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ABSTRACT

We explore the tree–level description of a class of N = 2 UV-finite SYM theories with fundamental

flavour within a topological B–model twistor string framework. In particular, we identify the twistor

dual of the Sp(N) gauge theory with one antisymmetric and four fundamental hypermultiplets, as

well as that of the SU(N) theory with 2N hypermultiplets. This is achieved by suitably orientifold-

ing/orbifolding the original N = 4 setup of Witten and adding a certain number of new topological

‘flavour’–branes at the orientifold/orbifold fixed planes to provide the fundamental matter. We

further comment on the appearance of these objects in the B–model on |||CP3|4. An interesting

aspect of our construction is that, unlike the IIB description of these theories in terms of D3 and

D7–branes, on the twistor side part of the global flavour symmetry is realised geometrically. We

provide evidence for this correspondence by calculating and matching amplitudes on both sides.
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1 Introduction

Four–dimensional conformal field theories are relatively rare, and their existence depends crucially

on the presence of a large amount of symmetry. The most celebrated example is N = 4 su-

persymmetric Yang–Mills (SYM) theory, which, especially via its strong–weak duality with IIB

string theory on AdS5 × S5 [1], has provided a very useful testbed for understanding the physics

of strongly-coupled gauge theory. In this duality, the exact quantum conformal invariance of the

theory is reflected in the AdS5 factor of the string background, which encodes the unbroken four–

dimensional conformal group SO(2, 4) of the gauge theory.

A very different duality involving N = 4 SYM was proposed by Witten in 2003 [2]. The

idea stems from the fact that certain scattering amplitudes in Yang–Mills theory, when expressed

in appropriate (spinor helicity) variables, turn out to take an unexpectedly simple form. This

indicates that there might exist some reformulation in which this simplicity is evident, and in

this context Witten proposed that it is useful to consider the open-string topological B–model on

supertwistor space |||CP3|4. The isometries of |||CP3|4 capture the superconformal group PSU(2, 2|4)
of the gauge theory, and the spectrum of the string theory can be mapped to the field content of

N = 4 SYM via the Penrose transform [3].

In this framework, gluon scattering amplitudes can be calculated by noting that they are sup-

ported on certain simple algebraic curves in twistor space, the degree of which is linked to the

number of external negative helicity gluons. For instance, Maximally Helicity Violating (MHV)

amplitudes, which have two negative and any number of positive helicity gluons, are supported on

degree one curves in |||CP3|4. In [2] it was proposed that these curves are wrapped by D1–instantons

in the B–model, and, adapting a method originally due to Nair [4], it was shown that appropri-

ately integrating over the moduli space of these D1–instantons leads to the correct expressions for

tree-level amplitudes in N = 4 SYM.

Beyond tree level, however, the situation is very different. Apart from difficulties in understand-

ing the appropriate measure for higher–genus curves in supertwistor space, at one loop it seems that

one cannot avoid unwanted contributions from the closed B–model sector which would correspond

to conformal supergravity states in spacetime [5]. As the action for conformal supergravity is the

square of the Weyl tensor whose kinetic term is fourth order in derivatives, it is generally believed

to be non-unitary and thus a highly undesirable feature. Nonetheless, loop amplitudes in such a

theory have been investigated [6] using an alternative twistor string theory due to Berkovits [7] and

it is hoped that one might still be able to learn something about loop amplitudes in Yang-Mills

this way.

Despite the above shortcoming, the application of twistor-inspired techniques to gauge theory

has resulted in great progress in the understanding of perturbative field theory. At tree-level,

the realisation that amplitudes localising on degree d curves can be equivalently calculated by

integrating over the moduli space of d disconnected degree 1 curves [8–11], underlies the so-called

MHV (or CSW) rules proposed by Cachazo, Svrček and Witten [11]. The CSW rules elevate
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tree-level MHV amplitudes to effective vertices, which are then glued together using simple scalar

propagators to form tree amplitudes with successively greater numbers of negative helicity particles.

Of particular interest is the fact that these techniques are applicable to a far larger class of theories

than N = 4 SYM, and include gauge theories with reduced or no supersymmetry and Einstein

(super-)gravity - see [11–15] and references therein.

Even more remarkable is the fact that, despite the apparent failure of the twistor string duality at

loop–level, the MHV rules can be straightforwardly applied at one loop inN = 4 SYM [16], N = 2, 1

SYM [17,18], pure YM [19], a certain effective Higgs–YM action [20] and N =8 supergravity [21].

These results would seem to indicate that it is possible to overcome the current difficulties at one-

loop and eventually extend Witten’s prescription to the quantum level not only for N = 4 SYM, but

also for the other theories above. It is possible that such a dual string theory would have to be an

appropriate (non–topological?) extension of the B–model, perhaps combined with a modification

of the bosonic part of the target space geometry away from |||CP3 to reflect the fact that conformal

invariance is typically lost at the quantum level. Finding such a quantum completion of the twistor

string framework would certainly deepen our understanding of perturbative gauge theory.

As an intermediate step towards this goal, it is important to map out the range of four–

dimensional theories that can potentially admit a twistor string description. If, to restrict the

question somewhat, we insist that the full quantum theory have a perturbative string dual contain-

ing twistor space as part of the target manifold, we should clearly look among the known quantum

conformally invariant theories, and, if we require that the conformal symmetry holds order–by–

order in the coupling, we should focus in particular on the subset of the above which are finite. The

hope is that, by explicitly constructing the twistor string duals of a wide range of such theories,

which are expected to retain |||CP3 as part of the geometry at loop level, and by understanding why

this construction might not work for other theories which look similar classically but which lack

conformal invariance at the quantum level, one may learn something about the properties of the

elusive quantum twistor string. In the process, one might also hope to gain further insight into the

B–model twistor string description (or any of the several alternatives [7, 22]) even at tree–level.

Following this programme, it was shown in [23] (see also [24]) that the N = 1 exactly marginal

deformations of N = 4 SYM can be incorporated into the B–model description by turning on a

particular closed string mode, which (via a certain open/closed correlation function) effectively

introduces non–anticommutativity between some of the fermionic coordinates of |||CP3|4. Another

class of known finite 4d gauge theories are the quiver theories that arise as N = 1 and N = 2

orbifolds of N = 4 SYM and in [25,26] it was shown that these theories also admit a very natural

twistor string description.1

In the present work we extend this investigation to other types of 4d gauge theories by including

matter transforming in the fundamental representation. These are the N = 2 SYM theories with

1Twistor string duals have also been constructed for truncations of self–dual N = 4 SYM [27], lower dimensions

[28–32], chiral mass terms [33] as well as for a number of gravity theories including N = 1, 2 conformal supergravity

[34,35] and Einstein supergravity [36].
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gauge groups Sp(N) and SU(N), which are UV–finite when the number of flavours is Nf = 4

and Nf = 2N respectively, and where the Sp(N) theory also contains a hypermultiplet in the

antisymmetric representation. For brevity we will refer to these simply as the Nf = 4 and Nf =2N

theories.

In direct analogy with the stringy description of the Nf = 4 gauge theory, in order to obtain

a symplectic gauge group it will be necessary to perform an orientifold of the B–model on |||CP3|4.

Similarly, for the Nf = 2N theory we will perform an orbifold projection. Given the similarities

of these techniques with previous orbifold constructions of [25, 26], the above steps are relatively

straightforward. The main novelty, compared to the previous twistor string literature, is the pres-

ence of the fundamental flavours. We propose a natural mechanism to incorporate this sector of the

theory, leading to an additional term in the B–model action, and show that the tree–level twistor

string amplitudes precisely match those calculated on the gauge theory side.

A parallel promising development in the twistor string programme has been the introduction of

effective actions on twistor space [37–39], which extend Witten’s holomorphic Chern–Simons (hCS)

action and, after appropriate gauge fixing, reproduce the 4d MHV–rules prescription for Yang–Mills

theory.2 By construction, this approach does not suffer from the conformal supergravity problem.

It is not yet known whether such actions can be derived from a more fundamental (B–model or

alternative) string description (in particular, they do not seem to arise from simple summation

over the effects of D–instantons). Such an effective action for either of the N = 2 theories that

we will consider in this work, constructed by inserting the relevant matter multiplets (as described

in [37]), and choosing the gauge group appropriate for each case, would provide an alternative way

to reproduce the MHV amplitudes we will calculate. However, we do not follow that path since

via such an approach we would not expect to gain insight into the novel features that arise when

introducing fundamental flavours from a topological string point of view. Nevertheless, as we will

point out, some aspects of our construction will turn out to be similar to those in [37].

The rest of this paper is organised as follows: In Section 2 we discuss some preliminary details

related to formulating the spacetime action for the Nf = 4 theory. We then review Witten’s

construction of the twistor string for N = 4 SYM and proceed to give the equivalent description

for the theory under present study in Section 3. In Section 4 we elaborate on the comparison

between amplitudes calculated from the spacetime and twistor points of view and demonstrate the

agreement between the two pictures with a number of specific examples. Section 5 extends the

above to the case with Nf = 2N . We describe the construction of the spacetime action, obtain

the dual twistor string description and finally match the two by comparing amplitude ratios. We

conclude in Section 6 with a discussion of our results and directions for future research.

2Recently, some aspects of this formalism were extended to self–dual N = 8 supergravity [40].
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2 Preliminaries for the Nf =4 theory

The aim of this section is to collect known facts on the Nf = 4 theory and it symmetries, before

moving on to considering its spacetime action. It is easy to check that the matter content of this

N = 2, Sp(N) theory (one hypermultiplet in the antisymmetric representation of Sp(N) and four

hypermultiplets in the fundamental) is such that the one–loop β–function vanishes [41, 42]. Since

N = 2 supersymmetry implies one–loop exactness of the β–function [43], perturbative finiteness

is guaranteed. In the rank one case, where the gauge group reduces to SU(2) and there is no

antisymmetric hypermultiplet, this theory was considered by Seiberg and Witten [44, 45], who

found (for arbitrary hypermultiplet masses) the curve describing its low energy dynamics. In the

massless case, these results can be used to argue that the gauge coupling does not run even at the

nonperturbative level.3 One of the intriguing outcomes of [45] was the conjecture that the Nf = 4

theory enjoys an analogue of the Montonen–Olive (electric-magnetic) duality of N = 4 SYM,

in which SL(2,Z) mixes in a nontrivial way with SO(8) triality to produce a duality–invariant

spectrum.

2.1 Review of the IIB/F-theory embedding

The Nf = 4 theory has a very useful realisation in terms of a physical string theory description,

which first arose in Sen’s explorations of F-theory [47] on K3 [48]. In particular, Sen considered a

special elliptically fibred K3, the orbifold T 4/Z2, realised as a T 2 fibration over the base T 2/Z2.

Requiring that the axion–dilaton modulus have no dependence on the internal torus, this config-

uration reduces to an orientifold [49] of type IIB4 on T 2, and thus produces four orientifold fixed

planes, each carrying −4 units of D7–brane charge. Constancy of the axion–dilaton requires that

four D7–branes (along with their mirrors) be placed on each orientifold plane, resulting in an SO(8)4

non-abelian gauge symmetry. This type IIB setup can also be obtained from the type I string by

a T-duality on both coordinates of the base [48].

Sen then argued that the F-theory moduli space close to one of the orbifold fixed points, where

T 2 locally reduces to R2, can be accurately described by the physics of the 4d N = 2, SU(2) Seiberg-

Witten theory with four fundamental hypermultiplets. Moreover, Banks et al. [52] showed that this

gauge theory can be naturally realised as the low energy effective theory on the worldvolume of a

probe D3–brane in the limit where the rest of the orientifold singularities are taken to be very far

away, and the moduli space of the theory is captured by the dynamics of the worldvolume fields.

By considering multiple coincident D3-branes as probes [53, 54] the SU(2) ∼= Sp(1) gauge group

can be extended to higher rank to obtain an Sp(N) gauge theory, at the expense of introducing an

extra hypermultiplet in the antisymmetric representation of Sp(N).5

3Certain discrepancies in matching the results of [45] to explicit instanton calculations were resolved in [46].
4For related reviews on brane dynamics in the presence of orientifolds see e.g. [50,51].
5The alternative extension to SU(N) will be discussed in Section 5. However, it is not the natural generalisation

from the F-theory point of view.
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Let us summarise the setup and field content of the above physical-string configuration: We

will consider the low energy worldvolume action on a stack of N coincident D3–branes (and their

mirrors) living in the (x0, . . . , x3) directions. These probe the background generated by 4 D7s

(and their mirrors) and a single O7–plane lying in (x0, . . . , x7). The orientifold plane is added in

such a way so as to preserve the same 8 supersymmetries as the D3–D7 system and the 3-3 and

7-7 strings would generate respective SU(2N) and SU(8) gauge symmetries. However, since all

the branes are sitting at the orientifold fixed plane, these project to Sp(N) and SO(8) because of

the orientation reversal action on the open string Chan-Paton indices, which imposes symmetric or

antisymmetric conditions on the gauge group matrices. Ramond-Ramond (RR) tadpole cancellation

further restricts one to only retain antisymmetric matrices for the D7s; one is then forced to consider

symmetric matrices for the D3s [49].

In the low-energy limit, the dynamical fields corresponding to 7-7 strings decouple and SO(8)

becomes a global symmetry of the system. The massless spectrum of 3-3 strings fluctuating in the

worldvolume (x0, . . . , x3) and overall transverse (x8, x9) directions yields the degrees of freedom cor-

responding to the N =2 vector multiplet in the adjoint (symmetric) representation of Sp(N). The

fluctuations in the directions relatively transverse to the D3s (x4, . . . , x7) furnish a hypermultiplet

transforming in the antisymmetric tensor representation of the gauge group, which captures the

motion of the D3s in these directions. Therefore, the low energy D3 worldvolume action describes

4d N =2 SYM with gauge group Sp(N), four hypermultiplets in the fundamental and one in the

antisymmetric representation, sitting at the conformal point of its moduli space.

Component SO(1, 3) SU(2)a SU(2)A U(1)R Sp(N) SO(8)

A,G (2, 2) 1 1 0 N(2N + 1) 1

φ (1, 1) 1 1 +2 N(2N + 1) 1

φ† (1, 1) 1 1 −2 N(2N + 1) 1

λα,a (2, 1) 2 1 +1 N(2N + 1) 1

λ̄α̇,a (1, 2) 2 1 −1 N(2N + 1) 1

zaA (1, 1) 2 2 0 N(2N−1)−1 1

ζα,A (2, 1) 1 2 −1 N(2N−1)− 1 1

ζ̄α̇,A (1, 2) 1 2 +1 N(2N−1)− 1 1

qMa (1, 1) 2 1 0 2N 8

ηMα (2, 1) 1 1 −1 2N 8

η̄Mα̇ (1, 2) 1 1 +1 2N 8

Table 1: The on-shell field content of the Nf = 4 theory in component form. The representations

in the first column are actually in terms of the Euclidean Lorentz group SO(4) ∼ SU(2)L×SU(2)R.

The fundamental fields carry an SO(8) flavour index M = 1, . . . , 8, while the antisymmetric fields

an SU(2) ‘flavour’ index A = 1, 2. Note that (z, ζ, ζ̄) transform in the irreducible second–rank

antisymmetric representation of Sp(N), which in the text we call “antisymmetric” for brevity. We

write SO(8) rather than the more accurate O(8) since we will not keep track of discrete groups.
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As far as the global symmetries are concerned, the presence of the D7–branes breaks the D3

transverse group of rotations down to SO(4)×U(1)R ⊂ SO(6). Furthermore, we write this SO(4) as

SU(2)a×SU(2)A, SU(2)A being a flavour-like symmetry for the antisymmetric fields; no other field

transforms nontrivially under its action. The rest of the SO(6) global symmetry subgroup accounts

for the N =2 R-symmetry, U(2)R ∼= SU(2)a×U(1)R and we remind the reader that the fundamental

fields transform as vectors under the global SO(8) flavour group. The precise transformation

properties of all degrees of freedom under the symmetries of the system are summarised in Table

1, which is adapted from [55].

By considering a large number of coincident D3–branes and taking their near–horizon limit,

it is possible to obtain the supergravity dual of the Nf = 4 theory in terms of strings in AdS5 ×
S5/Z2, where Z2 is an orientifold action on the S5 [56, 57] (see also [58]). Instanton effects in the

AdS/CFT context have been studied in [55,59,60], while the plane–wave limit of the theory has been

investigated in [61,62]. Higher derivative corrections were considered in [63,64], and the geometry

of the holographic dual of the Higgs branch of the theory was described in [65]. Recently, [66] used

the AdS/CFT dual to discuss the behaviour of strongly coupled Nf = 4 scattering amplitudes.

2.2 The spacetime action

We now turn to the construction of a Lagrangean for the above N = 2 theory by taking its

formulation in terms of N = 1 superfields as a starting point.6 This reads

L =
1

8π
Im Tr

[

τ

(∫

d2θ WαWα + 2

∫

d2θd2θ̄ e2V Φ†e−2V Φ

)]

+

∫

d2θd2θ̄ Q†Ie−2VQI

+

∫

d2θd2θ̄ Q′Ie2VQ′†
I +Tr

(∫

d2θd2θ̄ e2V Z†e−2V Z +

∫

d2θd2θ̄ e−2V Z ′e2V Z ′†

)

+
√
2

(∫

d2θ(Q′IΦQI +Tr
(
Z ′[Φ, Z]

)
) + h.c.

)

.

(2.1)

The N = 2 vector multiplet consists of the N = 1 vector and chiral superfields (V,Φ), the antisym-

metric hypermultiplet of the chiral and antichiral (Z,Z ′†) and the four fundamental hypermultiplets

of the four chiral and four antichiral superfields (QI , Q′†I) respectively. (Q†I , Q′I) are four antichi-

ral and chiral superfields transforming in the conjugate fundamental representation and the SU(4)

flavour index I runs from 1 to 4. The fundamental representation of Sp(N) is pseudoreal, which

means that it is related to its conjugate simply by raising and lowering indices. The flavour sym-

metry is thus enhanced to SO(8). However in this N = 1 notation this SO(8) flavour symmetry

is not explicit. It is instead implicitly realised via the subgroup SU(4) × U(1) ⊂ SO(8) and the

decomposition 8s = 41 + 4̄−1, which reflects the fact that we are considering four kinds of 3–7 and

7–3 strings. Also hidden in (2.1) is the SU(2)A symmetry, which we will restore in due course

together with explicit SO(8) invariance. Lastly, the SU(2)a part of the N = 2 R–symmetry is also

not manifest at this stage. The complexified coupling is τ = ΘY M

2π + 4πi
g2

but, since we are only

6Our notation and conventions are summarised in Appendix A. General reviews of superspace techniques and

N = 2 supersymmetric gauge theories can be found, for instance, in [67–71].
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interested in the perturbative behaviour of the theory, we can safely set the total derivative terms

to zero by requiring that ΘYM = 0. We will also ignore any total derivative terms coming from

integration by parts.

In component form we have (Aµ, λ,D) for V , (φ, χ,Fφ) for Φ and (q, η,Fq) for Q, with similar

superfield expansions for Q′†, Z and Z ′†. Since we are constructing this N = 2 action out of

N = 1 quantities, the coupling appearing in front of the superpotential terms can, in principle,

be different to the coupling of the kinetic terms for the N = 2 vector multiplet. However, N = 2

supersymmetry requires that they all be equal [68]. After expanding the superfields and performing

the Grassmann integration one obtains the expression

L =
1

g2
Tr

(

−1

4
F 2 + (Dµφ)†(Dµφ)− iλ 6Dλ̄− iχ̄ 6Dχ− i

√
2 [λ, χ]φ† − i

√
2 [λ̄, χ̄]φ

)

+ (Dµq)†I(Dµq)I + (Dµq′)I(Dµq
′)†I − iη̄I 6DηI − iη′I 6Dη̄′I − i

√
2 q†IληI

+ i
√
2 η̄I λ̄qI − i

√
2 q′I λ̄η̄′I + i

√
2 η′Iλq′†I +Tr

(

(Dµz)†(Dµz) + (Dµz′)(Dµz
′)†

− iζ̄ 6Dζ − iζ ′ 6Dζ̄ ′ − i
√
2 [λ, ζ]z† −i

√
2 [λ̄, ζ̄]z − i

√
2 [λ̄, ζ̄ ′]z′ −i

√
2 [λ, ζ ′]z′†

)

−
√
2
[(
η′IχqI + η′IφηI + q′IχηI

)
+Tr

(
−[χ, ζ ′]z + ζ ′[φ, ζ] + [χ, ζ]z′

)
+ h.c.

]
− VS ,

(2.2)

where our convention for the covariant derivative is Dµ = ∂µ − iAa
µT

a
R and 6Dα̇α = (σ̄α̇α)µDµ. VS is

the scalar potential obtained by integrating out the F- and D-terms. It is given by

VS = F
†
qFq + Fq′F

†
q′ +Tr

(

F
†
zFz + Fz′F

†
z′ +

1

g2
F
†
φFφ

)

+
1

2g2
D
2 , (2.3)

where the individual terms with their index structure made explicit are

(Fq)
i
I = −

√
2 (φ†)ijq

′†j
I , (Fq′)

I
i = −

√
2 q†Ij (φ†)ji

(Fz)
i
j = −

√
2
[

φ†, z′†
]i

j
, (Fz′)

i
j = −

√
2
[

z†, φ†
]i

j
(2.4)

and

(Fφ)
i
j = −g2

√
2
[

z′†, z†
]i

j
− g2√

2

(

q′†iI q
†I
j + q′†Ijq

†Ii
)

D
a = −Tr

(

T a[φ†, φ] + g2T a[z†, z]− g2T a[z′, z′†]
)

+ g2
(

q†IT aqI − q′IT aq′†I

)

. (2.5)

The (T a)ij’s are the generators of the fundamental representation of Sp(N) and in obtaining the

full scalar potential one also needs to make use of the following identity

(T a)ij(Ta)
k
l =

1

2
(δilδ

k
j − ΩikΩjl) . (2.6)

To further reorganise the action (2.2), we recall that the twistor approach to gauge theory am-

plitudes breaks the symmetry between positive and negative helicity states [2]. Here we implement

this by splitting the action into a piece independent of the gauge coupling and another piece which
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is of order g2. This is done by performing a series of rescalings which read as follows: For the

adjoint fields we have

(φ, φ†)→ (ig
√
2φ,− ig√

2
φ†) , (λ, λ̄, )→ (g1/2λ, g3/2λ̄, ) , (χ, χ̄)→ (g1/2χ, g3/2χ̄) , (2.7)

for the antisymmetric ones

(z, z†)→ (z, z†) , (z′, z′†)→ (iz′,−iz′†)

(ζ, ζ̄)→ (− iζ

g1/2
√
2
, ig1/2

√
2ζ̄) , (ζ ′, ζ̄ ′)→ (

ζ ′

g1/2
√
2
, g1/2

√
2ζ̄ ′) , (2.8)

while for the fundamentals

(qI , q
†I)→ (qI , q

†I) , (q′
I
, q′

†
I)→ (iq′I ,−iq′†I )

(ηI , η̄
I)→ (− iηI

g1/2
√
2
, ig1/2

√
2η̄I) , (η′I , η̄′I)→ (

η′I

g1/2
√
2
, g1/2

√
2η̄′I) . (2.9)

We will also make the symmetries of Table 1 explicit by appropriately arranging the antisym-

metric fields into SU(2)A doublets and collecting the fundamentals into SO(8) spinors (which can

be exchanged for vectors by SO(8) triality). We finally collect the hypermultiplet scalars and the

adjoint fermions into doublets of SU(2)a. The above statements are summarised by the definitions

λa =

(

λ

−χ

)

, λ̄a =
(
λ̄,−χ̄

)
, λ̄a =

(

−χ̄
−λ̄

)

, λa = (χ, λ)

ηM =

(

ηI

η′I

)

, η̄M =
(
η̄I , η̄′I

)
, η̄M =

(

η̄′I
η̄I

)

, ηM =
(
η′I , ηI

)

ζ̄A =

(

ζ̄

ζ̄ ′

)

, ζA =
(
ζ, ζ ′

)
, ζA =

(

ζ ′

−ζ

)

, ζ̄A =
(
−ζ̄ ′, ζ̄

)

zaA =

(

z z′

−z′† z†

)

, zAa =

(

z† −z′
z′† z

)

qaM =

(

−q′I q′†I
−q†I qI

)

, qMa =

(

−q′†I −qI
−q†I −q′I

)

. (2.10)

Having made the SO(8) flavour symmetry of the fundamental fields manifest in terms of compo-

nents, we can also collect them into 8 N = 2 ‘half-hypermultiplets’ QM = (η̄M , q
a
M , ηM ), each of

which contains two bosonic and two fermionic fields. This type of multiplet arises only for pseu-

doreal representations, allowing a description in terms of half the usual field content of N = 2

supersymmetry [68,72,73]. Note that it is not possible to have a description in terms of full N = 2

hypermultiplets that manifestly preserves the SO(8).

For the gauge field we introduce an anti-selfdual two-form Gµν as a Lagrange multiplier, via

which (up to a topological term which will not play a role in our perturbative study) we can rewrite

the Yang–Mills action in first order form [74]

− 1

4g2
TrFµνFµν → −

1

2
Tr

(

GµνF
µν − 1

2
g2GµνG

µν

)

. (2.11)
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The final expression for the action, including the full quartic contributions arising from the

scalar potential, takes the form

L =Tr

[

−1

2
GF +

1

4
g2G2 +Dφ†Dφ+ iλ̄a 6Dλa − λaλaφ† + 2g2λ̄aλ̄aφ

]

+Tr

[
1

2
DzaADz

A
a

+iζ̄A 6DζA − zaA[λa, ζA]− 2g2zAa[ζ̄A, λ̄
a] + ζAζAφ− 2g2ζ̄Aζ̄Aφ

†
]

+
1

2
DqaMDq

M
a

− iη̄M 6DηM + qaMλaη
M − 1

2
ηMφη

M − 2g2
(

η̄M λ̄
aqMa +

1

2
η̄Mφ

†η̄M
)

+ g2
(

−1

2
qaM{φ†, φ}qMa +

1

4
qaM [zbA, z

A
a]q

M
b

)

− g2

8

(

(qaMq
N
a)(q

b
Nq

M
b)

+(qaMq
b
N )(qNaq

M
b)
)

− g2 Tr
(
1

2
[φ†, φ]2 +

1

4
[zaA, z

A
b][z

b
B, z

B
a] + [zaA, φ][φ

†, zAa]

)

.

(2.12)

By taking the g → 0 limit one obtains the ‘selfdual’ truncation of the Lagrangean, which has the

same field content but only a subset of the interactions of the full theory. The O(g2) terms can be

thought of as perturbations around the selfdual theory.

In anticipation of the twistor approach, we will perhaps surprise the reader by once again hiding

the global SO(8) symmetry that we just made manifest. This is done by decomposing the flavour

indexM → A′⊗X according to the special maximal embedding SO(8) ⊃ SU(2)A′×Sp(2) where the
indices run over A′ = 1, 2 and X = 1, . . . , 4. One motivation for this is that each doublet indexed

by A′ has the field content of a full N = 2 hypermultiplet, but the main reasoning behind it will

become clear in the next section. In the interim—and to facilitate comparison with the twistor

analysis—we include the action for this selfdual truncation, which takes the simple form

L = Tr

[

−1

2
GF +Dφ†Dφ+ iλ̄a 6Dλa − λaλaφ†

]

(2.13)

−Tr
[
1

2
DzaADzaA + iζ̄A 6DζA + zaA[λa, ζA] + ζAζAφ

]

−
(
1

2
DqaA′XDq

aA′X + iη̄A′X 6DηA
′X + qaA′Xλ

aηA
′X +

1

2
ηA′Xφη

A′X

)

.

This action is the Nf = 4 analogue of the selfdual truncation of N = 4 SYM introduced by

Siegel [75].

3 Twistor strings

We now turn our attention to constructing a twistor string dual to the gauge theory we have just

described. To begin with, we will briefly review the most relevant parts of the twistor string dual

for N = 4, SU(N) gauge theory in four dimensions [2]7, subsequently modifying it appropriately

for the Nf = 4 case.

7To be precise, Witten studied the U(N) theory but since that only involved gluon amplitudes it is essentially the

same to consider SU(N); the gluons don’t couple to the U(1) ‘photon’. Moreover, when considering colour-stripped

amplitudes the extra U(1) piece will not affect the results, even for external scalars or fermions.
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3.1 The open B–model

In this section we collect a few well–known facts on the open topological B–model which will be

useful in what follows. This is not intended to be a thorough review, for which we refer the reader

to e.g. [76–79]. The B–model [80] arises as an axial–type twisting of the N = (2, 2) supersymmetric

2d nonlinear σ–model, which turns out to only be consistent when the target space is Calabi–Yau.

For a bosonic target space, the worldsheet field content of the theory consists of bosonic scalars

φm, φm̄ providing the map to the target manifold, and ghost–number one fermions ηm̄ and θm (plus

a worldsheet one–form ρmz̄ which will not play a role in our analysis). The action of the BRST

charge QB on these fields is such that it can be precisely mapped to the Dolbeault operator ∂̄ on

the target space Calabi–Yau, and this identification leads to the following well–known relations

between worldsheet fields and the geometry of the target space

φm ∼ Zm , φm̄ ∼ Z̄m̄ , ηm̄ ∼ dZ̄m̄ , θm ∼
∂

∂Zm
. (3.1)

We will only be interested in the BRST transformations of these fields in the presence of a boundary,

which are given by [81]

δBφ
m = 0 , δBφ

m̄ = iαηm̄ , δBη
m̄ = 0 , δBθm = 0 . (3.2)

This implies (see e.g. [82, 83]) that imposing Neumann boundary conditions along a particular

holomorphic direction (say m) requires that θm = 0, while imposing Dirichlet directions along an

antiholomorphic direction m̄ leads to ηm̄ = 0.

A generic open string vertex operator, giving rise to a local observable, can be written as

V = θm1 · · · θmpη
n̄1 · · · ηn̄qV (φ, φ̄)i j

m1···mp

n̄1···n̄q
(3.3)

where i,j denote the Chan–Paton indices. BRST invariance of this operator requires that V be

a (0, q)–form with values in ∧pT (1,0) (times the Chan–Paton group). Since physical open string

vertex operators arise at ghost number one, in practice one needs to consider two types of vertex

operators

(a) V = ηm̄V i
jm̄ and (b) V ′ = θmV

′i
j
m
. (3.4)

Recalling the identifications in (3.1), we see that these states correspond to either matrix–valued

(0, 1)–forms or tangent vectors on the target manifold. Therefore, when considering space–filling

(‘D5’) branes on the Calabi–Yau [81], by imposing Neumann–Neumann (NN) boundary conditions

on all open strings, the physical open string spectrum is just given by a (0, 1) form A = dZ̄m̄Am̄.

The target space interactions can be encoded in the cubic holomorphic Chern–Simons theory

S =
1

2

∫

CY
Ω ∧Tr(A · ∂̄A+

2

3
A ∧A∧A) (3.5)

which is written with the help of the (3, 0) holomorphic volume form of the Calabi–Yau.

In the following we will assume the straightforward generalisation of the above statements to

the super–Calabi–Yau case.
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3.2 Review of the dual for N = 4 SYM

In [2], Witten showed that the tree level n-gluon MHV amplitudes, that is the amplitudes with

n− 2 positive and 2 negative helicity gluons (when all external particles are taken to be outgoing)

can be reconstructed from an open string theory in supertwistor space. Essential to this was

the observation that these amplitudes localise on holomorphically embedded, degree–one curves of

genus zero in |||CP3|4, and the string theory in question is the open string sector of the topological

B–model with |||CP3|4 target space, which is well defined since the latter is a super-Calabi-Yau. The

isometries of |||CP3|4 encode the PSU(2, 2|4) superconformal symmetry of the N = 4 theory in a

linear way, while the open string sector is realised by introducing Euclidean ‘D5’-branes wrapping

the bosonic directions of |||CP3|4 (Z, Z̄) but only the holomorphic part of the fermionic directions

ψI (I = 1, . . . , 4). This can be interpreted as a localisation of the D5s in the transverse fermionic

coordinates and in [2] this locus was taken to be at ψ̄Ī = 0. Since this imposes Dirichlet boundary

conditions only on the antiholomorphic fermionic directions ψ̄Ī (which would not have been possible

had they been bosonic), it follows that θm, θI = 0 and from (3.4) we see that the only physical

field is a nonabelian (0, 1)–form A = dZ̄m̄A(Z, Z̄, ψ)m̄, which in addition is independent of the

antiholomorphic fermionic coordinates. Therefore the superfield expansion of A is

A = A+ ψIλI +
1

2!
ψIψJφIJ +

1

3!
ǫIJKLψ

IψJψK λ̃L +
1

4!
ǫIJKLψ

IψJψKψLG , (3.6)

where we will from now on suppress the gauge indices and form structure.

As mentioned above, the open string field theory of the B-model reduces to a holomorphic

version of Chern-Simons theory [81], which can be straightforwardly extended to super–Calabi-Yau

manifolds, yielding the following action [2]

S =
1

2

∫

D5
Ω ∧ Tr(A · ∂̄A+

2

3
A∧A ∧A) , (3.7)

where in this case

Ω =
1

4!
Ω′ǫIJKLdψ

IdψJdψKdψL

(

with Ω′ =
1

4!
ǫIJKLZ

IdZJdZKdZL

)

, (3.8)

is the globally defined holomorphic volume form.8 The classical equations of motion following from

(3.7) are

∂̄A+A ∧A = 0 , (3.9)

while an infinitesimal gauge transformation takes the form9

δA = ∂̄ǫ+ [A, ǫ] . (3.10)

8Note that, as mentioned in [2], Ω does not actually define a top form in the fermionic directions and ideally

should be promoted to a so–called integral form, which does. A thorough discussion of integration on supermanifolds

in similar contexts appears in [84], where more references can be found. However, as in [2], the choice of Ω in (3.8)

appears to be sufficient for our purposes, and we will content ourselves with this näıve choice in the following.
9Here and in the following we use the standard commutator of forms [αp, βq ] = αp ∧ βq − (−1)pqβq ∧ αp.
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By linearising around the trivial solution A = 0, the above reduce to ∂̄A = 0 and A′ − A = ∂̄ǫ

respectively, which show that A is in the ∂̄ cohomology class H1 and thus a good physical state of

the open B-model. As is further explained in [2], the ψIs carry an additional U(1)S (+1) charge,

under which the B–model is anomalous and the superfield A is neutral. The component fields

(A,λI , φIJ , λ̃
I , G) carry charge (0,−1,−2,−3,−4) under this symmetry and are then (0, 1)–forms

with values in the line bundle O(−k), where −k is the appropriate S–charge. Each component

field in (3.6) is then an element of the sheaf cohomology class H1( |||CP3,O(−k))10 and the Penrose

transform [3] maps these fields to the space of solutions of massless free wave equations for fields

of helicity 1− k/2 in Minkowski space. In this fashion one recovers the spectrum of N = 4 SYM.

The action (3.7) thus contains all the fields of N = 4 SYM and at least some of the interactions.

It does not contain all the interactions, however. Rather, it describes the subset corresponding to

the so-called selfdual sector of N = 4 SYM, as can be seen via a nonlinear form of the Penrose

transform, which precisely maps the hCS action to this selfdual truncation [85]. In order to recover

the full set of interactions it is necessary to introduce nonperturbative objects, called ‘D1-instantons’

in [2], which are Euclidean 2-branes wrapping the curves on which the desired amplitudes are

supported. We will postpone a review of these aspects to Section 4.1, and concentrate for the

moment on obtaining the analogue of the above construction for the Nf = 4 theory.

3.3 Orientifolding the twistor string

Having reviewed how the spectrum and selfdual interactions of N = 4 SYM can be recovered

from the B–model on |||CP3|4, we now begin the analogous construction for the Nf = 4 theory.

It is clear from the above that the problem can be split into two steps: First, we will need to

recover a B–model target space action corresponding to the selfdual sector of the gauge theory,

and then, introducing D1–instantons wrapping appropriate curves, we can proceed to reproduce

the non-selfdual amplitudes of the theory. In the following we will focus on the former part, while

the second step will be considered in Section 4.

Following the intuition gained from the IIB description of the Nf = 4 theory, reviewed in Section

2.1, and the twistor description of quiver gauge theories in [25, 26], it is clear that some sort of

fermionic orientifold projection will be necessary in our approach.11 We begin by considering the

N = 4 setup of the previous section, choosing the number of ‘D5’ branes to be 2N . This produces

an SU(2N) gauge group, and accordingly the indices of Ai
j run over i, j = 1, . . . , 2N . Conformal

invariance of the dual gauge theory requires us to choose the orientifold action such as to leave the

bosonic part of |||CP3|4 fixed.12 However, we would like to reduce the amount of supersymmetry,

10Actually, as noted in [2], the class is really H1( |||CP3′,O(−k)) where |||CP3′ is a suitable open set of supertwistor

space. However, we will ignore such subtleties here.
11Orientifolds in a topological string context were first considered (for the A-model) in [86].
12Although we should emphasise that, in order to discuss a specific spacetime signature, we will eventually need to

pick a contour (e.g. RP3) within |||CP3, which can be imposed via a bosonic orientifold-type operation (albeit a trivial

one from our perspective, being already present for N = 4 [2]). We thank Dave Skinner for a relevant discussion.
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which implies that the orientifold should act on the fermions ψI asymmetrically, in order to break

the SU(4)R symmetry. Therefore, we begin by splitting the four fermionic coordinates ψI of |||CP3|4

into I = {a,A}, with a = 1, 2 and A = 3, 4. The appropriate orientifold action is the combination of

a Z2 orbifold (acting trivially on the Chan–Paton indices), the worldsheet parity transformation ω̂

and an action on the Chan-Paton indices brought about by acting with an antisymmetric hermitian

matrix γ̃ = iΩ, where Ω2N×2N is the Sp(N) invariant tensor (see appendix A)

(a) ψa → ψa , ψA → −ψA

(b) Ai
j → Ωik(AT ) l

k Ωlj = (AT )i j ≡ A i
j ,

(3.11)

which is a superorientifold operation in |||CP3|4.13 Note that the orbifold action (a) breaks the

fermionic coordinate symmetry SU(4)R → SU(2)a × SU(2)A.
14 Also note that it leaves the holo-

morphic volume form (3.8) invariant, indicating that the target space is still super–CY and that we

can legitimately define a proper B–model action. In (b) we have used Ω to raise and lower indices.

Requiring A to be invariant under this operation (which, on lowering indices, translates to

Aij = Aji), and considering its action on the various component fields in the expansion (3.6), it is

easy to see that one obtains the following decomposition

Â = (A+ ψaλa + ψ1ψ2φ+ ψ3ψ4φ† + ǫcdψ
3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G)

+ ψA(ζA + ψazAa + ǫABψ
1ψ2ζ̃B) (3.12)

= V + ψAZA

= V + Z ,

where in the first line we have collected the terms (V) which are symmetric (when both indices are

either up or down) under the orientifold operation of (3.11). Since these have N(2N + 1) gauge

degrees of freedom, we immediately conclude that they transform in the adjoint representation of

Sp(N). Similarly in the second line we have displayed the terms (Z) which are antisymmetric

under said operation and therefore have N(2N − 1) − 1 degrees of freedom and transform in the

(second–rank) antisymmetric tensor representation of Sp(N).

By repeating the analysis performed for the N = 4 theory and studying the linearised classical

equations of motion around the trivial solution Â = 0, one obtains the superorientifold-invariant

elements of the (Dolbeault) cohomology, which via the Penrose transform map to part of the

spectrum of the Nf = 4 theory [2]. In a helicity basis this is

V = (A,λa, {φ, φ†}, λ̃a, G)
︸ ︷︷ ︸

1–forms of S-charge (−k) in twistor space

Penrose←→ (A,λa, {φ, φ†}, λ̄a, G)
︸ ︷︷ ︸

fields of helicity (1− k/2) in Mink. space

Z =
︷ ︸︸ ︷

(0, ζA, zaB , ζ̃
A, 0)

Penrose←→
︷ ︸︸ ︷

(0, ζA, zaB , ζ̄
A, 0) (3.13)

13In writing (b) we have assumed that, as in the physical string case [49], ω̂ has eigenvalue −1 on the (0, 1)–form

vertex operator A. This minus combines with the i2 from γ̃ = iΩ to give an overall plus in (b).
14We choose the subscripts having in mind the eventual identification of these symmetries with their spacetime

counterparts.
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and we have, therefore, obtained the adjoint and antisymmetric sector of the Nf = 4 theory.

However, to complete the derivation of the spectrum on the twistor side, we still need to recover

the fundamental degrees of freedom, to which we now turn our attention.

3.4 Flavour-branes and the Fundamental Sector

By analogy with the IIB string description, it should be clear that incorporating the fundamental

fields of the Nf = 4 theory will require the introduction of a new object in twistor space. We will

implement this by adding a new kind of brane to our configuration, which we will call a ‘flavour’-

brane, as it roughly corresponds to a D7–brane in the physical string setup, in the sense that strings

stretching between the ‘D5’s and the flavour-branes will lead to the fundamental hypermultiplets.

Recall from Section 2.1 that in the IIB picture the D7–branes were located on the orientifold

plane defined by (x8, x9)→ −(x8, x9). We will similarly take the flavour-branes to lie on the fixed

point set of our orientifold action (ψA → −ψA), by imposing Dirichlet conditions in the ψ3, ψ4

directions. We will also keep the Dirichlet condition on the antiholomorphic ψ̄Ā directions. Since

these new branes still extend along the bosonic directions of |||CP3|4 (as well as the fermionic ψa

directions), from now on we will drop the possibly misleading ‘D5’ terminology and label the branes

discussed in the last section (which led to the gauge group Sp(N)) as ‘Dc’ (for colour) and the new

branes as ‘Df ’ (for flavour). We summarise the boundary conditions satisfied by open strings

stretching between the branes in our setup in Table 2.

Direction Dc–Dc Dc–Df Df–Df

Z,Z̄ NN NN NN

ψa NN NN NN

ψA NN ND DD

ψ̄ā,ψ̄Ā DD DD DD

Table 2: Boundary conditions for open strings in the B–model setup.

Having chosen the boundary conditions defining a Df brane, we will now need to decide on a)

how many of them to introduce and b) how the orientifold and orbifold groups act on the Chan–

Paton indices associated with these branes. For the first question, it turns out that (as will become

clear shortly) introducing two Df branes, which along with their mirrors lead to a 4 × 4 Chan–

Paton group, is what is necessary to reproduce the Nf = 4 theory. We will call the corresponding

indices X,Y, . . . = 1, . . . , 4. As for the second question, recall that for the Dc branes we chose the

orientifold action γ̃c = iΩ2N×2N , but the action of the orbifold was trivial: γc = I2N×2N . With

an eye to the results we want to obtain, we will again choose the orientifold action antisymmetric

(γ̃f = iΩ4×4), but this time we take γf = −I4×4. Thus, the full specification of our orientifold
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action (extending (3.11)) is given by:

(a) ψa → ψa , ψA → −ψA

(b) J → Ω(r)J (T )Ω(r)

(c) J → γ(r)J γ(−1)
(r) ,

(3.14)

where the generic B–model state J can take any of the four possible choices of Chan–Paton indices

(i.e. J i
j,J i

X ,JX
i,J X

Y ), γ(r) is either γc or γf depending on the index it is acting upon, and

similarly Ω(r) corresponds to either Sp(N) or Sp(2).

This completes the definition of our proposal for the twistor dual of the Nf = 4 theory. Now

let us check whether we can recover the expected spectrum on the spacetime side. Of course the

discussion in Section 3.3 remains unchanged, so we already know that the c − c strings of our

construction reproduce the correct vector and antisymmetric hypermultiplet spectrum.

First, we will look at the f−f strings, which will provide us with information on the Chan–Paton

group corresponding to the four Df branes. We thus need to confront the problem of interpreting

the Dirichlet boundary conditions in the holomorphic ψA directions. Unlike what happens for the

antiholomorphic fermions, simply interpreting these as imposing ψA = 0 (so that observables do

not depend on ψA) does not seem to provide the correct degrees of freedom. The resolution comes

through realising that one has to apply a fermionic analogue of dimensional reduction, which is

part of a more general question of properly defining sub-supermanifolds of supermanifolds. Some

aspects of this, which turn out to be sufficient for our purposes, have been discussed in [87], whose

approach we will follow (and where further references can be found). In brief, the results of [87]

indicate that a reasonable definition of fermionic dimensional reduction is to restrict the fermionic

dependence of the original supermanifold so that fields on the sub-supermanifold can only depend

on them in certain combinations. For example, one of the cases considered in [87] was the reduction

|||CP3|4 → |||CP3⊕1|0, where the notation [88] means that all four ψI have been combined into a single

nilpotent bosonic coordinate y = ψ1ψ2ψ3ψ4.15

A simple way to impose such constraints on the fermionic dependence is in terms of a suitable

set of integral constraints, and indeed the particular reduction above was first performed in [89]

using such an approach. However, with this choice (as well as another case considered in [87]) one

is led to a completely bosonic truncation of the N = 4 spectrum, while our Df branes are still

expected to preserve N = 2 supersymmetry, so we will need to slightly adapt those embeddings

to our setting. Given the symmetries of our system, we propose that the supermanifold reduction

defining the Df branes is |||CP3|4 → |||CP3⊕1|2, where the nilpotent coordinate is ψ3ψ4 and the ψ1,ψ2

coordinates are unrestricted.16

As discussed above, the NN directions will provide a (0,1)–form living on the Df branes, which

we denote by KX
Y . The above definition of dimensional reduction can be implemented by imposing

15 |||CP3⊕1|0 is an example of a thickening of |||CP3 [87].
16Such maps of supermanifolds, where one exchanges pairs of odd coordinates for even nilpotent coordinates, have

also appeared, in a slightly different (superspace) context, in [90].
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the following eight equations (which are a subset of the truncation conditions considered in [89])

∫

d4ψψ1ψ2ψAK =

∫

d4ψψaψAK =

∫

d4ψψAK = 0 . (3.15)

These conditions restrict the ψ dependence of K to take the following form

KX
Y = dZ̄m̄

(

K(Z, Z̄, ψa)m̄
X
Y + ψ3ψ4L(Z, Z̄, ψa)m̄

X
Y

)

. (3.16)

It is easy to check that requiring invariance under the orientifold action results in a symmetric

truncation of the Chan–Paton matrix defined by the X,Y indices and thus K is a 4 × 4 matrix

transforming in the adjoint of an Sp(2) group. Thus we have specified the (0,1)–form part of the

f − f spectrum.

However, as can be seen in (3.4), the existence of holomorphic DD directions implies that the

(0, 1)–forms do not exhaust the possible vertex operators that can be written down at ghost number

one. One can now also have states of the form

BAθA ∼ BA(Z, Z̄, ψa, ψA)
∂

∂ψA
. (3.17)

Motivated by dimensional reduction in the physical string case, and in particular by the desire to

have the same counting of states before and after the reduction, we will assume that the fermionic

dependence of these DD f − f states arises by considering the complement of the eight equations

in (3.15).17 This will restrict the general expansion for B to

BA(Z, Z̄, ψ)XY

∂

∂ψA
= ψBBA

B(Z, Z̄, ψ
a)XY

∂

∂ψA
. (3.18)

Requiring invariance under the orientifold action (under which we also have ∂/∂ψA → −∂/∂ψA)

once again restricts the Chan–Paton indices to be those of Sp(2). It is straightforward to check

that ψBBB(Z, Z̄, ψ
a) provides 4 fermionic and 4 bosonic degrees of freedom, which, together with

K, give the expected counting of states for the 8d N = 1 theory on the D7–brane (note that in this

counting we suppress the index corresponding to the expansion of B in a basis of T (1,0), in the same

way that we have been suppressing the form index z̄ for the (0,1)–form states). These states, not

being (0,1)–forms, are clearly unsuitable for a straightforward application of the Penrose transform

to four dimensions. This is not unexpected, since their natural dual interpretation would be as

states of the eight–dimensional D7–brane theory. We will further comment on such a potential

interpretation at the end of this section.

It should also be pointed out that, again because they are not (0,1)–forms, there seems to be no

obvious way to include the B states in a holomorphic Chern–Simons–type action (which would still

need to be integrated over a (3,3)–cycle), and in particular we cannot write down the action on the

Df worldvolume including these terms by dimensional reduction (unlike the case for bosonic DD

17This becomes clearer if one chooses to reduce along all four ψI directions, as in [89]. In that case one imposes

14 equations in the NN sector, so the (0,1)–strings provide just two degrees of freedom. The remaining states should

then arise from the DD sector, therefore we would want to impose just two equations on that sector.
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directions, see e.g. [91]). Perhaps a suitable generalisation of the hCS action, along with a more

rigorous definition of our integration measure, would be able to accommodate this more general

case, but since for the purposes of this paper we will only need to know the Dc brane action, which

is what is expected to have a relation to the 4d theory that we are interested in, we will not pursue

this question further here.

Clearly the choice of the above geometric embedding of the Df branes within |||CP3|4 has been

based on rather heuristic arguments, and, although it certainly seems to provide a consistent

picture, we cannot claim that it is the unique possibility. It would certainly be desirable to obtain

a more fundamental understanding of this embedding starting from the basic definition of Dirichlet

boundary conditions on the B–model worldsheet. Leaving this for future work, we will now turn

to the last aspect of our construction, i.e. the strings stretching between the Dc and Df branes.

Therefore, we finally consider the c− f and f − c strings. Recall that these are the real reason

to introduce the Df branes, since they will provide the desired fundamental matter. Looking at

Table 2, and recalling that (topological) DN strings do not have zero modes and thus do not provide

B–model states, the only contributions arise from the NN sector. Suppressing the (0, 1)–form index,

these can be usefully written as an expansion in ψA

Qi
X = P (Z, Z̄, ψa)i X + ψAQA(Z, Z̄, ψ

a)i X + ψ3ψ4R(Z, Z̄, ψa)i X (3.19)

and similarly for the f − c field QX
i. Note that, due to the orientifold action (3.14.b), the c− f and

f − c states are related by the condition

QX
i = ΩijQj

Y Ω
Y X . (3.20)

It is easy to check that the other components of (3.14) impose P i
X = Ri

X = 0 and thus dictate

that the c− f and f − c states are given by

Qi
X = ψAQi

AX , QX
i = ψAQX

A i , (3.21)

where we can expand

Qi
AX = ηiAX + ψaqiaAX + ψ1ψ2η̃iAX (3.22)

and similarly for QX
Ai. Recall that here i is an Sp(N) gauge group index, A is an index of SU(2)A

and (as we previously derived) X is an index of Sp(2). The particular form of Q is not new: As

shown in [37,92], this is the precise twistor field content (for each value of X) corresponding to an

N = 2 hypermultiplet!18 We conclude (and will make more precise shortly) that our orientifolding

procedure has produced a hypermultiplet Qi
AX in the fundamental representation of Sp(N).

Let us now investigate its transformation properties under the two global groups, given by the

indices A and X. As we reviewed in Section 2.2, the fundamental hypermultiplets should also

transform in the fundamental representation of the global SO(8) flavour group. However at the end

18To be more precise, these references describe a hypermultiplet as consisting of two fermionic half–hypermultiplets,

while in our case they naturally appear in SU(2)A doublets, at the cost of losing manifest SO(8) invariance.
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of that section we explicitly decomposed the SO(8) into its SU(2) × Sp(2) subgroup. The reason

for that should now be evident: In the twistor string model we have constructed, the SU(2) arises

geometrically as the symmetry under which the ψA coordinates transform as doublets, while the

remaining Sp(2) arises as the Chan–Paton group of the flavour–branes. We will explore some of

the implications of this decomposition of the flavour group shortly, but it is clearly an unavoidable

consequence of the fundamental fields in (3.21) being linear in ψA. However, we can immediately

comment on another consequence of this linear behaviour: It provides a very natural explanation

for the fermionic nature of Qi
AX which had to be assumed in the constructions of [37,92].

We conclude that, by defining our flavour-branes to lie at the orientifold fixed point, and extend-

ing the orientifold action to act nontrivially on their Chan–Paton indices, we have reproduced the

fundamental part of the spectrum of the Nf = 4 theory. This description has several peculiarities

relative to the physical string description, not least of which is the fact that the relative sizes of

the D3 and D7 branes in the IIB setup seem to be interchanged: Our Df branes extend (have NN

b.c.’s) along a subspace of that of the Dc branes and could perhaps be thought of as defects in the

worldvolume theory of the latter. On the other hand, what is perhaps more relevant in comparing

to the spacetime picture is the super-dimension of our branes, defined as the difference between the

number of bosonic and fermionic NN directions.19 Although this deserves further study, we note

that it also seems to be consistent with an observation in [95] that (for non–topological strings on

supermanifolds) the number of fermionic NN directions contributes to the brane tension inversely

to that of bosonic NN directions, and thus a brane extending along fewer fermionic directions can

be thought of as having larger mass. Although these results do not apply directly in our setting,

we take them as an indication that the geometric embedding of the Df branes is the correct one.

Another perhaps surprising feature of our model is the fact that both the Dc and Df branes were

chosen to satisfy symplectic projection conditions on their Chan–Paton indices, leading to Sp(N)

and Sp(2) worldvolume gauge groups respectively. This seems to conflict with the arguments of [49]

which (applied to the orientifolded D3–D7 system) would require opposite projections for the two

types of branes, leading to Sp(N) and SO(8) gauge groups. However, that analysis was based on

subtle properties of the 3 − 7 string DN sector, which is absent in this case. Therefore it would

seem that the B–model is too simple to accommodate such an effect, but confirmation of this will

have to wait for a better worldsheet understanding of our orientifold prescription.20

Given that, in the physical string setup, our Df branes correspond to IIB D7–branes, with an as-

sociated eight–dimensional worldvolume SYM theory, it is fascinating to speculate that our twistor

string model might, via a suitable higher–dimensional generalisation of the Penrose transform, also

have another dual description in terms of an eight–dimensional spacetime theory. Under this du-

ality, the worldvolume theory of the twistor Df brane would presumably map to some integrable

19For instance, [93] argues for the equivalence of the A–model on certain (m|n)–dimensional supermanifolds to that

on bosonic (m− n)–dimensional manifolds. See also [94] for similar observations in the context of mirror symmetry.
20 It is likely that the notions of B–parity and B–orientifolds, developed for (untwisted) (2,2) models in [96] (see

also [97]), properly extended to the supermanifold case, will be of help in this regard.
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subsector of 8d Yang–Mills. A preliminary remark in this direction is that a natural definition

of selfduality for 8d Yang–Mills [98] also seems to require the same breaking of (Lorentz) SO(8)

to Sp(2) × Sp(1) that we observe on the twistor side. Although it would be very interesting to

understand this connection better, we will from now on focus on the standard four–dimensional

Penrose transform that connects the spectrum and field equations of the Dc brane worldvolume

theory to those of a suitable generalisation of 4d selfdual Yang–Mills.21

3.5 The Final Twistor Action

In the last two sections we defined a B–model setup with certain numbers of branes that reproduced

the spectrum of the Nf = 4 theory. The resulting superfields can be naturally embedded into the

holomorphic Chern-Simons action in the following way22

S =
1

2

∫

Dc

Ω ∧
(

Tr[Â · ∂̄Â+
2

3
Â ∧ Â ∧ Â] +QX · ∂̄QX +QX ∧ Â ∧ QX

)

=
1

2

∫

Dc

Ω ∧
(

Tr[V · ∂̄V +
2

3
V ∧ V ∧ V + Z · ∂̄Z + 2Z ∧ V ∧ Z]

+ QX · ∂̄QX +QX ∧ V ∧ QX

)

. (3.23)

The classical equations of motion can then be easily found to be

∂̄V + V ∧ V + Z ∧ Z +
1

2
QX ∧ QX = 0

∂̄Z + [V,Z] = 0

∂̄QX + V ∧ QX = 0 (3.24)

and by linearising these around the trivial solutions V = 0, Z = 0, Q = 0 one obtains

∂̄V = ∂̄Z = ∂̄Q = 0 . (3.25)

In addition, (3.23) has the following three gauge invariances, related to three different (0, 0)-form

gauge parameters ǫi j , ε
i
j and ei X

(a) δV = ∂̄ǫ+ [V, ǫ] , δZ = [Z, ǫ] , δQX
i = QX

jǫ
j
i , δQi

X = −ǫi jQj
X , (3.26)

(b) δZ = ∂̄ε+ [V, ε] , δV = [Z, ε] , (3.27)

21In doing this we will assume that the Penrose transform can be applied just to the Dc brane theory, comprising

the c−c strings plus their interactions with the c−f and f−c strings, ignoring interactions with the Df worldvolume

theory. In the physical string setting such interactions are frozen at low energies essentially due to the difference in

spatial extent of the D3 and D7–branes. It would be interesting to identify a mechanism providing such a decoupling

in our topological string setting.
22Here we write the fundamental part of the action by analogy with that for the antisymmetric fields. However,

note the different relative coefficient of the interaction terms, which is due to their different Sp(N) transformation

properties.
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and

(c) δQi
X = ∂̄ei X + V i jejX , δQX

i = ∂̄eXi − eXjVji , δV i j =
1

2
(Qi

Xe
X
j − ei XQX

j) . (3.28)

The first of these is the ordinary gauge invariance while the other two are clearly very unusual,

and are due to the fact that on the twistor side Z and Q are (0,1) forms.23 Essentially the same

transformations have been discussed in [37], where they arise as symmetries of the (non-cubic)

twistor space effective action which, in the formalism there, would correspond to full (non-selfdual)

N = 2 SYM with matter.

As such, the linearised equations of motion and these symmetries are enough to put the su-

perfields V,Z and Q in the appropriate cohomology classes for their component fields to map to

spacetime states. In particular, the components of Q then map to Minkowski space fields of helicity

(12 , 0,−1
2 ) via the Penrose transform

Q = (0, ηAX , qaAX , η̃
AX , 0)

︸ ︷︷ ︸

1–forms of S-charge (−k) in twistor space

Penrose←→ (0, ηAX , qaAX , η̄
AX , 0)

︸ ︷︷ ︸

fields of helicity (1− k/2) in Mink. space

.

We have thus obtained the complete spectrum of the Nf = 4 theory from twistor string theory.

Expanding (3.23) in components and integrating out the fermionic variables gives

ShCS =

∫

CP3

Ω′ ∧
(

Tr[G ∧ F + φ† ∧ D̄φ− λ̃a ∧ D̄λa + λa ∧ λa ∧ φ† ]

+ Tr[−1

2
zaA ∧ D̄zaA − ζ̃A ∧ D̄ζA − zaA ∧ λa ∧ ζA + ζA ∧ ζA ∧ φ]

+η̃AX ∧ D̄ηAX − 1

2
qaAX ∧ D̄qaAX − qaAX ∧ λa ∧ ηAX +

1

2
ηAX ∧ φ ∧ ηAX

)

,

(3.29)

where the covariant derivatives are defined as D̄ = ∂̄ + [A, ] for tensor fields and D̄ = ∂̄ + A∧ for

fundamental ones. This looks very much like the selfdual truncation of the Nf = 4 theory that we

obtained in (2.13), which we present again to facilitate the comparison

S4d =

∫

d4x Tr

[

−1

2
GF +Dφ†Dφ+ iλ̄a 6Dλa − λaλaφ†

]

− Tr

[
1

2
DzaADzaA + iζ̄A 6DζA + zaA[λa, ζA] + ζAζAφ

]

−
(
1

2
DqaA′XDq

aA′X + iη̄A′X 6DηA
′X + qaA′Xλ

aηA
′X +

1

2
ηA′Xφη

A′X

)

.

As we have already mentioned, there should exist a nonlinear generalisation of the Penrose transform

in the spirit of [85], relating these two actions exactly. Moreover, note that by comparing the two

we readily observe that even though there is both an SU(2)A and an SU(2)A′ symmetry for the

gauge theory, we only see a single SU(2)A on the B–model side. This is a hint that these two

23In fact (a) and (b) can be straightforwardly derived from the transformation of Â (δÂ = ∂̄E+[Â, E]), by splitting

Â = V + Z and E = ǫ + ε into symmetric and antisymmetric parts and considering the symmetry properties of the

resulting terms.
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symmetries are identified in the twistor string description, a claim which we will verify during the

comparison of amplitudes between the two theories.

In summary, we have introduced four Df branes parallel to the superorientifold plane which

account for the Sp(2) part of the flavour symmetry. Via the Penrose transform, this yields the right

spectrum for the fundamental hypermultiplets in the Nf = 4 theory and mimics the behaviour

of the D7–branes in the physical string setup. As we further discuss in the conclusions, it would

be intriguing if there were a mechanism which exactly fixes the number of Df branes in the B–

model to four (two plus two mirrors), e.g. some analogue of the RR charge cancellation condition

in string theory. The existence of such a mechanism would suggest (as expected perhaps) that our

construction is only consistent at loop level for the precise case when the dual gauge theory is finite.

4 Comparison of amplitudes

Having reproduced the spectrum of the Nf = 4 theory, we will now establish the duality on firmer

grounds by calculating amplitudes in both the gauge theory and topological string theory, and by

showing precise agreement (up to a constant normalisation factor).

4.1 Review of the standard amplitude prescription

We will begin by briefly summarising the prescription of [2] for the calculation of colour-stripped

partial amplitudes in N = 4 SYM. As we indicated above, this reduces to the evaluation of partic-

ular correlators on the worldvolume of D1–instantons wrapping curves of a certain degree in |||CP3|4

and then integrating over the moduli space of such curves. For tree–level MHV amplitudes, the

D1–instantons are localised [2] on |||CP1s in |||CP3|4 with the embedding given by

µα̇ + xαα̇λ
α = 0 and ψI + θIαλ

α = 0 , (4.1)

where Zm = (λα, µα̇) and ψI are the supertwistor space coordinates, while the moduli xαα̇ and θIα
correspond to the coordinates of 4d Minkowski space and (on–shell) N = 4 superspace respectively.

Following an idea due to Nair [4], the gauge theory amplitudes are reproduced by correlation

functions of chiral currents on the worldvolume of these D1–instantons. Since the insertion of

these objects explicitly breaks the isometries of |||CP3|4, one must integrate over the moduli space

of instantons of the appropriate degree. The prescription for the calculation of tree-level MHV

amplitudes, and therefore integration over degree one, genus zero curves, is then

A(n) = g2
∫

d4x d8θ 〈
∫

CP1

J1w1 · · ·
∫

CP1

Jnwn〉 , (4.2)

where Ji are D1 worldvolume free–fermion currents coupling to the external D5–brane fields (includ-

ing both the colour and flavour-branes in our case), while the wi’s are the twistor space equivalents

of wavefunctions for the external particles. The lower index i = 1, . . . , n indicates the position of
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the external particle in the n-point scattering process, as well as the point onto which these localise

on the holomorphic curve in twistor space. The factor of g2 is identified with the D1-instanton

expansion parameter. The calculation for the product of the currents boils down to yielding a

gauge group factor, which we will strip off, as well as the following denominator part of the MHV

amplitudes24

〈J1 · · · Jn〉stripped =
1

〈12〉〈23〉 . . . 〈n1〉 . (4.3)

The numerator of the amplitude is produced by the twistor wavefunctions wi, which, upon in-

tegration over the positions of vertex operators for each on-shell external particle, result in a

colour-stripped coefficient vi(ψi) equal to the one in the superfield expansion of A in (3.6) [99].

These contribute a number of factors of ψ, which are then integrated over the moduli space of

D1–instantons via the embedding relation ψI
i = θαIλiα. Since the fermionic part of the measure on

moduli space for genus zero, degree one holomorphic curves is d8θ, the MHV amplitude is non-zero

only if the Grassmann integral is saturated, that is, if the total S-charge of the external states

participating in the scattering process is S = −8. Conversely, if a process involves external states

with total charge S = −8, it is then MHV. Since in the case under study these amplitudes can

include external fermions or scalars satisfying this condition in addition to gluons, it is perhaps

more appropriate to refer to them as ‘analytic’ [100] rather than MHV, and we will mostly use the

latter notation in the following. Finally we note that the integral over the bosonic moduli yields

a δ–function of momentum conservation, which we omit. This prescription successfully reproduces

all amplitudes localising on holomorphic, degree one, genus zero curves in N = 4 SYM.

The above can also be extended to amplitudes which localise on higher degree, genus zero

holomorphic curves. For generic scattering states this degree is given by d = −1
4

∑n
i=1 Si−1, where

the sum is over the S-symmetry charges of the n external particles. For gluon scattering these

correspond to next-to-MHV (NMHV) and higher (Nq−2MHV) amplitudes and the appropriate

degree is given by d = q − 1, where q is the number of negative helicity gluons. Although the

original string–motivated prescription of [2] made use of one connected degree–d instanton, in

practice it turned out to be more useful to consider instead a sum of d disconnected (degree one)

D1–instantons, leading to the MHV–rules prescription [11]. The equivalence of these prescriptions

(as well as intermediate pictures of multiple D1–instantons of degrees adding up to d) is strongly

suggested by the work of [101].

4.2 Extension to the Nf = 4 theory

The above prescription can be straightforwardly extended to the twistor model for the Nf = 4

theory that we constructed in Section 3. The starting point is to consider D1–instantons localised

along holomorphic curves in the orientifold of |||CP3|4, which now includes the two types of ‘D5’

branes, which we have denoted Dc and Df . Assuming that the D1 worldvolume currents couple

24Here we use the widespread notation 〈12〉 = 〈λ1λ2〉 = λα
1 λ2α and [12] = [λ̃1λ̃2] = −λ̃1α̇λ̃

α̇
2 , with 2(pi · pj) =

〈λiλj〉[λ̃iλ̃j ]. See also Appendix B.
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to the external Df fields in the same way as to the Dc’s, we will take the formula (4.2) as our

starting point. The difference in this case is that the twistor wavefunctions wi will now associate

the appropriate term in the superfield expansion of the V,Z of (3.12) and Q of (3.22) with each

on-shell external particle.25

The fact that the gauge group is now Sp(N) rather that SU(N) does not introduce major com-

plications, due to the fact that we consider colour stripped partial amplitudes, effectively factoring

out all information about the gauge group. In the usual approach to organising amplitudes in

U(N) gauge theories,26 this amounts to considering definite orderings for the external scattering

states and then summing over all non-cyclic permutations to obtain the full amplitude. The struc-

ture of the group theory piece leads to identities, which dramatically simplify the calculation by

allowing the evaluation of a great number of partial amplitudes by simply exchanging negative

helicity spinor factors. A similar procedure can be applied to the Sp(N) case. Naturally, from a

given colour stripped result, one can recover different full amplitudes depending on the gauge group

choice. Since Sp(N) gauge theory amplitudes seem to have no real phenomenological importance

and since agreement of partial amplitudes between the gauge and twistor theory sides is enough

to establish their correspondence, we will not explicitly calculate the full answer, although it is

straightforward to recover it using simple group theory facts.27 We would like to note at this point

that we will not only strip the gauge group indices but also the Sp(2) indices X, which appear in the

definitions of the fundamental fields. The motivation for this is that they are global non-geometric

indices and the partial amplitude calculation is insensitive to how one chooses to contract them. In

obtaining the full amplitude involving external fundamental fields, one should of course be careful

to properly consider all possible contractions that lead to an Sp(2) scalar quantity.

In order to demonstrate that the standard twistor prescription for tree–level analytic amplitudes

can be applied, essentially unmodified, to the Nf = 4 theory, we will now move on to explicit calcu-

lations of partial amplitudes. We will do this for a large set of amplitudes of different combinations

involving external particles transforming in the adjoint, antisymmetric and fundamental represen-

tations of the Sp(N) gauge group.28 The first nontrivial analytic amplitudes appear at 4-point but

we will also evaluate a few 5-point amplitudes to provide further evidence for the duality. In the

following subsections we will explicitly display the result on the twistor string side. In order to get

the result purely from gauge theory one needs to extract the Feynman rules from the Lagrangean

(2.12) and then add up the contributions from all channels for the process under consideration. In

Appendix B we list these Feynman rules in spinor helicity formalism, as well as various identities

we have employed in order to obtain the spacetime answer. Since we do not have a precise map

25The reader worried about only integrating over the moduli space of |||CP1s in an orientifolded theory, which

should also include RP2 topologies [102], should recall that these contributions are non-planar and will be absent at

tree-level. They should, however, play a role in any eventual loop level calculation.
26See for example the reviews [103,104].
27Pseudoreality of Sp(N) will make this step slightly more subtle compared to U(N), since there exist extra

identities relating different orderings of the external particles.
28We do not need to calculate gluon scattering processes since the stripping procedure guarantees that the partial

amplitudes will go through as in the U(N) case.
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between the actions on the two sides of the correspondence, we cannot hope to exactly match the

resulting amplitudes. We therefore calculate ratios of the latter and find exact agreement up to a

relative constant normalisation factor. In particular, in our conventions we find that the spacetime

answer is obtained from the twistor result by multiplying by a factor of 32i.

4.3 ‘Pre-analytic’ amplitudes

Before proceeding with the analytic results, we will briefly look at the amplitudes that have a

total value of S = −4, which we will call pre-analytic. These are 〈λa, λb, ηA, ηB〉, 〈λa, ηA, λb, ηB〉,
〈λa, λb, ζA, ζB〉 and 〈λa, ζA, λb, ζB〉 and on the twistor side they correspond to amplitudes that

localise on degree zero curves in twistor space, i.e. points. This means that all particles are attached

to the same point in twistor space and λi = λj ∀ i, j. Therefore 2(pi · pj) = 〈λiλj〉[λ̃iλ̃j ] = 0, and

thus scattering amplitudes with n ≥ 4, which depend on such nontrivial kinematic invariants, must

vanish [2].

From the spacetime point of view this result is less obvious and one needs to calculate all

the corresponding amplitudes explicitly. These come from interaction vertices which originate

exclusively from the selfdual truncation of the Nf = 4 theory (2.13). In fact, this observation

extends to all other theories admitting a tree-level twistor string description. Moreover, since we

only focus on the colour-stripped (and Sp(2)-stripped) partial amplitudes, it suffices to calculate

processes involving either fundamental or antisymmetric matter fields; the amplitude is insensitive

to their gauge transformation properties. We will therefore only discuss the following examples

involving the fundamental fermions η.

A. The amplitude 〈λa1, λb2, ηA,3, ηB,4〉
There are two channels contributing to this amplitude, namely

λa1 ηB,4

qcC

qdD

λb2
ηA,3

+

λa1 ηB,4

φ† φ
λb2

ηA,3

One can easily verify by explicit calculation, using the Feynman rules provided in Appendix

B, that they indeed cancel each other to give zero.

B. The amplitude 〈λa1, ηA,2, λ
b
3, ηB,4〉

The contributions to this process are
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λa1 ηB,4

qcC

qdD

ηA,2 λb3

+

λa1 ηB,4

qcC qdD
ηA,2 λb3

and similarly we find that after summing both parts the total vanishes.

This demonstrates (at four–point level) that all pre-analytic amplitudes, which are the ones

that can be constructed from the interactions in the selfdual truncation of the theory, vanish

after summation over channels. The same phenomenon occurs for the selfdual truncation of N = 4

SYM [2]. In that case, as for the selfdual truncation of pure (non–supersymmetric) Yang–Mills [105],

this fact is explained by noting that the theory is classically integrable and is thus equipped with an

infinite set of (nonlocal) conserved charges.29 The corresponding Ward identities are then expected

to constrain tree–level amplitudes so severely that they are forced to vanish (brief discussions on this

can be found in [110,111]). Thus, the vanishing of pre–analytic amplitudes that we observe strongly

suggests that the selfdual sub-sector of the Nf = 4 theory (which is a very different supersymmetric

extension of pure selfdual Yang–Mills from the N = 4 case) also describes a classically integrable

system. It would be interesting to check this by explicitly constructing the relevant conserved

currents.

4.4 The amplitudes 〈φ, φ, φ†, φ†〉 and 〈φ, φ†, φ, φ†〉

We now turn to the analytic amplitudes of the theory. We start with two simple examples involving

only external adjoint scalars. There are two possible orderings in this case and we will calculate

both, to show that these indeed give rise to different partial amplitudes. On the twistor side,

following the prescription (4.2) that we have discussed in some detail, we can read off and plug in

the wavefunctions appropriate to the 〈φ, φ, φ†, φ†〉 amplitude from (3.12)

v1(φ) = ψ1
1ψ

2
1 , v2(φ) = ψ1

2ψ
2
2

v3(φ
†) = ψ3

3ψ
4
3 , v4(φ

†) = ψ3
4ψ

4
4 . (4.4)

The result is then given by the integral

〈φ, φ, φ†, φ†〉Twistor = g2
∫

d8θ
ψ1
1ψ

2
1ψ

1
2ψ

2
2ψ

3
3ψ

4
3ψ

3
4ψ

4
4

〈12〉〈23〉〈34〉〈41〉 =
g2

16

〈12〉〈34〉
〈23〉〈41〉 . (4.5)

29For the pure selfdual YM case these can be found (for instance) via the Ward construction [106]; see [107] for a

discussion and more references. For N = 4–extended selfdual YM an associated linear system was discussed in [108]

and more recently its hidden symmetries were explored in [109].
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In obtaining the above we have used the anti-commutativity property of Grassmann variables and

the embedding relation ψI
i = θαIλiα to arrive at

∫

d2θ1ψ
1
i ψ

1
j =

∫

d2θ1θ
α1θβ1λα,iλβ,j =

1

2
ǫαβλα,iλβ,j =

1

2
〈ji〉 . (4.6)

On the spacetime side we have contributions from two diagrams

〈φ, φ, φ†, φ†〉4d =

φ1 φ†4

Aµ

Aν

φ2 φ†3

+

φ1 φ†4

φ2 φ†3
(4.7)

and explicit calculation shows that the final result is 〈φ, φ, φ†, φ†〉4d = 32i〈φ, φ, φ†, φ†〉Twistor as

claimed.

For the alternative ordering 〈φ, φ†, φ, φ†〉 we have

v1(φ) = ψ1
1ψ

2
1 , v2(φ

†) = ψ3
2ψ

4
2

v3(φ) = ψ1
3ψ

2
3 , v4(φ

†) = ψ3
4ψ

4
4 . (4.8)

On the twistor side the amplitude is

〈φ, φ†, φ, φ†〉Twistor = g2
∫

d8θ
ψ1
1ψ

2
1ψ

3
2ψ

4
2ψ

1
3ψ

2
3ψ

3
4ψ

4
4

〈12〉〈23〉〈34〉〈41〉 =
g2

16

〈13〉2〈24〉2
〈12〉〈23〉〈34〉〈41〉 (4.9)

The spacetime side receives contributions from three Feynman diagrams

〈φ, φ†, φ, φ†〉4d =

φ1 φ†4

Aµ

Aν

φ†2 φ3

+

φ1 φ†4

Aµ Aν

φ†2 φ3

+

φ1 φ†4

φ†2 φ3

(4.10)

By explicit evaluation we once again find that 〈φ, φ†, φ, φ†〉4d = 32i〈φ, φ†, φ, φ†〉Twistor.

4.5 The amplitude 〈ηA′ , λa, λ̄b, η̄B′〉

Let us also examine some more detailed results concerning analytic amplitudes with nontrivial

dependence on the SU(2) indices a,A, which also involve external fundamental particles. As an
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example we consider 〈ηA′ , λa, λ̄b, η̄B′〉. The wavefunctions can once again be read off from (3.12)

and (3.22) to give

v1(ηA) = ψA
1 , v2(λ

a) = ǫdaψ
d
2

v3(λ̃
b) = ǫcbψ

3
3ψ

4
3ψ

c
3 , v4(η̃B) = ψB

4 ψ
1
4ψ

2
4 . (4.11)

The evaluation of the resulting integral is highly simplified by the use of various identities, collected

in Appendix A. The answer is

〈ηA, λa, λ̃b, η̃B〉Twistor = g2ǫcbǫda

∫

d8θ
ψA
1 ψ

d
2ψ

3
3ψ

4
3ψ

c
3ψ

B
4 ψ

1
4ψ

2
4

〈12〉〈23〉〈34〉〈41〉 =
g2

16
ǫabǫ

AB

(〈34〉
〈12〉 +

〈34〉2
〈23〉〈14〉

)

.

(4.12)

On the other hand, the diagrams contributing to the gauge theory calculation are the following

〈ηA′ , λa, λ̄b, η̄B′〉4d =

ηA′,1 η̄B′,4

Aµ

Aν

λa2 λ̄b3

+

ηA′,1 η̄B′,4

qcC qdD
λa2 λ̄b3

(4.13)

and explicit calculation using Feynman rules leads to 〈ηA′ , λa, λ̄b, η̄B′〉4d = 32i〈ηA, λa, λ̃b, η̃B〉Twistor.

Here we come to a crucial point: When matching the spectra for the full Nf = 4 theory, we had

already noticed that agreement could only be obtained if we decomposed the global flavour index

in terms of its special maximal subgroups SO(8) ⊃ SU(2)A′ × Sp(2) and then somehow related the

SU(2)A′ part to the flavour group for the antisymmetric hypermultiplets SU(2)A. The requirement

of matching amplitudes with external fundamental particles reaffirms this suggestion, since in order

to get agreement the two symmetries need to be identified! This implies that the twistor string

does not reproduce a gauge theory with flavour group SO(8) but a theory which has had the latter

explicitly broken down to SU(2)×Sp(2). Moreover, this SU(2) should then be realised geometrically

on the gauge theory side; recall that in the IIB description the flavour group for the antisymmetric

hypermultiplet fields was related to part of the rotations of the D3 worldvolume in the transverse 6d

space. The geometric realisation on the twistor side is explicit and obvious in terms of the SU(2)A

symmetry rotating the fermionic coordinates ψA. This result is quite intriguing and we will briefly

return to it in the conclusions.

4.6 Further analytic amplitudes

By now, the general strategy implemented for calculating 4–point amplitudes on both sides of the

correspondence should be clear to the reader. Therefore, we will simply display the twistor answer

for several other analytic amplitudes which we have verified to match those arising from the gauge
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theory calculation, up to the same relative normalisation factor of 32i. These amplitudes are

〈λa, φ†, λ̄b, φ〉 =
g2

16
ǫab
〈23〉
〈12〉 (4.14)

〈zaA, zbB, zcC , zdD〉 =
g2

16

(

− 〈12〉〈34〉〈23〉〈14〉 ǫadǫbcǫ
ADǫBC − 〈14〉〈23〉〈12〉〈34〉 ǫabǫcdǫ

ABǫCD (4.15)

+ǫabǫcdǫ
ADǫBC + ǫadǫbcǫ

ABǫCD
)

〈φ†, zaA, zbB , φ〉 =
g2

16

〈13〉〈24〉
〈23〉〈14〉 ǫabǫ

AB (4.16)

〈zaA, ζC , ζ̄D, zbB〉 = −g
2

16
ǫab

(

ǫABǫCD 〈13〉〈34〉
〈23〉〈14〉 + ǫACǫBD 〈13〉

〈12〉

)

. (4.17)

We recall that the partial amplitudes involving fundamental external particles can be obtained

directly from the antisymmetric ones by (pair-wise) substitution of states. For example one has

that 〈qaA, qbB, qcC , qdD〉 = 〈zaA, zbB, zcC , zdD〉 = 〈qaA, qbB , zcC , zdD〉 and so on.

These results strongly indicate that our proposed twistor duality for the Nf = 4 theory, as

well as the assumption that (4.2) is applicable for amplitude calculations, are valid. However, the

structure of 4–point analytic amplitudes is relatively trivial. A more concrete affirmation is given by

examining and finding agreement for 5–point amplitudes. This would allow us to confidently state

that we are indeed considering the correct twistor string theory dual. We have indeed explicitly

checked this for the following two examples

〈λa, zbB , zcC , λd, φ†〉 =
g2

16
ǫBC

( 〈25〉〈35〉
〈23〉〈45〉〈15〉 ǫadǫbc −

〈25〉〈35〉〈14〉
〈12〉〈34〉〈45〉〈15〉 ǫabǫcd

)

(4.18)

〈φ, qaA, qbB , ηC , ηD〉 = −g
2

16
ǫab

( 〈13〉
〈34〉〈15〉 ǫ

ADǫBC − 〈13〉〈25〉
〈23〉〈45〉〈15〉 ǫ

ABǫCD

)

. (4.19)

Once again, the results from the gauge theory side turn out to match those on the twistor side up

to the normalisation factor of 32i.

5 The Nf = 2N theory

We now turn our attention to another class of N = 2 UV-finite gauge theories, namely the theories

with gauge group SU(N) and flavour group SU(Nf ), where Nf = 2N . As discussed in the introduc-

tion, this is the alternative way of extending the SU(2), Nf = 4 theory of Seiberg and Witten [45]

beyond rank one. Here, we will identify the twistor string dual to this Nf = 2N theory. Since we

have done most of the work in order to describe the Nf = 4 case, we will omit some of the details

in this case.

5.1 Physical string theory description

We will begin by reviewing the 10-dimensional string theory description which realises this gauge

theory, in the same vein as for our Nf = 4 treatment. Unlike the previous case, this theory does not
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have a natural connection to F–theory, but can instead be engineered as the low energy worldvolume

theory on a stack of N fractional D3–branes probing the background generated by Nf fractional

D7–branes in Minkowski space with four orbifolded directions R
1,5 × R

4/Z2. The latter are taken

to be (x4, . . . , x7), with Z2 acting on them as (x4, . . . , x7)→ (−x4, . . . ,−x7). We take the D3s to lie

along (x0, . . . , x3), and the D7s to be in (x0, . . . , x7). The D3–D7 system preserves 8 supercharges

and the orbifold action has been chosen such that it does not break the supersymmetry any further

[112, 113]. Once more, the 3–7 (7–3) strings provide the matter hypermultiplets transforming in

the fundamental (conjugate-fundamental) representation of the gauge group and in the probe limit

their SU(Nf ) Chan-Paton index takes values in a global symmetry group. Similarly, in this limit the

‘heavy’ 7–7 strings decouple and one obtains a 4d N = 2, SU(N) gauge theory with Nf fundamental

hypermultiplets.

We are interested in the case where the D3s and D7s are located at the same point in the

transverse (x8, x9) directions (so there are no masses for the matter fields) and where all D3s are

coincident (that is, no vevs). This is very reminiscent of the way we constructed the Nf = 4

theory. There are, however, some crucial differences: Firstly, there is no orientifold plane in this

case and hence no gauge symmetry enhancement at any point on the moduli space; the gauge

groups corresponding to the open string degrees of freedom remain SU(N). Secondly, the number

of flavours corresponding to the conformal point is chosen via a very different mechanism: On the

supergravity side the solution exhibits a naked singularity, a usual feature in the gravity description

of non-conformal theories. For the case of non-compact orbifolds, however, the appearance of an

enhançon [114] prevents the theory from being trusted all the way to the singular point since

new, light degrees of freedom appear at the enhançon radius. At that point, the SQCD energy

scale diverges. The excision of the region between the enhançon radius and the naked singularity

corresponds to discarding energy scales where nonperturbative effects become relevant. This also

prevents one from obtaining a supergravity dual to the gauge theory à la Maldacena.30 This system

therefore only describes the perturbative regime of the gauge theory, which is however precisely

the one that we want to reproduce from a twistor string perspective. For Nf = 2N the enhançon

radius vanishes, the gauge coupling stops running, and the theory sits at the conformal point in its

moduli space [118]. In the following we will focus on this conformal Nf = 2N case.

Let us now take a look at the open string massless spectrum of the theory. This is very similar

to the one we studied for Nf = 4 and is summarised in Table 3. The orbifold projection discards

the 3–3 open string modes responsible for the antisymmetric hypermultiplets in the Nf = 4 theory.

This can be intuitively seen from the inability of the fractional D3s to move away from the orbifold–

fixed plane and therefore the antisymmetric hypermultiplet modes, which were accounting for those

degrees for freedom, are now absent.

Also note that no field transforms nontrivially under the SU(2)A. The reason we include this

30The impossibility of obtaining a supergravity dual even for the conformal Nf = 2N theory can also be seen by

noting (e.g. [115]) that (unlike the Nf = 4 theory) the two coefficients a and c of the four–dimensional anomaly are

not equal to leading order in 1/N , violating a requirement of [116,117].
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Component SO(1,3) SU(2)a SU(2)A U(1)R SU(N) SU(2N)×U(1)
A,G (2, 2) 1 1 0 N2 − 1 1

φ (1, 1) 1 1 +2 N2 − 1 1

φ† (1, 1) 1 1 −2 N2 − 1 1

λα,a (2, 1) 2 1 +1 N2 − 1 1

λ̄α̇,a (1, 2) 2 1 −1 N2 − 1 1

qIa, q
†
aI (1, 1) 2 1 0 N,N 2N−1, 2N+1

ηIα, η̄
′I
α (2, 1) 1 1 −1 N 2N−1

η̄α̇I , η
′
α̇I (1, 2) 1 1 +1 N 2N+1

Table 3: The on-shell field content of the Nf = 2N theory in component form. Once again,

the Lorentz representations are given in terms of SO(1, 3) → SO(4) ∼ SU(2)L × SU(2)R. The

fundamental fields carry an SU(2N) index I = 1, . . . , 2N .

symmetry in Table 3 is to precisely highlight the similarities and differences with the massless

spectrum of the Nf = 4 theory. The absence of the antisymmetric hypermultiplet is a sign that the

discussion related to the geometric realisation of an SU(2) subgroup of the full flavour symmetry

in the spacetime picture will not make an appearance in this context.

5.2 The spacetime action

We will now repeat the same steps as for the analysis of the Nf = 4 theory. Without further delay,

let us write down the corresponding N = 2 Lagrangean in terms of N = 1 superfields

L =
1

8π
Im Tr

[

τ

(∫

d2θ WαWα + 2

∫

d2θd2θ̄ e2V Φ†e−2V Φ

)]

+

∫

d2θd2θ̄ Q†Ie−2VQI

+

∫

d2θd2θ̄ Q′Ie2VQ′†
I +
√
2

∫

d2θ
(
Q′IΦQI + h.c.

)
,

(5.1)

where the Is are now fundamental SU(Nf ) indices and therefore I = 1, . . . , 2N . The evaluation of

the kinetic part of the action will follow directly from the previous case by setting the antisymmetric

fields to zero and keeping in mind the new global flavour group. After expanding the superfields

and performing the Grassmann integration the result reads

L =
1

g2
Tr

(

−1

4
F 2 + (Dµφ)†(Dµφ)− iλ̄ 6Dλ− iχ̄ 6Dχ− i

√
2 [λ, χ]φ† − i

√
2 [λ̄, χ̄]φ

)

+ (Dµq)†I(Dµq)I + (Dµq′)I(Dµq
′)†I − iη̄I 6DηI − iη′I 6Dη̄′I − i

√
2 q†IληI

+ i
√
2 η̄I λ̄qI − i

√
2 q′I λ̄η′I + i

√
2 η′Iλq′†I −

√
2
(
η′IχqI + η′IφηI + q′IχηI

)

−
√
2
(

q†I χ̄η̄′I + η̄Iφ†η̄′I + η̄I χ̄q′†I

)

− VS .

(5.2)
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Once again VS denotes the scalar potential obtained by integrating out the auxiliary F- and D-terms,

whose contributing terms are now given by

(Fq)
i
I = −

√
2 (φ†)ijq

′†j
I (5.3)

(Fq′)
I
i = −

√
2 q†Ij (φ†)ji (5.4)

(Fφ)
j
i = −g2

√
2 q†Ii q

′†j
I (5.5)

D
a = −Tr

(

T a[φ†, φ]
)

+ g2
(

q†IT aqI − q′IT aq′†I

)

, (5.6)

where the (T a)ij’s are the generators of the fundamental representation of SU(N). In the calculation

of these terms we have, in principle, the introduction of 1/N contributions from the coupling of the

fundamental fields to the ‘photon’

(T a)ij(Ta)
k
l = δilδ

k
j −

1

N
δijδ

k
l . (5.7)

These, however, will decouple along with the rest of the colour information during the stripping

process. We then perform the field redefinitions (2.7) and (2.9), and once again combine fields in

SU(2)a doublets. The adjoint fermions are redefined as in (2.10), while for the fundamental scalars

we now have

(qa)iI =

(

qiI
−q′†iI

)

, (q†a)
I
i =

(

q†Ii,−q′Ii
)

(q†a)Ii =

(

−q′Ii
−q†Ii

)

, (qa)
i
I =

(

q′†iI , q
i
I

)

. (5.8)

The full action, including the quartic terms, now becomes

L =Tr

[

−1

2
GF +

1

4
g2G2 +Dφ†Dφ+ iλ̄a 6Dλa − λaλaφ† + 2g2λ̄aλ̄aφ

]

− η′IφηI − 2g2η̄Iφ†η̄′I

−Dq†aIDqaI − iη̄I 6DηI − iη′I 6Dη̄′I + q†aIλaηI − η′IλaqaI + 2g2η̄I λ̄aqaI − 2g2q†aI λ̄aη̄
′
I

− g2

2
Tr[φ†, φ]2 + g2q†aI{φ†, φ}qaI −

g2

2

[

(q†aIqaJ)(q
†bJqbI) + (q†Ia qbJ)(q

†aJqbI)
]

+
g2

2N

[

(q†aIqbI)(q
†J
a qbJ) + (q†aIqbI)(q

†J
b qaJ)

]

.

(5.9)

In light of the twistor picture that we will discuss in a moment, it seems natural to once again

choose a special maximal embedding of SU(2) into SU(2N), namely SU(2N) ⊃ SU(N) × SU(2)A′

and therefore we will decompose I → K ⊗ A′, with K = 1, . . . , N . Finally, after the appropriate

chiral rescalings (analogous to (2.7), (2.9)) the selfdual truncation of the above is simply

L =Tr

[

−1

2
GF +Dφ†Dφ+ iλ̄a 6Dλa − λaλaφ†

]

−Dq†aA′KDqaA′K

− iη̄A′K 6DηA′K − iη′A
′K 6Dη̄′A′K − η′A

′KφηA′K + q†aA
′KλaηA′K − η′A

′KλaqaA′K .

(5.10)
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5.3 The twistor action

Let us now see how we can reproduce the spectrum of this Nf = 2N theory on the twistor side and

obtain the appropriate twistor action. We will not provide exhaustive details for this construction,

since the arguments follow our previous analysis of the Nf = 4 theory very closely. To proceed, we

simply orbifold two of the fermionic directions of |||CP3|4, namely

ψa → ψa , ψA → −ψA (5.11)

and place N Dc branes spanning the bosonic and holomorphic fermionic directions, as well as

N (rather than 2N , which might seem more natural at first) Df branes on the orbifold plane

ψ3 = ψ4 = 0 (as before, this is loose language for “branes satisfying DD boundary conditions

in the ψ3,ψ4 directions”). The orbifold action on the Chan-Paton indices will again be given by

γc = IN×N and γf = −IN×N . The invariant piece of the c− c superfield A is

Ã = (A+ ψaλa + ψ1ψ2φ+ ψ3ψ4φ† + ǫcdψ
3ψ4ψcλ̃d + ψ1ψ2ψ3ψ4G) , (5.12)

which, via the arguments of the previous sections, will be mapped to the spectrum of an N = 2

vector multiplet in the adjoint of the gauge group SU(N). Leaving aside the f − f sector (the only

difference from the Nf = 4 case being that the Chan–Paton indices will be in SU(N), parametrised

by K = 1 . . . N) we will focus on the c− f and f − c strings. Arguing similarly to Section 3.4, we

find that the states surviving the orbifold projection are now the following (0,1)–forms

Qi
K = ψAQi

AK , Q†K
i = ψAQ†K

Ai . (5.13)

The † here simply denotes that these superfields transform in conjugate representations of the gauge

group SU(N), namely the fundamental and conjugate fundamental respectively. We can further

decompose QA and Q†
A into their components (suppressing gauge indices from now on)

QAK = ηAK + ψaqaAK + ψ1ψ2η̃′AK ,

Q†K
A = η′KA + ψaq†KaA + ψ1ψ2η̃KA . (5.14)

The details related to identifying the BRST cohomology pertaining to the fundamental superfields

Q, presented for the Nf = 4 theory in Section 3, will go through intact for this case as well. The

above expressions therefore provide the correct field content to reproduce the spacetime spectrum

for the fundamental hypermultiplets. It should now be clear that N Df branes suffice to provide

the 2N hypermultiplets, although in a form where the SU(2N) global group is not manifest.

The final twistor description is given by the hCS action

S =

∫

Dc

Ω ∧
(
1

2
Tr[Ã · ∂̄Ã+

2

3
Ã ∧ Ã ∧ Ã] +Q†K · ∂̄QK +Q†K ∧ Ã ∧ QK

)

, (5.15)

where Ã is as shown in (5.12). In component form this can be expanded into

ShCS =

∫

CP3

Ω′ ∧
(
Tr[G ∧ F + φ† ∧ D̄φ− λ̃a ∧ D̄λa + λa ∧ λa ∧ φ†]

+ η̃KA ∧ D̄ηAK + η′KA ∧ D̄η̃′AK − q†aKA ∧ D̄qaAK

+ η′KA ∧ φ ∧ ηAK − q†aKA ∧ λa ∧ η′AK + η′KA ∧ λa ∧ qaAK

)
.

(5.16)
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The similarity with (5.10) is obvious, once one identifies A with A′. As we have already mentioned

for the Nf = 4 theory, we expect a nonlinear form of the Penrose transform to map the above action

to the selfdual truncation of the spacetime Lagrangean, given by (5.10). As expected, we cannot

assign a geometric meaning to the spacetime SU(2)A′ in this case, even though the twistor string

description of SU(2)A is explicitly geometric. Note, however, that in the component action (5.16)

(but not in (5.15)) we can trivially undo the SU(2N) ⊃ SU(N) × SU(2) decomposition to exhibit

the full global flavour group SU(2N) × U(1). On the other hand, to apply the twistor amplitude

prescription (which explicitly involves the ψA coordinates) one is obliged to work with this symmetry

non–manifest, and restore it at the end by combining the relevant sets of amplitudes.31

Before proceeding to compare amplitudes, we should emphasise the similarities between this

construction for Nf = 2N and that for the Nf = 4 theory which we explored in Section 3: The

two theories differ only by the presence of the orientifold and the number of Df branes that are

introduced. In the case of rank one (where the orientifold imposes no condition, since SU(2) ∼=
Sp(1)) they reduce to the same theory—the Seiberg–Witten SU(2) SYM with four massless flavours.

This simple picture is in contradistinction with the IIB embeddings of these two theories, where

(for instance) even the corresponding orbifold actions are taken in different spacetime directions,

and it is difficult to see how they become equivalent for rank one. Presumably the twistor string

is able to be so concise in its description of this pair of theories because (unlike their IIB string

duals) it is only required to know about perturbative gauge theory physics.

5.4 Comparison of amplitudes

Finally, we move on to compare partial amplitudes on both sides of the correspondence. In fact,

the similarity in field content between the Nf = 4 and Nf = 2N theories means that the partial

amplitude calculations are almost identical, since the only novelty, apart from the absence of the

antisymmetric hypermultiplet, is the behaviour of the fundamental scalars and fermions due to the

SU(N) gauge group. For example, it is easy to see that the partial amplitude involving adjoint

external particles is exactly the same as for the Nf = 4 theory. Moreover, it is straightforward to

replace the appropriate fundamental fields and vertices to find the same agreement between the

twistor and spacetime results, including the relative normalisation factor of 32i.

As such, we only display two amplitudes. These involve fundamental external particles and, at

4 and 5-point respectively, are

〈q†aA, qbB , q
†c
C , q

d
D〉Twistor =

g2

16

(

−〈12〉〈34〉〈23〉〈14〉 ǫadǫbcǫ
ADǫBC − 〈14〉〈23〉〈12〉〈34〉 ǫabǫcdǫ

ABǫCD (5.17)

+ǫabǫcdǫ
ADǫBC + ǫadǫbcǫ

ABǫCD
)

〈φ, qaA, q†bB , ηC , η′D〉Twistor = −g
2

16
ǫab

( 〈13〉
〈34〉〈15〉 ǫ

ADǫBC − 〈13〉〈25〉
〈23〉〈45〉〈15〉 ǫ

ABǫCD

)

. (5.18)

A straightforward gauge theory calculation exactly reproduces these results.

31Instead, we chose to compute gauge theory amplitudes in decomposed form and compare with the twistor results.
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6 Conclusions and outlook

In this paper we have extended the correspondence between 4d UV-finite supersymmetric gauge

theories and B–model twistor string theory at tree level, by identifying the twistor string duals for

theories containing fundamental matter. These theories were N = 2, Sp(N) SYM with Nf = 4

and N = 2, SU(N) SYM with Nf = 2N fundamental hypermultiplets, both sitting at the super-

conformal point of their moduli space. We initially studied the physical string realisation of these

theories and examined the open string massless spectrum, which allowed us to properly identify all

the symmetries of the system. We then used this information to construct their proper spacetime

Lagrangean description. On the twistor side, we performed a superorientifold and superorbifold

projection respectively, which yielded the non-fundamental part of the spectrum. The fundamental

degrees of freedom were introduced via new objects in the topological B–model on supertwistor

space, which we baptised flavour-branes (Df ). These wrap all the bosonic but only half of the

holomorphic fermionic directions spanned by Witten’s Euclidean ‘D5’–branes providing the colour

degrees of freedom (Dc).

We then proceeded to compare amplitudes on both sides of the proposed correspondence. We

found precise agreement for a number of 4– and 5–point amplitudes, involving external particles

transforming in the adjoint, fundamental, and, in the Nf = 4 case, antisymmetric representations

of the gauge group. These results provide strong evidence for the robustness of the twistor string

duals, and even though we only calculated analytic (‘MHV’) processes in this work, we believe that

the agreement should continue to hold for tree level amplitudes supported on holomorphic curves

of higher degree.

In the process of performing the identification between the two sides, the embedding of the

flavour-branes into the hCS theory of the colour–branes forced us to provide a geometric realisation

for an SU(2) subgroup of the flavour group, and in the Nf = 4 case to identify that with the flavour

symmetry of the antisymmetric hypermultiplet fields. At first glance, this decomposition of the

flavour group might seem slightly ad hoc; we could have chosen any other subgroup which contains

SU(2). However, our choice is consistent with reproducing the same gauge group on the Df branes

as the one appearing on the Dc branes in the B–model, namely Sp(N) and SU(N) for the two cases.

The fact that, in the Nf = 4 case, this decomposition leads to both kinds of branes coming with

the same type of gauge group (i.e. both symplectic) is not unreasonable, if one remembers that

they wrap the same number of bosonic directions in |||CP3.

For the Nf = 4 theory, we found that the twistor string side actually describes a gauge theory

with global flavour symmetry broken down to SO(8) → SU(2)A × Sp(2). This was due to two

unrelated (from the gauge theory point of view) SU(2) groups being identified with the same

geometric SU(2)A on the twistor string side, and as such the twistor string does not seem to

describe precisely the theory that we set off to recover. This could be so for a number of reasons:

One possibility is clearly that we have not found the most generic twistor string description of the

Nf = 4 theory, and that, despite the apparent rigidity of our construction, further investigation
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might reveal a way to disentangle these two symmetries. A second possibility is that this is indeed

the correct symmetry group of the IIB setup once the effects of interactions between the fundamental

and antisymmetric hypermultiplet sectors are taken into account (recall that the claim that the

D3–D7 brane configuration accurately describes the Nf = 4 theory is based mainly on inspection of

the spectrum). Checking this would entail establishing whether open string interactions involving

the antisymmetric hypermultiplet in the physical string picture preserve the global SO(8) flavour

group or not. A final possibility is that the twistor string actually maps to an enriched version of

the original physical brane construction. For example, this could arise by taking the instantons on

the D7 worldvolume theory away from the zero thickness limit, which, if localised in the relative

transverse directions between the D3s and D7s, could break the global symmetry precisely in the

required fashion.32 In this case, the mechanism leading to the geometric interpretation of the

SU(2)A symmetry would be analogous to the usual embedding of the gauge group into the spin

connection. However, one is then forced to explain why the twistor string only manages to capture

the dynamics of this rather special configuration, as well as to reconcile such a solution (which

would seem to move the theory towards the Higgs branch) with the apparently unbroken conformal

invariance. It would be intriguing to uncover the answer to this question, which we will, however, not

address at present. We should emphasise that in the Nf = 2N theory the full flavour symmetry is

accurately (though not manifestly, given the decomposition SU(2N)→ SU(2)A×SU(N)) captured

by the twistor side and a spacetime geometric interpretation of the SU(2)A on the IIB side is not

forced, essentially due to the absence of the antisymmetric hypermultiplet.

As discussed in the introduction, the main reason for studying twistor string duals of finite

theories is to potentially understand what, if anything, makes them special on the twistor side. It

is clear that generic non–finite theories are not expected to have a dual with a |||CP3 component at

the quantum level, while the duals of the theories we have considered in this work should have a
|||CP3 description also at loop level. Unfortunately, since our understanding of twistor string theory

is confined to tree level, at this stage we have not been able to identify what is the distinguishing

feature of our finite theories as far as twistor strings are concerned. For example, for the theory

considered in Sections 2,3 and 4, we could just as well have added one flavour-brane (and its mirror)

instead of two, and the construction would have worked out in a very similar fashion, reproducing

the amplitudes of an N = 2 theory with two (rather than four) fundamental hypermultiplets,

clearly not a finite theory. The challenge, therefore, is to find a condition (similar to the RR charge

cancellation requirement which enforces Nf = 4 on the physical string side) which constrains

the number of flavour-branes we can add to the B–model on |||CP3|4.33 An immediate obstacle is

that our Df branes, whose number we would like to fix, have an Sp(2) gauge group, while in the

physical string context, orientifold planes leading to symplectic (rather than orthogonal) groups on

32We would like to thank K.S. Narain for suggesting such a possibility.
33We note that (bosonic) topological string orientifolds in the twistor string context have been considered in [119].

However, in that context the ensuing restriction on the number of colour branes (and thus the rank of the N = 4

SYM gauge group) was deemed an unpleasant feature, and most consideration was given to orientifolds of lower–

dimensional subspaces of |||CP3|4. Perhaps the arguments in [119] could be revisited with our current goal of restricting

the number of flavour branes in mind.
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the corresponding branes have positive RR charges, and thus are not relevant in situations where

the total brane charge has to cancel. However, in our topological context, this could perhaps be

circumvented by recalling the arguments of Vafa [120] that topological anti–branes can be derived

from branes by formally taking N → −N . This, combined with the observation [121] that – as far

as gauge invariant quantities are concerned – in gauge theory Sp(N) can be thought of as SO(−N),

indicates that our Df ’s might be best thought of as anti–branes, whose negative ‘charge’ could

potentially cancel that of the orientifold plane. Similar comments apply to the Nf = 2N theory

as well, although the details will be different since in this case requiring finiteness fixes the relative

number of colour and flavour-branes rather than the absolute number of Df ’s. Finding a mechanism

that produces the above restrictions should give considerable insight on how to properly complete

the twistor string description of finite gauge theories at the quantum level.34

We should note that, although (as discussed above) our tree–level construction (and the ensuing

amplitude calculations) applies to gauge theories with different numbers of flavours than those

required for finiteness, for Sp(N) gauge theories there seems to be a restriction to even numbers

of flavours, since we required (for N = 2) the decomposition 4N → (2, 2N) of the fundamental of

SO(4N) under SO(4N) → SU(2) × Sp(N). At tree level (where finiteness constraints should not

arise) we might expect the twistor string to also describe theories with e.g. Nf = 3, leading to an

SO(6) flavour group, which would not fit in the above framework. Perhaps a different geometric

embedding of the flavour-branes can account for such flavour groups.

Passing to other open directions suggested by our work, it is interesting to remark (extending

the discussion in [45] to higher rank) that the (massless as well as massive) Nf = 4 theory is

expected to enjoy an analogue of the SL(2,Z) Montonen–Olive symmetry of N = 4 SYM, which

combines with Spin(8) triality to form the full duality group of the theory. The SL(2,Z) duality

of the N = 4 theory motivated the authors of [119] to propose a strong–weak duality relating the

B–model with the A–model on the same (super) Calabi–Yau. (Further discussion on the origin of

this type of topological string duality can be found in [122].) It is intriguing to ask whether the

duality group of the Nf = 4 theory fits within this framework, and therefore whether there exists

an A–model version of the setup we have constructed. Also, the fact that the F–theory perspective

we reviewed in Section 2.1 provides a natural explanation of the duality properties of the Nf = 4

theory hints that perhaps a topological F–theory [123] point of view might provide some additional

insight in this case. Furthermore, given that the standard B–model N = 4 SYM setup on |||CP3|4

has been conjecturally related (via the above S–duality plus mirror symmetry arguments [124]) to a

B–model on the superquadric L5|6 ∈ |||CP3|3 × |||CP3|3 [125,126], it is natural to ask whether flavour-

branes could also be incorporated in the latter geometry, which should capture the dynamics of full

(rather than self–dual) Yang–Mills theory without the need for D1–instantons.

From a gauge theory point of view, one of the main interesting features of the theories with

34 And, applied in the other direction, might play a role in establishing the UV–finiteness of other gauge or even

gravity theories admitting a twistor string description (a class which might, perhaps via a suitable extension of the

self–dual results of [40], potentially include N = 8 supergravity).
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fundamental matter we have considered is their richer vacuum structure as compared to N = 4

SYM, in particular the presence of Higgs branches. In the IIB embeddings we have reviewed, this

moduli space acquires geometric meaning, in terms of the directions along which the various branes

can be separated. Perhaps the similarities of our constructions to the physical string realisations

can provide clues on how to move off the superconformal point from the twistor string perspective

as well.

In conclusion, we have demonstrated that the topological B–model description of twistor strings

is rich enough to accommodate finite four–dimensional theories with fundamental matter, and that

the precise descriptions of these theories bear a strong resemblance to, but also intriguing differ-

ences from, the standard embeddings of these theories within physical string theory. Apart from

suggesting that a thorough analysis of boundary conditions and associated D-branes for topolog-

ical strings on supermanifolds (which was beyond the scope of this work) would be a worthwhile

enterprise, we believe that our results reinforce the expectation that, by deciphering the (still mys-

terious) connection between twistor and physical strings, the current obstacles in establishing the

twistor string duality at the quantum level can eventually be overcome.
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A Notation and conventions

In this short appendix we set up the notation and conventions used throughout this paper.

Spacetime: We take the signature of spacetime to be (+−−−) and the raising and lowering of

spacetime spinor indices to be performed by

ψα = ǫαβψβ , ψα = ǫαβψ
β

ψ̄α̇ = ǫα̇β̇ψ̄β̇ , ψ̄α̇ = ǫα̇β̇ψ̄
β̇ . (A.1)

We also have the following relations between the superspace variables

θ2 = θαθα = −2θ1θ2 , θαθβ = −1

2
ǫαβθ2

θ̄2 = θ̄α̇θ̄
α̇ = 2θ̄1̇θ̄2̇ , θ̄α̇θ̄β̇ = −1

2
ǫα̇β̇ θ̄

2 . (A.2)

The appropriate definitions for the ǫ-tensors are

ǫαβ = ǫα̇β̇ =

(

0 1

−1 0

)

, (A.3)

where the above satisfy ǫαβǫβγ = δαγ and ǫα̇β̇ǫ
β̇γ̇ = δγ̇α̇. Superspace integration then obeys

∫

dθ θ = 1 ,

∫

d2θ θαθβ = −1

2
ǫαβ (A.4)

and so on. During the evaluation of amplitudes in twistor space, one also encounters more com-

plicated Grassmann integrals. The following identities dramatically simplify these superspace inte-

grations (recall here that ψI = −θIαλα)
∫

d4θ ψa
i ψ

1
jψ

2
jψ

b
k =

1

4
ǫab〈ij〉〈jk〉 (A.5)

∫

d4θ ψA
i ψ

3
jψ

4
jψ

B
k =

1

4
ǫAB〈ij〉〈jk〉 (A.6)

∫

d4θ ψa
i ψ

b
jψ

c
kψ

d
l =

1

4

(

ǫadǫbc〈ij〉〈kl〉 − ǫabǫcd〈il〉〈jk〉
)

(A.7)
∫

d4θ ψA
i ψ

B
j ψ

C
k ψ

D
l =

1

4

(
ǫADǫBC〈ij〉〈kl〉 − ǫABǫCD〈il〉〈jk〉

)
. (A.8)

These expressions also lead to a useful ǫ–tensor identity
∫

d4θ ψa
i ψ

b
jψ

c
kψ

d
l = −

∫

d4θ ψa
i ψ

c
kψ

b
jψ

d
l

⇒ 1

4

(

ǫadǫbc〈ij〉〈kl〉 − ǫabǫcd〈il〉〈jk〉
)

= −1

4

(

ǫadǫcb〈ik〉〈jl〉 − ǫacǫbd〈il〉〈kj〉
)

⇒ ǫadǫbc + ǫabǫcd = ǫacǫbd . (A.9)

We additionally make use of the following relations

(σ̄µ)α̇α = ǫαβǫα̇β̇σµ
ββ̇

, θσµθ̄θσν θ̄ =
1

2
θ2θ̄2ηµν

χσµψ̄ = −ψ̄σ̄µχ , (χσµψ̄)† = ψσµχ̄ . (A.10)
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Gauge and flavour groups: The defining relation for elements of the Sp(N) algebra is that

M = −ΩMTΩ−1 (A.11)

for a hermitian matrix M , where Ωij is the invariant tensor of Sp(N). The fundamental and

conjugate-fundamental indices are then raised and lowered using this tensor, which is defined via

Ωij = Ωij = −(Ω−1)ij = iσ2 ⊗ 1N×N , where σ2 =

(

0 −i
i 0

)

and the indices are contracted following the ‘NW-SE’ rule. A useful property of matrices M i
j

satisfying (A.11) is that they become symmetric once their upper index is lowered using Ωij.

Contraction of the invariant tensor gives ΩikΩkj = −δij, so that raising and lowering a contracted

Sp(N) index in a given expression results in the appearance of an extra minus sign. In particular,

in traces of products of Sp(N) generators, the raising and lowering of indices can be used to

relate different permutations to each other which is of importance when relating colour-stripped

sub-amplitudes to the full amplitudes. For example it is straightforward to see that

Tr(T aT bT c) = −Tr(T aT cT b) and Tr(T aT bT cT d) = Tr(T aT dT cT b) ,

where a, b, c, d here are adjoint indices. Furthermore, pseudoreality of the Sp(N) vector represen-

tation means that fundamental and conjugate fundamental fields can be related simply by raising

and lowering indices. Our assignment of signs for this is that

Qi = −ΩijQj . (A.12)

Finally, as noted in equation (2.6), the contraction of two Sp(N) generators gives

(T a)ij(Ta)
k
l =

1

2
(δilδ

k
j − ΩikΩjl) . (A.13)

More details on Sp(N) can be found, for instance, in [127].

Because of the Sp(1) ∼= SU(2) isomorphism, the Sp(N) conventions above for the contraction

of the invariant tensor are the ones that we use for all other SU(2) symmetries (apart from the 4d

Lorentz SU(2)s discussed in the previous section). In particular we take

ǫab = ǫab =

(

0 −1
1 0

)

(A.14)

for raising and lowering SU(2)a indices, which leads to ǫabǫ
bc = −δca. Similar remarks apply for

SU(2)A. Note, therefore, that for the Grassmann integration in supertwistor space these conventions

imply ∫

dψψ = 1 ,

∫

d2ψψaψb =
1

2
ǫab . (A.15)

Our conventions for the SU(N) gauge and flavour indices are the usual ones to be found in e.g. [128].
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B Feynman rules and useful identities

In this appendix we present the Feynman rules and some related identities, which we use for the

calculation of amplitudes in Sections 4 and 5.4.

Spinor identities

In 4d, on-shell null momenta decompose in terms of two commuting, two-component, positive

and negative helicity spinors pαα̇ = λαλ̃α̇. These are referred to as holomorphic and antiholomorphic

spinors respectively and we define the following inner products

λαµα = 〈λµ〉 and − λ̃α̇µ̃α̇ = [λ̃µ̃] . (B.1)

These products are antisymmetric so that 〈λµ〉 = −〈µλ〉, [λ̃µ̃] = −[µ̃λ̃] and 〈λλ〉 = [λ̃λ̃] = 0.

One can switch between spinor helicity and Lorentz notations using the generalised Pauli ma-

trices (σµ)αα̇ ≡ (1, ~σ) and (σ̄µ)α̇α ≡ ǫαβǫα̇β̇(σµ)ββ̇ through

qαα̇ = σµαα̇qµ , qµ =
1

2
(σ̄µ)α̇αqαα̇ . (B.2)

Some useful σ–matrix identities include

(σµ)αα̇(σ̄µ)
β̇β = 2δβαδ

β̇
α̇ , (σµ)αα̇(σ̄

ν)α̇α = 2ηµν . (B.3)

The momentum inner product can be easily shown to be given by the expression

p · q = 1

2
〈λµ〉[λ̃µ̃] , (B.4)

which differs by a sign from the usual QCD literature but is in-line with the majority of the twistor

string literature. Momentum conservation for an n–point amplitude can be implemented in the

spinor helicity formalism as35
n∑

i=1

〈ji〉[ik] = 0 . (B.5)

The Schouten identity is also extremely useful

〈ij〉〈kl〉 + 〈ik〉〈lj〉 + 〈il〉〈jk〉 = 0 . (B.6)

Feynman rules

Here we list the Feynman rules for the Nf = 4 theory—the ones for the Nf = 2N theory can be

obtained straightforwardly from these. In Table 4 we give the wavefunctions for external particles.

Table 5 shows some examples of propagators, while Table 6 includes a few sample vertices. The

remaining vertices can of course be easily derived from the action. The vertices for the Nf = 2N

35Here we use the common abbreviation of 〈λi λj〉 = 〈i j〉.
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theory are almost identical to the ones listed here. The main differences are that the antisymmetric

fields are absent in that case, and that the fundamental scalars are complex as opposed to real

fields. In these expressions (as well as for our amplitude calculations), all external momenta are

taken to be outgoing.

Field Helicity Wave-function

Scalar 0 1

Fermion i + λ̃i α̇ = −[i|
Fermion i − λαi = 〈i|

Anti-fermion j + λ̃α̇j = |j]
Anti-fermion j − λj α = |j〉
Vector p = λλ̃ + ǫ+αα̇ =

√
2 µαλ̃α̇

µαλα
= −
√
2 |µ〉[λ̃|

〈µλ〉

Vector p = λλ̃ − ǫ−αα̇ =
√
2 λαµ̃α̇

µ̃α̇λ̃α̇
= −
√
2 |λ〉[µ̃|

[µ̃λ̃]

Table 4: Wavefunctions corresponding to outgoing external fields of given helicity. Note that to

define the vector wavefunctions we employ an arbitrary reference vector q = µµ̃.

Field Schematic form Value

Adjoint scalar

p

φ φ†
i
p2

q, z scalars

p

(qaA, z
a
A) (qbB, z

b
B) ǫabǫAB

i
p2

Adjoint fermion

p

λa λ̄b ǫab ipαα̇

p2

Adjoint antifermion

p

λ̄a λb −ǫab ipαα̇

p2

η, ζ fermions

p

(ηA, ζA) (η̄B , ζ̄B) ǫAB
ipαα̇

p2

Vector

p

Aµ Aν −ig2 ηµν
p2

.

Table 5: Propagators for the various fields in our theory.
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Schematic form Value

(qaA, zaA)

(qbB , zbB)

φ

φ†
ig2ǫabǫ

AB

(qaA, zaA)

(qbB , zbB)

(qdD, zdD)

(qcC , zcC)

i
(
2ǫabǫcdǫ

ADǫBC + ǫadǫbcǫ
ADǫBC

+2ǫadǫbcǫ
ABǫCD + ǫabǫcdǫ

ABǫCD
)

φ

φ

φ†

φ†

ig2

Aµ

(η̄B , ζ̄B) (ηA, ζA)

−iǫABσµ

qcC

(ηA, ζA) λa

iǫacǫ
AC

qdD

λ̄b (η̄B , ζ̄B)

2ig2ǫbdǫ
BD

Aµ

φ, 1 φ†, 2

−i(pµ2 − pµ1 )

Table 6: Some of the interaction vertices of the Nf = 4 theory.
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