
Mesh Connectivity Compression for

Progressive-to-Lossless Transmission

Pengwei Hao, Yakup Paker and Alan Pearmain

ISSN 1470-5559

RR-05-05 June 2005 Department of Computer Science

Mesh Connectivity Compression for Progressive-to-Lossless Transmission

Pengwei Hao1 Yakup Paker1 Alan Pearmain2

1Department of Computer Science 2Department of Electronic Engineering
Queen Mary, University of London, UK

1{phao, paker}@dcs.qmul.ac.uk 2alan.pearmain@elec.qmul.ac.uk

Abstract

A progressive mesh connectivity compression

technique is proposed in this paper. Our method is
based on the edge collapse and vertex splitting
technique for progressive mesh compression-
decompression. This is an efficient and reversible
method that can be used for progressive-to-lossless
transmission. We derive a theoretical upper bound for
the lossless connectivity compression bit rate, when
the isolated vertices are ignored. Our experiments
show that all the meshes we have used can be
compressed better than the derived bit rate upper
bound. Furthermore, our method can ensure that less
than 10% of the vertices generate accidental code.
According to our analysis, the optimal bound for
triangular mesh coding can be 3, smaller than some of
the reported results in recent literature.

1. Introduction

1.1 Purpose of our work

3D mesh coding methods are important for efficient
storage and fast transmission of large models. Such
polygon models come from a number of sources
including computer-aided design, range scanners,
terrain mapping and iso-surface extraction from volume
data. As model sizes continue to grow, finding efficient
and improved compression methods will remain an
important problem in computer graphics. In particular
if complex scenes are built in 3D and sent over
communications lines and need to be animated in real
time the compression methods become crucial for the
quality of animation to be achieved. A particular
application where this is true is the computer games
played interactively over the net and shared immersive
worlds. In our case, a UK collaborative project called
Prometheus [1, 11] undertook to develop an end-to-end

3D television chain. In this project virtual scenes are
used as sets and avatars represent actors in a studio.
Virtual worlds require transmission of massive amounts
of triangulated 3D geometric data over the network.
For both efficient transmission and real-time rendering
of models to and within the end-user computers at
various levels of detail, there was a need for an
efficient technique of mesh simplification and
progressive compression. The technique is based on
three aspects of current research: mesh simplification,
single-resolution mesh compression, and progressive
mesh reconstruction. Our idea has been to find a mesh
compression method for progressive-to-lossless
transmission which produces good quality simplified
meshes with low bit rates and with lossless results
comparable to the single-resolution compression
methods.

1.2 Summary of related work

The key idea of progressive coding is that data are
sent in a coarse-to-fine way. Concretely, progressive
compression transmits a coarse approximation first,
and uses the following subsequent bits to refine the
mesh progressively for more and more details.

As for the progressive encoders, Hoppe introduces
in [7] an algorithm for progressive transmission,
starting from a coarse mesh and inserting vertices one
at a time to refine the mesh. A method called
Progressive Forest Split compression is proposed by
Taubin et al. in [13], using a base mesh and a forest of
vertex splits. Gandoin and Devillers [5] uses the kd-tree
encoding of the geometry to drive the connectivity
coding process. Pajarola and Rossignac [10] group
vertex-split operations into batches, then traverse the
mesh and specify splits by marking each vertex using
one bit. Khodakovsky et al. [8] proposed a progressive
compression algorithm based on the wavelet transform.
Cohen-Or et al. [4] presented the patch coloring

algorithm for progressive mesh compression based on
vertex decimation. In Alliez and Desbrun’s valence-
driven progressive method [2], they use the minimal
granularity for connectivity, i.e., they remove (or insert)
only one vertex at a time during the encoding (or
decoding respectively) phase, and encode (or decode)
the valences of the removed vertices afterwards (or
beforehand respectively). A deterministic conquest
avoids an explicit transmission of order over the
vertices. Of course, progressive compression methods
cannot compete with those single-resolution ones [12,
14, 3] since their techniques basically increase the
dispersion of valence due to the re-triangulation.

So far, the performance of [2] looks the best, but in
terms of the upper bound of bit rate, the method is not
so satisfactory for all meshes.

In [6], Gotsman presented some theoretical upper
bounds for valence-based mesh coding, 3.24 bpv for
triangular meshes. However, according to our analysis,
the upper bound for a triangular mesh can be even
smaller, 3 bpv.

1.3 Overview of our work

Our work has mainly concentrated on the efficient
and reversible mesh simplification methods. In this
paper, we mainly summarize the connectivity
compression for progressive decompression. Because
the edge collapse method is better than a vertex
removal method with respect to the simplified mesh
quality, our technique is based on the edge collapse and
vertex splitting method. We use gates to locate patches,
patches to cover the whole mesh, and two indices
counted from the gate to locate vertex splitting. We
also give a theoretical upper bound estimation of the bit
rate for recording the indices. Our experiments show
the efficiency of our method.

2. Progressive Simplification and
Reconstruction

In order to simplify a mesh, we need to select an
edge of a vertex pair to collapse. Different strategies of
vertex pair selection result in different simplified
meshes, which also give different encoding efficiencies.
We use a strategy that conquers patches of collapsed
edge and sustaining vertices to cover the whole mesh.

2.1 Definitions

A patch consists of all adjacent triangles of one
vertex. The vertex is, therefore, the central vertex of

the patch. A gate is an edge along the boundary of a
patch used to traverse or conquer the patch. Those
traversed patches and the vertices that belong to the
patch are considered as conquered. A vertex or a patch
is called available if it has not been conquered. A
central vertex of a patch is called isolated if there is no
adjacent edge that can be selected to collapse in the
encoding phase or there is no vertex splitting needed in
the decoding phase. Therefore, any patch of a
simplified mesh has a central vertex that is either
isolated or collapsed and is waiting for splitting when
decoding. Isolated vertices generate additional
accidental codes in the encoded bit stream, for which
the additional operations are taken as splits in [6] and
some other publications.

The vertex at the front triangle of a gate is named
the front vertex, similar to that in [2]. As illustrated in
Figure 1, the two gate vertices are the left vertex L and
the right vertex R, where the front vertex is A. The two
gate vertices can be conquered (a, filled black vertices)
or not (b, hollow circles).

Front vertex Front vertex

(a) Gate vertices conquered (b) Gate vertices still available

Figure 1. Definition of a gate and its front vertex

A gate to find the edge to collapse is also a gate to
the new patch. Gates are used to locate patches in the
encoding phase and relocate patches in the decoding
phase.

We take levels-of-detail (LoDs) as a level of the
simplified mesh at which we cover a mesh with
adjacent but un-overlapped patches.

2.2 Encoding: Edge Collapse and Patch
Conquest

The encoding phase is to simplify a mesh and to
record the necessary information for mesh
reconstruction in the decoding phase. Starting from the
first gate in the original mesh, we collapse an edge
adjacent to the front vertex and take the newly re-
triangulated patch as conquered, and then push all the
patch boundary vertices into a queue. Then we pop up
these vertices in pairs as gates to locate the next
adjacent patches to conquer. We continue with this

process to conquer the adjacent patches, if available,
until the whole mesh is covered. Figure 2 gives a
demonstration of a general case of edge collapse in the
encoding phase.

The specific algorithm is as follows:
1. At each LoD, add the first candidate gate into the

gate candidate queue as the program initialisation,
and repeat, following the patch conquest steps, until
there is no vertex collapsed in the iteration.

2. Get a candidate gate from the queue. If the queue is
empty, go to Step 1 to simplify the mesh for the next
LoD.

3. Check if both the gate vertices L and R are
available. If neither, check the next candidates in the
queue.

4. Cross the gate of vertex L and vertex R and find the
front vertex A. (As in the direction of the dashed
arrow in Fig. 2a)

5. Starting from vertex L, go clockwise to vertex R to
search all the adjacent vertices of A for an edge AB
to collapse. (For demonstration, we search along the
solid arrows in Fig. 2a and we find the edge AB in
Fig. 2b as our selected edge to collapse.) If there is
no such edge to collapse, we tag the central vertex as
isolated, record this information in the bit stream,
and go to Step 2.

6. Collapse the edge AB, insert a new vertex A’ as the
central vertex of a new patch, and rebuild the
connectivity of the new patch. (As from Fig 2b to
Fig. 2c)

7. Count clockwise sequentially from the gate vertex L
to locate the first vertex adjacent to the collapsed
edge and get one index. (We get vertex 2 in Fig. 2c)

8. Count counter-clockwise from the gate vertex R to
locate the other vertex adjacent to the collapsed
edge, and get the other index. (We get 1 in Fig. 2c)

9. Encode the two indices of the last two steps by an
entropy coder to record them in the bit stream in
order to re-locate the vertex splitting connectivity
for perfect reconstruction in the decoding phase.

10. Starting from the entrance gate vertex L, go
clockwise to vertex R to add all the adjacent vertices
into the queue as the candidate gate vertices to
adjacent patches. (As in Fig. 2d)

11. Tag vertex A’ and all its adjacent vertices of the
patch as conquered (As in Fig. 2d), and go to Step 2.

12. Encode the final coarsest mesh.
Various criterion for the edge selection can be used.

In our experiments, we use the maximum valence to
determine which edge is selected to collapse. As
mentioned in [2], this can reduce the data dispersion
and then the final bit rate.

If there is no edge available to collapse, we just take
the central vertex as an isolated vertex, but we need to
record this information in the bit stream, which
obviously reduces encoding efficiency.

The bit streams at different LoDs are reverse
recorded in the whole bit stream of mesh coding. The
coarsest mesh is encoded and put at the head of the
whole code bit stream so that the decoder can
reconstruct the mesh.

 (a) (b) (c) (d)

Figure 2 Edge Collapse

2.3 Decoding: Patch Conquest and Vertex
Splitting

The decoding phase is just the reverse of the
encoding phase. Starting from the first patch in the
coarsest mesh, we tag the patch as a conquered patch
and push all the patch boundary vertices into a queue,
and split the central vertex to produce a finer mesh, and
then pop up these vertices by pairs as gates to the next

adjacent patches. Afterwards, we conquer these
adjacent patches if they are still available.

The specific algorithm is as follows:
1. Decode the coarsest mesh.
2. At each LoD, add the first candidate gate into the

gate candidate queue as the program initialisation,
and repeat following the patch conquest steps until
there is no data in the bit stream.

3. Get a candidate gate from the queue. If the queue is
empty, go to Step 2 to refine the mesh for the next
LoD.

4. Check if both the gate vertices L and R are
available. If neither is available, check the next
candidates in the queue.

5. Cross the gate of vertex L and vertex R and find the
patch and its central vertex A’. (As in Fig. 2c & 2d)

6. Starting from the entrance gate vertex L, go
clockwise to vertex R to add all the adjacent vertices
into the queue as the candidate gate vertices to
adjacent patches. (As in Fig. 2d)

7. Tag vertex A’ and all its adjacent vertices of the
patch as conquered (As in Fig. 2d).

8. If the central vertex of the patch is isolated, go to
Step 3.

9. Get the indices for vertex splitting from the bit
stream.

10. Starting from the gate vertex L, go clockwise and
starting from the gate vertex R go counter-clockwise,
using the two indices to re-locate the two adjacent
vertices of the collapsed edge. (As in Fig. 2c)

11. Split the central vertex into two, and re-triangulate
the patch. . (As from Fig 2c to Fig. 2b)

12. Go to Step 3.
From the gate derived from the queue, for each LoD,

we locate all the patches in the same order as in the
encoder.

If the decoding time is limited such as for periodic
rendering of an animated scene, the decoding
procedure can be stopped at any time. In this case, the
decoded mesh is not losslessly decompressed.

2.4 The Exceptional First Gate

In order to exactly re-locate all the patches in the
decoding phase, the first gate must be fixed so that the
decoder can find it at any LoD. Therefore, the mesh

encoder needs to fix the positions of the first two gate
vertices and these are kept the same for all LoDs.
Actually, if the first gate is fixed and both of the gate
vertices are forbidden to collapse, they stay unchanged
through the entire simplification at all LoDs, even to
the final coarsest mesh. Obviously, this results in worse
mesh quality.

If we take the first gate vertices as the un-conquered
vertices, and allow the front vertex to choose either of
them to collapse, the simplified mesh should have
better quality. Thus, we have three cases of edge
collapse for the first gate, as shown in Figure 3. Figure
3a shows a gate to the first patch. We search all the
adjacent vertices for an edge to collapse along the
arrows. For the first patch, all the adjacent vertices are
available for edge collapse. If the vertex chosen is not
either of the gate vertices, it is the normal edge collapse
case (3b), just the same as the following patch
conquests as in Figure 2. If the collapse is with the left
vertex of the gate (3c), the re-location index is just
from the fixed right vertex. If the collapse happens with
the right vertex of the gate (3d), the re-location index
should be from the fixed left vertex. To let the decoder
distinguish the three cases of the first gate, we only
need one number to identify them, say 0, 1 and 2.

3. Upper Bound Estimation of Bit-Rate

The proof of upper bound estimation of bit rate
when a mesh is encoded with a valence-driven method
is given in [3]. We use a similar idea to give a general
formula to estimate the upper bound of similar methods
and give an estimate for our method.

 (a) (b) (c) (d)

Figure 3 Three cases of the first gate for vertex pair searching

Suppose the average value of an integer sequence is
m, and the minimum is k. Let H stand for the entropy of
the integers, for n m k= − , the upper bound of H is:

() 1

2

1
max log

n

n

n
H

n

++
=

For the mathematical derivation, please refer to the
Appendix of this paper.

For a mesh without boundaries, if the number of
faces, edges and vertices are F, E, and V respectively,
we have 3 2F E= ; 2F V E+ − = . Then, we have

3 6E V= − and the total valence of all vertices is
2 6 12E V= − . So the average valence for arbitrary mesh
is approximately 6. If we take the average valence

3

6i
i

m i p
∞

=

= ⋅ =∑ , where the minimum valence is 3k = .

Then, we have 3n m k= − = . Therefore, the
corresponding entropy upper bound of valences is the
same as given in [3]:

4

2 3

4
max log 3.245

3
H

 
= = 

 

For our method, the minimum indices
1k and

2k are

0, and the average value of the sum of two indices
(

21,mm) and 2 should be less than the average valence

of a simple mesh, 6. Therefore, we have
1 2 0k k= = ,

and we take
1 2 2 6 1m m+ + = − or

1 2 3m m+ = .

Suppose
222111 , kmnkmn −=−= , we have

1 2 3n n+ = and
1 20 , 3n n≤ ≤ .

In the case of the uniform distribution, we suppose

1 2 3 2n n= = . Then, we can get the corresponding

upper bound of bit rate, which is the addition of the bit
rate upper bounds of two indices:

() ()1 2

1 2

1 1

1 2
2 2

1 2

1 1
max log log 2 2.427 4.85

n n

n n

n n
H

n n

+ ++ +
= + = × =

If we use a triangle-remove method for progressive
mesh compression, with the upper bound of an integer
sequence with the average constraint as shown in the
Appendix of this paper and based on our analysis in
Section 3, we can easily find the bit rate upper bound
of the three indices. To use a new vertex to replace
three vertices of a triangle, there are totally two vertices
removed after each operation and three indices are
needed for decoding. In such a case, we take

1 2 3 0k k k= = = , and
1 2 3 2 6 1m m m+ + + = − or

1 2 3 3m m m+ + = . Thus, we have
1 2 3 3n n n+ + = . The

worst case is
1 2 3 1n n n n= = = = , and we obtain the

upper bound:

() 1

2

1
max 3log 2 3 2/ 2 3

n

n

n
H

n

++
= = × = (bpv)

However, in above analysis, the additional
operations for isolated vertices (as splits are needed in
[6]) are not considered yet.

4. Experiments

We used nine models studied in the literature to
make the experiments and test their performance. The
encoding bit rates of the complete mesh (for lossless
reconstruction) are listed in Table 1. They are as good
as we expected. The numbers of the isolated vertices
are all less than 10%, and the bit rates of connectivity
are all less than our estimated upper bound, 4.85. The
time for decoding is very close to that for encoding the
same model.

In comparison with the best results by [2], Alliez &
Desbrun, 2001, we list their results in the last column.

From the common models used, our results are not
always better than theirs, but it is interesting to mention
that in the case of their worst examples ours perform
better. For models fandisk and horse, their bit rates are
4.99 and 4.61 bpv, respectively, and above than their
upper bound. In comparison, our results are 4.06 and
4.47 bpv, respectively, and the bit rates for all our
tested meshes are below our upper bound.

The upper bound of their vertex removal method is
3.245 bpv, but their worst case is 4.99 bpv, 1.75 more
than that. We believe that their method has less
influence on the number of the isolated vertices than
ours, which results in cases that exceed the upper
bound. In our experience, therefore, our method
resulting less than 10% isolated vertices performs
better. Therefore, our method gives more flexibility by
selecting an edge to collapse and then locating the
patch than a technique where a patch is located and
then the central vertex is removed.

5. Conclusions

In contrast to the vertex removal method [2], the
efficiency results from a lower number of isolated
vertices, and this makes our estimated upper bound
tight and reasonable. Edge collapse strategy has the
flexibility to choose one of the adjacent vertices to
collapse, which is obviously produces a lower number
of isolated vertices (less than 10%) and also better
simplifies mesh quality.

For our future work, we need to implement the
corresponding geometric data compression. The
literature [9] provides us some clues for efficient
encoding which should be useful for our further
research.

For our theoretical analysis of our new bit rate upper
bound with face removal method, the upper bound
should be verified by experiments in future.

Table 1 Experiments with patch conquest strategy of vertex pair searching

Average Indices
Models Vertices LoDs

Index1 Index2
Isolated

vertices (%)
connectivity
(ours, bits/v)

Connectivity
([2], bits/v)

fandisk 6475 -> 4 38 1.50 1.24 5.7 4.06 4.99
horse 19851 -> 4 45 1.43 1.28 6.6 4.47 4.61

mannequin 11703 -> 4 41 1.49 1.25 5.7 3.83 3.58
torus 36450 ->12 42 1.36 1.48 3.5 3.04 0.39

dinosaur 14070 -> 4 42 1.47 1.26 7.8 4.59 N/A

eight 766 ->18 23 1.67 1.32 8.3 4.45 N/A

feline 49864 ->13 49 1.44 1.26 7.3 4.48 N/A

sampleavatar 1290 -> 4 32 1.52 1.39 8.0 4.53 N/A

Appendix: Upper bound of an integer
sequence with constraints

This proof follows that given in [3], after the
derivation of the Lagrange multipliers is corrected.

Consider a series of integer numbers, i, distributed
from k to +∞ (the minimum number is k), the
distribution probability of number i is

ip , its

corresponding entropy of the number sequence is

2logi i
i k

H p p
∞

=

= −∑ . And, we also have 1i
i k

p
∞

=

=∑ as our

one constraint.
Suppose the average value of the sequence is m, we

have the other constraint,
i

i k

i p m
∞

=

⋅ =∑ .

Using Lagrange multipliers to find the upper bound
of H for the integer sequence:

2(, ,) log (1) ()i i i i i
i k i k i k

f p p p p i p mλ µ λ µ
∞ ∞ ∞

= = =

= − + − + ⋅ −∑ ∑ ∑

Derivatives of f with respect to each of
ip must be 0:

2 2log logip e iλ µ= − + ⋅

Let ()2 2log log2 2 2
ie i e i

ip λ µ λ µ α β− + ⋅ −= = ⋅ = ⋅ , we have

1
1

k
i

i
i k i k

p
βα β α

β

∞ ∞

= =

= ⋅ = ⋅ =
−∑ ∑

and
(1) (1)

1 1 1

k
i

i
i k i k

k k k k
i p i m

β β βα β α
β β β

∞ ∞

= =

− − − −⋅ = ⋅ ⋅ = ⋅ ⋅ = =
− − −∑ ∑

Therefore, the entropy can reach the upper bound
when

1(1)

()

k

k

m k

m k
α

−− +=
−

,
1

m k

m k
β −=

− +

The entropy upper bound then is

()

() ()
()

()

2

2 2

2 2

2 2

1

2

max log

log log

log log

(1) log 1 () log

1
log

i i

i k

i i

i k i k

m k

m k

H

i

m

m k m k m k m k

m k

m k

α β α β

α α β α β β

α β

∞

=

∞ ∞

= =

− +

−

= − ⋅ ⋅ ⋅

= − ⋅ ⋅ − ⋅ ⋅ ⋅

= − − ⋅
= − + ⋅ − + − − ⋅ −

− +
=

−

∑

∑ ∑

Let n m k= − , we obtain the bit-rate upper bound of
the integer sequence:

() 1

2

1
max log

n

n

n
H

n

++
= (bits/number)

References

[1] http://www.bbc.co.uk/rd/projects/prometheus/
[2] Pierre Alliez, Mathieu Desbrun, “Progressive

Compression for Lossless Transmission of Triangle
Meshes”, In Proceedings of ACM SIGGRAPH, pp. 198-
205, 2001.

[3] Pierre Alliez, Mathieu Desbrun, “Valence-Driven
Connectivity Encoding of 3D Meshes”, In Proceedings
of EUROGRAPHICS, v.20, n.3, pp. 480-489, 2001.

[4] D. Cohen-Or, D. Levin, and O. Remez, “Progressive
compression of arbitrary triangular meshes,” in IEEE
Visualization, pp. 67–72, 1999.

[5] P.-M. Gandoin and O. Devillers, “Progressive lossless
compression of arbitrary simplicial complexes”, ACM
Transactions on Graphics, v.21 n.3, July 2002, pp.
372-379. (Proceedings of ACM SIGGRAPH 2002).

[6] C. Gotsman, “On the Optimality of Valence-based
Connectivity Coding”, Computer Graphics Forum, v.
22, n.1, pp. 99–102, 2003.

[7] H. Hoppe. “Progressive meshes”, In Proceedings of
ACM SIGGRAPH, pp. 99–108, 1996.

[8] A. Khodakovsky, P. Schroder, and W. Sweldens,
“Progressive geometry compression”, in SIGGRAPH
Proceedings, pp. 271–278, 2000.

[9] H. Lee, P. Alliez and M. Desbrun, “Angle-Analyzer: A
Triangle-Quad Mesh Codec”, In Proceedings of
EUROGRAPHICS, v. 21, n. 3, pp. 383-392, 2002.

[10] R. Pajarola and J. Rossignac. “Compressed Progressive
Meshes”. IEEE Transactions on Visualization and
Computer Graphics, v.6, n.1, pp. 79–93, 2000.

[11] M. Price, et al, “Real-time production and delivery of
3D media”, In Proceedings of International
Broadcasting Convention, Amsterdam, Netherlands,
Sept 2002.

[12] J. Rossignac. “EdgeBreaker: Connectivity Compression
for Triangle Meshes”, IEEE Transactions on
Visualization and Computer Graphics, pp. 47–61, 1999.

[13] G. Taubin, A. Gueziec. W. Horn, and F. Lazarus.
“Progressive Forest Split Compression”, In
Proceedings of ACM SIGGRAPH, pp. 123–132, 1998.

[14] C. Touma and C. Gotsman. “Triangle Mesh
Compression”, In Proceedings of Graphics Interface,
pp. 26–34, 1998.

