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ABSTRACT

In this paper we explore the relationship between the teaizord
rhythmic structure of musical audio signals. Using autocadity ex-
tracted rhythmic structure we present a rhythmically-awaethod
to combine note onset detection techniques. Our methodtapes
down knowledge of repetitions of musical events to improgted-
tion performance by modelling the temporal distributioronget lo-
cations. Results on a publicly available database denaiastinat
using musical knowledge in this way can lead to significamqtrione-
ments by reducing the number of missed and spurious detsctio

Index Terms— Audio, music, onset detection, rhythm

1. INTRODUCTION

The task of recovering the start times of musical events faoitio
signals is known agmote onset detection [1]. The successful extrac-
tion of note onset times enables the temporal segmentatiom au-
dio signal at a meaningful time-scale. Within music infotioa re-
trieval research, onset detection forms the basis of maghehievel
processing tasks, including beat tracking [2] and inté&rachusical
accompaniment [3]. The standard approach for finding onssit p
tions is a two stage process. First, a mid-level representatften
referred to as aonset detection function [1], is extracted from the
audio signal. The aim of the onset detection function is toikdk
peaks at likely onset locations by measuring changes inhbe s
term properties of the audio signal; for example: energyhtire-
guency content, or phase information. For a review of featypes
see [1]. Once the onset detection function has been gedethte
temporal locations of the note onsets can be recovered Byiap@a
peak-picking algorithm.
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Beyond the selection of appropriate input features, a éntim-
itation exists within existing work, related to the temgdos&ruc-
ture of music. The temporal ordering of musical events amit th
repetition is central to our perception of rhythm. Therefarhen
seeking to find onset locations, making the assumption thesi-m
cal events can occur ahy time instant is musically naive. In this
sense, Grosche and Milller [5] have recently proposed amitim
that exploits the local periodic structure of musical esent

In this paper we address the use of multiple features andithe i
clusion of musical knowledge towards the advancement & oot
set detection. Our aim is not to present a new type of onsettien
function per se, but to propose a novel strategy for compitiese
types of signals.

To contend with the different types of onset that may be prese
in the audio signal, we adopt a mixture of experts approatfof6
fusing the peak locations extracted from a set of onset tieteftinc-
tions. Through observing the distribution of inter-onsgervals we
can determine the likelihood of given onset locations basetheir
relationship with surrounding events. We incorporate witkin our
system as a rhythmic constraint in our fusion algorithm.uneval-
uation, we demonstrate that our approach, i.e. the use dfpieul
experts fused using rhythmic structure, can lead to an aseren
onset detection accuracy

The remainder of this paper is structured as follows. IniSect
2 we present our system for fusing onsets using knowledgeytifi+
mic structure. In Section 3 we describe the evaluation metnd
dataset used with results in Section 4. We present condsisind
future work in Section 5.

2. APPROACH

A key challenge in onset detection is in finding features Whic oyr algorithm for fusing onsets using musical knowledgehyti-

can accurately capture different types of onsets.
pitched non-percussive onsets from a bowed violin antbn-pitched

For el@mp mic structure is split into several steps. We modify an @xistate

of the art onset detection system to give sub-band onsettawte

percussive onsets from drum hits correspond to very different prop-fynctions. We then fuse the peaks of each sub-band onset-dete

erties of the audio signal. While there has been moderatesadn
finding features that are applicable the widest range ofadégpos-
sible, e.g. the complex spectral difference onset detedtinction
[1], more recent approaches have looked to choose one efetif

types of features, e.g. the energy and pitch based appmadthe

Zhou et al [4]. Although the use of multiple features mighpear
an intuitive step, it adds complexity in terms of how best usef
these information sources.
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tion functions. Given this initial fusion, we extract anigsite of

rhythmic structure and then implement a second peak fusages
incorporating rhythmic knowledge. A block diagram is shoinn
Figure 1.

2.1. Sub-band Onset Detection

To best demonstrate the potential improvement our fusiothode
can provide, we apply our rhythmic fusion strategy to antexgs
state of the art onset detection technique. We choose théngimal-
gorithm from the MIREX 2007 onset detection evaluation tathat

t{matthew.davies, mark.plumblpg@elec.qmul.ac.uk. MEPD and MDP of Zhou et al [4]. Their approach generates an energy-basseit o
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Fig. 1. Overview of Onset Fusion System.

detection function from a novel time frequency transfornown as
theResonator Time Frequency Image (RTFI). The RTFl is calculated
using 960 filters oveB=8 musical octaves.

To generate multiple input features from Zhou's model tfzat c
be fused together, we calculate an individual energy bast¢ecd
tion function for each of the 8 octaves (using 120 filters peaee),
which we labelS, (¢), whereb = 1. .. B andt are the samples of the
signal. Each sub-band has a temporal resolution 10ms pelesam
For a complete description of the algorithm, see [4].

Our fusion method requires a set of sub-band peak scgres
for each associated time instafat;. To obtain the time instants
we employ a peak-picking algorithm [1] to each sub-banddite

0.35

At (s)

Fig. 2. Probability density estimate of the inter-onset-intésvex-
tracted from the first onset fusion stage.

goals is:

N N
C({t:}) =D si+ > Pti—ti—1,Trer) @)

where{¢; } is any set ofV peak scoresti, ..., tn }, P(At, Trer) is @
grouping penalty function an@,.; is a time reference that sets how
fast the penalty term increases.

As in[7] the objective functior® ({¢; }) can be assembled recur-
sively using dynamic programming. We iteratively find thewgy of
peaks{t; } that maximise the objective function at each time instant.
Finally, to decide if a set of grouped peaks correspond toreseto
or not, we extract the local maxima @i({t¢;}) within a window of
50 ms (assuming two consecutive onsets do not happen itirtta} t
For the grouping penalty function we employ a squared-édtnoc-
tion,

P(At, Tret) = — (TAtf) (3)

which takes a value of -1 wheit = T} and becomes increasingly
negative for larger time deviations between time peaksorinél
examination of the distribution of the peak times on theedéht
bands showed that peaks that correspond to the same onsét sho
not be more than 35 ms away from each other. Therefore WE set

function S, (t). At this stage we do not wish to discard onsets and= 35 ms in our experiments.

therefore we set the detection threshold paramitér

We extract a set of initial peak scores as the amplitude di eac

detection function at the peak tinig;, where the score of the "
peak in theb™™ sub-band is found as, ; = Sy (ts,;)-

To prevent any individual sub-band dominating in the terapor
fusion of peaks, we normalise the influence of each sub-bayd,
mapping the peak scores, ; into the range [0,1] according to the
empirical cumulative distribution function of sub-bandafescores,
Fb:

5b.5 = Fo(sb.5)- ey

Then we order the whole set of peak scor@s;, and peaks loca-
tions, t,,;, over all sub-bands in time to give andt; respectively.

2.2. Onset Fusion with Temporal Constraints

In order to integrate the peak score information extracterhfthe
multiple sub-band onset detection functions, we constinatbjec-
tive function which is maximised according to two consttsitirst,
onsets should correspond to time instants where the subdetac-
tion functions show strong peaks and second, these pealkidi®
close together in time. The cost function that combinesethe®

2.3. Finding Rhythmic Structure

To exploit the idea that note events are not uniformly distied in
time, we extract a set of onsets obtained from the tempona co
strained fusion described in Section 2.2, and use this nmtion

to estimate the underlying rhythmic structure present aittput
signal. To extract onsets fro@'({¢;}) in (2), a large threshold
(6 = 0.5) is used to keep the number of spurious detections low.
Then, assuming constant tempo, the rhythmic structure efirth
put audio signal is estimated by calculating the distrinutf inter-
onset-intervals. Figure 2 shows the probability densitymeste of
the inter-onset-intervals from an example file. As can b& sen-
set times are highly correlated due to the periodic naturaagic
events, with clear peaks present around 0.21 s and 0.42 shiise
the most significant inter-onset intervdl®:, ..., Tk } from this dis-
tribution estimate by peak-picking the histogram. Thisthinyic in-
formation is used in the next section as an additional caimtin
our fusion approach in order to obtain a better onset deteptrfor-
mance. This flow of information defines a process where thianhy
is first estimated (bottom-up) and then used in the subséquset
detection (top-down).



2.4. Fusion with Rhythmic Structure 50 ©RF
—+TF
The goal of our information fusion algorithm is to find the bes a0 B
scoring set of peaks that are close in time as well as reftpttia 8 Sub-band
rhythmic structure learned from the input signal. The rhyithstruc- g or
ture information{71, ..., Tk } that relates onsets is added as an ad- o
ditional set of goals to the nonlinear program defined inise@.2. T 200
The resulting cost function is: s ol
N N 0 ‘ ‘ : -
C{t}) = si+ Y P(ti—tio1, Trer) + 0 10 B ratse nogath 4 50
=1 =2

Fig. 3. Comparison of onset detection algorithms: the referetate s
of the art approach (ZRMZ), the sum of sub-band detectior-fun
tions (SUM), the individual sub-band onset detection fioms (Sub-
band) and the temporal (TF) and rhythmic (RF) fusion apgreac
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whereM (¢, T1, ..., Tx) is a function that favours peaks that are sup-
ported by the estimated rhythmic structyrg,, ..., Tx }. If the ob-
jective fusion functiorC has a large value at tintg — T3, then there

. ) B . . F-measuref. These evaluation measures are defined as [8]:
is more likely to be an onset at tiniedue to the inter-onset-interval / (8]

distribution observed in the music signal. We define the fatiic- . Ned 7
tion M(t,Tl,...,Tk) as, p = Ned + Nfp
_ Ted
Cmax(t) if Cmax (t) > 0.5 " N Ned + Nin (8)
M(t,Tl,.A.,Tk) = (5) 2pr

0 otherwise fo= prr ©)

wherecnmax (t) represents the maximum fusion scores at timel’, wheren.q is the number of correctly detected onsets, is the num-
withk =1, ..., K, ber of false positives (detection of an onset when no grouuith t

onset exists) ands, is the number of false negatives (missed detec-

Cmax () = max{C(t — T}), ..., C(t — Tx)}. (6)  tions). Acorrect detection is defined as one occurring wighb0 ms

tolerance window of each ground truth onset. Since our ainois

As in section 2.2 we extract the onsets by finding the localimax Y 0 identify individual notes, we do not penalise mergedes.

of C({t:}). We investigate the benefit of including this rhythmic Us_ing the F-measure we compare the performance of four onset
structure knowledge in Section 4. detection approaches: a reference state of the art sys$teranergy-

based approach of Zhou et al [4], which we refer to as ZRMzn(fro
Zhou, Reiss, Mattavelli and Zoia). We then include an altwve
3. DATASET AND EVALUATION method for combining onset detection functions, definedhasam-

poral sum of the sub-band onset detection, this we label ST&M.

A common approach in the evaluation of onset detection #lgns ~ these, we compare the performance of our fusion system wtitho

is to use hand-labelled datasets. However, manual anmosain- ~ @nd then with rhythmic knowledge, which we label TF (tempora

troduce ambiguity in the ground truth that makes the anslgsd ~ fusion) and RF (rhythmic fusion) respectively.

evaluation of the algorithm difficult. The more complex ardiau

signal, the larger the uncertainty associated with the mizamnota- 4. RESULTS AND DISCUSSION

tions will be. An effective way to obtain a more robust datagsuld

be to have multiple listeners label each file. We could thengare  For each onset detection method the relationship betweenate
the performance of our automatic onset detection algorithtinthe  of false positives (spurious detections) and false neggtfmissed
performance of the mean and best annotator. However, thegso detections) is presented in Figure 3. To trace out the peence
of annotating a whole dataset with multiple listeners isyvme  cyrve the detection threshod{used in peak-picking [1]) was varied
consuming and often impractical for large datasets. between 0 and 1. Better performance is indicated by a shitief

In order to evaluate our onset fusion algorithm without tHe a curve to the bottom-left corner of the axes which correspdnd 0
ditional difficulty of dealing with the uncertainty of manEnota-  rate of false positives and negatives.

tions an onset database generated from MIDI has been crehietd As can be seen in Figure 3, the performance curve of the
we make publicly availablé The dataset consists of 142 seconds ofrhythmic-based fusion approach is below the curves of therot
audio with 482 onsets. The audio is a complex mixture of mldti  algorithms under comparison. Based on these results webee a
instruments with no singing and the ground truth onsets iseetty  to show, over a range of detection thresholds in the peakingic
extracted from the MIDI files. The size of the dataset is samib process, that the use of rhythmic information for fusing etss
the complex-mixture class in [1] and the dataset recentglis[5].  can exceed the state of the art approach (ZRMZ) and the sum of
For the evaluation and comparison of onset detection @lgns  sub-bands approach (SUM). It is noteworthy that the ineréas
three measures are usually considered: precigiprecall,r, and  performance for the rhythmic fusion is very pronounced carag
to the temporal fusion method (TF). This demonstrates treagat-
2http://www.gts.tsc.uvigo.es/~ndegara/ dition of a rhythmic constraint into the cost function (adided in
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ber of spurious and missed detections. Results show thaetffier-

mance is increased when we exploit the rhythmic structureuafic

signals and that our method is able to outperform the statkes

art onset detection algorithm across a wide range of onsettiten

thresholds. We find the following relative ordering of penfiance:

rhythmic fusion (RF), sum of sub-band onset detection fonst
(SUM), reference state of the art system (ZRMZ) and thendhe t
poral fusion (TF) approach.

It is important to note that within our framework we do not
aim to derive a ‘new’ onset detection function. Instead, study
shows how to combine multiple detection functions exphajtmu-
sical knowledge, in particular making use of the inheregthimic

Fig. 4 Maximum F-measure, and Precision and Recall for the destructure of musical signals. Our approach could use ottection

tection algorithms under evaluation: the reference stathe art
approach (ZRMZ), the sum of sub-band detection functiohMp

and the temporal (TF) and rhythmic (RF) fusion approachdse T

Precision and Recall values are those which correspondtoéx-
imum F-measure.

section 2.4) is crucial when seeking to reduce the numberisded
and spurious detections. The temporal fusion algorithnisis the
worst performing method. The reason for this is that the remaolh
false positives for this algorithm is very large. We coulgest this
behaviour since the algorithm processes the whole set ebant
peak-scores to group only those peaks that are closelyedelat
time. Peak-scores that are not consistently grouped maedalse
detections. In our system, the aim of this first temporaldnstep is
to provide relevant rhythmic information to be used in the-ttown
process.

For each applied threshold, a value of F-measure is obtaine
Figure 4 presents the maximum F-measure and the values of P

cision and Recall corresponding to this F-measure for ththrhic
(RF) and temporal fusion (TF) approaches, the single-basaiator

time frequency image (ZRMZ) and the sum of sub-band detectio

functions (SUM). As we might expect from the performanceveur
in Figure 3, the best performing algorithm is the rhythmisi€un
method. The value of the F-measure of the rhythmic fusiorhoeet

is 86% which is better than the single-band ZRMZ, 81%, and th

sum of sub-band detection functions, 82%. For these vali€s o

much lower than in the rhythmic case, 81%.

Although we have used audio signals derived from MIDI data to

evaluate our algorithm, the accuracy scores obtained anpa@ble
to those based on hand-labelled data [1], [4]. On this basiselieve
that our dataset is of sufficient difficulty to reliably tesetonset
detection algorithms.

In an informal experiment we compared human annotated on-

sets to the MIDI-derived ground truth on our dataset andodisied
a large number of false positives (around 7%) and false ivegat
(around 15%). As part of our future work, we intend to explire
differences between MIDI-derived ground truth and handotetied
data.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a framework for onset tetec
that integrates the information provided by multiple détecfunc-
tions and rhythmic information relating onsets using a topvia

&Y

measure, the precision of the ZRMZ and the rhythmic method is
92% in both cases, however the recall of the ZRMZ 73% which is[

function algorithms as input, such as those in [1] or [9].omnfial
experiments have demonstrated that fusion of these featarealso
lead to improved performance.

In future work, we will explore how to automatically weight o
select the individual sub-band detection functions foreotmusic
information retrieval tasks such as beat tracking. We atsenid
to explore extensions to our fusion approach, in partichtaw to
contend with signals exhibiting tempo variation. For sugbet of
signal we plan to include a tempo contour into our objectivefion
building upon the use of local periodicity kernels in [5].
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