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brane actions in 9d and 10d, depending on which auxiliary fields are integrated

out. For N = 1 there is a map to a Green-Schwarz string wrapping a nontrivial

circle in C
4/Zk.

∗E-mail address: nastase@ift.unesp.br
†E-mail address: costis.papageorgakis@kcl.ac.uk

http://arxiv.org/abs/1010.3808v2


1 Introduction

The Aharony-Bergman-Jafferis-Maldacena (ABJM) model [1] has received a lot of atten-

tion lately, as it captures the dynamics of multiple M2-branes in a particular M-theory

background. Whereas the Bergshoeff-Sezgin-Townsend (BST) action [2] for a single mem-

brane has no gauge fields, is generically nonconformal and contains the membrane tension

parameter T2, the ABJM theory is a U(N)×U(N), conformal, Chern-Simons-matter gauge

theory at level k with N = 6 supersymmetry, corresponding to the IR limit of N M2-branes

on a C
4/Zk singularity. The interest in the ABJM model arises both from being the first

example of a multiple membrane theory, as well as from the fact that it provides a new

direction for AdS4/CFT3, being dual to string theory in the AdS4 × |||CP3 background at

large k.1

It is well known that, after double dimensional reduction, the BST action yields the

Green-Schwarz (GS) description of a fundamental string (F1) [3]. One could also consider

reducing on two, instead of one, circles: The M2 can first be compactified on a worldvol-

ume direction down to an F1-string in 10d and then on a transverse direction to a type

IIA F1 in 9d. But if instead one first reduces on a transverse and then on a parallel di-

rection, the result is a type IIA D1 in 9d. The two procedures are related by an S-duality

transformation, after also having implemented a T-duality to IIB configurations in 10d.

In the same spirit it is natural to expect that the dimensionally-reduced ABJM model

should also be related to a multiple fundamental string action. An immediate problem

with that assumption is that there exists no such known example. Moreover one would

not expect it to contain gauge fields, obtained from the ABJM Chern-Simons gauge fields,

which would be more in line with having a theory of D1-branes. Finally, there is also

an additional effective compactification occurring for large k in the spirit of [4, 5], which

however seems to commute with the näıve dimensional reduction and hence contradicts

the intuition of the two-circle compactification described above.

In this note we will analyse the dimensional reduction of the ABJM model in more detail

and argue that the resulting theory can be interpreted as a ‘master action’ that encodes

information for both T- and S-duality: Depending on the variables used and the energy

regime one is interested in, we obtain either multiple F- or D-strings in 9d or 10d. There

exists some related work [6, 7], particularly pertaining to the dimensional reduction of the

Bagger-Lambert-Gustavsson (BLG) model [8, 9], although in our opinion the interpretation

of the final action has not been explored in the same fashion.

The rest of this paper is organised as follows. We perform the dimensional reduction,

showing in Section 2.1 that in the presence of a large VEV the Higgsed theory reduces to

1The near-horizon geometry for M2-branes on C
4/Zk is AdS4 × S7/Zk. The orbifold action is such that

S1/Zk →֒ S7/Zk
π
→ |||CP3, so the geometry reduces to AdS4 ×

|||CP3 in the large-k limit.

1



either the D1-brane action in 9d or the D1-brane action in 10d, with the two related by

T-duality. We also calculate the action for N = 1 in terms of a particular set of variables.

In Section 3 we proceed to exhibit a transformation that turns the N = 1 ABJM model

into the usual BST action. The same transformation turns our reduced action for N = 1

into a GS-string action. We finally interpret the results, showing in particular that the

latter correctly corresponds to a string in a C
4/Zk background for general parameters.

2 Dimensional reduction

The ABJM action [1], corresponding to the IR limit of N M2-branes at an R
2,1 × C

4/Zk

singularity, is given by

SABJM =

∫

d3x
[ k

4π
ǫµνλTr

(

A(1)
µ ∂νA

(1)
λ +

2i

3
A(1)

µ A(1)
ν A

(1)
λ −A(2)

µ ∂νA
(2)
λ − 2i

3
A(2)

µ A(2)
ν A

(2)
λ

)

−Tr
(

DµC
†
ID

µCI
)

− iTr
(

ψI†γµDµψI

)

+
4π2

3k2
Tr

(

CIC†
IC

JC†
JC

KC†
K + C†

IC
IC†

JC
JC†

KC
K

+4CIC†
JC

KC†
IC

JC†
K − 6CIC†

JC
JC†

IC
KC†

K

)

+
2πi

k
Tr

(

C†
IC

IψJ†ψJ − ψ†JCIC†
IψJ − 2C†

IC
Jψ†IψJ + 2ψ†JCIC†

JψI

+ǫIJKLψIC
†
JψKC

†
L − ǫIJKLψ

†ICJψ†KCL
)]

, (2.1)

where the Lorentz index µ = 0, 1, 2 and the R-symmetry index I = 1, ..., 4 in SU(4).

There also exists a maximally supersymmetric massive deformation [10, 11] where one

splits the scalars as CI = (Rα, Qα), with α = 1, 2. Then the mass deformation changes the

potential to

V = |Mα|2 + |Nα|2 , (2.2)

where

Mα = µQα +
2π

k
(2Q[αQ†

βQ
β] +RβR†

βQ
α −QαR†

βR
β + 2QβR†

βR
α)

Nα = −µRα +
2π

k
(2R[αR†

βR
β] +QβQ†

βR
α −RαQ†

βQ
β + 2RβQ†

βQ
α) . (2.3)

In addition, the potential involves a mass term µ for the fermions.

In order to dimensionally reduce the above on a circle of radius R, we choose the

standard ansatz by dropping the dependence of all fields on the circle direction y, where

we split xµ = xi, y, with i = 0, 1.2 We further need to rescale the fields by powers of the

2Since we are compactifying on a circle by keeping all the fields and just dropping the circle depen-

dence, we have automatically obtained a consistent truncation: The spherical harmonics are trivial (Fourier

modes), so there are no terms linear in the massive (dropped) fields in the action (a massive Fourier mode

e2πiny/R needs at least another massive mode e−2πin/R to give a nonzero result after integration).
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radius R to obtain the canonical dimension in 2d. This leads to the following ansatz

CI =
1√
R
C̃I(~x); ψ =

1√
R
ψ̃(~x); A

(1,2)
i = A

(1,2)
i (~x); A(1,2)

y =
1

R
φ1,2(~x) . (2.4)

The covariant derivatives are

DiC
I = ∂iC

I − iA
(1)
i CI + iCIA

(2)
i

DyC
I = i

1

R
(CIφ2 − φ1C

I) (2.5)

and similarly for the fermions. From the ‘pure’ (undeformed) ABJM action (2.1) we then

get the dimensionally reduced action

S2d =

∫

d2x
[ k

4π
ǫijTr

(

φ1F
(1)
ij − φ2F

(2)
ij

)

− Tr
(

DiC̃
†
ID

iC̃I
)

− iTr
(

ψ̃I†γiDiψ̃I

)

+
4π2

3k2R2
Tr

(

C̃IC̃†
I C̃

JC̃†
J C̃

KC̃†
K + C̃†

I C̃
IC̃†

J C̃
JC̃†

KC̃
K

+4C̃IC̃†
J C̃

KC̃†
I C̃

JC̃†
K − 6C̃IC̃†

J C̃
JC̃†

I C̃
KC̃†

K

)

+
2πi

kR
Tr

(

C̃†
I C̃

I ψ̃J†ψ̃J − ψ̃†J C̃IC̃†
I ψ̃J − 2C̃†

I C̃
J ψ̃†I ψ̃J + 2ψ̃†J C̃IC̃†

J ψ̃I

+ǫIJKLψ̃IC̃
†
J ψ̃KC̃

†
L − ǫIJKLψ̃

†I C̃J ψ̃†KC̃L
)

+R−2Tr
(

(C̃Iφ2 − φ1C̃
I)(C̃†

Iφ1 − φ2C̃
†
I )
)

+R−1Tr
(

ψ̃I†γ3(ψ̃Iφ2 − φ1ψ̃I)
)]

, (2.6)

where

F
(1,2)
ij = ∂iA

(1,2)
j − ∂jA

(1,2)
i + iA

(1,2)
i A

(1,2)
j − iA

(1,2)
j A

(1,2)
i . (2.7)

The fields φ1,2 are auxiliary (nonpropagating) and as a result could be eliminated from the

action.

In order to get a feeling for the general case, we first set φ2 = 0. This is not a solution,

i.e. a consistent truncation, so the following is just for purposes of illustration. The bosonic

φ1 action reduces to

∫

d2x
[

√
2

2gR
Tr (ǫijφ1F

(1)
ij )−R−2Tr ((φ1)

2C̃IC̃†
I )
]

, (2.8)

where we have defined

g =
2π

√
2

kR
. (2.9)

Solving for φ1

φ1 =
R
√
2

4g
ǫijF

(1)
ij (C̃IC̃†

I )
−1 (2.10)

and replacing in (2.8), while using that in 2d (ǫijFij)
2 = −2FijF

ij, we obtain the kinetic

term

− 1

4g2

∫

d2xTr
[

F
(1)
ij F (1)ij(C̃IC̃†

I )
−1

]

. (2.11)
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This is the standard kinetic term for the gauge field A
(1)
i , with a nonpolynomial scalar field

dressing-factor.

However, when we include φ2, we get the equations

R
√
2ǫijF

(1)
ij

2g
= 2φ1(C̃

IC̃†
I )− 2CIφ2C̃

†
I −Rψ̃Iα(ψ̃

I†γ3)
α

−
R
√
2ǫijF

(2)
ij

2g
= 2φ2(C̃

†
I C̃

I)− 2C†
Iφ1C̃

I −R(ψ̃I†γ3)
αψ̃Iα , (2.12)

where we have explicitly written out the spinor indices α = 1, 2. From the above one can

derive an equation for φ1

φ1(C̃
IC̃†

I )− C̃KC̃†
Jφ1C̃

J(C̃†
I C̃

I)−1C̃†
K =

R
√
2

4g
ǫij

[

F
(1)
ij − C̃KF

(2)
ij (C̃†

I C̃
I)−1C̃†

K

]

−R
2
C̃K(ψ̃J†γ3)

αψ̃Jα(C̃
†
I C̃

I)−1C̃†
K

+
R

2
ψ̃Iα(ψ̃

I†γ3)
α (2.13)

that we cannot solve further. In principle, the solutions for φ1, φ2 should be then substi-

tuted back into the action

S2d =

∫

d2x
[

√
2

2gR
Tr

(

φ1ǫ
ijF

(1)
ij − φ2ǫ

ijF
(2)
ij

)

−R−2Tr
(

(φ1)
2C̃IC̃†

I + (φ2)
2C̃†

I C̃
I − 2φ1C̃

Iφ2C̃
†
I

)

+R−1Tr
(

φ2ψ̃
I†γ3ψ̃I + φ1ψ̃Iα(ψ̃

I†γ3)
α
)]

(2.14)

and added to the φi-independent part.

Note that the fields are massless, but the action is nonconformal since g has dimensions

of mass, as expected for the Yang-Mills coupling in 2d. It is also important to mention

that the gauge fields that have been obtained are still nonpropagating, as the YM kinetic

term in 2d has d − 2 = 0 degrees of freedom, and thus there is no contradiction with the

counting of degrees of freedom before and after the reduction (the scalars remain scalars

and the fermions do not lose degrees of freedom when going from 3d to 2d).

Dimensionally reducing the mass-deformed ABJM theory is trivial: The mass deforma-

tion only affects the scalar potential and gives mass to the fermions, so these terms remain

unaffected by going down to 2d. Similarly, the gauge field kinetic terms are the same

as those for the undeformed ABJM theory, except for the fact that the supersymmetric

vacuum is now the fuzzy sphere as in [11–14].

2.1 Higgsing the reduced theory

We next investigate the vacuum structure of the 2d theory. The VEV 〈C̃I〉 = ṽδI1 1lN×N ,

with the rest of the fields set to zero, is a solution of the equations of motion. Expanding
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the theory (2.6) around this vacuum, and fixing for the moment the scalars to their VEV

values, we obtain

S =

∫

d2x
[

− iTr (ψ̃I†γiDiψ̃I)− ṽ2Tr (A
(1)
i −A

(2)
i )2

]

+ Sφ , (2.15)

where

Sφ =

∫

d2x
[

√
2

2gR
Tr (φ1ǫ

ijF
(1)
ij − φ2ǫ

ijF
(2)
ij ) +R−1Tr (φ2ψ̃

I†γ3ψ̃I + φ1ψ̃Iα(ψ̃
I†γ3)

α)

− ṽ2R−2Tr (φ1 − φ2)
2
]

. (2.16)

Varying with respect to φ1, φ2 we then get the following constraints:

φ1 − φ2 =
R
√
2

4ṽ2g
ǫijF

(1)
ij +

R

2ṽ2
ψ̃Iα(ψ̃

I†γ3)
α

ǫijF
(2)
ij = ǫijF

(1)
ij +

√
2g(ψ̃Iα(ψ̃

I†γ3)
α + ψ̃I†γ3ψI) . (2.17)

This implies that F
(2)
ij is determined in terms of F

(1)
ij , as is φ1 − φ2, although φ1 + φ2 is

still free. Nevertheless, substituting back in the auxiliary field action we get that φ1 + φ2
also disappears from the action to give

S =

∫

d2x
[

− iTr (ψ̃I†γiDiψ̃I)− ṽ2Tr (A
(1)
i −A

(2)
i )2

]

+ Sφ , (2.18)

with

Sφ =

∫

d3x
[

− 1

4g2ṽ2
Tr (F

(1)
ij F (1) ij)+

√
2

4gṽ2
Tr [ǫijF

(1)
ij ψ̃Iα(ψ̃

I†γ3)
α]+

1

4ṽ2
Tr [ψ̃Iα(ψ̃

†Iγ3)
α]2

]

.

(2.19)

The first term in the above looks like a 2d YM kinetic term, with coupling

gYM ≡ gṽ =
2π

√
2ṽ

kR
. (2.20)

Note that half of the gauge fields were fixed by the VEV. Moreover, if one chose to keep

the scalar field fluctuations the second gauge field would also have to appear in a ‘kinetic

term’, multiplied by said fluctuations. In that event it is best to think of the latter as an

interaction term, with the constraints fixing both φ1 and φ2 but the second gauge field

remaining unfixed.

In the mass-deformed case, one keeps a kinetic term involving both gauge fields. This

fixes both φ1 and φ2 even when expanding the theory around the fuzzy sphere vacuum and

keeping only leading terms by setting their fluctuations to zero.

2.1.1 Higgsed action at large ṽ and D1-brane in 9d

We just saw that by eliminating the φi’s in the absence of scalar fields one gets a nontrivial

action with a 2d YM kinetic term. This renders it in principle compatible with a D1-brane
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interpretation. In the following we would like to show that at large ṽ and large k, as

imposed by the finiteness of (2.20) with ṽ
k
= fixed, we will obtain a D1-brane low-energy

theory in 9d flat space.

We begin by defining

B̃y = φ1 − φ2 , Q̃y = φ1 + φ2

Bi =
1
2(A

(1)
i −A

(2)
i ) , Qi =

1
2(A

(1)
i +A

(2)
i )

FB
ij = 1

2(F
(1)
ij − F

(2)
ij ) , Fij =

1
2(F

(1)
ij + F

(2)
ij ) , (2.21)

which implies

Fij = ∂iQj − ∂jQi + i[Qi, Qj ] + i[Bi, Bj ]

FB
ij = D̃iBj − D̃jBi

D̃i ≡ ∂i + i[Qi, · ] . (2.22)

The φi-dependent terms in the action (2.6) can then be rewritten as

Sφ =

∫

d2x
[ k

4π
ǫijTr

(

B̃yFij + Q̃yF
B
ij

)

+
1

2R
Tr

(

ψ̃I†γ3([ψ̃I , Q̃y]− {ψ̃I , B̃y})
)

+
1

4R2
Tr

(

[C̃I , Q̃y]− {C̃I , B̃y}
)(

[C̃†
I , Q̃y] + {C̃†

I , B̃y}
)]

. (2.23)

We expand the scalars around the VEV solution as

C̃1 = ṽ + ρ+ iσ , ρ = ρ0 + iρaT
a

C̃I′ = XI′ + iXI′+4 , σ = σ0 + iσaT
a

XA′′
= XA′′

0 + iXA′′

a T a , (2.24)

where T a are SU(N) generators, I ′ = 2, 3, 4, A′′ = (I ′, I ′ +4) and the subscript 0 indicates

the trace part.

The φi-dependent action (2.23) becomes to leading order in ṽ

Sφ =

∫

d2x
[ k

4π
ǫijTr

(

B̃yFij + Q̃yF
B
ij

)

+
1

2R
Tr

(

ψ̃I†γ3([ψ̃I , Q̃y]− {ψ̃I , B̃y})
)

− ṽ2

R2
Tr

(

B̃2
y

)

+O(ṽ)
]

, (2.25)

i.e. remains independent of the scalars.

In exact analogy to the 3d case [4, 15],3 we obtain for the scalar potential

4π2

3k2R2
V6(C̃

I) = −4π2ṽ2

k2R2
Tr [XA′

,XB′
]2 +O(ṽ) =

g2YM

2
Tr [XA′

,XB′
]2(1 +O( 1

ṽ
)) (2.26)

where A′ = 2, ..., 8 and X5 ≡ σ. For the fermionic potential we have

igṽ√
2
Vferm = − igYM√

2
Tr

[

2ρ(ψ̃†J ψ̃J − ψ̃J ψ̃
†J )− 2ψ̃1(C̃

†
I ψ̃

†I − ψ̃†I C̃†
I )+ 2ψ̃†1(C̃I ψ̃I − ψ̃IC̃

I)

+ 2ǫI
′J ′K ′

ψ̃I′C̃
†
J ′ψ̃K ′ − 2ǫI′J ′K ′ψ̃†I′C̃J ′

ψ̃†K ′
]

(1 +O( 1
ṽ
)) (2.27)

3The calculation is identical and we will hence omit it at this stage. See also [16].
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and one similarly obtains the anticipated SYM Yukawa term

− 1

2
fabcXA′

a ψ̄bΓ
A′
ψc +O( 1

ṽ
) (2.28)

by rearranging the fermions into SO(1, 1)×SO(7) spinors, again in direct analogy with [15].

Note that the scalar ρa (the real part of C̃1) does not appear in either the final bosonic or

fermionic potentials, as was also the case in 3d.

We now move on to eliminate the auxiliary fields B̃y and Q̃y from the action Sφ. Varying

(2.25) with respect to B̃y and Q̃y, we obtain

B̃y =

√
2R

4gṽ2
ǫijFij −

R

4ṽ2
(ψ̃Iα(ψ̃

I†γ3)
α + ψ̃I†γ3ψ̃I)

ǫijFB
ij =

2π

kR
(ψ̃Iα(ψ̃

I†γ3)
α + ψ̃I†γ3ψ̃I) (2.29)

and substituting back we find

Sφ =

∫

d2x
[

− 1

4g2YM

FijF
ij −

√
2

8gṽ2
ǫijFij(ψ̃

I
α(ψ̃

I†γ3)
α + ψ̃I†γ3ψ̃I)

− 1

16ṽ2
(ψ̃I

α(ψ̃
I†γ3)

α + ψ̃I†γ3ψ̃I)
2
]

(1 +O( 1
ṽ
))

→ − 1

4g2YM

∫

d2xFijF
ij +O( 1

ṽ
) , (2.30)

that is only the Fij YM kinetic term survives in the large ṽ limit. We note that in the

above there is no YM kinetic term for FB
ij and that to O(1) in Sφ, the Q̃y field drops out

from the action, despite Q̃y not being fixed to leading order.

Apart from the φi-dependent part of the action, one also needs to take into consideration

the ṽ2BiB
i mass-terms coming from the covariant kinetic term for the scalars, |DiC̃

I |2.
Even though Bi is an adjoint field under Qi, it is itself the gauge field for a shift symmetry

that acts as

Bi → Bi − D̃iλ

W → W + αλ , (2.31)

with W = σ0 + iρaT
a [16] and α an appropriate combination of the parameters of the

theory. In order to proceed we observe that in the large-k limit the Q̃y constraint becomes

ǫijFB
ij = 0, which for topologically trivial fields is solved by a pure gauge condition

Bi = D̃iλ . (2.32)

One might be tempted to think of this as a trivial solution but this is not the case. In

fact, this is just a signal of the ordinary Higgs mechanism where the gauge field ‘eats’ the

Goldstone boson to become massive. Indeed, in 2d the YM gauge field is nondynamical,

while a massive (Proca) vector field with Lagrangian density

− 1

4g2YM

F 2
ij −m2A2

i (2.33)

7



has one dynamical degree of freedom. For the case at hand there is no YM kinetic term

but we still have a mass for Bi from the scalar kinetic term, which renders it dynamical.

In the final step, we substitute the single dynamical mode of Bi through (2.32), in effect

replacing the Goldstone mode by λ.

At this point we should note that by substituting (2.32) in FB
ij one gets

FB
ij = [∂iQj − ∂jQi + i[Qi, Qj ], λ] = [Fij − i[Bi, Bj ], λ] (2.34)

instead of zero. But, as we will see below eq. (2.37), λ and Bi are of order O( 1
ṽ
) because

Higgsing implies a term ṽ2BiB
i. This in turn means that FB

ij is automatically of order

O( 1
ṽ
) as required by (2.29), so imposing (2.32) would at first seem redundant. Yet for a

purely bosonic background FB
ij is zero to better than O( 1

ṽ
) accuracy and (2.32) is needed.

Since Bi ∼ O( 1
ṽ
) → 0, we have from (2.22)

Fij ≃ ∂iQj − ∂jQi + i[Qi, Qj], (2.35)

as required for a Yang-Mills theory. Then we want

|[Fij , λ]| ≪ |λ| , (2.36)

which can be achieved in two different ways: Firstly through a restriction on the fields, by

Fij and λ or Qi and Bi belonging to commuting subgroups of SU(N). Secondly, we can

consider that the U(1) (commuting) component of λ, λ0, is much larger than the SU(N)

components λa. This latter possibility has a nice physical interpretation, as we shall see.

Returning to the calculation, the covariant derivative on a scalar C̃ becomes in terms

of λ

DiC̃ = ∂iC̃ + i[Qi, C̃] + i{Bi, C̃} = ∂iC̃ + i[Qi, C̃] + i{Diλ, C̃} ≡ D̃iC̃ + i{∂iλ, C̃} , (2.37)

with the same action for the derivative on the fermions.

Now consider the SU(N) ⊂ U(N) part. We define λ̃ ≡ ṽλ = λ̃aT
a, obtaining in the

large ṽ limit

|DiC̃
I′ |2 → |D̃iC̃

I′ |2
Tr |DiC̃

1|2 → Tr |Diσ|2 + (∂iρ0)
2 + |Di(ρa + 2λ̃a)|2 , (2.38)

while the fermionic kinetic term becomes just

− iTr
(

ψ̃I†γiDiψ̃I

)

→ −iTr
(

ψ̃I†γiD̃iψ̃I

)

. (2.39)

Therefore as in the usual Higgs mechanism Diλ̃a comes only in combination with Diρa,

where ρa is the Goldstone boson that does not appear in the scalar potential. This is how

λa replaces the original nonabelian Goldstone boson.

For the part of λ which is in the U(1) centre of U(N), λ0, the kinetic term for the

scalars becomes

|DiC̃
I |2 = |D̃i(C̃

Ie2iλ0)|2 . (2.40)

8



Upon taking k and ṽ large the theory undergoes an effective compactification, according

to the orbifold picture of [5]. This corresponds to the vanishing of a scalar trace degree

of freedom, which in this case is σ0.
4 The identification C̃I ∼ e−2iλ0C̃I signals that this

degree of freedom is now carried by λ0. Hence we also see that when solving the restriction

(2.36) by λ0 ≫ λa, the interpretation is that the relative separations in the compactified

direction, λa, are much smaller than the center of mass position λ0.

Putting everything together, the final action is the action of a D1-brane in 9d flat space,

with 7 nontrivial transverse scalars and one Goldstone boson (λ), encoding information

about the 10th (compact) dimension.

2.1.2 Higgsed action at large ṽ and D1-brane in 10d

In getting the D1 action in 9d we eliminated the auxiliary scalars φi, or equivalently B̃y and

Q̃y, via their equations of motion. However, one can easily observe that upon performing a

partial integration Bi also appears as an auxiliary field in the dimensionally reduced action

(2.6). In this section we will examine the consequences of eliminating B̃y and Bi from the

action instead of φi.

We begin with the large-ṽ-limit expression coming from (2.23) plus the mass term for

Bi,

SBi =

∫

d2x
[ k

4π
ǫijQ̃yF

B
ij − 4ṽ2BiB

i +O(ṽ)
]

. (2.41)

Solving for the B̃y and Bi auxiliary fields, we obtain

B̃y =

√
2R

4gṽ2
ǫijFij +

R

4ṽ2
(ψ̃Iα(ψ̃

I†γ3)
α − ψ̃I†γ3ψ̃I)

Bi =
k

16πṽ2
ǫijD

jQ̃y . (2.42)

Substituting back in the action Sφ + SBi , we arrive at

Saux =

∫

d2x
[

− 1

4g2Y M

FijF
ij +

√
2

8gṽ2
ǫijFij(ψ̃

Iα(ψ̃I†γ3)
α − ψ̃I†γ3ψ̃I)

+
1

16ṽ2
(ψ̃Iα(ψ̃I†γ3)

α − ψ̃I†γ3ψ̃I)
2 − k2

(8πṽ)2
(DiQ̃y)

2
]

+O( 1
ṽ
)

→
∫

d2x
[

− 1

4g2Y M

FijF
ij − 1

8R2g2YM

(DiQ̃y)
2
]

+O( 1
ṽ
) . (2.43)

We note from (2.42) that Bi is of order O( 1
ṽ
), as also mentioned in the previous subsection.

Hence, Fij in (2.22) reduces to the usual Yang-Mills form (2.35). One already sees that

Q̃y plays the role of an extra dynamical scalar similar to λ from the previous analysis,

although unlike that case it will combine with the others to make the scalar potential of

the D1-brane in 10d. For that, we are missing the terms g2YM [X̃1, X̃A′
]2.

4For a precise treatment of the U(1) factors in the Higgsing of the ABJM theory see [16].

9



Indeed, in the second line of (2.23) one has a term

1

4R2
[C̃I , Q̃y][C̃

†
I , Q̃y] , (2.44)

which gives the missing terms upon the identification X̃1
a = 1

2RgY M
Q̃y a. The latter also

gives the correct scalar field normalisation in (2.43). Similarly, there is a missing term in

the fermionic potential which is provided by the term

1

2R
ψ̃I†γ3[ψ̃I , Q̃y] (2.45)

in (2.23).

All in all, in the large ṽ limit and in terms of Q̃y, Qi, we obtain the D1-brane action in

10d flat space.

2.1.3 Higgsed action and T-duality

The fact that we can obtain the low-energy D1-brane action in 9d or 10d, depending on

what auxiliary fields we choose to eliminate from the ‘master’ action (2.6), might seem

strange at first. However, we will see shortly that one can switch between them using the

Buscher rules [17], i.e. a field theoretic version of T-duality.

We should clarify that in our setup the M-theory direction has already been compact-

ified on a circle of radius R. That led to a worldvolume reduction of the M2-brane theory.

On the other hand, the T-duality we are referring to here in the ṽ → ∞ limit is on an

additional compact dimension of radius R10, which is transverse to the branes and hence

involves a worldvolume scalar field. As a result, one of the 10 dimensions of string theory

is compactified on a very small/very large radius.

We start with a brief review of the rules for a string worldsheet in some nontrivial

background. Taking

S =

∫

d2σ
√
γγµνgab∂µx

a∂νx
b (2.46)

one writes it in a first order form as

S =

∫

d2σ
[√

γγµν(g00VµVν + 2g0iVµ∂νx
i + gij∂µx

i∂νx
j) + 2ǫµν x̂0∂µVν

]

. (2.47)

Then by varying with respect to x̂0 we get ǫµν∂µVν = 0, solved by Vµ = ∂µx
0, which when

plugged in (2.47) gives back (2.46). If we instead solve for Vµ = ĝ00√
γ
ǫνµ∂

ν x̂0 − ĝ0i∂µx̂
i and

substitute back into the action, we get the T-dual expression

S =

∫

d2σ
[√

γγµν ĝab∂µx̂
a∂ν x̂

b + ǫµν ĥab∂µx̂
a∂ν x̂

b
]

, (2.48)

where the background fields are the T-dual ones:

ĝ00 =
1

g00
; ĝij = gij −

g0ig0j
g00

; ĥ0i =
g0i
g00

, (2.49)

10



with the remaining components of ĥab zero and x̂i = xi.

In order to compare the above with our case, we concentrate on the relevant terms in

the two first order ‘master’ actions5

SD1 = −
∫

[4ṽ2B2
i −

k

4π
ǫijQ̃yF

B
ij ]

SBuscher =

∫

[g00VµV
µ + 2ǫµν x̂0∂µVν ] , (2.50)

which leads to the identifications

Vµ ↔ Bi

g00 ↔ 4ṽ2

x̂0 ↔ − k

4π
Q̃y

x0 ↔ λ . (2.51)

The T-dual second order forms are compared in a similar manner:

g00∂µx
0∂µx0 ↔ 4ṽ2(∂iλ)

2

1

g00
∂µx̂

0∂µx̂0 ↔ 1

4ṽ2

[

Di

(

− kQ̃y

4π

)]2
. (2.52)

We therefore see that the R10 → 1
R10

T-duality in our case becomes 2ṽ → 1
2ṽ . This

indicates that while in the first formulation

λ ∼ 1

ṽ
, (2.53)

i.e. λ takes values on a circle of small radius ∝ 1
ṽ
, as expected for a D1-brane in 9d, in the

T-dual formulation
kQ̃y

4π
∼ ṽ (2.54)

and the T-dual field takes values on a circle of large radius ∝ ṽ, with the corresponding

direction decompactified as expected for a D1-brane in 10d.

One is perhaps more familiar with T-duality exchanging the momentum p = n
R10

with

winding w = mR10

α′ , or n withm in the expansion of the physical compact direction R10x
0 =

X0 = nα′

R10
τ +mR10σ + . . . . But as is well-known, in the Buscher form of T-duality this

arises because the two dual coordinates x0 and x̂0 are solutions to the same master Vµ as

Vµ = ∂µx0 =
ĝ00√
γ
ǫνµ∂

ν x̂0 − ĝ0i∂µx̂
i . (2.55)

Taking the particular case g0i = 0 and the conformal gauge γµν = δµν , one gets for the

physical coordinates ∂µ(R10x
0) = ǫµν∂

ν( α′

R10
x̂0), or ∂τ (X

0) = ∂σ(X
0′), ∂σ(X

0) = ∂τ (X
0′),

i.e. exactly exchanging p with w. In our case, we can use the map (2.51) to obtain the

exact same momentum ↔ winding exchange in the limit where we only keep the compact

abelian scalar from the action. Of course, in the full theory it is not clear how the T-duality

acts on full states.
5The difference in the overall sign is due to different conventions.
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2.2 The N = 1 case

We next turn to the study of the abelian case, which we will further interpret in the

following section. By setting N = 1 in the ABJM action, one obtains a theory for a single

supermembrane on C
4/Zk [1, 18]

SN=1
ABJM =

∫

d3x

[

k

4π
ǫµνλ

(

A(1)
µ ∂νA

(1)
λ −A(2)

µ ∂νA
(2)
λ

)

− iψI†γµDµψI −DµC
†
ID

µCI

]

,

(2.56)

where

DµC
I = ∂µC

I − i(A(1)
µ −A(2)

µ )CI . (2.57)

By applying the same dimensional reduction procedure as for the general nonabelian

case we obtain the 2d action

S =

∫

d2x
[

−DiC̃
†
ID

iC̃I − iψ̃I†γiDiψ̃I

]

+ Sφ (2.58)

Sφ =

∫

d2x
[

√
2

2gR
ǫij(φ1F

(1)
ij − φ2F

(2)
ij )−R−2(C̃IC̃†

I )(φ1 − φ2)
2

−R−1(φ1 − φ2)ψ̃
I†γ3ψI

]

. (2.59)

Then varying with respect to φ1, φ2 we get the constraints

φ1 − φ2 =
R
√
2

4g

ǫijF
(1)
ij

C̃IC̃†
I

− R

2C̃IC̃†
I

(ψ̃I†γ3ψI)

ǫijF
(2)
ij = ǫijF

(1)
ij (2.60)

and once again φ1 − φ2 as well as F
(2)
ij can be solved in terms of other fields. Substituting

back in Sφ:

Sφ =

∫

d2x
[

− 1

4g2C̃IC̃†
I

(F
(1)
ij )2 +

1

4C̃IC̃†
I

(ψ̃I†γ3ψ̃I)
2 −

√
2

4gC̃IC̃†
I

ǫijF
(1)
ij ψ̃I†γ3ψ̃

]

=

∫

d2x
C̃IC̃†

I

R2

[R
√
2

4g

ǫijF
(1)
ij

C̃IC̃†
I

− R

2C̃IC̃†
I

(ψ̃I†γ3ψI)
]2
. (2.61)

The equation of motion for A
(1)
i gives

∂i

[R
√
2

4g

ǫijF
(1)
ij

C̃IC̃†
I

− R

2C̃IC̃†
I

(ψ̃I†γ3ψI)
]

= 0 , (2.62)

i.e. the bracket is a constant, with Sφ proportional to the square of this bracket. Note that

due to the constraints (2.60) we can choose a gauge in which A
(1)
i = A

(2)
i , such that the

covariant derivative reduces to the partial derivative.
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2.3 Supersymmetry

The action has 12 supersymmetries for any value of N , found by dimensional reduction of

the ABJM supersymmetries. The supersymmetry rules in 3d are

δCI = iωIJψJ

δC†
I = iψ†JωIJ

δψI = −γµωIJDµC
J +

2π

k
(−ωIJ(C

KC†
KC

J − CJC†
KC

K) + 2ωKLC
KC†

IC
L)

δψI† = DµC
†
Jγµω

IJ +
2π

k
(−(C†

JC
KC†

K − C†
KC

KC†
J) + 2C†

LC
IC†

Kω
KL)

δA(1)
µ = −π

k
(CIψJ†γµω

IJ + ωIJγµψIC
†
J)

δA(2)
µ =

π

k
(ψI†CJγµωIJ + ωIJγµC

†
Iψj) . (2.63)

Dimensionally reducing, we obtain

δC̃I = iωIJ ψ̃J

δψ̃I = −γiωIJDiC̃
J − i

R
γ3ωIJ(C̃

Jφ2 − φ1C̃
J)

+
g√
2
[−ωIJ(C̃

KC̃†
KC̃

J − C̃JC̃†
KC̃

K) + 2ωKLC̃
KC̃†

I C̃
L]

δA
(1)
i = − g

2
√
2
(C̃I ψ̃J†γiωIJ + ωIJγiψ̃IC̃

†
J)

δA
(2)
i = +

g

2
√
2
(ψ̃I C̃JγiωIJ + ωIJγiC̃I ψ̃J)

δφ1 = − Rg

2
√
2
(C̃I ψ̃J†γ3ωIJ + ωIJγ3ψ̃IC̃

†
J)

δφ2 = +
Rg

2
√
2
(ψ̃I C̃Jγ3ωIJ + ωIJγ3C̃I ψ̃J) . (2.64)

Restricting to N = 1

δC̃I = iωIJ ψ̃J

δψ̃I = − 1

R
γiωIJDiC̃

J + iγ3ωIJC̃
J(φ1 − φ2)

δA
(1)
i = δA

(2)
i = − g

2
√
2
(C̃I ψ̃J†γiωIJ + ωIJγiψ̃I C̃

†
J)

δφ1 = δφ2 = − Rg

2
√
2
(C̃I ψ̃J†γ3ωIJ + ωIJγ3ψ̃IC̃

†
J) . (2.65)

However, if we were to solve for φ1, φ2, we would get

δC̃I = iωIJ ψ̃J

δψ̃I = −γiωIJDiC̃
J + iγ3ωIJ C̃

J
[

√
2

4g

ǫijF
(1)
ij

C̃IC̃†
I

− 1

2C̃IC̃†
I

(ψ̃I†γ3ψI)
]

δA
(1)
i = − g

2
√
2
(C̃Iψ̃J†γiωIJ + ωIJγiψ̃IC̃

†
J) . (2.66)

This is only an on-shell supersymmetry of the action with φi eliminated (specifically, on-

A
(1)
i -shell, i.e. using (2.62)), since for instance by varying the C̃I in (2.61) we get unique
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terms involving (C̃IC̃†
I )

−2, of the type

− 1

R2
(C̃IδC̃†

I )
[R

√
2

4gṽ

ǫijF
(1)
ij

C̃IC̃†
I

− R

2C̃IC̃†
I

(ψ̃I†γ3ψI)
]2
. (2.67)

However, when using the A
(1)
i equation of motion, the above becomes of similar type to

other more conventional terms.

3 Interpretational points

We now move towards interpreting the dimensionally reduced ABJM action obtained in

the previous section. This turns out to hide certain subtleties and involves an order of

limits.

3.1 From ABJM to BST formulation for the membrane

Let us begin with the case of the single M2-brane in the Green-Schwarz-type supermem-

brane description of Bergshoeff-Sezgin-Townsend (BST) [2]. In a general supergravity

background this is given by

S =

∫

d3x
[1

2

√−ggµνEA
µE

B
ν ηAB +

1

2
ǫµνλEA

µE
B
ν E

C
λ CABC − 1

2

√−g
]

, (3.1)

where

EA
µ = (∂µZ

M)EA
M . (3.2)

In the above the ZM are superspace coordinates while EA
M is the supervielbein, such that

gµν = EA
µ E

B
ν ηAB , (3.3)

where µ = 0, 1, 2 are worldvolume while A = 0, ..., 10 spacetime indices. The superfields

satisfy the 11d supergravity constraints. The bosonic degrees of freedom are XA, which in

static gauge reduce to the CI scalars, and involve no gauge fields.

At the same time, for the N = 1 ABJM action of (2.56) and for k = 1, one once

again expects to obtain the static gauge action for a single supermembrane in flat space.

Compared to the BST approach, this is a formulation that does involve auxiliary gauge

fields.

Naturally, the formulations with and without gauge fields should be equivalent and this

can be established as follows:6 Since the gauge fields are abelian, we can rewrite (2.56) in

terms of their sum and difference

Qµ = (A(1)
µ +A(2)

µ )

Bµ = (A(1)
µ −A(2)

µ ) , (3.4)

6A version of this procedure embedded in the nonabelian theory also appears in [19].
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obtaining

SN=1
ABJM =

∫

d3x

[

k

4π
ǫµνλBµ∂νQλ − iψI†γµDµψI −DµC

†
ID

µCI

]

. (3.5)

We next define the field strength Hµν = ∂µQν − ∂νQµ and treat it as an independent field.

This is achieved by introducing a Lagrange multiplier that imposes the Bianchi identity on

Hµν through the equations of motion for the ‘dual photon’ σ:

SN=1
ABJM =

∫

d3x

[

k

8π
ǫµνλBµHνλ +

1

8π
σǫµνλ∂µHνλ − iψI†γµDµψI −DµC

†
ID

µCI

]

. (3.6)

Integrating this new term by parts we find

SN=1
ABJM =

∫

d3x

[

k

8π
ǫµνλBµHνλ −

1

8π
ǫµνλ(∂µσ)Hνλ − iψI†γµDµψI −DµC

†
ID

µCI

]

.

(3.7)

It is now possible to integrate out Hµν , arriving at the relation

Bµ =
1

k
∂µσ , (3.8)

with the U(1)B gauge transformations acting on the dual photon as

σ → σ + kθ . (3.9)

Accordingly the covariant derivatives become

DµC
I = ∂µC

I − i(A(1) −A(2))CI = ∂µC
I − iBµC

I = ∂µC
I − i

k
∂µσC

I (3.10)

and the action can be rewritten in terms of a new set of matter fields

ĈI = e−
iσ
k CI and ψ̂I = e−

iσ
k ψI (3.11)

resulting in

SN=1
ABJM =

∫

d3x
[

−iψ̂I†γµ∂µψ̂I − ∂µĈ
†
I∂

µĈI
]

. (3.12)

In this manner the auxiliary gauge fields have been eliminated from the action. We note

that as σ is dual to the U(1)B gauge field, it is a compact scalar with an associated periodic

shift-symmetry.

However the above still transform under the U(1)B gauge transformations, which we will

next gauge-fix. In order to do so, we need to determine the periodicity of σ which follows

from a quantisation condition on the flux H. We have already defined H = F (1)+F (2). By

imposing the standard Dirac quantisation condition on the original gauge fields
∫

dF (1,2) ∈
2πZ, we get

∫

1

2
ǫµνλ∂µHνλ =

∫

dH =

∫

dF (1) +

∫

dF (2) ∈ 4πZ (3.13)
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and by plugging this into (3.6) and requiring that the path integral remains invariant under

periodic shifts of σ, we determine that the latter has period 2π [19]. This can be then used

to gauge-fix the U(1)B symmetry through (3.9) and set σ = 0 mod 2π. However, this

periodicity imposes an additional identification on the U(1)-invariant fields ĈI , ψ̂I

ẐA ∼= e−
2πi
k ẐA and ψ̂A

∼= e−
2πi
k ψ̂A . (3.14)

Therefore, we have obtained that (3.12) along with the above identification is nothing

but the dynamical part for the action of a single BST M2-brane propagating on a C
4/Zk

background. For the case of k = 1, one recovers the action for a single membrane in flat

space.

3.2 From the reduced action to a Green-Schwarz string action

Having established the relationship between the N = 1 ABJM and BST actions, we now

repeat the argument in the dimensionally reduced theory, which will exhibit some subtle

points. As before, the reduced coordinate is denoted by y and i = 0, 1 indicate the 2d

coordinates. Dimensionally reducing we get for Bµ and Qµ
7

By =
1

R
(φ1 − φ2) , Qy =

1

R
(φ1 + φ2)

Bi = A
(1)
i −A

(2)
i , Qi = A

(1)
i +A

(2)
i . (3.15)

Expressing the abelian CS piece of (2.56) in terms of B and Q, we get

SCS =
k

4π

∫

d3xǫµνλBµ∂νQλ → kR

4π

∫

d2x[Byǫ
ij∂iQj + ǫijBi∂jQy] . (3.16)

We define Hij ≡ 2∂[iQj] but cannot treat it as an independent field, since it is not possible

to introduce a Lagrange multiplier that imposes its Bianchi identity. On the other hand,

we can obtain an independent field Hjy by first defining Hjy = ∂jQy and then introducing

it with a Lagrange multiplier σ̃. The equivalent CS action in 2d is then

SCS =
R

8π

∫

d2x
[

kByǫ
ijHij + kǫijBiHjy + σ̃ǫij∂iHjy

]

. (3.17)

The rest of the dimensionally reduced action is easily obtained from (2.6) in the abelian

limit ∫

d2x[−DiC̃
†
ID

iC̃I − iψ̃I†γiDiψ̃I − (By)
2C̃IC̃†

I −Byψ̃
I†γ3ψI ] (3.18)

where the last two terms come from Dy ∼ −iBy terms.

Now, if in the dimensionally reduced gauge action one integrates out φ1, φ2, that is By

and Qy in (3.16) plus (3.18), one obtains (2.58) with (2.61). But if we instead go to (3.17)

and eliminate Hjy we get

Bi =
1

k
∂iσ (3.19)

7Note that in this subsection we define Bi, Qi without a prefactor of 1

2
.
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and then, as in the previous section,

DiC̃
I → ∂iC̃

I − i

k
∂iσC̃

I . (3.20)

By eliminating Qj

∂iBy = 0 ⇒ By = c , (3.21)

where c some constant. For the reader who might worry that By = 1
R
(φ1 − φ2) = c seems

to contradict (2.60), we should note that it is consistent with (3.21) on-shell, since the

equation of motion for A(1) implies

√
2

4gṽ
ǫijF

(1)
ij − ψ̃I†γ3ψ̃I = c C̃IC̃†

I , (3.22)

which is the same as (2.62).

Finally with the redefinitions

ˆ̃CI = e−
iσ
k C̃I ; ˆ̃ψI = e−

iσ
k ψ̃I (3.23)

we arrive at the action

S =

∫

d2x
[

− ∂i
ˆ̃CI∂i ˆ̃C†

I − i ˆ̃ψI†γi∂i
ˆ̃ψI − c2 ˆ̃CI ˆ̃C†

I − c ˆ̃ψI†γ3
ˆ̃ψI

]

, (3.24)

which is a Green-Schwarz-type action plus some arbitrary mass terms. These can be put

to zero by choosing c = 0, since c is an arbitrary constant at this point. We will come back

to the interpretation of this constant soon.

3.3 Interpretation of the 2d action

So far we have only discussed the set of algebraic steps that relate to the reduction process.

We now turn our attention to assigning an interpretation to the resulting action.

3.3.1 Intuition from String/M-theory

As described in the introduction, the natural expectation is that reducing an action for

M2-branes on a circle should lead to fundamental strings. We indeed discussed in Section

3.2 how the abelian, dimensionally-reduced ABJM action can be transformed to a Green-

Schwarz action on an orbifold background. On the other hand, the presence of a single

gauge field on the 2d worldvolume before the transformation would näıvely suggest that it

describes a D1-brane.

To further understand this, consider the case of M-theory on T 2. The compactification

of a single M2-brane on the 2 circles (one transverse, R2, one parallel, R1) depends on

the order of compactification: Indeed, if we compactify first on R2, we get a D2-brane in

10d, with gs =
R2

ls
. A further R1 compactification must be followed by T-duality on R1, to
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obtain a D1 in IIB, upon which gs → gs
ls
R1

= R2

R1
. On the other hand, by first compactifying

on R1 we get an F1 in 10d but with gs = R1

ls
. By further compactifying on R2 we must

perform a T-duality in order to arrive at IIB, getting gs =
R1

R2
. The two cases are related

by gs → 1
gs
, i.e. S-duality in 9d, which takes the fundamental string to a D1-brane.

However, the string coupling enters the two actions in a different way: For D1’s it

appears through (gD1
YM )2 = gs

2πα′ , in canonical normalisation, while for F1’s as an addi-

tive term
∫

d2xφR(2) ∼ ln gsχ, with χ the Euler characteristic of the worldsheet. As a

result one cannot make the duality precise at the level of the actions in their conventional

formulations.

3.3.2 Intuition from Higgsing

We will gain some further insight into the physics of our action from looking at the Higgsed

theory. As we have already seen, in the presence of a VEV 〈C̃I〉 = ṽδI1 1lN×N the action

(2.18) at general N has a gauge coupling

g ṽ =
2π

√
2ṽ

kR
≡ gD1

YM . (3.25)

Note that as far as gD1
YM is concerned, a finite coupling can be obtained by having k and

ṽ either be generic or both large, so one needs to look at other criteria. Furthermore, the

coupling does not differentiate between a D1-brane in 9 or 10 dimensions.

By first considering the case of large ṽ and large k, we indeed obtained a D1-brane

either in 9 or 10 dimensions, depending on the fields that were integrated out: By choosing

φ1 and φ2, i.e. B̃y and Q̃y, the compact scalar was eaten by the massive vector Bi through

a version of the ordinary Higgs mechanism, which was in turn replaced by a new scalar λ.

For the T-dual version of the dimensionally reduced ABJM theory, Qi and the Q̃y = φ1+φ2
combination were traded for the scalar corresponding to the compact dimension and became

dynamical in the Higgsed theory, in the spirit of [4].

One needs to keep in mind that the compactification picture is valid at worldvolume

energies E ≪ 1/R and that a prospective D1-brane description would be weakly coupled

if

geff =
gD1
YM

E
= 2π

√
2
ṽ

k

1

ER
≪ 1 . (3.26)

We see that this is only possible for small ṽ
k
, which matches with the intuition that we need

to consider large k to compactify a transverse scalar. We also need to be in an intermediate

energy regime where

(2π
√
2)
ṽ

k

1

R
≪ E ≪ 1

R
. (3.27)

At generic k the above theory is strongly coupled. At generic ṽ there are O( 1
ṽ
) cor-

rections and the theory is not just SYM. However, in both these cases, one would instead

expect an S-dual F1 description, at least if one eliminates φi as was done for N = 1 in
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(2.58)-(2.61). From this angle, the fact that the action still has a worldvolume gauge field

is not crucial, since we saw in Section 3.2 that it can be integrated out upon explicitly im-

posing the orbifold conditions on the matter fields to obtain a Green-Schwarz type action

for the string.

3.3.3 Reducing/T-dualising “M2 to D2”

The Higgsed actions can also be obtained from the worldvolume reduction or T-duality

of the ABJM membrane through the mechanism of [4], after giving a large VEV v to one

of the original ABJM worldvolume scalars. That is, we can consider Higgsing the theory

before performing the dimensional reduction.

In terms of a geometric description the value of k is interpreted as the rank of the C4/Zk

orbifold singularity on which the membranes are sitting. Going off to the Coulomb branch

at large v and k results in type IIA String Theory dynamics. The M2 to D2 reduction

is manifest in a way similar to the models of ‘deconstruction’ [20], by having a fixed and

finite radius of compactification for the transverse direction. In fact, the large-k dynamics

are those of IIA even at the superconformal point (zero VEVs) where one has four complex

scalars, as was made apparent by the analysis of [1], though of course at finite or zero VEV

one probes an M-theory radius that varies between zero and a small nonzero value.

The resulting field theory action is 3d SYM with corrections of order O( 1
v
) and gauge

coupling

gD2
YM =

2π
√
2v

k
=

2π
√
2ṽ

k
√
R

, (3.28)

where the 11d VEV v is related to the 10d one by ṽ =
√
Rv. On the other hand, at generic

k and ṽ one remains in the M2-brane regime.

Performing a worldvolume dimensional reduction/T-duality we again recover the D1-

action in 9d and 10d respectively. This is essentially because the Higgsing and reduction/T-

duality operations commute. Our dimensionally reduced action is once more better thought

of as one for a fundamental string, at least if the φi are eliminated, as we did for the N = 1

case in (2.58)-(2.61).

3.3.4 Interpretation in terms of ‘master’ action

We conclude that our general action Eq. (2.6), with all the auxiliary fields, contains infor-

mation for all of the IIA F-string in 10d, its T- and S-dual IIB D-string in 10d, as well as

the latter’s T-dual IIA D-string in 9d (compactified D2-brane). The IIA F-string in 10d

and the IIA D-string in 9d are related through the compactification obtained by large k

together with an S-duality in 9d. Therefore we can think of the action (2.6) as a ‘master’

action that contains information about both T- and S-duality.

Even though we have recovered a precise field theoretic realisation of T-duality in Sec-

tion 2.1.3, it is difficult to disentangle how the S-duality acts. It seems that the two
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components needed are the transformation of Section 3.2 and the transverse compactifica-

tion through large ṽ and large k. We should also note that while the discussion made heavy

use of the N = 1 case, for which more explicit formulas were available, we still expect that

at general N the action (2.6) is a ‘master’ action for T- and S-duality.

3.3.5 Understanding the F1-string interpretation

There remains one point that has not yet been clarified for the ‘master’ action. If the

equivalent action (3.24) is to have an F1 interpretation, it should describe a string moving

in the orbifold background C
4/Zk. As such, it must provide a natural explanation for the

mass terms in (3.24). Indeed, note that c has mass dimension 1, so we can instead denote

it by a mass µ.

Consider a straight string in C
4 whose endpoints span exactly a 2π

k
angle from the

origin. By making the Zk identification we create a noncontractible string with winding

number 1. This can however slide towards the origin by virtue of its tension, unlike the

case of usual winding in a circle direction. Taking this string to be symmetric relative to

the origin, its energy will be8

E = Tr2 sin π
k
, (3.29)

where T = 1
2πα′ is the string tension and r is the radius from the origin of spacetime to the

endpoints of the string, r = |X(0)|. The force pulling the string towards the origin will be

F =
dE

dr
= 2T sin π

k
≡ m

d2r

dt2
, (3.30)

where m = E = 2Tr sin π
k

is the mass of the string. Substituting and introducing the

appropriate sign we get
d2r

dt2
= −1

r
= − 1

r2
r ≡ −µ2r . (3.31)

Here we have made assumption that due to its tension the string stays straight and sym-

metric as it slides towards the origin. Then the position X(σ) along the string in some

Cartesian spacetime reference system varies relative to the endpoints, i.e.

Ẍ(σ)

X(σ)
=
Ẍ(0)

X(0)
= −µ2 . (3.32)

This matches the worldvolume equation of motion of the above straight string, X ′ = 0,

with a worldvolume mass term µ, namely

Ẍ(σ) = −µ2X(σ) . (3.33)

Since r is arbitrary then so is µ, as was also the case in our worldvolume analysis. Note

that we have not needed any approximation for this result. Indeed, the equations of motion

8If the string is asymmetric relative to the origin its tension will make it symmetric since that corresponds

to a minimum length for a given center-of mass distance to the origin.
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for µ were ∂i(µ) = 0, that is µ constant on the worldvolume, and this is what we find. Of

course µ = 1
r
, with r the radius at the endpoint, so µ depends on the spacetime boundary

of the string but that does not contradict our constraints.

To conclude, the arbitrary scalar mass term in (3.24) is just the effect of having a

string in C
4/Zk. The fermion mass term is understood as the necessary supersymmetric

extension. This completes our understanding of the N = 1 2d action as an F-string in

C
4/Zk.

4 Conclusions

In this note we performed the dimensional reduction of the ABJM model, studying the

resulting action and its physical interpretation. The reduced action includes a set of aux-

iliary gauge and scalar fields. Focusing on the Coulomb branch of the theory, we found

that for a large VEV ṽ, in the regime where k was large, one obtains either the action of

N D1-branes in 9d (compactified D2-branes) or the T-dual action of N D1-branes in 10d,

depending on which combination of auxiliary fields are integrated out. The two actions

were related by a field theoretic T-duality transformation, following [17].

For the special case of N = 1, at an arbitrary VEV ṽ and at arbitrary k, we showed that

the equivalence in 3d between the N = 1 ABJM model and the BST action on C
4/Zk can

be reduced to give a Green-Schwarz string moving in C
4/Zk. This led us to propose that the

dimensionally reduced action can be thought of as a ‘master’ action encoding information

about both T- and S-duality. The field theoretic realisation of S-duality in the nonabelian

case remains mysterious as ever and warrants further investigation. Since at generic k/VEV

ṽ the 9d D1-brane action obtained by eliminating φi is strongly-coupled/receives O( 1
ṽ
)

corrections, we suggest that it should instead be better thought of as a multiple F-string

action.
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