
22

Easy Foot Plant
ISSN 1470-5559

RR-06-10 November 2006 Department of Computer Science

Jun Li & Pengwei Hao

Easy Foot Plant

Jun Li

Department of Computer Science

Queen Mary University of London

London E1 4NS, UK

junjy@dcs.qmul.ac.uk

Pengwei Hao

Department of Computer Science

Queen Mary University of London

London E1 4NS, UK

phao@dcs.qmul.ac.uk

Abstract

In generation of character animation, a common problem is that the character’s feet move when

they should keep fixed. Efficient algorithm for planting feetis useful for both pre-process of raw

motion data and post-process for synthetic animation. There are plenty of methods on motion

editing, including kinematics approaches and dynamics ones. Some of them are applicable for the

foot-plant problem.

In this paper, we present a simple scheme especially for footplant. We introduce an new inverse

kinematics solver for a popular character leg model. We havealso developed the analytical solution

for it and address the problem of finding optimal root displacement in a simple but efficient way.

Our algorithm can be used online as well.

1

1 Introduction

A character is in thefoot-plantswhen one or both of its feet keeps still during the animation.Foot-

plants often appear in real human motion, especially in human locomotion, and people are sensitive

to this common phenomenon. Therefore it is important for realistic animation to deal with foot-plant

correctly.

Imperfect motion data is quite usual. For example, the motion data may be mixed with noise.

In such a case the data is still useful, but needs to be preprocessed to fix the feet when necessary.

Motion retargetting[1], motion editing, including warping[2] and signal processing algorithms[3], can

also damage the foot-plant. Furthermore, the results of many motion synthesis algorithms[4] need to

be adjusted so that the foot-plants are implemented.

In this paper, we introduce a simple scheme for foot-plant for motion data. Our scheme resembles

the algorithm in [5] conceptually. However, we present a newinverse kinematics(IK) solver which uses

one less degree of freedom to pose the foot at desired position and orientation. Thus it leaves one DOF

for adapting the character’s feet to uneven ground or other adjustment. Because of the lack of the heel

joint in the skeleton we used, we plant the feet by determining and adjusting their ankle and ball joints.

We solve the IK problem analytically. It is as fast as the analytical algorithm in [5], but we introduce it

in a more intuitive and simpler way. We also detect when the foot-plant occur automatically.

In the remainder of this paper, after a brief review of the related work, we present our scheme in

detail: the detection of the need for foot-plant, the decision of stance, the displacement of the pevis

position, and the computation of the inverse kinmatics solution for the adjustment. They are followed

by a demonstration of the result and some further discussion.

2

2 Related Work

Inverse kinematics(IK) means to determine the values for everydegree of freedom(DOF) of a skeleton,

such that the constraints on the end-effectors of the skeleton are satisfied.

Due to complexity of human skeleton, the IK problems are normally highly non-linear and ill-

conditioned [6]. Thus the existence of the analytical solution should not be expected for general cases.

There is rich literature on solving IK problem numerically [7] [8](and references therein).

However, it has been observed that in a useful special case,human-arm-like (HAL) link, the ana-

lytical solution exists[9]. And the details of the analytical solution were presented in [10], which is

adopted by [11], [12] and [5]. Grochow et al.[13] proposed anIK solver which can choose results from

the solution space based on learning.

Approaches that are more related to ours are [5] and [14]. Kovar et al.[5] presented a simple on-

line method for footskate removal. Gao et al.[14] adapted itfor retargetting purposes. We shall discuss

them later.

Many researchers have also proposed various methods on modifying the motion signal for different

applications[3] [2] [15] [16]. Gleicher gave a method to apply motion signals from one character to

another similar one without disturbing the constraints on the character [1][17].

A foot plant algorithm will find its applications as the pre- and post-process steps more easily while

methods for animation synthesis powered by motion capture database are becoming prevailing [4] [18]

[19] [20].

3

3 The Problem

We use the character skeleton and the motion data from [21]. For the foot plant problem, we are

interested in the lower part of the body. Our skeleton model is shown in Fig.1. We ignore the toes,

because the toe bones are very short compared to other bones and they can be dealt with similar scheme

when needed.

The motion data is a multidimensional function of time

M(t) = (~PR(t), RJ1
X (t), RJ1

Y (t), RJ1
Z (t), . . . , RJN

X (t), RJN

Z (t)) (1)

whereJi, i = 1, . . . , N are the joints, such as left hip, left knee, etc. The DOFs at each joints may

not be the same. For example, there areRHipX , RHipY andRHipZ for hip, but onlyRAnkleX andRHipZ for

ankle.

Conceptually, our scheme to plant a foot is similar to [5], but for the kernel IK solver, we develop

it for a different type of kinematics link in [21]. Gao et al. [14] also used that database, but they didn’t

address the structural difference between their characterskeleton model and Kovar’s. We also solve the

IK problem in a more intuitive way from [10] which is adopted in [5].

4 Footplant decision

The first step is to detect the need for the foot-plants. We usethe simple scheme in [14], therein [22]

is cited. Ikemoto et al. presented a training based algorithm to tell whether the foot should be kept

fixed automatically. However, because the feet keep fixed in afoot-plant, the velocity threshold is a

simple and efficient way to decide a joint’scontact flagat every frame, if the noise is properly dealt

with. In [22], the minimum duration of contact is also considered. However, because of the existence
4

of the noise, frequently flipping of thecontact flagmay occur. It is needed to consider not only the

minimum duration of contact but also that of non-contact. Thus we filter thecontact flags generated by

thresholding. For jointJ (J is ankle or ball), the flags of the neighboring frames are checked to decide

whetherJ is fixed. We takeL0 frames on both sides, and let those2L0 + 1 frames vote whether the

current frame is fixed.

In practice, we have a simple and on-line implementation forthe voting. After thresholding, we

can convolute thecontact flagsignal with a mask1/(2L0 + 1)[1, . . . , 1
︸ ︷︷ ︸

2L0+1

] If the response is greater than

0.5 at frameFi, the jointJ is fixed atFi.

Fig.2 shows the determination of the foot-plants for an ankle in a motion segment. Note that at

the frameF853, the noise makes the speed increase suddenly. The ’filter’ keeps the judgment from

unnecessary flipping. (Note the height of that joint, at the ’faked’ speed peak, the height does not

change much.)

5 Constrained Foot Position

For those foot-plant frames, it is needed to find the desired foot configuration. For our model, the foot

is fully configured by the positions of the ankle and the ball joints.

If a joint J (J isA for ankle andB for ball) should be fixed at frameFi, our algorithm decides the

desired position ofJ according to its status and positions atFi andFi−1 and those of the other foot

joint.

WhenJ is constrained atFi−1, it simply takes the same position as atFi−1. Care must be taken

when a constraint is being applied toJ , say,J is free atFi−1 and constrained atFi, because we

now need the constrained position ofJ not only for the current frame, but also for those following

5

constrained frames in a sequence. There are two requirementof the position ofJ to be decided:

• The change made to every affected frame should be small.

• The length of foot should be kept.

To address the first requirement, we average the positions ofJ overFi and the followingL1 frames.L1

is the maximum frames we take. We stop averaging after encountering the first frame at whichJ is free.

For the second requirement, we check the the other foot jointJ ′. If J ′ is also constrained, it is required

that the constrained position ofJ and that ofJ ′ must keep the correct foot length. Instead of averaging

the positions ofJ over the following frames, we compute the averagefoot direction(PBj − PAj) on a

sphere over those framesj. If J ′ is fixed andJ is free atFi−1, let its position be kept, and compute the

position forJ using the average foot direction and that ofPJ ′ . If both joints are free atFi−1, we firstly

fix the ball position by averaging the positions over the following frames, then figure out the position

of ankle by finding the average foot direction. See Algorithm1 for details.

Discontinuity may be introduced into the motion at the switch of constraints. Therefore a post-

process of smoothing is necessary. We adopt the terms in [5]:A frame is calledsingle constrained, if

either ankle or ball is constrained; a frame is calleddouble constrained, if both of them are constrained.

For each single constrained frame, we look forward and backward for a double constrained frame.

If found, we smooth the foot direction vector according to the frame distance between the current

frame and the found one. The details are given in Algorithm 2.There are still discontinuity at the

constrained(single or double) and free frames. However, because we can adjust the DOFs of the free

frames directly to ensure the result motion is smooth, it is not necessary to smooth our the discontinuity

of the desired foot joint positions here.

Fig.3 shows the procedure to find the desired positions of an ankle. The dashdot line represents the
6

original height of the ankle. The dashed one is the desired position for ankle after running Algorithm

1. And the solid line is the final choice. The dotted line showsthe contact flag.

6 Root Position Displacement

Having obtained the desired positions of the foot joints decided, we are to find proper values for the

leg DOFs to meet the requirements. However, the requirements are not necessarily achievable. Having

fixed the hip position, the reachable positions of the ankle and the ball are limited. If any required

position is out of range, we must change the position of the corresponding hip. According to [12], the

quality of reality of a motion affected less by adjusting theposition of root(pelvis for most skeleton)

than by changing that of foot joints. Thus they adjusted the root position by projecting the root onto a

sphere on which the required position can be reached. However, the projection to different spheres (one

for left leg and the other for right) at consequent frames cancause discontinuity. In [5](therein [12]

cited), an expedient scheme is adopted, which extends the length of femur and tibia instead of finding

more suitable positions for the root. This increases both the size and the structural complexity of the

motion data. Moreover, the varying length of a bone is not friendly to many skinning and rendering

algorithms.

Our scheme for replacing the root is also simple and ensures the smoothness of its path. There are

four requirements for the root path:

• Root should be placed so that both hips are near from theireasy positions. Easy positionmeans

that if the hip is put there, the ankle will be at its desired position. Say, if the current positions of

the hip and the ankle arePH andPA respectively, and the desired position of the ankle isP̃A,

the easy position for the hip is̃PH = PH + P̃A − PA.
7

• Root should be within bothreachable spheresof the left and right. Areachable sphereis a sphere

centered at the desired position of ankle with the radius of maximum leg length. The efficiency

of adjustment of the knee angle to lengthen the leg vector (PA − PH) decreases dramatically

when the length exceeds95% of the length[5]. Thus we need to control the length of the legto

avoid knee-popping.

• The change should be as small as possible.

• The change of the root velocity should be as small as possible.

We represent the first two requirements by two objective functions on the new positions of the root

PRnew

OH(PRnew) =
2∑

i=1

wHi
‖P̃Hi − (PHi + PRnew − P

R)‖2 (2)

OL(PRnew) =
2∑

i=1

wLi
‖PHN − P̃

Ai‖2 (3)

It is easy to see that Eq.(2) is for the easy positions of the hips and Eq.(3) is for the lengths of the legs.

The final objective function is the sum

O(PRnew) = OH(PRnew) +OL(PRnew) (4)

Eq.(4) is quite easy to optimize analytically

P̃Rnew = PR + δR (5)

8

where

δR =

2∑

i=1

1

W
(wHi

(P̃Hi − PHi) + wLi
(P̃Ai − PHi)) (6)

W =

2∑

i=1

(wHi
+ wLi

)

In practice, the first two objectives work well. However, it is fairly easy to add the other two.

The ratio between the weights for leg length (wL) and easy positions (wH) are determined by the

user. The ratio between left and right weights are determined by the constraint status. A leg is called

constrained if either its ankle or its ball is constrained. If both legs are constrained, the weights are

distributed to both sides equally,w1 = w2 = 1. (Here we use the symbol ofw1 andw2 to describe the

relationship between both(wH1 , wH2) and(wL1 , wL2).) If one leg is free and the other is constrained,

say, left leg is constrained, and right one is free, we give all the weight to the constrained leg, say,

w1 = 2 andw2 = 0. However, as the case of determining the desired position offoot, for those single

constrained frames, we try to find a frame in which the other leg is constrained by searching forward

and backward forL3 frames. If one frame is found in either direction, we assign interpolated weights

for the frames in-between, such that the weights are smooth and δR is determined by them in Eq.(6).

7 Inverse Kinematics Solver

Having obtained the desired positions for all related joints at every frame, we compute the values of

the DOFs to meet the position requirements. A common model ofa human leg often consists of three

joints, the hip joint and the ankle joint have 3 DOFs, and the knee joint has one DOF. This kind of links

are widely used, and calledhuman-arm-like(HAL) link (hip to shoulder, knee to elbow, and ankle to

wrist, hereby we use the names of the leg joints). The typicalinverse kinematics problem for such kind
9

of links is to find the 7 rotational DOFs (3 for hip, 3 for ankle and 1 for knee), such that the ankle

position and the foot orientation satisfy the given requirements (6 constraints). There exists analytical

solution to the inverse kinematics problem for an HAL link [10][11].

In practice, a varied “arm-like” model is common [21]. And for the simplified leg model, the

foot configuration is determined only by the direction of theankle-to-ball vector, which needs two

DOFs rather than three at the ankle joint. Thus our new version of the inverse kinematics problem

is to determine 6 rotational DOFs to satisfy 5 constraints. Compared to the original link, our inverse

kinematics solver leaves one DOF for the character to fit uneven ground, or to adjust the body posture.

It determines the required rotational parameters for hip, knee, and ankle such that the ankle position

and the ankle-to-ball vector are configured to the desired position and direction.

7.1 Human-Arm-Like Link Model

A typical HAL link consists of a 3-DOF hip joint, a 1-DOF knee joint, and a 3-DOF ankle joint. In our

model, the ankle is a 2-DOF joint: pitch and yaw. The knee rotational axis is intuitive. The HAL link

model is shown in Fig.4a. The desired position of the ankle and direction of the foot (ankle-to-ball)

vector are also shown in Fig.5.

7.2 Find knee angle

As some authors have addressed the HAL inverse kinematics problem ([10] [11] [5]), we compute the

knee anglefirstly, because it determines the length between the hip andthe ankle independently.

Those previous approaches need project the bones of the leg onto the plane perpendicular to the

vectorP̃A−PH linking the hipPH and the desired anklẽPA. However, we determine the knee angle

φK in a more intuitive way, the algorithm need only the desired length of the leg,‖PH − P̃A‖, without
10

the specific position requirement of the ankle. This makes the solver more useful while being applied

to certain cases. For example, when the animator needs the character to shorten its legs to anticipate a

collision.

Firstly, we project the femur and the tibia to the planeπ perpendicular to the axis (Vaxis in Fig.5(the

plane on which the tibia rotates). In the figure, the current positions of the two ends of the HAL link

areA andB respectively, the projected positions areAP andBP (Note that this is the general case. For

normal human being,A is on the plane and identical toAP , so doesB.), and the knee(rotational joint)

position isO. So the relationship between the length of the leg‖ ~AB‖ and the knee angleφK can be

described by the following equations

‖ ~AB‖ =

√

‖ ~APBP‖2 + (‖ ~AAP ‖+ ‖ ~BBP‖)2 (7)

‖ ~APBP ‖
2 = ‖ ~OAP ‖

2 + ‖ ~OBP ‖
2 − 2‖ ~OAP ‖‖ ~OBP ‖ cos φK (8)

Note that the distances between the two ends of the HAL link and the planeπ keep invariant when the

knee angle changes. And so do the lengths of the projections of the two segments. Thus we can obtain

those constants from the current leg

lA⊥ = ‖ ~AAP ‖

lA‖ = ‖ ~OAP ‖

lB⊥ = ‖ ~BBP‖

lB‖ = ‖ ~OBP ‖

11

If the desired length of the leg islD, the knee angle can be solved as

φK = arccos(
l2D − l

2
A⊥ − l

2
B⊥ − l

2

A‖ − l
2

B‖

2lA‖lB‖
) (9)

Fig.4b shows the modification of the length of the leg.

7.3 Find hip angles

As in [5], we defineRot(~a,~b) as the minimum rotation that aligns the vector~a to ~b. Then the hip

rotationRH = Rot(PA−PH , P̃A−PH). As in Fig.4,PH andPA are the positions of hip and ankle

respectively, and̃PA is the desired position of the ankle. At last, we convertRH into Euler angles and

choose the set of angles closest to the original one. Fig.4c shows the result of rotating the hip such that

the ankle position meets the requirement.

7.4 To find ankle angles

The last step is to decide the two DOFs at the ankle, so that thefoot direction makes the ball at the

desired position. Without losing generality, let the two DOFs be rotations about X and Z axes conse-

quently. If the foot vector in ankle fixed(local) coordinatesystem is~vf0 = (v1, v2, v3)
T . After applying

the rotation about X axis byφA and then the other one about Z axis byψA, it becomes(in the same

coordinate system)

~vf1 =










v1 cosψA − v2 sinψA

v1 cosφA sinψA + v2 cosφA cosψA − v3 sinφA

v1 sinφA sinψA + v2 sinφA cosψA + v3 cosφA










(10)

If the desired position of the ball in the local coordinate system isPB = (BX , BY , BZ)T , we choose

φA andψA so that the components of~vf1 equal those ofPB . (Note that the foot vector starts from the

origin point in the local coordinate system)
12

We solve the two angles as

ψA = arcsin
Aψ −Bψ
Cψ

or

= arcsin
Aψ +Bψ
Cψ

(11)

Aψ = A(BX , v1, v2)

Bψ = B(BX , v1, v2)

Cψ = B(BX , v1, v2)

and

φA = arcsin
Aφ −Bφ
Cφ

or

= arcsin
Aφ +Bφ
Cφ

(12)

Aφ = A(BZ , v3,−v1 sinψ − v2 cosψ)

Bφ = B(BZ , v3,−v1 sinψ − v2 cosψ)

Cφ = C(BZ , v3,−v1 sinψ − v2 cosψ)

where

A(r, s, t) = −rt

B(r, s, t) = s
√

s2 + t2 − r2

C(r, s, t) = s2 + t2

The details are given in Appendix A. Note that, according to Eq.(11) and Eq.(12) there can be four

sets of feasible solutions. Furthermore, because the trigonometrical functions are periodic, for each
13

set of solutions, we can find infinite periodical solutions. When the algorithm is applied in practice,

we choose the solution that makes minimum adjustment to the original rotation and within the rotation

limits for the ankle. In Fig.4d, we can see all the joints on the leg meeting the requirement.

8 Results

Here we present some results of our algorithm. In our experiment, we let allLi be6 frames (approxi-

mate one twentieth second for data on [21]), exceptL1, which is used to find average contact position

for joints of foot. We letL1 be60 frames, which covers approximately a half second in our data.

In Fig.6, we illustrate the results of our algorithm. Fig.6aand Fig.6b represent a segment of the

motion, during which the character should keep a stance. We can see that the foot plant algorithm

removes the noise in the original data (Fig.6a). Fig.6c and Fig.6d represent the process of taking-off of

a foot. It shows that the our foot plant eliminates the floating of the foot before its taking-off.

Fig.7 shows the height of the left ball before and after the foot plant. The motion data is a segment

of consequent jumping. Note that the height of the contact position of the ball is not the same before

and after a jump. We accept the height of thelocal ground, which is inferred from the neighbour

frames.

9 Discussion

In this paper, we solve the problem of planting foot for imperfect motion data. The algorithm is fast,

robust, easy to implement and suitable for online application. We also introduce the analytical IK solver

to 6-DOF-for-5-constraints link for human arms or legs. Thedetermination of knee angle in our solver

is superior to previous ones. Another important different point between our method and the previous
14

approaches addressing the similar problem is that we use greater displacement of root position rather

than varying leg length to avoid the knee popping while solving the IK problem, because we think it

is cumbersome to introduce varying bone length to motion data. We use the similar scheme to ensure

the smoothness of our result motion as Kovar’s method, but wedo smooth interpolation for foot-vector

rather than using projection.

There are several problems left open. One is that at the stageof choosing foot-plant, we do not

project those positions to the virtual ground. Because we believe the actual ground is also unknown, we

infer thelocal groundat each foot-plant. This also makes it possible to process motion data in which the

two feet are not at the same plane. Another is that our algorithm for root position arrangement cannot

guarantee areachableroot position. The philosophy behind is that our main purpose is to recover faulty

raw or synthesis data. For this application, the ideal global displacement should not be too big, thus

the optimization scheme is adequate. However, an objectivefunction with non-linear leg length cost,

for examplee
L−αLmax

γLmax(1−α) , would guarantee the reachable root at the price of complexity of the solution

expression or even non-existence of analytical solution. The third problem is that in fact we can find

out the heel for the model. Thus in our future application, wecan deal with the heel joint as well as the

ball. Fig.8 shows us a virtual heel.

A Solution to the trigonometrical equation

We give the solution to Eq.(10) in Eq.(11) and Eq.(12). Because for trigonometrical equation with the

form of

r = s cosψ − t sinψ (13)

15

we can rewrite it as

r + t sinψ = s cosψ (14)

and replace both sides with their squares. Then we have

r2 + t2 sin2 ψ + 2rt sinψ = s2(1− sin2 ψ) (15)

Solve the normal quadratic equation, we havesinψ. Read the first component in Eq.(10) in the form

of Eq.(13), thus we have Eq.(11).

About Eq.(12), we repeat what has been done for the third component in Eq.(10), and simplify it

with care, we find it as well has the form of Eq.(13), with

r = BZ

s = v3

t = −v1 sinψ − v2 cosψ

References

[1] Michael Gleicher. Retargetting motion to new characters. In SIGGRAPH ’98: Proceedings of

the 25th annual conference on Computer graphics and interactive techniques, pages 33–42, New

York, NY, USA, 1998. ACM Press.

[2] Andrew Witkin and Zoran Popovic. Motion warping. InSIGGRAPH ’95: Proceedings of the

22nd annual conference on Computer graphics and interactive techniques, pages 105–108, New

York, NY, USA, 1995. ACM Press.

16

[3] Armin Bruderlin and Lance Williams. Motion signal processing. InSIGGRAPH ’95: Proceedings

of the 22nd annual conference on Computer graphics and interactive techniques, pages 97–104,

New York, NY, USA, 1995. ACM Press.

[4] Lucas Kovar, Michael Gleicher, and Fred Pighin. Motion graphs. InSIGGRAPH ’02: Proceedings

of the 29th annual conference on Computer graphics and interactive techniques, pages 473–482,

New York, NY, USA, 2002. ACM Press.

[5] Lucas Kovar, John Schreiner, and Michael Gleicher. Footskate cleanup for motion capture editing.

In SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographicssymposium on Computer

animation, pages 97–104, New York, NY, USA, 2002. ACM Press.

[6] Anthony A. Maciejewski. Motion simulation: Dealing with the ill-conditioned equations of mo-

tion for articulated figures.IEEE Comput. Graph. Appl., 10(3):63–71, 1990.

[7] C. Weiman. Inverse kinematics and geometric constriants for articulated figure manipulation.

Master’s thesis, Simon Fraser University, 1989.

[8] Jianmin Zhao and Norman I. Badler. Inverse kinematics positioning using nonlinear programming

for highly articulated figures.

[9] James U. Korein and Norman I. Badler. Techniques for generating the goal-directed motion of

articulated structures.IEEE Comput. Graph. Appl., 2(9):71–74, 76–81, November 1982.

[10] Deepak Tolani, Ambarish Goswami, and Norman I. Badler.Real-time inverse kinematics tech-

niques for anthropomorphic limbs.Graph. Models Image Process., 62(5):353–388, 2000.

17

[11] Jehee Lee and Sung Yong Shin. A hierarchical approach tointeractive motion editing for human-

like figures. InSIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graph-

ics and interactive techniques, pages 39–48, New York, NY, USA, 1999. ACM Press/Addison-

Wesley Publishing Co.

[12] Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and Michael Gleicher. Computer puppetry: An

importance-based approach.ACM Trans. Graph., 20(2):67–94, 2001.

[13] Keith Grochow, Steven L. Martin, Aaron Hertzmann, and Zoran Popović. Style-based

inverse kinematics.ACM Trans. Graph., 23(3):522–531, 2004.

[14] Yan Gao, Lizhuang Ma, Zhihua Chen, and Xiaomao Wu. Motion normalization: the preprocess

of motion data. InVRST ’05: Proceedings of the ACM symposium on Virtual reality software and

technology, pages 253–256, New York, NY, USA, 2005. ACM Press.

[15] Charles Rose, Michael F. Cohen, and Bobby Bodenheimer.Verbs and adverbs: Multidimensional

motion interpolation.IEEE Comput. Graph. Appl., 18(5):32–40, 1998.

[16] Seyoon Tak and Hyeong-Seok Ko. A physically-based motion retargeting filter.ACM Trans.

Graph., 24(1):98–117, 2005.

[17] Michael Gleicher. Motion editing with spacetime constraints. InSI3D ’97: Proceedings of the

1997 symposium on Interactive 3D graphics, pages 139–ff., New York, NY, USA, 1997. ACM

Press.

18

[18] Katherine Pullen and Christoph Bregler. Motion capture assisted animation: texturing and syn-

thesis. InSIGGRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and

interactive techniques, pages 501–508, New York, NY, USA, 2002. ACM Press.

[19] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K.Hodgins, and Nancy S. Pollard. Interac-

tive control of avatars animated with human motion data. InSIGGRAPH ’02: Proceedings of the

29th annual conference on Computer graphics and interactive techniques, pages 491–500, New

York, NY, USA, 2002. ACM Press.

[20] Okan Arikan, David A. Forsyth, and James F. O’Brien. Motion synthesis from annotations.ACM

Trans. Graph., 22(3):402–408, 2003.

[21] CMU. Carnegie-mellon motion capture database.

[22] Bodik. Automatic footplant dectection inside flmoview. Technical report, Student Summer

Project, 2000.

19

Knee(2 DOF)

 Ball

 Toe

Knee(1 DOF)

Hip(3 DOF)

Root

Figure 1: The lower part of the skeleton with DOFs for each joint.

740 760 780 800 820 840 860 880
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Frames

A
nk

le
 s

pe
ed

 a
nd

 c
on

st
ra

in
t f

la
gs

Ankle−ground contact detection

Speed

Height

Flag

Original Flag

Threshold

Figure 2: To determine whether the ankle is constrained.

20

740 760 780 800 820 840 860 880
1

2

3

4

5

6

7

8

Frames

A
nk

le
 H

ei
gh

t

Before
After Algorithm1
After Algorithm2
Flag

Figure 3: To find the desired positions for constrained joints.

PA

P̃A

P̃B

PB

PH

PA

PB

P̃A

P̃B

PH

PAP̃A

PBP̃B

PH

PAP̃A

P̃B PB

PH

(a) HAL link and the

desired position of an-

kle P̃A and ballP̃B

(b) After adjustment

of the knee angle

(c) The result of

changing parameters

for hip to align the

position of ankle

(d) The final ad-

justed link.

Figure 4: A Human-Arm-Like Link

21

Figure 5: Computation of knee angle

(a) (b) (c) (d)

Figure 6: Result of foot plant

(a) and (c) are frames rendered from original data, while (b)and (d) are results from processed data.

22

100 200 300 400 500 600 700 800
1

1.5

2

2.5

3

3.5

4

4.5

5

Frames

Le
ft

B
al

l H
ei

gh
t

Before
After

Figure 7: Height of left ball before and after foot plant.

Figure 8: The inferred heel.

This figure shows the heel we infer from the motion data. We lift the character a little to show the

virtual heel is approximately parallel to the ground.

23

Algorithm 1 To find desired positions of foot joints at frameFi
IsFixed(J) tells whether jointJ is fixed at both this frame and the previous one; BeingFixed(J) tells whether

joint J is fixed at current frame and free at the previouse one.J0 andJ1 represent two foot joints, one is ankle

and the other is ball or vice versa.

1: ~vC ← PB
i − P

A
i

2: if IsFixed(Ankle) And IsFixed(Ball)then

3: P̃A
i ← P̃A

i−1, P̃B
i ← P̃B

i−1

4: else ifIsFree(Ankle) And IsFree(Ball)then

5: P̃A
i ← P̃A

i , P̃B
i ← P̃B

i

6: else ifIsFixed(J0) And IsFree(J1) then

7: P̃ J0

i ← P̃ J0

i−1
, and findP̃ J1

i according to~vC andP̃ J0

i

8: else ifBeingFixed(J0) And IsFree(J1) then

9: P̃ J0

i ←
1

NF +1

∑i+NF

j=i P J0

j , whereNF equals toL1 or letFi+NF
be the last frame in a row at whichJ0 is

constrained.

10: Find P̃ J1

i according to~vC andP̃ J0

i

11: else ifBeingFixed(J0) And IsFixed(J1) then

12: P̃ J1

i ← P̃ J1

i−1

13: ~vi ← AverageOnSphere(PB
i −P

A
i , . . . , P

B
i+NF

−PA
i+NF

), whereNF equals toL1 or letFi+NF
be the

last frame in a row at which both ankle and ball are constrained.

14: Find P̃ J0

i according to~vi andP̃ J1

i

15: else ifBeingFixed(Ankle) And BeingFixed(Ball)then

16: P̃B
i ←

1

NB

F
+1

∑i+NB

F

j=i PB
j , whereNB

F equals toL1 or letFi+NB

F

be the last frame in a row at which ball

is constrained.

17: ~vi ← AverageOnSphere(PB
i − P

A
i , . . . , P

B
i+NA

F

− PA
i+NA

F

), whereNA
F equals toL1 or letFi+NA

F

be

the last frame in a row at which both ankle and ball are constrained.

18: Find P̃A
i according to~vi andP̃B

i

19: end if

24

Algorithm 2 To adjust positions of foot joints for single constrained frameFi
SphereInterp(t, v0, v1) is aC2 smooth interpolation function betweenv0 andv1.

1: Search forwardL2 frames for double constrained frameFi+NF
. If fails, NF ← 0

2: Search backwardL2 frames for double constrained frameFi−NB
. If fails, NB ← 0

3: if NF > 0 AndNB = 0 then

4: ~vF ← PA
i+NF

− PB
i+NF

5: ~vC ← PA
i − P

B
i

6: ~v ← SphereInterp(NF

L2

, ~vF , ~vC)

7: else ifNF = 0 AndNB > 0 then

8: ~vB ← PA
i−NB

− PB
i−NB

9: ~vC ← PA
i − P

B
i

10: ~v ← SphereInterp(NB

L2

, ~vB, ~vC)

11: else ifNF > 0 AndNB > 0 then

12: ~vF ← PA
i+NF

− PB
i+NF

13: ~vB ← PA
i−NB

− PB
i−NB

14: ~vC ← PA
i − P

B
i

15: ~v1 ← SphereInterp(NF

L2

, ~vF , ~vC)

16: ~v2 ← SphereInterp(NB

L2

, ~vB, ~vC)

17: ~v ← SphereInterp(NB

NB+NF
, ~v2, ~v1)

18: else ifNF = 0 AndNB = 0 then

19: No change will be made.

20: end if

21: Adjust the position of the free joint according to that of theconstrained one and~v

25

