
Justifying Usability Design Rules Based on a
Formal Cognitive Model

ISSN 1470-5559

RR-05-07 December 2005 Department of Computer Science

Paul Curzon and Ann Blandford

Justifying Usability Design Rules Based on a Formal Cognitive

Model

Paul Curzon1 and Ann Blandford2

1 Department of Computer Science, Queen Mary, University of London,
Email: pc@dcs.qmul.ac.uk,

2University College London Interaction Centre,
Email: a.blandford@ucl.ac.uk

Abstract

Interactive systems combine a human operator and computer. Either may be a source
of error. Verification processes used must ensure the correctness of the computer, and
minimize the possibility of human error. In human-centered design allowance is made for
human frailty. One such approach is to follow design rules. Design rules, however, are often
ad hoc. We examine how a formal cognitive architecture, encapsulating results from the
cognitive sciences, can be used to justify design rules both semi-formally and formally. The
cognitive architecture was developed by formalising cognitively plausible behaviour, based
on results from cognitive psychology.

Keywords: Design rules, Formal verification, Human error, Formal cognitive architecture,
Human-centered design, HUM.

1 Introduction

Interactive computer systems are systems that combine a human operator with a computer
system. Such systems need to be both correct and usable. With the increasing ubiquity of
interactive computer systems, usability becomes increasingly important because minor usability
problems can scale to having major economic and social consequences. Usability has many
aspects. In this paper, we focus on one aspect: “user error”. Humans are naturally prone to
error. Such error is not predictable in the way the behaviour of a faulty computer may be.
However, much human error is systematic and as such can be modelled and reasoned about.
Changes to a design can also eradicate or at least reduce the likelihood of systematic human
error occuring. It is therefore potentially within the scope of verification methodologies.

Human-centred design aims to reduce user error and other usability problems by designing
systems in a way that makes allowance for human frailty. Techniques are needed for the evalua-
tion of systems to determine whether they are so designed. A popular approach is to adhere to
informal lists of design rules (also referred to as design principles and usability principles) that
can then also be used as the basis for review based evaluation. Well known examples of general
design / evaluation rules include Nielsen’s Heuristics [32], Shneiderman’s Golden Rules [42] and
the Principles of Dix et al [16]. Such lists normally either give a small number of high level
heuristics, leaving much to the craft skill of the designer or evaluator, or they consist of many
more specific rules, for example tied to a particular graphical user interface style.

Some sets of design rules focus on particular aspects of design. For example, those of
Leveson et al [27] focus specifically on avoiding mode related human error. They developed

1

approximately 50 design criteria known to reduce the likelihood of human error; for example,
indirect mode transitions (transitions that are not the result of operator action) should be
eliminated where possible.

There is much overlap in the different rule sets. For example one of Nielsen’s Heuristics [32],
related to rules we consider, concerns the visibility of system status: The system should always
keep users informed about what is going on, through appropriate feedback within reasonable
time. Similarly Shneiderman has a golden rule on offering informative feedback: For every
operator action, there should be some system feedback. For frequent and minor actions the
response can be modest, while for infrequent and major actions the response should be more
substantial.

Nielsen’s Heuristics are based on a combination of expert knowledge and an empirical ap-
proach to refine the rules. Factor analysis of 249 usability problems was used to improve the
explanatory power of an early version of the rules. Similarly Shneiderman’s rules are obtained
reflectively from experience. This contrasts with Dix’s Principles for usability [16], where the
authors highlight the fact that the rules are theoretically derived from psychological, compu-
tational and sociological knowledge. Our approach in this paper follows the tradition of Dix,
working from formal models.

Design rules, when used in the evaluation/verification stage, are generally applied infor-
mally, relying on the expert evaluator’s expertise. Formal verification techniques have also been
suggested as a way to verify that individual systems meet properties corresponding to design
rules (see for example [7]). However, formal verification, even using automated systems, can
be time consuming and requires mathematical skill that usability analysts may not possess. It
therefore may not always be practical within the design cycle. Formal techniques can, however,
be used in lightweight ways outside the design cycle to address problems with design rules. For
example, formal specification of them and/or the contexts in which they are applicable may
be useful. Leveson et al [27] note, for example, that whilst most of their rules were based on
experience, some were derived from completeness aspects of a formal state machine model of
existing criteria.

One potential problem with lists of design rules, especially where based on the experience
of HCI experts, is that they can be ad hoc and are sometimes apparently contradictory. The
contexts in which they apply may not always be clear. Formal specifications have the potential
to unravel such contradictions [17]. A further use of formalized design rules is that they can be
verified against claims about their purpose. That is: their use can be justified. These are the
concerns of this paper.

1.1 Contribution

The main contribution of this paper is to show how (well-known) usability design rules, designed
to prevent systematic user error, can be justified in terms of a formal specification of aspects of
human cognition (or “cognitive architecture”). More specifically:

• We show how principles of cognition based on results from the cognitive sciences can form
the basis of a formal cognitive architecture that is amenable to formal proof.

• We show how a variety of realistic potential erroneous actions emerge from the behaviour
specified by a very simple cognitive architecture using poorly designed systems but do not
occur with other alternatively designed systems.

• We derive design rules from the architecture. Our contribution is not the rules themselves,
but rather the demonstration that they can be justified from a formalisation of a small set

2

of principles. We use the fact that the rules are grounded in a formal model of cognition
to informally explore the scope of application of the rules. This part of the approach is
semi-formal: we use informal high-level argument about a fully formal model, as opposed
to the explicit application of inference rules of the underlying logic as in the next point.

• We then go on to show how design rule correctness theorems can be stated and fully
formally proved with respect to a cognitive architecture, using as an illustrative example
a design rule for eliminating one particular class of error.

1.2 Overview of Paper

We first outline related work in Section 2 to give the context of this work with respect to other
formal approaches to HCI. We then define, in Section 3, simple principles of cognition. These
are principles that generalise the way humans act in terms of the mental attributes of knowledge,
tasks and goals. The principles are not intended to be exhaustive, but to demonstrate the
approach. They cover a variety of classes of cognitive behaviour of interest related to the motor
system, simple knowledge-based cognition, goal-based cognition, etc. They do not describe
a particular individual, but generalise across people as a class. They are each backed up by
evidence from HCI and/or psychology studies.

After outlining the higher-order notation used in the paper in Section 4, we describe a
generic formal cognitive model of these principles in higher-order logic in Section 5. By
“generic” we mean that it can be targeted to different tasks and interactive systems. Strictly
this makes it a cognitive architecture [21]. In this paper we will refer to the generic model as a
cognitive architecture and use the term cognitive model for a version of it instantiated for a given
task and system. The underlying principles of cognition are formalised once in the architecture,
rather than having to be re-formalised for each new task or system of interest. Combining the
principles of cognition into a single architecture rather than formalising them separately allows
reasoning about their interaction, and about how multiple minor errors might interact.

In Section 6, we show how cognitively plausible behaviour, whilst often also leading to appro-
priate user action, can in specific circumstances be considered as resulting in erroneous actions.
We discuss the circumstances in which such erroneous actions can result by reasoning from the
formal cognitive architecture. In particular, we relate them to Hollnagel’s error phenotypes [23]
as presented by Fields [19]: a classification scheme for erroneous action. In doing so, we identify
cognitively plausible ways in which the erroneous actions could arise. We show that a wide
variety are covered from even a minimal formal definition of cognitively plausible behaviour,
demonstrating the generality of the approach.

In Section 7, we show how we can semi-formally derive design rules from the formal
cognitive architecture that, if followed, ensure that the erroneous actions identified will not be
made for the specific cognitive reasons embodied by the principles of cognition. Even though
the cognitive architecture is capable of making the errors, the design rules ensure that the
environments in which they would emerge do not occur. Similar erroneous actions with other
cognitive causes are, of course, still possible.

In Section 8, we describe an approach to formally verifying usability design rules based on
the formal cognitive architecture. To illustrate the approach, we consider one well-studied and
widely occurring class of systematic human error: the post-completion error. A post-completion
error occurs when a user achieves their main goal but omits ‘clean up’ actions; examples include
making copies on a photocopier but forgetting to retrieve the original, and forgetting to take
change from a vending machine. We formalise a simple and well known usability design rule
that, if followed, eliminates this class of error. We prove a theorem that states that if the design
rule is followed, then the erroneous behaviour cannot occur due to the specified cause as a result

3

of a person behaving according to the principles of cognition formalised. The design rule is
initially formalised in user-centred terms. We reformulate it in a machine-centred way, based
on machine rather than user concepts and actions. This is of more direct use to a designer. We
ultimately prove that a machine-centred version of the design rule implies the absence of the
class of error considered.

2 Formal Reasoning about Usability

There are several approaches to formal reasoning about the usability of interactive systems. One
approach is to focus on a formal specification of the user interface [11] [29]. Most commonly such
a specification is used with model-checking-based verification; investigations include whether a
given event can occur or whether properties hold of all states. Another formal approach is
exemplified by the work of Bumbulis et al [6], who verified properties of interfaces based on
a guarded command language embedded in the HOL theorem proving system. Back et al [1]
illustrate how properties can be proved and data refinement performed on a specification of
an interactive system. However, techniques that focus on the interface do not directly support
reasoning about design problems that lead to users making systematic errors; also, the usability
properties checked are necessarily specific to an individual device, and have to be reformulated
for each system verified.

An alternative is formal user modelling of the underlying system. It involves writing both
a formal specification of the computer system and one of the user, to support reasoning about
their conjoint behaviour. Both system and user are considered as central components of the
system and modelled as part of the analysis. Doing so provides a conceptually clean method of
bringing usability concerns into the domain of traditional verification in a consistent way. For
example, Duke et al [18] express constraints on the channels and resources within an interac-
tive system; this approach is particularly well suited to reasoning about interaction that, for
example, combines the use of speech and gesture. Moher and Dirda [30] use Petri net modelling
to reason about users’ mental models and their changing expectations over the course of an
interaction; this approach supports reasoning about learning to use a new computer system but
focuses on changes in user belief states rather than proof of desirable properties. Paterno’ and
Mezzanotte [34] use LOTOS and ACTL to specify intended user behaviours and hence reason
about interactive behaviour.

Our work complements these uses of formal user modelling. None of the above focus on
reasoning about user errors. Models typically describe how users are intended to behave: they
do not address human fallibility. If verification is to detect user errors, a formal specification
of the user, unlike one of a computer system, is not a specification of the way a user should
be; rather, it is a description of the way they are [9]. Butterworth et al [8] do take this into
account, using TLA to reason about reachability conditions within an interaction.

Rushby et al [40, 12, 37, 38, 39], like us, focus on user errors, though in their case just on one
important aspect of human limitation. In particular they formalise plausible mental models of
systems, looking for discrepancies between these and actual system behaviour using Murφ. They
are specifically concerned with the problem of mode errors and the ability of pilots to track mode
changes. The mental models are simplified system models rather than cognitive models. Various
ways of developing them are suggested including an empirical approach based on questioning
pilots about their beliefs about the system [12]. Like interface-oriented approaches, each model
is individually hand-crafted for each new device in this work. It is concerned with the knowledge
level and is complementary to our work.

Bredereke and Lankenau [5] [25] extended Rushby et al’s basic approach [39], using CSP.
Whereas in Rushby’s original work the system model and mental model are intertwined in a

4

single set of definitions, in CSP they can be described as separate processes. Furthermore,
Bredereke and Lankenau include a relation from environment events to mental events that
could in principle be lossy, corresponding to physical or psychological reasons for an operator
not observing all interface events of a system. However they note that in practice in their work
the relation does no more than renaming of events and so is not lossy. This contrasts with our
work where we explicitly consider the operator’s imperfections.

An approach to interactive system verification that focuses directly on a range of errors is
exemplified by Fields [19]. He models erroneous actions explicitly, analysing the consequences of
each possible action. He thus models the effect of errors rather than their underlying causes. A
problem of this approach is the lack of discrimination about which errors are the most important
to consider. It does not discriminate random errors from systematic errors which are likely to
re-occur and so be most problematic. It also implicitly assumes there is a “correct” plan, from
which deviations are errors.

Approaches that are based on a cognitive architecture (e.g. [24][22][35]) model underlying
cognitive causes of errors. However, the modeling exemplified by these approaches is too detailed
to be amenable to formal proof. Our previous work [14] followed this line but at a coarser level
of detail, making formal proof tractable. General mechanisms of cognition are modeled and
so need be specified only once, independent of any given interactive system. Furthermore, by
explicitly doing the verification at the level of underlying cause, on failed verification, a much
greater understanding of the problem is obtained. Rather than just knowing the manifestation
of the error – the actions that lead to the problem – the failed proof provides understanding of
the underlying causes.

Our previous work explored how the cognitive architecture considered here could be used
to analyse interactive system designs by treating it as a component of that system with a fixed
design [14, 15], proving that a specific task will always be completed eventually. This was done
using the interactive proof system, HOL [20]. In the work we describe here, we use the cognitive
architecture as the basis of reasoning about interactive systems in general. The process of doing
so also acts, in part, to validate the architecture for formal verification. Our approach is similar
to that of [4] on the PUMA project in that we are working from a (albeit different and more
formal) model of user behaviour to high level guidance. There the emphasis is on a semi-formal
basis underpinning the craft skill in spotting when a design has usability problems. In contrast,
we are concerned with guidance for a designer rather than for a usability analyst. We focus on
the verification of general purpose design rules rather than the interactive systems themselves.

Providing precision to ensure different people have the same understanding of a concept has
been suggested as the major benefit of formal models in interaction design [3]. One approach
is therefore to just formalise the design rules. This idea dates to some of the earliest work on
formal methods in Human-Computer Interaction. Thimbleby [44] and Dix and Runciman [17],
for example, give formal statements of design principles, discussing their use and showing how
one can explore how they interact or conflict. Dix and Runciman developed an abstract model
of a computer system around which the definitions were based. More recent work in this vein
includes that of Blandford at al [3] and Roast [36]. If rules are formalised, it becomes possible
to formally check individual systems against them using automated verification tools. For
example, Butler et al [7] formalise some of the rules of Leveson et al [27] in PVS and show
how the results of failed proof attempts identify potential system problems that could lead
to user error. Lüttgen and Carreno [28] compare the strengths and weaknesses of a range of
model checking tools with theorem provers for detecting mode confusion problems in this way.
Our work by contrast is concerned with justifying the formalisation of design rules based on
underlying principles about cognition embodied in a formal cognitive architecture. We consider
how design rules can be proved to be correct, up to the assumptions of the formalisation of the

5

principles of cognition. This gives extra assurance to those applying the design rules over just
formalisation.

The work described in the present paper is part of the EPSRC funded HUM project which
aims to develop empirically validated formally-based verification tools for interactive systems
with a particular focus on human error. The University of Queensland’s safeHCI project [26]
has similar aims and approach to our overall project, combining the areas of cognitive psychol-
ogy, human-computer interaction and system safety engineering. The details differ, however.
SafeHCI has had a focus on hazard analysis and system-specific modelling, whereas our work
has an emphasis on generic cognitive models.

3 Principles of Cognition

Our principles of cognition, and more formally the cognitive architecture, specify cognitively
plausible behaviour (see [9]). That is, they specify possible traces of user actions that can
be justified in terms of specific results from the cognitive sciences. Of course users might also
act outside this behaviour, about which situations the architecture says nothing. Its predictive
power is bounded by the situations where people act according to the principles specified. All
theorems in this paper are thus bounded by that assumption. That does not preclude useful
results from being obtained, provided their scope is remembered. The architecture allows us to
investigate what happens if a person does act in such plausible ways. The behaviour defined is
neither “correct” nor “incorrect”. It could be either depending on the environment and task in
question. It is, rather, “likely” behaviour. We do not model erroneous behaviour explicitly. It
emerges from the description of cognitively plausible behaviour.

The principles give a knowledge level description in the terms of Newell [31]. We do not
attempt to model underlying neural architecture nor the higher level cognitive architecture
such as working memory units. Instead our model is that of an abstract specification, intended
for ease of reasoning. The focus of the principles is in terms of internal goals and knowledge of
a user. This contrasts with a description of a user’s actions as, say, a finite state machine that
makes no mention of such cognitive attributes.

In this section we describe the principles of the current cognitive architecture informally. We
discuss them in greater detail in Section 5 when we describe the formalisation. We use railway
ticket vending machines to illustrate the points. They are ubiquitous and are increasingly
replacing manned ticket offices. However, existing designs continue to exhibit design problems
that encourage user error [46].

We now outline the principles currently embodied in our cognitive architecture:
Timing of Actions: The time taken to take an action after it becomes plausible is not

predictable. For example, once an instruction to make a choice of destination becomes available
on a ticket machine, it is not predictable exactly how long a person will take to press the button
corresponding to their destination choice.

Non-determinism: In any situation, any one of several behaviours that are cognitively
plausible at that point might be taken. The separate behaviours form a series of options, any
of which could be taken. It cannot be assumed in general that any specific behaviour that is
plausible at a given time will be the one that a person will follow. For example, faced with
an apparent choice of selecting a destination and inserting money, both of which are needed to
achieve the goal of buying a ticket, either could be taken by the person.

No-option-based termination behaviour: If there is no apparent action that a person
can take that will help her complete her task then the person may terminate the interaction.
For example, if on a touch screen ticket machine, the user wishes to buy a weekly season ticket,
but the options presented include nothing about season tickets, then the person might give up,

6

assuming their goal is not achievable. We do not concern ourselves with precisely what behaviour
constitutes terminating an interaction. It could mean giving up completely, or attempting to
restart the interaction from the beginnning, for example. The scope of concern here is only
up to the point where the interaction is terminated. Note that a possible action that a person
could take is to wait. However, they will only do so given some explicit reason according to one
of the other principles. For example, a ticket machine might display a message “Please Wait”.
If they see it, the person would have a cognitively plausible option: to wait. If there were no
such message and no other reason to suggest that waiting indefinitely would lead to the person
achieving the task, they could terminate the interaction.

Task-based termination behaviour: When the task the user set out to complete is
completed we take the interaction to be terminated. This is how we define successful completion
of the interaction. We assume the person enters an interaction with a goal to achieve. Task
completion could be more than just goal completion, however. In achieving a goal, subsidiary
tasks are often generated. For the user to complete the task associated with their goal they
must also complete all subsidiary tasks. Examples of such tasks with respect to a ticket machine
include taking back a credit card or taking change. Other actions could be taken after the task is
completed, but for the purposes of our analysis we assume that they form part of a subsequent
interaction. In doing this we rule out of consideration for our current cognitive architecture
situations where a device confuses a user into believing the task is not completed. This could
be considered in future extensions to the work described here.

Goal-based termination behaviour: Cognitive psychology studies have shown that
users intermittently, but persistently, terminate interactions as soon as their goal has been
achieved [10]. This could occur even if the task, in the sense above, is not fully achieved. With
a ticket machine this may correspond to the person walking away, starting a new interaction
(perhaps by hitting a reset button), etc. This principle does not have to lead to erroneous
actions: that depends on the environment.

Reactive behaviour: A user may react to an external stimulus or message, doing the
action suggested by the stimulus. For example, if a flashing light comes on next to the coin slot
of a ticket vending machine, a user might, if the light is noticed, react by inserting coins if it
appears to help the user achieve their goal.

Communication goal behaviour: A user enters an interaction with knowledge of the task
and in particular task dependent sub-goals that must be discharged – in particular, information
that must be communicated to the device or items (such as coins) that must be inserted into
the device. Given the opportunity, they may attempt to discharge any such communication
goals [2]. The precise nature of the action associated with the communication goal may not
be known in advance. A communication goal specification is a task level partial plan. It is
a pre-determined plan that has arisen from knowledge of the task in hand independent of the
environment in which that task will be accomplished. It is not a fully specified plan, in that no
order of the corresponding actions may be specified. In the sense of [2] a communication goal is
purely about information communication. Here we use the idea more generally to include other
actions that are known to be necessary to complete a task. For example, when purchasing a
ticket, in some way the destination and ticket type must be specified as well as payment made.
The way that these must be done and their order may not be known in advance. However, a
person enters an interaction with the aim of purchasing a ticket primed for these communication
goals. If the person sees an apparent opportunity to discharge a communication goal they may
do so. Once they have done so they will not expect to need to do so again. No fixed order
is assumed over how communication goals will be discharged if their discharge is apparently
possible. For example, if a “return ticket” button is visible then the person may press that first
if that is what they see first. If a button with their destination is visible then they may press

7

it first. Communication goals are a reason why people do not just follow instructions.
Mental versus Physical Actions: A user commits to taking an action in a way that

cannot be revoked after a certain point. Once a signal has been sent from the brain to the
motor system to take an action, the signal cannot be stopped even if the person becomes aware
that it is wrong before the action is taken. For example, on deciding to press a button labelled
with the destination “Liverpool”, at the point when the decision is made the mental trigger
action takes place and after a very short delay, the actual action takes place.

Relevance: A user will only take an action if there is something to suggest it corresponds
to the desired effect. We do not currently model this explicitly: however, it is implicit in the
way other behaviour is modelled.

4 Higher-order logic

We use higher-order logic to formalise the principles of cognition. Whilst higher-order rather
than a first order logic is not essential for this, its use makes the formal specifications sim-
pler than the use of a first-order logic would. An aim of formalisation is to make principles
inspectable. Formalising them in as natural way as possible is therefore important.

We have used the HOL interactive proof system [20], a theorem prover for higher-order
logic, so theorems are machine-checked. Given the relative simplicity of the theorems presented
here, this is not essential in that hand proofs alone would have been possible. Machine-checked
proof does give an extra level of assurance over that of the informal proofs upon which they are
based. Furthermore our work sets out a framework in which these theorems can be combined
with complex machine-checked hardware verification [13]. Machine-checking of the design rule
proofs maintains a consistent treatment. Finally, this work aims to demonstrate a general
approach. For more complex design rules, the proofs may be harder so machine-checking may
be more directly useful.

The notation used in this paper is summarized in Table 1.

5 Formalising Cognitively Plausible Behaviour

The principles of cognition are formalised as an abstract cognitive architecture. It is specified
by a higher-order logic relation USER, the top levels of which are given in Figure 1. The full
specification is given in Appendix A. It takes as arguments information such as the user’s goal,
goalachieved, a tuple of actions that the user may take, actions, etc. The arguments of the
architecture will be examined in more detail as needed in the explanation of the architecture
below.

The final two arguments of the architecture, ustate and mstate, each of polymorphic type
as specified by the type variables ’u and ’m, represent the user state and the machine state
over time. Their concrete type is supplied when the architecture is instantiated for a given
interaction. As in this paper we are performing general reasoning about the architecture rather
than about specific interactive systems, they remain type variables. The user and machine
states record over time the series of mental and physical actions made by the user, together
with a record of the user’s possessions and knowledge. They are instantiated to a tuple of
history functions. A history function is of type time → bool, from time instances to a boolean
indicating whether that signal is true at that time (i.e. the action is taken, the goal is achieved,
etc). The other arguments to USER specify accessor functions to one of these states. For example,
finished is of type ’u → (time → bool). Given the user state it returns a history function

8

a ∧ b both a and b are true
a ∨ b either a is true or b is true
a ⊃ b a is true implies b is true
∀n. P(n) for all n, property P is true of n
∃n. P(n) there exists an n for which property P is true of n
f n the result of applying function f to argument n
a = b a equals b
IF a THEN b ELSE c if a is true then b is true, otherwise c
:num the type of natural numbers (also used to represent time)
:bool the type of booleans
:a→ b the type of functions from type a to type b
:a#b the type pairing elements of type a with elements of type b
:’m has type, the polymorphic type variable
(a, b) the pair with first element a and second element b
FST p the first element of pair p
SND p the second element of pair p
[] the empty list
x :: l cons: the list consisting of first element x and remaining list l
l1 APPEND l2 the list consisting of list l1 appended onto list l2
EL n l the nth element of list l
MAP f l apply f to each element of list l
`thm P P is a theorem proved in HOL
`def P P is a definition

Table 1: Higher-order Logic notation

9

`def USER flag actions commitments commgoals init commgoals stimulus actions
possessions finished goalachieved invariant (ustate:’u) (mstate:’m) =

(USER UNIVERSAL flag actions commgoals init commgoals possessions
finished ustate mstate) ∧

(USER CHOICE flag actions commitments commgoals stimulus actions
finished goalachieved invariant ustate mstate)

`def USER CHOICE flag actions commitments commgoals stimulus actions
finished goalachieved invariant ustate mstate =

(∀t.
¬(flag t) ∨
(IF (finished ustate (t-1))
THEN (NEXT flag actions FINISHED t)
ELSE IF (CommitmentMade (CommitmentGuards commitments) t)
THEN (COMMITS flag actions commitments t)
ELSE IF TASK DONE (goalachieved ustate) (invariant ustate) t
THEN (NEXT flag actions FINISHED t)
ELSE USER RULES flag actions commgoals stimulus actions

goalachieved mstate ustate t))

`def USER RULES flag actions commgoals stimulus actions goalachieved mstate ustate t =
COMPLETION flag actions goalachieved ustate t ∨
REACTS flag actions stimulus actions t ∨
COMMGOALER flag actions commgoals goalachieved ustate mstate t ∨
ABORTION flag actions goalachieved commgoals stimulus actions ustate mstate t

Figure 1: The USER relation (slightly simplified)

10

that for each time instance indicates whether the cognitive architecture has terminated the
interaction.

For the purpose of exposition, in Figure 1 and the immediate discussion, we simplify the
definition, omitting the idea of ‘probes’. As discussed below, probes do not model cognition
as such, but give a window into the architecture’s working. The extension to the cognitive
architecture to include them is described in Section 5.9 and the full architecture is given in
Appendix A.

The USER relation is split into two parts. The first, USER CHOICE, models the user making a
choice of actions. It formalises the action of the user at a given time as a series of rules, one of
which is followed at each time instance. USER UNIVERSAL specifies properties that are true at
all time instances, whatever the user does. For example, it specifies properties of possessions
such that if an item is not given up then the user still has it. We focus here on the choice part
of the cognitive architecture as it is most relevant to the concerns of this paper. USER CHOICE
is therefore described in detail below. In outline, it states that the next user action taken is
determined as follows:

if the interaction is finished
then it should remain finished
else if a physical action was previously decided on
then the physical action should be taken
else if the whole task is completed
then the interaction should finish
else an appropriate action should be chosen non-deterministically

5.1 Non-determinism

The cognitive architecture is ultimately, in the final else case above, based on a series of
non-deterministic temporally guarded action rules, formalised in relation USER RULES. This is
where the principle of non-determinism is modelled. Note the use of disjunction in definition
USER RULES in Figure 1. Each rule describes an action that a user could plausibly make. The
rules are grouped corresponding to a user performing actions for specific cognitively related rea-
sons. For example, REACTS in Figure 1 groups all reactive behaviour. Each such group then has
a single generic description. Each rule combines a pre-condition, such as a particular message
being displayed, with an action, such as a decision made to press a given button at some later
time.

rule 1 fires asserting its action is taken ∨
rule 2 fires asserting its action is taken ∨
...
rule n fires asserting its action is taken

Apart from those included in the if-then-else staircase of USER CHOICE, no further priority
ordering between rules is modelled. We are interested in whether an action is cognitively
plausible at all (so could be systematically taken), not whether one is more likely than another.
We are concerned with design rules that prevent any systematic erroneous action being taken
even if in a situation some other action is more likely. The architecture is a relation. It does not
assert that a rule will be followed, just that it may be followed. It asserts that the behaviour
of any rule whose guards are true at a point in time is cognitively plausible at that time. It
cannot be deduced that any specific rule will be the one that the person will follow if several
are cognitively plausible.

11

5.2 Timing of Actions

The architecture is based on a temporal primitive, NEXT, that specifies the next user action
taken after a given time. For example,

NEXT flag actions action t

states that the NEXT action performed after time t from a list of all possible user actions,
actions, is action. It asserts that the given action’s history function is true at some first point
in the future, and that the history function of all other actions is false up to that point. The
action argument is of type integer and specifies the position of the action history function in
the list actions. The flag argument to NEXT and USER is a specification artifact used to ensure
that the time periods that each firing rule specifies do not overlap. It is true at times when
a new decision must be made by the architecture. The first line of USER CHOICE in Figure 1,
¬(flag t), thus ensures, based on the truth of the flag, that we do not re-specify contradictory
behaviour in future time instances to that already specified.

Consider the first if-then-else statement of USER CHOICE in Figure 1 as an example of the
use of NEXT.

NEXT flag actions FINISHED t

The action argument of NEXT is instantiated to FINISHED. It states that if the interaction was
finished then the next action remains finished: once the interaction has terminated the user
takes no other action.

A detail about the formalisation that is needed to understand the definitions is that the
action argument of NEXT is actually represented as a position into the action list. For example
FINISHED gives the position in the list actions of the history function, finished, that records
over time whether the interaction is terminated. Whilst other actions in the cognitive archi-
tecture are defined at instantiation time, a finished signal is required for all cognitive models.
FINISHED is therefore defined as a constant, position 0, in the list. The positions of other
signals are defined when the cognitive architecture is instantiated rather than in the cognitive
architecture.

5.3 Mental versus physical actions

We model both physical and mental actions. A person decides, making a mental action, to take
a physical action before it is actually taken. Once a signal has been sent from the brain to
the motor system to take the physical action, the signal cannot be revoked even if the person
becomes aware that it is wrong before the action is taken. Each physical action modelled
is thus associated with an internal mental action that commits to taking it. The argument
commitments to the relation USER is a list of pairs that links the mental and physical actions.
CommitmentGuards extracts a list of all the mental actions (the first elements of the pairs). The
recursively defined CommitmentMade checks, for a given time instance t, whether any mental
action maction, from the list supplied was taken in the previous time instance (t-1):

`def (CommitmentMade [] t = FALSE) ∧
(CommitmentMade (maction :: rest) t =

(maction(t-1) = TRUE) ∨ (CommitmentMade rest t))

If a mental action, maction, made a commitment to a physical action paction on the
previous cycle (time, t-1) then that will be the next action taken as given by COMMIT below.
Definition COMMITS then asserts this disjunctively for the whole list of commitments:

12

`def COMMIT flag actions maction paction t =
(maction (t-1) = TRUE) ∧ NEXT flag actions paction t

`def (COMMITS flag actions [] t = FALSE) ∧
(COMMITS flag actions (ca :: commits actions) t =

((COMMITS flag actions commits actions t) ∨
(COMMIT flag actions (CommitmentGuard ca) (CommitmentAction ca) t)))

In COMMITS, CommitmentGuard extracts the guard of a commitment pair, ca: that is the mental
action. CommitmentAction returns the physical action that corresponds to that mental action.

Based on these definitions the second if statement of USER CHOICE in Figure 1 states that
if a mental action is taken on a cycle then the next action will be the externally visible action
it committed to. The physical action already committed to by a mental action is thus given
over-riding priority as modelled by being in the if-then-else staircase:

ELSE IF (CommitmentMade (CommitmentGuards commitments) t)
THEN (COMMITS flag actions commitments t)

5.4 Task-based termination behaviour

The third if statement of definition USER CHOICE specifies that a user will terminate an inter-
action when their whole task is achieved.

ELSE IF TASK DONE (goalachieved ustate) (invariant ustate) t
THEN (NEXT flag actions finishedpos t)

TASK DONE asserts whether the task is completed at a given time or not. It requires arguments
about the goal and an invariant. We discuss these in turn below.

We are concerned with goal-based interactions. The user enters the interaction with a
goal and the task is not completed until that goal is achieved. We must therefore supply a
relation argument goalachieved to the cognitive architecture that indicates over time whether
this goal is achieved or not. This history function defines what the goal is for the interaction
under consideration. With a ticket machine, for example, this may correspond to the person’s
possessions including the ticket. Like finished, goalachieved extracts from the state a history
function that, given a time, returns a boolean value indicating whether the goal is achieved at
that time. Note that goalachieved is a higher-order function argument and can as such be
instantiated with an arbitrarily complex condition. It might, for example, be that the user has
a particular object such as a ticket, that the count of some series of objects is greater than some
number or a combination of such atomic conditions.

In achieving a goal, subsidiary tasks are often generated. For the user to complete the task
associated with their goal they must also complete all subsidiary tasks. The completion of these
subsidiary tasks could be modelled in several ways including modelling the tasks explicitly. We
use a general approach based on the concept of an interaction invariant [14]. The underlying
reason for these subsidiary tasks being performed is that in interacting with the system some
part of the state must be temporarily perturbed in order to achieve the desired task. Before
the interaction is completed such perturbations must be undone: the interaction invariant that
held at the start must be restored. The interaction invariant is an invariant at the level of
abstraction of whole interactions in a similar sense to a loop invariant in program verification.
For example, the invariant for a simple ticket machine might be true when the total value of the
user’s possessions (coins and ticket) have been restored to their original value, the user having

13

exchanged coins for tickets of the same value. Task completion involves not only completing
the user’s goal, but also restoring the invariant. The invariant is a higher-order argument to
the cognitive architecture. It is modelled as a history function, indicating over time when the
invariant is and is not achieved.

We can thus define task completion formally in terms of goal completion and invariant
restoration. The task is completed at a time when both the goal and invariant history functions
are true.

`def TASK DONE goal inv t = (goal t ∧ inv t)

Note that TASK DONE goalachieved invariant is also a history function - given a time it
indicates the times when the task is and is not completed in terms of the goal and invariant’s
history functions.

We assume that on completing the task in this sense, the interaction will be considered
terminated by the user unless there are physical actions already committed to. It is therefore
modelled in the if-then-else staircase of USER CHOICE to give it priority over other rules apart
from committed actions. It is not treated as being a non-deterministically chosen action.

We next examine the non-deterministic rules in the final else case of definition USER CHOICE
that form the core of the cognitive architecture and are defined in USER RULES.

5.5 Goal-based Completion

As already noted, achieving the goal alone is often the trigger that leads to a person terminating
an interaction [10]. This behaviour is formalised as a NEXT rule. If the goal is achieved at a
time then the next action of the cognitive architecture can be to terminate the interaction:

`def COMPLETION flag actions finished goalachieved ustate t =
(goalachieved ustate t) ∧ NEXT flag actions finished t

As this is combined disjunctively with other rules, its presence does not assert that it will be
the action taken, just that according to the cognitive architecture there are cognitively plausible
traces where it occurs.

5.6 Reactive Behaviour

We model a user reacting to a stimulus from a device, doing the action suggested by it, gener-
ically. In a given interaction there may be many different stimuli to react to. Relation REACT
gives the general rule defining what it means to react to a given stimulus. If at time t, the
stimulus stimulus is active, the next action taken by the user out of possible actions, actions,
at an unspecified later time, may be the associated action. As with the goal and invariant
already discussed, the stimulus argument is a higher order function that can be instantiated
with an arbitrarily complex condition over time.

`def REACT flag actions stimulus action t =
stimulus t ∧ NEXT flag actions action t

As there may be many reactive signals, the cognitive architecture is supplied with a list
of stimulus-action pairs: [(s1, a1); . . . (sn, an)]. REACTS, given a list of such pairs, recursively
extracts the components and asserts the above rule about them. The clauses are combined
using disjunction, so are non-deterministic choices, and this definition is combined with other
non-deterministic rules. Stimulus and Action extract a pair’s components.

14

`def (REACTS flag actions [] t = FALSE) ∧
(REACTS flag actions (s :: st) t =

((REACTS flag actions st t) ∨ (REACT flag actions (Stimulus s) (Action s) t)))

5.7 Communication Goals

We model communication goals (task dependent sub-goals a person has knowledge of) as a list
of (guard, action) pairs, one for each communication goal, in a similar way to reactive signals.
The guard describes the situation under which the discharge of the communication goal appears
possible, such as when a virtual button actually is on the screen. As for reactive behaviour, the
architecture is supplied with a list of (guard, action) pairs one for each communication goal.

Unlike the reactive signal list that does not change through an interaction, communication
goals are discharged. This corresponds to them disappearing from the user’s mental list of
intentions. We model this by removing them from the communication goal list when done.

5.8 No-option-based termination behaviour

The cognitive architecture includes a final default non-deterministic rule, ABORTION, that models
the case where a person can not see any plausible action to help them towards their goal. It
just forms the negation of the guards of all the other rules, based on the same arguments.

5.9 Probes

The features of the cognitive architecture discussed above concern aspects of cognition. One
recent extension of the architecture as compared to previous work [14] involves the addition of
probes. Probes are extra signals that do not alter the cognitive behaviour of the architecture,
but instead make internal aspects of its action visible. This allows specifications to be written
in terms of hidden internal cognitive behaviour, rather than just externally visible behaviour.
This is important for this work as our aim is to formally reason about whether design rules
address underlying cognitive causes of errors not just their physical manifestation. The form of
probe we consider in the current model records for each time instance whether a particular rule
fires at that instance. We require a single probe that fires when the goal-based termination rule
described above fires. We formalise this using a function, Goalcompletion that extracts the
goal completion probe from the collection of probes passed as an additional argument to the
cognitive architecture. To make the probe record goal completion rule events, we add a clause
specifying the probe is true to the rule concerning goal completion, COMPLETION given above:

(Goalcompletion probes t) ∧ goalachieved t ∧ NEXT flag actions finished t

Each other rule in the architecture has a clause added asserting the probe is false at the time
it fires. For example the REACT rule is actually:

`def REACT flag actions stimulus action probes t =
stimulus t ∧ (Goalcompletion probes t = FALSE) ∧ NEXT flag actions action t

A similar clause is also added to the part of the architecture that describes the behaviour when
no rule is firing. In future work we intend to investigate formally other design rules. This will
require filling out the cognitive architecture with probes for each rule. It is not done here for
simplicity whilst demonstrating the ideas.

15

6 The Erroneous Actions that Emerge

In the previous sections we have described a formal model of cognitive behaviour. It does
not explicitly describe erroneous behaviour. Any of the rules could correspond to both correct
or erroneous behaviour. Error emerges from the interaction between the architecture and a
particular context.

Erroneous actions are the proximate cause of failure attributed to human error in the sense
that it was a particular action (or inaction) that immediately caused the problem: a user
pressing a button at the wrong time, for example. However, to understand the problem, and
so ensure it does not happen again, approaches that consider the proximate causes alone are
insufficient. It is important to consider why the person took that action. The ultimate causes
can have many sources. Here we consider situations where the ultimate causes of an error are
that limitations of human cognition have not been addressed in the design. An example might
be that the person pressed the button at that moment because their knowledge of the task
suggested it sensible. Hollnagel [23] distinguishes between human error phenotypes (classes
of erroneous actions) and genotypes (the underlying, for example psychological, cause). He
identifies a range of simple phenotypes. These are single deviations from required behaviour.
Fields [19] enumerates and gives formal definitions of those as repetition of an action, reversing
the order of actions, omission of actions, late actions, early actions, replacement of one action
by another, insertion of an additional action from elsewhere in the task, and intrusion of an
additional action unrelated to the task.

In practical designs it is generally infeasible to make all erroneous actions impossible. A
more appropriate aim is therefore to ensure that cognitively plausible erroneous actions are not
made. To ensure this, it is necessary to consider the genotypes of the possible erroneous actions.
We examine how our simple cognitive architecture can exhibit behaviour corresponding to these
phenotype errors, thus linking them to underlying causes. We thus show, based on reasoning
about the formal cognitive architecture, that, from the minimal principles we started with, a
wide range of classes of erroneous actions in the form of phenotypes occur.

We now look at each simple phenotype and at the situations where they are cognitively
plausible according to our architecture. We show that even with the very simple model of cog-
nitively plausible behaviour a wide range of error classes is possible. We do not claim to model
all cognitively plausible phenotypical erroneous actions. There are other ways each could occur
for reasons we do not consider. However, not all errors that result from the architecture were
explicitly considered when the principles were defined. The scope of the cognitive architecture
in terms of erroneous actions is wider than those it was originally expected to encompass.

6.1 Repetition of actions

The first class of erroneous action considered is the repetition of an action already performed.
Our cognitive architecture could repeat actions if apparently guided to do so by the device.

If the guards of a reactive rule are true due to the stimulus being present, then the rule will
be active and so could lead to the action being taken, as long as the task is not completed. If
the action had been taken earlier as a result of the stimulus being present then this would be a
repetition. On the other hand, if the stimulus does not become true again, the action will not
be repeated.

The current cognitive architecture would thus do such a repetition if reactive signals guided
the action and continued to do so after the action had been completed. For example, with a
ticket machine, if a light next to a coin slot continued to flash for a period after the correct
money had been inserted a person might assume they had not inserted enough and insert more.
Alternatively, if an initial screen included buttons to select ticket type, select destination, select

16

departure station etc, which it returned to after each was completed without removing the
completed options, then a person might try to do completed actions again thinking they had
not achieved them.

Similarly an action originally performed as a communication goal could be repeated by
the architecture if a reactive prompt to do so later appeared. For example, suppose a person
entered an interaction knowing they needed to communicate the destination “Liverpool” and
consequently pressed the corresponding button. If they were later presented with a screen
apparently asking them to select a destination as an option they might do so again, being
unsure that they had been successful the first time. This would not occur the other way round
since once performed reactively, for whatever reason, the action is removed as a communication
goal in the architecture.

Situations where it is desirable to offer the user a choice of redoing a previously completed
operation might be a situation where this kind of potential confusion was introduced into a
device design for perfectly good reasons. If so the design would need to take into account this
problem as we will discuss later.

6.2 Reversing the order of actions

A second class of error is to reverse the order of two actions. This pattern of behaviour can arise
from our architecture as a result of the way communication goals are modelled. In particular,
communication goals can be discharged by the cognitive architecture in any order. There-
fore, if an interactive system requires a particular sequence, then the order may be erroneously
reversed by the architecture if the actions correspond to communication goals and the oppor-
tunity is presented. A person might insert money and then press the destination button when
a particular ticket machine requires the money to be inserted second. This does not apply to
non-communication goal actions, however. For example, two actions that are device dependent
(pressing a confirmation button and one to release change, for example) will not be reversed by
the cognitive architecture as they will be done in a reactive way.

6.3 Omission of actions

The cognitive architecture may omit actions at the end of a sequence. In particular, it may
terminate the interaction at any point once the goal has been achieved. For example, once
the person is holding the ticket they intended to buy, they may walk away from the machine,
leaving their change, credit card or even return portion of their ticket. Whatever other rules
are active, once the goal is achieved, the completion rule is active, so could be fired.

The cognitive architecture may also omit trailing actions if there is no apparent action
possible. If at any time instance the guard of no other rule is active, then the guard of the
termination rule becomes active and so the cognitive architecture terminates. There must
always be some action apparently possible. This action could be to pause but only if given
reactive guidance to do so. For example, if there is a period when the ticket machine prints
the ticket, where the person must do nothing, then with no feedback to wait they may abort.
In this respect the cognitive architecture does not quite reflect the way people behave. If there
is no action possible the architecture is guaranteed to terminate, whereas in reality a person
might pause before giving up. However, as our concern is user error, this is not critical as either
way termination is possible so task completion is not guaranteed.

If a system throws away previously entered data, perhaps as a result of a later choice not
being valid, then the cognitive architecture could omit repeating the earlier input if it is not
prompted to do so. This is the converse problem to that in Section 6.1 where repetition of an
action is an error. It arises for example in situations such as online flight booking systems where

17

a destination is selected followed by a departure airport for which no route exists, leading to
the system discarding both airports input.

If the cognitive architecture took an action early due to it corresponding to a communication
goal (e.g. selecting a destination first instead of ticket type) then the cognitive architecture
would assume that the action had had the desired effect. The action (selecting a destination)
would be removed from the communication goal list: the cognitive architecture “believes” it
has been performed. It then would not be done at the appropriate point in the interaction; i.e.
a second (omission) error would occur. In this situation the correct action would be a repetition
of the earlier action – repetition is not an error in this situation but only because it is required
to recover from the previous action.

6.4 Late actions

The cognitive architecture does not put any time bounds on actions. All rules simply assert
that once an action is selected then it will eventually occur. If any action must be done in
a time critical manner, then the cognitive architecture will be capable of failing to do so. In
practice this is too restrictive – it means the current cognitive architecture will always be able
to fail with a device that resets after some time interval, for example, as would be normal for
a ticket machine. Where such time criticality is inherent in a design, extra assumptions that
deadlines are met would need to be added explicitly.

6.5 Early actions

If there are periods when an action can apparently be performed, but if performed is ignored
by the computer system, then in some circumstances the cognitive architecture would take the
next action early. In particular, if the user has outstanding communication goals then the
corresponding actions may be taken early. This will potentially occur even if the device gives
explicit guidance that the user must wait. This corresponds to the situation where a person
does not notice the guidance but takes the action because they know they have to and have
seen the opportunity. Similarly, if the device is presenting an apparent opportunity for reactive
behaviour before it is ready to accept that action then the cognitive architecture could react to
it.

6.6 Replacement of one action by another

Fields formally defines replacement [19] in a way that admits the substitution of any related
action from the task for the correct one. Examples might include placing butter in the oven
instead of the fridge, or switching on the headlights when meaning to switch on the windscreen
wipers of a car. Our model cannot make such general replacements which could have a wide
variety of cognitive causes. However, the cognitive architecture is, under appropriate circum-
stances, able to make one specific kind of replacement error due to indirect interface changes. In
the context of mode errors, indirect mode changes have been specifically implicated as a problem
that leads to operator error in a range of situations including flight decks. A particular problem
occurs when the operator fails to mentally track the mode changes. (See for example [41] for a
discussion).

The cognitive architecture exposes a more subtle form of problem that remains even in
modeless systems or in a moded system where the pilot is aware of the mode. In particular,
if an indirect change of state in the computer system can occur (that is not in response to a
user action), then if the cognitive architecture has already committed to some action (such as
pressing a button), but its effect changes between the commitment being made and the physical

18

action actually being taken, then the wrong action with respect to the device will occur. This
can lead to a person doing something they know is wrong. The change could occur due to a
machine time-out or an environmental change

For example, suppose a ticket machine consisted of a touch screen showing virtual buttons
for different ticket types such as off-peak travel card, single and return. If when the time
changed to peak travel time, the off-peak option automatically disappeared and was replaced
by a peak-travel card option, a person intending to select the off-peak travelcard, could instead
without intending it select a peak travelcard. This may or may not be what they would have
done had they realised the option was disappearing but either way the selection action they
intended would have been replaced by one they did not. This problem has been identified in
systems including Cash Machines, Email systems and an Air Traffic Control System [43].

6.7 Insertion of actions from elsewhere in the task

Insertion of an action can occur with communication goals. They can be attempted by the
cognitive architecture at any point in the interaction where the opportunity to discharge them
apparently presents itself. With reactive tasks, insertion will occur only if the device gives a
reactive signal to suggest it can be done when it cannot.

6.8 Intrusion of actions unrelated to the task

Actions unrelated to the task can intrude with the cognitive architecture as a result of reactive
signals on the device. If a device supports multiple tasks and uses reactive signals that signal
an action to be performed that is not part of the task, such an action may be taken if there is
nothing to suggest whether it is relevant or not.

6.9 Summary

In summary, the principles of cognition implemented in the architecture generate behaviours
that account for a range of phenotypes. It is also apparent from the above discussion that
the same underlying cause can account for erroneous actions corresponding to several different
phenotypes. Furthermore a single phenotype can be a result of several different underlying
causes. The behaviour specified in the architecture is neither correct nor incorrect behaviour.
However, from it we have seen a wide variety of erroneous actions are possible.

7 Design Rules

We now examine some usability design rules. In particular, the design rules considered are
those that emerge from the discussion in Section 6. They are derived from our informal analysis
of the behaviour of the cognitive architecture. They are based on the underlying causes: the
genotypes rather than the phenotypes. Here we present 9 rules:

• Allow the task to be finished no later than the goal.

• Provide information about what to do.

• Providing information is not enough.

• Use forcing functions.

• Make the interface permissive.

19

• Controls should make visible their use.

• Give immediate feedback.

• Do not change the interface under the user’s feet.

• Where possible, determine the user’s task early.

7.1 Task finished no later than the goal

The cognitive architecture contains a rule to terminate if the goal is achieved. Whatever other
rules are active, this one could be activated due to the non-deterministic nature of the rules. The
cognitive architecture can therefore terminate the moment its goal is achieved. Furthermore, no
output from the device can prevent this as it would just result in additional rules being active
which cannot preclude this action being taken. For the cognitive architecture to guarantee
to not terminate early for this reason, the task must be completed no later than the goal.
Tasks to restore the pertubations caused by an interaction must be completed either before the
final action that achieves the goal or at the same time, or be designed out of the interaction
completely. Any design that requires the cognitive architecture to perform extra completion
tasks must ensure they are done before the goal is achieved. The rule will then only be active
precisely when the task termination rule will be active, so that termination does not occur
before the task rule is achieved.

For a ticket machine, taking the ticket must be the last action of the user. They must by
then have taken change or hold their credit card, or these must be returned in a way that means
they must be taken together or not at all. Multiple ticket parts (e.g. the return ticket) must
also be dispensed together.

In practice (e.g. when termination involves logging out from a system) it may not always be
possible to satisfy this design rule; in such situations, another means of restoring the invariant
needs to be found. An attempted verification, based on the cognitive architecture, of a design
that did not follow this design rule would fail because there would be an interaction path where
the goal was achieved and so termination would occur on that path, when the task was not
achieved. In particular, as noted above, providing extra information to tell the user to do the
termination action is not sufficient.

We return to this design rule in Section 8. We use it as a simple case study in how a formal
proof verifying a design rule against the cognitive architecture can be performed.

7.2 Provide information about what to do

Actions that are not communication goals can only be triggered in the architecture if they are
a response to reactive signals – information indicating that the given rule is the next to be
performed to achieve the given task. Therefore, if an action must be performed that does not
correspond to a communication goal then information in the form of clear reactive guidance
needs to be provided to tell the architecture to take the action.

In the case of a ticket machine, if a button must be pressed to confirm the ticket selected
is the one required, then highly salient instructions to do this must be provided. There must
be no other distracting options apparently possible at that point. Even then the instructions
could be missed.

For communication goal actions, reactive information is not needed, though information
linking the communication goal to the specific action is needed: something (such as the presence
of a visible coin slot for inserting money) must make it clear that the communication goal can
be discharged.

20

7.3 Providing information is not enough

The above design rules concern always providing information. A simple specific case might be
to clearly indicate the order that actions should be taken in. This approach is often used where,
for example, a panel gives instructions or lights flash to indicate the next button to press. The
next design rule is that that is not good enough – so might appear to be contradictory. However,
it depends on the situation.

Is providing information ever enough? According to the cognitive architecture – yes. It
is sufficient if the user has nothing else to do and the action clearly takes them towards their
goal. Thus (for our principles) if all communication goals are discharged (the ticket has been
specified and money inserted) and the goal is not yet achieved (no ticket is held) then providing
clear information is both useful and necessary. However, the cognitive architecture is non-
deterministic. There may be several active rules and therefore several possible actions that
could be taken. Reactive signals are not modelled as having higher priority than any other
signal. Other possible actions are, for example, to terminate the interaction (if the goal is
achieved), or discharge a communication goal. If the guards of such rules are active then they
are possible actions. Making other signals true cannot make such a guard false; it can only
make false guards true, so increasing the range of possible actions. Therefore, just providing
flashing lights or beeps or other reactive signals is not enough to ensure correct operation if
other actions are also possible. An attempted verification of such a design would fail because it
would not be possible to prove that the correct action was taken. Some other action would be
possible which could ultimately lead to the user aborting the interaction. If any possible path
leads to abortion before the goal is achieved then a task completion correctness statement that
states that the goal is achieved on all paths would be unprovable.

Thus, whilst providing appropriate information is important, on its own it should not be
relied on - it needs to be combined with careful design of the interaction.

7.4 Forcing functions

The fact that the cognitive architecture is capable of taking several different options, and that
giving reactive signals and messages is not enough, means that some other way is needed to
ensure the options are narrowed down to only the correct ones. As Norman [33] suggests, in
good design, only correct actions for the range of tasks supported at a point should be possible.
Somehow, the design must ensure that the only cognitively plausible actions are correct ones.
This suggests the use of forcing functions. This does not mean there must only be one button
to press at any time, but that only buttons that it is valid to press at the current time can
possibly be of use for a given task. Within the limits of the architecture, this means that
if communication goals are not yet discharged, and should not yet be discharged, then there
should be no apparent opportunity to discharge them.

For example, a soft screen (ie with online labelled buttons) might be used so that the only
buttons pressable correspond to ones that can now correctly be pressed. If money cannot be
inserted then coin slots should be closed.

Similarly, the solution to post-completion errors is to not allow the goal to be achieved
until the task is completed – forcing the user to complete other completion tasks first (where
possible), as discussed above, by structurally redesigning the interaction.

7.5 Permissiveness

Forcing functions follow the design principle that the options available to the user should be
reduced. An alternative way of solving the same problem is to do the opposite and make the

21

design permissive [45]: that is, the design does not force a particular ordering of events at
all. In this case, the design should be such that each of the actions that can be taken by the
cognitive architecture are accepted by the design and lead to the task being achieved. With
our cognitive architecture, permissiveness cannot be used universally, however. For example,
it is not sufficient with completion tasks to allow them to be done in any order. As we have
seen, if the goal is achieved before the task is completed then the cognitive architecture leaves
open the possibility of termination. There is no way the design can recover – once the cog-
nitive architecture terminates it does not re-start the task. Therefore, in this situation, being
permissive does not work. Fixing one error situation would introduce another. The ticket of
a ticket machine must be released last. That action corresponds to the goal so cannot be per-
missive. At times in an interaction when communication goals are outstanding, the cognitive
architecture could discharge them if the opportunity is present. Thus permissiveness is a useful
design rule to apply to communication goals. In particular, permissiveness should be applied
if forcing functions are not used when communication goals are active. A communication goal
that appears dischargable should be dischargable. For example, a ticket machine could allow
destination and ticket type to be chosen in any order.

7.6 Controls should make visible their correct use

The cognitive architecture provides for both reactive behaviour and directly goal-based be-
haviour. The guards of all cognitive architecture actions should include a signal indicating the
presence of information suggesting they are appropriate actions. If a control is not labelled
then the cognitive architecture will not take the action. Thus all controls must be labelled if the
cognitive architecture is to use them. This does not mean that labels must be written. Their
natural affordances [33] could suffice. That is, the physical form of a control may be considered
sufficient to warrant the signal being asserted. For example, a coin slot advertises by its form
that it is for the insertion of coins. This would need to be decided by a usability expert using
complementary techniques to those considered here. Also, the control only needs to be visible
at the point in the specific interaction where the cognitive architecture must take the action.
Thus visibility need not be universal.

Conversely, care must be taken that affordances do not advertise an incorrect use. For
example, slots for credit cards and rechargeable travel cards need to be obviously distinguished
unless a single slot works for both.

7.7 Give immediate feedback

If there is no possible action apparent to the cognitive architecture then it will abort. That
will occur if the guards of no rules are true. If a user must wait, then feedback to wait should
appear immediately with nothing else apparently possible (e.g. no other buttons visible). One
possible reactive action can always be to pause provided it is guarded by the existence of a
“please wait” message.

For example if the user must wait while a ticket is printed then this needs to be explicitly
clear to the user with no other distracting actions apparently possible.

7.8 Do not change the interface under the user’s feet

The distinction between mental actions and physical actions, leads to a design rule that the
interface should not change except in response to user action. There is a, possibly very short,
delay between the cognitive architecture making a decision, after which it cannot stop the motor
system, and the action actually occurring. This means that if the effect of an intended action

22

changes after the decision has been made, but before the physical action is actually taken, then
the cognitive architecture could do the wrong thing.

More specifically, therefore, a possible design rule is that no input to the computer system
should change its effect spontaneously. This is quite restrictive, however. Less restrictive
design possibilities are available to overcome the problems. This is linked to the design rule of
Leveson et al [27] on avoiding indirect mode changes. Their concern was with mode changes
and the person’s inability to track them. Here the issue is much wider than just with mode
awareness. Any changes to the interface that can indirectly change the behaviour of an action are
problematic. There is still a problem even if the person is tracking the current state successfully.

One situation where this can be a problem is with timeouts – if no action is made in some
period then the machine resets to some initial state. The cognitive architecture does not strictly
support such behaviour at present. However, one possibility with the current limited cognitive
architecture, and as used by some ticket machines, is to ask the user if they want more time
after some delay. However, this could mean the buttons change their meanings. What did mean
“I want to go to Liverpool” suddenly means “I do not want more time”, for example. Such
problems can be overcome, provided the old buttons all mean “I want more time”, and the one
that means “no more time” was not linked previously to any action – or with a soft-button
interface the old button did not exist at all. Such a design would only work with the cognitive
architecture if reactive signals were being used, as if the action were taken as a result of a
communication goal, then that communication goal would have been discharged. The cognitive
architecture would only take the action again if prompted reactively to do so.

7.9 Where possible, determine the user’s task early

The cognitive architecture can take reactive actions intended for other tasks. This can be
overcome if multiple-task devices determine the task to be performed at the first point of
divergence between the tasks. For example, a ticket machine that can also be used as a cash
point may have a common initial sequence inserting a credit card. However, once the tasks
diverge, the next device action should be to determine the task the user is engaged in, in a way
that makes no other actions (specifically communication goals for any other tasks) apparently
possible. From then on actions from other tasks will not need to intrude in the design. This is
important since a communication goal can be discharged at any point where apparently possible.
In complex situations this will be difficult to achieve.

7.10 Summary

Having shown in Section 6 that the cognitive architecture can make many forms of error, we
have argued in this section that design rules can be derived that fix the problems. Appropriate
design can eradicate specific classes of error from the cognitive architecture. To the extent that
the cognitive architecture does describe cognitively plausible behaviour, this means that the
design rule will help prevent systematic user error. If design changes can eradicate systematic
human error then they fall within the scope of formal verification techniques, as investigated
in our parallel work [14]. In the next section, we continue to focus on design rules and look at
how fully formal reasoning about the cognitive architecture, rather than the informal argument
used here, can be used to justify design rules.

8 Verifying a User Error Design Rule

To demonstrate the feasibility of formally reasoning about design rules based on cognitively
plausible behaviour, we consider one particular error genotype: the class of errors known as

23

post-completion errors introduced in Section 1.2. A similar effect (i.e. phenotype) to a post
completion error can occur for other reasons. However that would be considered a different
class of error (genotype). Other design rules might be required to prevent it. Our contribution
is not specifically in the theorem proved, which is quite simple, but rather in the demonstration
of the general approach.

8.1 Formalising Post-completion Error Occurrence

In our cognitive architecture post completion error behaviour is modelled by the goal termination
rule firing. Probe signal Goalcompletion records whether that particular rule has fired at any
given time. Note that the rule can fire when the goal is achieved but does not have to. Note
also that it firing is necessary but not sufficient for the cognitive architecture to make a post-
completion error. In some situations it is perfectly correct for the rule to fire. In particular if
the interaction invariant has been re-established at the point when it fires then the error has not
occurred. Thus whilst the error occurring is a direct consequence of the existence of this rule in
the cognitive architecture, the rule is not directly modelling erroneous actions, just cognitively
plausible behaviour that leads to an erroneous action in some situations.

We define formally the occurence of a post-completion error in definition PCE OCCURS. It
occurs if there is a time, t, before the end time of the interaction te, such that the probe
Goalcompletion is true at that time but the invariant has not been re-established.

`def PCE OCCURS probes invariant te =
(∃t. t ≤ te ∧ Goalcompletion probes t ∧ ¬(invariant t))

This takes two higher order arguments, representing the collection of probes indicating
which rules fire and the relation indicating when the interaction invariant is established. A
final argument indicates the end time of interest. It bounds the interaction under consideration
corresponding to the point when the user has left and the machine has reset. The start time of
the interaction is assumed to be time zero.

8.2 Formalising a Design Rule

We next formalise one of the well-known user-centred design rules outlined in Section 7 intended
to prevent a user having the opportunity to make a post-completion error. It is based on the
observation that the error occurs because it is possible for the goal to be achieved before the
task as a whole has been completed. If the design is altered so that all user actions have been
completed before the goal then a post-completion error will not be possible. In particular any
tidying up actions associated with restoring the interaction invariant must be either done by
the user before the goal can possibly be achieved, or done automatically by the system. This
is the design approach taken for British cash machines where, unlike in the original versions,
cards are always returned before cash is dispensed. This prevents the post-completion error
where the person takes the cash (achieving their goal) but departs without the card (a tidying
task).

The formal version of the design rule states that for all times less than the end time, te,
it is not the case that both the goal is achieved at that time and the task is not done. Here,
goalachieved and invariant are the same as in the cognitive architecture.

`def PCE DR goalachieved invariant te =
(∀t. t ≤ te ⊃ ¬(goalachieved t ∧ ¬(TASK DONE goalachieved invariant t)))

24

Thus when following this design approach, the designer must ensure that at all times prior to
the end of the interaction it is not the case that the goal is achieved when the task as a whole is
incomplete. The design rule was formulated in this way to match a natural way to think about
it informally according to the above observation.

8.3 Justifying the Design Rule

We now prove a theorem that justifies the correctness of this design rule (up to assumptions in
the cognitive architecture). If the design rule works, at least for users obeying the principles of
cognition, then the cognitive architecture’s behaviour when interacting with a machine satisfying
the design rule should never lead to a post-completion error occurring. We have proved, using
the HOL proof system, the following theorem stating this:

`thm USER . . . goalachieved invariant probes ustate mstate ∧
PCE DR (goalachieved ustate) (invariant ustate) te ⊃

¬(PCE OCCURS probes (invariant ustate) te)

We have simplified, for the purposes of presentation the list of arguments to the relation USER
which is the specification of the cognitive architecture, omitting those arguments that are not
directly relevant to the discussion. One way to interpret this theorem is as a traditional cor-
rectness specification against a requirement. The requirement (conclusion of the theorem) is
that a post-completion error does not occur. The conjunction of the user and design rule is
a system implementation. We are in effect taking a much wider definition of the “system” to
include the user as well as the computer component. The system is implemented by placing
an operator (as specified by the cognitive architecture USER) with the machine (as minimally
specified by the design rule). The definitions and theorem proved are generic. They do not
specify any particular interaction or even task. A general, task independent design rule has
thus been verified.

The proof of the above theorem is simple. It involves case splits on the goal being achieved
and the invariant being established. The only case that does not follow immediately is when
the goal is not achieved and the invariant does not hold. However, this is inconsistent with the
goal completion rule having fired so still follows fairly easily.

8.4 Machine-Centred Rules

The above design rule is in terms of user concerns – an invariant of the form suitable for the
cognitive architecture and a user-centred goal. Machine designers are not directly concerned
with the user and this design rule is not in a form that is directly of use. The designer cannot
manipulate the user directly, only machine events. Thus whilst the above rule and theorem are
in a form of convenience to a usability specialist, they are less convenient to a machine designer.
We need a more machine-centred design rule such as below, for that.

`def MACHINE PCE DR goalevent minvariant te =
(∀t. goalevent t ⊃ (∀t1. t ≤ t1 ∧ t1 ≤ te ⊃ minvariant t1))

This design rule is similar to the user-centred version, but differs in several key ways. Firstly,
the arguments no longer represent user-based relations. The goalevent signal represents a
machine event. Furthermore this is potentially an instantaneous event, rather than a predicate
that holds from that point on. Similarly, the machine invariant concerns machine events rather
than user events. Thus, for example with a ticket machine, the goal as specified in a user-
centred way is that the user has a ticket. Once this first becomes true it will continue to hold

25

Cognitive

PCE

Combined Design Rule Correctness Theorem

Assumptions

Linking

Architecture

User-centric

Design Rule

Machine
centric

PCE

Design Rule

Post-completion

Free from

Errors

Figure 2: Verifying the Design Rule in Stages

until the end of the interaction, since for the purposes of analysis we assume that the user does
not give up the ticket again until after the interaction is over. The machine event however, is
that the machine fires a signal that releases the ticket. This is a relation on the machine state
rather than on the user state. It is also an event that occurs at a single time instance (up to
the granularity of the time abstraction modelled). The machine invariant is also similar to the
user one but specifying that the value of the machine’s possessions, rather than the user’s, are
the same as at the start of the interaction – it having exchanged a ticket for an equal value of
money. It is also a relation on the machine’s state rather than on the user’s state.

The ramification of the goal now being an instantaneous event is that we need to assert
more than that the invariant holds whenever the goal achieved event holds. The invariant must
hold from that point up to the end of the interaction. That is the reason a new universally
quantified variable t1 appears in the definition, constrained between the time the goal event
occurs and the end of the interaction.

We have proved that this new design rule implies the original, provided assumptions are
met about the relationship between the two forms of goal statements and invariants. These
assumptions form the basis of the integration between the user and machine-centred worlds.

`thm (∀t. minvariant t ⊃ invariant t) ∧
(∀t. goalachieved t ⊃ ∃t2. t2 ≤ t ∧ (goalevent t2)) ⊃

MACHINE PCE DR goalevent minvariant te ⊃ PCE DR goalachieved invariant te

This asserts that the machine based design rule MACHINE PCE DR does indeed imply the user-
centred one PCE DR, under two assumptions. The first assumption is that at all times the
machine invariant being true implies that the user invariant is true at that time. The second
assumption asserts a connection between the two forms of goal statement. If the user has
achieved their goal at some time t then there must have existed an earlier time t2 at which the
machine goal event occurred. The user cannot achieve the goal without the machine enabling
it.

8.5 Combining the Theorems

At this point we have proved two theorems. Firstly we have proved that a machine-centred
statement of a design rule implies a user-centred one, and secondly that the user-centred design
rule implies that post-completion errors are not made by the cognitive architecture. These two
theorems can be combined giving us a theorem that justifies the correctness of the machine-

26

centred design rule with respect to the occurrence of post-completion errors as illustrated in
Figure 2. The theorem proved in HOL is:

`thm (∀t. minvariant t ⊃ invariant ustate t) ∧
(∀t. goalachieved t ⊃ ∃t2. t2 ≤ t ∧ (goalevent t2)) ⊃

MACHINE PCE DR goalevent minvariant te ∧
USER . . . goalachieved invariant probes ustate mstate ⊃

¬(PCE OCCURS probes (invariant ustate) te)

This is a generic correctness theorem that is independent of the task or any particular
machine. It states that under the assumptions that link the machine invariant to the user
interaction invariant and the user goal to the machine goal action, the machine specific design
rule is “correct”. By correct in this context we mean that if any device whose behaviour satisfies
the device specification is used as part of an interactive system with a user behaving according
to the principles of cognition as formalised, then no post-completion errors will be made. This
is despite the fact that the principles of cognition themselves do not exclude the possibility of
post-completion errors.

9 Discussion

We have outlined a formal description of a very simple cognitive architecture. The cognitive
architecture describes fallible behaviour. However, rather than explicitly describing erroneous
behaviour, it is based on cognitively plausible behaviour. Despite this we show that a wide variety
of erroneous actions can occur from the behaviour described in appropriate circumstances. We
have considered how devices (software, hardware or even everyday objects) must be designed
if a person acting as specified by the cognitive architecture is to be able to successfully use the
device. We have shown how well-known design rules, if followed, would allow this to occur.
Each of these rules removes potential sources of user error that would prevent the verification
of a design against the cognitive architecture using the techniques described in [14]. We thus
provide a theoretically based set of design rules, built upon a formal model. This model has
very precise semantics that are open to inspection. Of course our reasoning is about what the
cognitive architecture might do rather than about any real person. As such, the results should
be treated with care. However, errors that the cognitive architecture could make can be argued
to be cognitively plausible and so worth attention.

Ad-hoc lists of design rules can easily appear to be contradictory or only apply in certain
situations. By basing them on cognitively plausible principles, we can reason about their scope
and make this scope more precise. For example, should systems always be permissive [45],
allowing any action to be taken, or only under certain circumstances? At first sight, permissive-
ness appears to contradict forcing functions [33] when only certain actions are made possible.
By reasoning from cognitive principles we can be precise about these surface contradictions.

One of our aims has been to demonstrate a lightweight use of formal methods. As such, we
have started with a formal description of user behaviour and used it as the basis for semi-formal
reasoning about what erroneous behaviours emerge, and design rules that prevent behaviours
emerging. Such semi-formal reasoning could be erroneous. We have also explored the formal,
machine-checked verification of a design rule. Using HOL (the proof system the cognitive archi-
tecture is defined within), this involves giving formal descriptions of design rules and proving
that – under the assumptions of the cognitive architecture – particular erroneous situations do
not occur. We demonstrated this by considering a design rule intended to prevent one class of
systematic user error – post-completion errors – occurring.

27

We specified two versions of a design rule intended to prevent post-completion errors. The
first is specified in terms of user goals and invariant. The second is in terms of machine events,
and so of more direct use to a designer. We proved a theorem that the user-centred design rule
is sufficient to prevent the cognitive architecture from committing post-completion errors. This
theorem is used to derive a theorem that the machine-based formulation is also sufficient. The
resulting theorem is a correctness theorem justifying the design rule. It says that users behaving
according to the principles of cognition will not make post-completion errors interacting with a
device that satisfies the design rule.

The definitions and theorems are generic and do not commit to any specific task or machine.
They are a justification of the design rule in general rather than in any specific case. They can be
instantiated to obtain theorems about specific scenarios and then further with specific computer
systems.

This work also demonstrates an approach that integrates machine-centred verification (hard-
ware verification) with user-centred verification (that user errors are eliminated). The higher-
order logic framework adopted is that developed for hardware verification. Specifications,
whether of implementations, behaviours or design rules, are higher-order logic relations over
signals specifying input or output traces. The theorems developed therefore integrate directly
with hardware verification theorems about the computer component of the system. Such an
integration to hardware verification is described in [13].

The work presented here builds on our previous work on fully formal proofs that an interac-
tive system completes a task [14]. A problem with that approach is that with complex systems,
guarantees of task completion may be unobtainable. The current approach allows the most
important errors for a given application to be focussed on.

10 Further Work

We have only fully formally considered one class of error and a simple design rule that prevents
it occurring. In doing so we have shown the feasibility of the approach. There are many other
classes of error. Further work is needed to formally model and verify these other error classes
and design rules. This will also allow us to reason about the scope of different design rules,
especially those that apparently contradict.

In this paper we have been concerned with the verification of design rules in general, rather
than their use in specific cases. We have argued, however, that, since the framework used is
that developed for hardware verification, integration of instantiated versions of the design rule
correctness theorem is straightforward. Major case studies are needed to test the utility of this
approach.

Our architecture is intended to demonstrate the principles of the approach, and covers only
a small subset of cognitively plausible behaviour. As we develop it, it will give a more accurate
description of what is cognitively plausible. We intend to extend it in a variety of ways. As
this is done, it will be possible to model more erroneous behaviour. We have essentially made
predictions about the effects of following design rules. In broad scope these are well known and
based on usability experiments. However, one of our arguments is that more detailed predictions
can be made about the scope of the design rules. The predictions resulting from the model could
be used as the basis for designing further experiments to validate the cognitive architecture and
the correctness theorems proved, or further refine it. We also suggested there are tasks where
it might be impossible to produce a design that satisfies all the underlying principles, so that
some may need to be sacrificed in particular situations. We intend to explore this issue further.

28

Acknowledgements

We are grateful to Kirsten Winter and the anonymous referees whose comments have helped
greatly improve this paper. This work is funded by EPSRC grants GR/S67494/01 and GR/S67500/01.

References

[1] R. Back, A. Mikhajlova, and J. von Wright. Modeling component environments and inter-
active programs using iterative choice. Technical Report 200, Turku Centre for Computer
Science, September 1998.

[2] A. E. Blandford and R.M. Young. The role of communication goals in interaction. In
Adjunct Proceedings of HCI’98, pages 14–15, 1998.

[3] A.E. Blandford, P.J. Barnard, and M.D. Harrison. Using interaction framework to guide
the design of interactive systems. International Journal of Human Computer Studies,
43:101–130, 1995.

[4] A.E. Blandford, R. Butterworth, and P. Curzon. PUMA footprints: linking theory and
craft skill in usability evaluation. In Proceedings of Interact, pages 577–584, 2001.

[5] J. Bredereke and A. Lankenau. A rigorous view of mode confusion. In Proc. of Safecomp
2002, 21st International Conf. on Computer Safety, Reliability and Security, volume 2434
of Lecture Notes in Computer Science, page 1931. Springer-Verlag, 2002.

[6] P. Bumbulis, P.S.C. Alencar, D.D. Cowen, and C.J.P. Lucena. Validating properties of
component-based graphical user interfaces. In F. Bodart and J. Vanderdonckt, editors,
Proc. Design, Specification and Verification of Interactive Systems ’96, pages 347–365.
Springer, 1996.

[7] Ricky W. Butler, Steven P. Miller, James N. Potts, and Victor A. Carreño. A formal
methods approach to the analysis of mode confusion. In 17th AIAA/IEEE Digital Avionics
Systems Conference, Bellevue, WA, October 1998.

[8] R. Butterworth, A.E. Blandford, and D. Duke. Using formal models to explore display
based usability issues. Journal of Visual Languages and Computing, 10:455–479, 1999.

[9] R. Butterworth, A.E. Blandford, and D. Duke. Demonstrating the cognitive plausibility of
interactive systems. Formal Aspects of Computing, 12:237–259, 2000.

[10] M. Byrne and S. Bovair. A working memory model of a common procedural error. Cognitive
Science, 21(1):31–61, 1997.

[11] J.C. Campos and M.D. Harrison. Formally verifying interactive systems: a review. In
M.D. Harrison and J.C. Torres, editors, Design, Specification and Verification of Interactive
Systems ’97, pages 109–124. Wien : Springer, 1997.

[12] Judith Crow, Denis Javaux, and John Rushby. Models and mechanized methods that
integrate human factors into automation design. In International Conference on Human-
Computer Interaction in Aeronautics: HCI-Aero, September 2000.

[13] P. Curzon and A. Blandford. Formally justifying user-centred design rules: a case study
on post-completion errors. In E.A. Boiten, J. Derrick, and G. Smith, editors, Proc. of the
4th International Conference on Integrated Formal Methods, volume 2999 of Lecture Notes
in Computer Science, pages 461–480. Springer, 2004.

29

[14] P. Curzon and A.E. Blandford. Detecting multiple classes of user errors. In Reed Little and
Laurence Nigay, editors, Proceedings of the 8th IFIP Working Conference on Engineering
for Human-Computer Interaction (EHCI’01), volume 2254 of Lecture Notes in Computer
Science, pages 57–71. Springer-Verlag, 2001.

[15] P. Curzon and A.E. Blandford. A user model for avoiding design induced errors in soft-key
interactive systems. In R.J. Bolton and P.B. Jackson, editors, TPHOLS 2001 Supplemen-
tary Proceedings, number ED-INF-RR-0046 in Informatics Research Report, pages 33–48,
2001.

[16] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction. Prentice Hall,
3rd edition, 2004.

[17] A. J. Dix and C. Runciman. Abstract models of interactive systems. In P. J. Cook and
S. Cook, editors, People and Computers: Designing the Interface, pages 13–22. Cambridge
University Press., 1985.

[18] D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-Computer
Interaction, 13(4):337–394, 1998.

[19] R.E. Fields. Analysis of erroneous actions in the design of critical systems. Technical Report
YCST 20001/09, University of York, Department of Computer Science, 2001. D.Phil Thesis.

[20] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving envi-
ronment for higher order logic. Cambridge University Press, 1993.

[21] W. Gray, R.M. Young, and S. Kirschenbaum. Introduction to this special issue on cognitive
architectures and human-computer interaction. Human-Computer Interaction, 12:301–309,
1997.

[22] W.D. Gray. The nature and processing of errors in interactive behavior. Cognitive Science,
24(2):205–248, 2000.

[23] E. Hollnagel. Cognitive Reliability and Error Analysis Method. Elsevier, 1998.

[24] D.E. Kieras, S.D. Wood, and D.E. Meyer. Predictive engineering models based on the
EPIC architecture for a multimodal high-performance human-computer interaction task.
ACM Trans. Computer-Human Interaction, 4(3):230–275, 1997.

[25] A. Lankenau. Avoiding mode confusion in service-robots. In M. Mokhtari, editor, In-
tegration of Assistive Technology in the Information Age, Proc. of the 7th Int. Conf. on
Rehabilitation Robotics, page 162167. IOS Press, 2001.

[26] D. Leadbetter, P. Lindsay, A. Hussey, A. Neal, and M. Humphreys. Towards model based
prediction of human error rates in interactive systems. In Australian Comp. Sci. Commu-
nications: Australasian User Interface Conf., volume 23(5), pages 42–49, 2001.

[27] N.G. Leveson, L.D. Pinnel, S.D. Sandys, S. Koga, and J.D. Reese. Analyzing soft-
ware specifications for mode confusion potential. In C.W. Johnson, editor, Proceed-
ings of the Workshop on Human Error and System Development, pages 132–146, March
1997. Glasgow Accident Analysis Group Technical Report GAAG-TR-97-2 Available at
www.cs.washington.edu/research/projects/safety/www/papers/glascow.ps.

30

[28] Gerald Lüttgen and Victor Carreño. Analyzing mode confusion via model checking. In
D. Dams, R. Gerth, S. Leue, and M.Massink, editors, SPIN’99, number 1680 in Lecture
Notes in Computer Science, pages 120–135. Springer-Verlag, 1999.

[29] P. Markopoulos, P. Johnson, and J. Rowson. Formal architectural abstractions for inter-
active software. International Journal of Human Computer Studies, 49:679–715, 1998.

[30] T.G. Moher and V. Dirda. Revising mental models to accommodate expectation failures in
human-computer dialogues. In Design, Specification and Verification of Interactive Systems
’95, pages 76–92. Wien : Springer, 1995.

[31] A. Newell. Unified Theories of Cognition. Harvard University Press, 1990.

[32] J. Nielsen. Heuristic evaluation. In J. Nielsen and R.L. Mack, editors, Usability Inspection
Methods. John Wiley and Sons, 1994.

[33] Donald Norman. The Design of Everyday Things. Currency-Doubleday, 1988.

[34] F. Paterno’ and M. Mezzanotte. Formal analysis of user and system interactions in the
CERD case study. In Proceedings of EHCI’95: IFIP Working Conference on Engineering
for Human-Computer Interaction, pages 213–226. Chapman and Hall Publisher, 1995.

[35] F.E. Ritter and R.M. Young. Embodied models as simulated users: introduction to this
special issue on using cognitive models to improve interface design. International Journal
of Human-Computer Studies, 55:1–14, 2001.

[36] C. R. Roast. Modelling unwarranted commitment in information artifacts. In S. Chatty
and P. Dewan, editors, Engineering for Human-Computer Interaction, pages 77–90. Kluwer
Academic Press, 1998.

[37] John Rushby. Analyzing cockpit interfaces using formal methods. Electronic Notes in
Theoretical Computer Science, 43, 2001.

[38] John Rushby. Modeling the human in human factors. In U. Vogues, editor, SAFECOMP
2001, volume 2187 of Lecture Notes in Computer Science, pages 86–91. Springer-Verlag,
2001.

[39] John Rushby. Using model checking to help discover mode confusions and other automa-
tion suprises. Reliability Engineering and System Safety, 75(2):167–177, 2002. Originally
presented at the 3rd Workshop on Human Error, Safety and System Development, 1999.

[40] John Rushby, Judith Crow, and Everett Palmer. An automated method to detect poten-
tial mode confusions. In 18th AIAA/IEEE Digital Avionics Systems Conference (DASC),
October 1999.

[41] N.B. Sartar, D.D. Woods, and C.E. Billings. Automation suprises. In G. Salvendy, editor,
Handbook of Human Factors and Ergonomics. Wiley, 2nd edition, 1997.

[42] Ben Shneiderman. Designing the User Interface. Addison Wesley, 3rd edition, 1998.

[43] S. Buckingham Shum, A. Blandford, D. Duke, J. Good, J. May, F. Paterno, and R. Young.
Multidisciplinary modelling for user-centred design: An air-traffic control case study.
In M.A. Sasse, R.J. Cunningham, and R.L. Winder, editors, Proceedings of Human-
Computer Interactoin ’96, People and Computers XI, BCS Conference Series, pages 201–
220. Springer-Verlag, 1996.

31

[44] H. Thimbleby. Generative user-engineering principles for user interface design. In
B. Shackel, editor, Proceedings First IFIP Conference on Human Computer Interaction,
INTERACT’84, pages 102–107. North Holland, 1984.

[45] H. Thimbleby. Permissive user interfaces. International Journal of Human-Computer
Studies, 54(3):333–350, 2001.

[46] H. Thimbleby, A. Blandford, P. Cairns, P. Curzon, and M. Jones. User interface design
as systems design. In Xristine Faulkner, Janet Finlay, and Francoise Detienne, editors,
People and Computers XVI Memorable Yet Invisible, Proceedings of the 16th British HCI
Conference, volume 1, pages 281–302. Springer, 2002.

A The formal cognitive architecture

In this appendix we give the formal HOL definitions of the cognitive architecture. A version
that is loadable in HOL can be obtained from the HUM website at
http://www.dcs.qmul.ac.uk/research/imc/hum/

A.1 Basics

In this section the definitions underpinning the timing of actions are given. The key definition
is NEXT. It is then used throughout the remainder of the cognitive architecture to specify when
actions occur. It is based on local definitions STABLE, LSTABLE and LF.

STABLE asserts that the signal, P, has the same value v between times t1 and t2.

`def STABLE P t1 t2 v =
∀t. t1 ≤ t ∧ t < t2 ⊃ (P t = v)

LSTABLE asserts that STABLE holds for a list of signals.

`def (LSTABLE []t1 t2 v = TRUE) ∧
(LSTABLE (a :: l) t1 t2 v =

STABLE a t1 t2 v ∧
LSTABLE l t1 t2 v)

Given an argument 0 for n, LF states that all actions in a list except for a specified one given
by position, ppos, are inactive (false) at the given time.

`def (LF n []ppos t = TRUE) ∧
(LF n (a :: l) ppos t = (((n = ppos) ∨ ¬(a t)) ∧

LF (SUC n) l ppos t))

NEXT asserts that the next action from a list of actions to become true after time t1 is action.

`def NEXT flag actions action t1 =
∃t2. t1 <= t2 ∧

LSTABLE actions t1 t2 F ∧
(LF 0 actions action t2) ∧
EL action actions t2 ∧
(flag (t2+1)) ∧
STABLE flag (t1+1) (t2+1) F

32

A.2 Possessions

In this subsection we define some physical restrictions on possessions and their values.

HAS POSSESSION is used to define the physical restrictions on possessions of an individual,
linking for a single kind of possession the events of taking and giving up a possession, having a
possession, the number of an object possessed and its value. Properties include that a person
has a possession if its count is greater than 0; if in a time instance a person takes a possession
and does not give it up, then the count goes up by 1; etc.

`def HAS POSSESSION haspossession takepossession givepossession
valueofpossession countpossession (ustate:’u) (mstate:’m) =

(∀t. haspossession ustate t = (countpossession ustate t > 0)) ∧
(∀t. (givepossession mstate t ∧ ¬(takepossession mstate t)) =

((countpossession ustate t > 0) ∧
(countpossession ustate (t+1) = countpossession ustate t - 1))) ∧

(∀t. (takepossession mstate t ∧ ¬(givepossession mstate t)) =
(countpossession ustate (t+1) = countpossession ustate t + 1)) ∧

(∀t. ((¬(givepossession mstate t) ∧ ¬(takepossession mstate t)) ∨
((givepossession mstate t) ∧ (takepossession mstate t))) =

(countpossession ustate (t+1) = countpossession ustate t))

Possessions are recorded as a new state tuple type recording having a possession, taking one,
giving one up, the value and the count of the possession. Corresponding functions that access
the tuples’ fields are defined.

pstate type = :(’u → num → bool) # (’m → num → bool) # (’m → num → bool) #
num # (’u → num → num)

`def HasPossession (pstate: pstate type) = FST pstate

`def TakePossession (pstate: pstate type) = FST (SND pstate)

`def GivePossession (pstate: pstate type) = FST (SND (SND pstate))

`def ValueOfPossession (pstate: pstate type) = FST (SND (SND (SND pstate)))

`def CountPossession (pstate: pstate type) = SND (SND (SND (SND pstate)))

A collection of possessions is recorded as a list of possession tuples. POSSESSIONS asserts that
HAS POSSESSION holds of each.

`def (POSSESSIONS [] (ustate:’u) (mstate:’m) = TRUE) ∧
(POSSESSIONS ((p: pstate type) :: possessions) ustate mstate =

((POSSESSIONS possessions ustate mstate) ∧
(HAS POSSESSION (HasPossession p) (TakePossession p)

(GivePossession p) (ValueOfPossession p)
(CountPossession p)
ustate mstate)))

The value of a list of possessions is the total value of the possessions of each type.

33

`def (POSSESSIONS VAL [] (ustate:’u) t = 0) ∧
(POSSESSIONS VAL ((p: pstate type) :: ps) (ustate:’u) t =

((POSSESSIONS VAL ps (ustate:’u) t) +
((CountPossession p ustate t) * (ValueOfPossession p))))

A.3 Probes

In this subsection we define probes. They are signals that record the firing of other behavioural
rules at each time instance. In this version of the cognitive architecture there is only a single
probe related to a goal completion rule (given later) firing.

`def Goalcompletion probes t = probes t

A.4 Reactive Signals

In this subsection we define rules about how a user might react to external stimulus from a
device such as lights flashing.

Reactive signals are provided to the cognitive architecture as a list of pairs consisting of a
stimulus and a resulting action. We first define accessor functions for the tuples.

`def Stimulus stimulus actions = FST stimulus actions

`def Action stimulus actions = SND stimulus actions

REACT is the rule for reacting to a stimulus. The relation is true at a time, t if the stimulus is
true and the next action is the given action. As this is not the goal completion rule, the goal
completion probe is false.

`def REACT flag actions stimulus action probes t =
(stimulus t = TRUE) ∧
(Goalcompletion probes t = FALSE) ∧
NEXT flag actions action t

REACTS states that given a list of reactive stimulus rules, any can fire (their relation can be
true) at a time instance.

`def (REACTS flag actions [] probes t = FALSE) ∧
(REACTS flag actions (s :: stimulus actions) probes t =

((REACTS flag actions stimulus actions probes t) ∨
(REACT flag actions (Stimulus s) (Action s) probes t)))

A.5 Mental Commitments

In this subsection we define what it means to have made a mental commitment to take a physical
action.

Mental commitments are pairs, consisting of a guard and an action that can occur if the guard
is true. Given a list of such pairs, CommitmentGuards extracts all the guards.

34

`def CommitmentGuard commitments = FST commitments

`def CommitmentAction commitments = SND commitments

`def CommitmentGuards commitments = MAP CommitmentGuard commitments

The rule for turning a guard mental action (irrevokable decision) into a physical one, is that
if the mental action was true on the previous cycle then the next action is a corresponding
physical action as given by COMMITS.

`def COMMIT flag actions maction paction t =
(maction (t-1) = TRUE) ∧ NEXT flag actions paction t

Given a list of mental commitments the rule corresponding to any one of them can fire.

`def (COMMITS flag actions [] t = FALSE) ∧
(COMMITS flag actions (ca :: commits actions) t =

((COMMITS flag actions commits actions t) ∨
(COMMIT flag actions (CommitmentGuard ca) (CommitmentAction ca) t)))

Given a list of commitments, a commitment is currently made if the guard of any one of them
was true on the previous cycle.

`def (CommitmentMade [] t = FALSE) ∧
(CommitmentMade (maction :: rest) t =

(maction(t-1) = TRUE) ∨ (CommitmentMade rest t))

A.6 Communication Goals

In this subsection we define rules related to one form of task related knowledge: communication
goals.

FILTER takes two lists. The first is a list of all signals. The second a list of positions in that
first list. For each position, it checks if that signal is true at the current time t and removes it
from the list of positions if so. This is used to take a communication goal list and remove all
those for which the action was performed.

`def (FILTER actions [] t = []) ∧
(FILTER actions (a :: act) t =

IF (EL (FST a) actions t
THEN (FILTER actions act t)
ELSE (a :: (FILTER actions act t))))

A history list (ie a list of actions) is filtered if at the next time instance all those entries which
were active currently are removed from the list.

`def FILTER HLIST actions hlist =
∀t. hlist (t+1) = FILTER actions (hlist t) t

35

A communication goal is a pair consisting of a an action and a guard. We define corresponding
accessor functions.

`def ActionOfComGoal cg = FST cg

`def GuardOfComGoal cg = SND cg

A communication goal rule fires if the guard of the communication goal is true, the goal has
not been achieved and the next action is the given action. This is not the goal completion rule
so its probe is false.

`def COMMGOAL flag actions action guard goal probes (ustate:’u) (mstate:’m) t =
¬(goal ustate t) ∧
(guard t) ∧
(Goalcompletion probes t = FALSE) ∧
NEXT flag actions action t

COMMGOALER asserts using the subsidiary definition COMMGOALS that given a list of communication
goals, any one of them can fire at a given time.

`def (COMMGOALS flag actions [] goal probes (ustate:’u) (mstate:’m) t = FALSE) ∧
(COMMGOALS flag actions (a :: acts) goal probes ustate mstate t =

((COMMGOALS flag actions acts goal probes ustate mstate t) ∨
(COMMGOAL flag actions (ActionOfComGoal a) (GuardOfComGoal a)

goal probes ustate mstate t)))

`def COMMGOALER flag actions acts goal probes (ustate:’u) (mstate:’m) t =
COMMGOALS flag actions (acts t) goal probes ustate mstate t

A.7 Goal-based Termination

In this subsection we define termination behaviour based on a person’s goals.

The first action, always at position 0 of the list of all actions is the one that indicates when an
interaction is terminated.

`def FINISHED = 0

The goal based completion rule fires when the goal is achieved and the next action is to finish
the interaction. This is the goal completion rule so the goal completion probe fires.

`def COMPLETION flag actions goalachieved probes (ustate:’u) (t:num) =
(Goalcompletion probes t = TRUE) ∧
(goalachieved ustate t = TRUE) ∧
NEXT flag actions FINISHED t

36

A.8 Termination due to no options

In this subsection we define termination behaviour that results from there being no useful steps
that can be taken.

We first define some simple list operators. They are used to manipulate the lists of guards for
the other rules to create a guard that fires when no other guard fires. NOT CONJL takes a list of
booleans and creates a new list with all its entries negated. CONJ1L takes a list of booleans and
ands a boolean to each element of the list. APPLYL applies a function to each element of a list.

`def (NOT CONJL [] = TRUE) ∧
(NOT CONJL (P :: l) = ¬P ∧ (NOT CONJL l))

`def (CONJ1L P [] = []) ∧
(CONJ1L P (Q :: l) = ((P ∧ Q) :: (CONJ1L Q l)))

`def (APPLYL [] a = []) ∧
(APPLYL (f :: l) a = ((f a) :: (APPLYL l a)))

The basic rule for no-option based termination, ABORT fires if its guard is true, leading to the
next action being to finish the interaction. ABORTION constructs the guard for ABORT so that it
holds if no other rule’s guard holds.

`def ABORT flag actions guards probes (ustate:’u) (t:num) =
(Goalcompletion probes t = FALSE) ∧
(guards = TRUE) ∧
NEXT flag actions FINISHED t

`def ABORTION flag actions goalachieved commgoals stims actions probes
(ustate:’u) (mstate:’m) (t:num) =

ABORT flag actions
(NOT CONJL

((goalachieved ustate t) ::
(APPEND
(CONJ1L (¬(goalachieved ustate t))

(APPLYL (MAP GuardOfComGoal (commgoals t)) t))
(APPLYL (MAP FST stims actions) t))))

probes ustate t

A.9 Top Level Definitions of the Architecture

In this subsection we give the top level definitions of the architecture, pulling the separate
behaviours together into a single architecture.

The initial communication goals at time 1 are set to those supplied as an argument to the
cognitive architecture as a whole.

`def USER INIT commgoals init commgoals = (commgoals 1 = init commgoals)

The task is completed when the goal is achieved and the interaction invariant is restored.

37

`def TASK DONE goal inv t = (goal t ∧ inv t)

The rules encoding different reasons for taking an action are combined by disjunction, so as to
be non-deterministic. In the current version of the architecture they consist of goal completion,
reacting to a stimulus, executing a communication goal and finishing due to no options.

`def USER RULES flag actions commgoals stimulus actions goalachieved mstate ustate t =
COMPLETION flag actions goalachieved probes ustate t ∨
REACTS flag actions stimulus actions probes t ∨
COMMGOALER flag actions commgoals goalachieved probes ustate mstate t ∨
ABORTION flag actions goalachieved commgoals stimulus actions probes ustate mstate t

The non-deterministic rules are wrapped in an if-then else structure. If the interaction has
already been terminated it stays terminated. If a mental commitment has been made then it
is carried out. If the task is completed then the interaction terminates. Only if none of the
above hold do the non-deterministic options come into play. The above is only a consideration
if the flag is true as it indicates the time is such that a new decision needs to be made by the
architecture. It is set by each rule to cover the time period over which that rule has committed
to a decision.

`def USER CHOICE flag actions commitments commgoals stimulus actions
finished goalachieved invariant probes (ustate:’u) (mstate:’m) =

(∀t.
¬(flag t) ∨
(IF (finished ustate (t-1))
THEN (NEXT flag actions FINISHED t ∧ (Goalcompletion probes t = FALSE))
ELSE IF (CommitmentMade (CommitmentGuards commitments) t)
THEN (COMMITS flag actions commitments t ∧ (Goalcompletion probes t = FALSE))
ELSE IF TASK DONE (goalachieved ustate) (invariant ustate) t
THEN (NEXT flag actions FINISHED t ∧ (Goalcompletion probes t = FALSE))
ELSE USER RULES flag actions commgoals stimulus actions

goalachieved probes mstate ustate t))

To make the above rules work, in the background various other process need to take place
at every time instance. If the interaction is terminated it stays terminated. The rules about
possessions must always hold. The person’s internal communication goal list is maintained
from time instance to time instance with only completed actions removed. Where rules are not
driving the probe value directly its signal remains false.

GENERAL USER UNIVERSAL actions commgoals possessions finished flag
probes (ustate:’u) (mstate:’m) =

(∀t. finished ustate t ⊃ finished ustate (t+1)) ∧
(POSSESSIONS possessions ustate mstate) ∧
(FILTER HLIST actions commgoals) ∧
(∀t. ¬(flag t) ⊃ (Goalcompletion probes t = FALSE))

The above properties of each time instance are combined with the rule about initialising the
cognitive architecture.

38

`def USER UNIVERSAL flag actions commgoals init commgoals possessions
finished probes (ustate:’u) (mstate:’m) =

(USER INIT commgoals init commgoals) ∧
(GENERAL USER UNIVERSAL actions commgoals possessions

finished flag probes ustate mstate)

Finally the full cognitive architecture is the combination of USER UNIVERSAL about the back-
ground processes and USER CHOICE about the actual rules that drive the actions.

`def USER flag actions commitments commgoals init commgoals stimulus actions
possessions finished goalachieved invariant probes (ustate:’u) (mstate:’m) =

(USER UNIVERSAL flag actions commgoals init commgoals possessions finished
probes ustate mstate) ∧

(USER CHOICE flag actions commitments commgoals stimulus actions
finished goalachieved invariant probes ustate mstate)

39

