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Abstract

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection,
bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering
mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound
which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression
of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of
Rv0560c. PRv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of PRv0560c

were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could
also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by
benzoate, indicating that induction is specific to a structural motif. The 210 and 235 promoter elements were identified
and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning
the 235 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-
inducible promoter.
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Introduction

Tuberculosis (TB) is a major global health threat. According to

the WHO, TB causes nearly 2 million deaths each year, and one

third of the world’s population is believed to be latently infected

[1]. TB can be caused by any member of the Mycobacterium

tuberculosis complex, however, M. tuberculosis is the major causative

agent of TB in humans [1]. Despite an increased amount of

research effort in the past decade, many processes underlying M.

tuberculosis physiology and pathogenesis are still poorly understood.

M. tuberculosis is an intracellular pathogen, and during infection the

mycobacteria are believed to be exposed to adverse conditions

such as hypoxia, nitric oxide and iron starvation [2–5].

Iron is an indispensable component of many prokaryotic and

eukaryotic enzymes. When bacteria encounter conditions of low

iron, for example during macrophage infection, they produce iron-

sequestering siderophores in order to maintain cellular functions

[6,7]. M. tuberculosis produces two types of siderophores (myco-

bactins), whose production is essential for infection and survival in

macrophages [8–10]. Expression of the genes required for

mycobactin synthesis is controlled by the regulator of iron

homeostasis IdeR [11–13]. Mycobactin biosynthesis involves the

conversion of isochorismate into salicylate by the enzyme MbtI

[14–16]. As a result of this, mycobacteria accumulate salicylate

under iron-depleted conditions [14,17–19].

Given the natural accumulation of salicylate under conditions

encountered by the bacteria during an infection, it is interesting to

note exogenous salicylate is able to induce a multiple antibiotic

resistant (‘‘mar’’) phenotype in M. tuberculosis [20]. This effect is

also seen in both Gram negative and Gram positive bacteria, and

is thought to be due to the induction of efflux pumps via

transcriptional repressors such as MarR in Escherichia coli or CmeR

in Campylobacter jejuni [21–24].

The mechanism of the salicylate-induced mar phenotype in M.

tuberculosis is poorly understood. Salicylate exposure affects the

expression of 58 genes, none of which are known efflux pumps,

and results in a general reduction of transcriptional and

translational activities, as well as changes in energy metabolism

[25]. Interestingly, two genes, Rv0560c and Rv0559c, are

upregulated to a degree much higher (30- and 8- fold respectively)

than any other of the differentially expressed genes [25].

Rv0560c is a non-essential gene encoding a putative benzoqui-

none methyltransferase. There have been suggestions that

Rv0560c plays a role related to the biosynthesis of the isoprenoid

lipid menaquinone [26,27]. The fact that this gene is not expressed

during aerobic growth [26], but upregulated during hypoxia [28]

and intraphagosomal growth in macrophages [12] is interesting,

indicating that this gene might play a role during infection. The

Rv0560c protein is also induced in response to para-aminosalicylic

acid (PAS), naphthoquinones such as menadione, and plumbagin,
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as well as the peroxisome proliferator gemfibrozil, and its

structural relatives fenofibrate and clofibrate [26,27].

The range of conditions under which Rv0560c is induced and

the huge extent of its induction in response to salicylate are

intriguing. The aim of this study was to identify and characterise

the promoter of Rv0560c to gain further insight into its expression.

Here, we demonstrate for the first time that Rv0560c is expressed

from a salicylate-inducible promoter (PRv0560c) which is highly

active. We investigated the induction kinetics of this promoter,

which took several days to reach maximal activity and remained

highly induced for several weeks. We show that PRv0560c is also

induced by structural analogues of salicylate as well as fenofibrates

and is mildly induced under conditions of low iron. The 210 and

235 promoter elements, as well as residues involved in its

regulation were identified. Our results suggest that this regulatory

control is likely to be mediated via a repressor. The data presented

here reveal PRv0560c to be a promoter with a high level of induction

after salicylate treatment.

Results

Rv0561c and Rv0560c are expressed from separate
promoters

We wanted to identify the promoter responsible for the

salicylate-dependent induction of Rv0560c. Rv0560c has been

suggested to be in an operon with its upstream gene Rv0561c and

its downstream gene Rv0559c (Fig. 1A) [26]. Interestingly, the

upstream gene Rv0561c has not been reported to be induced by

salicylate [25].

To determine whether these genes had their own promoters, the

upstream regions of both genes were tested for promoter activity in

M. tuberculosis by linking them to a lacZ reporter gene. The

upstream regions of Rv0560c and Rv0561c are referred to as

PRv0560c and PRv0561c respectively (Fig. 1A). Promoter activity of

,400 MU was detected from PRv0561c, indicating that this

upstream region contains an active promoter (Fig. 1B). Promoter

activity was also detected from PRv0560c (130 MU) although lower

than that of PRv0561c (Fig. 1B). Therefore each of the genes has its

own promoter.

PRv0560c is salicylate-inducible in M. tuberculosis
To test if one or both promoter regions were salicylate-

inducible, we assayed the effect of varying concentrations of

salicylate on promoter activity (Fig. 1C–E). PRv0561c activity did

not change in response to treatment with salicylate (Fig. 1C) and

thus, PRv0561c is not salicylate-inducible. In contrast to this,

PRv0560c activity increased up to 6-fold to over 800 MU (Fig. 1D–

E). Promoter activity did not increase any further with

concentrations higher than 0.5 mM salicylate. Thus this promoter

is the one responsible for the induction of Rv0560c upon salicylate

exposure. PRv0560c is not only salicylate-inducible, but also displays

dose responsive behavior at concentrations ,0.4 mM (Fig. 1D–E),

with maximal expression being achieved at 0.4 mM salicylate.

PRv0560c induction kinetics
The induction kinetics of PRv0560c were investigated by

monitoring promoter activity over time after treatment with

salicylate. PRv0560c activity tripled from basal level to an activity of

301 MU after as little as 30 min of treatment with the inducer

(p,0.05) and continued to increase over 4 hours (Fig. 2A). This

trend persisted over the course of several days; a 100-fold increase

(10315 MU) was observed after 3 d of treatment (Fig. 2B) and the

promoter remained induced for at least 35 d (Fig. 2B). The level of

induction is very high, and although the promoter responds in less

than an hour to inducer, the full extent of the response takes

several days and lasts for at least 5 weeks.

Induction kinetics changed with the amount of inducer present

(Fig. 2C). With lower amounts of inducer (0.2 mM), activity of the

promoter was lower with only a 20-fold induction being observed;

and that only after 7–14 d of treatment. This shows PRv0560c to

have slower induction kinetics and to be of lower strength when

exposed to less inducer. Thus PRv0560c activity varies depending on

inducer concentration and length of treatment.

The slow induction kinetics in our system could be due to

accumulation of LacZ in the cells which is not degraded and

accumulates over time. However, LacZ has been used widely as a

reporter of promoter activity including determination of kinetics

making this seem unlikely [29]. In order to test this possibility we

constructed an unstable variant of LacZ which incorporated a

protein degradation tag previously shown to function in myco-

bacteria [30]. Two LacZ variants incorporating either AANDE-

NYAASV or AANDENYALAA at the C-terminal end were

engineered; the induction kinetics from PRv0560c was measured as

before. The induction kinetics were slightly slower for both

variants taking 14 d to reach maximal, but still reached the high

levels seen with native LacZ (Fig. 2D). The maximal level of

expression was also slightly lower, 8,000 Mu compared to 10,000,

but this likely reflects a higher turnover of synthesized protein

carrying the degradation tag rather than reduced expression levels.

Since the steady state levels were similar for all, we discounted the

possibility that LacZ stability was responsible for increased activity

over time.

PRv0560c can be induced by structural analogues of
salicylate

PAS, an antimycobacterial drug, and aspirin, a common

painkiller, are structural analogues of salicylate; these compounds,

as well as benzoate and the structurally-related compounds

menadione, fenofibrate and gemfibrozil, have been shown to

induce Rv0560c protein expression [26,27]. We were interested in

the effect of these compounds on PRv0560c activity.

We determined the effect of each compound on promoter

activity at a fixed concentration (0.4 mM) (Fig. 3A). Salicylate

resulted in a 64-fold induction (,10000 MU), whereas its

structural analogues aspirin and PAS induced a comparatively

moderate 10-fold increase in PRv0560c (,1500 MU; Fig. 3A).

Surprisingly, the structural analogue benzoate did not induce

PRv0560c activity at all (Fig. 3A). These results show that PRv0560c

induction is specific to a certain structure present in salicylate, and

to a certain extent in aspirin and PAS, but not benzoate (Fig. 3B).

Amongst the fibrates tested, fenofibrate evoked a 17-fold

induction (2524 MU; Fig. 3A), and gemfibrozil evoked a 41-fold

induction (6038 MU), which is closer to the levels achieved by

salicylate exposure (Fig. 3B). Under the conditions tested here,

menadione repressed PRv0560c activity 4-fold. These results show

that other compounds that are not direct structural analogues of

salicylate, are able to modulate PRv0560c activity.

PRv0560c activity remains high after removal of exogenous
inducer

We determined the off kinetics of the promoter. PRv0560c activity

was induced to maximal level by growing M. tuberculosis in the

presence of salicylate and promoter activity was monitored after

removal of salicylate from the growth medium by washing in

salicylate-free medium.

PRv0560c activity remained high immediately after the wash in

salicylate-free medium (Fig. 4A), but then decreased over 3 d by

A Salicylate-Inducible Promoter in Mtb
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approximately 2.5-fold (10000 to 3849 MU). Even after 2 weeks,

activity did not decrease further, and was still 20-fold higher than

the basal level of activity (,150 MU). This shows that PRv0560c

has slow off kinetics and that the remaining promoter activity

could be due to the presence of residual salicylate in the medium.

Increasing the number of washes carried out to remove salicylate

from the growth medium up to four times did not allow for

promoter activity to return to basal level over the course of 1

week (data not shown). Therefore, residual activity of PRv0560c

could be due to high intracellular levels of salicylate which would

not be removed merely by washing cells. To test this possibility,

PRv0560c off kinetics were monitored during growth in salicylate-

free medium during several passages; a salicylate-exposed culture

was used to inoculate salicylate-free medium and cultured to late

log phase before further passaging in salicylate-free medium.

Promoter activity decreased with each passage (Fig. 4B),

returning to basal level after 3 passages, suggesting that residual

salicylate was gradually being consumed in the cells during

growth.

PRv0560c is induced in iron-depleted M. tuberculosis
Salicylate is known to accumulate in iron-depleted mycobacteria

as an intermediate during the biosynthesis of the iron-sequestering

mycobactin [14,18,19]. Hence, one would expect Rv0560c to be

upregulated under this condition. However, existing data on

whether Rv0560c is upregulated under iron-limiting conditions

are conflicting [11,26]. We tested if PRv0560c activity increased in M.

tuberculosis grown in iron-free medium. After a state of iron-depletion

had been achieved (three passages in iron-free medium), PRv0560c

activity increased by 3-fold to 620 MU (Fig. 4C). Thus, as expected

the promoter is induced when intracellular levels of iron are

depleted. Interestingly induction was not as pronounced as in

salicylate-exposed cells, suggesting that the normal intracellular

concentrations of salicylate are low.

PRv0560c is a negatively regulated, sigA-dependent
promoter

To characterise PRv0560c and its regulator(s) further, an attempt

was made to map its promoter elements. According to the current

Figure 1. Identification of a salicylate-inducible promoter in M. tuberculosis. A. The genetic organization of Rv0561c and Rv0560c in M.
tuberculosis. The regions tested for promoter activity are indicated as PRv0561c, and PRv0560c. B–E. Promoter activity was measured in M. tuberculosis
transformants grown under aerobic growth conditions. B Activity in the absence of salicylate. C, D and E: Promoter activity of PRv0561c (C), PRv0560c (D
and E), after 2 h treatment with varying concentrations of salicylate. Results are the average and standard deviation of three independent
transformants assayed in duplicate. Activity is given in Miller Units. A significant difference compared using Student’s t-test to the untreated control is
marked by an * for p,0.05) ** for p,0.01, *** for p,0.0001.
doi:10.1371/journal.pone.0034471.g001
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annotation on TubercuList (http://tuberculist.epfl.ch/), there is a

short intergenic region of 24 bp between the stop codon of

Rv0561c and the start codon of Rv0560c. A search for putative

210 elements within the upstream region of Rv0560c was carried

out. Three putative 210 elements (PM1: TGTGTT, PM2:

TATATC, PM3: TATATAT) were found, all located downstream

of the annotated translational start site of Rv0560c, but

immediately upstream of a putative alternative translational start

site (Fig. 5A). To establish if and which one of these putative 210

elements was part of the Rv0560c promoter, residues in each motif

were mutated.

Mutation of PM3 abolished promoter activity to a level seen in

the empty vector control (11 MU) confirming that it is the most

probable 210 element of the Rv0560c promoter. Interestingly,

mutations in PM1 and PM2 both resulted in constitutive

expression, albeit to different levels (Fig. 5B). Mutation of PM1

had minimal impact on the basal activity (260 MU), but resulted

in complete lack of induction by salicylate (Fig. 5B). In contrast,

mutation of PM2 resulted in high level constitutive activity

(15000–17000 MU). Closer examination of the sequence revealed

a putative 235 region with the consensus sequence TTGACA

located 17 bp upstream of the confirmed 210 element; this region

was mutated in PM1 (to TGGACA) suggesting that it is the 235

element and is involved in regulation of promoter activity.

The sequence of the promoter elements suggests that PRv0560c is

highly likely to be a SigA–dependent promoter. The SigA

consensus sequence is TTGACW-N16–21-TATAMT [31]. The

promoter region identified has a perfect match in the 235 region

of TTGACA, with a spacing of 17 bp to the 210 element

TATAta (matching bases in capital). Furthermore, PRv0560c looks

to be an extended promoter due to the presence of a TGN motif

(in this case TGA) directly in front of the 210 element [32].

Mutations in the 210 element affect promoter strength
We decided to mutate some of the residues in the 210 element

to test their effect on promoter strength and regulation (Fig. 5B).

Mutation of the second residue (PM4) severely weakened

promoter strength. Basal activity under uninduced conditions

was abolished. However, the promoter retained inducibility, albeit

to a lower level (133 MU). Similar effects were seen when

mutating the fourth residue (PM5), although the promoter was

slightly more active (54 MU and 1239 MU in the uninduced and

induced states respectively). These results are as expected since

mutating residues away from the sigma-factor consensus would

weaken recognition and binding of the factor, resulting in less

transcription.

Identification of further residues involved in repressor
binding

Since mutation in the 235 region resulted in loss of induction,

we predicted that there is a regulatory element in this region; such

operator regions are often located between the 235 and 10

elements. We carried out further mutations to identify other

residues involved in regulation of promoter activity located

between the 210 and 235 region. Mutation of the two residues

immediately downstream of the 235 element (PM6) resulted in a

much higher basal level of activity (1232 MU). Interestingly,

mutation of two bases further downstream (PM7) increased the

basal activity even further (5959 MU). In both cases, induction

Figure 2. PRv0560c induction kinetics after exposure to salicylate in M. tuberculosis. A and B. Promoter activity was measured in M.
tuberculosis transformants grown under aerobic growth conditions exposed to 0.4 mM salicylate (A and B), or 0.2 mM or 0.4 mM salicylate (C) or with
the use of LacZ tagged for degradation(D). Results are the average and standard deviation of three independent transformants assayed in duplicate.
Activity is given in Miller Units. LacZ-ASV was tagged with AANDENYAASV; LacZ-LAA was tagged with AANDENYALAA.
doi:10.1371/journal.pone.0034471.g002

A Salicylate-Inducible Promoter in Mtb

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e34471



was retained, with promoter activity of over 10000 MU in the

presence of salicylate (Fig. 5B). This confirms that this region

contains a regulatory site and suggests it is the binding site for a

repressor.

Discussion

We were interested in the M. tuberculosis gene Rv0560c due to its

strikingly high induction in response to salicylate, and its

upregulation under conditions mimicking the in vivo environment

the bacteria encounter during an infection [12,28]. Although

Rv0560c has been suggested to be in an operon with its upstream

gene, our results show that each of the genes does have its own

promoter, both of which are active during aerobic growth.

Furthermore, we demonstrate that PRv0560c, but not PRv0561c is

inducible by salicylate. This is in accordance with a previous

transcriptome study showing that Rv0560c, but not Rv0561c is

upregulated after salicylate treatment [25].

We found PRv0560c to be a strong promoter as compared to

other M. tuberculosis promoters and with slow induction kinetics,

taking several days to reach peak activity and remaining stably

induced over a course of several weeks. The majority of M.

Figure 3. PRv0560c induction by structural analogs of salicylate in M. tuberculosis. Promoter activity was measured in M. tuberculosis
transformants grown under aerobic growth conditions. A. Promoter activity of PRv0560c after treatment with 0.4 mM of compound for 3 d. Results are
the average and standard deviation of three independent transformants assayed in duplicate. Activity is given in Miller Units. B. Chemical structures
of compounds of interest. A significant difference compared using Student’s t-test to the untreated control is marked by an * for p,0.05) ** for
p,0.01, *** for p,0.0001.
doi:10.1371/journal.pone.0034471.g003
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tuberculosis promoters measured using LacZ as a reporter have

activity in the range of 100–1000 MU; examples include the

promoters of recA, pknH, embA, mbtB and higBA [33–37]. There are

few examples of promoters with activity in the 10,000 range; for

example PrpfA, which is reported as one of the strongest

constitutive promoters in M. tuberculosis has an activity of

4500 MU [38,39], whereas PwhiB1 has comparable activity to

PRv0560c at 800–15,000 MU [40].

The high level of promoter activity after induction could be due

to presence of a perfect match to the canonical 235 element

TTGACA (which is not always present in most mycobacterial

promoters), the extended promoter motif, and the high sequence

similarity of the 210 element to the consensus sequence TATAAT

[31,32]. Indeed, these attributes are also present in the PwhiB1

promoter with comparable activity [41].

The slow induction kinetics could be due to a tight interaction of

the repressor with its binding motif, taking a long time to alleviate

and allow full access to the polymerase. Alternatively the

mechanism leading to alleviation of repression (whether it occurs

through salicylate binding to the repressor or via a relay of signal

through other regulators) might be slow. It is interesting to note

that there are other inducible promoters with slow kinetics,

although most of these are not native M. tuberculosis systems, for

example the ATc and pristinamcyin systems [42–44]. However,

the kinetics of induction of PRv0560c appear to be particularly slow,

since the ATc-inducible systems are fully induced with 24 h

[36,43,45,46] and even the ‘‘slow’’ induction of RecA expression

previously noted in M. tuberculosis took 18–36 h, rather than 72 h

[33]. These kinetics are not a general phenomenon since other

promoters can be induced to maximal expression much more

rapidly, for example induction of heat shock proteins takes less

than an hour.

The fact that some structural analogues of salicylate (PAS and

aspirin), but not others (benzoate) induce promoter activity

confirms that induction is specific to a certain chemical structure

present in salicylate, PAS and aspirin, but not benzoate. These

findings are in accordance with a previous study on Rv0560crotein

expression, except for aspirin (of which salicylate is a breakdown

product) which was reported not to induce Rv0560c [26].

Compounds that can interfere with isoprenoid quinone action

and are structurally related to salicylate (such as fenofibrate or

gemfibrozil) also induced PRv0560c activity. In our study,

menadione did not induce PRv0560c, but actually repressed it.

Both results are in accordance with previous findings of a protein

study [27]. It would be interesting to determine whether this

induction is due to an indirect effect or due to a structural motif

common to all these compounds.

The function of Rv0560c is unknown, but it has homology with

a benzoquinone methyltransferase (UbiG) involved in ubiquinone

biosynthesis in E. coli [26]. Quinones are lipid-soluble electron

carriers involved in the electron transport chain, a process essential

for growth. Rv0560c could be involved in a ubiquinone

biosynthetic process, as M. tuberculosis does contain homologs of

some of the genes present in the E. coli ubiquinone pathway [47],

Figure 4. PRv0560c off kinetics in salicylate-free or iron-free medium in M. tuberculosis. M. tuberculosis transformants were grown under
aerobic growth conditions in the presence of 0.4 mM salicylate. Cultures were washed and inoculated into salicylate-free medium A. Washed cells.
Transformants were washed and resuspended in salicylate-free medium. B. Cells were washed and inoculated into salicylate-free medium; cultures
were passaged into fresh salicylate-free medium at a dilution of 1/10. C. Cells were washed and inoculated in low iron minimal medium (MMT);
cultures were passaged into fresh MMT medium at a dilution of 1/100. Results are the average and standard deviation of three independent
transformants assayed in duplicate. Activity is given in Miller Units.
doi:10.1371/journal.pone.0034471.g004
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although there is currently no evidence that mycobacteria produce

ubiquinones [48,49].

Rv0560c has also been suggested to be involved in menaquin-

one biosynthesis, due to its genomic proximity to menH (Rv0558),

menD (Rv0555) and menC (Rv0553) [26,27]. Menaquinone

biosynthesis is essential for mycobacterial viability and this

synthetic pathway has been proposed as an attractive target for

novel antimycobacterial drugs [50,51]. Furthermore, a recent

study linked menaquinones to the induction of the DosR regulon,

which is implicated in the adaptation to hypoxia and the

establishment of a dormant state [52,53]. One could speculate

Rv0560c is a methyltransferase carrying out functions equivalent

of the methyltransferases MenH or MenG.

Alternatively, Rv0560c (which is not expressed during aerobic in

vitro growth) could be involved in the synthesis of novel

menaquinones such as the recently identified sulphated mena-

quinone [54] and/or menaquinone biosynthesis under certain

stress conditions such as iron starvation. Our results show PRv0560c

to be induced during iron starvation, when intracellular levels of

salicylate are naturally elevated. The salicylate-dependent induc-

Figure 5. Identification of the promoter and regulatory elements. A. DNA sequence of the PRv0560c region. The predicted translation start site
of Rv0560c according to TubercuList is marked with **. Protein sequences of Rv0561c and Rv0560c are shown. Potential 210 promoter elements
(PM1, PM2, PM3) are underlined. The 235 and extended 210 element are in bold. A palindromic moitif is indicated by grey shading. B. Promoter
activity following mutation of the promoter region. M. tuberculosis transformants were grown under aerobic growth conditions in the absence/
presence of 0.4 mM salicylate. Results are the average and standard deviation of three independent transformants assayed in duplicate. Activity is
given in Miller Units. A significant difference compared to the wild type is marked by an * (p,0.05).
doi:10.1371/journal.pone.0034471.g005
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tion of PRv0560c accounts for the upregulation of Rv0560c during

iron depletion, despite the absence of binding motifs for the main

regulator of iron responsive genes (IdeR) upstream of Rv0560c

[11,13].

The aim of our study was to identify and characterize the

promoter of Rv0560c. Our results demonstrated PRv0560c to be a

predicted SigA-dependent promoter and suggest that the transla-

tional start site of Rv0560c is currently misannotated. Further-

more, the expression of Rv0560c appears to be regulated by a

repressor, which according to our results binds to residues close to

the 235 element of PRv0560c, possibly to a palindromic motif that

overlaps the 235 element. This is supported by the fact that when

certain residues in this motif are mutated, PRv0560c is constitutively

active at maximal level.

In Gram negative and Gram positive bacteria the salicylate-

induced mar phenotype is mediated through salicylate binding

directly to transcriptional repressors of the MarR family [21–23].

In E. coli, MarR binds to salicylate, relieves repression of its

regulon and evokes induction of a mild antibiotic resistance

phenotype through upregulation of efflux pumps [21–23,55,56].

The mar phenotype has been observed in M. tuberculosis although

the mechanism of induction of multidrug resistance has not been

determined [20]. Interestingly, M. tuberculosis possesses several

MarR type regulators, with Rv1404 or Rv2887 showing the

highest sequence similarity to the E. coli MarR, with some

conservation of the salicylate binding sites. Thus either of these

genes could make attractive candidates for the regulator of

Rv0560c expression.

To conclude, we identified Rv0560c to have its own salicylate-

inducible promoter. with a high level of induction. We present

evidence that this promoter is controlled by an unknown repressor

binding to a palindromic motif upstream of Rv0560c. Further

studies are required to identify this repressor, which we speculate

to be part of the MarR family. Whether Rv0560c is involved in

menaquinone biosynthesis, if it is important for iron starvation;

salicylate tolerance or even plays a role in the mar phenotype are

interesting questions which would be worthy of further investiga-

tion.

Materials and Methods

Bacterial strains and culture conditions
M. tuberculosis H37Rv (ATCC 25618) was grown in Middleb-

rook 7H9 medium supplemented with 10% v/v oleic acid-

albumin-dextrose-catalase (OADC) supplement and 0.05% w/v

Tween 80, or on 7H10 agar supplemented with 10% v/v OADC.

Cultures were grown without agitation in 50 mL conical tubes

unless otherwise stated. Streptomycin was used at 20 mg L21 and

X-gal at 50 mg L21 when required. Low iron minimal medium

(MMT) was prepared as follows: 6 g L21 Na2HPO4, 3 g L21

KH2PO4, 0.5 g L21 NaCl, 1 g L21 NH4Cl and 0.0147 g L21

CaCl2 supplemented with 0.05% w/v Tween 80 and 2% v/v

glycerol and treated overnight with 5 g L21 Chelex 100; 2 mM

MgSO4 was added and the medium was filter-sterilised.

Plasmid construction
Primers were designed to amplify the upstream regions of

Rv0561c and Rv0560c from M. tuberculosis genomic DNA using

primer pairs UR561F CCCCCCGGGGGATC- GCGACGT-

TGTTAC and UR561R CCCCCCGGGCCGCCAGCCACT-

TAC for Rv0561c, and UR560F CCCCCCGGGGCG-

CCGGCTAGCGTTGTTAC and UR560R CCCCCCGGG-

CCTG- CCGTCATAGCCGGTAAACG for Rv0560c. Products

were cloned as SmaI fragments (underlined) into the SacI site of

pSM128 [57] upstream of the lacZ reporter gene. Protein tags

were added to lacZ in pSM128 using SDM primer pairs TailLAAf

GGTCTGGTGTCAAAAAGCAGCAAACGACGAAAACTAC-

GCTTTAGC AGCTTAATAATAAC, TailLAAr GTTATTAT-

TAAGCTGCTAAAGCGTAGTTTTCG TCGTTTGCTGCT-

TTTTGACACCAGAC or TailASVf GGTCTGGTGTCA-

AAAAGC AGCAAACGACGAAAACTACGCTGCATCAGT-

TTAATAATAAC, TailASVr GTTA TTATTAAACTGATG-

CAGCGTAGTTTTCGTCGTTTGCTGCTTTTTGACACC-

AGACC.

Site directed mutagenesis (SDM)
Amplification reactions were carried out in 50 mL total volume

containing 2.5 units PfuUltra Hot Start high fidelity DNA

polymerase (Stratagene), 16 buffer, 0.5 mM dNTPs, 10 pmol of

each primer, 5 mL DMSO, and 10 ng template. The thermo-

cycling programme used was: 94uC for 2 min, followed by 18

cycles of 94uC for 30 s, 56uC for 1 min and 68uC for 9 min,

followed by 68uC for 10 min. Template was degraded using 10

units DpnI (Promega) at 37u for 2 h. 10 mL of each reaction were

used to transform competent E. coli. Recombinant plasmids were

isolated and sequence-verified.

Preparation of cell-free extracts for promoter activity
assays

Electrocompetent mycobacteria were prepared as described

previously [58], electroporated with 1 mg plasmid DNA and

transformants selected on streptomycin. M. tuberculosis transfor-

mants were cultured to mid-log phase and exposed to compounds.

Cells were harvested, washed and resuspended in 1 mL 10 mM

Tris-Cl (pH 8) and added to 2 mL lysing matrix B tubes (MP

Biomedicals) on ice. Cells were disrupted using a 30 s cycle at

speed 6.0 using a FastPrepTM FP120 (MP Biomedicals). Extracts

were centrifuged at 160006 g for 4 min and the supernatants

recovered filter-sterilised through a 0.2 mm filter unit and

recovered. Total protein concentration of the samples was

determined using the BCA protein assay kit.

Quantification of ß -galactosidase
Assays of ß-galactosidase activity were carried out as previously

described [59]. To 100 mL of cell-free extract, 900 mL of Z-Buffer

(60 mM Na2HPO4, 40 mM Na2PO4, 10 mM KCl, 1 mM

MgSO4, pH 7) was added. Samples were pre-warmed to 37uC
for 5 min and 200 mL of 4 mg mL21 ONPG was added. Reaction

mixtures were incubated at 37uC and reactions were stopped with

500 mL of 1 M NaHCO3 after 30–90 min. The OD420 was

measured and ß-galactosidase activity was calculated as Miller

units (MU) = amount of O-nitrophenol produced (nmol) per min

per mg of total protein, using the following formula: Uni-

ts = (OD42061.7)/(time (min)6volume of cell-free extract

(mL)6total protein concentration (mg mL21)60.0045).
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