ISSN 1470-5559

Easy Foot Plant

Jun Li & Pengwei Hao

‘a_@_s’ Queen Mary

University of London
RR-06-10 November 2006 Department of Computer Science

Easy Foot Plant

Jun Li Pengwei Hao
Department of Computer Science Department of Computer Science
Queen Mary University of London Queen Mary University of London
London E1 4NS, UK London E1 4NS, UK
junjy@dcs.gmul.ac.uk phao@dcs.gmul.ac.uk
Abstract

In generation of character animation, a common problensistite character’s feet move when
they should keep fixed. Efficient algorithm for planting fesstiseful for both pre-process of raw
motion data and post-process for synthetic animation. dlaee plenty of methods on motion
editing, including kinematics approaches and dynamics.oc8eme of them are applicable for the
foot-plant problem.

In this paper, we present a simple scheme especially foplaat. We introduce an new inverse
kinematics solver for a popular character leg model. We h#se@developed the analytical solution
for it and address the problem of finding optimal root dispfaent in a simple but efficient way.

Our algorithm can be used online as well.

1 Introduction

A character is in thdoot-plantswhen one or both of its feet keeps still during the animatiboot-
plants often appear in real human motion, especially in utneomotion, and people are sensitive
to this common phenomenon. Therefore it is important folisga animation to deal with foot-plant
correctly.

Imperfect motion data is quite usual. For example, the motiata may be mixed with noise.
In such a case the data is still useful, but needs to be pregged to fix the feet when necessary.
Motion retargetting[1], motion editing, including wargj2] and signal processing algorithms[3], can
also damage the foot-plant. Furthermore, the results ofymastion synthesis algorithms[4] need to
be adjusted so that the foot-plants are implemented.

In this paper, we introduce a simple scheme for foot-plantifotion data. Our scheme resembles
the algorithm in [5] conceptually. However, we present a imex@rse kinematics(IK) solver which uses
one less degree of freedom to pose the foot at desired posaitiod orientation. Thus it leaves one DOF
for adapting the character’s feet to uneven ground or ottieisament. Because of the lack of the heel
joint in the skeleton we used, we plant the feet by determimind adjusting their ankle and ball joints.
We solve the IK problem analytically. It is as fast as the gl algorithm in [5], but we introduce it
in a more intuitive and simpler way. We also detect when tlog-fdant occur automatically.

In the remainder of this paper, after a brief review of theted work, we present our scheme in
detail: the detection of the need for foot-plant, the decisof stance, the displacement of the pevis
position, and the computation of the inverse kinmaticstgmiufor the adjustment. They are followed

by a demonstration of the result and some further discussion

2 Related Work

Inverse kinematicfK) means to determine the values for evepgree of freedortDOF) of a skeleton,
such that the constraints on the end-effectors of the skekate satisfied.

Due to complexity of human skeleton, the IK problems are radiyrhighly non-linear and ill-
conditioned [6]. Thus the existence of the analytical sofushould not be expected for general cases.
There is rich literature on solving IK problem numerical] [8](and references therein).

However, it has been observed that in a useful special basean-arm-like (HAL) linkthe ana-
lytical solution exists[9]. And the details of the analgicsolution were presented in [10], which is
adopted by [11], [12] and [5]. Grochow et al.[13] proposedkasolver which can choose results from
the solution space based on learning.

Approaches that are more related to ours are [5] and [14].aKetval.[5] presented a simple on-
line method for footskate removal. Gao et al.[14] adaptéaritetargetting purposes. We shall discuss
them later.

Many researchers have also proposed various methods ofyingdhe motion signal for different
applications[3] [2] [15] [16]. Gleicher gave a method to Bpmotion signals from one character to
another similar one without disturbing the constraintst@ndharacter [1][17].

A foot plant algorithm will find its applications as the prexdapost-process steps more easily while
methods for animation synthesis powered by motion captat@b@se are becoming prevailing [4] [18]

[19] [20].

3 The Problem

We use the character skeleton and the motion data from [2&f. tHe foot plant problem, we are
interested in the lower part of the body. Our skeleton moslahiown in Fig.1. We ignore the toes,
because the toe bones are very short compared to other bmht#wes can be dealt with similar scheme
when needed.

The motion data is a multidimensional function of time
M(t) = (PR(t), R{ (1), R (£), R} (1), ..., R (), RN (1)) (1)

whereJ;, ¢ = 1,..., N are the joints, such as left hip, left knee, etc. The DOFs el g@ints may
not be the same. For example, there BEE”, R{'"” and R} for hip, but only R4"* and R} *” for
ankle.

Conceptually, our scheme to plant a foot is similar to [5}, flon the kernel IK solver, we develop
it for a different type of kinematics link in [21]. Gao et all4] also used that database, but they didn’t
address the structural difference between their charakééeton model and Kovar’s. We also solve the

IK problem in a more intuitive way from [10] which is adopted[b].

4 Footplant decision

The first step is to detect the need for the foot-plants. Wethissimple scheme in [14], therein [22]
is cited. Ikemoto et al. presented a training based alguriih tell whether the foot should be kept
fixed automatically. However, because the feet keep fixedfooaplant, the velocity threshold is a
simple and efficient way to decide a joint®ntact flagat every frame, if the noise is properly dealt

with. In [22], the minimum duration of contact is also coresigld. However, because of the existence
4

of the noise, frequently flipping of theontact flagmay occur. It is needed to consider not only the
minimum duration of contact but also that of non-contactugtve filter thecontact flag generated by
thresholding. For joint/ (J is ankle or ball), the flags of the neighboring frames are kb&to decide
whetherJ is fixed. We takeL, frames on both sides, and let thask; + 1 frames vote whether the
current frame is fixed.

In practice, we have a simple and on-line implementatiorthervoting. After thresholding, we
can convolute theontact flagsignal with a masKk /(2Ly + 1)[1, ..., 1] If the response is greater than

2Lo+1

0.5 at frameF;, the jointJ is fixed atF;.

Fig.2 shows the determination of the foot-plants for an @ankla motion segment. Note that at
the frameFygs3, the noise makes the speed increase suddenly. The ‘filtepskéne judgment from

unnecessary flipping. (Note the height of that joint, at tlakeéd’ speed peak, the height does not

change much.)

5 Constrained Foot Position

For those foot-plant frames, it is needed to find the desiwetldonfiguration. For our model, the foot
is fully configured by the positions of the ankle and the baits.

If a joint J (J is A for ankle andB for ball) should be fixed at framg;, our algorithm decides the
desired position of/ according to its status and positionsftand F;_; and those of the other foot
joint.

WhenJ is constrained aF;_q, it simply takes the same position asft ;. Care must be taken
when a constraint is being applied # say, J is free atF;_; and constrained ak;, because we

now need the constrained position Hfnot only for the current frame, but also for those following
5

constrained frames in a sequence. There are two requireshérg position ofJ to be decided:

e The change made to every affected frame should be small.

e The length of foot should be kept.

To address the first requirement, we average the positiofi®eér F; and the followingl; frames.L,

is the maximum frames we take. We stop averaging after etenng the first frame at whicli is free.

For the second requirement, we check the the other foot jBirff .J' is also constrained, it is required
that the constrained position dfand that ofJ’ must keep the correct foot length. Instead of averaging
the positions of/ over the following frames, we compute the averégt directior(Pp; — P4;) on a
sphere over those framgslf .J' is fixed andJ is free atF;_1, let its position be kept, and compute the
position for.J using the average foot direction and thatrf. If both joints are free af;_1, we firstly

fix the ball position by averaging the positions over thedeihg frames, then figure out the position
of ankle by finding the average foot direction. See Algorithfior details.

Discontinuity may be introduced into the motion at the stvit constraints. Therefore a post-
process of smoothing is necessary. We adopt the terms i\[Bame is calledsingle constrainedif
either ankle or ball is constrained; a frame is calledible constrainedf both of them are constrained.
For each single constrained frame, we look forward and baddvor a double constrained frame.
If found, we smooth the foot direction vector according te frame distance between the current
frame and the found one. The details are given in AlgorithmrBere are still discontinuity at the
constrained(single or double) and free frames. Howeverlme we can adjust the DOFs of the free
frames directly to ensure the result motion is smooth, ibisnecessary to smooth our the discontinuity
of the desired foot joint positions here.

Fig.3 shows the procedure to find the desir%d positions ohkleaThe dashdot line represents the

original height of the ankle. The dashed one is the desirsdipo for ankle after running Algorithm

1. And the solid line is the final choice. The dotted line shthescontact flag.

6 Root Position Displacement

Having obtained the desired positions of the foot jointsidizat, we are to find proper values for the
leg DOFs to meet the requirements. However, the requireaatnot necessarily achievable. Having
fixed the hip position, the reachable positions of the ankig the ball are limited. If any required
position is out of range, we must change the position of tieesponding hip. According to [12], the
quality of reality of a motion affected less by adjusting rasition of root(pelvis for most skeleton)
than by changing that of foot joints. Thus they adjusted tw position by projecting the root onto a
sphere on which the required position can be reached. Howtbegprojection to different spheres (one
for left leg and the other for right) at consequent frames @ause discontinuity. In [5](therein [12]
cited), an expedient scheme is adopted, which extendsrigéhlef femur and tibia instead of finding
more suitable positions for the root. This increases bathsthe and the structural complexity of the
motion data. Moreover, the varying length of a bone is nanfilly to many skinning and rendering
algorithms.

Our scheme for replacing the root is also simple and ensheesnoothness of its path. There are

four requirements for the root path:

e Root should be placed so that both hips are near from #asly positionsEasy positiormeans
that if the hip is put there, the ankle will be at its desiredifion. Say, if the current positions of
the hip and the ankle a8 and P respectively, and the desired position of the ankl®@{s

the easy position for the hip B = P +715A — PA,

e Root should be within botreachable spheresf the left and right. Areachable spheres a sphere
centered at the desired position of ankle with the radius afimum leg length. The efficiency
of adjustment of the knee angle to lengthen the leg vedtdr ¢ P) decreases dramatically
when the length exceeds% of the length[5]. Thus we need to control the length of thetéeg

avoid knee-popping.
e The change should be as small as possible.
e The change of the root velocity should be as small as possible

We represent the first two requirements by two objective tianse on the new positions of the root

PR
2 ~
Ou(PR,) =Y wyl|P" — (P" + PR, — PF)|? (2)
i=1
2 ~
OL(PR,) = wr||PF — PA|? 3)

=1
It is easy to see that Eq.(2) is for the easy positions of the &nd Eq.(3) is for the lengths of the legs.

The final objective function is the sum
O(Pytw) = O (Pyty,) + OL(PiL,) (4)

Eq.(4) is quite easy to optimize analytically

— pR R ()

new

where

2
1 - -
o = ; g7 (wa (P = P -y, (P4 — PIY) (6)
2
W= Z(wHi +wr,;)

In practice, the first two objectives work well. However stfairly easy to add the other two.

The ratio between the weights for leg length.) and easy positionsu) are determined by the
user. The ratio between left and right weights are deterthinethe constraint status. A leg is called
constrained if either its ankle or its ball is constrainetibdth legs are constrained, the weights are
distributed to both sides equally; = w, = 1. (Here we use the symbol af; andw- to describe the
relationship between bottw;, , wg,) and(wr,,wr,).) If one leg is free and the other is constrained,
say, left leg is constrained, and right one is free, we giveéh&l weight to the constrained leg, say,
w1 = 2 andwy = 0. However, as the case of determining the desired positidoodf for those single
constrained frames, we try to find a frame in which the othgrideconstrained by searching forward
and backward forf.3 frames. If one frame is found in either direction, we assigerpolated weights

for the frames in-between, such that the weights are smawth/ais determined by them in Eq.(6).

7 Inverse Kinematics Solver

Having obtained the desired positions for all related pit every frame, we compute the values of
the DOFs to meet the position requirements. A common modalhfman leg often consists of three
joints, the hip joint and the ankle joint have 3 DOFs, and theskjoint has one DOF. This kind of links

are widely used, and calldtbman-arm-likg(HAL) link (hip to shoulder, knee to elbow, and ankle to

wrist, hereby we use the names of the leg joints). The typiwalrse kinematics problem for such kind
9

of links is to find the 7 rotational DOFs (3 for hip, 3 for ankledal for knee), such that the ankle
position and the foot orientation satisfy the given requieats (6 constraints). There exists analytical
solution to the inverse kinematics problem for an HAL linlOJfL1].

In practice, a varied “arm-like” model is common [21]. And fihe simplified leg model, the
foot configuration is determined only by the direction of #mkle-to-ball vector, which needs two
DOFs rather than three at the ankle joint. Thus our new wvergfahe inverse kinematics problem
is to determine 6 rotational DOFs to satisfy 5 constraintem@ared to the original link, our inverse
kinematics solver leaves one DOF for the character to fit@mgvound, or to adjust the body posture.
It determines the required rotational parameters for hiygelk and ankle such that the ankle position

and the ankle-to-ball vector are configured to the desiraitipo and direction.

7.1 Human-Arm-Like Link Model

A typical HAL link consists of a 3-DOF hip joint, a 1-DOF kneaiijt, and a 3-DOF ankle joint. In our
model, the ankle is a 2-DOF joint: pitch and yaw. The kneetiatal axis is intuitive. The HAL link
model is shown in Fig.4a. The desired position of the ankld direction of the foot (ankle-to-ball)

vector are also shown in Fig.5.

7.2 Find knee angle

As some authors have addressed the HAL inverse kinematitéepn ([10] [11] [5]), we compute the
knee angldirstly, because it determines the length between the higtamenkle independently.

Those previous approaches need project the bones of thenleghe plane perpendicular to the
vector P4 — P linking the hip P and the desired ankle. However, we determine the knee angle

¢x In a more intuitive way, the algorithm need fgly the desiesubth of the leg|| P — PA||, without

the specific position requirement of the ankle. This makesstiiver more useful while being applied
to certain cases. For example, when the animator needs dnaotér to shorten its legs to anticipate a
collision.

Firstly, we project the femur and the tibia to the plangerpendicular to the axid/(,; in Fig.5(the
plane on which the tibia rotates). In the figure, the currexditipns of the two ends of the HAL link
are A and B respectively, the projected positions ate and Bp(Note that this is the general case. For
normal human beingd4 is on the plane and identical #p, so doesB.), and the knee(rotational joint)
position isO. So the relationship between the length of the||efBH and the knee anglex can be

described by the following equations

|AB| = \/I|ApBr|2 + (|AZp| + | BBp|)? @

|ApBp|* = ||OAp|* + |OBp|?* — 2| OAp|[|OBp|| cos ¢x (8)

Note that the distances between the two ends of the HAL likthe planer keep invariant when the
knee angle changes. And so do the lengths of the projectidhg dwo segments. Thus we can obtain

those constants from the current leg

lay = |Adp||
Ly = |OAp||
IpL = | BBp|
Ip) = |OBp|

11

If the desired length of the leg i, the knee angle can be solved as

h—G — 15—y — Uy

9)
2By

Fig.4b shows the modification of the length of the leg.

7.3 Find hip angles

-,

As in [5], we defineRot(d,b) as the minimum rotation that aligns the vectoto b. Then the hip
rotation R = Rot(PA — P, PA — PH). Asin Fig.4,P¥ and P4 are the positions of hip and ankle
respectively, and®4 is the desired position of the ankle. At last, we conveft into Euler angles and
choose the set of angles closest to the original one. Figawsthe result of rotating the hip such that

the ankle position meets the requirement.

7.4 To find ankle angles

The last step is to decide the two DOFs at the ankle, so thdbtitadirection makes the ball at the
desired position. Without losing generality, let the two EXbe rotations about X and Z axes conse-
quently. If the foot vector in ankle fixed(local) coordinatestem i7y = (v1, va, v3)T . After applying
the rotation about X axis by 4 and then the other one about Z axis $y, it becomes(in the same
coordinate system)
V1 COSYA — V2 SINY 4
VF1 = | w1 cosdasinia + vscosga costha — vssinga (10)
v1 Sin 4 sin 4 + v Sin @4 COSY 4 + V3 COS P A
If the desired position of the ball in the local coordinatsteyn isPp = (Bx, By, BZ)T, we choose

¢4 andiy 4 so that the components of; equal those of’z. (Note that the foot vector starts from the

origin point in the local coordinate system) 12

We solve the two angles as

. Ay — B
p = arcsi L2 L2

or

= arcsin@ (1)
(4

Aw = A(Bx,vl,vg)

B’lﬁ = B(BX7U17U2)

01/1 = B(Bx,’l)l,’l)g)

and
. Ay — By
= arcsi
ba C¢>
or
Ay + B
_ arcsin2e " 2¢ (12)
Cs
Ay = A(Bgz,vs,—v1sinty — vacos))
By, = DB(Bgz,vs,—v1siny — vy cos))
Cy = C(Bgz,v3,—v1sinty —vycos))
where

A(rys,t) = —rt
B(r,s,t) = sys24+t2—r?
C(r,s,t) = s+t

The details are given in Appendix A. Note that, according ¢o(EL) and Eq.(12) there can be four

sets of feasible solutions. Furthermore, becalu:ge thenwigetrical functions are periodic, for each

set of solutions, we can find infinite periodical solutionshé&l the algorithm is applied in practice,
we choose the solution that makes minimum adjustment torigimal rotation and within the rotation

limits for the ankle. In Fig.4d, we can see all the joints om likg meeting the requirement.

8 Results

Here we present some results of our algorithm. In our experimwe let allZ; be 6 frames (approxi-
mate one twentieth second for data on [21]), exdeptwhich is used to find average contact position
for joints of foot. We letl; be60 frames, which covers approximately a half second in our.data

In Fig.6, we illustrate the results of our algorithm. Fig#&ad Fig.6b represent a segment of the
motion, during which the character should keep a stance. aNesee that the foot plant algorithm
removes the noise in the original data (Fig.6a). Fig.6¢ agd# represent the process of taking-off of
a foot. It shows that the our foot plant eliminates the flaatithe foot before its taking-off.

Fig.7 shows the height of the left ball before and after tte# fdant. The motion data is a segment
of consequent jumping. Note that the height of the contasttipo of the ball is not the same before
and after a jump. We accept the height of theal ground, which is inferred from the neighbour

frames.

9 Discussion

In this paper, we solve the problem of planting foot for infpet motion data. The algorithm is fast,
robust, easy to implement and suitable for online appbcatiVe also introduce the analytical IK solver
to 6-DOF-for-5-constraints link for human arms or legs. Teérmination of knee angle in our solver

is superior to previous ones. Another importam differeminpbetween our method and the previous

approaches addressing the similar problem is that we usg¢egréisplacement of root position rather
than varying leg length to avoid the knee popping while smuhe IK problem, because we think it
is cumbersome to introduce varying bone length to motioa.déte use the similar scheme to ensure
the smoothness of our result motion as Kovar's method, butan@mooth interpolation for foot-vector
rather than using projection.

There are several problems left open. One is that at the stageoosing foot-plant, we do not
project those positions to the virtual ground. Because ieuzethe actual ground is also unknown, we
infer thelocal groundat each foot-plant. This also makes it possible to proces®mdata in which the
two feet are not at the same plane. Another is that our algorfor root position arrangement cannot
guarantee geachableroot position. The philosophy behind is that our main puepsgo recover faulty
raw or synthesis data. For this application, the ideal dldisplacement should not be too big, thus
the optimization scheme is adequate. However, an objefttivetion with non-linear leg length cost,
for exampleevf#%, would guarantee the reachable root at the price of contglekithe solution
expression or even non-existence of analytical solutidme fhird problem is that in fact we can find

out the heel for the model. Thus in our future application,cae deal with the heel joint as well as the

ball. Fig.8 shows us a virtual heel.

A Solution to the trigonometrical equation

We give the solution to Eq.(10) in Eq.(11) and Eq.(12). Beedfor trigonometrical equation with the

form of

r = scosy —tsiny (13)

15

we can rewrite it as

r+tsiny = scosy (14)

and replace both sides with their squares. Then we have

r? +t?sin® ¢ + 2rtsine) = s%(1 — sin® ¥) (15)

Solve the normal quadratic equation, we haiey. Read the first component in Eq.(10) in the form
of Eq.(13), thus we have Eq.(11).
About Eq.(12), we repeat what has been done for the third coemt in Eq.(10), and simplify it

with care, we find it as well has the form of Eq.(13), with

r = By
S = U3
t = —vpsiny — vy cos Y

References

[1] Michael Gleicher. Retargetting motion to new charastem SIGGRAPH '98: Proceedings of
the 25th annual conference on Computer graphics and inteatechniquespages 33-42, New

York, NY, USA, 1998. ACM Press.

[2] Andrew Witkin and Zoran Popovic. Motion warping. BIGGRAPH '95: Proceedings of the
22nd annual conference on Computer graphics and interadgehniquespages 105-108, New
York, NY, USA, 1995. ACM Press.

16

[3] Armin Bruderlin and Lance Williams. Motion signal pragsng. INSIGGRAPH '95: Proceedings

[4]

[5]

of the 22nd annual conference on Computer graphics andaotie techniquepages 97-104,

New York, NY, USA, 1995. ACM Press.

Lucas Kovar, Michael Gleicher, and Fred Pighin. Motioaghs. I'SIGGRAPH '02: Proceedings
of the 29th annual conference on Computer graphics andantese techniquegages 473-482,

New York, NY, USA, 2002. ACM Press.

Lucas Kovar, John Schreiner, and Michael Gleicher. Bkate cleanup for motion capture editing.
In SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurograpsyesposium on Computer

animation pages 97-104, New York, NY, USA, 2002. ACM Press.

[6] Anthony A. Maciejewski. Motion simulation: Dealing witthe ill-conditioned equations of mo-

[7]

tion for articulated figureslEEE Comput. Graph. Appl10(3):63—71, 1990.

C. Weiman. Inverse kinematics and geometric constidat articulated figure manipulation.

Master’s thesis, Simon Fraser University, 1989.

[8] Jianmin Zhao and Norman |. Badler. Inverse kinematicsitiaming using nonlinear programming

for highly articulated figures.

[9] James U. Korein and Norman |. Badler. Techniques for gtimey the goal-directed motion of

[10]

articulated structuredEEE Comput. Graph. Appl2(9):71-74, 76—-81, November 1982.

Deepak Tolani, Ambarish Goswami, and Norman |. BadReal-time inverse kinematics tech-

niques for anthropomorphic limb&raph. Models Image Proces$2(5):353-388, 2000.

17

[11] Jehee Lee and Sung Yong Shin. A hierarchical approattig¢cactive motion editing for human-
like figures. INSIGGRAPH '99: Proceedings of the 26th annual conference amiiter graph-
ics and interactive technigugepages 39-48, New York, NY, USA, 1999. ACM Press/Addison-

Wesley Publishing Co.

[12] Hyun Joon Shin, Jehee Lee, Sung Yong Shin, and Michaeicdr. Computer puppetry: An

importance-based approachCM Trans. Graph.20(2):67-94, 2001.

[13] Keith Grochow, Steven L. Martin, Aaron Hertzmann, anorah Popović. Style-based

inverse kinematicsACM Trans. Graph.23(3):522-531, 2004.

[14] Yan Gao, Lizhuang Ma, Zhihua Chen, and Xiaomao Wu. Motiormalization: the preprocess
of motion data. I'WVRST ’05: Proceedings of the ACM symposium on Virtual reatiftware and

technology pages 253—-256, New York, NY, USA, 2005. ACM Press.

[15] Charles Rose, Michael F. Cohen, and Bobby Bodenheixehs and adverbs: Multidimensional

motion interpolation/lEEE Comput. Graph. Appl18(5):32—40, 1998.

[16] Seyoon Tak and Hyeong-Seok Ko. A physically-based omotetargeting filter. ACM Trans.

Graph, 24(1):98-117, 2005.

[17] Michael Gleicher. Motion editing with spacetime cama#tits. InSI3D '97: Proceedings of the

1997 symposium on Interactive 3D graphigsges 139—ff., New York, NY, USA, 1997. ACM

Press.

18

[18] Katherine Pullen and Christoph Bregler. Motion captassisted animation: texturing and syn-
thesis. INSIGGRAPH '02: Proceedings of the 29th annual conferenceamyititer graphics and

interactive techniqguegages 501-508, New York, NY, USA, 2002. ACM Press.

[19] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, JessieHgins, and Nancy S. Pollard. Interac-
tive control of avatars animated with human motion dataSIBGRAPH '02: Proceedings of the
29th annual conference on Computer graphics and interadiéchniquespages 491-500, New

York, NY, USA, 2002. ACM Press.

[20] Okan Arikan, David A. Forsyth, and James F. O’Brien. Maotsynthesis from annotation8CM

Trans. Graph,. 22(3):402-408, 2003.

[21] CMU. Carnegie-mellon motion capture database.

[22] Bodik. Automatic footplant dectection inside flmoviewTechnical report, Student Summer

Project, 2000.

19

Figure 1: The lower part of the skeleton with DOFs for eachtjoi

Ankle speed and constraint flags

Ankle—ground contact detection

0.6~
0.5~
04l —— Speed
== Height
0.3 Flag
Original Flag

0.2 Threshold
0.1

o~

-0.1 L L L L L L |
740 760 780 800 820 840 860 880
Frames

Figure 2: To determine whether the ankle is constrained.

20

©

T
Before

= = = After Algorithm1

—— After Algorithm2

Ankle Height

! ! ! ! ! !
740 760 780 800 820 840 860 880
Frames

Figure 3: To find the desired positions for constrained gint

pAo

pBoO

(a) HAL link and the (b) After adjustment (c) The result of (d) The final ad-
desired position of an- of the knee angle ~ changing parametersjusted link.

DA pB
Kle P and ballP for hip to align the

position of ankle

Figure 4: A Human-Arm-Like Link
21

Figure 5: Computation of knee angle

e =

(a) (b) (c) (d)
Figure 6: Result of foot plant

(a) and (c) are frames rendered from original data, whilefta) (d) are results from processed data.

22

5 T
- = -Before
— After

P
'm
1 [
I 1
3.5 Y fl N

Il '

r ' '

H '

. 1

!

i '

Left Ball Height
w
T

:
i 1 1
\ :
|k :
1 F i
2.5 ! I H . s Bl
I \ 1 |
Y I |k
g ' U '
2 '] H : ' bl
I {1 :
] Jg J '
' '] d
1 N ['
15 ! | : ' E
S -) .
S o o ‘e — b
v
1 1 1
100 200 300 400 500 600 700 800

Frames

Figure 7: Height of left ball before and after foot plant.

Figure 8: The inferred heel.
This figure shows the heel we infer from the motion data. WeHig character a little to show the

virtual heel is approximately parallel to the ground.
23

Algorithm 1 To find desired positions of foot joints at franié
IsFixed(/) tells whether joint/ is fixed at both this frame and the previous one; BeingFixXgtélls whether

joint J is fixed at current frame and free at the previouse ofyeand.J; represent two foot joints, one is ankle
and the other is ball or vice versa.

1: v — PP — Pl-A

2: if IsFixed(Ankle) And IsFixed(Balljhen

3 P~ PA,PP—PB,

4: else iflsFree(Ankle) And IsFree(Balthen

5. PA— PA PP — PB

6: else iflsFixed(/y) And IsFree(/;) then

7. P> — P’ andfindP/" according tai¢: and P

8: else ifBeingFixed(y) And IsFree(;) then

K3 =1

9. P~ o Z;+NF PJ?’”, whereN equals tal; or let ., y,. be the last frame in a row at which is

constrained.

10: Find P/* according tas¢ and P;°

11: else ifBeingFixed(/y) And IsFixed(/;) then

12: Pi‘h — le_ll

13: 0} « AverageOnSphere(PP — PA ..., PZ-ENF — P;iNF), whereNp equals tal; or let F;; y,. be the
last frame in a row at which both ankle and ball are constdhine

14: Find P/ according tas; and P;*

15: else ifBeingFixed(Ankle) And BeingFixed(Balthen

16: PP — ﬁ Z;J:fg PP, whereNj equals toL, or let F; vz be the last frame in a row at which ball
is constrained.

17: v; « AverageOnSphere(PP — PA,... . PE , — PA

A
N A i+N;})' whereNg; equals toL, or let F;, ya be

the last frame in a row at which both ankle and ball are coimstch
18: Find P according tos; and P o4
19: end if

Algorithm 2 To adjust positions of foot joints for single constraineanfie F;

Spherelnterp(t, vy, v1) is aC? smooth interpolation function between andv; .

1: Search forward . frames for double constrained framig, ... If fails, Np «— 0
2: Search backward, frames for double constrained framie_ . If fails, Ng < 0
3. if Ngp > 0And Ng = 0 then

4 vp — Py, — Py,

5 UG «— PZ-A - PP

6: U« Spherelnterp(%,v},vé)

7: else if Np = 0 And N > 0 then

10: U« Sphere[nterp(]z—f, UB, U¢)
11: else if Np > 0 And Ng > 0 then
122 vp < Piiy, — Pin,

13: vp « P{iNB — PENB

14: v« PA - PP
15: 0] «— Spherelnterp(%,v}, Ue)
16: vy «— Sphere[nterp(]z—f, UB, V)
17 U« Spherelnterp(ﬁ, U3,71)
18: else if Np = 0 And Ng = 0 then

19: No change will be made.

20: end if

21: Adjust the position of the free joint according to that of ttenstrained one and

25

