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Abstract 

 
A progressive mesh connectivity compression 

technique is proposed in this paper. Our method is 
based on the edge collapse and vertex splitting 
technique for progressive mesh compression-
decompression. This is an efficient and reversible 
method that can be used for progressive-to-lossless 
transmission. We derive a theoretical upper bound for 
the lossless connectivity compression bit rate, when  
the isolated vertices are ignored. Our experiments 
show that all the meshes we have used can be 
compressed better than the derived bit rate upper 
bound. Furthermore, our method can ensure that less 
than 10% of the vertices generate accidental code. 
According to our analysis, the optimal bound for 
triangular mesh coding can be 3, smaller than some of 
the reported results in recent literature.  
 

1. Introduction 
 
1.1 Purpose of our work 
 

3D mesh coding methods are important for efficient 
storage and fast transmission of large models. Such 
polygon models come from a number of sources 
including computer-aided design, range scanners, 
terrain mapping and iso-surface extraction from volume 
data. As model sizes continue to grow, finding efficient 
and improved compression methods will remain an 
important problem in computer graphics. In particular 
if complex scenes are built in 3D and sent over 
communications lines and need to be animated in real 
time the compression methods become crucial for the 
quality of animation to be achieved. A particular 
application where this is true is the computer games 
played interactively over the net and shared immersive 
worlds. In our case, a UK collaborative project called 
Prometheus [1, 11] undertook to develop an end-to-end 

3D television chain. In this project virtual scenes are 
used as sets and avatars represent actors in a studio. 
Virtual worlds require transmission of massive amounts 
of triangulated 3D geometric data over the network. 
For both efficient transmission and real-time rendering 
of models to and within the end-user computers at 
various levels of detail, there was a need for an 
efficient technique of mesh simplification and 
progressive compression. The technique is based on 
three aspects of current research: mesh simplification, 
single-resolution mesh compression, and progressive 
mesh reconstruction. Our idea has been to find a mesh 
compression method for progressive-to-lossless 
transmission which produces good quality simplified 
meshes with low bit rates and with lossless results 
comparable to the single-resolution compression 
methods. 
 
1.2 Summary of related work 
 

The key idea of progressive coding is that data are 
sent in a coarse-to-fine way. Concretely, progressive 
compression transmits a coarse approximation first, 
and uses the following subsequent bits to refine the 
mesh progressively for more and more details. 

As for the progressive encoders, Hoppe introduces 
in [7] an algorithm for progressive transmission, 
starting from a coarse mesh and inserting vertices one 
at a time to refine the mesh. A method called 
Progressive Forest Split compression is proposed by 
Taubin et al. in [13], using a base mesh and a forest of 
vertex splits. Gandoin and Devillers [5] uses the kd-tree 
encoding of the geometry to drive the connectivity 
coding process. Pajarola and Rossignac [10] group 
vertex-split operations into batches, then traverse the 
mesh and specify splits by marking each vertex using 
one bit. Khodakovsky et al. [8] proposed a progressive 
compression algorithm based on the wavelet transform. 
Cohen-Or et al. [4] presented the patch coloring 



algorithm for progressive mesh compression based on 
vertex decimation. In Alliez and Desbrun’s valence-
driven progressive method [2], they use the minimal 
granularity for connectivity, i.e., they remove (or insert) 
only one vertex at a time during the encoding (or 
decoding respectively) phase, and encode (or decode) 
the valences of the removed vertices afterwards (or 
beforehand respectively). A deterministic conquest 
avoids an explicit transmission of order over the 
vertices. Of course, progressive compression methods 
cannot compete with those single-resolution ones [12, 
14, 3] since their techniques basically increase the 
dispersion of valence due to the re-triangulation. 

So far, the performance of [2] looks the best, but in 
terms of the upper bound of bit rate, the method is not 
so satisfactory for all meshes. 

In [6], Gotsman presented some theoretical upper 
bounds for valence-based mesh coding, 3.24 bpv for 
triangular meshes. However, according to our analysis, 
the upper bound for a triangular mesh can be even 
smaller, 3 bpv.  
 
1.3 Overview of our work 
 

Our work has mainly concentrated on the efficient 
and reversible mesh simplification methods. In this 
paper, we mainly summarize the connectivity 
compression for progressive decompression. Because 
the edge collapse method is better than a vertex 
removal method with respect to the simplified mesh 
quality, our technique is based on the edge collapse and 
vertex splitting method. We use gates to locate patches, 
patches to cover the whole mesh, and two indices 
counted from the gate to locate vertex splitting. We 
also give a theoretical upper bound estimation of the bit 
rate for recording the indices. Our experiments show 
the efficiency of our method.  

 

2. Progressive Simplification and 
Reconstruction  
 

In order to simplify a mesh, we need to select an 
edge of a vertex pair to collapse. Different strategies of 
vertex pair selection result in different simplified 
meshes, which also give different encoding efficiencies. 
We use a strategy that conquers patches of collapsed 
edge and sustaining vertices to cover the whole mesh.  
 

2.1 Definitions 
 

A patch consists of all adjacent triangles of one 
vertex. The vertex is, therefore, the central vertex of 

the patch. A gate is an edge along the boundary of a 
patch used to traverse or conquer the patch. Those 
traversed patches and the vertices that belong to the 
patch are considered as conquered. A vertex or a patch 
is called available if it has not been conquered. A 
central vertex of a patch is called isolated if there is no 
adjacent edge that can be selected to collapse in the 
encoding phase or there is no vertex splitting needed in 
the decoding phase. Therefore, any patch of a 
simplified mesh has a central vertex that is either 
isolated or collapsed and is waiting for splitting when 
decoding. Isolated vertices generate additional 
accidental codes in the encoded bit stream, for which 
the additional operations are taken as splits in [6] and 
some other publications. 

The vertex at the front triangle of a gate is named 
the front vertex, similar to that in [2]. As illustrated in 
Figure 1, the two gate vertices are the left vertex L and 
the right vertex R, where the front vertex is A. The two 
gate vertices can be conquered (a, filled black vertices) 
or not (b, hollow circles). 
 

Front vertex                              Front vertex 

                
(a) Gate vertices conquered     (b) Gate vertices still available 

Figure 1. Definition of a gate and its front vertex 
 

A gate to find the edge to collapse is also a gate to 
the new patch. Gates are used to locate patches in the 
encoding phase and relocate patches in the decoding 
phase. 

We take levels-of-detail (LoDs) as a level of the 
simplified mesh at which we cover a mesh with 
adjacent but un-overlapped patches.  
 

2.2 Encoding: Edge Collapse and Patch 
Conquest 
 

The encoding phase is to simplify a mesh and to 
record the necessary information for mesh 
reconstruction in the decoding phase. Starting from the 
first gate in the original mesh, we collapse an edge 
adjacent to the front vertex and take the newly re-
triangulated patch as conquered, and then push all the 
patch boundary vertices into a queue. Then we pop up 
these vertices in pairs as gates to locate the next 
adjacent patches to conquer. We continue with this 



process to conquer the adjacent patches, if available, 
until the whole mesh is covered. Figure 2 gives a 
demonstration of a general case of edge collapse in the 
encoding phase. 

The specific algorithm is as follows: 
1. At each LoD, add the first candidate gate into the 

gate candidate queue as the program initialisation, 
and repeat, following the patch conquest steps, until 
there is no vertex collapsed in the iteration. 

2. Get a candidate gate from the queue. If the queue is 
empty, go to Step 1 to simplify the mesh for the next 
LoD. 

3. Check if both the gate vertices L and R are 
available. If neither, check the next candidates in the 
queue. 

4. Cross the gate of vertex L and vertex R and find the 
front vertex A. (As in the direction of the dashed 
arrow in Fig. 2a) 

5. Starting from vertex L, go clockwise to vertex R to 
search all the adjacent vertices of A for an edge AB 
to collapse. (For demonstration, we search along the 
solid arrows in Fig. 2a and we find the edge AB in 
Fig. 2b as our selected edge to collapse.) If there is 
no such edge to collapse, we tag the central vertex as 
isolated, record this information in the bit stream, 
and go to Step 2. 

6. Collapse the edge AB, insert a new vertex A’ as the 
central vertex of a new patch, and rebuild the 
connectivity of the new patch. (As from Fig 2b to 
Fig. 2c) 

7. Count clockwise sequentially from the gate vertex L 
to locate the first vertex adjacent to the collapsed 
edge and get one index. (We get vertex 2 in Fig. 2c)  

8. Count counter-clockwise from the gate vertex R to 
locate the other vertex adjacent to the collapsed 
edge, and get the other index. (We get 1 in Fig. 2c) 

9. Encode the two indices of the last two steps by an 
entropy coder to record them in the bit stream in 
order to re-locate the vertex splitting connectivity 
for perfect reconstruction in the decoding phase. 

10. Starting from the entrance gate vertex L, go 
clockwise to vertex R to add all the adjacent vertices 
into the queue as the candidate gate vertices to 
adjacent patches. (As in Fig. 2d)  

11. Tag vertex A’ and all its adjacent vertices of the 
patch as conquered (As in Fig. 2d), and go to Step 2. 

12. Encode the final coarsest mesh. 
Various criterion for the edge selection can be used. 

In our experiments, we use the maximum valence to 
determine which edge is selected to collapse. As 
mentioned in [2], this can reduce the data dispersion 
and then the final bit rate. 

If there is no edge available to collapse, we just take 
the central vertex as an isolated vertex, but we need to 
record this information in the bit stream, which  
obviously reduces encoding efficiency. 

The bit streams at different LoDs are reverse 
recorded in the whole bit stream of mesh coding. The 
coarsest mesh is encoded and put at the head of the 
whole code bit stream so that the decoder can 
reconstruct the mesh. 

 

 
                         (a)                                  (b)                                      (c)                                       (d) 

Figure 2 Edge Collapse 
 

2.3 Decoding: Patch Conquest and Vertex 
Splitting  
 

The decoding phase is just the reverse of the 
encoding phase. Starting from the first patch in the 
coarsest mesh, we tag the patch as a conquered patch 
and push all the patch boundary vertices into a queue, 
and split the central vertex to produce a finer mesh, and 
then pop up these vertices by pairs as gates to the next 

adjacent patches. Afterwards, we conquer these 
adjacent patches if they are still available. 

The specific algorithm is as follows: 
1. Decode the coarsest mesh. 
2. At each LoD, add the first candidate gate into the 

gate candidate queue as the program initialisation, 
and repeat following the patch conquest steps until 
there is no data in the bit stream. 

3. Get a candidate gate from the queue. If the queue is 
empty, go to Step 2 to refine the mesh for the next 
LoD. 



4. Check if both the gate vertices L and R are 
available. If neither is available, check the next 
candidates in the queue. 

5. Cross the gate of vertex L and vertex R and find the 
patch and its central vertex A’. (As in Fig. 2c & 2d) 

6. Starting from the entrance gate vertex L, go 
clockwise to vertex R to add all the adjacent vertices 
into the queue as the candidate gate vertices to 
adjacent patches. (As in Fig. 2d) 

7. Tag vertex A’ and all its adjacent vertices of the 
patch as conquered (As in Fig. 2d). 

8. If the central vertex of the patch is isolated, go to 
Step 3. 

9. Get the indices for vertex splitting from the bit 
stream. 

10. Starting from the gate vertex L, go clockwise and 
starting from the gate vertex R go counter-clockwise, 
using the two indices to re-locate the two adjacent 
vertices of the collapsed edge. (As in Fig. 2c) 

11. Split the central vertex into two, and re-triangulate 
the patch. . (As from Fig 2c to Fig. 2b) 

12. Go to Step 3. 
From the gate derived from the queue, for each LoD, 

we locate all the patches in the same order as in the 
encoder.  

If the decoding time is limited such as for periodic 
rendering of an animated scene, the decoding 
procedure can be stopped at any time. In this case, the 
decoded mesh is not losslessly decompressed.  
 

2.4 The Exceptional First Gate 
 

In order to exactly re-locate all the patches in the 
decoding phase, the first gate must be fixed so that the 
decoder can find it at any LoD. Therefore, the mesh 

encoder needs to fix the positions of the first two gate 
vertices and these are kept the same for all LoDs. 
Actually, if the first gate is fixed and both of the gate 
vertices are forbidden to collapse, they stay unchanged 
through the entire simplification at all LoDs, even to 
the final coarsest mesh. Obviously, this results in worse 
mesh quality. 

If we take the first gate vertices as the un-conquered 
vertices, and allow the front vertex to choose either of 
them to collapse, the simplified mesh should have 
better quality. Thus, we have three cases of edge 
collapse for the first gate, as shown in Figure 3. Figure 
3a shows a gate to the first patch. We search all the 
adjacent vertices for an edge to collapse along the 
arrows. For the first patch, all the adjacent vertices are 
available for edge collapse. If the vertex chosen is not 
either of the gate vertices, it is the normal edge collapse 
case (3b), just the same as the following patch 
conquests as in Figure 2. If the collapse is with the left 
vertex of the gate (3c), the re-location index is just 
from the fixed right vertex. If the collapse happens with 
the right vertex of the gate (3d), the re-location index 
should be from the fixed left vertex. To let the decoder 
distinguish the three cases of the first gate, we only 
need one number to identify them, say 0, 1 and 2.  
 

3. Upper Bound Estimation of Bit-Rate 
 

The proof of upper bound estimation of bit rate 
when a mesh is encoded with a valence-driven method 
is given in [3]. We use a similar idea to give a general 
formula to estimate the upper bound of similar methods 
and give an estimate for our method. 
 

 
 

 
                            (a)                                  (b)                                      (c)                                        (d) 

Figure 3 Three cases of the first gate for vertex pair searching 
 

Suppose the average value of an integer sequence is 
m, and the minimum is k. Let H stand for the entropy of 
the integers, for n m k= − , the upper bound of H is: 

( ) 1

2

1
max log

n

n

n
H

n

++
=  



For the mathematical derivation, please refer to the 
Appendix of this paper.  

For a mesh without boundaries, if the number of 
faces, edges and vertices are F, E, and V respectively, 
we have 3 2F E= ; 2F V E+ − = . Then, we have 

3 6E V= −  and the total valence of all vertices is 
2 6 12E V= − . So the average valence for arbitrary mesh 
is approximately 6. If we take the average valence 

3

6i
i

m i p
∞

=

= ⋅ =∑ , where the minimum valence is 3k = . 

Then, we have 3n m k= − = . Therefore, the 
corresponding entropy upper bound of valences is the 
same as given in [3]: 

4

2 3

4
max log 3.245

3
H

 
= = 
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For our method, the minimum indices 
1k  and 

2k  are 

0, and the average value of the sum of two indices 
(

21,mm ) and 2 should be less than the average valence 

of a simple mesh, 6. Therefore, we have 
1 2 0k k= = , 

and we take 
1 2 2 6 1m m+ + = −  or 

1 2 3m m+ = . 

Suppose 
222111   , kmnkmn −=−= , we have 

1 2 3n n+ =  and 
1 20 , 3n n≤ ≤ . 

In the case of the uniform distribution, we suppose 

1 2 3 2n n= = . Then, we can get the corresponding 

upper bound of bit rate, which is the addition of the bit 
rate upper bounds of two indices: 

( ) ( )1 2

1 2

1 1

1 2
2 2

1 2

1 1
max log log 2 2.427 4.85

n n

n n

n n
H

n n

+ ++ +
= + = × =  

If we use a triangle-remove method for progressive 
mesh compression, with the upper bound of an integer 
sequence with the average constraint as shown in the 
Appendix of this paper and based on our analysis in 
Section 3, we can easily find the bit rate upper bound 
of the three indices. To use a new vertex to replace 
three vertices of a triangle, there are totally two vertices 
removed after each operation and three indices are 
needed for decoding. In such a case, we take 

1 2 3 0k k k= = = , and 
1 2 3 2 6 1m m m+ + + = −  or 

1 2 3 3m m m+ + = . Thus, we have 
1 2 3 3n n n+ + = . The 

worst case is 
1 2 3 1n n n n= = = = , and we obtain the 

upper bound:  

( ) 1

2

1
max 3log 2 3 2/ 2 3

n

n

n
H

n

++
= = × =   (bpv) 

However, in above analysis, the additional 
operations for isolated vertices (as splits are needed in 
[6]) are not considered yet. 
 

4. Experiments 
 

We used nine models studied in the literature to 
make the experiments and test their performance. The 
encoding bit rates of the complete mesh (for lossless 
reconstruction) are listed in Table 1. They are as good 
as we expected. The numbers of the isolated vertices 
are all less than 10%, and the bit rates of connectivity 
are all less than our estimated upper bound, 4.85. The 
time for decoding is very close to that for encoding the 
same model. 

In comparison with the best results by [2], Alliez & 
Desbrun, 2001, we list their results in the last column. 

From the common models used, our results are not 
always better than theirs, but it is interesting to mention 
that in the case of their worst examples ours perform 
better. For models fandisk and horse, their bit rates are 
4.99 and 4.61 bpv, respectively, and above than their 
upper bound. In comparison, our results are 4.06 and 
4.47 bpv, respectively, and the bit rates for all our 
tested meshes are below our upper bound. 

The upper bound of their vertex removal method is 
3.245 bpv, but their worst case is 4.99 bpv, 1.75 more 
than that. We believe that their method has less 
influence on the number of the isolated vertices than 
ours, which results in cases that exceed the upper 
bound. In our experience, therefore, our method 
resulting less than 10% isolated vertices performs 
better. Therefore, our method gives more flexibility by 
selecting an edge to collapse and then locating the 
patch than a technique where a patch is located and 
then the central vertex is removed.  
 

5. Conclusions  
 

In contrast to the vertex removal method [2], the 
efficiency results from a lower number of isolated 
vertices, and this makes our estimated upper bound 
tight and reasonable. Edge collapse strategy has the 
flexibility to choose one of the adjacent vertices to 
collapse, which is obviously produces a lower number 
of isolated vertices (less than 10%) and also better 
simplifies mesh quality.  

For our future work, we need to implement the 
corresponding geometric data compression. The 
literature [9] provides us some clues for efficient 
encoding which should be useful for our further 
research. 

For our theoretical analysis of our new bit rate upper 
bound with face removal method, the upper bound 
should be verified by experiments in future. 
 

 



Table 1 Experiments with patch conquest strategy of vertex pair searching 

Average Indices 
Models Vertices LoDs 

Index1 Index2 
Isolated 

vertices (%) 
connectivity 
(ours, bits/v) 

Connectivity 
([2], bits/v) 

fandisk 6475 -> 4 38 1.50 1.24 5.7 4.06 4.99 
horse 19851 -> 4 45 1.43 1.28 6.6 4.47 4.61 

mannequin 11703 -> 4 41 1.49 1.25 5.7 3.83 3.58 
torus 36450 ->12 42 1.36 1.48 3.5 3.04 0.39 

dinosaur 14070 -> 4 42 1.47 1.26 7.8 4.59 N/A 

eight 766 ->18 23 1.67 1.32 8.3 4.45 N/A 

feline 49864 ->13 49 1.44 1.26 7.3 4.48 N/A 

sampleavatar 1290 -> 4 32 1.52 1.39 8.0 4.53 N/A 
 
 

Appendix: Upper bound of an integer 
sequence with constraints  
 

This proof follows that given in [3], after the 
derivation of the Lagrange multipliers is corrected. 

Consider a series of integer numbers, i, distributed 
from k to +∞  (the minimum number is k), the 
distribution probability of number i is 

ip , its 

corresponding entropy of the number sequence is 

2logi i
i k

H p p
∞

=

= −∑ . And, we also have 1i
i k

p
∞

=

=∑  as our 

one constraint.  
Suppose the average value of the sequence is m, we 

have the other constraint, 
i

i k

i p m
∞

=

⋅ =∑ . 

Using Lagrange multipliers to find the upper bound 
of H for the integer sequence:  
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Therefore, the entropy can reach the upper bound 
when  
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The entropy upper bound then is 
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Let n m k= − , we obtain the bit-rate upper bound of 
the integer sequence:  
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1
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