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Multichannel high resolution NMF for modelling
convolutive mixtures of non-stationary signals

in the time-frequency domain
Roland Badeau, Mark D. Plumbley

Abstract—Several probabilistic models involving latent com-
ponents have been proposed for modelling time-frequency (TF)
representations of audio signals such as spectrograms, notably in
the nonnegative matrix factorization (NMF) literature. Am ong
them, the recent high resolution NMF (HR-NMF) model is able
to take both phases and local correlations in each frequencyband
into account, and its potential has been illustrated in applications
such as source separation and audio inpainting. In this paper,
HR-NMF is extended to multichannel signals and to convolutive
mixtures. The new model can represent a variety of stationary
and non-stationary signals, including autoregressive moving aver-
age (ARMA) processes and mixtures of damped sinusoids. A fast
variational expectation-maximization (EM) algorithm is proposed
to estimate the enhanced model. This algorithm is applied to
a stereophonic piano signal, and proves capable of accurately
modelling reverberation and restoring missing observations.

Index Terms—Non-stationary signal modelling, Time-
frequency analysis, Nonnegative matrix factorisation,
Multichannel signal analysis, Variational EM algorithm.

I. I NTRODUCTION

NONNEGATIVE matrix factorisation was originally intro-
duced as a rank-reduction technique, which approximates

a non-negative matrixV ∈ RF×T as a productV ≈ WH

of two non-negative matricesW ∈ RF×S andH ∈ RS×T

with S < min(F, T ) [1]. In audio signal processing, it
is often used for decomposing a magnitude or power TF
representation, such as a Fourier or a constant-Q transform
(CQT) spectrogram. The columns ofW are then interpreted as
a dictionary of spectral templates, whose temporal activations
are represented in the rows ofH. Several applications to
audio have been addressed, such as multi-pitch estimation [2]–
[4], automatic music transcription [5], [6], musical instrument
recognition [7], and source separation [8]–[10].

In the literature, several probabilistic models involvingla-
tent components have been proposed to provide a probabilistic
framework to NMF. Such models include NMF with additive
Gaussian noise [11], probabilistic latent component analysis
(PLCA) [12], NMF as a sum of Poisson components [13],
and NMF as a sum of Gaussian components [14]. Although
they have already proved successful in a number of audio ap-
plications such as source separation [11]–[13] and multipitch
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estimation [14], most of these models still lack of consistency
in some respects.

Firstly, they focus on modelling a magnitude or power TF
representation, and simply ignore the phase information. In an
application of source separation, the source estimates arethen
obtained by means of Wiener-like filtering [8]–[10], which
consists in applying a mask to the magnitude TF representation
of the mixture, while keeping the phase field unchanged.
It can be easily shown that this approach cannot properly
separate sinusoidal signals lying in the same frequency band,
which means that the frequency resolution is limited by that
of the TF transform. In other respects, the separated TF
representation is generally not consistent, which means that
it does not correspond to the TF transform of a temporal
signal, resulting in artefacts such as musical noise. Therefore
enhanced algorithms are needed to reconstruct a consistent
TF representation [15]. In the same way, in an application of
model-based audio synthesis, where there is no available phase
field to assign to the sources, reconstructing consistent phases
requires employing ad-hoc methods [16], [17].

Secondly, these models generally focus on the spectral and
temporal dynamics, and assume that all time-frequency bins
are independent. This assumption is clearly not relevant inthe
case of sinusoidal or impulse signals for instance, and it isnot
consistent with the existence of spectral or temporal dynamics.
Indeed, in the case of wide sense stationary (WSS) processes,
spectral dynamics (described by the power spectral density)
is closely related to temporal correlation (described by the
autocovariance function). Reciprocally, in the case of uncor-
related processes (all samples are uncorrelated with different
variances), temporal dynamics induces spectral correlation. In
other respects, further dependencies in the TF domain may
be induced by the TF transform, due to spectral and temporal
overlap between TF bins.

In order to overcome the assumption of independent TF
bins, Markov models have been introduced for taking the local
dependencies between contiguous TF bins of a magnitude
or power TF representation into account [18]–[20]. However,
these models still ignore the phase information. Conversely,
the complex NMF model [21], [22], which was explicitly
designed to represent phases alongside magnitudes in a TF
representation, is based on a deterministic framework thatdoes
not represent statistical correlations.

In order to model both phases and correlations within fre-
quency bands in a principled way, we introduced in [23], [24]
a new model called high resolution (HR) NMF. We showed
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that this model offers an improved frequency resolution, able
to separate sinusoids within the same frequency band, and
an improved synthesis capability, able to restore missing TF
observations. It can be used with both complex-valued and
real-valued TF representations, such as the short-time Fourier
transform (STFT) and the modified discrete cosine transform
(MDCT). It also generalizes some popular models, such as the
Itakura-Saito NMF model (IS-NMF) [14], autoregressive (AR)
processes [25], and the exponential sinusoidal model (ESM),
commonly used in HR spectral analysis of time series [25].

In this paper, HR-NMF is extended to multichannel signals
and to convolutive mixtures. Contrary to the multichannel
NMF [26] where convolution was approximated, convolution
is here accurately implemented in the TF domain by fol-
lowing the exact approach proposed in [27]. Consequently,
correlationswithin and betweenfrequency bands are both
taken into account. In order to estimate this multichannel HR-
NMF model, we propose a fast variational EM algorithm. This
paper further develops a previous work presented in [28], by
providing a theoretical ground for the TF implementation of
convolution.

The paper is structured as follows. The filter bank used
to compute the TF representation is presented in Section II.
We then show in Section III how convolutions in the original
time domain can be accurately implemented in the TF domain.
The multichannel HR-NMF model is introduced in section IV,
and the variational EM algorithm is derived in section V.
An application to a stereophonic piano signal is presented in
section VI. Finally, conclusions are drawn in section VII.

II. T IME-FREQUENCY ANALYSIS

In the literature, the STFT [29] is often preferred to
other existing TF transforms, because under some smoothness
assumptions it allows the approximation of linear filtering
by multiplying each column of the STFT by the frequency
response of the filter. Instead, we propose to use the more
general and flexible framework of perfect reconstruction (PR)
filter banks [29]. Indeed, we will show in Section III that PR
actually permits us toaccuratelyimplement convolutions in
the TF domain.

We thus consider a filter bank [29], which transforms an
input signalx(n) ∈ l∞(F) in the original time domainn ∈ Z

(whereF = R or C and l∞(F) denotes the space of bounded
sequences onF) into a 2D-arrayx(f, t) ∈ l∞(F) ∀f ∈
[0 . . . F −1] in the TF domain(f, t) ∈ [0 . . . F −1]×Z. More
precisely,x(f, t) is defined asx(f, t) = (hf ∗x)(Dt), whereD
is the decimation factor,∗ denotes standard convolution, and
hf (n) is an analysis filter of support[0 . . .N − 1] with N =
LD andL ∈ N. The synthesis filters̃hf (n) of same support
[0 . . .N − 1] are designed so as to guarantee PR. This means

that the output, defined asx′(n) =
F−1∑
f=0

∑
t∈Z

h̃f (n−Dt)x(f, t),

satisfiesx′(n) = x(n −N), which corresponds to an overall
delay of N samples. LetHf (ν) =

∑
n∈Z

hf (n)e
−2iπνn

(with an upper case letter) denote the discrete time Fourier
transform (DTFT) ofhf (n) over ν ∈ R. Considering that
the time supports ofhf (Dt1 − n) and hf (Dt2 − n) do not
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Fig. 1. Time-frequency vs. time domain transformations

overlap provided that|t1 − t2| ≥ L, we similarly define a
whole numberK, such that the overlap between the frequency
supports ofHf1(ν) andHf2(ν) can be neglected provided that
|f1 − f2| ≥ K, due to high rejection in the stopband.

III. TF IMPLEMENTATION OF CONVOLUTION

In this section, we consider a stable filter of impulse
responseg(n) ∈ l1(F) (where l1(F) denotes the space of
sequences onF whose series is absolutely convergent) and
two signalsx(n) ∈ l∞(F) and y(n) ∈ l∞(F), such that
y(n) = (g ∗ x)(n). Our purpose is to directly express the TF
representationy(f, t) of y(n) as a function ofx(f, t), i.e. to
find a TF transformationTTF in Figure 1(a) such that if the
input of the filter bank isx(n), then the output isy(n−N) (y is
delayed byN samples in order to take the overall delay of the
filter bank into account). The following developments further
investigate and generalize the study presented in [27], which
focused on the particular case of critically sampled PR cosine
modulated filterbanks. The general case of stable linear filters
is first addressed in section III-A, then the particular caseof
stable recursive filters is addressed in section III-B.

A. Stable linear filters

The PR property of the filter bank implies that the relation-
ship betweeny(f, t) andx(f, t) is given by the transformation
TTF described in the larger frame in Figure 1(b), where the
input is x(f, t), the output isy(f, t), and transformationTTD

is defined as the time-domain convolution byg(n+N). The
resulting mathematical expression is given in Proposition1.

Proposition 1. Let g(n) ∈ l1(F) be the impulse response of a
stable linear filter, andx(n) ∈ l∞(F) and y(n) ∈ l∞(F) two
signals such thaty(n) = (g ∗x)(n). Let y(f, t) andx(f, t) be
the TF representations of these signals as defined in SectionII.
Then

y(f, t) =
∑

ϕ∈Z

∑

τ∈Z

cg(f, ϕ, τ) x(f − ϕ, t− τ) (1)
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Fig. 2. TF implementation of convolution

where∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z, ∀τ ∈ Z,

cg(f, ϕ, τ) = (hf ∗ h̃f−ϕ ∗ g)(D(τ + L)), (2)

with the convention∀f /∈ [0 . . . F − 1], hf = 0.

Proof: Equations (1) and (2) are obtained by succes-
sively substituting equationsy(n) = (g ∗ x)(n) and x(n) =
F−1∑
f=0

∑
t∈Z

h̃f (n-D(t-L))x(f, t) into y(f, t) = (hf ∗ y)(Dt).

Remark 1. As mentioned in section II, if|ϕ| ≥ K, then
subbandsf and f − ϕ do not overlap, thuscg(f, ϕ, τ) can
be neglected.

Equation (1) shows that a convolution in the original time
domain is equivalent to a 2D-convolution in the TF domain,
which is stationary w.r.t. time, and non-stationary w.r.t.fre-
quency, as illustrated in Figure 2.

B. Stable recursive filters

In this section, we introduce a parametric family of TF
filters based on a state space representation, and we show a
relationship between these TF filters and equation (1).

Definition 1. Stable recursive filtering in TF domain is defined
by the following state space representation:
∀f ∈ [0 . . . F − 1], t ∈ Z,

z(f, t) = x(f, t)−
Qa∑
τ=1

ag(f, τ)z(f, t− τ)

y(f, t) =
Pb∑

ϕ=−Pb

∑
τ∈Z

bg(f, ϕ, τ) z(f − ϕ, t− τ)
(3)

whereQa ∈ N, Pb ∈ N, and ∀f ∈ [0 . . . F − 1], x(f, t) ∈
l∞(F) is the sequence of input variables,z(f, t) ∈ l∞(F)
is the sequence of state variables, andy(f, t) ∈ l∞(F) is
the sequence of output variables. The autoregressive term
ag(f, τ) ∈ F is a causal sequence of support[0 . . .Qa] w.r.t.
τ (with ag(f, 0) = 1), having only simple poles lying inside
the unit circle. The moving average termbg(f, ϕ, τ) ∈ F is
a sequence of finite support w.r.t.τ , and ∀f ∈ [0 . . . F − 1],
∀ϕ ∈ [−Pb . . . Pb], bg(f, ϕ, τ) = 0 provided thatf − ϕ /∈
[0 . . . F − 1].

Proposition 2. If g(n) ∈ l1(F) is the impulse response of
a causal and stable recursive filter, then the TF input/output
system defined in Proposition 1 admits the state space rep-
resentation(3), wherePb = K − 1 and ∀f ∈ [0 . . . F − 1],
∀ϕ ∈ [−Pb, Pb], bg(f, ϕ, τ) is a sequence of support[−L +
1 . . .− L+ 1 +Qb] w.r.t. τ , whereQb ≥ 2L+Qa − 1.

Proposition 2 is proved in Appendix A.

Proposition 3. In Definition 1, equation(3) can be rewritten
in the form of equation(1), where∀f ∈ [0 . . . F − 1], ∀τ ∈ Z,
cg(f, ϕ, τ) = 0 if |ϕ| > Pb, and ∀f ∈ [0 . . . F − 1],
∀ϕ ∈ [−Pb . . . Pb], filter cg(f, ϕ, τ) is defined as the only sta-
ble (bounded-input, bounded-output) solution of the following
recursion:

∀τ ∈ Z,

Qa∑

u=0

ag(f − ϕ, u)cg(f, ϕ, τ − u) = bg(f, ϕ, τ). (4)

Proposition 3 is proved in Appendix A.

Remark2. In Definition 1,ag(f, τ) andbg(f, ϕ, τ) are over-
parametrised compared tog(n) in Proposition 1. Conse-
quently, if ag(f, τ) and bg(f, ϕ, τ) are arbitrary, then it is
possible that no filterg(n) exists such that equation (2) holds,
which means that this state space representation does no longer
correspond to a convolution in the original time domain. In
this case, we will say that the TF transformation defined in
equation (3) isinconsistent.

IV. M ULTICHANNEL HR-NMF

In this section we present the multichannel HR-NMF model,
initially introduced in [28]. Before defining HR-NMF in the
TF domain in section IV-B, we first provide an intuitive
interpretation of this model in the time domain.

A. HR-NMF in the time domain

The HR-NMF model of a multichannel signalym(n) ∈ F is
defined for all channelsm ∈ [0 . . .M−1] and timesn ∈ Z, as
the sum ofS source imagesyms(n) ∈ F plus a Gaussian noise
nm(n) ∈ F: ym(n) = nm(n)+

∑S−1
s=0 yms(n). Moreover, each

source imageyms(f, t) for any s ∈ [0 . . . S − 1] is defined as
yms(n) = (gms ∗ xs)(n), wheregms is the impulse response
of a causal and stable recursive filter, andxs(n) is a Gaussian
process1. Additionally, processesxs and nm for all s and
m are mutually independent. In order to make this model
identifiable, we will further assume that the spectrum ofxs(n)
is flat, because the variability of sources w.r.t. frequency
can be modelled within filtersgms for all m. Thus filtergms

represents both the transfer from sources to sensorm and the
spectrum of sources. In section IV-B, recursive filtersgms will
be directly implemented in the TF domain via equations (7)
and (8), following Definition 12.

B. HR-NMF in the TF domain

The multichannel HR-NMF model of TF dataym(f, t) ∈ F

is defined for all channelsm ∈ [0 . . .M − 1], discrete
frequenciesf ∈ [0 . . . F − 1], and timest ∈ [0 . . . T − 1],
as the sum ofS source imagesyms(f, t) ∈ F plus a 2D-white
noise

nm(f, t) ∼ NF(0, σ
2
y), (5)

1The probability distributions of processesnm(n) and xs(n) will be
defined in the TF domain in section IV-B.

2More precisely, compared to the result of Proposition 2, processeszs(f, t)
andxs(f, t) as defined in section IV-B are shiftedL−1 samples backward, in
order to writebms(f, ϕ, τ) in a causal form. This does not alter the definition
of HR-NMF, since equation (8) is unaltered by this time shift, andyms(f, t)
is unchanged in equation (7).
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whereNF(0, σ
2
y) denotes a real (ifF = R) or circular complex

(if F = C) normal distribution of mean0 and varianceσ2
y :

ym(f, t) = nm(f, t) +

S−1∑

s=0

yms(f, t). (6)

Each source imageyms(f, t) for s ∈ [0 . . . S−1] is defined as

yms(f, t) =

Pb∑

ϕ=−Pb

Qb∑

τ=0

bms(f, ϕ, τ) zs(f − ϕ, t− τ) (7)

wherePb, Qb ∈ N, bms(f, ϕ, τ) = 0 if f − ϕ /∈ [0 . . . F − 1],
and the latent componentszs(f, t) ∈ F are defined as follows:

• ∀t ∈ [0 . . . T − 1], xs(f, t) ∼ NF(0, σ
2
xs
(t)) and

zs(f, t) = xs(f, t)−

Qa∑

τ=1

as(f, τ)zs(f, t− τ) (8)

whereQa ∈ N andas(f, τ) defines a stable autoregres-
sive filter,

• ∀t ∈ [−Qz . . .− 1] whereQz = max(Qb, Qa),

zs(f, t) ∼ N (µs(f, t), 1/ρs(f, t)). (9)

Moreover, the random variablesnm(f1, t1) and xs(f2, t2)
for all s,m, f1, f2, t1, t2 are assumed mutually independent.
Additionally, ∀m ∈ [0 . . .M − 1], ∀f ∈ [0 . . . F − 1], ∀t ∈
[−Qz . . .− 1], ym(f, t) is unobserved, and∀s ∈ [0 . . . S − 1],
the prior meanµs(f, t) ∈ F and the prior precision (inverse
variance) ρs(f, t) > 0 of the latent variablezs(f, t) are
considered to be fixed parameters.

The setθ of parameters to be estimated consists of:
• the autoregressive parametersas(f, τ) ∈ F for s ∈

[0 . . . S− 1], f ∈ [0 . . . F − 1], τ ∈ [1 . . .Qa] (we further
defineas(f, 0) = 1),

• the moving average parametersbms(f, ϕ, τ) ∈ F for
m ∈ [0 . . .M − 1], s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1],
ϕ ∈ [−Pb . . . Pb], andτ ∈ [0 . . .Qb],

• the variance parametersσ2
y > 0 and σ2

xs
(t) > 0 for

s ∈ [0 . . . S − 1] and t ∈ [0 . . . T − 1].
We thus haveθ = {σ2

y, σ
2
xs
, as, bms}s∈[0...S−1],m∈[0...M−1].

This model encompasses the following special cases:
• If M = 1, σ2

y = 0 andPb = Qb = Qa = 0, then equa-
tion (6) reduces toy0(f, t) =

∑S−1
s=0 b0s(f, 0, 0)xs(f, t),

thus y0(f, t) ∼ NF(0, V̂ft), where matrix V̂ of co-
efficients V̂ft is defined by the NMFV̂ = W H

with Wfs = |b0s(f, 0, 0)|2 and Hst = σ2
xs
(t). The

maximum likelihood estimation ofW and H is then
equivalent to the minimization of the Itakura-Saito (IS)
divergence between matrix̂V and spectrogramV (where
Vft = |y0(f, t)|2), hence this model is referred to asIS-
NMF [14].

• If M = 1 andPb = Qb = 0, then y0(f, t) follows the
monochannelHR-NMF model [23], [24], [30] involving
varianceσ2

y , autoregressive parametersas(f, τ) for all
s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1] and τ ∈ [1 . . . Qa],
and the NMFV̂ = W H .

• If S = 1, σ2
y = 0, Pb = 0, σ2

x0
(t) = 1 ∀t ∈ [0 . . . T − 1],

andµs(f, t) = 0 and ρs(f, t) = 1 ∀t ∈ [−Qz . . . − 1],

then∀m ∈ [0 . . .M − 1], ∀f ∈ [0 . . . F − 1], ym(f, t) is
an autoregressive moving average(ARMA) process [25,
Section 3.6].

• If S = 1, σ2
y = 0, Pb = 0, Qa > 0, Qb = Qa − 1, ∀t ∈

[−Qz . . . − 1], µ0(f, t) = 0, ρ0(f, t) ≫ 1, andσ2
0(t) =1{t=0} (where1S denotes the indicator function of a set

S), then∀m ∈ [0 . . .M −1], ∀f ∈ [0 . . . F −1], ym(f, t)
can be written in the formym(f, t) =

∑Qa

τ=1 αmτ zτ (f)
t,

wherez1(f) . . . zQa
(f) are the roots of the polynomial

zQa +
∑Qa

τ=1 a0(f, τ)z
Qa−τ . This corresponds to the

Exponential Sinusoidal Model (ESM)commonly used
in HR spectral analysis of time series [25].

Because it generalizes both IS-NMF and ESM models to
multichannel data, the model defined in equation (6) is called
multichannel HR-NMF.

V. VARIATIONAL EM ALGORITHM

In early works that focused on monochannel HR-NMF [23],
[24], in order to estimate the model parameters we proposed to
resort to an expectation-maximization (EM) algorithm based
on a Kalman filter/smoother. The approach proved to be
appropriate for modelling audio signals in applications such as
source separation and audio inpainting. However, its computa-
tional cost was high, dominated by the Kalman filter/smoother,
and prohibitive when dealing with high-dimensional signals.

In order to make the estimation of HR-NMF faster, we then
proposed two different strategies. The first approach aimedto
improve the convergence rate, by replacing the M-step of the
EM algorithm by multiplicative update rules [31]. However
we observed that the resulting algorithm presented some nu-
merical stability issues. The second approach aimed to reduce
the computational cost, by using a variational EM algorithm,
where we introduced two different variational approxima-
tions [30]. We observed that the mean field approximation
led to both improved performance and maximal decrease of
computational complexity.

In this section, we thus generalize the variational EM algo-
rithm based on mean field approximation to the multichannel
HR-NMF model introduced in section IV-B, as proposed
in [28]. Compared to [30], novelties also include a reduced
computational complexity and a parallel implementation.

A. Review of variational EM algorithm

Variational inference [32] is now a classical approach for
estimating a probabilistic model involving both observed vari-
ables y and latent variablesz, determined by a setθ of
parameters. LetF be a set of probability density functions
(PDFs) over the latent variablesz. For any PDFq ∈ F and
any functionf(z), we note〈f〉q =

∫
f(z)q(z)dz. Then for

any set of parametersθ, thevariational free energyis defined
as

L(q; θ) =

〈
ln

(
p(y, z; θ)

q(z)

)〉

q

. (10)

The variational EM algorithm is a recursive algorithm for
estimatingθ. It consists of the two following steps at each
iteration i:
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• Expectation (E)-step (updateq):

q⋆ = argmax
q∈F

L(q; θi−1) (11)

• Maximization (E)-step (updateθ):

θi = argmax
θ

L(q⋆; θ). (12)

In the case of multichannel HR-NMF,θ has been specified in
section IV-B. We further defineδm(f, t) = 1 if ym(f, t) is
observed, otherwiseδm(f, t) = 0, in particularδm(f, t) = 0
∀(f, t) /∈ [0 . . . F − 1] × [0 . . . T − 1]. The complete set of
variables consists of:

• the set y of observed variables ym(f, t) for m ∈
[0 . . .M − 1] and for allf andt such thatδm(f, t) = 1,

• the setz of latent variables zs(f, t) for s ∈ [0 . . . S−1],
f ∈ [0 . . . F − 1], andt ∈ [−Qz . . . T − 1].

We use amean field approximation[32]: F is defined as the
set of PDFs which can be factorized in the form

q(z) =

S−1∏

s=0

F−1∏

f=0

T−1∏

t=−Qz

qsft(zs(f, t)). (13)

With this particular factorization ofq(z), the solution of (11)
is such that each PDFqsft is Gaussian: zs(f, t) ∼
NF(zs(f, t), γzs(f, t)).

B. Variational free energy

Let α = 1 if F = C, andα = 2 if F = R. Let Dy =
M−1∑
m=0

F−1∑
f=0

T−1∑
t=0

δm(f, t) be the number of observations, and

I(f, t) = 1{0≤f<F, 0≤t<T},

eym
(f, t) = δm(f, t)

(
ym(f, t)−

S−1∑
s=0

yms(f, t)

)
,

xs(f, t) = I(f, t)
( Qa∑

τ=0
as(f, τ)zs(f, t− τ)

)
.

Then using equations (5) to (9), the joint log-probability dis-
tribution L = log(p(y, z; θ)) of the complete set of variables
satisfies

−αL = −α (ln(p(y|z; θ)) + ln(p(z; θ)))
= (Dy + SF (T +Qz)) ln(απ)

+Dy ln(σ
2
y) +

1
σ2
y

M−1∑
m=0

F−1∑
f=0

T−1∑
t=0

|eym
(f, t)|2

+
S−1∑
s=0

F−1∑
f=0

−1∑
t=−Qz

ln( 1
ρs(f,t)

)

+
S−1∑
s=0

F−1∑
f=0

−1∑
t=−Qz

ρs(f, t)|zs(f, t)-µs(f, t)|2

+
S−1∑
s=0

F−1∑
f=0

T−1∑
t=0

ln(σ2
xs
(t)) + 1

σ2
xs

(t) |xs(f, t)|
2
.

Thus the variational free energy defined in (10) satisfies

−αL = Dy ln(απ)− SF (T +Qz)

+Dy ln(σ
2
y) +

M−1∑
m=0

F−1∑
f=0

T−1∑
t=0

γeym
(f,t)+|eym (f,t)|2

σ2
y

+
S−1∑
s=0

F−1∑
f=0

−1∑
t=−Qz

− ln(ρs(f, t)γzs(f, t))

+ρs(f, t)
(
γzs(f, t) + |zs(f, t)− µs(f, t)|2

)

+
S−1∑
s=0

F−1∑
f=0

T−1∑
t=0

ln
(

σ2
xs

(t)

γzs(f,t)

)
+

γxs (f,t)+|xs(f,t)|
2

σ2
xs

(t)

(14)
where∀f ∈ [0 . . . F − 1], ∀t ∈ [0 . . . T − 1],

γeym (f, t) = δm(f, t)
S−1∑
s=0

γyms
(f, t),

γyms
(f, t) =

Pb∑
ϕ=−Pb

Qb∑
τ=0

|bms(f, ϕ, τ)|2γzs(f − ϕ, t− τ),

eym
(f, t) = δm(f, t)

(
ym(f, t)−

S−1∑
s=0

yms(f, t)

)
,

yms(f, t) =
Pb∑

ϕ=−Pb

Qb∑
τ=0

bms(f, ϕ, τ) zs(f − ϕ, t− τ),

γxs
(f, t) = I(f, t)

( Qa∑
τ=0

|as(f, τ)|2γzs(f, t− τ)
)
,

xs(f, t) = I(f, t)
( Qa∑

τ=0
as(f, τ)zs(f, t− τ)

)
.

C. Variational EM algorithm for multichannel HR-NMF

According to the mean field approximation, the maximiza-
tions in equations (11) and (12) are performed for each
scalar parameter in turn [32]. The dominant complexity of
each iteration of the resulting variational EM algorithm is
4MFST∆f∆t, where∆f = 1 + 2Pb and ∆t = 1 + Qz.
However we highlight a possible parallel implementation, by
making a difference betweenparfor loops which can be
implemented in parallel, andfor loops which have to be
implemented sequentially.

1) E-step: For all s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1],
t /∈ [−Qz,−1], let ρs(f, t) = 0. Considering the mean
field approximation (13), the E-step defined in equation (11)
leads to the updates described in Table I (where∗ denotes
complex conjugation). Note thatzs(f, t) has to be updated
after γzs(f, t).

2) M-step: The M-step defined in (12) leads to the updates
described in Table II. The updates of the four parameters can
be processed in parallel.

VI. SIMULATION RESULTS

In this section, we present a basic proof of concept of the
multichannel HR-NMF model introduced in section IV-B. The
following experiments deal with a single source (S = 1)
formed of a real piano sound sampled at11025 Hz. A 1.25ms-
short stereophonic signal (M = 2) has been synthesized by
filtering the monophonic recording of a C3 piano note with
two room impulse responses simulated using the Matlab code
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parfor s ∈ [0 . . . S-1], f ∈ [0 . . . F -1], t ∈ [-Qz . . . T -1] do

γzs(f, t)
−1 = ρs(f, t) +

Qa
∑

τ=0

I(f,t+τ)|as(f,τ)|
2

σ2
xs

(t+τ)

+
M−1
∑

m=0

Pb
∑

ϕ=−Pb

Qb
∑

τ=0

δm(f+ϕ,t+τ)|bms(f+ϕ,ϕ,τ)|2

σ2
y

end parfor
for s ∈ [0 . . . S-1], f0 ∈ [0 . . .∆f -1], t0 ∈ [-Qz . . .-Qz+∆t-1] do

parfor f−f0
∆f

∈ [0 . . . ⌊F−1−f0
∆f

⌋], t−t0
∆t

∈ [0 . . . ⌊T−1−t0
∆t

⌋] do

zs(f, t) = zs(f, t)− γzs(f, t)
(

ρs(f, t)(zs(f, t) − µs(f, t))

+
Qa
∑

τ=0

as(f,τ)
∗ xs(f,t+τ)

σ2
xs

(t+τ)

−
M−1
∑

m=0

Pb
∑

ϕ=−Pb

Qb
∑

τ=0

bms(f+ϕ,ϕ,τ)∗ eym (f+ϕ,t+τ)

σ2
y

)

end parfor
end for

TABLE I
E-STEP OF THE VARIATIONALEM ALGORITHM

σ2
y = 1

Dy

M−1
∑

m=0

F−1
∑

f=0

T−1
∑

t=0
γeym (f, t) + |eym(f, t)|2

parfor s ∈ [0 . . . S − 1], t ∈ [0 . . . T − 1] do

σ2
xs

(t) = 1
F

F−1
∑

f=0

γxs(f, t) + |xs(f, t)|
2

end parfor
for τ ∈ [1 . . . Qa] do

parfor s ∈ [0 . . . S − 1], f ∈ [0 . . . F − 1] do

as(f, τ) =

T−1∑

t=0

1
σ2
xs

(t)
(zs(f,t−τ)∗(as(f,τ)zs(f,t−τ)−xs(f,t)))

T−1∑

t=0

1
σ2
xs

(t)
(γzs (f,t−τ)+|zs(f,t−τ)|2)

end parfor
end for
for s ∈ [0 . . . S − 1], ϕ ∈ [−Pb . . . Pb], τ ∈ [0 . . . Qb] do

parfor m ∈ [0 . . .M -1], f ∈ [max(0, ϕ) . . . F -1+min(0, ϕ)] do

bms(f, ϕ, τ)=

T -1∑

t=0
zs(f-ϕ,t-τ)∗(δm(f,t)bms(f,ϕ,τ)zs(f-ϕ,t-τ)+eym (f,t))

T -1∑

t=0
δm(f,t)(γzs (f-ϕ,t-τ)+|zs(f-ϕ,t-τ)|2)

end parfor
end for

TABLE II
M-STEP OF THE VARIATIONALEM ALGORITHM

presented in [33]3. The TF representationym(f, t) of this
signal has then been computed by applying a critically sampled
PR cosine modulated filter bank (F = R) with F = 201
frequency bands, involving filters of length8F = 1608
samples. The resulting TF representation, of dimensionF ×T
with T = 77, is displayed in Figure 3. In particular, it can be
noticed that the two channels are not synchronous (the starting
time in the left channel is≈ 0.04s, whereas it is≈ 0.02s in
the right channel), which suggests that the orderQb of filters
bms(f, ϕ, τ) should be chosen greater than zero.

In the following experiments, we have setµs(f, t) = 0 and
ρs(f, t) = 105. These values forcezs(f, t) to be close to

3Those impulse responses were simulated using 15625 virtualsources. The
dimensions of the room were [20m, 19m, 21m], the coordinatesof the two
microphones were [19m, 18m 1.6m] and [15m, 11m, 10m], and those of the
source were [5m, 2m, 1m]. The reflection coefficient of the walls was 0.3.
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Fig. 3. Input stereo signalym(f, t).

zero ∀t ∈ [−Qz . . . − 1] (since the prior mean and variance
of zs(f, t) are µs(f, t) = 0 and 1/ρs(f, t) = 10−5), which
is relevant if the observed sound is preceded by silence.
The variational EM algorithm is initialized with the neutral
values zs(f, t) = 0, γzs(f, t) = σ2

y = σ2
xs
(t) = 1,

as(f, τ) = 1{τ=0}, and bms(f, ϕ, τ) = 1{ϕ=0,τ=0}. In
order to illustrate the capability of the multichannel HR-
NMF model to synthesize realistic audio data, we address the
case of missing observations. We suppose that all TF points
within the frame in Figure 3 are unobserved:δm(f, t) = 0
∀t ∈ [26 . . . 50] (which corresponds to the time range 0.47s-
0.91s), andδm(f, t) = 1 for all othert in [0 . . . T −1]. In each
experiment, 100 iterations of the algorithm are performed,and
the restored signal is returned asyms(f, t).

In the first experiment, a multichannel HR-NMF withQa =
Qb = Pb = 0 is estimated. Similarly to the example provided
in section IV-B, this is equivalent to modelling the two
channels by two rank-1 IS-NMF models [14] having distinct
spectral atomsW and sharing the same temporal activation
H, or by a rank 1 multichannel NMF [26]. The resulting TF
representationyms(f, t) is displayed in Figure 4. It can be
noticed that whereverym(f, t) is observed (δm(f, t) = 1),
yms(f, t) does not accurately fitym(f, t) (this is particularly
visible in high frequencies), because the lengthQb of filters
bms(f, ϕ, τ) has been underestimated: the source to distortion
ratio (SDR) in the observed area is11.7dB. In other respects,
the missing observations (δm(f, t) = 0) could not be restored
(yms(f, t) is zero inside the frame, resulting in an SDR of 0dB
in this area), because the correlations between contiguousTF
coefficients inym(f, t) have not been taken into account.

In the second experiment, a multichannel HR-NMF model
with Qa = 2, Qb = 3, andPb = 1 is estimated. The resulting
TF representationyms(f, t) is displayed in Figure 5. It can be
noticed that whereverym(f, t) is observed,yms(f, t) better
fits ym(f, t): the SDR is 36.8dB in the observed area. Besides,
the missing observations have been better estimated: the SDR
is 4.8dB inside the frame. Actually, choosingPb > 0 was
necessary to obtain this result, which means that the spectral
overlap between frequency bands cannot be neglected.
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Fig. 4. Stereo signalyms(f, t) estimated with filters of length 1.
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Fig. 5. Stereo signalyms(f, t) estimated with longer filters.

VII. C ONCLUSIONS

In this paper, we have shown that convolution can be
accurately implemented in the TF domain, by applying 2D-
filters to a TF representation obtained as the output of a PR
filter bank. In the particular case of recursive filters, we have
also shown that filtering can be implemented by means of a
state space representation in the TF domain. These results have
then been used to extend the monochannel HR-NMF model
initially proposed in [23], [24] to multichannel signals and
convolutive mixtures. The resulting multichannel HR-NMF
model can accurately represent the transfer from each source
to each sensor, as well as the spectrum of each source. It also
takes the correlations over frequencies into account. In order
to estimate this model from real audio data, a variational EM
algorithm has been proposed, which has a reduced compu-
tational complexity and a parallel implementation compared
to [30]. This algorithm has been successfully applied to a
stereophonic piano signal, and has been capable of modelling
reverberation due to room impulse response, and restoring
missing observations.

Because audio signals are sparse in the time-frequency

domain, we observed that the multichannel HR-NMF model
involves a small number of non-zero parameters in practice.
In future work, we will investigate enforcing this property,
for instance by introducing an a priori distribution of the
parameters inducing sparsity [34]. In order to deal with more
realistic music signals, the estimation of HR-NMF should be
performed in a more informed way, for instance by means
of semi-supervised learning, or by using any kind of prior
information about the sources. For instance, harmonicity and
temporal or spectral smoothness could be enforced by intro-
ducing some prior distributions of the parameters, or by re-
parametrising the model. The model could also be extended
in several ways, for instance by taking the correlations over
latent components into account, or by using other types of TF
transforms,e.g.wavelet transforms. Other Bayesian estimation
techniques such as Markov chain Monte Carlo (MCMC)
methods and message passing algorithms [32] might prove
more effective than the variational EM algorithm. Lastly, the
proposed approach could be used in a variety of applications,
such as source separation, source coding, audio inpainting, and
automatic music transcription.
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APPENDIX A
TF IMPLEMENTATION OF STABLE RECURSIVE FILTERING

Proof of Proposition 2:We consider the TF implementa-
tion of convolution given in Proposition 1, and we defineg(n)
as the impulse response of a causal and stable recursive filter,
having only simple poles. Then the partial fraction expansion
of its transfer function [35] shows that it can be written in the
form g(n) = g0(n) +

∑Q
k=1 gk(n), whereQ ∈ N, g0(n) is a

causal sequence of support[0 . . .N0 − 1] (with N0 ∈ N), and
∀k ∈ [1 . . .Q],

gk(n) = Ake
δkn cos(2πνkn+ ψk)1n≥0

whereAk > 0, δk < 0, νk ∈ [0, 12 ], ψk ∈ R.
Then∀f ∈ [0 . . . F − 1], equation (2) yieldscg(f, ϕ, τ) =∑Q
k=0 cgk(f, ϕ, τ) with

cg0(f, ϕ, τ) = (hf ∗ h̃f−ϕ ∗ g0)(D(τ + L))

and∀k ∈ [1 . . .Q],

cgk(f, ϕ, τ) = eδkDτ (Ak(f, ϕ, τ) cos(2πνkDτ)
+Bk(f, ϕ, τ) sin(2πνkDτ))

where we have defined

Ak(f, ϕ, τ) = Ak

N−1∑
n=−N+1

(hf ∗ h̃f−ϕ)(n+N)

×e−δkn cos(2πνkn− ψk)1n≤Dτ ,

Bk(f, ϕ, τ) = Ak

∑N−1
n=−N+1(hf ∗ h̃f−ϕ)(n+N)

×e−δkn sin(2πνkn− ψk)1n≤Dτ .

It can be easily proved that∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z,
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• the support ofcg0(f, ϕ, τ) is [−L+ 1 . . . L+ ⌈N0−2
D

⌉],

• if τ ≤ −L, thencg0(f, ϕ, τ), Ak(f, ϕ, τ) andBk(f, ϕ, τ)
are zero, thuscg(f, ϕ, τ) = 0,

• if τ ≥ L, thenAk(f, ϕ, τ) andBk(f, ϕ, τ) don’t depend
on τ .

Therefore∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z, cg(f, ϕ, τ − L + 1)
is the impulse response of a causal and stable recursive filter,
whose transfer function has a denominator of order2Q and a
numerator of order2L+ 2Q− 1 + ⌈N0−2

D
⌉].

As a particular case, suppose that∀k ∈ [1 . . .Q], |δk| ≪ 1.
If τ ≥ L, thenAk(f, ϕ, τ) andBk(f, ϕ, τ) can be neglected
as soon asνk does not lie in the supports of bothHf (ν) and
Hf−ϕ(ν). Thus for eachf andϕ, there is a limited number
Q(f, ϕ) ≤ Q (possibly0) of cgk(f, ϕ, τ) which contribute to
cg(f, ϕ, τ). In the general case, we can still consider without
loss of generality that∀f ∈ [0 . . . F − 1], ∀ϕ ∈ Z, there is a
limited numberQ(f, ϕ) ≤ Q of cgk(f, ϕ, τ) which contribute
to cg(f, ϕ, τ). We then defineQa = 2max

f,ϕ
Q(f, ϕ) and

Qb = 2L + Qa − 1 + ⌈N0−2
D

⌉. Then ∀f ∈ [0 . . . F − 1],
∀ϕ ∈ Z, cg(f, ϕ, τ − L + 1) is the impulse response of
a causal and stable recursive filter, whose transfer function
has a denominator of orderQa and a numerator of order
Qb. Considering Remark 1, we conclude that the input/output
system described in equation (1) is equivalent to the state space
representation (3), wherePb = K − 1.

Proof of Proposition 3: We consider the state space
representation in Definition 1, and we first assume that∀f ∈
[0 . . . F − 1], sequencesx(f, t), y(f, t), andz(f, t) belong to
l1(Z). Then the following DTFTs are well-defined:

Y (f, ν) =
∑

t∈Z
y(f, t)e−2iπνt,

X(f, ν) =
∑

t∈Z
x(f, t)e−2iπνt,

Bg(f, ϕ, ν) =
∑

τ∈Z
bg(f, ϕ, τ)e

−2iπντ ,

Ag(f, ν) =
∑Qa

τ=0 ag(f, τ)e
−2iπντ .

Then applying the DTFT to equation (3) yieldsZ(f, ν) =

1
Ag(f,ν)

X(f, ν) andY (f, ν) =
Pb∑

ϕ=−Pb

Bg(f, ϕ, ν)Z(f −ϕ, ν).

Therefore

Y (f, ν) =

Pb∑

ϕ=−Pb

Cg(f, ϕ, ν)X(f − ϕ, ν), (15)

where

Cg(f, ϕ, ν) =
Bg(f, ϕ, ν)

Ag(f − ϕ, ν)
(16)

is the frequency response of a recursive filter. Since this
frequency response is twice continuously differentiable,then
this filter is stable, which means that its impulse response
cg(f, ϕ, τ) =

∫ 1

0
Cg(f, ϕ, ν)e

+2iπντdν belongs to l1(F).
Equations (1) and (4) are then obtained by applying an inverse
DTFT to (15) and (16). Finally, even ifx(f, t), y(f, t), and
z(f, t) belong tol∞(Z) but not tol1(Z), equations (1) and (3)
are still well-defined, and the same filtercg(f, ϕ, τ) ∈ l1(F)
is still the only stable solution of equation (4).
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