	of	 the	stress-strain	 loops)	 indicated	that	crack	growth	behaviour	
is	 affected	 by	 specimen	 shape	 and	 production	method.	 Furthermore,	
this	 effect	 of	 specimen	 type	 has	 been	 shown	 to	 be	 controlled	
simultaneously	 by	 the	 cement	 composition	 with	 greater	 differences	
between	the	SmartSet	GHV	and	CMW1.		

First	 of	 these	 factors	 is	 the	 interaction	 of	 specimen	 type	 and	
cement	composition.	 In	two	of	our	previous	[35,36]	the	differences	 in	
fatigue	 lives	 were	 attributed	 to	 variations	 in	 specimen	 production	
method	 and	 resultant	 surface	morphology,	 leading	 to	 changes	 in	 the	
stress	 concentration	 factors	 and	 also	 considered	 the	 role	 of	 cement	
composition	with	limited	discussion	of	crack	propagation	mechanisms.	
In	our	 subsequent	 study	 [37],	 the	 specimen	variables	were	examined	
further	in	a	range	of	stress	amplitudes,	reporting	a	particular	influence	
of	 the	 stress	 amplitude	 used	 in	 describing	 the	 fatigue	 longevity	 of	
different	cements,	without	considering	in	depth	the	crack	initiation	and	
growth	 mechanisms.	 In	 the	 current	 study,	 the	 changes	 in	 absorbed	
energy	 per	 loading	 cycle	 are	 compared	 for	 different	 specimen	 types	
and	the	results	have	shown	interesting	findings	regarding	the	effect	of	
specimen	 type	which	are	also	 controlled	by	 cement	 composition.	The	
results,	according	to	the	gradual	increases	in	absorbed	energy,	indicate	
that	 SmartSet	 GHV	 cement	 is	 less	 resistant	 to	 fatigue	 damage	 with	
faster	 crack	 propagation,	 however	 the	 cracks	 initiated	 later.	 At	 high	
stress	 levels	 in	 particular,	 the	 machined	 specimens	 of	 this	 cement,	
especially	 the	 circular,	 were	 found	 to	 absorb	 more	 energy	 per	 load	
cycle	 starting	 in	 the	earlier	 fatigue	process	 compared	 to	 the	moulded	
specimens;	 the	 trend	 becomes	 more	 obvious	 as	 the	 fatigue	 cycles	
progress,	demonstrating	that	the	machined	specimens	have	low	fatigue	
crack	 initiation	 and	propagation	 resistance.	 In	 contrast,	 the	 absorbed	
energy	 of	 the	 all	 CMW1	 cement	 specimen	 types	 remained	 constant	
throughout	 the	 early	 loading	 time	 and	 thus	 minimal	 crack	 initiation	
and	 propagation	 occurred.	 However,	 once	 the	 crack	 initiated	 the	
specimen	showed	almost	immediate	failure	with	no	obvious	resistance	
to	 crack	 propagation.	 Crack	 initiation	 also	 occurred	 earlier	 in	 the	
machined	 specimens	 compared	 to	 the	 moulded.	 This	 reflects	 the	
importance	 of	 cement	 composition	 and	 inclusions	 as	 being	 a	 leading	
factor	 in	 controlling	 the	effect	of	 specimen	 type	on	describing	 fatigue	
crack	 behaviour,	 but	 the	 similarity	 in	 crack	 growth	 trends,	 does	 not	
necessarily	 mean	 the	 fatigue	 lives	 are	 similar	 in	 vivo.	 The	 effect	 of	
machining	 the	 specimen	 surfaces	 which	 enhances	 the	 fatigue	 crack	
propagation	in	SmartSet	GHV	could	be	due	to	the	molecular	weight	and	

bead	 size	 characteristics	 of	 this	 cement.	 Having	 different	 molecular	
weights	and	pre-polymerised	polymer	bead	particle	sizes,	the	speed	of	
crack	 propagation	 in	 the	 two	 cements	 would	 differ,	 regardless	 of	
specimen	type.		

The	effect	of	 stress	 type	and	amplitude	 is	 also	 important.	 For	 the	
fully	reversed	tension-compression	stress	regimes,	testing	at	a	range	of	
stress	 levels	has	shown	significant	variations	 in	 terms	of	 the	 increase	
in	absorbed	energy	rates.	All	CMW1	specimen	types	at	all	stress	levels,	
revealed	minimal	increases	in	absorbed	energy	until	a	“close	to	failure”	
point.	 The	 results	 have	 also	 shown	 the	 change	 in	 stress	 amplitude	
within	 the	 examined	 range	 of	 stress	 levels	 leads	 to	 similar	 energy	
absorption	 behaviour	 for	 all	 specimen	 types,	 although	 variations	
occurred	 in	 the	 absorbed	 energy	 per	 fatigue	 cycle	 at	 different	 stress	
levels,	 leading	 to	 differences	 in	 the	 total	 fatigue	 lives.	 In	 contrast,	
SmartSet	GHV	results	have	shown	clearly	that	there	is	a	critical	strain	
level	that	at	or	below	which	all	specimen	types	can	provide	stable	and	
low	 absorbed	 energy	 behaviour.	 However,	 exceeding	 this	 particular	
strain	level	can	lead	to	clearer	variations	in	terms	of	the	increase	in	the	
absorbed	 energy	 amounts	 as	 the	 cyclic	 fatigue	progresses.	While	 this	
critical	stress	 level	has	been	shown	to	exist	at	somewhat	 lower	 levels	
for	the	machined	specimens	(apparently	between	±15	and	±20	MPa),	it	
appeared	 to	 be	higher	 for	 the	moulded	 specimens	 (between	±20	 and	
±30	MPa).	The	tension-tension	testing	at	2-20	MPa	revealed	a	similar	
trend	of	difference	in	the	absorbed	energy	and	its	changes	for	the	two	
cements,	it	has	also	shown	similar	changes	in	all	specimen	types	of	the	
same	 cement.	 This	 finding	might	 reflect	 the	 role	 that	 can	 stress	 type	
plays	 in	 crack	 initiation	 and	 propagation,	 based	 on	 the	 findings	 that	
tension-compression	 loading	 leads	 the	 specimen	 to	 absorb	
successively	 more	 energy	 than	 under	 tension-tension	 fatigue.	 This	
leads	to	the	consideration	of	other	possible	factors	that	can	exist	when	
fatiguing	specimens,	such	as	sample	temperature	and	creep.		

One	possible	reason	that	might	be	involved	in	the	dissimilar	stress-
strain	 behaviour	 of	 the	 two	 cement	 compositions	 at	 different	 stress	
types	 and	 amplitudes	 is	 the	different	 impact	 that	 the	 stress	 level	 can	
have	 on	 the	 craze	 zones	 and	 their	 expected	 growth	 prior	 to	 crack	
propagation.	 It	 has	 been	 stated	 for	 polymers	 that	 “the	 craze	 crack	
growth	increases	with	stress”	[42].	This,	however,	does	not	necessarily	
mean	 subsequent	 gradual	 crack	 growth	 since,	 as	 it	 has	 been	
demonstrated	by	Kambour	 [15]	 for	 the	 stress-strain	behaviour	of	 the	
craze	in	glassy	polymers,	the	craze	can	be	“much	softer	than	the	parent	
polymer,	but	capable	of	sustaining	larger	stresses	and	strains	up	to	the	
point	 of	 failure”	 whereas,	 in	 this	 case,	 “craze	 failure	 is	 much	 more	
dependent	on	polymer	molecular	weight	than	craze	formation”.	These	
suppositions	seem	to	apply	to	the	stress-stain	behaviour	in	the	current	
study,	for	both	stress	types	tested	and	is	more	apparent	at	high	stress	
levels,	 such	 that	 CMW1	 can	 sustain	 stresses	 without	 gradual	 crack	
growth	whereas,	in	contrast,	crazes	in	SmartSet	GHV	progress	steadily,	
but	start	earlier,	well	before	failure.		
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In	 addition	 to	 the	 consideration	 of	 specimen	 specifications	 and	
stress	parameters,	 the	 thermal	properties	of	 test	 specimens	may	also	
play	 a	 role.	 The	 general	 concept	 is	 that	 in	 polymers	 higher	 fatigue	
stress	 levels	 lead	to	an	increase	in	the	hysteresis	generated	heat	[25].	
The	extent	of	thermal	heating	is	controlled	by	the	size	of	the	stressed	
component,	the	heat	loss	from	the	surface	area	of	the	specimen	and	the	
flow	rate	of	any	 fluid,	 such	 that	 the	 lower	 the	surface	area	 to	volume	
ratio	 the	 greater	 the	 accumulated	heating.	 For	 specimens	used	 in	 the	
current	study,	the	surface	area	to	volume	ratios	are	0.8	and	0.9	for	the	
circular	 and	 the	 rectangular	 specimens	 respectively,	 thus	 reasonably	
close.	The	 temperature	was	 controlled	by	 flowing	 saline	 at	 37˚C	over	
the	 samples	 and	 although	 the	 flow	 rate	was	not	measured	 there	was	
significant	 fluid	 flow	 which	 should	 have	 reduced	 sample	 heating.	
Considering	the	cement	composition,	the	difference	in	opacifier	filler	is	
less	 likely	 to	show	dissimilar	 thermal	stability	since	both	 fillers	 (ZrO2	
and	 BaSO4)	 are	 ceramics	 and	 have	 similar	 thermal	 properties.	
Considering	added	antibiotics,	while	it	has	been	reported	by	Webb	and	
Spencer	 [44]	 that	 a	 number	 of	 antibiotics	 such	 as	 flucloxacillin,	
penicillin,	chloramphenicol	and	tetracycline	are	heat	labile,	Gogia	et	al.	
[9]	also	reported	that	one	of	the	basic	considerations	for	antibiotics	to	
be	 used	 in	 bone	 cement	 is	 to	 be	 heat	 stable.	 Gentamicin	 sulphate,	 in	
particular,	 is	 said	 to	have	 “good	 thermostability”[18],	 thus	unlikely	 to	
influence	 the	 thermal	 stability	 of	 SmartSet	 GHV	 either	 during	
polymerisation	 or	 fatigue	 loading.	 Thus	 any	 differences	 in	 thermal	
stability,	 would	 therefore	 be	 due	 to	 other	 variables	 including	 the	
difference	 between	 the	 basic	 polymer	 structures	 of	 the	 cements.	 The	
powder	in	CMW1	is	poly(methyl	methacrylate)	while	SmartSet	GHV	is	
a	copolymer	of	poly(methyl	methacrylate	with	methacrylate),	although	
the	 relative	 amounts	 of	 each	 are	 not	 stated.	 The	 glass	 transition	
temperatures	for	poly(methyl	methacrylate)	(PMMA)	and	poly(methyl	
acrylate)	 (PMA)	 are	 105˚C	 and	 6˚C,	 respectively	 [7].	 Changes	 in	 the	
specific	heat	capacity	at	these	temperatures	were	reported,	in	the	same	
study,	as	33.5	and	42.3	J	mol-1	K-1,	respectively.	According	to	the	stress-
strain	 behaviours	 of	 both	 cements,	 the	 variations	 in	 thermodynamic	
properties	would	be	stress	amplitude	dependant,	and	would	be	more	
obvious	in	SmartSet	GHV	specimens.		

The	 contribution	 of	 creep	 in	 controlling	 fatigue	 crack	 growth	has	
also	been	considered.	Examining	tensile	fatigue	damage	in	the	cement-
bone	interface,	Kim	et	al	[16]	reported	that	fatigue	creep	dominates	the	
stiffness	 changes.	 In	 the	 current	 study,	 the	 tension-tension	 stress-
strain	 responses	 for	 all	 specimen	 types	 indicated	 that	 the	 creep	
properties	seem	to	be	governed	by	cement	composition.	The	hysteresis	
loop	 movement	 along	 the	 strain	 axis	 of	 the	 stress-strain	 plots	 was	
previously	 reported	 in	 Sheafi	 and	 Tanner	 [36],	 the	 SmartSet	 GHV	
specimens,	tend	to	undergo	approximately	3	times	more	creep	than	the	
CMW1	 specimens	 (Fig.	 5),	 which	 can	 also	 be	 related	 to	 the	
development	 of	 fatigue	 damage.	 The	 circular	machined	 specimens	 of	
this	cement	failed	earlier,	but	the	creep	trend	was	similar	to	the	early	
stages	of	the	other	specimen	types.	Considering	the	test	environment,	
Liu	et	al.	[26]	found	that	SmartSet	GHV	undergoes	about	four	times	as	
much	creep	at	body	 temperature	 than	at	 room	 temperature,	whereas	
Simplex	 P	 the	 difference	 was	 a	 factor	 of	 less	 than	 two.	 For	 CMW1	
specimens,	 the	 creep	 behaviour	 is	 similar	 in	 all	 specimens,	 with	
substantially	 lower	 creep	 rates	 than	 SmartSet	 GHV.	 While	 the	 creep	
appeared	to	be	greater	in	SmartSet	GHV,	this	indicates	that	creep	might	
have	contributed	to	increasing	the	fatigue	life,	but	was	not	necessarily	
the	dominant	factor.	The	possibility	of	creep	affecting	fatigue	longevity	
in	tension	cannot	be	relied	on	for	making	final	conclusions	since	only	a	
single	tension-tension	stress	level	has	been	tested.	It	has	been	reported	
in	other	studies	 that	 the	correlation	between	 fatigue	 life	and	creep	of	
bone	cement	is	stress	level	dependent.	Verdonschot	and	Huiskes	[41],	
for	 instance,	 testing	 in	 compression	 concluded	 that	 higher	 fatigue	
stress	 levels	 lead	 to	 higher	 creep	 rates.	 While	 Waanders	 et	 al.	 [43]	
suggested	 that,	 for	 the	 cement-bone	 interface	 damage	mechanics,	 “at	
higher	external	stresses,	creep	is	not	capable	of	relieving	peak	cement	
stresses	 to	such	an	extent	 that	 fatigue	crack	 formation	 is	attenuated”,	
they	 referred	 to	 the	 increased	 contribution	 of	 creep	 in	 fatigue	 crack	
formation	at	 lower	 stress	 levels.	 If	 this	was	 the	 case,	 the	more	 stable	
crack	 propagation	 found	 for	 the	 lower	 stress	 levels	 of	 the	 tension-
compression	regimes	(mainly	 for	SmartSet	GHV)	would	be	attributed,	
at	least	in	part,	to	creep.	Overall,	however,	while	the	effect	of	creep	on	
fatigue	 crack	 propagation	 cannot	 be	 totally	 neglected	 further	
investigations	 are	 still	 required	 to	 compare	 the	 effect	 of	 applying	
tension-tension	 at	 different	 stress	 levels	 and	noting	 that	 tensile	hoop	
stresses	are	generated	around	an	implant	stem.				

						
	
	

4.2	 Fatigue	crack	growth	in	CT	specimens	
	
Race	and	Mann	[32]	proposed	that	two-power	law	fits	are	required	

to	 represent	 fatigue	 crack	 propagation	 rates	 in	 PMMA	 bone	 cement.	
Examining	 their	 findings	 along	 with	 those	 of	 Monlino	 and	 Topoleski	
[28]	 and	 Nguyen	 et	 al.	 [29],	 they	 believed	 that	 the	 existence	 of	
“discontinuities	in	the	log-log	plot	of	𝑑𝑎/𝑑𝑁	versus	∆𝐾”	is	unavoidable	
and	 the	 data	 cannot	 be	 reduced	 to	 a	 single	 power	 law.	 It	 should	 be	
noted	though,	of	these	three	studies,	only	Monlino	and	Topoleski	[28]	
examined	 Simplex	 P	 along	with	 radiolucent	 Simplex	 P	 and	Plexiglas®	
while	 the	 other	 two	 studies	 examined	 the	 crack	 growth	 in	 Simplex	 P	
only.	This	 is	 important	 since,	 as	described	by	Bialoblocka-Juszczyk	 et	
al.	[4],	the	fracture	properties	of	bone	cement	can	be	influenced	by	its	
chemical	composition	and	the	testing	procedures.	Bialoblocka-Juszczyk	
et	 al.	 [4]	 measured	 the	 fatigue	 crack	 propagation	 in	 Cemex®	 RX	
considering	 it	 to	 be	 “representative	 of	 a	 standard	 PMMA	based	 bone	
cement”.	 They	 used	 the	 data	 of	 five	 specimens	 to	 generate	 a	 single	
regression	line	described	by	Paris’	 law,	obtaining	a	general	coefficient	
of	regression	of	0.96.	Two	different	PMMAs,	rather	than	PMMA	based	
bone	cement,	were	tested	by	Hao	et	al.	[11]	using	both	compact	tension	
(CT)	 and	middle	 tension	 (MT)	 fracture	 toughness	 samples.	 Using	 CT	
samples	 they	 found	 that	 there	 was	minimal	 differences	 between	 the	
two	cements,	but	using	the	MT	there	was	an	obvious	difference	in	the	
gradients	of	the	𝑑𝑎/𝑑𝑁	versus	∆𝐾	graphs,	thus	indicating	difference	in	
the	Paris	Law	equations.		

One	 consideration	 in	 the	 current	 study	 was	 that	 a	 precise	 and	
correct	 identification	 of	 the	 “area	 of	 interest”	 during	which	 the	 crack	
propagation	would	be	driven	by	the	stress	intensity	factor	(macrocrack	
growth)	 and	 neglecting	 data	 points	 close	 to	 the	 crack	 tip	 of	 the	 CT	
specimen	 which	 perhaps	 can	 lead	 to	 both	 reporting	 more	
representative	results	and	providing	a	greater	chance	to	obtain	a	single	
linear	fit	of	data	points	on	a	log-log	graph.	The	coefficient	of	regression	
(𝑅!)	 obtained	 from	 the	 𝑑𝑎/𝑑𝑁	 versus	 ∆𝐾	 plot	 for	 each	 specimen	
individually	 (not	 shown)	 was	 high	 (up	 to	 0.98)	 for	 the	 data	 sets	 of	
many	 specimens	 and	 although	 a	 few	 sets	 showed	 low	 coefficients	
(down	 to	 0.35).	 The	 individual	 plots	which	 provided	 high	 regression	
coefficients	might	indicate	that	the	Paris’	law	is	followed	over	the	area	
examined.	The	 combination	of	 the	 cement	data	 sets	 (Fig.	 8)	 to	 give	 a	
single	 trend	 line	 as	 suggested	 by	 Bucci	 [6].	 Ginebra	 et	 al.	 [8]	 and		
Bialoblocka-Juszczyk	 et	 al.	 [4]	 indicates	 that	 these	 two	 cements	 have	
distinct	 fracture	 behaviours.	 The	 combined	 data	 of	 CMW1	 has	 also	
indicated	 that	 the	 change	 in	 stress	 intensity	 range	 occurs	 at	 a	 higher	
crack	 length	 compared	 to	 SmartSet	 GHV,	 with	 a	 higher	 gradient	 for	
CMW1	 (i.e.	 lower	 crack	 growth	 resistance).	 This	 dissimilarity	 in	
behaviour	 was	 perhaps	 because,	 as	 discussed	 earlier,	 CMW1	 has	 an	
increased	 ability	 to	 resist	 crack	 initiation	 and	 growth,	 indicating	
delayed	 threshold	 stress	 intensity	 factor	 range	 (∆𝐾!"),	 followed	 by	
sudden	 and	 rapid	 crack	propagation.	Overall,	 the	 use	 of	 Paris’	 power	
law	 to	 examine	 fatigue	 crack	 growth	 in	 bone	 cement	 depends	 on	 the	
cement	 composition	 such	 that	 it	 can	 be	 adequate	 and	 applicable	 for	
specific	cements,	suggests	that	the	testing	protocol	is	appropriate.		

The	 molecular	 characteristics,	 including	 molecular	 weight	 and	
molecular	 weight	 distribution,	 are	 important	 in	 influencing	 the	
advancement	 of	 fatigue	 crack	 through	 the	 craze	 zone	 where	 higher	
molecular	 weight	 leads	 to	 increased	 craze	 strength	 [31].	 For	 bone	
cement,	the	formation	of	the	craze	zones	is	influenced	by	the	molecular	
weight	 such	 that	 increasing	 the	 molecular	 weight	 increases	 the	
fracture	resistance	[33].	Liu	et	al	[27]	reported	that	SmartSet	GHV	and	
CMW1	have	similar	narrow	bead	size	distributions	and	that	the	mean	
diameters	 were	 69 ± 2.1	 and	 44 ± 1.9	 μm	 for	 SmartSet	 GHV	 and	
CMW1,	 respectively.	 SmartSet	 GHV	 powder	 has	 substantially	 greater	
molecular	 weight	 compared	 to	 CMW1	 powder	 (~ 1×10! and	 2×10!	
g/mol,	 respectively),	 however,	 the	 reverse	 is	 true	 for	 the	 molecular	
weights	 of	 the	 cements	 matrices	 (~	 5.5×10! and	 9×10!	 g/mol,	
respectively).	Variations	in	the	molecular	weights	of	both	the	matrices	
and	 the	 powder	 will	 have	 an	 important	 effect	 on	 the	 fatigue	 crack	
growth	and	through	which	phases	of	the	material	the	crack	will	travel.	
Kim	 et	 al.	 [17]	 observed	 for	 polymethylmethacrylate	 in	 particular,	
increasing	the	molecular	weight	from	1×10! to	4.8×10!	g/mol	led	to	a	
decrease	in	fatigue	fracture	growth	rates	by	two	orders	of	magnitude.	
It	 has	 been	 reported	 that	 while	 the	 reduction	 in	 molecular	 weight	
lowers	 fracture	 toughness,	 this	 does	 not	 necessarily	 lead	 to	 shorter	
fatigue	 life,	 but	 a	 decline	 in	 fatigue	 lives	 may	 occur	 if	 the	 molecular	
weight	is	greatly	reduced	[10].	Therefore,	on	the	one	hand,	the	higher	
molecular	weight	 for	 CMW1	matrix	 (approximately	 1.6	 times	 greater	
than	 SmartSet	 GHV)	 can	 be	 considered	 a	 possible	 reason	 for	 these	
variations	 in	 the	 fatigue	 crack	 growth	 behaviour	 between	 the	 two	
cements,	 particularly	 in	 terms	 of	 controlling	 the	 time	 to	 start	 crack	
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propagation,	while,	on	 the	other	hand,	 the	 total	 fatigue	 life	 results,	as	
reported	 in	 our	 previous	 studies	 [35,36],	 does	 not	 reflect	 this	 clear	
difference	in	crack	propagation	behaviour	between	the	two	cements.	

Liu	 et	 al.	 [26]	 also	 considered	 the	 mechanical	 characteristics	 of	
SmartSet	GHV	 and	 stated	 “it	 is	 evident	 that	most	 of	 the	micro-cracks	
propagate	 around	 large	 PMMA	 beads,	 indicating	 a	 weak	 bonding	
between	 the	 large	 beads	 and	 the	 matrix”.	 This	 finding	 matches	 our	
observations	 of	 the	 fracture	 surfaces	 of	 SmartSet	 GHV.	 Debonding	 of	
the	PMMA	beads	from	the	matrix	in	the	SmartSet	GHV	fracture	surfaces	
was	much	more	obvious	(Fig.	6a)	as	the	opacifier	particles	accumulate	
around	the	larger	beads	(Fig.	6b).	In	comparison	CMW1	which	showed	
no	obvious	beads	or	disconnections	at	comparable	magnification	levels	
and	the	crack	has	propagated	through	the	original	PMMA	beads	(Fig.	6c	
and	6d,	 respectively),	 leading	 to	 the	rougher	 fracture	surfaces	 for	 the	
SmartSet	 GHV.	 Theoretically,	 this	 is	 possible	 since	 the	 lower	 fraction	
and	 the	 smaller	 size	 of	 CMW1	 PMMA	 beads	 would	 be	 expected	 to	
exhibit	greater	matrix-bead	bonding,	resulting	in	superior	resistance	to	
crack	growth.	The	effect	of	the	antibiotic	is	difficult	to	define	due	to	the	
other	 differences	 between	 these	 two	 cements.	 Rimnac	 et	 al.	 [34]	
compared	 the	 fracture	 properties	 of	 different	 commercial	 bone	
cements	each	with	and	without	antibiotic	and	attributed	the	variations	
in	fracture	toughness	and	fatigue	crack	propagation	to	the	difference	in	
molecular	 weights	 with	 no	 significant	 effect	 from	 the	 presence	 of	
antibiotics.		

In	brief,	the	differences	in	both	molecular	weight	and	PMMA	beads	
characteristics	can	be	considered	among	the	main	factors	that	govern	
fatigue	 fracture.	 Compared	 to	 CMW1,	 the	 lower	 molecular	 weight	 of	
SmartSet	GHV	matrix	and	the	greater	size	of	the	PMMA	beads	within	its	
structure	 seem	 to	 play	 a	 key	 role	 in	 producing	 slow	 fatigue	 crack	
propagation	starting	from	earlier	fatigue	loading	cycles.	This	means	the	
crack	 would	 preferably	 grow	 within	 the	 weaker	 matrix	 extending	
through	the	bead-matrix	 interface	as	being	the	second	weakest	route.	
The	occasional	presence	of	accumulated	opacifier,	particularly	adjacent	
to	 the	 beads,	 may	 have	 a	 contributing	 effect	 on	 crack	 behaviour.	
Contrary	to	SmartSet	GHV,	the	higher	matrix	molecular	weight	and	the	
greater	 bonding	 between	 the	 PMMA	 beads	 and	matrix	 in	 CMW1	 can	
delay	the	crack	progress	within	the	bulk	structure.	However,	once	the	
crack	has	started	to	progress	 in	this	cement	the	bonding	between	the	
pre-polymerised	beads	 and	 the	matrix	will	 no	 longer	 resist	 the	 crack	
propagation	where	a	 rapid	 increase	 in	 crack	growth	 rate	occurs	over	
few	cycles,	leading	to	fast	failure.		

	
Conclusions	

	 	
1. For	all	testing	regimes	used	in	this	study,	the	increase	in	absorbed	

energy	per	 loading	cycle	 is	much	greater	 for	SmartSet	GHV	than	
CMW1,	 thus	 reflecting	 the	 earlier	 initiation	 but	 more	 gradual	
crack	propagation	in	SmartSet	GHV	leading	to	slow	failure.		

2. For	 the	 examined	 fully	 reversed	 tension-compression	 stress	
levels,	the	increase	in	stress	upon	SmartSet	GHV	specimens	above	
a	 certain	 level	 can	 lead	 to	 extremely	 rapid	 increase	 in	 the	
absorbed	 energy	 (i.e.	 more	 immediate	 fatigue	 damage).	 This	
changeover	 stress	 level,	 however,	 can	 be	 comparatively	
influenced	 by	 the	 specimen	 type,	 with	 the	machined	 specimens	
being	the	most	affected.	In	contrast,	all	CMW1	specimens,	at	every	
stress	level,	tend	to	absorb	a	similar	amount	of	energy	throughout	
the	fatigue	loading	period	until	close	to	failure.	

3. The	direct	measurements	 of	 the	 crack	 growth	 rates	 in	 SmartSet	
GHV	 and	 CMW1,	 using	 the	 ASTM	 E647-13	 compact	 tension	
standard	 technique,	 have	 validated	 the	 equivalent	 stress-strain	
(energy	 absorption)	 findings	 in	 terms	 of	 the	 difference	 in	 crack	
propagation	behaviour	of	both	cements.	Again,	the	cracks	tend	to	
progress	 gradually	 in	 SmartSet	 GHV	 from	 well	 before	 failure	
while	 showing	 no	 clear	 propagation	 in	 CMW1	 and	 then	 sudden	
failure.	

4. These	 different	 cements	 show	 different	 compliance	 to	 Paris’	
power	 law.	 The	 application	 can	 be	 much	 more	 suitable	 for	
particular	 cements	 (such	 as	 SmartSet	 GHV)	 than	 others	 (as	
CMW1).	Whether	or	not	the	cement	was	following	Paris’	law,	the	
application	 would	 still	 be	 of	 help	 in,	 at	 least,	 identifying	 if	 the	
crack	propagation	would	at	some	stage	be	in	agreement	with	this	
law.		

5. Overall,	while	the	cement	composition	and	stress	parameters	are	
essential	 in	 identifying	 the	 fatigue	 crack	 propagation	 behaviour,	

there	is	still	some	uncertainty	about	what	underlying	factors	are	
dominant	 in	 governing	 the	 propagation	 process.	 Although	
thermal	 properties	 and	 creep	 can	 possibly	 affect	 the	 crack	
propagation	 behaviour,	 it	 is	 suggested	 that	 the	 differences	 in	
molecular	weight	of	the	matrix	and	PMMA	particle	characteristics	
of	 the	 cements	 are	 likely	 to	 have	 the	 key	 role	 in	 controlling	 the	
crack	growth	progress.	
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