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Abstract We develop a rigidity theory for graphs whose vertices are constrained to lie on a cylinder
and in which two given vertices are coincident. We apply our result to show that the vertex splitting
operation preserves the global rigidity of generic frameworks on the cylinder, whenever it satisfies the
necessary condition that the deletion of the edge joining the split vertices preserves generic rigidity.
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1 Introduction

A framework (G, p) in Rd is the combination of a finite, simple graph G = (V,E) and a map
p : V → Rd. It is rigid if every edge-length preserving continuous motion of the vertices arises as a
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congruence of Rd (see, for example, [14] for basic definitions and background). The theory of generic
rigidity aims to characterise the graphs G for which (G, p) is rigid for all generic choices of p. This
was accomplished by Laman [8] for d = 2, but is a long-standing open problem for d ≥ 3.

We are interested in frameworks in R3 whose vertices are constrained to lie on a fixed surface.
Generic rigidity in this context was characterised for graphs on the cylinder and various other
surfaces in [10,11]. In this paper we consider frameworks on the cylinder in which two of the vertices
are coincident, but are otherwise generic. For such frameworks we give the following combinatorial
characterisation of rigidity. Given two vertices u, v of a graph G we use G− uv to denote the graph
formed from G by deleting the edge uv if it exists and G/uv to denote the graph which arises from
G by contracting the vertices u and v (and deleting any loops and replacing any parallel edges by
single edges). We say that G is uv-rigid on a cylinder Y if there exists a realisation p of G on Y such
that p(u) = p(v), p|V−v is generic on Y, and (G, p) is rigid on Y.

Theorem 1 Let G be a graph and u, v be distinct vertices of G. Then G is uv-rigid on a cylinder
Y if and only if G− uv and G/uv are both rigid on Y.

Our proof technique extends that used by Fekete, Jordán and Kaszanitzky [4] to obtain an analogous
result for frameworks in R2.

We apply our result to show that the vertex splitting operation preserves the global rigidity of
generic frameworks on the cylinder, whenever it satisfies the necessary condition that the deletion
of the edge joining the split vertices preserves generic rigidity. This is a key step in the recent
characterisation of generic global rigidity on the cylinder given in [7]. Special position arguments
are commonly used to prove that graph operations preserve generic rigidity properties and it is
conceivable that our characterisation of generic uv-rigidity on the cylinder may have other such
applications.

An outline of the paper is as follows. In Section 2 we provide background for frameworks on
a cylinder. In Section 3 we define a count matroid Muv(G) on a graph G with two distinguished
vertices u and v. In Section 4 we derive an inductive construction for graphs whose edge set is
independent in Muv(G). We then use this construction to prove our characterisation of rigidity on
a cylinder for frameworks in which u and v are coincident but are otherwise generic. In Section 5
we discuss global rigidity and apply our coincident vertex result to prove that the vertex splitting
operation preserves global rigidity for generic frameworks on a cylinder if and only if deletion of the
new edge preserves generic rigidity. Finally, in Section 6 we comment on extensions to other surfaces.

2 Frameworks on concentric cylinders

Throughout this paper we will only consider graphs without loops or parallel edges, as loops and par-
allel edges give rise to trivial distance constraints. Let G = (V,E) be a graph with V = {v1, . . . , vn}.
We will consider realisations of G on a family of concentric cylinders Y = Y1 ∪ Y2 ∪ · · · ∪ Yk where
Yi = {(x, y, z) ∈ R3 : x2 + y2 = ri} and r = (r1, . . . , rk) is a vector of positive real numbers.1

A framework (G, p) on Y is an ordered pair consisting of a graph G and a realisation p such that
p(vi) ∈ Y for all vi ∈ V .

Two frameworks (G, p) and (G, q) on Y are equivalent if ‖p(vi)− p(vj)‖ = ‖q(vi)− q(vj)‖ for all
edges vivj ∈ E. Moreover (G, p) and (G, q) on Y are congruent if ‖p(vi)− p(vj)‖ = ‖q(vi)− q(vj)‖

1 Our proof techniques apply equally well in the cases when there are one or more cylinders.
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for all pairs of vertices vi, vj ∈ V . The framework (G, p) is rigid on Y if there exists an ε > 0 such
that every framework (G, q) on Y which is equivalent to (G, p), and has ‖p(vi) − q(vi)‖ < ε for all
1 ≤ i ≤ n, is congruent to (G, p). Moreover (G, p) is minimally rigid on Y if (G, p) is rigid on Y but
(G−e, p) is not for any e ∈ E. The framework (G, p) is generic on Y if td[Q(r, p) : Q(r)] = 2n, where
td[L,K] denotes the transcendence degree of the field extension [L : K] i.e. the size of a maximal
set of elements of L which are algebraically independent over K.

It was shown in [10] that a generic framework (G, p) on a family of concentric cylinders Y
is rigid if and only if it is infinitesimally rigid in the following sense. An infinitesimal flex s of
(G, p) on Y is a map s : V → R3 such that s(vi) is tangential to Y at p(vi) for all vi ∈ V and
(p(vj)− p(vi)) · (s(vj)− s(vi)) = 0 for all vjvi ∈ E. The framework (G, p) is infinitesimally rigid on
Y if every infinitesimal flex is an infinitesimal isometry of R3, i.e. an infinitesimal flex corresponding
to a combination of translations and rotations of R3.

The rigidity matrix RY(G, p) is the (|E|+ |V |)× 3|V | matrix

RY(G, p) =

(
R3(G, p)
S(G, p)

)
where: R3(G, p) has rows indexed by E and 3-tuples of columns indexed by V in which, for e =
vivj ∈ E, the submatrices in row e and columns vi and vj are p(vi) − p(vj) and p(vj) − p(vi),
respectively, and all other entries are zero; S(G, p) has rows indexed by V and 3-tuples of columns
indexed by V in which, for vi ∈ V , the submatrix in row vi and column vi is p̄(vi) = (xi, yi, 0)
when p(vi) = (xi, yi, zi). The rigidity matroid RY(G) is the matroid on E in which a set F ⊆ E
is independent if and only if the rows of RY(G, p) indexed by F ∪ V are linearly independent for
any generic p. Equivalently RY(G) is the matroid we get from the row matroid of RY(G, p) by
contracting each element of V . We will use rY to denote the rank function of RY(G, p).

A graph G = (V,E) is (k, `)-sparse if |E′| ≤ k|V ′| − ` for all subgraphs (V ′, E′) of G with at
least one edge. Moreover G is (k, `)-tight if G is (k, `)-sparse and |E| = k|V | − `.

The following characterisation of generic rigidity on Y was proved in [10].

Theorem 2 Let (G, p) be a generic framework on a family of concentric cylinders Y. Then (G, p)
is minimally rigid on Y if and only if G is a complete graph on at most three vertices or G is
(2, 2)-tight.

2.1 Coincident realisations on concentric cylinders

Let G = (V,E) be a graph and u, v ∈ V . A framework (G, p) on Y is uv-coincident if p(u) = p(v).
A generic uv-coincident framework is a uv-coincident framework (G, p) for which (G− u, p|V−u) is
generic. We denote the uv-coincident cylinder rigidity matroid by RYuv(G) (this is the matroid on E
in which a set F ⊆ E is independent if and only if the rows of RY(G, p) indexed by F ∪V are linearly
independent for any generic uv-coincident realisation p.). Note that the matroid depends on G but
not on the choice of generic uv-coincident realisation. That is, for any two generic uv-coincident
realisations (G, p) and (G, p′) on Y, we get the same matroid. We also use rYuv to denote the rank
function of RYuv(G). We say that G is uv-rigid on Y if rYuv(G) = 2|V | − 2 and that G is minimally
uv-rigid on Y if G is uv-rigid on Y and |E| = 2|V | − 2.

Note that the terms ‘rigid on Y’ and ‘uv-rigid on Y’, and the notations rY and rYuv appear to
depend on Y. Theorems 1 and 2 imply that this is not the case since the characterisations of RY(G)
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and RYuv(G) given by these results depend only on the graph G and not the family of concentric
cylinders Y.

3 A count matroid

In this section we define a count matroidMuv(G) on the edge set of a graph G with two distinguished
vertices u and v. Our approach follows that given in [4]. We will show thatMuv(G) is equal toRYuv(G)
in Section 4.

Let G = (V,E) be a graph. For X ⊆ V let NG(X) be the set of neighbours of X in V \X and put
NG(x) = NG(X) when X = {x}. Let G[X] denote the subgraph of G induced by X and let EG(X)
be the set of edges of G[X]. Thus iG(X) = |EG(X)|. For a family S = {S1, S2, . . . , Sk}, where Si ⊆ V
for all i = 1, . . . , k, we define V (S) =

⋃k
i=1 Si, EG(S) =

⋃k
i=1EG(Si) and put iG(S) = |EG(S)|. We

also define cov(S) = {xy : x, y ∈ V, {x, y} ⊆ Si for some 1 ≤ i ≤ k}. We say that S covers a set
F ⊆ E if F ⊆ cov(S). The degree of a vertex w is denoted by dG(w). We may omit the subscripts
referring to G if the graph is clear from the context.

Let G = (V,E) be a graph and u, v ∈ V be two distinct vertices of G. Let H = {H1, ...,Hk} be
a family with Hi ⊆ V , 1 ≤ i ≤ k. We say that H is uv-compatible if u, v ∈ Hi and |Hi| ≥ 3 hold for
all 1 ≤ i ≤ k. See Figure 1 for an example. We define the value of subsets of V and of uv-compatible
families as follows. For a nonempty subset H ⊆ V , we let

val(H) = 2|H| − tH ,

where tH = 4 if H = {u, v}, tH = 3 if H 6= {u, v} and |H| ∈ {2, 3}, and tH = 2 otherwise. We will
often denote tHi

by ti for short. For a uv-compatible family H = {H1, H2, . . . ,Hk} we let

val(H) =

(
k∑

i=1

val(Hi)

)
− 2(k − 1) =

k∑
i=1

(2|Hi| − tHi
− 2) + 2.

Note that if H = {H} is a uv-compatible family containing only one set then the two definitions
agree, i.e. val(H) = val(H) holds.

We say that G is uv-sparse if for all H ⊆ V with |H| ≥ 2 we have iG(H) ≤ val(H) and for all
uv-compatible families H we have iG(H) ≤ val(H). Note that if G is uv-sparse then uv /∈ E must
hold. A set H ⊆ V of vertices with |H| ≥ 2 (resp. a uv-compatible family H = {H1, . . . ,Hk}) is
called tight if iG(H) = val(H) (resp. iG(H) = val(H)) holds. We will show that the edge sets of the
uv-sparse subgraphs of G form the independent sets of a matroid Muv(G).

The following lemmas will enable us to ‘uncross’ tight sets and tight uv-compatible families in a
sparse graph. The first result follows immediately from the definition of the i- and val- functions.

Lemma 1 Let X,Y ⊆ V be distinct vertex sets in G. Then
(a) i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ) and
(b) if X ∩ Y 6= ∅, then val(X) + val(Y ) + tX + tY = val(X ∪ Y ) + val(X ∩ Y ) + tX∪Y + tX∩Y .

Lemma 2 Let H = {H1, . . . ,Hk} be a uv-compatible family in G.
(a) Suppose |Hi ∩ Hj | ≥ 3 for some pair 1 ≤ i < j ≤ k. Then there is a uv-compatible family H′
with cov(H) ⊆ cov(H′) and val(H′) < val(H).
(b) Suppose G is uv-sparse and H is tight. Then Hi ∩Hj = {u, v} for all 1 ≤ i ≤ k.
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Proof. (a) We may assume that i = k − 1, j = k. Let H′ = {H1, . . . ,Hk−2, Hk−1 ∪ Hk}. Using
Lemma 1(b) we have val(Hk−1) + val(Hk) ≥ val(Hk−1 ∪Hk) + val(Hk−1 ∩Hk). Hence

val(H) =

k∑
l=1

val(Hl)− 2(k − 1) =

k−2∑
l=1

val(Hl)− 2((k − 1)− 1) + val(Hk−1) + val(Hk)− 2

≥
k−2∑
l=1

val(Hl) + val(Hk−1 ∪Hk)− 2((k − 1)− 1) + val(Hk−1 ∩Hk)− 2 > val(H′).

Clearly, we have cov(H) ⊆ cov(H′).
(b) Since H is tight, if |Hi ∩Hj | ≥ 3 for some pair 1 ≤ i < j ≤ k then, by (a), we have val(H′) <
val(H) = i(H) ≤ i(H′). This contradicts the uv-sparsity of G. Hence Hi ∩ Hj = {u, v} for all
1 ≤ i ≤ k. �

Lemma 3 Let H = {H1, . . . ,Hk} be a uv-compatible family with Hi ∩ Hj = {u, v} for all 1 ≤
i < j ≤ k and |Hk| ≥ 4. Then H′ = {H1, . . . ,Hk−2, Hk−1 ∪ Hk} is a uv-compatible family with
cov(H) ⊂ cov(H′) and for which val(H′) ≤ val(H)+1 with equality only if |Hk−1| = 3. Furthermore,
if G is uv-sparse, H is tight and |Hk−1| ≥ 4, then H′ is tight.

Proof. Using Lemma 1(b) and the facts that tk = tHk−1∪Hk
= 2 and tHk−1∩Hk

= 4 we have
val(Hk−1) + val(Hk) = val(Hk−1 ∪Hk) + val(Hk−1 ∩Hk) + 4− tk−1 = val(Hk−1 ∪Hk) + 4− tk−1.
Hence

val(H) =

k∑
l=1

val(Hl)− 2(k − 1) =

k−2∑
l=1

val(Hl)− 2((k − 1)− 1) + val(Hk−1) + val(Hk)− 2

=

k−2∑
l=1

val(Hl) + val(Hk−1 ∪Hk)− 2((k − 1)− 1) + 2− tk−1

= val(H′) + 2− tk−1.

Thus val(H′) ≤ val(H) + 1 with equality only if |Hk−1| = 3. Clearly, we have cov(H) ⊂ cov(H′).
Now suppose G is uv-sparse, H is tight and |Hk−1| ≥ 4. Then val(H′) ≤ val(H) = i(H) = i(H′),

so H′ is tight. �

Lemma 4 Let G = (V,E) be uv-sparse and let X,Y ⊆ V be tight sets in G with X ∩ Y 6= ∅ and
|X|, |Y | ≥ 4. Then |X ∩ Y | 6∈ {2, 3} and X ∪ Y and X ∩ Y are both tight.

Proof. We have

2|X| − 2 + 2|Y | − 2 = i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y )

≤ 2|X ∪ Y | − tX∪Y + 2|X ∩ Y | − tX∩Y = 2|X|+ 2|Y | − 2− tX∩Y .

This implies that tX∩Y = 2 and equality holds throughout. Thus X ∪ Y and X ∩ Y are both tight
and either |X ∩ Y | ≥ 4 or |X ∩ Y | = 1. �
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Lemma 5 Let H = {H1, . . . ,Hk} be a uv-compatible family with Hj ∩Hl = {u, v} for all 1 ≤ j <
l ≤ k, and let Y ⊆ V be a set of vertices with |Y | ≥ 4, and |Y ∩ {u, v}| ≤ 1. Suppose that for some
1 ≤ i ≤ k either |Y ∩Hi| ≥ 2, or |Y ∩Hi| = 1 and |Hi| ≥ 4. Then there is a uv-compatible family
H′ with cov(H) ∪ cov(Y ) ⊆ cov(H′) and val(H′) ≤ val(H) + val(Y ). Furthermore, if G is uv-sparse
and H and Y are both tight then H′ and Y ∩Hi are also tight.

Proof. Let S = {Hi ∈ H : |Y ∩Hi| ≥ 2 or |Y ∩Hi| = 1 and |Hi| ≥ 4}. Renumbering the sets of H,

if necessary, we may assume that S = {Hi ∈ H : j ≤ i ≤ k}, for some j ≤ k. Let X = Y ∪ (
⋃k

i=j Hi)
and H′ = {H1, . . . ,Hj−1, X}. Then cov(H) ∪ cov(Y ) ⊆ cov(H′) and

|X| =
k∑

i=j

|Hi|+ |Y | − 2(k − j)−
k∑

i=j

|Hi ∩ Y |+ |Y ∩ {u, v}|(k − j).

This gives

val(H) + val(Y ) =

k∑
i=1

val(Hi)− 2(k − 1) + val(Y )

=

j−1∑
i=1

val(Hi)− 2(j − 1) +

k∑
i=j

(2|Hi| − ti)− 2(k − j) + (2|Y | − 2)

=

j−1∑
i=1

val(Hi) + (2|X| − 2)− 2(j − 1) + 4(k − j)−
k∑

i=j

tHi

+2

k∑
i=j

|Y ∩Hi| − 2(k − j)− 2|Y ∩ {u, v}|(k − j)

≥
j−1∑
i=1

val(Hi) + val(X)− 2(j − 1) +

k∑
i=j

(2|Y ∩Hi| − tHi
).

If |Y ∩ Hi| ≥ 2 then val(Y ∩ Hi) = 2|Y ∩ Hi| − tY ∩Hi
≤ 2|Y ∩ Hi| − tHi

. On the other hand, if
|Y ∩Hi| = 1 and |Hi| ≥ 4, then tY ∩Hi

= 2 = tHi
and we have val(Y ∩Hi) = 2|Y ∩Hi| − tHi

. Thus,
in both cases,

val(H) + val(Y ) ≥ val(H′) +

k∑
i=j

val(Y ∩Hi)

and so val(H′) ≤ val(H) + val(Y ).
Now, suppose that G is uv-sparse and H and Y are tight. Then we have

i(H′) +

k∑
i=j

i(Y ∩Hi) ≥ i(H) + i(Y ) = val(H) + val(Y ) ≥

≥ val(H′) +

k∑
i=j

val(Y ∩Hi) ≥ i(H′) +

k∑
i=j

i(Y ∩Hi),
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where the first inequality follows from the fact that edges spanned by H or Y are spanned by H′
and if some edge is spanned by both H and Y then it is spanned by Y ∩Hi for some i. The equality
holds because H and Y are tight, and the second inequality holds by our calculations above. The
last inequality holds because G is uv-sparse. Hence equality must hold everywhere, which implies
that H′ is tight and that Y ∩Hi is also tight for all j ≤ i ≤ k. �

Lemma 6 Let H = {H1, . . . ,Hk} be a uv-compatible family with Hi ∩Hj = {u, v} for all 1 ≤ i <
j ≤ k, and let Y ⊆ V be a set of vertices with |Y | ≥ 4, Y ∩ {u, v} = ∅ and |Y ∩ Hi| ≤ 1 for all
1 ≤ i ≤ k. Suppose that |Y ∩ Hi| = |Y ∩ Hj | = 1 for some pair 1 ≤ i < j ≤ k. Then there is
a uv-compatible family H′ with cov(H) ∪ cov(Y ) ⊆ cov(H′) for which val(H′) ≤ val(H) + val(Y ).
Furthermore, if G is uv-sparse and H and Y are both tight, then H′ is tight and |Hi| = |Hj | = 3.

Proof. We may assume that i = k − 1 and j = k. Let H′ = {H1, . . . ,Hk−2, Hk−1 ∪Hk ∪ Y }. We
have cov(H) ∪ cov(Y ) ⊆ cov(H′) and

val(H) + val(Y ) =

k∑
i=1

val(Hi)− 2(k − 1) + val(Y )

=

k−2∑
i=1

val(Hi)− 2((k − 1)− 1)− 2 + val(Hk−1) + val(Hk) + val(Y ).

Using Lemma 1(b) twice and the fact that |Hk−1 ∩ (Hk ∪ Y )| = 3 we obtain

val(Hk−1) + val(Hk) + val(Y ) = val(Hk−1) + val(Hk ∪ Y ) + 2− tHk

= val(Hk−1 ∪Hk ∪ Y ) + 8− tHk−1
− tHk

≥ val(Hk−1 ∪Hk ∪ Y ) + 2,

with equality only if |Hk−1| = |Hk| = 3. Thus val(H′) ≤ val(H) + val(Y ) as claimed.

Now suppose that G is uv-sparse. and H and Y are both tight. Then we have

i(H) + i(Y ) = val(H) + val(Y ) ≥ val(H′) ≥ i(H′) ≥ i(H) + i(Y )

where the last inequality follows since |Y ∩Hk−1| = |Y ∩Hk| = 1 and |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ k.
Hence equality must hold throughout. Thus H′ is tight and |Hk−1| = |Hk| = 3. �

Lemma 7 Let G = (V,E) be uv-sparse and suppose that there is a tight uv-compatible family in G.
Then there is a unique tight uv-compatible family Hmax in G for which cov(H) ⊆ cov(Hmax) for all
tight uv-compatible families H of G. In addition, if Hmax = {H1, H2, . . . ,Hk} and |H1| ≥ |H2| ≥
. . . ≥ |Hk|, then:
(a) Hi ∩Hj = {u, v} for all 1 ≤ i < j ≤ k;
(b) |Hi| = 3 for all 2 ≤ i ≤ k;
(c) N(u, v) ⊆ V (Hmax).
Furthermore, if Y ⊆ V is tight, |Y | ≥ 4, cov(Y ) 6⊆ cov(Hmax), and Y ∩Hi 6= ∅ for some 1 ≤ i ≤ k,
then |Y ∩Hi| = 1, |Hi| = 3, Y ∩ {u, v} = ∅, and Y ∩Hj = ∅ for all j 6= i.
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Proof. Let H1 = {H1, H2, . . . ,Hk} be a tight uv-compatible family in G labeled such that |H1| ≥
|H2| ≥ . . . ≥ |Hk| and suppose that cov(H1) is maximal with respect to inclusion. Then Lemmas
2 and 3 imply that Hi ∩ Hj = {u, v} holds for all 1 ≤ i < j ≤ k and |Hi| = 3 for all 2 ≤ i ≤ k.
Suppose for a contradiction that H2 = {J1, J2, . . . , Jl} is another tight uv-compatible family whose
cover is maximal, labeled so that |J1| ≥ |J2| ≥ . . . ≥ |Jl|. We will use the notation Hi = {u, v, xi}
for 2 ≤ i ≤ k and Jj = {u, v, yi} for 2 ≤ j ≤ l. Without loss of generality we can assume that if
|H1| = |J1| = 3 then H1 6= J1.

We define two uv-compatible families as follows: let

H∩ = {Z ⊆ V : |Z| ≥ 3 and Hi ∩ Jj = Z for some Hi ∈ H1, Jj ∈ H2};

let

H∪ = {H1 ∪ J1} ∪ {Hi : 2 ≤ i ≤ k and xi 6∈ H1 ∪ J1} ∪ {Jj : 2 ≤ j ≤ l and yj 6∈ H1 ∪ J1}

if |H1 ∩ J1| ≥ 3, and

H∪ = {H1} ∪ {J1} ∪ {Hi : 2 ≤ i ≤ k and xi 6∈ H1 ∪ J1} ∪ {Jj : 2 ≤ j ≤ l and yj 6∈ H1 ∪ J1}

if |H1 ∩ J1| = 2.
It is easy to see that H∪ and H∩ are both uv-compatible. For convenience we rename the families

asH∪ = {A1, . . . , Ap} andH∩ = {B1, . . . , Bq}, where A1 = H1∪J1 and B1 = H1∩J1 if |H1∩J1| ≥ 3,
and A1 = H1 and A2 = J1 if |H1 ∩ J1| = 2. It follows from their construction that |Ai| = 3 for all
3 ≤ i ≤ p and |Bj | = 3 for all 2 ≤ j ≤ q and also at least one of |A2| = 3, |B1| = 3 holds. It can be
seen easily that p + q = k + l. We also have i(H1) + i(H2) ≤ i(H∪) + i(H∩), since the family H∪
spans all the edges spanned by H1 or H2 and H∩ spans all the edges spanned by both H1 and H2.
Thus

val(H1) + 3(k − 1)− 2(k − 1) + val(J1) + 3(l − 1)− 2(l − 1) = val(H1) + val(H2)

= i(H1) + i(H2) ≤ i(H∪) + i(H∩) ≤ val(H∪) + val(H∩)

= val(A1) + max{val(A2), val(B1)}+ 3(p− 1)− 2(p− 1) + 3(q − 1)− 2(q − 1).

We will show that equality occurs at both ends of the above inequality. Since k − 1 + l − 1 =
p− 1 + q − 1, it will suffice to show that val(H1) + val(J1) ≥ val(A1) + max{val(A2), val(B1)}. This
is immediate if |H1 ∩ J1| = 2 and follows from Lemma 1(b) when |H1 ∩ J1| ≥ 3.

Hence equality must hold throughout the displayed inequality. In particular, H∪ and H∩ are both
tight. Since cov(H1) ∪ cov(H2) ⊆ cov(H∪), the maximality of the covers implies that cov(H1) =
cov(H2) which in turn gives H1 = H2.

We have now shown that H1 = Hmax is unique and that properties (a) and (b) hold. To see
that (c) holds choose x ∈ N(u, v) and suppose that x 6∈ V (Hmax). Let H′ = Hmax + {u, v, x}.
Then i(H′) ≥ i(Hmax) + 1 and val(H′) = val(Hmax) + 1, so H′ is tight and hence contradicts the
maximality of Hmax.

To complete the proof we suppose that Y ⊆ V is tight, |Y | ≥ 4, cov(Y ) 6⊆ cov(Hmax), and
Y ∩ Hi 6= ∅ for some 1 ≤ i ≤ k. If {u, v} ⊆ Y then H = {Y } would be a uv-compatible family
with cov(H) 6⊆ cov(Hmax). This would contradict the maximality of Hmax and hence {u, v} 6⊆ Y .
If |Y ∩ Hi| ≥ 2 or |Y ∩ Hi| = 1 and |Hi| ≥ 4 then Lemma 5 would imply that there exists a uv-
compatible family H′ with cov(Hmax) ∪ cov(Y ) ⊆ cov(H′). Hence |Y ∩Hi| ≤ 1 and |Hi| = 3. This
tells us that |Y ∩Hj | ≤ 1 for all j and hence cov(Y )∩ cov(Hmax) = ∅. If Y ∩{u, v} 6= ∅ then putting
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H′ = Hmax ∪ {Y ∪ {u, v}} we have i(H′) ≥ i(H) + 2|Y | − 2 and val(H′) = val(H) + 2|Y | − 2, so H′
would contradict the maximality of Hmax. Thus Y ∩ {u, v} = ∅. If Y ∩Hj 6= ∅ for some j 6= i then
Lemma 6 now gives us a tight uv-compatible family H′ with cov(Hmax) ∪ cov(Y ) ⊆ cov(H′). Hence
Y ∩Hj = ∅ for all j 6= i. �

Note that Lemma 7 tells us in particular that ifG is uv-sparse and Y ⊆ V is tight with {u, v}∩Y 6=
∅, then Y ⊆ Hi for some Hi ∈ Hmax.

3.1 The matroid and its rank function

It is well known that the edge sets of the (2, 2)-sparse subgraphs of a graph G = (V,E) are the
independent sets of a matroid on E called the simple (2, 2)-sparse matroid for G. Theorem 2 implies
that this matroid is identical to the cylindrical rigidity matroid RY(G). It follows that the rank
function of RY(G) can be defined in terms of ‘thin covers’ where a cover of any F ⊆ E is a system
K = {H1, . . . ,Hk} of subsets of V , of cardinality at least 2, such that each edge in F is induced by
at least one set in K. This cover is thin if |Hi∩Hj | ≤ 1 for all pairs 1 ≤ i, j ≤ k with equality only if
|Hi| = 2 or |Hj | = 2. We may use Theorem 2 and a classical result of Edmonds on matroids induced
by submodular functions [3] to deduce that the rank of F in RY(G) is given by

rY(F ) = min
K

{∑
H∈K

(2|H| − 2− sH)

}
(1)

where sH = 1 if |H| = 2 or 3 and sH = 0 if |H| > 3 and the minimum is taken over all thin covers
K of F .

We next define the count matroid Muv(G). Let G = (V,E) be a graph and u, v ∈ V be distinct
vertices of G. We will prove that the family of sets

IG = {F : F ⊆ E and (V, F ) is uv-sparse} (2)

is the family of independent sets of a matroid Muv(G) on E and characterise the rank function of
this matroid. We need the following definition.

Let H = {X1, . . . , Xt} be a uv-compatible family and let H1, . . . ,Hk be subsets of V of size at
least two. The systemK = {H, H1, . . . ,Hk} is a uv-cover of F ⊆ E if F ⊆ cov(H)∪cov({H1, . . . ,Hk}).
It is thin if
(i) {H1, . . . ,Hk} is thin,
(ii) Xi ∩Xj = {u, v} for all pairs 1 ≤ i, j ≤ t, and
(iii) |Hi ∩Xj | ≤ 1 for all 1 ≤ i ≤ k, 1 ≤ j ≤ t.
The value of the system K is given by val(K) = val(H) +

∑k
i=1 val(Hi).

Theorem 3 Let G = (V,E) be a graph and u, v ∈ V be distinct vertices of G. Then Muv(G) =
(E, IG) is a matroid on E, where IG is defined by (2). The rank of a set F ⊆ E in Muv(G) is given
by

ruv(F ) = min{val(K) : K is either a thin cover or a thin uv-cover of F}. (3)

Proof. Let I = IG, let E′ ⊆ E and let F ⊆ E′ be a maximal subset of E′ in I. Since F ∈ I we
have |F | ≤ val(K) whenever K is a cover or a uv-cover of E′. We shall prove that there is a thin
cover or uv-cover K of E′ with |F | = val(K), from which the theorem will follow.
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u v

v1

v2

v3

v4 v5

Fig. 1 An example of a (2, 2)-tight graph G = (V,E) which is not independent in Muv(G). It is not difficult to see
that G is (2,2)-sparse, and hence E is independent in the simple (2,2)-sparse matroid. We will show that E is not
independent in Muv(G). Consider the following sets: H1 = {u, v, v1}, H2 = {u, v, v2} and H3 = {u, v, v3, v4, v5}.
Then H = {H1, H2, H3} is a uv-compatible family of G with val(H) = val(H1) + val(H2) + val(H3) − 2 · 2 =
(2 · 3− 3) + (2 · 3− 3) + (2 · 5− 2)− 4 = 10 and cov(H) = E − v1v2. Hence iG(H) = 11 > val(H) so E is dependent
in Muv(G).

Let J = (V, F ) denote the subgraph defined by the edge set F . First suppose that there is no
tight uv-compatible family in J and consider the following cover of F :

K1 = {H1, H2, . . . ,Hk},

where H1, H2, . . . ,Ht are the maximal tight sets with size at least four in J for some t ≤ k and
Ht+1, . . . ,Hk are the pairs of end vertices of edges in J ′ = (V, F −

⋃t
i=1E(Hi)). Clearly K1 is a

cover of F . It is thin by Lemma 4. Thus

|F | =
k∑

j=1

|EJ(Hj)| =
k∑

j=1

(2|Hj | − tj) = val(K1)

follows. We claim that K1 is a cover of E′. To see this consider an edge ab = e ∈ E′ − F . Since F is
a maximal subset of E′ in I we have F + e 6∈ I. By our assumption there is no tight uv-compatible
family in J , and hence there must be a tight set X in J with a, b ∈ X. Hence X ⊆ Hi for some
1 ≤ i ≤ t which implies that K1 covers e. (Recall that our graphs do not contain parallel edges so e
is not parallel to any edge in F .)

Next suppose that there is a tight uv-compatible family in J and consider the following uv-cover
of F :

K2 = {Hmax, H1, H2, . . . ,Hk},

where: Hmax = {X1, X2, . . . , Xl} is the tight uv-compatible family of G for which cov(Hmax) is
maximal (given by Lemma 7); H1, H2, . . . ,Ht are the maximal tight sets with size at least four of
J ′ = (V, F − E(Hmax)); and Ht+1, . . . ,Hk are the pairs of end vertices of edges in J ′′ = (V, F −
E(Hmax)−

⋃t
i=1E(Hi)). Then K2 is a uv-cover of F . By Lemmas 4 and 7, the uv-cover K2 is thin,

and hence

|F | =
l∑

i=1

|EJ(Xi)|+
k∑

j=1

|EJ(Hj)| =
l∑

i=1

(2|Xi| − ti)− 2(l − 1) +

k∑
j=1

(2|Hj | − tj) = val(K2).
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We claim that K2 is a uv-cover of E′. As above, let ab = e ∈ E′ −F be an edge. By the maximality
of F we have F + e 6∈ I. Thus either there is a tight set X ⊆ V in J with a, b ∈ cov(X) or there is
a tight uv-compatible family H′ = {Y1, . . . , Yt} in J with a, b ∈ Yi for some 1 ≤ i ≤ t.

In the latter case Lemma 7 implies that cov(H′) ⊆ cov(Hmax) and hence e is covered by K2. In
the former case, when a, b ∈ X for some tight set X in J , we have |X| ≥ 5 since if |X| = 2, 3 or
4 then X induces a complete graph in J and, since G has no parallel edges, e = ab would be an
edge of F . Lemma 7 now gives |X ∩

⋃l
i=1Xi| ≤ 1. Then E(X) ⊆ E(J ′) and hence X ⊆ Hi for some

1 ≤ i ≤ k, since every edge of J ′ induces a tight set and every tight set is contained in a maximal
tight set. Thus e is covered by K2, as claimed. �

4 Characterisation of the uv-coincident cylinder rigidity matroid

Our aim is to show that the uv-coincident cylinder rigidity matroid RYuv(G) of a graph G = (V,E)
is equal to the count matroid Muv(G). To simplify terminology we will say that G is independent
in RYuv, respectively Muv, if E is independent in RYuv(G), respectively Muv(G).

We first show that independence in RYuv implies independence inMuv. Recall that G/uv denotes
the graph obtained from G by contracting the vertex pair u, v into a new vertex which we denote as
zuv. Given a uv-coincident realisation (G, p) of G on Y we obtain a realisation (G/uv, puv) of G/uv
on Y by putting puv(zuv) = p(u) = p(v) and puv(x) = p(x) for all x ∈ V \ {u, v}. Furthermore, each
vector in the kernel of RY(G/uv, puv) determines a vector in the kernel of RY(G, p) in a natural
way. It follows that dim KerRY(G, p) ≥ dim KerRY(G/uv, puv) and hence

rankRY(G, p) ≤ rankRY(G/uv, puv) + 3. (4)

We can use this fact to prove that independence in RYuv implies independence in Muv.

Lemma 8 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. If G is independent in
RYuv then G is independent in Muv.

Proof. Let (G, p) be a generic uv-coincident realisation of G on Y. Since G is independent in RYuv
the rows of RY(G, p) are independent. Since p(u) = p(v), this gives uv /∈ E. Furthermore if X ⊆ V
and {u, v} 6⊆ X then (G[X], p|X) is a generic realisation of G[X] on Y and hence i(X) ≤ val(X) by
Theorem 2. It remains to show that iG(H) ≤ val(H) for all uv-compatible families H in G. (Note
that the case when X ⊆ V and {u, v} ⊆ X will be included by taking H = {X}.)

LetH = {X1, . . . , Xk} be a uv-compatible family and consider the subgraphH = (
⋃k

i=1Xi,
⋃k

i=1E(Xi)).
By contracting the vertex pair u, v inH we obtain the graphH/uv. We haveHuv = {X1/uv, . . . ,Xk/uv}
is a cover of H where Xi/uv denotes the set that we get from Xi by identifying u and v. Let

U =
⋃k

i=1Xi and F =
⋃k

i=1E(Xi). By (1) we have

rankRY(H/uv, puv) = rY(F ) + |U | − 1 ≤
k∑

i=1

(2|Xi/uv| − 2− sXi/uv) + |U | − 1

=

k∑
i=1

(2|Xi| − 2− ti) + |U | − 1.
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Using (4) and the fact that RY(G, p) has linearly independent rows, we have

|F |+ |U | = rankRY(H, p) ≤ rankRY(H/uv, puv) + 3 ≤
k∑

i=1

(2|Xi| − 2− ti) + 2 + |U |

=

k∑
i=1

val(Xi)− (2k − 2) + |U | = val(H) + |U |.

Hence iG(H) = |F | ≤ val(H). Thus G is independent in Muv, as claimed. �

We next define operations on uv-sparse graphs and use them to show that independence inMuv

implies independence in RYuv.
The (two-dimensional versions of) the well-known Henneberg operations are as follows. Let G =

(V,E) be a graph. The 0-extension operation (on a pair of distinct vertices a, b ∈ V ) adds a new vertex
z and two edges za, zb to G. The 1-extension operation (on edge ab ∈ E and vertex c ∈ V \ {a, b})
deletes the edge ab, adds a new vertex z and edges za, zb, zc.

We shall need the following specialized versions. Let u, v ∈ V be two distinct vertices. The uv-0-
extension operation is a 0-extension on a pair a, b with {a, b} 6= {u, v}. The uv-1-extension operation
is a 1-extension on some edge ab and vertex c for which {u, v} is not a subset of {a, b, c}. The inverse
operations are called uv-0-reduction and uv-1-reduction, respectively.

We will also need two further moves. The vertex-to-K4 move deletes a vertex w and substitutes
in a copy of K4 with V (K4)∩ V (G) = {w} and with an arbitrary replacement of edges xw by edges
xy with y ∈ V (K4). The inverse operation is known as a K4-contraction. A vertex-to-4-cycle move
takes a vertex w with neighbours v1, v2, . . . , vk for any k ≥ 2, splits w into two new vertices w,w′

with w′ /∈ V (G), adds edges wv1, w
′v1, wv2, w

′v2 and then arbitrarily replaces edges xw with edges
xy where x ∈ {v3, . . . , vk} and y ∈ {w,w′}. The inverse move is known as a 4-cycle-contraction. The
only difference in the specialised versions of these moves are that we require |V (K4)∩ {u, v}| ≤ 1 in
a uv-K4-contraction and similarly |V (C4) ∩ {u, v}| ≤ 1 in a uv-4-cycle-contraction.

We first consider the 0-extension and 1-extension operations. It was shown in [10] that these
operations preserve independence in RY . The same arguments can be used to verify analogous
results for RYuv.

Lemma 9 Let G = (V,E) be independent in RYuv and suppose that G′ is obtained from G by a
0-uv-extension or a uv-1-extension Then G′ is independent in RYuv.

In the case of 0-extensions we will also need the following result.

Lemma 10 Let (G, p) be a generic realisation of a graph G = (V,E) on Y and v ∈ V . Suppose that
RY(G, p) has linearly independent rows. Let G′ be obtained by performing a 0-extension which adds
a new vertex u to G which is not adjacent to v. Put p′(a) = p(a) for all a ∈ V , and put p′(u) = p(v).
Then RY(G′, p′) has linearly independent rows.

Proof. The 0-extension adds 3 rows and 3 columns to RY(G, p), the 3 columns being 0 everywhere
except the 3 new rows. The genericness of p and the fact that uv /∈ E implies the new 3 × 3 block
is invertible. Hence RY(G′, p′) has linearly independent rows so G′ is independent in RYuv. �

We next consider the vertex-to-4-cycle operation. It was shown in [11] that this operation pre-
serves independence in RY . A similar argument would yield the analogous result for RYuv but we will
need a stronger result that a vertex-to-4-cycle move which creates two coincident vertices preserves
independence in RY .



Rigid cylindrical frameworks with two coincident points 13

Lemma 11 Suppose (G, p) is a framework on Y, RY(G, p) has linearly independent rows and w ∈ V
with neighbours v1, v2, . . . , vk. Suppose further that p(w)− p(v1), p(w)− p(v2) and p̄(w) are linearly
independent where p̄(w) is the projection of p(w) onto the plane z = 0. Let G′ be obtained by
performing a vertex-to-4-cycle operation in G which splits w into two vertices w and w′, and is such
that v1 and v2 are both adjacent to w and w′ in G′. Put p′(a) = p(a) for all a ∈ V − w and put
p′(w) = p′(w′) = p(w). Then RY(G′, p′) has linearly independent rows.

Proof. We will construct RY(G′, p′) from RY(G, p) by a series of simple matrix operations that
preserve the independence of the rows.

We first add three zero columns corresponding to w′. We then add three rows corresponding
to the edges w′v1, w

′v2 and the vertex w′. Adding these rows increases the rank by 3 since p(w) −
p(v1), p(w) − p(v2) and p̄(w) are linearly independent so the 3 × 3 matrix formed by the entries in
the columns corresponding to w′ and the rows corresponding to w′v1, w

′v2, w
′ is non-singular and

the rest of the entries in these columns are zero. The matrix M we obtain by this modification has
the following form:

w︷ ︸︸ ︷ w′︷ ︸︸ ︷
(wv1) p(w)− p(v1) 0 ?
(wv2) p(w)− p(v2) 0 ?

...
...

...
(wvi) p(w)− p(vi) 0 ?

...
...

...
(w′v1) 0 p(w)− p(v1) ?
(w′v2) 0 p(w)− p(v2) ?

...
...

...
w p̄(w) 0 0
w′ 0 p̄(w) 0

...
...

...

= M

To obtain RY(G′, p′) from M we need to modify some of the rows in M corresponding to edges
(wvi) into the form of rows corresponding to edges (w′vi), i.e. we need to move the entries in the
columns of w to the columns of w′ and replace them with zeros. We will do this one by one.

Since (p(w)− p(v1)), (p(w)− p(v2)) and p̄(w) are linearly independent, for every 3 ≤ i ≤ k there
exist unique values α, β, γ such that α(p(w) − p(v1)) + β(p(w) − p(v2)) + γp̄(w) = (p(w) − p(vi)).
Now subtract the row of (wv1) multiplied by α, the row of (wv2) multiplied by β and the row of w
multiplied by γ from the row of (wvi) in M . Then add the row of (w′v1) multiplied by α, the row
of (w′v2) multiplied by β and the row of w′ multiplied by γ to the same row (and change its label
from (wvi) to (w′vi)) for every neighbour vi of w′ in G′ to obtain RY(G′, p′). These operations also
preserve independence, thus we conclude that the rows of RY(G′, p′) are independent. �

Corollary 1 Let G be independent in RYuv and suppose that G′ is obtained from G by a vertex-to-
4-cycle operation. Then G′ is independent in RYuv.

Proof. We choose a generic uv-coincident realisation (G, p). Then (G, p) satisfies the hypotheses
of Lemma 11. Hence G′ has a uv-coincident realisation (G′, p′) such that RY(G′, p′) has linearly
independent rows. It follows that every generic uv-coincident realisation is independent. �
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We next consider a generalisation of the vertex-to-K4 operation which replaces K4 with an
arbitrary minimally rigid subgraph. It was shown in [10] that this operation preserves independence
in RY . We will need an analogous result for uv-coincident realisations.

Lemma 12 Let G = (V,E) be a graph with |E| = 2|V | − 2 and let u, v ∈ V be distinct vertices.
Suppose H ⊂ G is chosen so that either:
(a) u, v ∈ V (H), H is minimally uv-rigid on Y and G/H is minimally rigid on Y, or
(b) |{u, v}∩V (H)| ≤ 1, H is minimally rigid on Y and G/H is minimally uv-rigid on Y. (Taking u
or v to be the vertex of G/H obtained by contracting H when {u, v}∩V (H) = {u} or {u, v}∩V (H) =
{v}, respectively.)
Then G is uv-rigid on Y.

Proof. (a) Let |V | = n, |V (H)| = r and consider RY(G, p) where (G, p) is a generic uv-coincident
framework on Y and p = (p(v1), p(v2), . . . , p(vn)). By reordering rows and columns if necessary we
can write RY(G, p) in the form (

RY(H, p|H) 0
M1(p) M2(p)

)
where M2(p) is a square matrix with 3(n− r) rows.

Suppose, for a contradiction, that G is not uv-rigid. Then there exists a vector m ∈ kerRY(G, p)
which is not an infinitesimal isometry of Y. Since (H, p|H) is uv-rigid we may suppose that m =
(0, . . . , 0,mr+1, . . . ,mn). Consider the realisation (G, p′) where p′ = (p(vr), p(vr), . . . , p(vr), p(vr+1),
. . . , p(vn)) and define the realisation (G/H, p∗) by setting p∗ = (p(vr), p(vr+1), . . . , p(vn)). Since p∗

is generic, (G/H, p∗) is infinitesimally rigid on Y by assumption.
Now, M2(p) is square with the nonzero vector (mr+1, . . . ,mn) ∈ kerM2(p). Hence rankM2(p) <

3(n − r). Since p is generic, we also have rankM2(p′) < 3(n − r) and hence there exists a nonzero
vector m′ ∈ kerM2(p′). Therefore we have(

RY(G/H, p∗)
)( 0

m′

)
=

(
p(vr) 0
? M2(p′)

)(
0
m′

)
= 0,

contradicting the infinitesimal rigidity of (G/H, p∗).
(b) A similar proof holds. We choose a generic uv-coincident framework (G, p), a vector m ∈

kerRY(G, p) which is not an infinitesimal isometry of R3, and uv-coincident realisations (G, p′) and
(G/H, p∗) as above. We then use the facts that H is rigid on Y and G/H is uv-rigid on Y to obtain
a contradiction. �

We next consider the uv-0-reduction, uv-1-reduction, uv-K4-contraction and uv-4-cycle contrac-
tion operations.

Lemma 13 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that |E| =
2|V | − 2, G is independent in Muv, and d(w) ≥ 3 for all w ∈ V . Then either there is a vertex
z ∈ V \ {u, v} with d(z) = 3 and |N(z) ∩ {u, v}| ≤ 1 or there is a 4-cycle in G which contains both
u and v.

Proof. Since |E| = 2|V | − 2 and d(w) ≥ 3 for all w ∈ V , there are at least 4 vertices of degree 3.
Since G is independent in Muv, G has at most two vertices which are adjacent to both u and v.
Hence, if there is no vertex z ∈ V \ {u, v} with d(z) = 3 and |N(z) ∩ {u, v}| ≤ 1, then the vertices
of degree 3 must induce a C4 in G which contains both u and v. �
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Lemma 14 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that G is
independent in Muv, and there are vertices a, b such that a, u, b, v is a cycle in G. Then the uv-4-
cycle contraction which merges u and v results in a simple graph G′ which is (2, 2)-sparse.

Proof. The independence of G inMuv implies that there is no vertex other than a, b that is adjacent
with both u and v. Thus G′ is simple. Suppose G′ is not (2, 2)-sparse. Then there exists a (2, 2)-
tight set X in G that contains u, v and exactly one of a and b, say a. Let {X, {u, v, b}} = H. Then
i(H) = 2|X|−2 + 2 and val(H) = 2|X|−2 + 3−2 which contradicts the independence of G inMuv.
�

Lemma 15 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that G is
independent in Muv and let z ∈ V \ {u, v} with N(z) = {v1, v2, v3} and |N(z) ∩ {u, v}| ≤ 1. Then
either:
(a) there is a 1-reduction at z which leads to a graph which is independent in Muv, or
(b) z and its neighbours induce a copy of K4 in G, or
(c) vi ∈ {u, v} and vjvk ∈ E for some {i, j, k} = {1, 2, 3}, and there is a tight uv-compatible family
{X1, X2, . . . , Xk} in G such that X1 = N(z) ∪ {u, v, z} and i(X1) ≥ 2|X1| − 4.

Proof. Suppose (a) does not occur. Then, for all 1 ≤ i < j ≤ 3, either vivj ∈ E, or there exists
a tight uv-compatible family Hij in G − z with vivj ∈ cov(Hij) or there exists a tight set Xij in
G − z with {vi, vj} ⊂ Xij and {u, v} 6⊂ Xij . If the second alternative occurs we may assume that
Hij has been chosen to be the unique tight uv-compatible family in G − z with maximal cover. If
G[v1, v2, v3] ∼= K3 then (b) occurs. So we may assume that v1v2 /∈ E.

We first show that

vivj /∈ E and that Hij exists for some 1 ≤ i < j ≤ 3. (5)

Suppose H12 does not exist. Then X12 exists. If v3 ∈ X12 then X12 +z contradicts the independence
of G in Muv. Hence v3 /∈ X12. If v1v3, v2v3 ∈ E then X12 ∪ {v3, z} contradicts the independence
of G in Muv. Hence suppose that v1v3 /∈ E. If X13 exists, then X12 ∪ X13 ∪ {z} contradicts the
independence of G in Muv. Hence H13 exists. This proves (5).

Relabeling if necessary we assume that H12 = {X1, X2, . . . , Xk} exists. Since v1v2 ∈ cov(H12)
we have v1, v2 ∈ Xi for some 1 ≤ i ≤ k. If v3 ∈ Xi then |Xi| ≥ 4, since |N(z) ∩ {u, v}| ≤ 1, and the
uv-compatible family obtained from H12 by replacing Xi by Xi +z will contradict the independence
of G in Muv. Hence v3 6∈ Xi.

Suppose that {v1, v2}∩{u, v} = ∅. Then |Xi| ≥ 4. Since v3 /∈ Xi, neither v1v3 nor v2v3 are covered
by H12. The maximality of cov(H12) now implies that H13 and H23 do not exist. If v1v3, v2v3 ∈ E,
then the uv-compatible family obtained from H12 by replacing Xi by Xi + v3 would be tight and
hence would contradict the maximality of cov(H12), since the new family would cover v1v3 and v2v3.
Relabeling if necessary, we may suppose that v1v3 /∈ E, and hence X13 exists. Then Xi ∩X13 6= ∅,
|Xi| ≥ 4, |X13| ≥ 4 and v1v3 ∈ cov(X13) \ cov(H12). This contradicts the final part of Lemma 7.
Hence {v1, v2} ∩ {u, v} 6= ∅ and we may assume, without loss of generality, that u = v1.

If v3 6∈ V (H12), then Lemma 7(c) implies that v1v3 6∈ E and hence X13 exists. This contradicts
the final part of Lemma 7 since u ∈ X13 ∩Xi. Hence v3 ∈ Xj for some Xj ∈ H12 −Xi. The final
part of Lemma 7 now implies that X23 does not exist and hence v2v3 ∈ E.

Let X = Xi ∪Xj ∪ {z} and H = (H12 \ {Xi, Xj}) ∪ {X}. We have iG(H) ≥ iG(H12) + 4 since
zv1, zv2, zv3, v2v3 ∈ E(X) and val(H) = val(H12) + tx1

+ tx2
− tX ≤ val(H12) + 4 with equality
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only if |Xi| = |Xj | = 3. The facts that G is independent in Muv and H12 is tight now imply that
|Xi| = 3 = |Xj | (so X = N(z) ∪ {u, v, z}), and that H is a tight uv-compatible family in G with
i(X) ≥ 2|X| − 4. �

Lemma 16 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that G is
independent in Muv, H = {X1, X2, . . . , Xk} is a tight uv-compatible family in G and that H −Xi

is not tight for all 1 ≤ i ≤ k. Then either:
(a) k = 1 and X1 is tight;
(b) k = 2, |X1| = |X2| = 3 and i(X1) = i(X2) = 2;
(c) k = 2, |X1| ≥ 4, i(X1) = 2|X1| − 3, |X2| = 3 and i(X2) = 2; or
(d) k = 2, |Xi| ≥ 4 and i(Xi) = 2|Xi| − 3 for all i ∈ {1, 2}.

Proof. We have i(H − Xi) = i(H) − i(Xi) and val(H − Xi) = val(H) − (2|Xi| − 2 − ti). Since
i(H−Xi) < val(H−Xi) this gives i(Xi) ≥ 2|Xi|−2− ti and hence i(Xi) ≥ 2|Xi|−3 if |Xi| ≥ 4 and
i(Xi) = 2 if |Xi| = 3. In both cases we have i(Xi) ≥ val(Xi) − 1. Since G is independent in Muv

we have i(H) ≤ val(H) =
∑k

i=1(val(Xi) − 2) + 2. This proves that k = 1 or k = 2. The assertion
that X1 is tight in (a) and the assertions on i(X1) and i(X2) in (b), (c) and (d) now follow from the
hypothesis that H is tight. �

Note that if alternative (d) holds then X1 ∪X2 is tight so we can reduce to alternative (a).

Lemma 17 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that G is
independent in Muv and that there exists a subgraph H of G isomorphic to K4. Then either:
(a) there is a vertex x ∈ V \ V (H) such that |N(x) ∩ V (H)| = 2,
(b) |V (H) ∩ {u, v}| = 1 = |N(V (H)) ∩ {u, v}|,
(c) there is a tight uv-compatible family {X1, X2, . . . , Xk} in G such that X1 = V (H) ∪ {u, v},
|X1| = 6 and i(X1) = 8,
(d) there is a tight uv-compatible family {X1, X2, . . . , Xk} in G such that X1 = V (H)∪ {u, v, a} for
some a ∈ V \ (V (H) ∪ {u, v}), |X1| = 6 and i(X1) = 8, or
(e) the contraction of H gives a graph G′ which is independent in Muv.

Proof. Since G is independent in Muv, uv /∈ E and hence |V (H) ∩ {u, v}| ≤ 1. Suppose that (a),
(b) and (e) fail. Since (a) fails, no vertex of V \ V (H) is adjacent to two vertices of H and hence
the graph G′ obtained by contracting H has no parallel edges. We label the new vertex obtained
by contracting H as w (taking w = u if u ∈ V (H) and w = v if v if v ∈ V (H)). It is easy to check
that G′ is (2, 2)-sparse. Since (b) fails, uv /∈ E(G′). Since (e) fails, there is a uv-compatible family
H′ = {X ′1, X ′2, . . . , X ′k} for which val(H′) < iG′(H′) and w ∈ V (H′). Without loss of generality
we may assume w ∈ X ′1. If |X ′1| ≥ 4 then we get a contradiction as the uv-compatible family
H = {(X ′1 −w)∪ V (H), X ′2, . . . , X

′
k} of G violates independence. If |X ′1| = 3 and V (H)∩ {u, v} = ∅

then H is the uv-compatible family described in (c). Finally if |X ′1| = 3 and |V (H) ∩ {u, v}| = 1
then X ′1 = {u, v, a} for some a ∈ V \ (V (H) ∪ {u, v}) and H′′ = {V (H) ∪ {u, v, a}, X2, . . . , Xk} is
the uv-compatible family described in (d). �

Lemma 18 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Suppose that G is
independent inMuv, z ∈ V \{u, v} is a vertex of degree 3 with N(z) = {v1, v2, v3}, |N(z)∩{u, v}| ≤ 1
and G[N(z) + z] is isomorphic to K4. Suppose further that there is a vertex x ∈ V \ {z, v1, v2, v3}
such that N(x) ∩ N(z) = {v2, v3} and {v1, x} 6= {u, v}. Then the uv-4-cycle contraction operation
which contracts x and z into a single vertex x leads to a graph G′ which is independent in Muv.
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Proof. Suppose G′ is not independent in Muv. Since G′ = G − z + v1x and xv1 /∈ E, there exists
either a tight uv-compatible family H in G − z with xv1 ∈ cov(H), or a tight set X in G − z with
{x, v1} ⊂ X. Set Y = {z, v1, v2, v3, x}. Then Y is tight in G.

Suppose X exists. Then X ∪ Y and X ∩ Y are tight by Lemma 4. Since {v1, x} ⊆ X ∩ Y and
no proper subset of Y containing v1 and x is tight, we have X ∩ Y = Y . This implies that z ∈ X
contradicting the choice of X. Hence H = {X1, X2, . . . , Xk} exists.

Since xv1 ∈ cov(H), we may assume, without loss of generality, that x, v1 ∈ X1. Then x, v1 ∈
X1 ∩ Y . Since |{u, v} ∩ Y | ≤ 1 by the hypotheses of the lemma, Lemma 5 implies that X1 ∩ Y is
tight. Since no proper subset of Y containing v1 and x is tight we have X1 ∩ Y = Y . This implies
that z ∈ X1 and contradicts the choice of H. �

We can now show that RYuv(Kn) =Muv(Kn) for all complete graphs Kn with n ≥ 2. We do this
by proving that, for all G ⊆ Kn, G is independent in RYuv if and only if G is independent in Muv.
Necessity will follow from Lemma 8. We prove sufficiency inductively. We show that a graph G which
is independent in Muv can be reduced to a smaller such graph by the operations of uv-0-extension,
uv-1-extension, vertex-to-4-cycle and vertex-to-K4 and its generalisation. We then apply induction
to deduce that the smaller graph is independent in RYuv. This will imply that G is independent in
RYuv since the inverse operations preserve independence in RYuv.

Theorem 4 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then G is independent
in RYuv if and only if G is independent in Muv.

Proof. Necessity follows from Lemma 8. Now suppose that G is independent inMuv. We prove that
G is independent in RYuv by induction on |V |. It is straightforward to check that G is independent
in RYuv when |V | ≤ 4. Hence we may assume that |V | ≥ 5. By extending |E| to a base ofMuv(K|V |)
if necessary, we may also assume that |E| = 2|V | − 2.

Case 1. G contains a vertex of degree 2. First suppose that u has degree 2. Then G − u is
(2, 2)-sparse. Hence, by Theorem 2, RY(G − u, p) has linearly independent rows for any generic p.
We can now use Lemma 10 to show that G is independent in RYuv.

Now, suppose that there is a vertex w ∈ V \ {u, v} with d(w) = 2. Let N(w) = {a, b}. Clearly,
a 6= b holds. If {a, b} = {u, v} then let H = {{u, v, w}, {V − w}}, where |V − w| ≥ 4. We have

2|V | − 2 = |E| = iE(H) ≤ val(H) = 2 · 3− 3 + 2(|V | − 1)− 2− 2 = 2|V | − 3,

a contradiction. Hence {a, b} 6= {u, v}, which implies that the 0-uv-reduction operation can be
applied at w to obtain a graph G′ = (V − w,E′) that is independent in Muv and satisfies |E′| =
2|V −w| − 2. By induction, G′ is independent in RYuv. Now Lemma 9 implies that G is independent
in RYuv.

Case 2. There is a 4-cycle in G containing u and v. By Lemma 14, we may apply a uv-4-cycle-
contraction (contracting u and v) to obtain a graph H which is simple and (2, 2)-sparse. Theorem 2
implies that any generic realisation (H, p) on Y is infinitesimally rigid. Now we can use Lemma 11
to show that G is independent in RYuv.

Henceforth we assume that Cases 1 and 2 do not occur.

Case 3. There is a proper tight set X containing u and v. Since Case 1 does not occur, we
may suppose X is a maximal proper tight set (where proper means X 6= V and maximal means
there is no vertex w ∈ V \X with more than one neighbour in X). Now by the maximality of X,
G/X is simple and |V \ X| ≥ 3. Hence G/X is (2, 2)-tight. Theorem 2 implies that any generic
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framework (G/X1, p) on Y is infinitesimally rigid. We may now apply Lemma 12(a) to show that G
is independent in RYuv.

Henceforth we may assume that Case 3 does not occur.

Case 4. There is a degree three vertex z in G which is contained in a subgraph H ∼= K4,
and a vertex x ∈ V \V (H) such that |V (H)∩N(x)| = 2. If {u, v} 6⊂ V (H)∪{x} then we may
apply Lemma 18 to find a graph G′ which is independent in Muv. We can now use Corollary 1 to
show that G is independent in RYuv. Thus we may suppose that {u, v} ⊂ V (H)∪{x}. Then H ∪{x}
is tight. This contradicts the assumption that Case 1 (if H ∪ {x} = V ) or Case 3 (if H ∪ {x} 6= V )
do not occur.

A vertex z of degree 3 in G is bad if either

– z ∈ {u, v}, or
– z is adjacent to both u and v, or
– z satisfies alternative (c) of Lemma 15 with X1 = N(z) ∪ {u, v, z} and i(X1) ≥ 2|X1| − 3, or
– z belongs to a subgraph H ∼= K4 satisfying alternative (b) of Lemma 17.

Otherwise we say that z is good.

Case 5. All degree three vertices are bad. We may use Lemma 13 and the fact that Case 2
does not occur to deduce there exists a degree three vertex v1 ∈ V \{u, v} with |N(v1)∩{u, v}| ≤ 1.
Since v1 is bad either

(i) v1 satisfies alternative (c) of Lemma 15 with X1 = N(v1) ∪ {u, v, v1} and i(X1) ≥ 2|X1| − 3, or
(ii) v1 belongs to a subgraph H ∼= K4 satisfying alternative (b) of Lemma 17.

If (i) occurs then the fact that G is independent inMuv implies that i(X1) ≤ 2|X1| − 2 = 8 and the
fact that Case 2 does not occur tells us equality cannot hold. Hence i(X1) = 2|X1|−3 = 7. It follows
that we may interchange the labels of u and v and also of v2 and v3 such that L = G[N(v1)∪{u, v, v1}]
is the graph in Figure 2(a) if (i) occurs and the graph in Figure 2(b) if (ii) occurs.

u
v3

v1 v2

v

(a)

u
v3

v1 v2

v

(b)

Fig. 2 The two alternatives for L.

The fact that G is (2, 2)-sparse implies that, in both cases, there exists a (necessarily bad) degree
three vertex v4 ∈ V \V (L). Since Case 2 does not occur, v4 is not adjacent to both u and v. We may
now repeat the argument from the previous paragraph to deduce that v4 also belongs to a subgraph
L′ which is isomorphic to one of the graphs shown in Figure 2. Let V (L′) = {v4, u′, v′, v′2, v′3} where
{u′, v′} = {u, v}. Since Case 2 does not occur, v′3 = v3. If v1 ∈ V (L′) then we must have v1 = v′2.
Since v4 ∈ N(v′2) = N(v1) ⊆ V (L) this would contradict the fact that v4 ∈ V \ V (L). Hence
v1 /∈ V (L′) and {u, v, v3} ⊆ V (L) ∩ V (L′) ⊆ {u, v, v2, v3}.



Rigid cylindrical frameworks with two coincident points 19

We first consider the case when V (L) ∩ V (L′) = {u, v, v2, v3}. Since Case 2 does not occur v2
is not adjacent to both u and v and hence u = u′ and v = v′. Since G is (2, 2)-sparse L ∪ L′ is as
shown in Figure 3(a) and (b).

We next consider the case when V (L) ∩ V (L′) = {u, v, v3}. Since G is (2, 2)-sparse L ∪ L′ is as
shown in Figure 3(c), (d) and (e) up to a relabeling of u and v.

Since all five graphs in Figure 3 are tight, we may use the fact that Case 3 does not occur to
deduce that G = L∪L′. The fact that Case 1 does not occur now tells us that G is not the graph in
Figure 3(a), (b) or (c). The graph in Figure 3(d) cannot be equal to G since X1 = N(v1)∪{u, v, v1}
does not belong to a tight uv-compatible family (so v1 is not bad). Hence G is as shown in Figure
3(e).

u

v1 v2

v

v4

v3

(a)

u
v3

v1 v2

v

v4

(b)

u

v1 v2

v

v4 v′2

v3

(c)

u

v1 v2

v

v4 v′2

v3

(d)

u

v1 v2

v

v4 v′2

v3

(e)

Fig. 3 The five alternatives for G.

We will complete the discussion of this case by showing that G is minimally uv-rigid on Y. Let
(G, p) be a generic uv-coincident realisation of G on Y and m be an infinitesimal motion of (G, p)
with m(u) = 0. Since K4 is rigid, m(w) = 0 for all w ∈ V (L)− v. In particular m(v3) = 0 and hence
m(w) = 0 for all w ∈ V .

Case 6. None of the previous cases occur. Let z1, z2, . . . , zk be the good degree three vertices
in G. If the edge set of some 1-reduction of G at zi is independent in Muv then we may apply
induction to the reduced graph and then apply Lemma 9 to deduce that G is independent in RYuv.
Hence we may assume that alternative (b) or (c) of Lemma 15 holds for zi.

Suppose alternative (b) of Lemma 15 holds for zi. If the contraction of the K4-subgraph Hi which
contains zi results in a graph which is independent in Muv, then we may apply induction to the
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reduced graph and then apply Lemma 12 to deduce that G is independent in RYuv. (Note that the
contracted graph is minimally rigid since Case 4 does not hold and since zi is good, zi is adjacent
to at most one of {u, v} so |{u, v} ∩ V (Hi)| ≤ 1. Thus (G,Hi) satisfies the hypotheses of Lemma
12(b).) Hence the contraction of Hi in G is not independent in Muv and alternative (e) of Lemma
17 does not occur. In addition alternatives (a) and (b) of Lemma 17 do not occur since Case 4 does
not hold and zi is good. Hence there exists a tight uv-compatible family Hi satisfying alternatives
(c) or (d) of Lemma 17.

In summary we have shown that for every good vertex zi either alternatives (c) or (d) of Lemma
17 or alternative (c) of Lemma 15 hold. We assume that the first alternative holds for all 1 ≤ i ≤ l
and that the second alternative holds for l+ 1 ≤ i ≤ k. Let Xi be the element of Hi which contains
V (Hi) for 1 ≤ i ≤ l, where Hi and Hi are as defined in the previous paragraph. In addition for all
l+ 1 ≤ i ≤ k alternative (c) of Lemma 15 holds so there exists a tight uv-compatible family Hi such
that Xi = {zi, u, v} ∪N(zi) belongs to Hi. With these definitions we have i(Xi) = 2|Xi| − 4 for all
1 ≤ i ≤ k. (This follows from Lemma 17 when 1 ≤ i ≤ l and from Lemma 15 and the fact that zi is
good when l + 1 ≤ i ≤ k.)

Let X =
⋃k

i=1Xi. We will show by induction that i(X) ≥ 2|X| − 4. Suppose that we have
i(X ′) ≥ 2|X ′| − 4 for some X ′ =

⋃s
i=1Xi and some 1 ≤ s ≤ k. If i(X ′ ∪Xs+1) ≤ 2|X ′ ∪Xs+1| − 5,

then Lemma 1(a) implies that i(X ′ ∩Xs+1) ≥ 2|X ′ ∩Xs+1| − 3, this would contradict the fact that
G is independent inMuv since the uv-compatible family H′s+1 which we get from Hs+1 by replacing
Xs+1 by X ′ ∩Xs+1 would satisfy i(H′s+1)− val(H′s+1) > i(Hs+1)− val(Hs+1) = 0.

We may apply Lemma 16 to a minimal tight uv-compatible subfamily of Hi for all 1 ≤ i ≤ k,
and use the facts that Cases 2 and 3 do not occur to deduce that alternatives (a) and (b) of Lemma
16 cannot hold for this family. In addition the remark after Lemma 16 implies that (d) cannot hold
either so (c) must hold for this minimal subfamily. Hence there exist sets Yi and {u, v, yi} in Hi

with i(Yi) = 2|Yi| − 3 and i({u, v, yi}) = 2. Note that neither set can be equal to Xi since |Xi| > 3
and i(Xi) = 2|Xi| − 4. Lemma 2(b) implies that Yi ∩Xi = {u, v} = Yi ∩ {u, v, yi} for all 1 ≤ i ≤ k.
The fact that we are not in Case 2 also implies that yi = yj = y, say, for all 1 ≤ i ≤ j ≤ k. Let

Y =
⋂k

i=1 Yi. Then Y ∩X = {u, v} and y 6∈ Y . We can now use Lemma 1(a) and the fact that G
contains no proper tight subset containing u and v (since Case 3 does not occur) to prove inductively
that i(Y ) = 2|Y | − 3.

Let W = V \ X. Since i(W ) ≤ 2|W | − 2 there is an integer t for which i(W ) = 2|W | − 2 − t.
Since i(Y ) = 2|Y | − 3 and G is (2, 2)-sparse, there are at least 3 edges from Y \ {u, v} to {u, v}.
Since Y \ {u, v} ⊆ W , y ∈ W \ Y and there are two edges from y to {u, v}, we have at least five
edges between {u, v} and W . Note that the definition of X tells us that all degree 3 vertices in W
are bad.

Suppose that every (bad) degree three vertex in W is adjacent to both u and v. Since Case 2
does not occur we have at most one degree three vertex in W . Since i(X) ≥ 2|X| − 4, we have
|E| − |E(X)| − |E(W )| ≤ 2|V | − 2 − (2|X| − 4) − (2|W | − 2 − t) = 4 + t. Hence the sum of the
degrees of the vertices in W is at most 2(2|W | − 2 − t) + 4 + t = 4|W | − t. Since there is at most
one degree three vertex in W , t ≤ 1. If t = 0, then W is tight and W + u+ v violates sparsity since
there are at least 5 edges between W and {u, v}. Hence t = 1 and W + u + v is a proper tight set
which contradicts the fact that Case 3 does not occur.

Now consider the case when there is a (bad) degree three vertex z ∈W which is not adjacent to
both u and v. Since z is bad there is either a set Z ⊆ V which satisfies alternative (c) of Lemma
15 and has i(Z) ≥ 2|Z| − 3, or z belongs to a subgraph H ∼= K4 that satisfies alternative (b) of
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Lemma 17. We can now deduce, as in Case 5, that J = G[N(z) ∪ {u, v, z}] is isomorphic to one of
the graphs shown in Figure 2, with v1 = z. The vertex labelled v3 in Figure 2 must be equal to
y because Case 2 does not hold. The fact that y ∈ V (J) \ Y implies that Y ∩ V (J) 6= V (J). In
addition the facts that i(Y ) = 2|Y | − 3 and no U ⊆ V (J)− y, with {u, v} ⊂ U , has i(U) = 2|U | − 3
implies that Y ∩ V (J) 6= Y . Hence Y ∩ V (J) is a proper subset of both Y and V (J) and hence
i(Y ∩V (J)) ≤ 2|Y ∩V (J)|−4. Lemma 1(a) now implies that Y ∪V (J) is tight. Since Y ∪V (J) 6= V ,
this contradicts the fact that Case 3 does not occur. �

We can now prove the deletion-contraction characterisation of uv-rigidity stated in the introduc-
tion.

Proof of Theorem 1

Necessity follows from the fact that an infinitesimally rigid uv-coincident realisation of G on Y is an
infinitesimally rigid realisation of G−uv, and also gives rise to an infinitesimally rigid realisation of
G/uv by (4).

To prove sufficiency, suppose, for a contradiction, that G−uv and G/uv are both rigid on Y but
G is not uv-rigid on Y. By Theorems 3 and 4 this implies that there is a thin cover K of G − uv
with val(K) ≤ 2|V |−3. If K consists of subsets of V only, then rY(G−uv) ≤ 2|V |−3 follows, which
contradicts the fact that G− uv is rigid on Y.

Hence K = {H, H1, . . . ,Hk}, where H = {X1, . . . , Xl} is a uv-compatible family. Contract the
vertex pair u, v in G into a new vertex zuv. This gives rise to a cover

K′ = {X ′1, . . . , X ′l , H1, . . . ,Hk}

of G/uv, where X ′j is obtained from Xj by replacing u, v by zuv, for 1 ≤ j ≤ l. Then we obtain

k∑
i=1

(2|Hi| − tHi) +

l∑
j=1

(2|X ′j | − t(X ′j)) ≤
k∑

i=1

(2|Hi| − tHi)+

+

l∑
j=1

(2|Xj | − t(Xj))− 2l = val(K)− 2 ≤ 2|V | − 3− 2 = 2(|V | − 1)− 3,

which implies that G/uv is not rigid on Y, a contradiction. This completes the proof. �

A similar proof can be used to verify the following more general result:

Theorem 5 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then rYuv(G) =
min{rY(G− uv), rY(G/uv) + 2}.

Theorems 2 and 5 show that the polynomial-time algorithms for computing the rank of a count
matroid (see e.g. [1,9]) can be used to test whether G is uv-rigid on Y, or more generally, to compute
rYuv(G).
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5 Vertex splitting and global rigidity

Suppose G = (V,E) is a graph with V = {v1, v2. . . . , vn} and (G, p) is a realisation of G on a family
of (not necessarily distinct) concentric cylinders Y = Y1 ∪ Y2 ∪ . . . ∪ Yn such that p(vi) ∈ Yi for
1 ≤ i ≤ n. We say that (G, p) is globally rigid if every equivalent framework (G, q) on Y, with
q(vi) ∈ Yi for all 1 ≤ i ≤ n, is congruent to (G, p).

Let G = (V,E) be a graph and v1 be a vertex of G with neighbours v2, v3, . . . , vt. A vertex split
of G at v1 is a graph Ĝ which is obtained from G by deleting the edges v1v2, v1v3, . . . , v1vk and
adding a new vertex v0 and new edges v0v1, v0v2, . . . , v0vk, for some 2 ≤ k ≤ t. We will refer to the
new edge v0v1 as the bridging edge of the vertex split. We will show in this section that a vertex
splitting operation preserves generic global rigidity on the cylinder if and only if the bridging edge
is redundant.

Given a map p : V → R3n, there is a unique family of concentric cylinders Y with p(vi) ∈ Yi for
all 1 ≤ i ≤ n as long as p(vi) does not lie on the z-axis for all 1 ≤ i ≤ n. We will refer to Y as the
family of concentric cylinders induced by p and denote it by Yp.

Connelly and Whiteley [2, Theorem 13] showed that if a framework (G, p) in Rd is both in-
finitesimally rigid and globally rigid then all frameworks (G, q) sufficiently close to (G, p) are also
infinitesimally rigid and globally rigid. We will adapt their proof technique to obtain an analogous
result for the cylinder.

Lemma 19 If (G, p) is infinitesimally rigid and globally rigid on Y, then there exists an open
neighbourhood Np of p on Y such that for any q ∈ Np the framework (G, q) is infinitesimally rigid
and globally rigid on Y.

Proof. Suppose |V | ≥ 5 and that for any open neighbourhood Np, there is a p∗ ∈ Np such that
the framework (G, p∗) is not globally rigid on Y. Then there is a convergent sequence (G, pk) of
non-globally rigid frameworks converging to (G, p). For each framework (G, pk), let (G, qk) be an
equivalent but non-congruent realisation on Y. We may assume that (G, pk) and (G, qk) are in
standard position (that is pk(v1) = qk(v1) = (0, 1, 0) assuming, without loss of generality, that
r1 = 1). By the compactness of R3|V |, there is a convergent subsequence (G, qm) converging to a
limiting framework (G, q). As the limits of the respective sequences, (G, q) must be equivalent to
(G, p).

If (G, q) is not congruent to (G, p) then we contradict the global rigidity of (G, p). So (G, p) and
(G, q) are congruent, i.e. we can transform q to p by a reflection in the plane x = 0, a reflection in
the plane z = 0 or a combination of the two. We apply this same congruence to all the (G, qm) to
obtain a sequence (G, rm) converging to (G, p) with (G, rm) being equivalent but not congruent to
(G, pm) for each m.

We next show that pm − rm gives an infinitesimal motion of (G, p
m+rm

2 ) on Y
pm+rm

2 . For each
edge vivj we have(

pm(vi) + rm(vi)

2
− pm(vj) + rm(vj)

2

)
· ((pm(vi)− rm(vi))− (pm(vj)− rm(vj)))

=
1

2
((pm(vi)− pm(vj)) + (rm(vi)− rm(vj))) · ((pm(vi)− pm(vj))− (rm(vi)− rm(vj)))
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=
1

2

(
(pm(vi)− pm(vj))

2 − (rm(vi)− rm(vj))
2
)

= 0.

Recall that p̄m(vi) and r̄m(vi) denote the projections of pm(vi) and rm(vi) onto the plane z = 0.
Since pm(vi) and rm(vi) both lie on Yi, we have p̄m(vi) · p̄m(vi) = r̄m(vi) · r̄m(vi). Hence for each
vertex vi,

(p̄m(vi) + r̄m(vi)) · (p̄m(vi)− r̄m(vi)) = 0.

Since pm and rm are not congruent, pm − rm is a nontrivial infinitesimal motion. This means
that the rank of the rigidity matrix for each framework (G, p

m+rm

2 ) is less than maximal. Since both

pm and rm converge to p, so does pm+rm

2 . Thus (G, p) is a limit of a sequence of infinitesimally
flexible frameworks and hence itself is infinitesimally flexible, a contradiction. (The fact that (G, p)
is infinitesimally rigid implies that the rank of RYq (G, p) is maximum for all q ∈ R3|V | sufficiently
close to p.) �

We can use this lemma and our main result to show that vertex splitting preserves global rigidity
on Y under the additional assumption that the new edge is redundant.

Theorem 6 Let (G, p) be a generic globally rigid framework on a family of concentric cylinders Y.
Let Ĝ be a vertex split of G at the vertex v1 with new vertex v0 and suppose that Ĝ − v0v1 is rigid
on Y. Let p̂(v) = p(v) for all v 6= v0 and p̂(v0) = p(v1). Then for any q on Y which is sufficiently
close to p̂, (Ĝ, q) is globally rigid on Y.

Proof. Since (Ĝ/v0v1, p) = (G, p) is globally rigid on Y and p is generic, Ĝ/v0v1 is rigid on Y. Since
G− v0v1 is also rigid on Y, Theorem 1 implies that Ĝ has a v0v1-coincident generic rigid realisation
(Ĝ, p̂), where p̂(v) = p(v) for all v 6= v0 and p̂(v0) = p(v1). Since (G, p) is globally rigid on Y, (Ĝ, p̂)
is also globally rigid on Y. We can now use Lemma 19 to deduce that (Ĝ, q) is globally rigid on Y
for all q sufficiently close to p̂. �

Suppose G is a graph which has a generic globally rigid realisation on Y. It was shown in [5] that
G− e is rigid on Y for all e ∈ E(G). This result and Theorem 6 immediately imply that Ĝ, a vertex
split of G with bridging edge e, has a generic globally rigid realisation on Y if and only if Ĝ − e is
rigid on Y.

6 Concluding remarks

Similarly to our definition of a framework (G, p) on Y we can define a framework on a family
of concentric spheres S = S1 ∪ S2 ∪ · · · ∪ Sk where Si = {(x, y, z) ∈ R3 : x2 + y2 + z2 = ri}
and r = (r1, . . . , rk) is a vector of positive real numbers. We can project a framework on S to a

framework on the unit sphere by mapping p(v) to p(v)
‖p(v)‖ without changing infinitesimal rigidity. We

can then map the framework on the unit sphere to a framework on the (affine) plane by central
projection. In [12,13] this process was shown to preserve infinitesimal rigidity for frameworks on the
unit sphere. Since the projection also preserves the property that u an v are coincident, the problem
of characterising generic rigidity for frameworks with two coincident points on concentric spheres
is equivalent to the problem of characterising generic rigidity for frameworks with two coincident
points in the plane. We can now use the characterisation of generic uv-rigidity in the plane [4] to
give the following result.



24 Bill Jackson et al.

Theorem 7 Let G = (V,E) be a graph and let u, v ∈ V be distinct vertices. Then G is uv-rigid on
a family of concentric spheres S if and only if G− uv and G/uv are both rigid on S.

Note that a graph G = (V,E) is rigid on S if and only if it has rank 2|V | − 3 in the (2, 3)-sparse
matroid by [10, Theorem 5.1].

We can also replace Y with other surfaces. In particular if we choose a surface with 1 ambient rigid
motion (such as the cone, hyperboloid or torus) then the analogue of Theorem 2 requires the graph
to be (2, 1)-tight [11]. In the uv-coincident case we would define the value as val(H) = 2|H| − tH
where tH = 3 if |H| ∈ {2, 3} and H 6= {u, v}, tH = 2 if |H| ∈ {0, 4} or H = {u, v} and tH = 1 if
|H| ≥ 5. We expect that, using similar techniques to Section 3, the appropriate count matroid can
be established. However we do not know how to prove an analogue of Theorem 4. To make a start
on this problem would require dealing with the case when the only vertices of degree less than 4 are
u and v.
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