arXiv:1001.4779v3 [hep-th] 14 Apr 2010

RELATING U(N) x U(N) 1O SU(N) x SU(N)
CHERN-SIMONS MEMBRANE THEORIES

NEIL LAMBERT! and CONSTANTINOS PAPAGEORGAKIS?

Department of Mathematics
King’s College London
The Strand, WC2R 2LS

London, UK

ABSTRACT

By integrating out the U(1)p gauge field, we show that the U(n) x U(n) ABJM
theory at level k is equivalent to a Zj identification of the (SU(n) x SU(n))/Z,,
Chern-Simons theory, but only when n and k are coprime. As a consequence,
the k = 1 ABJM model for two M2-branes in R® can be identified with the
N = 8 (SU(2) x SU(2))/Zs theory. We also conjecture that the U(2) x U(2)
ABJM model at k = 2 is equivalent to the N =8 SU(2) x SU(2)-theory.

'E-mail address: neil.lambert@kcl.ac.uk
2E-mail address: costis.papageorgakis@kcl.ac.uk


http://arxiv.org/abs/1001.4779v3
mailto:neil.lambert@kcl.ac.uk
mailto:costis.papageorgakis@kcl.ac.uk

Introduction

There has been considerable activity in the past two years leading to a new class of highly
supersymmetric three-dimensional conformal Chern-Simons theories which control the dy-
namics of multiple M2-branes in M-theory. This work started with the papers [1-4], which
were the first to construct interacting theories with the correct symmetries; AV = 8 super-
symmetry and SO(8) R-symmetry. These theories have no continuous coupling constant
but they do admit a discrete coupling k that arises as the level of the Chern-Simons terms.
However, this model is only capable of potentially describing two M2-branes and its space-
time interpretation is unclear. The generalisation to an arbitrary number of n M2-branes
in a R®/Z;, orbifold was provided by the celebrated ABJM models [5] which are U(n) x U(n)
Chern-Simons-matter theories with N' = 6 supersymmetry and SU(4) R-symmetry.

The main aim of this note is to elucidate the relation between the N'=6 U(n) x U(n)
ABJM models and (SU(n) x SU(n))/Z, theories. As already noted in [5], the relative
U(1)p gauge field of the ABJM theories can be naturally integrated out. Since U(n) ~
(U(1) x SU(n))/Zy,, naively the effect of this is to reduce the U(n) x U(n) theory to a Zj
quotient of the (SU(n) x SU(n))/Z, theory. However we will see that there is a global
obstruction to this Zj identification unless n and k are coprime.

We will be particularly interested in the case with n = 2, where the Lagrangian is
precisely the original proposal of [2, 3] and has N/ = 8 supersymmetry and SO(8) R-
symmetry. According to the above, the N'=6 ABJM U(2) x U(2) theory can be mapped
to the NV = 8, (SU(2) x SU(2))/Zs theory along with the Z, identification on the fields when
k is odd. For k = 1 the identification is trivial and hence the (SU(2) x SU(2))/Zs-theory
at k = 1 describes two M2-branes in flat space.

We also seek to clarify statements in [6, 7] which computed the moduli space of the
N = 8 theory and argued that it corresponded to the IR limit of an SO(5) orbifold in type
ITA, obtained by including one unit of discrete torsion for the background 3-form gauge
field. In fact the discussion in [6, 7] is insufficient to distinguish between the orbifolds with
and without torsion since they both have the same moduli space. Our discussion here
shows that at n = & = 2 the ABJM model cannot be reduced to a Zs quotient of the
(SU(2) x SU(2))/Zs theory. However, the N' = 8 SU(2) x SU(2) theory at k = 2 does give
the correct moduli space. This, along with the similarity between the two Lagrangians
leads us to conjecture that the SU(2) x SU(2) theory obtained from the Lagrangian of [2—4]
has an M-theory interpretation at k = 2 and is equivalent to the U(2) x U(2) Chern-Simons
theory of [5], corresponding to the IR fixed point of a 2+1d O(4) orbifold theory. These
results should make the connection between the theories of [1-4, 8] and ABJM transparent
and explain any aspects of M-theory physics captured by the former.

Note that the Chern-Simons-matter Lagrangians are entirely determined by the 3-
algebra data which includes the Lie algebra of the gauge group. In the quantum theory



one must also specify the full global gauge group. This choice manifests itself by allowing
for different flux quantization conditions which in turn yield distinct quantum theories,
with the same symmetry algebra. To account for this we will label the Lagrangian by is
Lie algebra but the associated quantum theories will be labeled by the global gauge group.

N = 6 Chern-Simons theories from 3-algebras

Let us start by considering the general form of three-dimensional Lagrangians with scale
symmetry and N = 6 supersymmetry [8]:

L = —Tx(DuZ*,D"Za) —iTe(p* 4" Dutpa) =V + Los
~iTe (0", [V, 2% Zi)) + 2Te(0, [, 275 24) (1)
+%€ABCDTF(7,5A, (2¢,ZP; ")) — %€ABCDTT(ZD, [a,¥B; Zc))
where
Vo= ST(rg TEy) )
5P = (29,27 25) - 365127, 27; i) + LRI, 2% ),

and Lcg is a Chern-Simons term that we will describe in detail below. The bracket [-, ;]
is antisymmetric in the first two entries and defines the triple product of the 3-algebra
where the scalars and fermions take values. Introducing a basis T for the 3-algebra, so
that Z4 = Z;IAT“, YA = Ya T allows us to use structure constants defined through

[T, T% T, = £ T . (3)

Here we use notation where complex conjugation raises and lowers both A and a indices
(whereas in [8] a raised a index was given a bar).

The supersymmetry transformations are

6z) = iePypy
Spa = 'DuZieap + faZl Z{ Zéeap + faZS ZP Zhecn
(Liucd = _iEAB’YMZ&AwBbfcabd + iEAB’YuZAbw%bead ) (4)

where the covariant derivative is D, Z4' = 9,77 —fl,def and similarly for the other fields.

One recovers the general form of the ABJM and ABJ Lagrangians [5, 9] by taking the
3-algebra to be n x m complex matrices with

2T

k

and introducing a metric on the 3-algebra

(24,25 Z0) = VAAY A AV AW A (5)

Te(T,, T°) = te(T]T?) | (6)



where on the right hand side tr is the ordinary matrix trace.

The gauge symmetry is generated by
624 = A [Z4, Ty; T¢) = M, Z4 — ZAMp , (7)

where My = 2ZAPT,(T€)T, Mg = ZEAP(T°)1T}, and (AP.)* = —A%. Thus we see that
ME/R = —Mpr and hence they can be viewed as generators of u(n) x u(m) with Z4 and
14 in the bi-fundamental representation.

As a result, the action of the gauge fields flzb on Z2 can be respectively rewritten in

terms of left- and right-acting u(n) and u(m) gauge fields flﬁ/ R

D, Z* = 0,2* —iALz* + iz Af} (8)
and the term Lo in (1) is then a level (k, —k) Chern-Simons term for u(n) x u(m)
ko N T R
Los = e (tr(Aﬁ&,Af - 2ALALAL) - (A0, Af - §A5A§A§)> o

The Chern-Simons level k is integer whenever tr is the trace in the fundamental represen-
tation.

However, it is important to note that tr(Mp) = tr(Mg). Thus if My = 0 L,xn
and Mg = i0g 1,,xm, we have n 0 = m 0r. Since the action of these Abelian U(1)’s is
ZA4 — el zAe—0r — ¢i(0L=0r) ZA  these cancel for the ABJM case of m = n and hence
the gauge algebra is really su(n) @ su(n) @ u(1)g, where the overall U(1)g acts trivially on
all fields. This is not true in the ABJ case, where m # n and the gauge group is an honest
u(n) @ u(m). This is in line with the observations of [10, 11].

As an example let us consider the particular choice where Z4 are 2x 2 complex matrices.
A basis of such matrices is provided by

a

i i i 1
——01,——=09, ———=03, — 1 , 10
{\/51\/52\/53\/52“} 10)
where a = 1,2, 3,4, 0; are the Hermitian Pauli matrices: 0,05 = ;5 —i—z‘eijkak and the factor

fabcd

of 4 is chosen to ensure that the structure constants are real. In particular, using (5)

and (6), one sees that

ot = Zete!and - TH(TOTY) = 5. (11)

Note that in this case f2°¢ is real and totally antisymmetric. This means that the La-
grangian Lg,(o)xsu(2) in fact has N = 8 supersymmetry and SO(8) R-symmetry and is
precisely the Lagrangian of [2].

From 3-algebras to the ABJM theory

To obtain the U(n) x U(n) ABJM models that describe multiple M2-branes from the above
we must gauge the rigid U(1)p symmetry Z4 — ¢ Z4, 14 — 1) 4 enjoyed by (1). Given



any rigid supersymmetric theory with a global symmetry it is always possible to gauge
this symmetry and preserve supersymmetry, provided that the supersymmetries commute
with the global symmetries (otherwise the supersymmetries would have to become local
and hence one would have to include gravity).

To gauge the U(1)p we simply introduce an Abelian gauge field B,, and redefine the
covariant derivative D, to be

Dz} =0,z - A,z —iB, &Y 7! (12)

and similarly for D14, (Z4 and 1 have the opposite U(1)p charge and hence the sign
of flu is flipped in D,Z4 and D,1?). Under the U(1)p gauge transformation we have

B, — B, + 0,0 (13)

and clearly the action is now invariant under U(1)p gauge transformations so that the full
gauge algebra is su(n) x su(n) x u(l)g x u(l)p (although again the U(1)g symmetry is
trivial).

Our next step is to make the above action invariant under N' = 6 supersymmetry. The
transformations of Z4, ¢4 and flzb remain the same, except that the covariant derivative
now includes the B,, gauge field. We will need 0B, which we simply take to be

5B, =0 . (14)

Since locally the theory is the same, the variation of the action is unchanged with the
exception of terms in the supervariation of the Fermion kinetic term involving [D,,, D, ],
which now includes a contribution from G, = 9,5, — 9, B,,. Indeed we find

1 1 _
5£§3(ung)e>[<isu(n) = _§GHV€AB7MV¢AQZ@B + §GMV€AB’7MV7;Z)AaZ%
1 1 _
= —§€”MGW€AB%\¢AGZE + §€”M€ABGW€7A¢ACLZ% : (15)

where we have used v* = e#~,. To cancel this we introduce a new field (), and a new
term in the Lagrangian
k/

auged VA
Lumsun) = £§u(7f)@su(n) + geu Gu@x , (16)

where in the first term on the right hand side we have included the B, gauge field and &’
is an as of yet undetermined real constant. We see that this will be supersymmetric if we
take in in )
0Qx = pgAB’W/JA“Z;B - ?gAB’YAwAaZ% : (17)

The form for the supersymmetry transformations seems odd since 0B, = 0 and hence
[01,62]B, = 0 so one might worry about closure. However on-shell we have G, = 0 so
that, on-shell,

v v Z v
61,821, = "G 0 = S(& PV ebp) (18)



which is a translation and a U(1)p gauge transformation. We must also check the closure
on (),. Here we find that

/

k . ~a . ~a I a
01,02]Qu = -0 eun (125 D725 = iD 2128 = U " ¥h) + Dy (19)

AC

where A = 4k—(E2 €1BC — E’f‘CEQ Bc)Z%Zf . Using the on-shell condition that comes from

7
the Lagrangian
/

k . ~a . 7a N a
Hy,, = _EEWA(ZZL?D)\ZA - ZDAZ;‘ZA - w?’YAwA) ’ (20)

where Hy,, = 0,Q, — 0,Q,,, we again find a translation with u(1)g x u(1)p gauge trans-
formation
[(51, 52]62” = ?)V v + DMA . (21)

Thus we see that @, which started off life as a Lagrange multiplier for the constraint
G = 0, naturally inherits a u(1) gauge symmetry of its own. The closure on the other
fields remains unchanged from the su(n) x su(n) Lagrangian, except that the connection
now involves the u(1)p gauge field.

If we write B,, = Aﬁ — Aff and Q, = Aﬁ + Aff then, up to a total derivative, the new
term we have added is

K. K.
‘Cu(l)@u(l) cs — Eeu )\AﬁauAf - Eeu )\AﬁaVAR s (22)

which is just the Chern-Simons Lagrangian for a u(1) @ u(1) gauge theory.

We have therefore constructed a family of N/ = 6 Chern-Simons-matter Lagrangians
with gauge fields that take values in a u(1) @ su(n) ® u(l) @ su(n) Lie-algebra and are
parametrised by k and &’. From the point of view of supersymmetry the levels k and k' are
arbitrary and although k& must be an integer in the quantum theory, k¥’ need not be (indeed
k' can be absorbed into the definition of @), e.g. see [12]. The possibility of choosing
different levels was also pointed out in [5].

With the choice!
E =nk, (23)

we see that the addition of the U(1) x U(1) Chern-Simons term simply converts the su(n) x
su(n) level (k, —k) Chern-Simons term L¢g with connection A%, in the original Lagrangian
(9) into a u(n) x u(n) level (k, —k) Chern-Simons term with connection flﬁ/R + iAﬁ/R. In
terms of A,}E/ L, we have

2 2T -
OAY = 0A% = eapmi 2y — et aaZy (24)

"Here we agree with the literature [11, 13, 14] but normalise the U(n) generators with 7% € SU(n) for
a=1,..,N>—1and T° = Inxn, such that the coefficients in the expression for the covariant derivative
(12) remain unchanged.



Taking the global gauge group to be U(n) x U(n) we have constructed the N'= 6 ABJM
theory [5].

Finally we mention a crucial subtlety: the decomposition of U(n) is not strictly in
terms of SU(n) x U(1). In particular given any pair w € U(1) and Ay € SU(n) we obtain
an element A = wAy € U(n). However the inverse map is not unique since, for a given
A € U(n), we have

w" =det(A) , Ag=wT14, (25)

and hence there are n solutions for w and Ag related by w — €2™/"w, Ay — e 27/ A,.
Thus the map from U(1) x SU(n) — U(n) is an n-fold cover and so the isomorphism is

SU(n) x U(1)

U(n) ~ zZ

(26)
Although these modifications do not change anything at the level of the Lagrangian or
the classical theory, they do change the quantisation conditions for the various fluxes, as
we shall see in the next section, which will be important in the next section when we
calculate the moduli space of the theory in order to compare with the answer expected
from M-theory.

Dual Photon Formulation

Having arrived at the standard form for the ABJM theory we can take a step back and
consider the equivalent Lagrangian (16), but once again with &’ = nk. Integrating by parts
and discarding a boundary term leads to

nk

d
Lugmysatn) = Loty xsu(m + 78" BudvQx - (27)
Next we introduce a Lagrange multiplier term?
d nk n
Lamysatn) = Lot xsun) + 58" Bulor + o0 0 Hyy (28)
Integrating the last term by parts we find
d nk n
Lumenin) = Lanimyssum) T g7c " Bulon = 5" 0u0Hyx (29)
We can now integrate out H,, to see that
1
B;U' = E :U'O- . (30)

Thus under a U(1)p gauge transformation we find

oc—o+kf. (31)

2 Aspects of this procedure have also appeared in [15, 16].



Substituting back we find that the u(n)@u(n) Lagrangian is equivalent to the su(n) @ su(n)
Lagrangian with new variables:

Lumysun) (Z4 04, ALy, By, Q) = Loyiysu(n) (€724, €704, AlLy) . (32)

In particular the variables Z4 = et7 74 and ha = e%UwA are U(1) x U(1) gauge invariant.

Finally, we need to determine the periodicity of o which follows from a quantisation
condition on the flux H. Let us review the familiar Dirac quantisation rule. We start by
considering the phase induced by the parallel transport over a closed path v of a field, ¥,
that couples to a U(1) field A, through D,¥ = 0,¥ — iA, V. We find that the resulting
wavefunction is related to the initial wavefunction by a U(1) transformation

U, =eh A= nFyg (33)

where D is a two-dimensional surface whose boundary is v. However the choice of D is
not unique. Given any two such choices D and D’ we require that the phase, viewed as an
element of the gauge group U(1), is the same. This implies that

¢ Jo-prF =1 (34)

and hence fz F € 277, where ¥ = D — D’ is any closed surface. However in our case the
gauge group is (U(1) x SU(n))/Z,, and we need only require that [, F' € 227, i.e. the U(1)
phases computed by two different paths must be equal modulo Z,,. Thus we see that the
quantisation condition is

21
F —7 .
/d L € o (35)

This fractional flux quantization condition arises because the global gauge group is (SU(n) x
SU(n))/Z,, instead of SU(n) x SU(n), with Z,, the relative centre of the two SU(n) factors.
Thus we refer to the resulting Chern-Simons matter theory as the (SU(n) x SU(n))/Z,-
theory.®> This should be compared with a theory with the same Lou(n)@su(n) Lagrangian
but global SU(n) x SU(n) gauge symmetry and no fractional flux quantisation which we
refer to as the SU(n) x SU(n)-theory.

After integrating out H, we are left with the condition B = %da. Therefore, locally,
F;, — Fr = dB vanishes so that F;, and Fr must have the same flux. Note that we do not
require that o is globally defined so there can be a non-zero Wilson line for the gauge field
B. However, since F, — Fr = dB = 0 in any open set where o is single-valued, it follows
that F1, = Fr globally. This generalises the flux quantisation argument of [17] to allow for
a nonvanishing but trivial gauge field and applies to the full theory, not just the moduli
space. Since H = Fj, + Fr we have

1 4
/dH :/56“11)\8/1];[1/)\ S %Z (36)

3For theories with bifundamental matter the (SU(n) x SU(n))/Z,, group, where the centre of one SU(n)
factor is identified with the inverse centre of the other, is indistinguishable from SU(n))/Z, x SU(n))/Z, ~
PSU(n) x PSU(n).




and o has period 27. Note that since e? is a U(n) transformation, 6 also has period 2.
Thus we can fix the U(1)p symmetry using (31) and set 0 = 0 mod 27. However, this
periodicity imposes an additional identification on the U(1)-invariant fields

ZA = % A and @Age%zﬁA . (37)
We are therefore told that the U(n) x U(n) ABJM theory is equivalent to a Zj, identification

on the (SU(n) x SU(n))/Z,-theory. Note that the Z,, quotient arises here as the relative
part of the two Z, factors from U(n) ~ (U(1) x SU(n))/Z,.

However we should be careful: Our discussion so far has been largely based on local
aspects of the theory and since U(n) is not globally the same as U(1) x SU(n) there could
be obstructions at a global level. We will see in the following that the U(n) x U(n) theories
can only be viewed as Zj, identifications when n and k are coprime. In particular, for £k =1
the Zj, identification is clearly trivial and one simply has the (SU(n) x SU(n))/Z,-theory.

Note that, had we considered instead a U(1) x SU(n) x U(1) x SU(n) gauge theory, we
would not have been able to use the fractional flux quantisation condition and ¢ would have
had period 27/n. In addition, we would have been free to have any integer value for the
U(1) level k' and as a result we would find a Z;, identification. From this perspective we
would arrive at a SU(n) x SU(n)-theory by starting with U(1) x SU(n) x U(1) x SU(n) but
take k' = k and the usual Dirac quantisation. However, as we will see in the next section,
the moduli space of the resulting theory would then not be the same as the U(n) x U(n)
ABJM models due to the different flux quantisation condition on the SU(n) factor. Finally,
one might consider other quantisation conditions which lead to different moduli spaces [18].

Moduli Space of n = 2 theories

To test the above analysis it is insightful to compute the moduli space of the (SU(n) x
SU(n))/Zy-theory and then compare with the U(n) x U(n) answer. To begin with, we
consider the n = 2 case in detail.

We observe that the solutions to V' = 0 are obtained by taking [Z4, ZB; Zs] = 0 for
all A,B,C. This is solved by taking the Z4, which are 2 x 2 matrices, to be mutually
commuting. Recall that the Z4 are in the bi-fundamental representation so that under a

gauge transformation
ZA 2 g1 7%, . (38)

Thus, modulo gauge transformations, we can take without loss of generality

1 i
ZA = E'I"f — ET‘?J:& . (39)

The gauge symmetries that preserve this form, for generic 7’14, 7‘5‘, must satisfy

ng}_%1 =a+ ibos ng'agg;zl = c+idos (40)



for arbitrary constants a, b, ¢, d. The first condition can be used to deduce that

ifos

gr = ¢€ IR (41)

for an arbitrary €, whereas the second condition puts a constraint on gg
griosgy' =€, (42)

for an arbitrary 6’. Since the left hand side is traceless we see that this is only possible if
0’ = +m/2 so that
griosgy' = Lios. (43)

Thus gp is generating a discrete identification
e g (44)

and one should think of 7‘14 as the centre-of-mass coordinate, while 7‘54 as the relative
separation between two indistinguishable M2-branes. To this end we write

1 |
=Gt 4as) and =S -4, (45)

so that the gp transformation is now 2! <+ 24'. In addition we have a continuous U(1)

action generated by g, = €973, This acts on zf and 25‘ as

2 e 25— e 023 (46)

The subtle part of the calculation comes from considering the continuous gauge symmetries
g = €. Reducing to the moduli space fields with with Ay = fl?i HU?’ and flu = fl‘;’zua?’, we
find that the Chern-Simons action (9) becomes

k ~ ~ k ~ ~
L= -D,2{'D'z14 — D24 D'Zon + %EMVAA%M&,A%A — %e“”)‘A?}’m@A?jﬁ , (47)
where
Dﬂzf = a/izf‘ - Z(‘A%u - A:}S%,u)zf‘ ’ DMZ2A = a/iz? + Z(A%,u - A%,u)z? : (48)

Following the previous discussion we write BH = fliu — ‘Zl?l)%u and Qu = fl%u + A?I’%u so that
the moduli space Lagrangian is

2k P
L= -D,2{'D'z14 — D24 D'zon + S—EMVABHH,,)\ : (49)
m
where now H, A= 8,,@ N — (%\Q,,. We can introduce a Lagrange multiplier term
L= Dy DIz 4 — Dy D ogs + 2o B,y + — X0, 11
= ~Duz{ D'Z1a = Duzy D'zpa + o BuHyy + o xe" OuH - (50)
Integrating out H uv gives BM = %GMX and the Lagrangian can be written as

L= —0,70" % — 0,5 0"20n (51)



A

where 2t = eX/F244 and 25t = e=X/k 24! are gauge invariant.

It is once again necessary to determine the periodicity of the dual photon x. The
argument here is identical to what was discussed around Eq. (36). Namely, since dB = 0
we have that F? = F }33, where Fz’ /R~ dfl‘z R and the quantisation condition is

~ 2
/ng/R € gz. (52)

The factor of 2 in the denominator arises because the gauge group is (SU(2) x U(1))/Zs,
in the same manner that n appeared in (35). Thus, since H= FE + F }?% we have that

~ 1 ~ 4
/dH:/§EMV)\a/JHV)\ S gZ (53)

and hence x has period of 27. We conclude that the vacuum moduli space scalars are
subject to the identification

27 _ 2w

A e 2 ek 25 . (54)

In summary, we find that the sum of identifications on the vacuum moduli space,
including the ones coming from (37), act as

LA~ oA Ao 25 A
guay: A = ek 2z, Zg =€k 2
A~ A
g12: 2 = 2 (55)
. A~ 2 oA A 24
gsue) - A1 = er g, % =€ Fzp.

The first one is a Z coming from integrating out the U(1) 5, and acts on the whole theory,
not just the moduli space. The other two are consequences of the (SU(n) x SU(n))/Z,
gauge symmetry acting on the vacuum moduli space and generate the dihedral group of
order 2k, Dy ~ Zy X Zj. This is consistent with the calculation in [6, 7] which found
Dy, since the difference k — 2k arises because a fractional quantisation condition was not
allowed, corresponding to an SU(2) x SU(2) global gauge group.

We now need to compare these moduli space identifications with the answer for the
U(2) x U(2) ABJM theory that describes two indistinguishable M2-branes in R®/Zy, that
is
(R®/Zy) x (R®/Zy)

My = 56
k 7 (56)
In this case the moduli space quotient group is generated by
27
g1: zf = eTzf , 25‘ = 22A
g2 2 = 2 (57)
27
go: z = zf‘, zzA%eTzzA.

Here we see that gy(1) = 9192 and gsy(2) = g5 Lg1. However in order to invert these relations
we need to solve g7 = gu(n)9su(z) and g3 = gU(l)gS_LlT@)’ i.e. take the square root in the

10



group generated by gy(1) and gsy(z). A short calculation shows that this is only possible if
k is odd. Thus we conclude the we obtain the correct moduli space only when k is odd.

The value k = 1 is special: The orbifold action is trivial and the moduli space of the
SU(2) x SU(2)-theory is the one for 2 M2-branes in flat space. As a by-product we see
that for K = 1 the N' = 6 U(2) x U(2)-theory in fact has N' = 8 supersymmetry. This
has also been shown with the help of monopole operators in [5, 15, 16], although here the
physics also have a formulation in terms of the manifestly N' = 8 supersymmetric, local
Lagrangian.

Moduli Space In General

We will now see that the problem we faced for n = 2 and k-even extends more generally.
For a general n the vacuum moduli space is obtained by setting

Z4 = diag(z, ..., 22 . (58)

If we consider gauge transformations of the form g;, = gr then Z4 behaves as if it were
in the adjoint of SU(n) and hence cannot tell the difference between the SU(n) and U(n)
theories. The result is that the gauge transformations which preserve the form of Z4 simply
interchange the eigenvalues zlA leading to the symmetric group acting on the n M2-branes.

Next we can consider transformations in the diagonal subgroup of SU(n) or U(n). These

A

act to rotate the phases of the z*, however in the SU(n)-theory they only do so up to the

constraint that the diagonal elements must have unit determinant. In the U(n)-theory this
A

2, and each of these

is not the case and there are n independent U(1)’s, one for each z
U(1)’s leads to a Zj, identification on the moduli space. Thus for U(n) we indeed see that

we find n commuting copies of Zj, along with the symmetric group acting on the ZZA.

For the SU(n)-theory, even including the Zj action of U(1) g, this will not always be the
case. In particular, note that since the determinant of the gauge transformations coming
from SU(n) is always one we have, for an arbitrary element of the moduli space orbifold

group,
det(giﬁl)go) = det(g{JB(l)) — eQWanB/k ) (59)

Here gy represents a generic element of the moduli space orbifold group obtained in the
(SU(n) x SU(n))/Z,-theory. On the other hand, the moduli space orbifold group of the
U(n)-theory generated by n independent U(1)’s has

det(glll...gil") = e2rilhttin)/k (60)

If these two theories are to give the same moduli space then we must be able to have
e2millt.+in)/k — g2minlp/k o any possible combination of /;’s. Thus we are required to
solve

l=nlp modk, (61)
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for Ip as a function of [, n, k, where [ = [ + ... + 1,, is arbitrary. Hence, if this equation can
be solved for I5 then gy = e~ 275/k glll...gﬁf is an element of SU(n) and can arise from the
vacuum moduli space quotient group of the(SU(n) x SU(n))/Z,-theory.

We will now show that (61) has solutions for all [ iff n and k are coprime. In general
the solution is g = (I — pk)/n for any p € Z; however we require that lp is an integer. It
is clear that we may view [,k and p as elements of Z/Z,, and we are therefore required to
solve the following equation for p

[ = pk modn . (62)

This always has solutions if the map ¢ : p — pk is surjective on Z/Z,,. Since Z/7Z,, is a finite
set this will be the case iff ¢ is also injective. Thus we wish to show that pk = p’k mod n
implies p = p/. This is equivalent to showing that ¢k = 0 mod n implies ¢ = 0 mod n.
Now suppose that gk = rn. If k and n are coprime then all the prime factors of k& must be
in 7 and all the prime factors of n must be in g. Thus ¢ = 0 mod n. On the other hand if
k and n have a common factor d then we find a non-zero solution by taking ¢ = n/d and
r = k/d. Thus gk = 0 mod n has no non-trivial solutions for ¢ iff n and k are coprime.

This result can been restated as follows: Although locally U(n) ~ U(1) x SU(n), this is
not true globally. Even though the Lagrangian is defined by local information at the Lie-
algebra level, the map we constructed, reducing the U(n) x U(n)-theory to a Zj; quotient
of the (SU(n) x SU(n))/Zy-theory, involves finite gauge transformations and is therefore
sensitive to global properties of U(n). The above discussion shows that the vacuum moduli
space quotient group of the U(n) x U(n) theories is not of the form Zj x Gy, where
Gy C SU(n), unless n and k are relatively prime.

We have therefore shown that if n and k& have a common factor then the vacuum moduli
spaces for the two theories do not agree, as there is a global obstruction to mapping the
U(n) x U(n)-theory to a Zj, quotient of the (SU(n) x SU(n))/Z,-theory. On the other hand,
if n and k are coprime then the vacuum moduli space calculated in the (SU(n)xSU(n))/Z,-
theory, along with the Zj, identification coming from U(1) g, agrees with the vacuum moduli
space of the U(n) x U(n)-theory. It is therefore natural to conjecture that in these cases
the U(n) x U(n) theories are Zj quotients of the (SU(n) x SU(n))/Z,, theories.

The moduli space of the k =2 SU(2) x SU(2)-theory

On a related note, the moduli space of SU(2) x SU(2) N' = 8 theories was calculated in
[6, 7] and found to be (R® x R®) /Dy, where Dy ~ Zy X Zg;, the dihedral group of order
4k. As we have already mentioned, the extra factor of 2 arises due to the standard Dirac
quantisation condition when the global gauge group is SU(2) x SU(2).

For the particular case of k = 2 one has [6, 7]

A ~ A
g12: 2z =z (63)
. A ~ A A~ - A
gSU(Q) . Zl = ZZl s Z2 = —ZZ2 .

12



Note that because of the modified flux quantisation condition this agrees with £ = 4 in

(55). Interestingly, by reverting back to the r{!,rs' variables of (45) we have

A~ A A ~ A

gi2: oy =ry o, oy 21 (64)
. A~ A A ~ A
gsu@)- ™ =Ty , T2 =T

Although these variables might look contrived from the perspective of the ABJM theory
they arise very naturally in the SO(4) formulation [6]. From these we can construct

A A A~ A
gi2- =Ty o, Ty =T (65)
2 oA~ A A~ A
912 9suzy - 1 =T, T2 =T
A~ A A~ A
gsu(e) 912 T =Ty , Ty =T71 .

These identifications are the ones expected for the moduli space (R8/Zy x R8/Zy)/Zs of 2
M2-branes on a Zy orbifold singularity of M-theory, as also shown in [6].

For k = 2 the SU(2) x SU(2)-theory was interpreted in [6, 7] as the IR limit of an
SO(5) gauge theory describing two D2-branes on an 02" orientifold of type ITA string
theory, which is an M-theory Zs orbifold with discrete torsion. However, there also exists
another type ITA orientifold denoted O2~ and, as was pointed out in [5], corresponding to
an O(4)-theory on the D2-brane worldvolume, which in the IR lifts to an M-theory orbifold
without torsion. This has an indistinguishable moduli space from the SO(5) case, since the
extra fractional brane in the latter is stuck at the fixed point and does not contribute to
the moduli space dynamics. The orbifolds with and without torsion are the only expected
IR fixed points with A" = 8 supersymmetry and (R®/Zq x R®/Zy) /72 moduli space and
correspond to the U(2) x U(2) ABJM and U(2) x U(3) ABJ theories respectively. Given
the similarity between the Lagrangians, manifest symmetries (such as Parity) and the
agreement between the moduli space calculations, it is also natural to conjecture that the
n = 2,k = 2 (SU(2) x SU(2))/Zo-theory is equivalent to the k = 2 ABJM theory* and
therefore the IR fixed point of the the maximally supersymmetric O(4) gauge theory in
241d.

Summary

In this paper we have discussed the relation of U(n) x U(n) ABJM theories to (SU(n) x
SU(n))/Zy, theories. In particular we showed that locally, at the level of Lagrangians, the
U(1)p gauge symmetry could be integrated out to give an (SU(n) x SU(n))/Z,-theory
along with a Z; identification on the fields. However we also saw that there was a global
obstruction to this when n and k are not coprime.

As a result we found that the U(2) x U(2) ABJM theories can be viewed as Zj, quotients
of the (SU(2) x SU(2))/Za, N = 8 theories when k is odd. In particular for £ = 1 they are

“Note that the ABJM theory at n = 2, k = 2 is not related to the SU(2) x SU(2)-theory as discussed in
the previous section.
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identical. However if one considers the SU(2) x SU(2), N/ = 8-theory of [2, 3] at k = 2, then
this has the same moduli space, global supersymmetries and manifest Parity as the k = 2
U(2) x U(2) ABJM theory. Thus we conjectured that these two theories are equivalent
and the original N' = 8, su(2) x su(2) Lagrangian of [2, 3] can be used to define quantum
theories for two M2-branes on R® and R®/Zy (without discrete torsion) when k& = 1 or
k = 2 respectively and with all the symmetries manifest.
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