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Introduction

There has been considerable activity in the past two years leading to a new class of highly

supersymmetric three-dimensional conformal Chern-Simons theories which control the dy-

namics of multiple M2-branes in M-theory. This work started with the papers [1–4], which

were the first to construct interacting theories with the correct symmetries; N = 8 super-

symmetry and SO(8) R-symmetry. These theories have no continuous coupling constant

but they do admit a discrete coupling k that arises as the level of the Chern-Simons terms.

However, this model is only capable of potentially describing two M2-branes and its space-

time interpretation is unclear. The generalisation to an arbitrary number of n M2-branes

in a R8/Zk orbifold was provided by the celebrated ABJM models [5] which are U(n)×U(n)

Chern-Simons-matter theories with N = 6 supersymmetry and SU(4) R-symmetry.

The main aim of this note is to elucidate the relation between the N = 6 U(n)×U(n)

ABJM models and (SU(n) × SU(n))/Zn theories. As already noted in [5], the relative

U(1)B gauge field of the ABJM theories can be naturally integrated out. Since U(n) ≃
(U(1) × SU(n))/Zn, naively the effect of this is to reduce the U(n)× U(n) theory to a Zk

quotient of the (SU(n) × SU(n))/Zn theory. However we will see that there is a global

obstruction to this Zk identification unless n and k are coprime.

We will be particularly interested in the case with n = 2, where the Lagrangian is

precisely the original proposal of [2, 3] and has N = 8 supersymmetry and SO(8) R-

symmetry. According to the above, the N = 6 ABJM U(2)×U(2) theory can be mapped

to the N = 8, (SU(2)×SU(2))/Z2 theory along with the Zk identification on the fields when

k is odd. For k = 1 the identification is trivial and hence the (SU(2) × SU(2))/Z2-theory

at k = 1 describes two M2-branes in flat space.

We also seek to clarify statements in [6, 7] which computed the moduli space of the

N = 8 theory and argued that it corresponded to the IR limit of an SO(5) orbifold in type

IIA, obtained by including one unit of discrete torsion for the background 3-form gauge

field. In fact the discussion in [6, 7] is insufficient to distinguish between the orbifolds with

and without torsion since they both have the same moduli space. Our discussion here

shows that at n = k = 2 the ABJM model cannot be reduced to a Z2 quotient of the

(SU(2)× SU(2))/Z2 theory. However, the N = 8 SU(2)× SU(2) theory at k = 2 does give

the correct moduli space. This, along with the similarity between the two Lagrangians

leads us to conjecture that the SU(2)×SU(2) theory obtained from the Lagrangian of [2–4]

has an M-theory interpretation at k = 2 and is equivalent to the U(2)×U(2) Chern-Simons

theory of [5], corresponding to the IR fixed point of a 2+1d O(4) orbifold theory. These

results should make the connection between the theories of [1–4, 8] and ABJM transparent

and explain any aspects of M-theory physics captured by the former.

Note that the Chern-Simons-matter Lagrangians are entirely determined by the 3-

algebra data which includes the Lie algebra of the gauge group. In the quantum theory
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one must also specify the full global gauge group. This choice manifests itself by allowing

for different flux quantization conditions which in turn yield distinct quantum theories,

with the same symmetry algebra. To account for this we will label the Lagrangian by is

Lie algebra but the associated quantum theories will be labeled by the global gauge group.

N = 6 Chern-Simons theories from 3-algebras

Let us start by considering the general form of three-dimensional Lagrangians with scale

symmetry and N = 6 supersymmetry [8]:

L = −Tr(DµZ
A,DµZ̄A)− iTr(ψ̄A, γµDµψA)− V + LCS

−iTr(ψ̄A, [ψA, Z
B ; Z̄B ]) + 2iTr(ψ̄A, [ψB , Z

B ; Z̄A]) (1)

+
i

2
εABCDTr(ψ̄

A, [ZC , ZD;ψB ])− i

2
εABCDTr(Z̄D, [ψ̄A, ψB ; Z̄C ]) ,

where

V =
2

3
Tr(ΥCD

B , ῩB
CD) (2)

ΥCD
B = [ZC , ZD; Z̄B ]−

1

2
δCB [Z

E, ZD; Z̄E ] +
1

2
δDB [ZE, ZC ; Z̄E ],

and LCS is a Chern-Simons term that we will describe in detail below. The bracket [·, ·; ·]
is antisymmetric in the first two entries and defines the triple product of the 3-algebra

where the scalars and fermions take values. Introducing a basis T a for the 3-algebra, so

that ZA = ZA
a T

a, ψA = ψAaT
a, allows us to use structure constants defined through

[T a, T b;Tc] = fabcdT
d . (3)

Here we use notation where complex conjugation raises and lowers both A and a indices

(whereas in [8] a raised a index was given a bar).

The supersymmetry transformations are

δZA
d = iǭABψBd

δψBd = γµDµZ
A
d ǫAB + fabcdZ

C
a Z

A
b Z̄

c
CǫAB + fabcdZ

C
a Z

D
b Z̄

c
BǫCD

δÃµ
c
d = −iǭABγµZ

A
a ψ

Bbf cabd + iǭABγµZ̄Abψ
a
Bf

cb
ad , (4)

where the covariant derivative is DµZ
A
d = ∂µZ

A
d −Ãµ

c
dZ

A
c and similarly for the other fields.

One recovers the general form of the ABJM and ABJ Lagrangians [5, 9] by taking the

3-algebra to be n×m complex matrices with

[ZA, ZB ; Z̄C ] = −2π

k
(ZAZ†

CZ
B − ZBZ†

CZ
A) (5)

and introducing a metric on the 3-algebra

Tr(Ta, T
b) = tr(T †

aT
b) , (6)
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where on the right hand side tr is the ordinary matrix trace.

The gauge symmetry is generated by

δZA = Λb
c[Z

A, Tb;T
c] =MLZ

A − ZAMR , (7)

where ML = 2π
k Λb

cTb(T
c)†, MR = 2π

k Λb
c(T

c)†Tb and (Λb
c)

∗ = −Λc
b. Thus we see that

M †

L/R = −ML/R and hence they can be viewed as generators of u(n)× u(m) with ZA and

ψA in the bi-fundamental representation.

As a result, the action of the gauge fields Ãa
µb on ZA

a can be respectively rewritten in

terms of left- and right-acting u(n) and u(m) gauge fields Ã
L/R
µ

DµZ
A = ∂µZ

A − iÃL
µZ

A + iZAÃR
µ (8)

and the term LCS in (1) is then a level (k,−k) Chern-Simons term for u(n)× u(m)

LCS =
k

4π
εµνλ

(
tr(ÃL

µ∂νÃ
L
λ − 2

3
ÃL

µÃ
L
ν Ã

L
λ )− tr(ÃR

µ ∂νÃ
R
λ − 2

3
ÃR

µ Ã
R
ν Ã

R
λ )

)
. (9)

The Chern-Simons level k is integer whenever tr is the trace in the fundamental represen-

tation.

However, it is important to note that tr(ML) = tr(MR). Thus if ML = iθL 1ln×n

and MR = iθR 1lm×m, we have n θL = m θR. Since the action of these Abelian U(1)’s is

ZA → eiθLZAe−iθR = ei(θL−θR)ZA, these cancel for the ABJM case of m = n and hence

the gauge algebra is really su(n)⊕ su(n)⊕ u(1)Q, where the overall U(1)Q acts trivially on

all fields. This is not true in the ABJ case, where m 6= n and the gauge group is an honest

u(n)⊕ u(m). This is in line with the observations of [10, 11].

As an example let us consider the particular choice where ZA are 2×2 complex matrices.

A basis of such matrices is provided by

T a =

{
− i√

2
σ1,−

i√
2
σ2,−

i√
2
σ3,

1√
2
1l2×2

}
, (10)

where a = 1, 2, 3, 4, σi are the Hermitian Pauli matrices: σiσj = δij+ iǫijkσ
k and the factor

of i is chosen to ensure that the structure constants fabcd are real. In particular, using (5)

and (6), one sees that

fabcd =
π

k
ǫabcd and Tr(T aT b) = δab . (11)

Note that in this case fabcd is real and totally antisymmetric. This means that the La-

grangian L
su(2)×su(2) in fact has N = 8 supersymmetry and SO(8) R-symmetry and is

precisely the Lagrangian of [2].

From 3-algebras to the ABJM theory

To obtain the U(n)×U(n) ABJM models that describe multiple M2-branes from the above

we must gauge the rigid U(1)B symmetry ZA → eiθZA, ψA → eiθψA enjoyed by (1). Given
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any rigid supersymmetric theory with a global symmetry it is always possible to gauge

this symmetry and preserve supersymmetry, provided that the supersymmetries commute

with the global symmetries (otherwise the supersymmetries would have to become local

and hence one would have to include gravity).

To gauge the U(1)B we simply introduce an Abelian gauge field Bµ and redefine the

covariant derivative Dµ to be

DµZ
A
a = ∂µZ

A
a − Ãb

µaZ
A
b − iBµδ

b
aZ

A
b (12)

and similarly for DµψAa (Z̄A and ψA have the opposite U(1)B charge and hence the sign

of Ãµ is flipped in DµZ̄A and Dµψ
A). Under the U(1)B gauge transformation we have

Bµ → Bµ + ∂µθ (13)

and clearly the action is now invariant under U(1)B gauge transformations so that the full

gauge algebra is su(n) × su(n) × u(1)Q × u(1)B (although again the U(1)Q symmetry is

trivial).

Our next step is to make the above action invariant under N = 6 supersymmetry. The

transformations of ZA, ψA and Ãa
µb remain the same, except that the covariant derivative

now includes the Bµ gauge field. We will need δBµ which we simply take to be

δBµ = 0 . (14)

Since locally the theory is the same, the variation of the action is unchanged with the

exception of terms in the supervariation of the Fermion kinetic term involving [Dµ,Dν ],

which now includes a contribution from Gµν = ∂µBν − ∂νBµ. Indeed we find

δLgauged
su(n)×su(n) = −1

2
Gµν ǭABγ

µνψAaZB
a +

1

2
Gµν ǭ

ABγµνψAaZ̄
a
B

= −1

2
εµνλGµν ǭABγλψ

AaZB
a +

1

2
εµνλǭABGµν ǭγλψAaZ̄

a
B , (15)

where we have used γµν = εµνλγλ. To cancel this we introduce a new field Qµ and a new

term in the Lagrangian

L
u(n)⊕u(n) = Lgauged

su(n)⊕su(n) +
k′

8π
ǫµνλGµνQλ , (16)

where in the first term on the right hand side we have included the Bµ gauge field and k′

is an as of yet undetermined real constant. We see that this will be supersymmetric if we

take

δQλ =
4π

k′
ǭABγλψ

AaZB
a − 4π

k′
ǭABγλψAaZ̄

a
B . (17)

The form for the supersymmetry transformations seems odd since δBµ = 0 and hence

[δ1, δ2]Bµ = 0 so one might worry about closure. However on-shell we have Gµν = 0 so

that, on-shell,

[δ1, δ2]Bµ = vνGνµ vν =
i

2
(ǭCD

2 γνǫ1CD) , (18)

4



which is a translation and a U(1)B gauge transformation. We must also check the closure

on Qµ. Here we find that

[δ1, δ2]Qµ =
k′

4π
vνεµνλ(iZ

A
a D

λZ̄a
A − iDλZA

a Z̄
a
A − ψ̄A

a γ
λψa

A) +DµΛ , (19)

where Λ = k′

4π (ǭ
AC
2 ǫ1BC − ǭAC

1 ǫ2BC)Z̄
a
BZ

B
a . Using the on-shell condition that comes from

the Lagrangian

Hµν = − k′

4π
εµνλ(iZ

A
a D

λZ̄a
A − iDλZA

a Z̄
a
A − ψ̄A

a γ
λψa

A) , (20)

where Hµν = ∂µQν − ∂νQµ, we again find a translation with u(1)Q × u(1)B gauge trans-

formation

[δ1, δ2]Qµ = vνHνµ +DµΛ . (21)

Thus we see that Qµ, which started off life as a Lagrange multiplier for the constraint

Gµν = 0, naturally inherits a u(1) gauge symmetry of its own. The closure on the other

fields remains unchanged from the su(n) × su(n) Lagrangian, except that the connection

now involves the u(1)B gauge field.

If we write Bµ = AL
µ −AR

µ and Qµ = AL
µ +AR

µ then, up to a total derivative, the new

term we have added is

L
u(1)⊕u(1) CS =

k′

4π
ǫµνλAL

µ∂νA
L
λ − k′

4π
ǫµνλAR

µ ∂νA
R
λ , (22)

which is just the Chern-Simons Lagrangian for a u(1)⊕ u(1) gauge theory.

We have therefore constructed a family of N = 6 Chern-Simons-matter Lagrangians

with gauge fields that take values in a u(1) ⊕ su(n) ⊕ u(1) ⊕ su(n) Lie-algebra and are

parametrised by k and k′. From the point of view of supersymmetry the levels k and k′ are

arbitrary and although k must be an integer in the quantum theory, k′ need not be (indeed

k′ can be absorbed into the definition of Qλ), e.g. see [12]. The possibility of choosing

different levels was also pointed out in [5].

With the choice1

k′ = nk , (23)

we see that the addition of the U(1)×U(1) Chern-Simons term simply converts the su(n)×
su(n) level (k,−k) Chern-Simons term LCS with connection Ãa

b in the original Lagrangian

(9) into a u(n)× u(n) level (k,−k) Chern-Simons term with connection Ã
L/R
µ + iA

L/R
µ . In

terms of A
R/L
µ , we have

δAR
λ = δAL

λ =
2π

nk
ǭABγλψ

AaZB
a − 2π

nk
ǭABγλψAaZ̄

a
B . (24)

1Here we agree with the literature [11, 13, 14] but normalise the U(n) generators with T a
∈ SU(n) for

a = 1, ..., N2
− 1 and T 0 = 1lN×N , such that the coefficients in the expression for the covariant derivative

(12) remain unchanged.
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Taking the global gauge group to be U(n)× U(n) we have constructed the N = 6 ABJM

theory [5].

Finally we mention a crucial subtlety: the decomposition of U(n) is not strictly in

terms of SU(n)× U(1). In particular given any pair ω ∈ U(1) and A0 ∈ SU(n) we obtain

an element A = ωA0 ∈ U(n). However the inverse map is not unique since, for a given

A ∈ U(n), we have

ωn = det(A) , A0 = ω−1A , (25)

and hence there are n solutions for ω and A0 related by ω → e2πi/nω, A0 → e−2πi/nA0.

Thus the map from U(1)× SU(n) → U(n) is an n-fold cover and so the isomorphism is

U(n) ≃ SU(n)×U(1)

Zn
. (26)

Although these modifications do not change anything at the level of the Lagrangian or

the classical theory, they do change the quantisation conditions for the various fluxes, as

we shall see in the next section, which will be important in the next section when we

calculate the moduli space of the theory in order to compare with the answer expected

from M-theory.

Dual Photon Formulation

Having arrived at the standard form for the ABJM theory we can take a step back and

consider the equivalent Lagrangian (16), but once again with k′ = nk. Integrating by parts

and discarding a boundary term leads to

L
u(n)×u(n) = Lgauged

su(n)×su(n) +
nk

4π
εµνλBµ∂νQλ . (27)

Next we introduce a Lagrange multiplier term2

L
u(n)×u(n) = Lgauged

su(n)×su(n) +
nk

8π
εµνλBµHνλ +

n

8π
σεµνλ∂µHνλ . (28)

Integrating the last term by parts we find

L
u(n)⊕u(n) = Lgauged

su(n)⊕su(n) +
nk

8π
εµνλBµHνλ −

n

8π
εµνλ∂µσHνλ . (29)

We can now integrate out Hµν to see that

Bµ =
1

k
∂µσ . (30)

Thus under a U(1)B gauge transformation we find

σ → σ + kθ . (31)

2Aspects of this procedure have also appeared in [15, 16].
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Substituting back we find that the u(n)⊕u(n) Lagrangian is equivalent to the su(n)⊕ su(n)

Lagrangian with new variables:

L
u(n)⊕u(n)(Z

A, ψA, Ã
a
µb, Bµ, Qµ) ∼= L

su(n)⊕su(n)(e
i
k
σZA, e

i
k
σψA, Ã

a
µb) . (32)

In particular the variables ẐA = e
i
k
σZA and ψ̂A = e

i
k
σψA are U(1)×U(1) gauge invariant.

Finally, we need to determine the periodicity of σ which follows from a quantisation

condition on the flux H. Let us review the familiar Dirac quantisation rule. We start by

considering the phase induced by the parallel transport over a closed path γ of a field, Ψ,

that couples to a U(1) field Aµ through DµΨ = ∂µΨ − iAµΨ. We find that the resulting

wavefunction is related to the initial wavefunction by a U(1) transformation

Ψγ = ei
∮
γ
AΨ0 = ei

∫
D

FΨ0 , (33)

where D is a two-dimensional surface whose boundary is γ. However the choice of D is

not unique. Given any two such choices D and D′ we require that the phase, viewed as an

element of the gauge group U(1), is the same. This implies that

ei
∫
D−D′ F = 1 (34)

and hence
∫
Σ F ∈ 2πZ, where Σ = D −D′ is any closed surface. However in our case the

gauge group is (U(1)×SU(n))/Zn and we need only require that
∫
Σ F ∈ 2π

n Z, i.e. the U(1)

phases computed by two different paths must be equal modulo Zn. Thus we see that the

quantisation condition is ∫
dFL/R ∈ 2π

n
Z . (35)

This fractional flux quantization condition arises because the global gauge group is (SU(n)×
SU(n))/Zn instead of SU(n)×SU(n), with Zn the relative centre of the two SU(n) factors.

Thus we refer to the resulting Chern-Simons matter theory as the (SU(n) × SU(n))/Zn-

theory.3 This should be compared with a theory with the same L
su(n)⊕su(n) Lagrangian

but global SU(n) × SU(n) gauge symmetry and no fractional flux quantisation which we

refer to as the SU(n)× SU(n)-theory.

After integrating out H, we are left with the condition B = 1
kdσ. Therefore, locally,

FL − FR = dB vanishes so that FL and FR must have the same flux. Note that we do not

require that σ is globally defined so there can be a non-zero Wilson line for the gauge field

B. However, since FL − FR = dB = 0 in any open set where σ is single-valued, it follows

that FL = FR globally. This generalises the flux quantisation argument of [17] to allow for

a nonvanishing but trivial gauge field and applies to the full theory, not just the moduli

space. Since H = FL + FR we have
∫
dH =

∫
1

2
ǫµνλ∂µHνλ ∈ 4π

n
Z (36)

3For theories with bifundamental matter the (SU(n)× SU(n))/Zn group, where the centre of one SU(n)

factor is identified with the inverse centre of the other, is indistinguishable from SU(n))/Zn×SU(n))/Zn ≃

PSU(n)× PSU(n).
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and σ has period 2π. Note that since eiθ is a U(n) transformation, θ also has period 2π.

Thus we can fix the U(1)B symmetry using (31) and set σ = 0 mod 2π. However, this

periodicity imposes an additional identification on the U(1)-invariant fields

ẐA ∼= e
2πi
k ẐA and ψ̂A

∼= e
2πi
k ψ̂A . (37)

We are therefore told that the U(n)×U(n) ABJM theory is equivalent to a Zk identification

on the (SU(n) × SU(n))/Zn-theory. Note that the Zn quotient arises here as the relative

part of the two Zn factors from U(n) ≃ (U(1) × SU(n))/Zn.

However we should be careful: Our discussion so far has been largely based on local

aspects of the theory and since U(n) is not globally the same as U(1)× SU(n) there could

be obstructions at a global level. We will see in the following that the U(n)×U(n) theories

can only be viewed as Zk identifications when n and k are coprime. In particular, for k = 1

the Zk identification is clearly trivial and one simply has the (SU(n)× SU(n))/Zn-theory.

Note that, had we considered instead a U(1)× SU(n)×U(1)× SU(n) gauge theory, we

would not have been able to use the fractional flux quantisation condition and σ would have

had period 2π/n. In addition, we would have been free to have any integer value for the

U(1) level k′ and as a result we would find a Zk′ identification. From this perspective we

would arrive at a SU(n)×SU(n)-theory by starting with U(1)×SU(n)×U(1)×SU(n) but

take k′ = k and the usual Dirac quantisation. However, as we will see in the next section,

the moduli space of the resulting theory would then not be the same as the U(n) × U(n)

ABJM models due to the different flux quantisation condition on the SU(n) factor. Finally,

one might consider other quantisation conditions which lead to different moduli spaces [18].

Moduli Space of n = 2 theories

To test the above analysis it is insightful to compute the moduli space of the (SU(n) ×
SU(n))/Zn-theory and then compare with the U(n) × U(n) answer. To begin with, we

consider the n = 2 case in detail.

We observe that the solutions to V = 0 are obtained by taking [ZA, ZB ; Z̄C ] = 0 for

all A,B,C. This is solved by taking the ZA, which are 2 × 2 matrices, to be mutually

commuting. Recall that the ZA are in the bi-fundamental representation so that under a

gauge transformation

ZA ∼= gLZ
Ag−1

R . (38)

Thus, modulo gauge transformations, we can take without loss of generality

ZA =
1√
2
rA1 − i√

2
rA2 σ3 . (39)

The gauge symmetries that preserve this form, for generic rA1 , r
A
2 , must satisfy

gLg
−1
R = a+ ibσ3 gLiσ3g

−1
R = c+ idσ3 (40)
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for arbitrary constants a, b, c, d. The first condition can be used to deduce that

gL = eiθσ3gR , (41)

for an arbitrary θ, whereas the second condition puts a constraint on gR

gRiσ3g
−1
R = eiθ

′σ3 , (42)

for an arbitrary θ′. Since the left hand side is traceless we see that this is only possible if

θ′ = ±π/2 so that

gRiσ3g
−1
R = ±iσ3. (43)

Thus gR is generating a discrete identification

rA2
∼= −rA2 (44)

and one should think of rA1 as the centre-of-mass coordinate, while rA2 as the relative

separation between two indistinguishable M2-branes. To this end we write

rA1 =
1

2
(zA1 + zA2 ) and rA2 =

i

2
(zA1 − zA2 ) , (45)

so that the gR transformation is now zA1 ↔ zA2 . In addition we have a continuous U(1)

action generated by gL = eiθσ3 . This acts on zA1 and zA2 as

zA1 → eiθzA1 , zA2 → e−iθzA2 . (46)

The subtle part of the calculation comes from considering the continuous gauge symmetries

g = eiθ. Reducing to the moduli space fields with with Aµ = Ã3
Lµσ

3 and Ãµ = Ã3
Rµσ

3, we

find that the Chern-Simons action (9) becomes

L = −Dµz
A
1 Dµz̄1A −Dµz

A
2 Dµz̄2A +

k

2π
ǫµνλÃ3

Lµ∂νÃ
3
Lλ −

k

2π
ǫµνλÃ3

Rµ∂νÃ
3
Rλ , (47)

where

Dµz
A
1 = ∂µz

A
1 − i(Ã3

Lµ − Ã3
Rµ)z

A
1 , Dµz

A
2 = ∂µz

A
2 + i(Ã3

Lµ − Ã3
Rµ)z

A
2 . (48)

Following the previous discussion we write B̃µ = Ã3
Lµ − Ã3

Rµ and Q̃µ = Ã3
Lµ + Ã3

Rµ so that

the moduli space Lagrangian is

L = −Dµz
A
1 Dµz̄1A −Dµz

A
2 Dµz̄2A +

2k

8π
ǫµνλB̃µH̃νλ , (49)

where now H̃νλ = ∂νQ̃λ − ∂λQ̃ν . We can introduce a Lagrange multiplier term

L = −Dµz
A
1 Dµz̄1A −Dµz

A
2 Dµz̄2A +

2k

8π
ǫµνλB̃µH̃νλ +

2

8π
χǫµνλ∂µH̃νλ . (50)

Integrating out H̃µν gives B̃µ = 1
k∂µχ and the Lagrangian can be written as

L = −∂µz̃A1 ∂µ ¯̃z1A − ∂µz̃
A
1 ∂

µ ¯̃z2A , (51)
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where z̃A1 = eiχ/kzA1 and z̃A2 = e−iχ/kzA2 are gauge invariant.

It is once again necessary to determine the periodicity of the dual photon χ. The

argument here is identical to what was discussed around Eq. (36). Namely, since dB̃ = 0

we have that F̃ 3
L = F̃ 3

R, where F̃
3
L/R = dÃ3

L/R, and the quantisation condition is

∫
dF̃ 3

L/R ∈ 2π

2
Z . (52)

The factor of 2 in the denominator arises because the gauge group is (SU(2) × U(1))/Z2,

in the same manner that n appeared in (35). Thus, since H̃ = F̃ 3
L + F̃ 3

R we have that

∫
dH̃ =

∫
1

2
ǫµνλ∂µH̃νλ ∈ 4π

2
Z (53)

and hence χ has period of 2π. We conclude that the vacuum moduli space scalars are

subject to the identification

zA1
∼= e

2πi
k zA1 , zA2

∼= e−
2πi
k zA2 . (54)

In summary, we find that the sum of identifications on the vacuum moduli space,

including the ones coming from (37), act as

gU(1) : zA1
∼= e

2πi
k zA1 , zA2

∼= e
2πi
k zA2

g12 : zA1
∼= zA2 (55)

gSU(2) : zA1
∼= e

2πi
k zA1 , zA2

∼= e−
2πi
k zA2 .

The first one is a Zk coming from integrating out the U(1)B , and acts on the whole theory,

not just the moduli space. The other two are consequences of the (SU(n) × SU(n))/Zn

gauge symmetry acting on the vacuum moduli space and generate the dihedral group of

order 2k, Dk ≃ Z2 ⋉ Zk. This is consistent with the calculation in [6, 7] which found

D2k, since the difference k → 2k arises because a fractional quantisation condition was not

allowed, corresponding to an SU(2)× SU(2) global gauge group.

We now need to compare these moduli space identifications with the answer for the

U(2)×U(2) ABJM theory that describes two indistinguishable M2-branes in R
8/Zk, that

is

Mk =
(R8/Zk)× (R8/Zk)

Z2
. (56)

In this case the moduli space quotient group is generated by

g1 : zA1
∼= e

2πi
k zA1 , zA2

∼= zA2

g12 : zA1
∼= zA2 (57)

g2 : zA1
∼= zA1 , zA2

∼= e
2πi
k zA2 .

Here we see that gU(1) = g1g2 and gSU(2) = g−1
2 g1. However in order to invert these relations

we need to solve g21 = gU(1)gSU(2) and g22 = gU(1)g
−1
SU(2), i.e. take the square root in the

10



group generated by gU(1) and gSU(2). A short calculation shows that this is only possible if

k is odd. Thus we conclude the we obtain the correct moduli space only when k is odd.

The value k = 1 is special: The orbifold action is trivial and the moduli space of the

SU(2) × SU(2)-theory is the one for 2 M2-branes in flat space. As a by-product we see

that for k = 1 the N = 6 U(2) × U(2)-theory in fact has N = 8 supersymmetry. This

has also been shown with the help of monopole operators in [5, 15, 16], although here the

physics also have a formulation in terms of the manifestly N = 8 supersymmetric, local

Lagrangian.

Moduli Space In General

We will now see that the problem we faced for n = 2 and k-even extends more generally.

For a general n the vacuum moduli space is obtained by setting

ZA = diag(zA1 , ..., z
A
n ) . (58)

If we consider gauge transformations of the form gL = gR then ZA behaves as if it were

in the adjoint of SU(n) and hence cannot tell the difference between the SU(n) and U(n)

theories. The result is that the gauge transformations which preserve the form of ZA simply

interchange the eigenvalues zAi leading to the symmetric group acting on the n M2-branes.

Next we can consider transformations in the diagonal subgroup of SU(n) or U(n). These

act to rotate the phases of the zAi , however in the SU(n)-theory they only do so up to the

constraint that the diagonal elements must have unit determinant. In the U(n)-theory this

is not the case and there are n independent U(1)’s, one for each zAi , and each of these

U(1)’s leads to a Zk identification on the moduli space. Thus for U(n) we indeed see that

we find n commuting copies of Zk along with the symmetric group acting on the zAi .

For the SU(n)-theory, even including the Zk action of U(1)B , this will not always be the

case. In particular, note that since the determinant of the gauge transformations coming

from SU(n) is always one we have, for an arbitrary element of the moduli space orbifold

group,

det(glBU(1)g0) = det(glBU(1)) = e2πinlB/k . (59)

Here g0 represents a generic element of the moduli space orbifold group obtained in the

(SU(n) × SU(n))/Zn-theory. On the other hand, the moduli space orbifold group of the

U(n)-theory generated by n independent U(1)’s has

det(gl11 ...g
ln
n ) = e2πi(l1+...+ln)/k . (60)

If these two theories are to give the same moduli space then we must be able to have

e2πi(l1+...+ln)/k = e2πinlB/k for any possible combination of li’s. Thus we are required to

solve

l = n lB mod k , (61)
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for lB as a function of l, n, k, where l = l1 + ...+ ln is arbitrary. Hence, if this equation can

be solved for lB then g0 = e−2πilB/kgl11 ...g
ln
n is an element of SU(n) and can arise from the

vacuum moduli space quotient group of the(SU(n)× SU(n))/Zn-theory.

We will now show that (61) has solutions for all l iff n and k are coprime. In general

the solution is lB = (l − pk)/n for any p ∈ Z; however we require that lB is an integer. It

is clear that we may view l, k and p as elements of Z/Zn and we are therefore required to

solve the following equation for p

l = pk mod n . (62)

This always has solutions if the map ϕ : p 7→ pk is surjective on Z/Zn. Since Z/Zn is a finite

set this will be the case iff ϕ is also injective. Thus we wish to show that pk = p′k mod n

implies p = p′. This is equivalent to showing that qk = 0 mod n implies q = 0 mod n.

Now suppose that qk = rn. If k and n are coprime then all the prime factors of k must be

in r and all the prime factors of n must be in q. Thus q = 0 mod n. On the other hand if

k and n have a common factor d then we find a non-zero solution by taking q = n/d and

r = k/d. Thus qk = 0 mod n has no non-trivial solutions for q iff n and k are coprime.

This result can been restated as follows: Although locally U(n) ≃ U(1)×SU(n), this is

not true globally. Even though the Lagrangian is defined by local information at the Lie-

algebra level, the map we constructed, reducing the U(n)× U(n)-theory to a Zk quotient

of the (SU(n) × SU(n))/Zn-theory, involves finite gauge transformations and is therefore

sensitive to global properties of U(n). The above discussion shows that the vacuum moduli

space quotient group of the U(n) × U(n) theories is not of the form Zk × G0, where

G0 ⊂ SU(n), unless n and k are relatively prime.

We have therefore shown that if n and k have a common factor then the vacuum moduli

spaces for the two theories do not agree, as there is a global obstruction to mapping the

U(n)×U(n)-theory to a Zk quotient of the (SU(n)×SU(n))/Zn-theory. On the other hand,

if n and k are coprime then the vacuum moduli space calculated in the (SU(n)×SU(n))/Zn-

theory, along with the Zk identification coming from U(1)B , agrees with the vacuum moduli

space of the U(n) × U(n)-theory. It is therefore natural to conjecture that in these cases

the U(n)×U(n) theories are Zk quotients of the (SU(n)× SU(n))/Zn theories.

The moduli space of the k = 2 SU(2)× SU(2)-theory

On a related note, the moduli space of SU(2) × SU(2) N = 8 theories was calculated in

[6, 7] and found to be (R8 × R
8)/D2k, where D2k ≃ Z2 ⋉ Z2k the dihedral group of order

4k. As we have already mentioned, the extra factor of 2 arises due to the standard Dirac

quantisation condition when the global gauge group is SU(2)× SU(2).

For the particular case of k = 2 one has [6, 7]

g12 : zA1
∼= zA2 (63)

gSU(2) : zA1
∼= izA1 , zA2

∼= −izA2 .
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Note that because of the modified flux quantisation condition this agrees with k = 4 in

(55). Interestingly, by reverting back to the rA1 , r
A
2 variables of (45) we have

g12 : rA1
∼= rA1 , rA2

∼= −rA2 (64)

gSU(2) : rA1
∼= rA2 , rA2

∼= −rA1 .

Although these variables might look contrived from the perspective of the ABJM theory

they arise very naturally in the SO(4) formulation [6]. From these we can construct

g12 : rA1
∼= rA1 , rA2

∼= −rA2 (65)

g12 g
2
SU(2) : rA1

∼= −rA1 , rA2
∼= rA2

gSU(2) g12 : rA1
∼= rA2 , rA2

∼= rA1 .

These identifications are the ones expected for the moduli space (R8/Z2 ×R
8/Z2)/Z2 of 2

M2-branes on a Z2 orbifold singularity of M-theory, as also shown in [6].

For k = 2 the SU(2) × SU(2)-theory was interpreted in [6, 7] as the IR limit of an

SO(5) gauge theory describing two D2-branes on an Õ2
+

orientifold of type IIA string

theory, which is an M-theory Z2 orbifold with discrete torsion. However, there also exists

another type IIA orientifold denoted O2− and, as was pointed out in [5], corresponding to

an O(4)-theory on the D2-brane worldvolume, which in the IR lifts to an M-theory orbifold

without torsion. This has an indistinguishable moduli space from the SO(5) case, since the

extra fractional brane in the latter is stuck at the fixed point and does not contribute to

the moduli space dynamics. The orbifolds with and without torsion are the only expected

IR fixed points with N = 8 supersymmetry and (R8/Z2 × R
8/Z2)/Z2 moduli space and

correspond to the U(2) × U(2) ABJM and U(2) × U(3) ABJ theories respectively. Given

the similarity between the Lagrangians, manifest symmetries (such as Parity) and the

agreement between the moduli space calculations, it is also natural to conjecture that the

n = 2, k = 2 (SU(2) × SU(2))/Z2-theory is equivalent to the k = 2 ABJM theory4 and

therefore the IR fixed point of the the maximally supersymmetric O(4) gauge theory in

2+1d.

Summary

In this paper we have discussed the relation of U(n) × U(n) ABJM theories to (SU(n) ×
SU(n))/Zn theories. In particular we showed that locally, at the level of Lagrangians, the

U(1)B gauge symmetry could be integrated out to give an (SU(n) × SU(n))/Zn-theory

along with a Zk identification on the fields. However we also saw that there was a global

obstruction to this when n and k are not coprime.

As a result we found that the U(2)×U(2) ABJM theories can be viewed as Zk quotients

of the (SU(2)× SU(2))/Z2, N = 8 theories when k is odd. In particular for k = 1 they are

4Note that the ABJM theory at n = 2, k = 2 is not related to the SU(2)× SU(2)-theory as discussed in

the previous section.
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identical. However if one considers the SU(2)×SU(2), N = 8-theory of [2, 3] at k = 2, then

this has the same moduli space, global supersymmetries and manifest Parity as the k = 2

U(2) × U(2) ABJM theory. Thus we conjectured that these two theories are equivalent

and the original N = 8, su(2) × su(2) Lagrangian of [2, 3] can be used to define quantum

theories for two M2-branes on R
8 and R

8/Z2 (without discrete torsion) when k = 1 or

k = 2 respectively and with all the symmetries manifest.
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