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Abstract This paper describes novel algorithms for recov-introduce an efficient convex relaxation for the non-convex
ering the 3D shape and motion of deformable and articuprojection step. Efficient in the sense that, for both thesas
lated objects purely from uncalibrated 2D image measuresf deformable and articulated motion, the proposed relax-
ments using a factorisation approach. Most approaches &tions turned out to be exadte tight) in all our numer-
deformable and articulated structure from motion require t ical experiments. The convex relaxations are semi-definite
upgrade an initial affine solution to Euclidean space by im{SDP) or second-order cone (SOCP) programs which can be
posing metric constraints on the motion matrix. While in thereadily tackled by popular solvers. An important advantage
case of rigid structure the metric upgrade step is simplesin of these new algorithms is their ability to handle missing
the constraints can be formulated as linear, deformaliility data which becomes crucial when dealing with real video
the shape introduces non-linearities. In this paper we presequences with self-occlusions. We show successful sesult
pose an alternating bilinear approach to solve for nordrigi of our algorithms on synthetic and real sequences of both
3D shape and motion, associated with a globally optimatieformable and articulated data. We also show comparative
projection step of the motion matrices onto the manifold ofresults with state of the art algorithms which reveal that ou
metric constraints. Our novel optimal projection step com-new methods outperform existing ones.

bines into a single optimisation the computation of the or-

thographic projection matrix and the configuration weights

that give the closest motion matrix that satisfies the correc

block structure with the additional constraintthatthe@te 1 Introduction and Previous Work

tion matrix is guaranteed to have orthonormal rows. {ts

transpose lies on the Stiefel manifol.d). This cor?straim:*?u The combined inference of the motion of a camera and the
outto be non-convex. The key Cont”buuon Of thIS Work IS t03D geometry Of an unconstrained scene Viewed So|e|y from
a sequence of images is a longstanding challenge for the
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Computer Vision community. The fundamental assumption
which has allowed robust solutions to the problem is that of
scene rigidity. However, when dealing with image objects
that vary their 3D shape, the Structure From Motion (SfM)
problem becomes inherently ambiguous and non-linear. The
seminal work of (Bregleet al., 2000) was the first to deal
with the case of deformable objects viewed by a single cam-
era. Their key insight was to use a low-rank shape model
to represent the deforming shape as a linear combination of
k basis shapes which encode its main modes of deforma-
tion. This model not only provided an elegant extension of
the rigid factorisation framework (Tomasi & Kanade, 1992)
but has also opened up new computational and theoretical
challenges in the field.



Although this low-rank shape model has proved a sucauthors revert to non-linear optimisation in order to fine th
cessful representation, the Non-Rigid Structure from Bioti  correct solution. Recently Hartley and Vidal have proposed
(NRSfM) problem is inherently under-constrained. Most ap-a new closed form linear solution for the perspective camera
proaches formulate the problem as an optimisation probleroase (Hartley & Vidal, 2008). This algorithm requires the
where the objective function to minimise is the image reproinitial estimation of a multifocal tensor, for which a limea
jection error. Recent methods focus on overcoming the prolmethod exists. The tensor is then factorised into the projec
lems caused by ambiguities and degeneracies by propositign matrices and then simple linear algebraic techniqtes a
different optimisation schemes and the use of generic prised to enforce constraints on the projection matrices and
ors. Prior knowledge that the reconstructed shape does nestimate explicitly the corrective transformation. Altigh
vary much from frame to frame was used in (Aanaes & Kahlthe entire approachis linear, the authors report that flialin
2002) while in (Del Bueet al., 2006) the constraintimposed tensor estimation and factorisation is very sensitive fieeo
was that some of the points on the object are rigid. Both apMoreover, none of the closed form solutions proposed so
proaches use bundle adjustment to refine all the parametefes can deal with missing data which becomes crucial when
of the model together. A coarse to fine shape model was irdealing with real video sequences.
troduced in (Bartoliet al., 2008) where new deformation

ance left unexplained by previous modes as possible. Othgfe Jow-rank linear shape model. Rabaud and Belongie as-
authors (Torresargt al., 2008) have also argued that sim- syme that only small neighbourhoods of shapes are well
ple linear subspace shape models are extremely sensitive iydelled with a linear subspace (Rabaud & Belongie, 2008).
noise and missing data so statistical priors should be usefhey then adopt a manifold learning framework tailored to
to constrain the parameter space. Torresaal. introduced  the NRSfM problem to constrain the degrees of freedom of
priors as a Gaussian distribution on the deformation wsightipe deforming object. A dual formulation of NRSfM has
similar to each other for each pose. They then generalise th§y structure of a non-rigid body in trajectory space as a lin-
model to represent linear dynamics in the deformations. Albgr combination of basis trajectories (Akhegral., 2008).
these approaches impose orthonormality constraints on thehe obvious advantage of using trajectory rather than shape
rotation matrices through parameterisation. space is that there is no need to estimate an object dependant

One advantage of the linear subspace model is that it hAa@asis. Instead the trajectory bases are object independent
allowed closed form solutions for the cases of both affin@¢xi@nd only the coefficients need to be computed. The authors
et al., 2006) and perspective (Xiao & Kanade, 2005; Hart-Us€ the Discrete Cosine Transform, therefore low frequency
ley & Vidal, 2008) viewing conditions. In the affine case bases model smooth deformations while higher frequency
Xiao et al. proved that orthogonality constraints were insuf-Pases model more complex deformations. Quadratic models
ficient to disambiguate rigid motion and deformations (Xiaofor NRSfM have been proposed by Fayetchl. to describe
et al., 2006). They identified a new set of constraints onMore accurately deformations which involve strong bend-
the shape bases which, when used in addition to the rotatidRg motions, stretching or twists. The increased desegpti
constraints, provide a closed form solution to the problenPower of this model is paid with increased complexity and
of NRSfM. Later they extended the approach to the perspedlon-linearities in the parameter space (Fagtal., 2009).
tive case (Xiao & Kanade, 2005). Similarly, Wang and Wu
propose a new camera model approximating a full perspec- Articulated motion has also been recently formulated us-
tive camera and enforcing basis constraints when estigpatiring a structure from motion approach (Tresadern & Reid,
NRSfM (Wang & Wu, 2009). However, every solution em- 2005; Yan & Pollefeys, 2008) modelling the articulated mo-
ploying basis constraints is known to be very sensitive tdion space as a set of intersecting motion subspaces — the
noise (Brand, 2005; Torresaat al., 2008) and to the se- intersection of two motion subspaces implies the existence
lection of the basis constraints. Brand describes a modifiedf a link between the parts. Articulation constraints camth
version of this algorithm using weaker constraints on thébe imposed during factorisation to recover the location of
basis and nonlinear optimisation which improves the solujoints and axes. While Yan and Pollefeys only compute the
tion (Brand, 2005). Interestingly, Akhtet al. have recently location of joints and axes on the image plane and do not
argued that the use of the basis constraints is not necassaryperform a 3D reconstruction, Tresadern and Reid go further
compute a valid solution for the NRSfM problem. An exactand compute the metric upgrade, but only recover a linear
3D reconstruction can be obtained by solving the problenapproximation of the correcting transformation (Tresader
with the appropriate structure when upgrading for the met& Reid, 2005). Both approaches require full data and there-
ric constraints (Akhteet al., 2009). However, their theoret- fore cannot deal with missing tracks, a situation that com-
ical insight is not followed by a closed-form solution and th monly occurs for instance when tracking humans.



1.1 Related Work and Contributions carried out on motion capture sequences with ground truth
3D data, reported in Section 5, show that adding a projection
In this paper we present a new unified approach to perforratep (Wanget al’s or ours) improves greatly the results ob-
the metric upgrade in the cases of articulated and defoenabtained in the case of missing data with respect to other meth-
structure viewed by an orthographic camera in the presenasls. However, even better improvements are achieved when
of missing data. using our bilinear algorithm associated with the proposed
In the non-rigid case our approach is most closely relatedhetric projection instead of Wanef al’s trilinear scheme
to Torresanet al’s and Wanggt al’s trilinear schemes (Tor- and simpler projector (Wanet al., 2008)
resaniet al., 2001; Wanget al., 2008). Both approaches In order to deal with missing data, our algorithm per-
use an identical alternating least squares framework to eferms an outer iterative loop in which, at each step of the
timate the configuration weights, basis shapes and orthdteration, we run our non-rigid factorisation algorithmdan
graphic camera matrices, solving iteratively for each ef th we use the new estimates of the rotations, translations, ba-
unknowns leaving the others fixed. The only difference besis shapes and coefficients to provide a new estimate of the
tween these two approaches is in the way that the orthamissing data. Our experimental tests shown in Section 5 re-
graphic camera matrices are updated and the metric coweal that dealing with incomplete tracks using this outeplo
straints imposed — the other two steps in the alternation arallows to cope with much higher percentages of missing data
identical. than the trilinear approaches (Torresahal., 2001; Wang
While Torresanet al. enforce the exact metric constraintset al., 2008) that only use the available data.
through an exponential map parametrisation of the rotation  In summary, we see three substantial contributions in our
matrices, the update of the camera matrix is only an approXapproach. First, in contrast to their trilinear schemesppu
imation — the camera matrix cannot be updated in closedmisation scheme is bilinear, alternating between the est
form and instead they perform a single Gauss-Newton stepnation of the motion and the shape matrices. Secondly, our
Alternatively, in their Rotation Constrained Powerfaiar  novel optimal projection step combines into a single optimi
tion algorithm (RCPF) Wanet al. first update the ortho- sation the computation of the camera matrix and the configu-
graphic camera matrix via least squares and an additiongition weights that give the closest motion matrix thatdies
step is incorporated to projectit onto the Stiefel manifold  the non-rigidmotion manifoldwith the additional constraint
its SVD decomposition. This simple projector is in fact al- that the camera matrix is guaranteed to have orthonormal
most identical to the one proposed by (Marques & Costeirarows (.e. its transpose lies on the Stiefel manifold). Finally,
2008) for the case of rigid structure. Finally, in order t@ade our experiments reveal that dealing with missing data us-
with missing data the above trilinear approaches (Toriiesaling an iterative outer loop to re-estimate the missing estri
et al., 2001; Wanget al., 2008) resort to using only the greatly improves the results with missing data.
available image tracks in their alternating scheme. This notion ofmotion manifoldsvas recently introduced
Similarly to Torresanet al. and Wanget al. we also pro-  in the case of rigid shapes by (Marques & Costeira, 2009).
pose an iterative alternating scheme to solve the non-rigifjotably, constraining the motion matrices to lie on the ¢xac
structure from motion problem. However, our optimisationmotion manifold leads to robust solutions for the problem
scheme is bilinear, alternating between the estimatioheft of estimating rigid 3D structure in the case of high ratios
motion and the shape matrices, with an additional projecof missing data or degenerate configurations. Our work ex-
tion step of the motion matrices onto the manifold of metrictends and generalises Marques and Costeira’s to the case of
constraints. At the expense of solving a more complex opdeformable and articulated shapes therefore we provide a
timisation problem, our efficient convex relaxation presd general framework which allows us to deal with high ratios
an optimal minimiser to solve simultaneously for the ortho-of missing data and different types of shape. In particuler,
graphic camera matrix and configuration weights that give @anpose that the camera matrix must have orthonormal rows,
motion matrix that satisfies the appropriate block strietur therefore its transpose lies on thg; Stiefel manifold.
while also ensuring that the orthographic cameramatrix sat  Thjs constraint is non-convex, butin the case of deformable
isfies the constraint of having orthonormal rows (its tranSstrycture we show that an efficient convex relaxation can be
pose lies on the Stiefel manifdid Here and throughoutthe  gptained which results in the constraint set being defined
paper, the optimal projection of a matrix onto a given set oy by a set of linear matrix inequalities (LMI). Therefore
matrices, denotes the closest point on that set from th@giveye relax the problem of imposing the camera matrices met-
matrix with respect to the Frobenius norm. Extensive testgic constraints into a Semi-Definite-Program which can be
T . . . - solve_d with popular solvers such as SeDuMi._ I_n the case
The Stiefel manifoldiy. ,, may be viewed as the collection of all ¢ o iy |ated structure, we also propose an efficient conve
m x k matrices whose columns form an orthonormal set. More pre- . . . . . .
cisely, the (real) Stiefel manifold, ,,, is the collection of all ordered ~ "élaxation which in most cases consists of a semi-definite
sets ofk orthonormal vectors in Euclidean spage'. program(SDP) and of a second order cone program (SOCP)




in the remaining cases. While we do have a theoretical proofheref is the number of frames andhe number of points.

of the tightness of the convex relaxations for certain sgeci The measurement matrix can be factorised into the prod-

cases (Dodigt al., 2009), we do not yet have a proof for uct of two low-rank matrices ag = Masx, S,xp, Where

every case. However, all the aforementioned convex relax4 ands correspond to the motion and shape subspaces re-

ations turned out to be exact in the totality of our numericakpectively. As a result, the rank d@fis constrained to be

simulations. rank{W} < r wherer < min{2f,p}. The rank of these
The result is an algorithm where the recovered motiorsubspaces is dictated by the properties of the camera pro-

matrices have the exact structure and the exact orthogongéction and the nature of the shape of the object being ob-

ity constraints imposed. One of the main advantages of owerved (rigid, deformable, articulated, etc.). This rank-c

approach is that it can be extended naturally to deal witlstraint forms the basis of the factorisation method for the

missing data in a similar way to (Marques & Costeira, 2009) estimation of 3D structure and motion. .

An earlier version of our work appeared in (Paladéhial. MatricesM ands can be expressed Hs= M/ - - Mﬂ

, 2009). There are two important new contributions in thisa

nds = [Sy---S,] wherel; is the2 x r camera matrix
paper:

that projects the 3D shape onto the image frana@dS ;

— We have proposed a new efficient convex relaxation foencodes the 3D coordinates of pojnt
the articulated case, while in our previous work we used
an exhaustive search over the cost function constrainegl 1 Rigid Shape
to the unit circle. This results in a unified approach to™

solve t_he metric prOJect!on problem n the Qeformabllem the case of a rigid object viewed by an orthographic cam-
and articulated cases using convex optimisation techmqua if we assume the measurements iare registered to
This new efficient convex relaxation is shown in Ap- '

pendix B. _ e e
— We propose an alternative optimisation algorithm for the3D pointsS; can be expressed as: = [Tz_i TZE rlj =R;
deformable case which perform80 times faster than T . o l_
our original convex relaxation solution. In Section 3.2and S;j = [,XJ'YJ'ZJ'} WhereRl- IS ?2 X 3 matrix Whose
we present a new iterative Newton-like optimisation al_trangposg lies on the -Stlefel manlfold (iesac 2 St'efe,l
gorithm on the Stiefel manifold which constrains the So_matr!x),.smceP_»;- contains the f|r§t two rows of a “?ta}“on
lution to lie on the correct manifold. Although we lose matrix ("_e'RiRi = Iax2) andS; is a-3-vector containing
the optimality given by the convex solution in all our the metric coordinates of the 3D point. Therefore the rank
experiments with ground truth data the algorithm con-_Of the measurement matnst_g 3. The r|g_|dmot|pn man-
verged to the same global minimum ifold corresponds to the manifold of matrices with pairwise
orthogonal rows.
As a final observation we should stress that, while most
NRSfM algorithms proposed to date need to rely on the
use of priors to solve for the 3D shape and the camera mdx-2 Deformable Shape Model
tion (Bartoli et al., 2008; Torresanét al., 2008) avoiding i .
ambiguities, our new algorithms can obtain reliable solud" the case of deformab!e ObJeCtS_ the observed 3D points
tions without having to impose priors such as smoothnesSnange as a function of time. In this paper we use the low-
on the camera motion or the deformations. rank shape model defined in (Bregégral., 2000) in which
the 3D points deform as a linear combination of a fixed
set of k rigid shape bases according to time varying coef-
ficients. In this ways; = 22:1 l;aBq4 where the matrix
S; = [Si1,---S;p] is the 3D shape of the object at frame
Consider the set of 2D image trajectories obtained when this t€3 x p matricesB, are the shape bases agare the
coefficient weights. If we assume an orthographic projec-

points lying on the surface of a 3D object are viewed by & | th : tth ) i
moving camera. Defining the non-homogeneous coordinaté®" model the coordinates of the 2D image points observed

of a pointj in framei as the vectow,;; = (u;; vij)T we may at each frame are then given by:
write the measurement matrixthat gathers the coordinates k
Wi =Ry ( ) +T;

the image centroid, the camera motion matrigesand the

2 Factorisation for Structure from Motion

of all the points in all the views as: Z l;aBa (2
d=1

Wit .- Wip L where the matri; is 2 x 3 with orthonormal rows, such

W= | oo = (1) thatr, is aStiefel matrixand the2 x p matrix T; aligns
Wi ... Wp Wy the image coordinates to the image centroid. The aligning



matrixT; is such that; = tilz;r where the2-vectort; isthe  wheres is a full rank¥ matrix. The motion for a framehas
2D image centroid antl, a vector of ones. When the image to be accordingly arranged to satisfy equation (4) as:
coordinates are registered to the centroid of the object and

we consider all the frames in the sequence, we may write thé = Rf-l) REQ) tgl) . (6)

measurement matrix as: ) o )
In the case of &inge joint if we assume the image co-

111R1 ... l1xR1]| [B1 M| [By ordinates to be registered to the centroid of each segment,

w=| .. . | =ms 3) then the motion matrice; that lie on the articulatecho-
' ' ' ' ' tion manifoldcan be written as:

LRy ... lrkRy| |Bi Myl Bk
N . . o M= [u A B 7
SinceM is a2f x 3k matrix ands is a3k x p matrix in
the case of deformable structure the rankl ¢ constrained whereu is the common rotation axis for both objecis,
to be at mosBk. The motion matrices now have the form andB; are2 x 2 matrices such thgtu;A; | and [ u;B; | are
M; = [Mj1...Mig] = [laRi ... lixRi]. Therefore, in the de- the2 x 3 camera matrices (with orthonormal rows) associ-
formablemotion manifoldthe motion matrices have a dis- ated with the first and second shape respectively. The metric
tinct repetitive structure and eveByx 3 M;; sub-block is  constraints in the case of a hinge can therefore be expressed
composed of the transpose oS#efel matrixmultiplied by  as:

a scalar. uT
[u; 4] {Afr} = Iaxo
o ®)
2.3 Articulated Shape Model [u; B;] {Bﬂ =Iox2

In the case of articulated structure, the relative motiohns owhere, without loss of generality, we have implicitly as-

the segments that form an articulated body are dependegmed that the axis of rotation is aligned with the x-axis
and this results in a drop in the dimensionality of the meaupf the first object. Thus we can wrigeas:

surement matrix = [W(1)|W(?) ] that contains the 2D image

points of the two segments. In the case afraversal joint gD g g

the two shapes share a common translation (i.e. the distance | (V... ;U o ... ¢

between the centres of mass of the shapes is constant) whie_ Z§1) . Z;(ﬁ) 0 - 0 9)
in the case of ainge jointthe shapes also share a com- 0 ... 0 y(2) y(z)

mon rotation axis (Tresadern & Reid, 2005; Yan & Polle- t2) @)

feys, 2008). Naturally, this approach requires that arainit L A

segmentation stage has taken place to assign the tragctoriyhere nows is a5 x p matrix andp = p1 + po (we assume
in W to the respective shapes for which a solution was rethe shapes have been registered to the respective object cen
cently provided in (Yan & Pollefeys, 2008). troids). Therefore, in the case of a hinge joint the rank ef th
In a universal joint(Tresadern & Reid, 2005) the dis- measurement matrix is at mdst
tance between the centres of the two shapes is constrained
to be constant (for instance, the head and the torso of a hu-
man body) but with independent rotation components. AB Metric Upgrade

each frame the shapes connected by a joint satisfy:
The classic approach in factorisation is to exploit the rank

tM L rOAD = @ L r@g® (4)  constraint to factorise the measurement matrix into an ini-
tial affine solution with a motion matri and a shape ma-
wheret(®) andt(® are the 2D image centroid of the two trix § by truncating the SVD of to the rank- specific to the
objectsR(M) andr(?) the2 x 3 orthographic camera matrices pProblem. However, this factorisation is not unique sincg an
andd(®) andd(® the 3D displacement vectors of each shapdnvertibler x ~ matrixQ can be inserted, leading to the alter-
from the joint. The relation in equation (4) gives the redlice native factorisatioriy = (f1Q)(Q~'S). The problemis to find
dimensionality in the motion and shape subspaces. Thus, tfiee transformation matrig that removes the affine ambigu-

shape matri can be written as: ity, upgrading the reconstruction to metric and constrani
the motion matrices to lie on the appropriatetion mani-
g(1) d@ fold.
s=1]o s® _q® (5) While in the rigid case the matrig can be explicitly

1 1 computed linearly by imposing orthonormality constraints



on the rows of the motion matrix (Tomasi & Kanade, 1992), Affine Solution
in the non-rigid and articulated cases the metric conggain
on the motion matrices are non-linear. Although some closed
form solutions have been recently proposed (Xiao & Kanade,
2005; Xiaoet al., 2006; Hartley & Vidal, 2008) these al-
gorithms perform poorly in the presence of noise and can-
not cope with missing data. Iterative solutions provide-a vi
able alternative in the presence of noise and missing data
and this procedure will be adopted in our proposed algo-
rithm. The factorisation ofi is solved with an alternating
least-squares problem where at each stépe motionM(*)
and shaps(®) matrices are optimised separately keeping the _ o o
other one fixed as shown in Algorithm 1. This strategy is nof '9: 1 terative scheme: at each step of the iteration, the motanim
. . computed via least squares is projected onto the motionfoldrof
uncommon in optimisation problems for StM (Buchanan & metric constraints. The process is iterated until converge
Fitzgibbon, 2005) however it is important to notice is that,
differently from previous optimisation schemes, we use a
projection step which computes a solution that satisfies the . , )
metric constraints exactly. The metric constraints cdrafis Previous appr_oaches havg also used |terat|ve_methods to
two parts: imposing the correct block structure to the motio Perform the metric upgrade in the case of non-rigid struc-
matrix and constraining the transpose of the orthographilt!e including the trilinear alternating least-squaresioes
camera matrices to lie on the Stiefel manifold. In our ap-described in (Torresart al., 2001) and in (Wangt al.,
proach, we impose both constraints simultaneously projec€08)- However, even though Torresatial's method im-
ing the motion matrix optimally onto the appropriate mo-P2S€S ex.act.metrlc constraints on the camera rnatnpes by
tion manifold. As already noticed by (Marques & Costeira,parametrlsatl-on, the update of the cgmera matrlx relies on
2008) for the rigid case, these projections not only providéhe assumption that the current estimate differs from the
camera matrices which exactly comply with the projectionneXt one only t,’y small rotat|9ns. Moreover, the recovery
model but also are generally robust to missing and degene‘?—f camera mf':\trlces IS not _optl_mal. In our case we have an
ate data. optimal solution to the projection step, which re-estirsate
the camera matrices and the coefficients to obtain the clos-
est matrix that satisfies the metric constraints. The metric
Algorithm 1 Iterative metric upgrade via alternation for de- projection step can be visualised in Figure 1. Also Wahg
formable and articulated shape. At each step of the iteratio al. (Wanget al., 2008) adopt a trilinear approach where
the motion matrix estimated via least squares is projectethe constraints on the orthographic camera matrices at each
onto the motion manifold. frame are imposed using a projection. Their projector is in
Require: An initial estimatem(®). fact equivalent to the one developed in parallel by (Mar-
Ensure: A factorisation ofi that satisfies the given metric constraints. ques & Costeira, 2008) for rigid shape in the scaled ortho-
1: Project each frame of*) onto themotion manifoldof the motion . S
matrices (See Section 3.1 for the deformable case and 8&:80 graphic case. The _prOJeCtlon is computed st RZ -
for the articulated case). aUV' wherea is given by the mean of the two singular

. : t ; t ca(t) — m)T o1(M;) + o2(M; . .
2: Estlmat&_;< )_from the projectedi(t) as:s®) = M<_) W (where the | 5lues 1(M:) 2(M:) obtained from the SVD of; (i.e.
symbol indicates the MoorePenrose pseudo-inverse.
3: Estimated(+1) such thatm(t+1) — ys(OT, M; = UDVT). In order to extend such procedure to non-rigid
4: Repeat until convergence. shapes, we first need to define tim@tion manifoldfor the

deformable and articulated cases and to provide the com-

putational tools to project the motion matrices exactlyrfro
Crucially, Step 1 represents the real and novel contributioaffine to metric space.
of this algorithm: an optimisation method which computes  While other papers have chosen to use priors on the shape
the projection of the affine motion components ontortiee  to constrain the solution to the optimisation problem and ob
tion manifoldin which the exact metric constraints are sat-tain the metric upgrade (Bartadt al., 2008; Torresaret al.
isfied. Although this problem is non-convex we propose ef5 2008; Del Bue, 2008), in this paper we provide a met-
ficient convex relaxations (in the sense that the relaxationric upgrade step that solves an unconstrained least-sgjuare
turned out to be exact, in our numerical simulations) thaproblem and optimally projects the solution onto tie-
transform the problems into semi-definite (SDP) or secondtion manifold (i.e, computes the closest matrix in the mo-
order cone (SOCP) programs. Stepand 3 alternate the tion manifold with respect to the Frobenius norm). In such
estimation ot(¥ ands*) assuming the other one known. regard, we postulate that reliable solutions to the NRSfM



problem can be obtained without the use of prior informa-  The computedtiefel matrixg, is then used to recover
tion about the motion of the object or the smoothness of itshe weightd,,, obtaining a full non-rigid motion matrix that
deformations. In the case of articulated structure, weesolvsatisfies the metric constraints. This allows us to solve it-
globally for both the motion components related to the boderatively for the motion and shape as described in Algo-
ies and the joint axis with a similar procedure. We now giverithm 1. This optimal metric projection step was first intro-
details on how these projections are computed and the theuced in (Paladinét al., 2009). The disadvantage of this
oretical insights for thenotion manifoldof deformable and approach is that the computational complexity of solving a
articulated shapes. quadratic minimisation problem for each frame in the se-
guence is too onerous. Each minimisation takes absat-
onds using SeDuMi toolbox (on a Athlon X2 processor run-
3.1 Metric Projection: Deformable Case ning at2.6GHz), therefore a sequence 130 frames would
take aroundt minutes to process. While this computation
The projection is carried out on eaghx 3k sub-matrixM;  time is not unreasonable for a batch process, in Section 3.2
as defined in Section 2 and it corresponds to solving the folye present a new algorithm based on a Newton optimisation
lowing minimisation problem at each frame: method on the Stiefel manifold to speed up the computation
by a factor of around30. First we describe the initialisation

. 2
L M — iRl [LiwRi] [ (10) to the minimisation.

Ri,li1...0;

with the added constraint th&t be a2 x 3 matrix with
orthonormal rows (i.eRZ-RiT = Is«o). This is equivalent to
minimising separately all th& x 3 blocks ofV; giving:

3.1.1 Initialisation for the deformable case

Algorithm 1 requires an initial estimate of the motion matri
k M; at each frame. This in turn requires initial estimates for
Hﬁlnzz?n?k [Mig — LiaRi|| 5 (11)  the camera matriceB; and the configuration weights,.
d=1 The rigid motiorr,; and the first basis shape are estimated
from a rank3 rigid factorisation of the measurement matrix.
The second component of the shape bases is estimated from
the residual

which is equivalent to:

k
. 2 2
. Inin > [Miall7 + G IRill — 20 TrMR]. (12)
S Wy = W I (15)

We can then reformulate the problem by computing the minA
imum first for i, (i.e. solving for the zeros of the deriva-
tive of eq. (11)) giverk. This resolves in computing the
minimum of the quadratic function ity given by f(l4) =
a lfl —2blg+ ¢. Such minimum is found ity = b/a giving

new rank3 factorisation is performed oi. and the new
configuration weightg» can be estimated solving fhsR; =

M;2 keeping the rotations fixed. This can be solved in a sim-
ple way by taking advantage of the orthonormalityrof

in our case that: veqR;)l;; = vedM;;)
P L 13 vedR;) "veqR,)l;; = veqR;) ' vedlt;;)
id = ——%5—= = = Tr[M;;R;]. _

TR 2 Miahi] (13) IRl %i; = vedR;) "veqM;;)

. . . . . 2[1']' = Vec(Ri)Tvec(Mij)
Putting this value back in eq. (11) and following with the

simplification, the minimisation can be written as:
This process is repeated to obtainfalieformation modes.

ming, r; [* D1 midm;;} r; (14) The first rigid factorisation needs full data to give a solu-
suchthat R;R; = Iy tion, so we use Marques and Costeira’s rigid factorisation

algorithm (Marques & Costeira, 2009) if missing data are
wherer; = veqR;) andm;; = vedM;;). Therefore, this present.
quadratic minimisation problem presents a non-convex con-
straint given byr;. In Appendix A we show that it is possible
to derive an efficient convex relaxation of the constraimt se 3.2 Newton method on the Stiefel manifold
This set is defined only by linear matrix inequalities (LMI).
Therefore the optimisation problem is a Semi-Definite Pro-The approach described in the previous section will pro-
gram (SDP) which can be solved using SeDuMi (Sturmyide an optimal projection onto thaotion manifoldof de-
1999). Further details, including a proof of the relaxationformable structure. The first observation we made is that
can be found in (Dodigt al., 2009). the motion matrix for one frame is not unrelated to the next



one. For most common image sequences the motion of th&3 Metric Projection: Articulated Case
camera is smooth, thus each motion mawill not vary
much from frame to frame. Therefore, it is not unrealisticProjection onto thenotion manifoldof the universal joint
to assume that the camera pose at franisea good initiali- ~ can be simply solved by performing two separate rigid fac-
sation for an iterative algorithm which tries to compute thetorisations for each of the parts of the articulated objekt f
pose in the next frame+ 1. Thiswarm-startstrategy is not lowed by an estimation of the joint location as presented
explicitly designed for standard solvers for convex optimi in (Tresadern & Reid, 2005). The hinge joint is far more in-
sation problems ((Sturm, 1999)). Instead, we have adoptd@resting given the non-linear relations between the motio
a Newton-like iterative optimisation algorithm based oe th subspaces. Here the problem s to find the closest matrix that
work of (Edelmaret al., 1999). We perform iterative opti- satisfies the metric constraints given a rotation axis betwe
misation directly on the Stiefel manifold which, for the eas two objects. Following eq. (6) the projection problem fag th
of smoothly varying camera poses, will converge locally tohingemotion manifoldcan be written at each frame as the
the minimum. Of course we lose the optimality of the con-following minimisation:
vex relaxation algorithm. However, empirically we found . 9 9 9
that in all our exp?eriments with ground Fi[)ruth dyata both al-uxs J(u, 4,B) = [Ju—x|" +[|A = Y[z +[]B - 2Z[F, (19)
gorithms converged to the same minimum.

We now provide additional details on how to compute

the Newton step update for timeotion manifoldof deform- [x[¥|2], recovered through SVD. Equation (19) can be re-

ing shapes. To adhere to the notation in (Edelratal. , . N
1999) we define the problem as that of minimising a func_formulated (Paladingt al., 2009) as the minimisation of

tion F(Y), whereY is constrained to the set of matrices suchJ(uf 4,B) only as a function of the common axis such
thatY'y = I i.e. itis aStiefel matrix The current estimate

of the Stiefel matrix is updated in the Newton directidn  min J(u, A, B) = min J(u). (20)
using the geodesic formula for a unit steg: 1 wAB u

subject to the constraints defined in eq. (8). Her& and
Z are obtained directly from the affine motion mat¥ix =

This is possible as we will show that, once the optimas
estimated, it is straightforward to obtainandB in closed
form. The equivalent cost functiof(u) can be written as:

Y(t) = YM(t) + QN(¢) (16)

wheregr is the compact QR-decomposition@f— Yy ) A,

with the Newton directiorA given by m&n T(u) = m&n{”u B X||2 + oy (u) + ¢>Z(u)} . @y

A = —Hessian ! (Fy — YF, Y 17 _ L
(Fy vY) (17) Thus now we will show how to transform the minimisation

2 . L. .
(whereFy is the first derivative with respect t9) and, fi- ~ Of [[A = Y|[;; into the minimisation ofy (u) (the same rea-
nally, the matricesi(¢) andN(t) are given by the matrix ex- SOning can be replicated fgi; (u)). First, we use the polar

ponential decomposition to change variablestas- PQ whereP > 0
(i.e. P is a semidefinite matrix) an@ is orthogonal (both
<M(t)) — oxnt (A RT> <Ip) (18) P andQ are2 x 2). Moreover, given the metric constraints
N(t) PPr o 0 in eq. (8), it follows tha®? = I — uu'. Thus, the matrix

I — uu' must be positive definite, restricting the vector

i vyl
withA =Y A. ) ) _to be inside the unitary circle. Then, for a chosewe can
We apply the iterative Newton method (more theoreti-

e ) write ¢y (u) as:
cal insights can be found in (Edelmanal., 1999)) to the

2
cost function given by equation (14), using the solution t04y- (u)= min (I—uuT)l/QQfYH
F

the previous frame as an initialisation. Evidently, thetfirs ' =t

. . 2
frame has to be solved Wlth the prewously prpposed convex —min {H (I—uu’)V/? H i HY||2F
relaxation. In our experiments this new solution provided a T =1 F
remarkable sp_eedup, solving the thlg factorisation prob- oTr (Y7 (1 T 1/2
lem about130 times faster than the original method, with- e (I-uu') Q) ¢.

out losing optimality as observed in the experimentalgrial . . . . . . .

. N . Minimising this cost function over the orthogonal matgix
Notice that in this case the assumption that the camera pose o . . )

. L L equals to maximising the trace in the previous expression.
varies smoothly is just an initialisation strategy and not a . )

. . ORI . Using the property:
prior term in our minimisation. Our smoothness assumption
does not add an explicit penalty term to the cost function

: i . max {Tr (X =01(X)+03(X)+---+0,(X) =||X

to penalise strong deformations or camera motions as otherT:I{ (xQ)} 1(%) + o2 (X) n(®) = Xl

authors do (Bartolet al., 2008; Torresaret al., 2008). (22)



where||X||, denotes theuclear normof X (i.e. the sum of 4 Reconstruction with Missing Data
its singular values), we can write that:

5 5 12 Incomplete image tracks are a common occurrence in SfM
¢y (u) =2 — [lu|” + [[¥[[p — 2 H (I-uu') YHN (23)  tasks and several algorithms have been proposed in order to
cope with the missing data problem within the factorisation
framework (Buchanan & Fitzgibbon, 2005). Our new fac-
torisation approach presented in the previous sectionean b

The same reasoning can be replicated/fgfu) giving the
final optimisation problem to be solved as:

min  — |lul® —2uTx -2 H (I—uu') ek YH (24)  modified to account for missing entriesWnThe strength of
N . . . .
) < 1 _9 H(I B uuT)1/2 ZH our approach lies in the fact that theotion manifoldcon-
- N strains the estimated motion of the missing 2D image points

Once the optimali* is found we substitute back in order since we only allow trajectories that satisfy the metric-con
to recover the solution fak (and similarly forB). First we  straints exactly.

obtainQ from the SVD ofy " (I —u*u*")/2 — UDV " lead- Instead of using only the known image tracks to solve
ingtoQ = VU'. The matrixP is simply given knowing that for the camera matrices, basis shapes and deformation co-
P2 = I —u*u* . This will result in the matrix that exactly efficients as the trilinear least-squares approaches de (To
satisfies the metric structure of a hinge joint. The optimisaresaniet al., 2001; Wanget al., 2008), we opt for an it-

tion of the cost function in eq. (24) is not trivial since the erative scheme. At each step of the iteration we re-compute
cost function is non-convex and non-smooth. However th¢he missing entries in the measurement matrixsing the
domain in which the function resides is very constrained (i. current estimates of the motion and shape matrices that have
the unitary circle) and the value of eq. (24) for an arbitrarybeen projected onto the correubtion manifoldIn our ex-

u can be computed efficiently without the need of calculat-perimental validation, reported in Section 5, we have found
ing the nuclear norm at each sample. The optimisation catiat dealing with missing data using the iterative scheme de
be then solved with a simple exhaustive search algorithrscribed here allows to deal with higher percentages of miss-
in which the function samples can be computed in a smaiihg data than using only the available data as Weirg. do
amount of time (details on this computation can be found irin their RCPF approach (Wareg al., 2008). The steps of
(Paladiniet al., 2009)). this method are summarised in Algorithm 2.

3.3.1 Convex relaxation for the articulated case

Algorithm 2 Metric Projections algorithm in the presence

Although the cost function in equation (24) is non-convex, i Of missing data.

Appendix B we propose an efficient convex relaxation. Dif-Require: An initial estimatei®) of the missing data if.

ferently from the deformable case, the reformulation lead&§nsure: A factorisation O'w_thgt Sa“Sﬁ?j the in‘f” m‘?gic C"(T)Strai”ts'
to two cases. As shown in Appendix B, in one case the; E:Q;;’rg?g ZZDMfte)r;t(rf)"ﬁsi:;Ozgworit'h'r':'l"’_ ST
problem becomes a semi-definite program (SDP) and in the;: ciimate the missing data entriesiasw(*+1) = u®s®) 4 1(0)
other a second order cone program (SOCP) both of whichi: Repeat until convergence.

can be efficiently solved with standard convex optimisation
tools (Sturm, 1999). In all of our numerical experiments
we found that the proposed convex relaxations were exacl ne algorithm requires an initial estimate of the missing
thereby solving indeed (24). Compared to the full searclgntries in the measurement matiix For this purpose, we
method presented in (Paladitial., 2009), this convex op- have used the rigid factorisation algorithm of (Marques &
timisation speeds up the computation by a factor of aroun&osteira, 2009) to obtain an initial rigid fit of the missing
ten. A second advantage is that we avoid the problem ggntries. In the case of articulated structure we apply the al
the accuracy of the solution depending on the density of thgorithm independently to each of the bodies. The iterations
interval grid in the parameter space as in the full-search afe stopped when the distarige’ ") — w(")[| - falls below
gorithm. The full details of the proposed convex relaxation? user-defined threshold, that is, when the new estimate does
can be found in Appendix B. not modify the previous values much.

3.3.2 Initialisation for the articulated case

5 Experiments
We first consider the two bodies separately and then perform
a rigid factorisation for each shape. Given this factoiigat  First we show results for the recovery of deformable struc-
we can then obtain an initial closed form solution for theture, followed by results for articulated structure. Weleva
metric upgrade in the case of a hinge using the linear apdate the performance of our algorithms quantitatively on
proximation of (Tresadern & Reid, 2005). various motion capture sequences, for which ground truth
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Fig. 2 Missing data tests on tHeace1Motion Capture sequence. Plots show the average 3D erron 09eests for increasing levels of randomly
generated missing data. We compare the results obtained\étric Projections (MP), EMPPCA, Bundle Adjustment (BRptation Constrained
Powerfactorization (RCPF) and MP with a Simple ProjectoP¢8P). The plots on the left column show the average 3D eimdiee noise-less
case (top) and with added Gaussian noise (bottorna) ef 1%. The plots on the right show a zoomed-in version of the thest performing
algorithms (MP, RCPF and MP-SP). The performance of MP aneSRRs similar although MP outperforms MP-SP.
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Fig. 3 Noise test for thd=acelMotion Capture sequence in the cases of full data case éetip0% missing data (right). We show 3D errors
versus percentage of added Gaussian noise. In the full daga(eft), EMPPCA performs marginally better while in thissmg data case (right)
MP is the best performing algorithm.

was available, and we compare our results with some cusequences. We have made our code and sequences available

rent state of the art NRSfM algorithms (Torresatial.,  for download on our website

2008; Del Bueet al., 2007; Wanget al. , 2008). In the

case of the articulated Metric Projections (MP) algorithen w

evaluated against (Tresadern & Reid, 2005). Notice that we

do not compare with Yan and Pollefeys’ approach (Yan &

Pollefeys, 2008) since their proposed method does not per-

form a 3D metric reconstruction of the shape and joint axes

— only the 2D projection of the axes in the image is com- hitp:/www.dcs.gmul.ac.uk/ - lourdes/code.
puted. Finally we demonstrate our algorithms on real imag@tm|
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Images from MOCAP session

—— Ground Truth

——e—= Reconstruction

® Missing Data

Frame 10 Frame 45 Frame 70

Fig. 4 3D reconstruction results for a single run of the Bagelmotion capture sequence with% missing data. The points that were missing
in each frame of the sequence are highlighted in red. Top 8mme frames of the original motion capture take (note thatitreges do not
correspond exactly to the reconstructed frames shown helecond, third and fourth rows: side and front views for edrames of the 3D
reconstruction for our Metric Projection method, Torrésat al’s EM-PPCA and Rotation Constrained Power FactorisaWga.show ground
truth (green circles) and reconstructed points (dots/ iblasible red if not). The wire-frame lines are only showr fosualisation purposes.

5.1 Deformable Structure of the art/baseline algorithm and for which code has been
made available online; Rotation Constrained Power Factori
Synthetic Experiments — Motion capture data sation (RCPF) (Wangt al., 2008), which is the most closely

related approach to our new MP algorithm since it also per-
In our synthetic experiments we used two different 3D moforms a (rigid) projection of the camera matrices as we de-
tion capture sequences, both showing faces. The first seeribed in Section 1.1, and a Bundle Adjustment algorithm
guencefacel, was captured in our own laboratory using a(BA) designed for NRSfM (Del Buet al., 2007) where
VICON system tracking a subject weariBgmarkers onthe the orthonormality constraint on the rotation matricesris i
face. The 3D points were then projected synthetically ontgosed through parameterisation.
an image sequencgl frames long using an orthographic

camera model. The second seque@idl face sequende In the case of missing data we also report results with a
is motion capture data made available by (Torresirl. modified version of our Algorithm 2. We are interested in as-

, 2008). The subject woré) markers tracked by a motion sessing (in the case of rr_lilssing data) the gain in performance
capture system and the orthographic projection is perfdrme@chieved by using our bilinear scheme followed by our new
by simply discarding the third coordinate of each 3D point 2Ptimal metric projector instead of Wargg al’s trilinear
Note that although the projection of the ground truth 3pScheme followed by their simpler projector of the camera
data on the images is synthetic the deformations are redifatrices onto the motion manifold (Waegal., 2008). In
istic since they come from real motion capture sequence8/der to do this we have designed a new algorithm that we
The 2D image data is therefore not synthetic and it contain§&l MP-SP:Metric Projection with Simple ProjectioThe
some noise due to the motion capture estimation errors, 1d€ais to use our outerloop to deal with the missing data and
Our proposed Metric Projection algorithm (MP) is testedSURStitute Step 2in Algorithm 2 with Wareg al’s RCPF al-

against various state of the art algorithms: EMPPCA (Torregqr,'th_m' !n this way We, can .test an algorithm with the same
saniet al., 2008), which is currently perceived to be the S'tate|n|t|allsatlon, the same iterative outer loop to deal wittssa

ing data but using Wangt al’s trilinear approach with the
S http://www.cs.dartmouth.edu/ ~ lorenzo/nrsfm. simpler projection step to perform factorisation. Notettha

html this new scheme (MP-SP) is not Waagal's RCPF algo-
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Fig. 5 3D reconstruction results for the “CMU” face motion captsegjuence. First row shows the input image data. Second addrdvs
show the results with full data obtained with our Metric Rajon algorithm and Torresaat al’s EM-PPCA respectively. The 3D reconstruction
results (blue dots) are compared with ground truth data(goércles). Fourth, fifth and sixth rows show comparatisilts for30% missing data
(missing data points are highlighted in red). Our MP aldponitcan recover the 3D shape accurately even with a high gageiof missing data
points, while Torresangt al’s algorithm gives poor results. The RCPF method also nbtaigood reconstructior% 3D error) in both cases of
full and missing data.
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rithm: the missing data is dealt with in a different way. Ef-  PCA of the residuals of the measurement matrias
fectively, our Algorithm 2 (MP in the case of missing data)  explained in Section 3.1.1.
and the new MP-SP have exactly the same structure. They
only differ in the factorisation algorithm used in Step 2: in
the case of Algorithm 2 it is our MP algorithm for full data
(Algorithm 1) while in the case of MP-SP it is Warg al’s
RCPF algorithm.

To test the performance of the algorithms we computeﬁwssing data and noise tests
the 3D error, which we defined as the Frobenius norm of the
difference between the recovered 3D shaped the ground |, Figure 2 we compare the performance of our new algo-
truth 3D shapesgr. The error is normalised against the i " MP with EMPPCA, RCPF, BA and MP-SP for the
Frobenius norm of the ground truth shajse-Scr|| /[|Sc || r-Face1sequence in the case of increasing levels of missing
We subtract the centroid of each shape and align them witf ranging from 0% to 80%, generated by deleting en-
Procrustes analysis. In the noise tests zero mean additi{ges from the measurement matrix randomly. For each level
Gaussian noise was applied with standard deviatios missing data we averaged the resultsl6f runs vary-
n x §/100 where n is the noise percentage and s is definef,q the missing data mask. Tests in which the 3D error was
asmax(W) in pixels. higher thanL00% were considered as outliers and were not

Initialisation: Each of the algorithms we tested requires aysed to compute the average. In all experiments the number
slightly different initialisation for the optimisation utine.  of basis shapes was fixed o= 5.

This is dictated by the fact that each method starts the-itera The top row of Figure 2 shows the results in the noise-
tions from a different set of parameters. Therefore, evalua|ess case, while the bottom row shows the results in the more
ing each approach with exactly the same initialisation is norealistic case ol% image noise. The plots in the left col-
feasible. All the algorithms require an initial estimatefoé | mn show the 3D error of all the algorithms (MP, EMPPCA,
camera matriceR; and the mean shape. In order to makeRCPF, BA and MP-SP) while the plots on the right column
the initialisations as uniform as possible we have used theéhow a zoomed-in version for the algorithms showing the
rigid factorization algorithm of (Marques & Costeira, 2009 pest performance (MP, MP-SP and RCPF), which interest-
to estimate them (except EMPPCA where we used the codfgly, enforce orthonormality constraints on the camera ma
provided by the authors). Here is a detailed description offices through projection. The left plots in the noiselésp)
the initialisation used for each algorithm. and1% noise case (bottom) show that EMPPCA and BA are
the worse performing algorithms in the presence of missing
— EMPPCA: requires initial estimates for the camera ma-data. EMPPCA can cope with up26% missing data before
tricesR;, shape base®,; and configuration weights;.  the error starts to grow steadily. BA gives the highest 3D er-
We used the initialisation provided by the authors in theirrors for low ratios of missing data but appears to show more
implementation (Torresaei al., 2008): (camera matri- resilience to higher ratios of missing data than EMPPCA.
ces and mean shape come fromrigid factorisation (Toméa#dwever, it also breaks down afteéd% missing data.
& Kanade, 1992) while deformation basis and coeffi- It is important to record the number of reconstructions
cients are estimated through iterative PCA of the shapthat ended up with a 3D error higher tha®0% (those that
residuals). we classified as outliers and did not enter the statistiog). O
— BA: requires initial values for the same parameters aproposed methods MP and MP-SP did not have any outliers.
EMPPCA and was initialised in the same way, except (Mbrthe noiseless experiments (Figure 2 (top)) the number of
ques & Costeira, 2009) was used as the rigid factorizaseutliers for RCPF and EMPPCA we6é and1 respectively
tion algorithm. over the800 trials (each method was rum0 times for8 lev-
— RCPF: needs an initialisation for the camera matrice®ls of missing data). In the experiments with noise (Fig-
R; and shape basés;. We used the initialisation pro- ure 2 (bottom)), RCPF hasb outliers and EM-PPCA had
posed by the authors (Waegal., 2008): camera matri- 1. Most of the RCPF outliers were in tl88% case which is
ces and mean shape were estimated from rigid factorizahe highest level of occlusions in our tests.
tion (Marques & Costeira, 2009) and the shape bages The plots in the right column of Figure 2 show a zoomed-
were initialised to small random values. in view of the best performing algorithms. Our new MP al-
— MP and MP-SP: require initial values for the camera ma-gorithm achieves the smallest overall 3D errors both in the
tricesR,;, configuration weightg;; and the missing data. noiseless case (right-top) and more clearly in Ifienoise
Camera matrices and missing data were initialised frontest (right-bottom). RCPF (Waref al., 2008) shows good
rigid factorization (Marques & Costeira, 2009) and the performance until levels of arours®% missing data but the
shape coefficients were were initialised through iterativeerrors grow quickly after that. The second best performing

Note that only our algorithm, MP, uses the missing en-
tries explicitly in the outer loop proposed in Algorithm 2,
while EMPPCA, BA and RCPF only use the known data in
the estimation.
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algorithm is MP-SP which uses our outer loop to deal with  Figure 4 shows front and side views of the 3D recon-
missing data and RCPF internally to perform factorisationstruction results for one of the runs of thacelsequence
Although its performance is comparable to MP, the 3D errowith no noise andi0% missing data. The top row shows
curve for MP lies below — for instance in th&/ noise case some frames of the motion capture session (which do not
(bottom-right)the 3D reconstructions obtained with MP arecorrespond to the reconstructed ones below), the second,
on average arounts better than with MP-SP. third and fourth rows show ground truth values and 3D re-

It is worth discussing three interesting facts revealed b)COI”IStrUCtiOH results obtained with our method MP, EM-PPCA
the results of these tests for increasing levels of missingnd RCPF respectively. Our reconstruction is closer to the
data. First, the top three performing algorithms (MP, MP-ground truth shape. The average 3D reconstruction error ove
SP and RCPF) include a projection step of the camera m&!l the frames of this sequence w&§% with MP, 13.1%
trices to deal with metric constraints. BA and EMPPCA, with EMPPCA and.0% with RCPF.
on the other hand, impose the orthonormality constraints Figure 5 compares ground truth with the results obtained
through parameterisation (quaternions in the case of BA andith MP, EMPPCA and RCPF for theMU face sequence
exponential map in the case of EMPPCA). Secondly, whilavith full data and with30% missing data. In the full data
RCPF, MP-SP and MP show very similar performance forcase all algorithms perform similarly. However, in the miss
missing data ratios of up t80%, for higher ratios MP-SP  ing data case, our algorithm recovers the 3D shape correctly
and MP greatly outperform RCPF. The only difference beand outperforms Torresaet al’s. The 3D errors against
tween MP-SP and RCPF is the way in which they deal witrground truth motion capture data were the same for RCPF
missing data: RCPF uses only the known 2D image trackgnd MP %), both for full data an0% missing data, while
while MP-SP uses an outer loop to re-estimate the missintpr EMPPCA the 3D error is lowl(8%) in the full data case,
data at each step of the iteration. Note that they were bothut very high 85%) in the missing data case.
initialised in the same way as MP. Finally, the performance  Figure 6 shows the mean run-times expressed in sec-
of MP is aboutl % better than MP-SP. However, MP-SP runsonds, for the experiment in Figure 2, for EMPPCA, BA,
around25% faster (see Figure 6 for algorithm run-times). RCPF and MP for different ratios of missing data. Tests
Therefore if run-time is an issue MP-SP could be used inwere performed using a 4-core Xeon processor running at
stead of MP without compromising performance too much2.8GHz, with 24GB of RAM. All implementations are in
but of course improved results would be achieved with MP.MATLAB. The fastest algorithms are BA and EMPPCA.

In Figure 3 we show comparative noise tests for EMp-However the code for BA and EMPPCA provided by the
PCA, BA, RCPF and MP in the case of full data (left) andauthors contains some parts of optimised MEX code. At the
30% missing data (right). We show results for noise levels®XPense of losing some accuracy, as we saw in Figure 2, MP-
of up t04% meaning that the value of the varianeés up to SP runs aroun80% faster than MP since the projection step
4% of the size of the object in the image. It is clear that BA, IS much more simple. Note that RCPF requires a large num-
is the most vulnerable algorithm to noise in the image cober of iterations in order to achieve convergence &ftst
ordinates. Note also that EMPPCA, RCPF and MP perfomqnissing data. Therefore, adding the outer loop to RCPF to
very similarly with EMPPCA performing slightly better in deal with missing data as we did in MP-SP improves the
the full data case and MP in t136% missing data case. The convergence in this case.

results were averaged ovEi0 runs. None of these tests re-
sulted in outliers. Synthetic Experiments — Structured occlusions

While it is important to conduct experiments with randomly
generated missing data to control its percentage in the sim-
T e ulation, we also performed a test with a missing data mask
80 :z’:zm:‘:ml:m‘o;m where pom'Fs are occluded in a structgred way, as it would
7! s EMPPCA - 0% noise happen for instance due to self-occlusions.

In order to generate a more realistic missing data pat-
tern we have computed surface normals from the sparse 3D
motion capture data using thaglut algorithnf. The com-
puted angles between surface normal and camera viewing
direction for all frames have been thresholde6iatiegrees,
marking large angles as occluded. Although the knowledge
of surface normals allows to simulate self-occlusions, the

Fig. 6 Comparison of run-times (in seconds) averaged over 108, testsirong sparseness of the measured points does not permit
versus percentage of missing data. Tests were performeg agi-core

Xeon processor running at 2.8GHz, with 24GB of RAM. 4 http://jmfavreau.info/?q=en/taglut

Time (seconds)

30 40 50
Percentage of Missing Data
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In Figure 10 we show the 3D reconstruction results on
the cushion sequence witl)% missing data generated ran-
domly.

Franck Sequence

We also used the Franck sequehtaken from a video of
a person engaged in conversation. We selected 700 frames
from the 5000 frame sequence. An Active Appearance Model
(AAM) was used to track 68 features on the face. Figure
11 shows three frames of the original images and a view
of the resulting 3D reconstruction in the cases of complete
2D data (second row) ared% missing data (third row). We
Fig. 7 Structured missing data mask used for the experiment thescri  also show the 3D reconstruction achieved with EMPPCA
in Section 5.1. Each column is a point track, points in blagkmarked  for the full data case as a baseline (fourth row). However,
as visible, points in white are marked as occluded. we could not show the results for EMPPCA 0% miss-

ing data since already for that value, the errors were tolo hig
to simulate realistic self-occlusions. However, the risgl ~ and the reconstruction was meaningfe3#e last two rows
occlusion pattern is structured and not random as in the préfifth and sixth) show the results achieved with the RCPF
vious tests. The resulting occlusion mask is shown in Figalgorithm in the cases of full data an8% missing data.
ure 7 — the amount of missing data resulting from this comThe number of basis shapes was chosen t6 ivethis ex-
putation was32%. The resulting visibility matrix captures Periment. Our algorithm appears to achieve the best 3D re-
well the structured disappearance of image features. We th&onstructions in this real sequence with and without mgssin
ran our MP Algorithm 2 on the input 2D data, obtaining data.
a 3D reconstruction error ¢f.4%. A visual comparison of
the reconstructed 3D against ground truth motion capture
data is given in Figure 8. We also compare this result wittP-2 Articulated Structure
other techniques, and show that MP outperforms other meth- _
ods in this case. In particular, EMPPCA (Torresanal.,  Synthetic sequence
2008) obtains8.6% 3D reconstruction error, and Wareg
al's RCPF (Wanget al., 2008) achieve8.4% error.

In the articulated case our synthetic data simulated two 3D
boxes coupled by a hinge joint. The 3D ground truth is pro-
jected on the input images via orthographic projection. The
sequence contained global rotation and translation as well
opening and closing of the hinge. Each box contaigs
points, and the sequenced8 frames long. We tested the
. . . . algorithm in the case of full data for noise levels ranging
In our first experiment we tested our algorithm on an imag . )
. : L . om 0% to 4%. Figure 12 shows the absolute error in the
sequence of a cushion bending and stretching, in which 9 _
) .. recovered relative angle between the two boxes (averaged
points were tracked manually. The results are shown in Fig-
ver all frames) and the 3D error of recovered 3D structure.

ure 9. Our algorithm reconstructs successfully the 3D poin he plots in Figure 12 show comparative results between the
cloud and its deformations. We used this data to generate P 9 P

a texture-mapped view of the reconstructed object. We alsgerformance of (Tresadern & Reid, 2005) (TR) and our new

performed a quantitative evaluation by comparing the 3D regpproach (MP). Slightly superior results are achieved with

construction obtained with full data to those obtained with”"" algorithm.
different percentages of missing data — generated by delet-
ing randomly entries on the measurement matrix. The difReal Sequence

ference (computed in the same way as we compute the 3D .
error) between the 3D shape reconstructed with full data anf/e tested our algorithm on a sequence of 815 frames of two

the shapes obtained witld%, 20% and30% missing data boxes linked by a hinge joint. The number of trackeq points
are3.8%, 5.7% and5.9% respectively . We also measured On the upper box wal and47 on the lower box. Figure
th_e average image reprojection error which wals pixels 5 www-prima.inrialpes. fr/FGnet/data/01-

with full data, andl.1, 1.2 and1.4 pixels for the10%,20%  TalkingFace/talkingace.html

and30% missing data cases respectively. 6 We have provided this result in our additional material

Real Sequences

Cushion Sequence
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Input 2D Data
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& @ @ ® &
¢ {7 & ¥
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3D reconstruction using EMPPCA, side view
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3D reconstruction using RCPF, front viewt% 3D error

Frame 1 Frame 20 Frame 38 Frame 56 frame 74

Fig. 8 3D reconstruction results obtained for th@celmotion capture sequence with the structured missing datk steown in Figure 7. Top
row: 2D input data with missing data points highlighted vatred circle. Front and side views of the 3D reconstructisnlte (dots: blue if visible,
red if not) are shown together with ground truth 3D data po{gteen circles) for three different algorithms: our MPaaithm (second and third
rows), Torresanet al's EMPPCA (fourth and fifth rows), Wanet al’'s RCPF (sixth and seventh rows). The wire-frame lines areiSualisation

purposes only.
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Input 2D Data

3D reconstruction, Front View
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Fig. 9 3D reconstruction results for the “cushion” real sequeiiée show texture-mapped 3D reconstructions and use themrmtrage a virtual
view of the object in 3D. First row: Input images and trackdaja. Second and third rows: 3D reconstruction results thigtproposed method.
Fourth row: reprojection of reconstructed points (crossegether with 2D input data (circles). Bottom rows: Tertimapping rendered view of

the 3D reconstruction.
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2D data and reprojection$p% missing data
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3D reconstruction using our method, side view
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Fig. 10 Reconstruction results on the “cushion” real sequence Withh missing data. Points were marked as not visible randomigt Fow:
Input 2D tracks (green circles) and reprojections calealatith our method (blue crosses). Missing 2D points (notldse reconstruction) are
shown as red circles. Second and Third rows: 3D reconsbiugtith our method. Fourth and Fifth: 3D reconstruction gdiMPPCA. note that
although the frontal view matches the input data, the recaction suffers from bad depth estimation, visible in tides/iew.

13 shows two frames of the image sequence showing thiemage sequence used for reconstruction. Some frames can
tracked points and the recovered joint axis projected dr@ot be seen in Figure 15, first row. From the 2D images we can
images. The 3D reconstruction of the articulated structureecover the rotation axis of the joint, and the 3D structdre o
together with the common hinge axis is also shown in Figur¢he leg, as shown in Figure 15. The reconstructed 3D points
13. In this case there was no missing data. and axis have been aligned to the MOCAP data to show the
Finally we show results using a motion capture sequenctull body pose. Two closeup of the reconstruction and axis
of a person kicking a football. The motion capture systenare shown. In Figure 14 we also show a comparison of the
tracked 333 markers on the whole body. We selected theecovered rotation angle between our method and the linear
tracks on the leg, and projected the 3D coordinates on 2Dnethod by Tresadern and Reid (Tresadern & Reid, 2005).
images via orthographic projection. The viewing directionWe can see that although this sequence does not have ground
of the synthetic camera starts at the back of the leg and petruth information on the joint angle in the knee, we recover
forms a random rotation around the body, resulting in thea smooth movement (purely from the data, without impos-
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Input images and 2D tracking data

3D reconstruction using Metric Projection
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Fig. 11 First row shows frameg00, 400 and500 of the Franck sequence. We show front and side views of thee8Bnistructions in the case of
full data and20% missing data in the input tracks (randomly generated) aeli@vith our MP algorithm (second and third rows) EMPPCA (tbu
row) and RCPF (fifth and sixth rows). Note that we do not shoswétonstruction obtained for EMPPCA with missing data a&# of very poor
quality. Missing points not visible in the correspondingrfre are highlighted with a red circle.

ing smoothness constraints) while the linear solutioniobta tively. Although the constraints result in non-convex prob
similar values with some discontinuities. lems we introduced efficient convex relaxations in the form

of semi-definite (SDP) or second-order cone (SOCP) pro-

grams. These relaxations revealed themselves to be exact in
6 Conclusions all our numerical experiments.

We have carried out experiments to compare the perfor-

We have described a new bilinear alternating approach asaance of our new Metric Projection algorithm with com-
sociated with a globally optimal projection step onto thepeting NRSfM methods. These have revealed that there are
manifold of metric constraints. At each step of the min-two main factors that make our Metric Projection (MP) al-
imisation we project the motion matrices onto the correcgorithm more robust to missing data. The first strength is in
deformable or articulated metrimotion manifoldgespec- the projector. It was first observed in (Marques & Costeira,
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the deformations as most other NRSfM approaches to avoid

go.sfig"ritsrg:dz:gj_e;g?d” ambiguous solutions. In the articulated case, we effigientl
S04 compute the joints given the non-linear constraints on the
5 motion of the two bodies. In general, even though our meth-
503 ods were designed to solve SfM problems, thetion man-

@ 0.2 ifolds and the related optimal projections could be used for
:%”o.r _______________ o different tasks such as registration (where the st&jie

_____________ @urenmreeeeee T @ 9T known), image point matching and motion segmentation.
% 1 2 3 4

. Noise (%)
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Error on relative rotation angle between the two boxes irsgmghetic

experiment compared with Tresadern and Reid’s linear @gprdBot- approach.
tom: 3D error of recovered structure. In both cases the KI&rb-
jection method results more robust to noise and can recotation
angles reliably.
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X =0, (31)
Tr(B) =0, (32)
I3><3 —A—-Cw
[ P (33)
with w given by
bas — b3z
w = |bg1 — b3 (34)
b1z — ba1

whereB = [b;;]. Moreover, this set is defined only by linear
matrix inequalities (LMI). Hence, we have that our prob-
lem (25) is relaxed into finding the minimum of a linear
function (Tr(EX)) on a convex set described by the LMIs
(31)-(33). Thus, the optimisation problem in the right-tan
side of (30) is a Semi-Definite Program (SDP). By using Se-
DuMi (Sturm, 1999), we quickly obtain the optimal matrix
X for (30). In 100% of experiments that we ran, the optimal
matrixX was always of rank 1. By factorising= qq', we

Fig. 14 Recovered rotation angle between two object: knee joint inobtain the optimaStiefel matrixasQ = vec=!(q). For more

the “football” sequence. Although this sequence does net gaound
truth information on the joint angle in the knee, we recoveneoth
movement (purely from the data, without imposing smoothrem-

straints) while the linear solution obtains similar valugth some dis-

continuities

Appendix A: Convex relaxation — deformable case

ForE € R%%6, our aim is to compute

min q—r Eq,

25
q=vec(Q) ( )

whereQ € R3*? runs through Stiefel matrices, i.@/Q =
I5x2. We rewrite (25) as

min Tr(Eqq') = Igngl Tr(EX), (26)
€

q=vec(Q)
whereS is the set of all real symmetrit x 6 matricesX =

[ A B] , with A € R3*3, satisfying

BT C
X =0, (27)
Tr(A) = Tr(C) =1, Tr(B) =0, (28)
rankX = 1. (29)

details the reader can refer to (Dodigal., 2009).

Appendix B: Convex relaxation — Articulated Case
Problem statement

We consider the following optimisation problem which save
for the cost function as presented in eq. (24)

maximisef(u)
subject tojju|| <1

(35)

where the variable to optimise is € R?, the common joint
axes for the two bodies. The objective function is

f) = Jlu* +2u"x + 2 H (1-— uuT)l/2

1/2

e

+2H(I—uu—r) ZH

N
where the unknowns are the data triple
(x,Y,Z) € R? x R?*2 x R?*X2,

Notice that for ann x n matrix X, the symbol|X|, =
o1(X) + - - - + 0,(X) denotes its nuclear norm.
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Frame 1

Frame 10

Frame 25

Frame 35

Frame 50

Fig. 15 Recovery of the knee joint in the “football” sequence. Top:rtnput image points. Second row: 3D Reconstruction of dge(magenta
and cyan dots) and axis of rotation shown with the 3D grountthtmotion capture sequence (green circles). Third rowpR&tcucted 3D points

(dots) with ground truth MOCAP data (green circles). Foudv: 3D reconstruction imaged from a different angle.

Problem reformulation

We start by noting that (35) is equivalent to maximising

g(w) = Jul® +2Jux] + 2] (1 - wu")

+2 H(I — uuT)l/QZHN .

1/2

YHN + @37

We rewriteg(u) as

(38)

+2 H (I — uu—r)l/2 ZH

g(u) = Julf + 2V u+ 2 (1 - wa") || @9)

(40)

Moreover, for & x 2 matrix X, there holds

Note thatf(u) < g(u) for all feasibleu. However, at a
global maximiser of (35), say*, we must havéu*) "z >

0. Thus,(u*) "z = |(u*) Tz| and f (u*) = g(u*).

X[l =

IXIJ* + 2] det(X)|

(41)
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where||X|| = +/tr (XXT) denotes the Frobenius norm xf
Using (41) in (40) gives

g(w) = Jul]® + 2V xxTu +

+2\/HY||2 —uTYYTu+ 2| det(Y)[v/1—uTu+

+2\/|\z||2 —u'ZzZTu+ 2| det(z)[v/1 —uTu. (42)

Now, we distinguish the following two cases which lead

to two different optimisation strategies:

1. The matricegI,, YY" ,zz"} are linearly independent
2. The matrice§I,, YY", ZZ "} are linearly dependent

It is also given that we have the inclusiéhc 7 where

T = {(a7 ba C) : 3UEO La= tr(U), b=rtr (YYTU) ,

c=tr(zz"v)}
Using 7 instead ofS in (46) gives the convex problem

maximised(a, b, ¢)
subject toa = tr(U)
b=tr(YY'U)
c=1tr(zz"U)
U=0
a<l1

(47)

Casel is the one that most frequently occurs in practice and et u* be a solution of (47) and let

it will be solved with a semi-definite program (SDP). In our
experiments, we almost did not observe any occurrences of

Case2. In any case, we provide the solution to Caskby
means of 2" order cone program (SOCP).

Case 1:{I,,YY ", zZ"} are linearly independent

In this case, the matricgg,, YY", zz "} form a basis for the
three-dimensional vector space2of 2 symmetric matrices.

This means that there exists 3,y € R such that
xx' =aly+BYY" +q2zz". (43)

Using (43) in (42) yields

g(u) = |ull® +2v/ouTu+ fuTYYTu+yu' ZZTu +

—|—2\/||YH2 —u'YYTu+ 2|det(Y)|vV1I—uTu+

+2\/||z|\2 —u'zzTu+ 2|det(Z)|v/1 —uTu(44)

Our optimisation problem is

maximiseg(u)
subjecttojjul| <1

(45)

with g(u) as in (44). In (45), the variable to optimiseusc
R2. Problem (45) can be rewritten as

maximise¢(a, b, c)
subject to(a, b, c) € S
a<l1

(46)

where

S:={(a,b,c) : Iy :

and

¢(a,b,c) :==a+2
F20/I¥1% = b+ 2/ det (V) VT —a +
121/I2) - ¢+ 2| det(Z)|VT —a

is a concave function.

aa ~+ Bb+ ye +

a=u'u,b=u'YY u,c= uTZZTu},

. A O T
U = [111 U2} [01 )\2] [E;T]

be an eigenvalue decomposition, whage> \,. A subop-
timal solution for (35) isu* = ++/A1u1, where the sign is
chosen such that"u* > 0.

Case 2:{I,,YY',zZ"} are linearly dependent

We assume tha&z ' can be written as a linear combination
of I, andYY',i.e.

22" = al, + BYY',

for somea, 8 € R. Our problem becomes

maximiseg(a, b, c) (48)
subject to(a, b, c) € S
a<l1
where
S = {(a,b,c) 3yt a= uTu,b = uTYYT,c = uTxxTu} ,

and
Ba,b,¢) = a+ 2/ + 2/ Y2 — b+ 2 det(¥)|VT —a +
+2\/1Z? - aa — Bb+ 2 det(Z)VI—a

is a concave function. Similarly as the previous case, we
have the following inclusios C 7 where

T = {(a,b,c) : EUEO :

a=tr(U), b=tr (YYTU) ,
c=tr(xx'U)}
Using7 instead ofS in (48) gives the convex problem

maximise¢(a, b, ¢)
subject toa = tr(U)

(49)

b=tr(YY'U)
c=tr(xx'U)
U=0

a<l1
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It can be shown that (49) can be rewritten as a SOCRJLet
be a solution of (49). Let

. A O i
U* = [u; uy] [01 )\2] [zﬂ

be an eigenvalue decomposition, whaie> \,. A subop-
timal solution for (35) isu* = ++/Ajuy, where the sign is
chosen such that"u* > 0.



