Synthesis and characterization of novel low band gap semiconducting polymers for organic photovoltaic and organic field effect transistor applications
Aleroh, Dickson

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/jspui/handle/123456789/5272

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk
Synthesis and Characterization of Novel Low Band Gap Semiconducting Polymers for Organic Photovoltaic and Organic Field Effect Transistor Applications

A Thesis Submitted For the Degree of Doctor of Philosophy
July 2012

By

Dickson Aleroh MSc(Hons) MPhil AMRSC

School of Engineering and Material Science (SEMS)
Queen Mary University of London
Mile End Road
London E1 4NS
Declaration

I hereby affirm that the content of this thesis, including the work and results presented, was performed principally by the author. However, as acknowledged, some of the works were administered by or with the aid of other co-workers and collaborators.

Dickson Aleroh MSc MPhil AMRSC
Abstract

This thesis describes the synthesis, characterization and device properties of a range of conjugated polymers incorporating 3,6-dilakylthieno[3,2-b]thiophene. We report a new and facile synthesis for the preparation of 3,6-dialkylthieno[3,2-b]thiophene, which is readily scaled up to the multi-gram scale. With this synthesis in hand, we initially investigated the properties of poly(thienothiophene-alt-vinylene) polymers incorporating both straight and branched side-chains. Two different polymerization methods were investigated to synthesise the conjugated polymers, namely Stille and Gilch polymerization. The Gilch route was found to lead to high molecular-weight polymers with less cis-defects in the backbone. The polymers were found to be largely amorphous by X-ray diffraction measurements, although there were clear signs of aggregation by optical investigations. Field-effect transistors fabricated with these polymers exhibited charge carrier mobilities up to 0.02 cm² V⁻¹ s⁻¹ for the straight chain analogue, with the branched polymer displaying lower mobilities. Blends with PC71BM were found to exhibit solar cell device efficiencies up to 2.5 %, with significant differences observed for polymers containing two different side-chains.

In the third chapter we investigated the properties of ethynylene-linked 3,6-dialkylthieno[3,2-b]thiophene polymers. The simple homo-polymers were found to exhibit much worse device performance than the analogous vinylene-containing polymers in transistor devices. Copolymers with a range of electron accepting monomers were also synthesized. These displayed low optical energy gaps and signs of aggregation in the solid state. Transistors were fabricated and their performance examined.

In the final part of this thesis, co-polymers bearing 3,6-dialkylthieno[3,2-b]thiophene donor and squaraine acceptor units were synthesized. These zwitterionic conjugated polymers displayed band gaps as low as 1.0 eV. The influence of the nature of the side-chains and co-monomer was investigated with regard to their optoelectronic properties.
Table of Contents

Declaration II
Abstract III
Table of Contents IV
Acknowledgements XIV
List of Polymers synthesized XVI
Abbreviations and Nomenclatures XIX

Chapter One

1.0 Synthesis and Characterization of Novel Low Band Gap Semiconducting Polymers for Organic Photovoltaic and Organic Field Effect Transistor Applications. 2

1.1 Introduction and Research Motivation. 2
 1.1.1 The Sun and the Concept of Low Band Gap in Organic Semiconducting Polymers. 2

1.2 The Emergence of Organic Photovoltaic Devices: A Concise Review. 7
 1.2.1 Single Layer Organic Photovoltaic Devices. 11
 1.2.2 Dual-Layer Organic Photovoltaic Cells. 12
 1.2.3 Bulk-Heterojunction Organic Photovoltaic Cell: From an Architectural Standpoint. 16
 1.2.3.1 Bulk-Heterojunction Organic Photovoltaic Cell: Mechanistic, Operational and Electronic Considerations. 17
 1.2.4 Photocurrent Generation Mechanisms in BHJ OPV Cells. 22

1.3 Organic Field Transistors: A Brief Insight. 29
 1.3.1 Organic Field Effect Transistors: Device Architecture and Applications. 32

1.4 Semiconducting Conjugated Polymers: An Introduction and The Need for Device Enhancement. 34
 1.4.1 Engineering the Band Gap of Conjugated Polymer for Optimized Device Performance. 36

1.5 Fullerene Acceptors for BHJ OPV Cells. 40

1.6 Conclusion. 42

1.7 References. 42
Chapter Two.

2.1 Introduction.

2.2 Synthesis of Fused Thienothiophenes.
 2.2.1 Conjugated Polymers Containing Thienothiophene.
 2.2.2 Microwave Irradiation in Polymer Research and Advancement.
 2.2.3 Stille Cross-coupling Reaction and Polymerization.
 2.2.3.1 Stille Cross-coupling Reaction: A Mechanistic Perspective.

2.3 Synthesis of Soluble Low Band Gap poly(thieno[3,2-b]thiophene vinylene) [pTTV].
 2.3.1 Synthesis of the 2,5-dibromo-3,6-dialkylthieno[3,2-b]thiophene Monomer Derivatives.
 2.3.2 Synthesis of 3,6-dialkylthieno[3,2-b]thiophene via Microwave-assisted Negishi Cross-coupling Methodology.
 2.3.3 Synthesis of 2,5-dibromo-3,6-dialkylthieno[3,2-b]thiophenes.
 2.3.4 Synthesis of poly(3,6-alkylthieno[3,2-b]thiophene vinylene)s via Microwave-assisted Stille Cross-coupling Polymerization of 2,5-dibromo-3,6-dialkylthieno[3,2-b]thiophene Derivates.

2.4 Characterization of the Low Band Gap PDC_{16}TTV and PBEHTTV poly(3,6-dialkylthieno[3,2-b]thiophene) Derivatives.
 2.4.1 Solubility.
 2.4.2 NMR Spectroscopy and Molecular Weight Measurements.
 2.4.3 Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectroscopic (MALDI-TOF-MS) Studies.
 2.4.4 Attenuated Total Reflectance Infrared (ATR-IR) Spectroscopy.
 2.4.5 Thermal Behaviour.
 2.4.6 Wide Angle X-Ray Diffraction (WA-XRD) Measurements.
 2.4.7 Optical Characteristics.
 2.4.8 Electrochemical Characteristics.
2.5 Device Fabrication.

2.5.1 Field-Effect Transistor (FET) Characteristics of the Conjugated Polymers.

2.5.2 Organic Photovoltaic Device.

2.6 Conclusion.

Chapter 2 (Part 2.7)

2.7 Comparative Gilch and Microwave-Assisted Stille Polymerization Pathways: Towards High Molecular Weight Poly(3,2-dihexadecylthieno[3,2-b]thiophene-2-yl vinylene)s.

2.7.1 Introduction.

2.7.1.1 The Gilch Methodology in Perspective.

2.7.1.2 The Gilch Mechanism.

2.7.2 Synthesis of High Molecular Weight Poly(3,6-dialkylthieno[3,2-b]thiophen-2-yl vinylene) via the Gilch Polydehydrohalogenation Route.

2.7.2.1 Synthesis Protocol Towards the Formation of 3,6-dialkyl-2,5-bis(bromomethyl)thieno[3,2-b]thiophene Monomers (DABBMTT).

2.7.2.2 Synthesis of the vinylene-bridged 3,6-dialkylthieno[3,2-b]thiophene polymers via the Gilch Methodology.

2.7.2.3 ATR-FT Infrared Spectroscopy.

2.7.2.4 NMR Spectral Characterisation.

2.7.2.5 Optical and Electrochemical Characteristics.

2.7.2.5.1 Absorption and Fluorescence Properties.

2.7.2.5.2 Cyclic Voltammetric Characterization.

2.7.2.6 Thermal Characteristics.

2.7.2.7 Crystalline Behaviour.

2.7.3 Conclusion.

2.8 Experimental Section for Chapter 2

2.8.1 General Instrumentation.

2.8.1.1 Fabrication of Organic Field-Effect Transistor Devices (OFET).

2.8.1.2 Organic Photovoltaic device Fabrication and Measurements.

2.8.2 Synthesis Section.

2.8.2.1 Materials and Chemical Reagents.
2.8.2.2 Experimental Protocol.

2.8.2.2.1 Synthesis of Precursors and Target Monomers.

2.8.2.2.2 Synthesis of 2,5-dibromothieno[3,2-b]thiophene M11.

2.8.2.2.3 Synthesis of 3,6-dibromothieno[3,2-b]thiophene M12.

2.8.2.2.4 Synthesis of 3,6-dihexadecylthieno[3,2-b]thiophene M13c.

2.8.2.2.5 Microwave-assisted Negishi synthesis of 3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene M13d.

2.8.2.2.6 Synthesis of 3,6-didecylthieno[3,2-b]thiophene M13a.

2.8.2.2.7 Synthesis of 3,6-didecylthieno[3,2-b]thiophene M13b.

2.8.2.2.8 Synthesis of 2,5-dibromo-3,6-dihexadecylthieno[3,2-b]thiophene M14c.

2.8.2.2.9 Synthesis of 2,5-dibromo-3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene M14d.

2.8.2.2.10 Synthesis of 2,5-dibromo-3,6-didecylthieno[3,2-b]thiophene M14e.

2.8.2.2.11 Synthesis of 2,5-dibromo-3,6-didodecylthieno[3,2-b]thiophene M5b.

2.8.2.2.12 Synthesis of Poly(3,6-dihexadecylthieno[3,2-b]thiophene-2-yl vinylene) PDC_{16}TTV via microwave-accelerated Stille cross-coupling Polymerization.

2.8.2.2.13 Synthesis of Poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene-2-yl vinylene) PBEHTTV via microwave-accelerated Stille cross-coupling Polymerization.

2.8.2.2.14 Synthesis of Poly(3,6-didodecylthieno[3,2-b]thiophene-2-yl vinylene) PDC_{12}TTV via microwave-accelerated Stille cross-coupling Polymerization.

2.8.2.2.15 Alternative synthesis of 3,6-dibromothieno[3,2-b]thiophene (Failed Synthesis).

2.8.2.2.15.1 Synthesis of 2,5,3,6-tetramethylthiasaphenopyrrolo[2,3-b]thiophene X.

2.8.2.2.15.2 Synthesis of 3,6-dibromothieno[3,2-b]thiophene Y.
2.8.3 Experimental Section for Chapter 2 (Part 2.7).

2.8.3.1 Materials and Chemical Reagents.

2.8.3.2 Experimental Protocol.

2.8.3.2.1 Synthesis of Bromomethylated T32bT Monomers.

2.8.3.2.2 Synthesis of 2,5-bis(bromomethyl)-3,6-dihexadecylthieno[3,2-b]thiophene X3.

2.8.3.2.3 Synthesis of 2,5-bis(bromomethyl)-3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene X4.

2.8.3.2.4 General Gilch Polymerization Route.

2.8.3.2.5 Synthesis of Poly(3,6-dihexadecylthieno[3,2-b]thiophene-2-yl vinylene) via Gilch Polydehydrohalogenation Route PDC16TTV-G.

2.8.3.2.6 Synthesis of Poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene-2-yl vinylene) PBEHTTV via Gilch Polydehydrohalogenation Route PBEHTTV-G.

2.9 References.

Chapter Three

3.1 Introduction.

3.1.1 The Sonogashira Cross-coupling Methodology.

3.2 Synthesis of Monomers and PAE π-Conjugated Polymers.

3.2.1 Donor Acetylene Functionalized thieno[3,2-b]thiophene derivatives.

3.2.2 Synthesis of Electron-Acceptor Derivatives.

3.2.2.1 Synthesis of 1,4diketopyrrolopyrrole Acceptor with Brominated Thiophene Termini.

3.2.2.2 Synthesis of Dibromo N-octylthieno[3,4-c]pyrrole-1,4-dione Acceptor.

3.2.2.3 Synthesis of Dibrominated Benzo[2,1,3]thiadiazole Acceptor.
3.2.3 Conventional and Microwave-Assisted Sonogashira Synthesis of PAE Homopolymer and Donor-Acceptor Copolymers based on alkyl-substituted thieno[3,2-b]thiophene Moieties.

3.2.4 Attempted PAE Synthesis.

3.2.4.1 Thiazole-Bearing Donor-Acceptor Poly(arylene ethynylene) Derivatives.

3.2.4.2 PAE Homopolymers Synthesis Via Microwave-assisted Stille cross-coupling Reaction.

3.3 Polymer Characterization.

3.3.1 Nuclear Magnetic Resonance (NMR) Spectroscopy.

3.3.2 ATR-FT Infrared Spectroscopy.

3.3.3 Absorption and Emission Characteristics.

3.3.4 Determination of Energy Levels by Electrochemical Method.

3.3.5 Thermal Stability and Transitions.

3.3.6 Thin Film X-Ray Diffraction.

3.4 Evaluation of Device Characteristics.

3.4.1 Fabrication of Organic Field Effect Transistors (OFETs).

3.4.2 Organic Photovoltaics.

3.5 Conclusion.

3.6 Experimental Section.

3.6.1 Materials and Chemical Reagents.

3.6.2 Experimental Protocol.

3.6.2.1 Synthesis of 3,6-dihexadecyl-2,5-bis(trimethylsilylethynyl)thieno[3,2-b]thiophene Pr3’.

3.6.2.2 Synthesis of 3,6-bis(2-ethylhexyl)-2,5-bis(trimethylsilylethynyl)-thieno[3,2-b]thiophene Pr3”.

3.6.2.3 Synthesis of 3,6-dihexadecyl-2,5-bis(ethylthynyl)thieno[3,2-b]thiophene M4’.

3.6.2.4 Synthesis of 3,6-bis(2-ethylhexyl)-2,5-bis(ethylthynyl)thieno[3,2-b]thiophene M4”.

3.6.2.7 Synthesis of poly(3,6-hexadecylthieno[3,2-b]thiophene-2,5-yl ethynyl-alt-2,8-(N-octyl)thieno[3,4-c]pyrrole-4,6-dione) – PDC_{16}TTE-OTPDM P6'-M via Microwave-accelerated Sonogashira-Hagihara cross-coupling Polycondensation.

3.6.2.8 Synthesis of poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene-2,5-yl ethynyl-alt-2,8-(N-octyl)thieno[3,4-c]pyrrole-4,6-dione) – PBEHTTE-OTPDM P6''-M via Microwave-accelerated Sonogashira-Hagihara cross-coupling Polycondensation.

3.6.2.9 Synthesis of poly(3,6-hexadecylthieno[3,2-b]thiophene-2,5-yl ethynyl-alt-3,6-dithien-2-yl-2,5-dioctylpyrrolo[3,4-c]pyrrole-1,4-dione-5',5''-diyl) – PDC_{16}TTE-ODPP-M P7'-M via Microwave-accelerated Sonogashira-Hagihara cross-coupling Polycondensation.

3.6.2.10 Synthesis of poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene-2,5-diy1 ethynyl-alt-3,6-bis(thien-2-yl)-2,5-dioctylpyrrolo[3,4-c]pyrrole1,4-dione-5',5''-diyl) – PBEHTTE-ODPP-M P7''-M via Microwave-accelerated Sonogashira-Hagihara cross-coupling Polycondensation.

3.6 References.

Chapter Four

4.1 Introduction.
4.1.1 Squaraine Molecular Dyes.

4.1.2 Polysquaraines: From Squaraine dye molecules.

4.2 Synthesis of Monomeric Derivatives.

4.2.1 Synthesis of the 3,6-dialkyl-2,5-bis(N-alkyl-1H-pyrrolyl)thieno[3,2-b]thiophene monomeric derivatives.

4.2.3 Novel Polysquaraine Synthesis.

4.2.3.1 Synthesis of π-Conjugated Poly(3,6-dialkyl-2,5-bis(N-alkyl-1H-pyrrol-2-yl)thieno[3,2-b]thiophene-co-squaric acid) derivatives.

4.2.3.2 Synthesis of π-Extended Poly(3,6-dialkyl-2,5-bis[2-(N-alkyl-1H-pyrrol-2-yl)vinyl]thieno[3,2-b]thiophene-co-squaric acid) derivatives.

4.2.4 Proton NMR Spectroscopy.

4.2.5 Solid-State FT-IR Spectral Characterization.

4.2.6 Optical Characteristics.

4.2.7 Electrochemical Determination of Energy Levels.

4.2.8 Thermal Stability Studies.

4.2.8.1 Thermogravimetric Analysis.

4.2.8.2 Differential Scanning Calorimetry.

4.2.9 Crystallinity Study by Wide Angle X-ray Diffraction.

4.3 Conclusion.

4.4 Experimental Section.

4.4.1 Materials and Chemical Reagents.

4.4.2 Experimental Protocol.

4.4.2.1 Synthesis of 3,6-dihexadecyl-2,5-bis(N-methyl-1H-pyrrol-2yl)thiophene[3,2-b]thiophene (DC₁₆BNMPTT) 10.
4.4.2.2 Synthesis of 3,6-Bis(2-ethyl-1-hexyl)-2,5-bis(N-methyl-1H-pyrrol-2yl)thieno[3,2-b]thiophene (BEHBNMPTT) 11.

4.4.2.3 Synthesis of N-octyl-2-(tributylstannyl) pyrrole – 7.

4.4.2.4 Synthesis of 3,6-dihexadecyl-2,5-bis(N-octyl-1H-pyrrol-2yl)thieno[3,2-b]thiophene (DC\textsubscript{16}BNC\textsubscript{8}PTT) 8.

4.4.2.5 Synthesis of 3,6-Bis(2-ethyl-1-hexyl)-2,5-bis(N-octyl-1H-pyrrol-2yl)thieno[3,2-b]thiophene (BEHBNMPTT) 9.

4.4.2.6 Synthesis of poly(3,6-dihexadecyl-2-N-methylpyrrol-2-yl-5-(5-cyclobutenediylium-1,3-diolate-N-methylpyrrol-2-yl)thieno[3,2-b]thiophene (PDC\textsubscript{16}NMPSQTT) Psq\textsubscript{16}.

4.4.2.7 Synthesis of poly(3,6-bis(2-ethylhexyl)-2-N-methylpyrrol-2-yl-5-(5-cyclobutenediylium-1,3-diolate-N-methylpyrrol-2-yl)thieno[3,2-b]thiophene) (PBEHBNMPSQTT) Psq\textsubscript{17}.

4.4.2.8 Synthesis of poly(3,6-dihexadecyl-2-N-octylpyrrol-2-yl-5-(5-cyclobutenediylium-1,3-diolate-N-octylpyrrol-2-yl)thieno[3,2-b]thiophene) (PDC\textsubscript{16}BNC\textsubscript{8}PSQTT) Psq\textsubscript{11}.

4.4.2.9 Synthesis of poly(3,6-bis(2-ethylhexyl)-2-N-octylpyrrol-2-yl-5-(5-cyclobutenediylium-1,3-diolate-N-octylpyrrol-2-yl)thieno[3,2-b]thiophene) (PBEHBNC\textsubscript{8}PSQTT) Psq\textsubscript{12}.

4.4.2.10 Synthesis of 3,6-Dihexadecyl-2,5-bis(methylene diethylphosphate)thieno[3,2-b]thiophene (DC\textsubscript{16}BMDEPTT).

4.4.2.11 Synthesis of 3,6-bis(2-ethylhexyl)-2,5-bis(methylene diethylphosphate)thieno[3,2-b]thiophene (BEHBMDEPTT).

4.4.2.12 Synthesis of N-alkylpyrrole-2-carboxaldehyde derivatives (NAPC).

4.4.2.13 Synthesis of (E,E)-2,5-bis[2-(1-hexadecylpyrrol-2-yl)vinyl]-3,6-dihexadecylthieno[3,2-b]thiophene (BC\textsubscript{16}PVDC\textsubscript{16}TT) 21.

4.4.2.14 Synthesis of (E,E)-2,5-bis[2-(N-(2-ethylhexyl)pyrrol-2-yl)vinyl]-3,6-dihexadecylthieno[3,2-b]thiophene (BNEHPVDC\textsubscript{16}TT) 22.

4.4.2.15 Synthesis of (E,E)-2,5-bis[2-(1-(2-ethylhexyl)pyrrol-2-yl)vinyl]-3,6-dihexadecylthieno[3,2-b]thiophene (BC\textsubscript{16}PVDC\textsubscript{16}TT) 23.
4.4.2.16 Synthesis of Poly(3,6-dihexadecyl-2-(N-hexadecylpyrrol-2-yl)-5-(5-cyclobutadienediylium-1,3-diolate-N-hexadecylpyrrol-2-yl-5-vinyl)thieno[3,2-b]thiophene) (PDC\textsubscript{16}NC\textsubscript{16}PCBDDC\textsubscript{16}PVTT or PDC\textsubscript{16}BNC\textsubscript{16}PVSQTT – PSQ6).

4.4.2.17 Synthesis of Poly(3,6-dihexadecyl-2-N-2-ethylhexylpyrrol-2-yl)-5-(5-cyclobutadienediylium-1,3-diolate-N-2-ethylhexylpyrrol-2-yl-5-vinyl)thieno[3,2-b]thiophene) (PDC\textsubscript{16}NEHPCBDDNEHPVTT or PDC\textsubscript{16}BNEHPVSQTT – PSQ7).

4.4.2.18 Synthesis of Poly(3,6-bis(N-2-ethylhexyl-2-N-2-ethylhexylpyrrol-2-yl)-5-(5-cyclobutadienediylium-1,3-diolate-N-2-ethylhexylpyrrol-2-yl-5-vinyl)thieno[3,2-b]thiophene) (PBEHNEHPCBDDNEHPVTT or PBEHBNBEHPVSQTT – PSQ8).

4.5 Reference.

Chapter 5

5.0 General Thesis Conclusions.
Acknowledgements

The journey towards completing a PhD degree is indeed a momentous and sometimes, arduous one. Moreover, my thirst for knowledge advancement and unrelenting passion for the sciences served as the impetus behind my quest into this emerging field. Nonetheless, I could not have done it all by myself without the invaluable support, guidance, and mentoring accorded me by some key individuals. To begin, my foremost gratitude goes to my supervisor Dr Martin James Heeney. Whilst working with him, I have learnt to think autonomously, innovatively, and entrepreneurially, with an advanced knowledge in semiconducting polymer chemistry. Despite his busy schedules, he has always been willing to listen, and address all enquiries relating to some difficult areas of my research. In addition, pertaining to my personal life and the numerous ups-and-downs encountered, he has always given me his unwavering support and advice. As a matter of fact, words are not enough to fully express how privileged and thankful I feel to have worked with such an exceptionally knowledgeable, remarkable, and humble individual. He is simply the best supervisor I could ever hope for, as my other colleague would attest to.

Much thanks to Dr Steve Dunn at Queen Mary University of London (QMUL) for his support and assistance. To my wonderful colleagues at Imperial College London (ICL), George Barnes, Fei Zhuping, David James, Bob Schroeder, Jonathan Marshall, Thomas McCarthy-Ward, Chin Pang Yau, Laure Biniek, Dr Shahid Ashraf, Dr Munazza Shahid, Dr Mohammed Al-Hashimi, Dr Zhong Hongliang, and Dr Weimin Zhang, I am grateful for your friendship, the good times, and for being there for me every step of the way. I would like to also thank Dr Shahid Ashraf, Dr Christian Nielsen, and Dr Hugo Bronstein for providing initial samples of the BT, DPP and TPD acceptors. Much appreciation to Dr Natalie Stingelin for allowing me to use her spin-coater and the DSC equipment, Dr Martyn McLachlan for providing access to the Potentiostat (CV) apparatus, Dr Ester Buchaca Domingo for running the XRD measurements, Dr Pasquale D’Angelo of Dr Thomas Anthopoulos group for performing the OFET analysis of the acetylene copolymers, Prof James Durrant and Zhenggang Huang (Steve) for the OPV device fabrication/characterizations, Dr Steve Dunn (QMUL) for the UV-vis-NIR equipment, Dr Kim YoungJu for the OFET data for the acetylene-bridged homopolymers, and Dr Scott Watkins for the PESA (or UPS) measurements. Furthermore, I fully appreciate the financial support provided by Queen Mary
University of London (QMUL) over the past 3 years, towards the successful completion of this research degree. Much thanks to Imperial College London (ICL) for hosting me, and providing the facilities for the duration of the entire project.

I would like to give my overwhelming gratitude to my priceless partner, Kafayat Shiyanbola, for her care, love, encouragements, visits, solidarity, and all round support over the past four challenging years of studies. Thanks to my kids, Joseph Aleroh and Isaiah Aleroh for putting a smile on my face during my difficult moments. To my mother, Sarah Jeneba-Emanuel Nicol, thanks for making this dream a reality. I am also thankful to my brother, Joshua Aleroh, for his support and encouraging words. I am indebted to you all.

Last, but not least, I would like to give all credits to Jehovah (the Almighty God) and his only begotten son (Jesus Christ) for not abandoning me spiritually, and without whom my efforts would have been futile. Embarking on this doctoral degree has been a worthwhile experience for me, and one which I hope has contributed to the advancement of the organic electronics field.
List of Polymers Synthesized

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Acronym</th>
<th>Chapter No. (Page No.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PD$_{16}$TTV</td>
<td>2 (136)</td>
</tr>
<tr>
<td></td>
<td>PDC$_{16}$TTV-S</td>
<td>2.7 (141)</td>
</tr>
<tr>
<td></td>
<td>PDC$_{16}$TTV-G</td>
<td>2 (137)</td>
</tr>
<tr>
<td></td>
<td>PDC$_{12}$TTV</td>
<td>2 (137)</td>
</tr>
<tr>
<td></td>
<td>PBEHTTV</td>
<td>2 (137)</td>
</tr>
<tr>
<td></td>
<td>PBEHTTV-G</td>
<td>2.7 (142)</td>
</tr>
<tr>
<td></td>
<td>PD$_{16}$TTE</td>
<td>3 (216)</td>
</tr>
<tr>
<td></td>
<td>PDC$_{16}$TTE-M</td>
<td>3 (216)</td>
</tr>
<tr>
<td></td>
<td>P5’-M</td>
<td>3 (216)</td>
</tr>
<tr>
<td></td>
<td>PBEHTTE</td>
<td>3 (217)</td>
</tr>
<tr>
<td></td>
<td>PBEHTTE-M</td>
<td>3 (217)</td>
</tr>
<tr>
<td></td>
<td>P5”-M</td>
<td>3 (217)</td>
</tr>
<tr>
<td></td>
<td>PDC$_{16}$TTE-OTPD-M</td>
<td>3 (218)</td>
</tr>
<tr>
<td></td>
<td>P6’-M</td>
<td>3 (218)</td>
</tr>
<tr>
<td></td>
<td>PBEHTTE-OTPD-M</td>
<td>3 (218)</td>
</tr>
<tr>
<td></td>
<td>P6”-M</td>
<td>3 (218)</td>
</tr>
</tbody>
</table>
$\text{PDC}_{16}\text{NEHPCBDDNE}$

-HPVTT

$\text{PDC}_{16}\text{BNEHPVSQTT}$

PSQ7

PBEHNEHPCBDENNE

-HPVTT

PBEHBNEHPVSQTT

PSQ8

4 (277)

4 (278)
Abbreviations and Nomenclatures

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Acceptor</td>
</tr>
<tr>
<td>ATR-FTIR</td>
<td>Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>BBMT</td>
<td>2,5-Bis(bromomethyl)thiophene.</td>
</tr>
<tr>
<td>BHJ</td>
<td>Bulk-heterojunction</td>
</tr>
<tr>
<td>BLA</td>
<td>Bond length alternation</td>
</tr>
<tr>
<td>BT</td>
<td>Benzo[2,1,3]thiadazole</td>
</tr>
<tr>
<td>13C NMR</td>
<td>Carbon-13 nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>C

</td>
<td>Capacitance</td>
</tr>
<tr>
<td>CS or CSS</td>
<td>Charge separated state</td>
</tr>
<tr>
<td>CT</td>
<td>Charge transfer state</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammetry</td>
</tr>
<tr>
<td>C16</td>
<td>Hexadecyl</td>
</tr>
<tr>
<td>D</td>
<td>Donor</td>
</tr>
<tr>
<td>D-A-D</td>
<td>Donor-acceptor-donor</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Calorimetry</td>
</tr>
<tr>
<td>e or Z or q</td>
<td>Elementary charge</td>
</tr>
<tr>
<td>E</td>
<td>Electric field</td>
</tr>
<tr>
<td>F</td>
<td>Internal electric field</td>
</tr>
<tr>
<td>EH</td>
<td>2-ethylhexyl</td>
</tr>
<tr>
<td>EQE</td>
<td>Equilibrium quantum efficiency</td>
</tr>
<tr>
<td>FF</td>
<td>Fill factor</td>
</tr>
<tr>
<td>FL</td>
<td>Fluorescence</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography mass spectroscopy</td>
</tr>
<tr>
<td>GPC</td>
<td>Gel permeation chromatography</td>
</tr>
<tr>
<td>H-H, H-T, T-T</td>
<td>Head-to-Head, Head-to-Tail and Tail-to-Tail couplings</td>
</tr>
<tr>
<td>1H NMR</td>
<td>Proton nuclear magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>ISD,lin</td>
<td>Drain-source current in the linear regime</td>
</tr>
<tr>
<td>ISD,sat</td>
<td>Drain-source current in the saturation regime</td>
</tr>
<tr>
<td>ION/I OFF</td>
<td>Current on-and-off ratio</td>
</tr>
</tbody>
</table>
IPCE
Incident photon-to-current conversion efficiency

\(J_{\text{max}} \)
Maximum short-circuit current density

\(J_{\text{SC}} \)
Short-circuit current density

\(J_{\text{SC}} \)
Charge Injection current

\(kT \)
Thermal energy

\(I_{\text{in}} \)
Light intensity

LUMO
Lowest unoccupied molecular orbital

M
Monomer

\(M \)
Number average molecular weight

MDMO-PPV
Poly(2 methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylene Vinylene)

MEH-PPV
Poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene)

\(M_{\text{w}} \)
Weight average molecular weight

NPAC
N-alkylpyrrole carboxaldehyde

\(N_{\circ} \)
Incident photon flux density

OTPD
N-Octylpyrrolo[3,4-c]pyrrole-4,6-dione.

ODPP
2,5-Octyldithienopyrrolo[3,4-c]pyrrole-1,4(2H, 5H)-dione

OPV
Organic photovoltaic

OFET
Organic field effect transistor

OSC
Organic solar cell

\(^{32}\text{P NMR} \)
Phosphorous nuclear magnetic resonance spectroscopy

\(P_{\text{in}} \)
Power input

\(P_{\text{out}} \)
Power output

PL
Photoluminescence

Pr
Precursor

PAE
Poly(arylene ethynylene)

pBTTT-C16
poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene)

PC_{61}BM
[6,6]-phenyl-C61-butyric acid methyl ester

PC_{71}BM
[6,6]-phenyl-C71-butyric acid methyl ester

PCE
Power conversion efficiency

PEDOT:PSS
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)

PDC_{10}TTV-M

PDC_{12}TTV-M
Poly[3,6-didodecylthieno[3,2-b]thiophen-2-yl vinylene]
Microwave

PDC\textsubscript{16}TTV-M
Poly(3,6-dihexadecylthieno[3,2-b]thiophen-2-yl vinylene)

Microwave

PBEHTTV-M
Poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophen-2-yl vinylene)

Microwave

PDC\textsubscript{16}TTV-S
Poly(3,6-dihexadecylthieno[3,2-b]thiophen-2-yl vinylene) Stille

PDC\textsubscript{16}TTV-G
Poly(3,6-hexadecylthieno[3,2-b]thiophen-2-yl vinylene) Gilch

PDC\textsubscript{16}TTE-M
Poly(3,6-dihexadecylthieno[3,2-b]thiophene-2-yl ethynylene)

Microwave

PBEHTTE-M
Poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophen-2-yl ethynylene)

Microwave

PDC\textsubscript{16}TTE-OTPD-M
Poly(3,6-hexadecylthieno[3,2-b]thiophene-2,5-yl ethynyl-alt-2,8-(N-octyl)thieno[3,4-c]pyrrole-4,6-dione) Microwave

PBEHTTE-OTPD-M
Poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene-2,5-yl ethynyl-alt-2,8-(N-octyl)thieno[3,4-c]pyrrole-4,6-dione)

PDC\textsubscript{16}TTE-ODPP-M
Poly(3,6-hexadecylthieno[3,2-b]thiophene-2,5-yl ethynyl-alt-3,6-dithien-2-yl-2,5-diocetylpyrrolo[3,4-c]pyrrole-1,4-dione-5′,5″-diyl) Microwave

PBEHTTE-ODPP-M
Poly(3,6-bis(2-ethylhexyl)thieno[3,2-b]thiophene-2,5-diyl ethynyl-alt-3,6-bis(thien-2-yl)-2,5-diocetylpyrrolo[3,4-c]pyrrole-1,4-dione-5′,5″-diyl) Microwave

PDC\textsubscript{16}TTE-BT-M
Poly(3,6-dihexadecylthieno[3,2-b]thiophene-2,5-diyl ethynyl-alt-benzo[1,2,5]thiadiazole-4,7-diyl) Microwave

PDC\textsubscript{16}BNC\textsubscript{16}PVSQTT
Poly(3,6-dihexadecyl-2-(N-hexadecylpyrrol-2-yl)-5-(5-cyclobutadienediylium-1,3-diolate-N-hexadecylpyrrol-2-yl-5-vinyl)thieno[3,2-b]thiophene)

PDC\textsubscript{16}BNEHPVSQTT
Synthesis of Poly(3,6-dihexadecyl-2-N-2-ethylhexylpyrrol-2-yl)-5-(5-cyclobutadienediylium-1,3-diolate-N-2-ethylhexylpyrrol-2-yl-5-vinyl)thieno[3,2-b]thiophene)

PBEHBNEHPVSQTT
Synthesis of Poly(3,6-bis(N-2-ethylhexyl-2-N-2-ethylhexylpyrrol-2-yl)-5-(5-cyclobutadienediylium-1,3-diolate-N-2-ethylhexylpyrrol-2-yl-5-vinyl)thieno[3,2-b]thiophene)

PDC\textsubscript{16}BNC\textsubscript{8}PSQTT
Poly(3,6-dihexadecyl-2,5-bis(N-octylpyrrol-2-yl)thieno[3,2-
PDC$_{16}$BNC$_8$PCBDNC$_8$PTT Poly(3,6-dihexyldecyl-2-N-octylpyrrol-2-yl-5-(5-cyclobutenediylium-1,3-diolate-N-octylpyrrol-2-yl)thieno[3.2-b]thiophene)

PDI Polydispersity index

PESA Photoelectron spectroscopy in the air

Psq and PSQ Polysquaraine derivative with and without vinylene bridges

R_s Series resistance

R_{SH} Shunt resistance

SM Starting Material

S_1 Singlet state

SQ or Sq Squaric acid

T_1 Triplet state

TGA Thermogravimetric Analysis

T23bT Thieno[2,3-b]thiophene

T32bT Thieno[3,2-b]thiophene

T34bT Thieno[3,4-b]thiophene

T34cT Thieno[3,4-c]thiophene

TTA Thieno[3,2-b]thiophene acetylene

TTE Thieno[3,2-b]thiophene ethynylene

TTV Thieno[3,2b]thiophene vinylene

UPS Ultraviolet photoelectron spectroscopy

UV-vis Ultraviolet-visible spectroscopy

UV-vis-NIR Ultraviolet-visible-near-infrared

V_{max} Maximum open-circuit voltage

V_{DS} Drain-Source voltage

V_{GS} Gate-Source voltage

V_{th} Threshold voltage

V_{OC} Open-circuit voltage

XRD X-ray diffraction

Λ Incident photon wavelength

M Charge carrier or field effect mobility

τ Charge carrier lifetime