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1 Introduction

1.1 Excuses
Davidson (following Austin (Austin, 1956–7)) considers the following pattern of rea-
soning.

‘I didn’t know that it was loaded’ belongs to one standard pattern of ex-
cuse. I do not deny that I pointed the gun and pulled the trigger, nor that
I shot the victim. My ignorance explains how it happens that I pointed
the gun and pulled the trigger intentionally, but did not shoot the victim
intentionally. . . . The logic of this sort of excuse includes, it seems, at least
this much structure: I am accused of doing b, which is deplorable. I admit
I did a, which is excusable. My excuse for doing b rests upon my claim
that I did not know that a = b. (Davidson, 1980d, p. 109)

Davidson, then, is arguing for two things:

1. that equalities between actions are meaningful, and

2. that they are used in common-sense reasoning about action.

Our goal in this article will be to investigate these claims by presenting a logic
which will allow us to formalise this sort of equational reasoning, which will turn out
to be powerful and interesting. In order to formalise the equational reasoning we need
a background logic for reasoning about actions: we will use ideas derived from Reiter’s
work on actions (Reiter, 2001).

1.2 States and Possible Worlds
Reasoning about action has two sides, which we will, following philosophical termi-
nology, call the intensional and the extensional. The intensional side is the agent’s view
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of actions: what actions are performed, in what sequence, and so on. It is this view of
actions which is sometimes referred to as the “knowledge level” (Newell, 1982). We
can think of this view as giving us a labelled transition system: the nodes of the system
will be called states (in AI terminology, situations), the arrows will be, in philosophical
terminology, action tokens, and the arrows will be labelled with action types (for the
type/token distinction, see Davidson (Davidson, 1980c; Davidson, 1980b), Hornsby
(Hornsby, 1999; Hornsby, 1998), and Wetzel (Wetzel, 1998)). Our actions will be
deterministic – that is, there will be at most one action token of a given action type
starting from a given state.

However, as well as their intensional aspect, actions also have an effect on the
world. This is the extensional side of action and it will be important also to talk about it:
for example, the misfortune in the above scenario stems directly from the gap between
the intensional and the extensional. We will represent the extensional side of actions
by propositional assertions about states. Our underlying logic will, following Reiter,
be classical, so “the way the world is” can be described by assigning truth values to
propositions: that is, by what is called, in logical jargon, a possible world, and we can,
therefore, think of the effect of an action as a function from possible worlds to possible
worlds.

Now actions, as Reiter emphasises (Reiter, 2001), are not usually performable in all
circumstances: furthermore, whether an action is performable or not will, in general,
depend on circumstances unknown to the agent (for example, I may try to open a door,
not knowing whether it is open or closed). So whether an action is performable or not
is a matter of the extensional side of things, in which we are representing actions as
functions from possible worlds to possible worlds: and we can conveniently represent
this by having these functions be partially defined. An action will be performable in
precisely those worlds in which the corresponding function is defined.

Extensions and intensions will be related as follows. States encode intensional
information, and such information will, in general, only yield partial knowledge of the
world: thus, each (intensional) state will, in general, correspond to several different
possible worlds. However, the information that we encode in states will be part of the
world, so that each possible world will correspond to a unique such state. So, each state
will have, associated to it, a set of possible worlds, and these sets of possible worlds
will be disjoint. We will talk of a possible world x at a state s, and we will write this
x : s.

1.3 Formalism
1.3.1 Davidson

Let us suppose, then, that, for each state s, we have variables available, which we will
write x : s, and which will range over partial worlds at s. Suppose we have an action

α between states s and t (we write this s
α %%

t ): as we have argued above, we can
regard this as a partial function from possible worlds at s to possible worlds at t. We
can, then, write α in the form α(x : s), and view this function as delivering a result of
type t.
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1.3.2 Reiter

As we have said, the background treatment for action will be Reiter’s. The fundamental

problem for Reiter is what is called regression: that is, given a transition s
α %%

t
between situations s and t, and given a proposition P at t – what Reiter would describe
as a fluent – the regression problem is to find a proposition P ′ at s which which will be
true iff P is true at t. In our terms, this regression operator will be given by substitution:
P can be regarded as a function P (x : t) from possible worlds at t to truth values, the
action as a partially defined function α(x : s) from possible worlds at s to possible
worlds at t. The regression operator will be given by substitution: the proposition
P ′ will be the function P (α(s)), defined on the possible worlds at s where α can be
executed.

There is another important concept, known as progression: that is, given an action

s
α %%

t , and given a theory P describing the state s, find the theory Q describing
t. Reiter does, in fact, use this notion: however, his insight was that regression is
technically simpler to work with, and that progression can be characterised in terms of
it.

We shall, however, depart from Reiter in not identifying, as he does, states with
sequences of actions; the intensional side of our system can be any labelled transition
system, rather than the tree freely generated by action types which Reiter uses. We
will, rather deliberately, use the word ‘state’ rather than ‘situation’, in order to avoid
confusion.

2 The System

2.1 Primitives
As we describe above (p. 2), we describe actions by means of partially defined func-
tions which take possible worlds, at the state before the action is performed, to possible
worlds at the state after the action is performed.

We will, loosely following Scott (Scott, 1979), use a partially defined equality re-
lation to reason about terms which may be undefined. Our intended notion of partial
equality will be as follows:

Definition 1. Let α(x) and β(y) be two partial functions whose values are possible
worlds at the same tuple of states: then

α(x) l β(y)

is true at worlds x and y iff

1. α and β are both defined at those worlds, and

2. the values of α and β are equal.

Note that we do not give truth values to such equalities when either α(x) or β(y)
are undefined: we are not doing many valued logic here.

So, if we have two actions, α(x : s) and β(y : t), whose values are possible worlds
at the same state; then α(x) l β(y) is a partially defined binary relation between
possible worlds at different states, s and t. Clearly, if we go on like this, we will need
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n-ary relations between possible worlds: it is easiest to work with n-tuples of worlds,
of the form

〈x1 : s1, . . . , xn : sn〉,

and we shall write such a tuple, in boldface, as x : s, or, where the states are clear from
the context, as x. We will also be interested in k-tuples of actions

〈α1(xi1), . . . , αk(xik
)〉,

or α(x), where each of the αi will have an argument which is one of the xi.
Notice that the equality f(x) l f(x), which we shall abbreviate to f↓, is true iff

the functions of f are all defined at x.

2.2 Formulae, Contexts, and Sequents
In the previous section, we used sets of variables together with constraints given by
partially defined equalities. We call such a collection of data a context:

Definition 2. A context, ϑ(x), will consist of the following data:

1. a tuple of variables, x : s, and

2. a set of partial equations, α(x) l β(x).

We will write contexts in the form ϑ(x), where x is the tuple of variables involved.
From the semantics for partial equations given in Definition 1, we get a notion of
semantic validity:

Definition 3. We say that an entailment ϑ(x) l̀ ϑ(x) is semantically valid iff, for each
interpretation of the functions occurring in ϑ and ϑ′ as partial functions, whenever all
of the members of ϑ are true then so are all of the members of ϑ′.

An axiom system for this notion of entailment can be found in (Palmgren & Vick-
ers, 2005, pp. 4ff.): we will assume that this, or some other equivalent axiomatisation,
is used, but the details will not concern us.

Contexts will represent the domains over which the free variables of formulae are
supposed to range; we will write them as ϑ(x) or, occasionally, as {x|ϑ(x)} for clarity.
The only propositions that we have so far defined are those constructed out of our
partial equalities. But it makes sense also to introduce relations P (x|ϑ(x)), where x
is, as before, a k-tuple of variables, and where ϑ(x) is a set of equations of the form
α(x) l β(x): such a relation will be defined on the subset of values for which the
members of ϑ(x) are all true.

We define formulae with specified contexts according to the rules in Table 1, and
we also define sequents. Here Γ(x|ϑ(x)) and ∆(x|ϑ(x)) stand for sets of formulae, all
of which have domain x|ϑ(x). Note that a sequent always has a specified context, and
that the formation rules for sequents ensure that the relations in a sequent are defined
over all of its context.

2.2.1 Substitution

We also have a notion of substitution, defined likewise in Table 1: if we have a pred-
icate P , defined on the context ϑ′(y), and if we have an appropriately typed tuple of
functions α – that is, the target of α should have the same type as y – then we can
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formulae
>(x|ϑ(x)) ⊥(x|ϑ(x))

P (x|ϑx)

¬P (x|ϑx)

P (x|ϑ(x)) Q(x|ϑ(x))

(P ∧Q)(x|ϑ(x))

P (x|ϑ(x)) Q(x|ϑ(x))

(P ∨Q)(x|ϑ(x))

P (x,y|ϑ(x))

∃y.P (x|ϑ(x))

P (x,y|ϑ(x))

∀y.P (x|ϑ(x))

substitution
ϑ(x : s) l̀ ϑ′(α(x : s) : t) P (y : t|ϑ′(y))

P (α(x : s))|ϑ(x))

sequents
Γ(x|ϑ(x)) ∆(x|ϑ(x))

ϑ|Γ ` ∆

Table 1: Formation Rules for Formulae and Sequents

substitute α to obtain a predicate on the domain ϑ(x); we can write this, in the usual
way, P [α(x)/y], but usually the more informal notion P (α(x)) will suffice.

Substitutions, however, have to be well defined: in the case we are considering,
this will be so provided that α is well defined on ϑ(x) and that α(x) is in the domain
of definition of P (namely, {y|ϑ′(y)}) for each x with ϑ(x). The following lemma,
whose proof follows easily from the definitions, shows us how to represent these con-
ditions as an entailment:

Lemma 1. Given a predicate P defined in context ϑ′(y), and an entailment of contexts

ϑ(x : s) l̀ ϑ′(α(x : s) : t).

Then P [α(x)/y] is well defined on {x|ϑ(x)}.

It is worth pointing out that there are degenerate, but significant, cases of the sub-
stitution rule. The first is where α is trivial: if α is the identity, then we start with a
predicate P (x|ϑ(x)), and, given the side condition ϑ′(x) l̀ ϑ(x), substitution yields
a predicate on the context x|ϑ(x). We write the result of this sort of substitution in the
form

P (x|ϑ(x))|ϑ′(x)

The second case is where α is simply the projection onto a sub-tuple of variables:
in this case, we write

P (x|ϑ(x))|ϑ(x),ϑ′(x,y)

2.3 The Sequent Calculus
The sequent calculus is given in Table 2.
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ϑ′(x) l̀ ϑ(α(x)) ϑ(y) | Γ(y) ` ∆(y)
subs

ϑ′(α(x)) | Γ(α(x)) ` ∆(α(x))

ϑ l̀ α(x) l β(y) ϑ|Γ[α(x)/z] ` ∆[α(x)/z]
rep

ϑ|Γ[β(y)/z] ` ∆[β(y)/z]

ϑ, α l β | Γ|ϑ,αlβ ` ∆|ϑ,αlβ
======================= |

ϑ, α↓, , β↓ | α l β,Γ ` ∆
Ax

ϑ(x)|P (x|ϑ(x)) ` P (x|ϑ(x))

ϑ, α↓|Γ ` ∆
LW

ϑ, α↓|Γ, P (α(x)) ` ∆

ϑ, α↓|Γ ` ∆
RW

ϑ, α↓|Γ ` Q(α(x)),∆

ϑ|Γ, P, P ` ∆
LC

ϑ|Γ, P ` ∆

ϑ|Γ ` Q,Q,∆
RC

ϑ|Γ ` Q,∆

⊥ L
ϑ|Γ,⊥ (α(x)) ` ∆

>R
ϑ|Γ ` >(α(x)),∆

ϑ|Γ, P1 ` ∆ ϑ|Γ, P2 ` ∆
∨L

ϑ|Γ, P1 ∨ P2 ` ∆

ϑ|Γ ` ∆, Q1, Q2
∨R

ϑ|Γ ` ∆, Q1 ∨Q2

ϑ|Γ, P1, P2 ` ∆
∧L

ϑ|Γ, P1 ∧ P2 ` ∆

ϑ|Γ ` Q1,∆ ϑ|Γ ` Q2,∆
∧R

ϑ|Γ ` Q1 ∧Q2,∆

ϑ, Γ ` Q,∆
¬L

ϑ|Γ,¬Q ` ∆

ϑ|Γ, P ` ∆
¬R

ϑ|Γ ` ¬Q,∆

ϑ(x), ϑ′(x,y) | Γ(x)|ϑ(x),ϑ′(x,y), P (x,y) ` ∆(x)|ϑ(x),ϑ′(x,y) ∃L
ϑ(x) | Γ(x), ∃y.P (x,y|ϑ(x), ϑ′(x,y)) ` ∆(x)

ϑ(x) l̀ ϑ′(x,γ(x)) ϑ(x) | Γ(x) ` Q(x,γ(x)),∆(x)
∃R

ϑ(x) | Γ(x) ` ∃y.Q(x,y|ϑ(x), ϑ′(x,y)), ∆(x)

ϑ(x) l̀ ϑ′(x,γ(x)) ϑ(x) | Γ(x), P (x,γ(x)) ` ∆(x)
∀L

ϑ(x) | Γ(x), ∀y.P (x,y) ` ∆(x)

ϑ(x), ϑ′(x,y) | Γ(x)|ϑ(x),ϑ′(x,y) ` P (x,y),∆(x)|ϑ(x),ϑ′(x,y) ∀R
ϑ(x) | Γ(x) ` ∀y.P (x,y),∆(x)

ϑ(x)|Γ(x) ` P (x),∆(x) ϑ(x)|Γ′(x), P (x) ` ∆′(y)
cut

ϑ(x)|Γ(x),Γ′(x) ` ∆(x),∆′(x)

Table 2: The Davidsonian Sequent Calculus
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3 Semantics

3.1 Semantic Values
Semantics for our calculus will be as follows.

Definition 4. A Davidsonian pre-model for a transition system Σ will consist of the
following:

1. for each state s, a set JsK of possible worlds at s,

2. for each action s
α %%

t , a partial function JαKs : JsK → JtK.

Definition 5. Given a Davidson pre-model, we can define semantic values for individ-
ual partial equalities:

Jα(x : s) l β(y : t)K =
{
〈x ∈ JsK, y ∈ JtK〉

∣∣
JαK is defined at x,

JβK is defined at y,

JαK(x) = JβK(y)
}

and also for contexts:

Jα(x) l β(x)K =
⋂

Jαi(xi) l βi(x′
i)K

where the intersection is taken over all the equations in the context

Having defined semantic values for contexts, we can now define models:

Definition 6. A Davidsonian model is a Davidsonian pre-model together with, for each
primitive relation P (x|ϑ(x)), a set of possible worlds

JP (x|ϑ(x))Kϑ(x) ⊆ Jϑ(x)K

We define semantic values for composite formulae in Table 3; again, we omit def-
initions which can be recovered from the duality of the system. The definition of se-
mantic validity is now routine.

Definition 7. Let ϑ(x)|Γ(x) ` ∆(x) be a sequent. Then, given a model M , define the
semantic value of Γ to be

JΓ(x)Kϑ(x) =
⋂

P∈Γ

JP (x)Kϑ(x)

and that of ∆ to be

J∆(x)Kϑ(x) =
⋃

Q∈∆

JP (x)Kϑ(x)
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J>Kϑ(x) = Jϑ(x)K

JP (α(x)|ϑ′(x))Kϑ′(x) =
{

x ∈ Jϑ′(x)K
∣∣α(x) ∈ JP (y|ϑ(y))Kϑ(y)

}
JP ∧QKϑ(x) = JP Kϑ(x) ∩ JQKϑ(x)

J¬P Kϑ(x) = Jϑ(x)K − JP Kϑ(x)

J∃y.P (x,y
∣∣ϑ(x), ϑ′(x,y))Kϑ(x) =

{
x
∣∣∃y ∈ JtK . 〈x,y〉 ∈ JP (x,y

∣∣ϑ(x, ϑ′(x,y)))Kϑ(x),y,ϑ′(x,y)

}

Table 3: Semantic Values

and we say that ϑ(x)|Γ(x) ` ∆(x) is valid in M iff

JΓ(x)Kϑ(x) ⊆ J∆(x)Kϑ(x)

Finally, we say that our sequent is semantically valid iff it is valid in all models: we
write

ϑ(x)|Γ(x) � ∆(x)

3.2 Soundness and Completeness
We can prove the following:

Theorem 1 (Soundness for the Davidsonian system). The calculus of Table 2 is sound
for the semantics of this section.

Theorem 2. The semantics of this section is complete: that is, if a sequent is semanti-
cally valid, there is a proof according to the system of Table 2.

Proofs are routine, but too large for this paper.

4 Applications

4.1 Davidson’s Example
Example 1 (Davidson). We first deal with Davidson’s example: we write his proposi-
tions in our logic, using partial equality and being careful to stipulate that actions are
performable. Let sh stand for ‘shoot’ and pt stand for ‘pull trigger’.

sh(x) l sh(x), pt(x) l pt(x) | loaded(x) a` pt(x) l sh(x) (1)

We also describe the effects of shooting as follows:

sh(x) l sh(x) | alive(x) ` dead(sh(x)) (2)

Here we assume that loaded, alive and dead are predicates which are defined for all values
of x. sh and pt, on the other hand, are actions which may not be performable in all
circumstances (there may not be a gun to hand, for example), and thus these entailment
have non-trivial contexts.

We prove the unfortunate consequence in Table 4.
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(1)
ϑ2 | loaded(x) ` pt(x) l sh(x)

(2)
ϑ2 | alive(x) ` dead(sh(x))

subs
ϑ1 | alive(x)|ϑ1

` dead(sh(x))|ϑ1 repl
ϑ1 | alive(x)|ϑ1

` dead(pt(x))|ϑ1 |
ϑ2 | sh(x) l pt(x), alive(x) ` dead(pt(x))

cut
ϑ2 | loaded(x), alive(x) ` dead(pt(x))

We abbreviate the context sh(x)↓, pt(x)↓ to ϑ2, and pt(x) l sh(x) to ϑ1.
Note that, by symmetry and transitivity, we have ϑ1 l̀ ϑ2.

Table 4: The Davidsonian Scenario

4.2 Action Progression
We consider now the problem of what Reiter calls action progression: that is, given

an axiomatisation of a state of affairs at a situation s, and an action s
α %%

t , to find
an axiomatisation of the corresponding state of affairs at t. We will suppose that the
axiomatisations in question can be represented by single propositions (the treatment
could be extended to sets of propositions, but at a considerable cost in bureaucracy and
little gain in insight).

First a definition, following (Lawvere, 1969).

Definition 8. Suppose that we have tuple of actions s
α &&

t , a context ϑ(y) at t, and
a proposition P (x) in the context ϑ(α(x)),α↓. Then define

(∃αP )(y|ϑ(y)) = ∃x.P (α(x)|ϑ(y),y = α(x))

The proof of the following is routine.

Lemma 2. Given, besides the above, a proposition Q(y|ϑ(y)) in the context ϑ(y : t),
the following rules are admissible:

ϑ(α(x)),α)↓ | P (x : s) ` Q(α(x : s) : t)
===============================

ϑ(y : t) | (∃αP )(y : t) ` Q(y : t)

Now we argue as follows. Consider a Davidsonian model of our theory. Suppose
that we have a proposition P at s which axiomatises some theory of how things are

at s, and suppose that we have an action s
α %%

t between s and t. We are interested
in how things are at t after α, given that P is true at s: we may assume (restricting P
if necessary) that α is performable in all of the worlds in the domain of definition of
P . Then, given a possible world x at s at which α is performable, a proposition Q at
t (defined on all of the worlds which result from executing α) is true in the possible
world resulting from the execution of α iff Q(αx) is true at x: and this will be the case
in all of the possible worlds for which P is true iff, in our model,

JP (x)Kϑ(x) ⊆ JQ(α(x))Kϑ(x)αlα
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Now this will be the case in all models iff

ϑ(x) | P (x) ` Q(α(x))

However, by Lemma 2, this is equivalent to

ϑ(x) | ∃α.P (x) ` Q(y);

so, ∃α.P (x) is a proposition at t which describes the set of possible worlds resulting
from the execution of α in all of the worlds for which P is true at s. That is, ∃α.P (x)
is, in Reiter’s terms, the progression of P by the action α. There is a more formal
treatment of this argument in (White, n.d., §4.1).

5 Conclusions

5.1 Comparison with Reiter’s System
It may help to compare our system with Reiter’s. His system has very similar notation:
propositions about states have an argument place for holding state-related information
(situations for him, possible worlds for us), and actions are represented as functions.
However, there are differences: as well as the difference between situation arguments
and our possible world arguments, his primitive relations have a single situation argu-
ment, whereas we allow genuine relations between different possible worlds at each
state. He does use equalities between actions (see, for example, the formulae on (Re-
iter, 2001, pp. 28f)), but these are equalities between action tokens rather than between
the values of the functions representing actions, as ours are. He represents regression
more or less explicitly, using a defined operator on a fragment of his system, and this
is more or less the same treatment as ours. However, he has no explicit progression
operator: he has a criterion for when a particular formula is a progression of another
formula, but he does not have possible world variables, and so cannot, as we do, define
progression in terms of quantification.

5.2 Davidson
Davidson uses the admissibility of equations between actions to argue for some ambi-
tious theses to do with the metaphysics of action: briefly, he wants action tokens to be
first-class individuals because, according to Quine (Quine, 1960; Quine, 1969c; Quine,
1969a), the admissibility of equational reasoning about entities of a certain sort is the
chief criterion for those entities to be first-class individuals. It is not clear that our work
supports the conclusions that Davidson wants to draw: our system handles the sort of
reasoning that Davidson uses as evidence, but it uses equations, not between action
tokens, but between possible worlds.

5.3 The Theoretical Background of this Work
It might not be immediately clear how the sequent calculus was arrived at: it is a fairly
complex thing, and writing down the rules is trickier than one might expect. However,
the paper (White, n.d.) was actually written first: it was an attempt to understand
Reiter’s work, using the tools of fibred category theory, and Lemma 2 was one of the
key ingredients. It turned out that, in order to have a proof theory the actions needed
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more structure than Reiter was using: this structure, when made suitably concrete, was
precisely the equational reasoning that Davidson uses.

There is a moral here. The phenomenology of action is surprisingly difficult: we
have few reliable intuitions about the structure of our actions. A good way of proceed-
ing is to start with what we understand better, namely logic, and see if it is possible
to construct a logic with good theoretical properties using some treatment of action as
a basis. The mathematical structures that one has to postulate in order to set up such
a logic may well have something significant to say about action: they should not, of
course, be postulated on mathematical grounds alone, but the structures that mathe-
matics suggests to us are certainly worth investigating to see if they might conceivably
correspond to anything in reality.
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