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ABSTRACT

Scattering amplitudes of massless quanta play a crucial role in the calculation of

cross sections for multi-jet production at hadron colliders. The framework provided by

perturbative quantum field theory, based on Feynman diagrams, does not capture their

simplicity, as it breaks some of the symmetries of the theory at the diagrammatic level.

Consequently, vast cancellations give rise to strikingly simple mathematical expressions

representing the amplitudes. These theoretical motivations and experimental needs

have stimulated the search for new techniques for calculating efficiently scattering

amplitudes. In particular, a new diagrammatic method of calculation, now known as

the “MHV diagram method”, was developed, and many intriguing results were found

for the maximally supersymmetric N = 4 Yang-Mills theory.

In this thesis we explore these remarkable properties, extending many of the re-

sults to the gravitational counterpart of maximally supersymmetric Yang-Mills theory,

N = 8 supergravity. In particular we develop the MHV diagram method for the

calculation of graviton amplitudes at one loop. We rederive explicitly the four- and

five-point MHV amplitude of gravitons at one loop, in agreement with known results,

and outline the procedure for the extension of this technique to the case of an arbi-

trary number of gravitons. We then investigate possible iterative structures in the

higher-loop expansion of N = 8 supergravity, extending the exponentiation of infrared

divergences. Finally, we discuss possible definitions of Wilson loops in supergravity,

and put forward a proposal for a new duality, analogous to the duality in N = 4 super

Yang-Mills, between perturbative scattering amplitudes and the expectation value of

certain lightlike polygonal Wilson loops.



Contents

1 Introduction 11

1.1 The puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Perturbative scattering amplitudes 19

2.1 Perturbative gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 The formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Colour decomposition . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Spinor helicity formalism . . . . . . . . . . . . . . . . . . . . . . 23

2.3 MHV amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Supersymmetric Ward identities . . . . . . . . . . . . . . . . . . 26

2.4.2 Supersymmetric decomposition . . . . . . . . . . . . . . . . . . . 28

2.5 From N = 4 super Yang-Mills to N = 8 supergravity . . . . . . . . . . . 28

2.5.1 KLT relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Collinear limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5



2.7 Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 The MHV diagram method 37

3.1 N = 4 super Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 One loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Collinear singularities . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 N = 8 supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 One loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Off-shell continuation of gravity MHV amplitudes and shifts . . . 47

3.2.3 Four-point MHV amplitude at one loop . . . . . . . . . . . . . . 51

3.2.4 MHV diagrams in the s-, t-, and u-channels . . . . . . . . . . . . 51

3.2.5 Diagrams with null two-particle cut . . . . . . . . . . . . . . . . 53

3.2.6 Explicit evaluation of the one-loop MHV diagrams . . . . . . . . 56

3.2.7 Five-point amplitudes . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.8 General procedure for n-point amplitudes . . . . . . . . . . . . . 68

4 Iterative Structures 70

4.1 N = 4 super Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 From the four-point amplitude to the BDS ansatz . . . . . . . . 72

4.1.2 Infrared divergences . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 N = 8 supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 MHV amplitudes in N = 8 supergravity . . . . . . . . . . . . . . 79

4.2.2 Iterative structure of the N = 8 MHV amplitude at two loops . . 82

6



5 Wilson loop/Scattering amplitude duality 86

5.1 N = 4 super Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Pseudo-conformal integrals . . . . . . . . . . . . . . . . . . . . . 88

5.1.2 From strong to weak coupling . . . . . . . . . . . . . . . . . . . . 89

5.1.3 One-loop n-point MHV amplitude from Wilson loops . . . . . . . 91

5.2 N = 8 supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.1 One-loop four-graviton amplitude from Wilson loops . . . . . . . 96

5.2.2 Calculation in the conformal gauge . . . . . . . . . . . . . . . . . 101

5.3 Collinear limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusions and Outlook 109

A The integral basis 111

B Comments on diagrams with null cuts 114

C Reduction technique of the R-functions 117

D The conformal propagator in Yang-Mills 119

E The Yang-Mills Wilson loop with the conformal propagator 120

F Analytic continuation of two-loop box functions 123

G Derivation of (5.2.10) 127

7



List of Figures

2.1 Number of Feynman diagrams in a process of scattering of n gluons. . . 20

3.1 Tree-level MHV amplitudes are localised on lines in twistor space. . . . 38

3.2 Localisation of tree amplitudes with q = 3 and q = 4. . . . . . . . . . . . 39

3.3 Tree-level MHV diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 One-loop MHV diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 A generic MHV diagram contributing to the one-loop graviton MHV

amplitude. The hatted loop momenta are defined below in (3.2.7). . . . 48

3.6 The s-channel MHV diagram. . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 The t-channel MHV diagram. The u-channel diagram is obtained by

exchanging gravitons 1− and 2−. . . . . . . . . . . . . . . . . . . . . . . 52

3.8 One of the MHV diagrams with a null two-particle cut. . . . . . . . . . 54

3.9 A generic two-mass easy box function. p and q are the massless legs, P

and Q the massive ones, and s := (P + p)2, t := (P + q)2. . . . . . . . 60

3.10 Cut-box function, where – before dispersive integration – one of the ex-

ternal legs has a momentum proportional to zη. . . . . . . . . . . . . . 62

3.11 The box function F (1324), appearing in the four-point amplitude (3.2.71).

We stress that in this particular case the contributions in the P 2 and

Q2 channels vanish. As explained in the text, they derive from diagrams

with null two-particle cut for specific choices of η (see Appendix B). . . 64

8



3.12 MHV diagram contributing to the five-point MHV amplitude discussed

in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13 One of the box functions appearing in the expression of the one-loop

amplitude M1−loop(1−2−3+4+5+). . . . . . . . . . . . . . . . . . . . . . 67

4.1 Infrared structure of leading-colour scattering amplitudes for particles in

the adjoint representation. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 A zero-mass box function. It is obtained as the smooth limit of the

two-mass easy box as P 2 and Q2 become null. . . . . . . . . . . . . . . 80

5.1 A one-loop correction to the Wilson loop, where the gluon stretches be-

tween two lightlike momenta meeting at a cusp. Diagrams in this class

provide the infrared-divergent terms in the n-point scattering amplitudes. 92

5.2 Diagrams in this class (where a gluon connects two non-adjacent seg-

ments) are finite, and give a contribution equal to the finite part of a

two-mass easy box function F 2me(p, q, P,Q) (p and q are the massless

legs of the two-mass easy box, and correspond to the segments which are

connected by the gluon). . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 A one-loop correction to the Wilson loop bounded by momenta p1, · · · , p4,

where a graviton is exchanged between two lightlike momenta meeting at

a cusp. Diagrams in this class generate infrared-divergent contributions

to the four-point amplitude which, after summing over the appropriate

permutations give rise to (5.2.16). . . . . . . . . . . . . . . . . . . . . . 99

5.4 Diagrams in this class, where a graviton stretches between two non-

adjacent edges of the loop, are finite, and give in the four-point case

a contribution equal to the finite part of the zero-mass box function

F (1)(s, t) multiplied by u. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1 The integral basis: Boxes, Triangles and Bubbles. . . . . . . . . . . . . 112

B.1 MHV diagram with null two-particle cut contributing to the five-point

graviton MHV amplitude at one loop. . . . . . . . . . . . . . . . . . . . 114

9



E.1 A one-loop correction for a cusped contour. We show in the text that,

when evaluated in the conformal gauge, the result of this diagram van-

ishes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E.2 A one-loop diagram where a gluon connects two non-adjacent segments.

In the Feynman gauge employed in [15], the result of this diagram is

equal to the finite part of a two-mass easy box function F 2me(p, q, P,Q),

where p and q are the massless legs of the two-mass easy box, and corre-

spond to the segments which are connected by the gluon. In the confor-

mal gauge, this diagram is equal to the full box function. The diagram

depends on the other gluon momenta only through the combinations P

and Q. In this example, P = p3 + p4, Q = p6 + p7 + p1. . . . . . . . . . 121

10



Chapter 1

Introduction

In 1955 Einstein died with the dream of unification. Since science exists, unification has

been at the same time the irrational cause and goal driving every theoretical physicist

towards one or another aspect of Physics. Beyond any ontological argument, it is how

our perception works that regulates this instinct. Since the day we are born, from the

way we learn to the way our memory works, everything comes from recognising and

comparing, differences and similarities, in order to bring to known the unknown. This

is knowledge. This is what really makes the difference. Then there is mathematics; it

exists regardless of us, it is perfect and, as such, probably unsuitable to this world.

Nowadays quantum mechanics has intimately changed the way our generation (of

physicists) perceive reality, but until a century ago it was widely accepted that there

was a picture behind the wall, and although we were not able to see it all, analysing

the part we were allowed to see could be enough to guess it, or at least to have a

consistent model of it (one of the eventually infinite possible consistent models). This

is abstraction, and this is where mathematics helps: it is the language, the framework.

It took years (and genius) to realise that electricity and magnetism were two aspects

of the same interaction, and it took more (and another genius) to combine quantum

mechanics and special relativity into a new framework, quantum field theory, where

the number of particles was not conserved any more, one of the backbone of physics

until then. All this under the quest for unification.

As theoretical physicists, what is even more amazing is that this consistency need,

that seems to regulate the world or the way we perceive it, has sometimes given us the

power to predict what the technology was not able yet to show in experiments. One

instance is the discovery of the positron, where theory came first. Or the precession
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of the perielium of Mercury, that was more the proof of a theory than its motivation.

So, what comes first, theory or experiments? This is certainly one point in favour of

theory, it is exciting, and makes us feel omnipotent sometimes. But that is a mistake.

We do not have to forget the reason why we are here: the link to reality.

Regardless what reality is (a philosophical issue we do not want to address here)

we do experience the world around us, and in scientific terms this is translated into

experiments. And in terms of experiments we are living in an unequalled era for physics:

underneath the border between France and Switzerland, a particle accelerator will

collide (soon) hadrons with a center-of-mass energy up to 14 TeV. The Large Hadron

Collider at CERN is expected to explore the unexplored and probably shed light on

our understanding of particle physics.

We have to say (in the personal author’s opinion) that we do not live very fruitful

years for theory. The last century saw the birth of the most amazing revolutions in

theoretical physics, from quantum mechanics to general relativity. If we think about

what theory was before these overturns, all of our conceptions (or most of them) have

completely changed (think about the näıve concept of trajectory). There was need for

more than a genius to get that, and even though it was painful and difficult to built

the final theories as we know them today, no theoretical physicist would not like to be

born in that time. It seems that today, many years after, we are still trying to figure

out the technical details of those theories, the inconsistences, in order to refine them.

Not an easy task for sure, sometimes necessary, sometimes frustrating, but it seems

we are stuck. The period of the great revolutions seems over.

Maybe we are playing around with the wrong issues; maybe we miss today a genius,

able to open our eyes to a new change of perspective. Maybe this time the final word

will be really up to the experiment. Maybe the LHC will tell us the truth. But the

truth has to be read, and interpreted. We need to be prepared. No prejudices, no

expectations. We need free and prepared minds. And new and efficient tools.

What do we have today? Four fundamental interactions we have experienced up

to now: gravitation, the strong interaction, and the weak and electromagnetic inter-

actions. The last three are formalised at a quantum level within the framework of the

Standard Model as a quantum field theory with gauge group SU(3) × SU(2) × U(1)

[1]. In particular the strong interaction, that will be more relevant in this thesis, is

described by Quantum Chromodynamics (QCD), a quantum field theory with gauge

group SU(3).

Gravity has a wonderful geometrical description at a classical level in the theory
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of General Relativity [2], but at a quantum level the situation is more complicated.

On the one hand, as it is much weaker that the other interactions, it is really difficult

to think and realise experimental tests for quantum gravity, on the other hand, from

a theoretical point of view, a formulation of gravity in terms of quantum field theory

turns out to be inconsistent.

The pressure of unification brought into the picture new prospective theories and

models, more or less exotic. String Theory is certainly today the best candidate to

a theory of everything [3, 4], to fulfill Einstein’s (and our) dream. But its level of

technicality makes it difficult to believe it is the final theory (at least in the present

form). Born within its framework, also the idea of supersymmetry is waiting for a

possible experimental confirmation from the LHC [5].

The gap between theory and experiments becomes every day deeper and nowadays

physics is really looking forward to getting new predictions from the LHC and, hope-

fully, a new contact to reality. Science has a sense on its own, but we do not have to

forget its social utility. That is why science exists and, more trivially, governments pay

for that. We want to mention for example that through the invention of the transis-

tor, quantum mechanics brought into our lives the most powerful revolution: with a

structural influence on the society, it changed our perception of life, our way of living

it and interact with each other. And all this came out of a theory. No one could have

imagined that, but this is why we work every day. Is it going to happen the same with,

for instance, string theory? Will the next generations ever experience a revolution like

that? Nobody knows. We were very lucky as generation, maybe less as scientists.

1.1 The puzzle

This thesis is just a drop in the ocean. Whether or not all this will be a part of a

perfect theory in a century time nobody knows. At least it is meant to be a con-

tribution. Even just to understand what is wrong. We will deal in particular with

the computation of perturbative scattering amplitudes in supersymmetric quantum

field theory, that constitutes the first step for computing scattering amplitudes in real

processes, like for example at LHC. The existing framework, widely accepted within

the scientific community from a theoretical point of view, turns out to be inefficient

for this scope. We will develop then new and novel approaches and explore their po-

tentials and limitations. This will shed light on more theoretical issues related to the

structure of supersymmetric quantum field theories, gauge/gravity duality and super-

gravity. We will extend many of these new techniques of calculation to the maximally
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supersymmetric gravity theory, nowadays a candidate to the first consistent quantum

field theory of gravity.

Particle collisions are the only way we have to study particle physics at a funda-

mental level. In particular a crucial role in the calculation of cross sections for multi-jet

production at hadron colliders is played by scattering amplitudes of massless quanta.

The LHC at CERN is expected to give signs of new physics, but any kind of new

interesting result will be mixed to a huge amount of background processes, that need

to be known at a very high level of precision if we want to be able to read what is

actually new.

The usual approach to the computation of scattering amplitudes is perturbative

quantum field theory [1]. Quantum field theory is the framework that allows to for-

malise a relativistic quantum theory and it is today accepted as the theory describing

particle interactions, that are generated by the beautiful principle of gauge invariance.

A Feynman path-integral quantisation of the Lagrangian of the classical theory allows

to express scattering amplitudes as a perturbative expansion in the coupling constant.

This gives rise to a set of diagrammatic rules, the Feynman rules, in order to com-

pute the scattering amplitude as sum over all the contributions from all the possible

Feynman diagrams that can be built. This is in principle very simple and straight-

forward, but in practice turns out to be very complicated, as the number of diagrams

contributing to a process has a factorial growth as a function of the number of particles

involved, as we will see in the following.

Apart from this technical reason, there is a more theoretical reason to look for

an alternative to Feynman diagrams. As it is built, the Feynman diagram formalism

does not capture the simplicity of the scattering amplitudes, as it breaks some of the

symmetries of the theory at the diagrammatic level. In particular the formalisation

of the interaction in terms of a perturbative series does not reflect gauge symmetry.

Consequently, vast cancellations are necessary in order to arrive at strikingly simple

mathematical expressions representing the amplitudes. And this seems in a sense

unnatural. Why should the formalism describing a physical process not share the

same symmetries of the physical quantities, that are in the end the only objects we

can really measure?

These theoretical motivations and experimental needs have stimulated the search

for new techniques for calculating efficiently scattering amplitudes, which preserve the

symmetries of the theory. The basic idea is taking advantage of the beauty and sim-

plicity present in the amplitudes as physical quantities, due to their gauge invariance.

While Feynman rules break explicitly gauge invariance, new on-shell methods were
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developed that used as building blocks on-shell quantities, i.e. physical objects.

The most powerful nowadays is certainly unitarity. The unitarity method, that

so many results has brought in perturbative quantum field theory in the last years,

is a tool to derive information about scattering amplitudes from their discontinuities

[6]. It is the most natural way to transfer information about tree amplitudes into

loop amplitudes and brings us back in time to the analytic S-matrix programme, the

project (failed) of providing a consistent description of strong interactions just from

unitarity and analiticity constraints on the S-matrix.

Some particular amplitudes, named Maximally Helicity Violating amplitudes, have

a very special and simple form when rewritten in a particular formalism, that we

will describe later. Investigating localisation properties of these amplitudes in twistor

space [7], a new diagrammatic method of calculation, now known under the name

of the “MHV diagram method”, was proposed and developed, first at tree level [8]

and then surprisingly also at one loop [9]. It employs as new interaction vertices of a

diagrammatic expansion an appropriate analytic continuation of the MHV scattering

amplitudes, that are glued together with scalar propagators to built new (generic)

amplitudes, in a novel perturbative expansion of Yang-Mills theory. This analytic

continuation, necessary to promote the physical amplitudes to interaction vertices,

will explicitly break their gauge-invariance, that is anyway restored in the final results.

More recently, many other intriguing results were found in particular for the max-

imally supersymmetric N = 4 Yang-Mills theory, mostly inspired by theoretical ad-

vances such as the AdS/CFT correspondence. The gauge/gravity duality inspired the

intuition that the perturbative series should sum up in a “clever” way, in order to

reflect the symmetries of the theory. And analysing the structure of higher-loop am-

plitudes in terms of lower-loop ones, it was proved in a non-trivial way the appearance

of remarkable iterative structures in the loop expansion of the theory. In particular

it was shown in [10] that the planar four-point MHV scattering amplitude in N = 4

supersymmetric Yang-Mills theory at two loops can be written as a polynomial of the

one-loop amplitude, plus a kinematic-independent numerical constant. Subsequently

this iterative structure was proved to hold up to three loops and from this result a

conjecture was proposed, the BDS conjecture, for the form of a generic all-loop n-point

MHV amplitude at the planar level [11].

With the aim of testing this ansatz, Alday and Maldacena performed for the first

time strong coupling calculations of scattering amplitudes using the AdS/CFT corre-

spondence [12]. Their work inspired the birth of a new conjecture of a duality between

perturbative scattering amplitudes and the expectation value of certain lightlike polyg-
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onal Wilson loops, where the edges of the polygon are determined by the momenta of

the scattered particles. This duality has been surprisingly verified at weak coupling

by a number of explicit computations [13–18], but the deep reason behind it is yet to

be discovered. Certainly what seems crucial is the appearance in the theory of a dual

conformal symmetry [19].

We will explore in detail all these remarkable properties, extending some of the

results to the maximally supersymmetric gravity cousin of super Yang-Mills, N = 8

supergravity. In particular, we develop the MHV diagram method for the calculation

of graviton amplitudes at one loop [20]. As tree-level amplitudes of gravitons are

not holomorphic in the spinor variables, we introduce a new off-shell prescription by

shifting the spinor variables associated to the loop momenta. We rederive explicitly

the four- and five-point MHV amplitude of gravitons at one loop, in agreement with

known results, and outline the procedure for the extension of this technique to the case

of an arbitrary number of gravitons.

We then investigate possible iterative structures of N = 8 supergravity, extending

the exponentiation of infrared divergences predicted by Weinberg in 1965 [21]. We

also discuss possible definitions of Wilson loops in supergravity, and put forward a

proposal for a new duality, analogous to the Wilson loop/amplitude duality in N = 4

super Yang-Mills [22]. This extension is highly non-trivial, as gravity is a non-planar

theory, while planarity seems to be crucial in the analogous formulation in Yang-

Mills. Nevertheless a huge amount of interconnections and similarities between the

two maximally supersymmetric theories gives hope to the possibility of discovering

another common feature [23].

The most promising challenge is certainly proving that N = 8 supergravity might

be finite in the ultraviolet (UV), just as N = 4 super Yang-Mills. Although a point-like

quantum field theory of gravity in four dimensions, due to the dimensionality of the

coupling constant, is non-renormalisable, explicit perturbative computations (mostly

obtained via unitarity techniques) have showed a much better behaviour in the UV

[24–26]. This could be a clue for the existence of the first consistent quantum theory of

gravity. We hope that this thesis will give a contribution to the speculations on such

an interesting (although experimentally less interesting than Yang-Mills) theory.

1.2 This thesis

This thesis is organised as follows.
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In Chapter 2 we introduce the formalism and give an overview of the modern tools

in perturbative quantum field theory computations. We briefly describe in Section 1

the inadequacy of the standard approach to amplitudes and introduce in Section 2 the

colour decomposition and the spinor helicity formalism as a new language to rewrite

scattering amplitudes. In terms of these new variables certain amplitudes, the MHV

amplitudes, have a very simple form, in particular they are holomorphic in the spinor

variables. Their expression will be presented in Section 3. We then introduce in Section

4 supersymmetry as a tool for computing either scattering amplitudes with a different

content of external particles (that are related by supersymmetric Ward identities)

or scattering amplitudes in less supersymmetric theories (through a supersymmetric

decomposition). We describe in Section 5 the huge web of interconnections between

N = 4 super Yang-Mills and N = 8 supergravity, the leitmotif of the whole thesis, and

in particular we give the form of the KLT relations, that will be very useful in explicit

computations. In Section 6 we recall the behaviour of the scattering amplitude in the

limit where two particles go collinear, both for super Yang-Mills and for supergravity.

Finally in Section 7 we summarise the very powerful tool of unitarity as technique of

calculation in perturbative quantum field theory. For a more complete elaboration of

these topics we refer to the corresponding references.

In Chapter 3 we describe the first alternative technique of calculation: the MHV

diagram method. In Section 1 we give an introduction to the intuition that brought

Cachazo, Svrček and Witten to propose the method [8], tested by collinear singulari-

ties, and a more detailed overview of the proof at one loop in N = 4 super Yang-Mills,

that will be explicitly used in the gravity computation [9]. In Section 2 we then turn to

describe in detail the author’s contribution, namely the formalisation of an MHV dia-

gram method for N = 8 supergravity [20]. As MHV scattering amplitudes of gravitons

are not holomorphic in the spinor variables we will have to introduce a new off-shell

continuation. We will express it in the form of certain shifts on the spinors associated

to the loop momenta, with the aim of restoring momentum conservation at the MHV

vertices (apparently broken in the usual approach). We will perform explicitly the

computation for the four- and five-point scattering amplitudes of gravitons at one loop

and then give a procedure for the generalisation to an arbitrary number of particles.

Chapter 4 is focused on the analysis of the appearance of iterative structure in the

perturbative expansion of N = 4 super Yang-Mills theory, motivated by the AdS/CFT

correspondence. Section 1 is devoted to a historical introduction to the BDS ansatz,

and its consistency check with the known factorisation of infrared divergences, that

brings directly to the core of the conjecture [10, 11]. Section 2 describes in detail the

author’s contribution to the investigation of iterative structures in N = 8 supergravity

[22]. In particular we will confirm that the infrared-divergent parts exponentiate, but
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we observe a failure for this to occur for the finite part, and will give an explicit form

for the finite parts.

Chapter 5 is devoted to a thorough investigation of the new Wilson loop/scattering

amplitude duality, from strong to weak coupling. Section 1 is again focused on N = 4

super Yang-Mills. We observe the appearance of a dual conformal symmetry into

the integrals and explain historically the birth of the new conjecture [20]. We report

explicitly the surprising one-loop computation at weak coupling that reproduced the

one-loop MHV amplitude [15]. Section 2 again explains in detail the author’s contribu-

tion, namely the (non-trivial) search for an analogous duality in N = 8 supergravity

[22]. We focus our attention on the four-point gravity amplitude as it is the only

one that has the structure of the tree-level amplitude times a helicity-blind function

(similarly to Yang-Mills); the extension to more particles is not straightforward. We

put forward a proposal for a gravity Wilson loop, that in order to reproduce a duality

with the amplitude has to be calculated in a particular gauge, that we will call confor-

mal gauge. In Section 3 we will finally analyse collinear limits in the new geometrical

framework provided by the Wilson loop/amplitude duality.

Chapter 6 contains our conclusions and future outlook. The Appendices A-G will

provide further details to the computations developed in the text and some basic

notions and definitions.

18



Chapter 2

Perturbative scattering

amplitudes

In this chapter we give an overview of the state of the art in perturbative quantum field

theory and build the framework in which we will develop our study. Although quantum

field theory is widely accepted as the theoretical framework describing electroweak and

strong interactions, many conceptual and technical problems led theoretical physicists

to look for alternative techniques of calculation. The pressure to get always more

precise results due to the enormous quantity of data about to come from new high-

energy physics experiments, in particular the Large Hadron Collider at CERN, helped

to speed this process and refine the computational tools. As always in science, the

necessity for concrete answers helps to shed light on conceptual questions, and this is

what is still happening today. Of course, then theoretical physics goes on its own way,

trying to find the right answers or, sometimes, just the right questions. In particular we

will see in this thesis how speculations on perturbative scattering amplitudes in gauge

theory can broaden our horizon and shed light on more conceptual issues like quantum

gravity or gauge/gravity duality. We do not claim to be complete in this chapter, each

topic constitutes object of investigation on its own; we will refer to appropriate reviews

for a full and detailed description. This is meant to be more an introduction to the

motivations that led theoretical physicists to look for non-traditional approaches, the

necessary formalism to develop them and the framework that will support our work.
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2.1 Perturbative gauge theory

The modern description of the known fundamental interactions is formalised in terms

of gauge theory. Although there are still details to refine, quantum field theory is

considered the backbone of modern physics. Until now gravity seems instead to be

out of this picture. LHC is about to produce an enormous quantity of data and finally

explore the multi-TeV energy frontier. Signs of new physics are expected to appear at

this energy scale. What is about to happen? What are we going to discover? And,

more importantly, will we be able to interpret this huge amount of data and read out of

the background? Will this confirm the existing theories, prove some of the prospective

ones or just bring another revolution? Exciting years are coming for physics, but

physicists need to refine their tools if they want to be prepared, and the conventional

approach seems not suitable for this purpose.

The conceptual foundation of gauge theories is based on the very elegant principle

of local gauge invariance. Nevertheless the formal description of the interaction in

terms of a perturbative expansion does not reflect gauge symmetry. The quantisation

procedure fixes the gauge and so Feynman diagrams are not separately gauge invari-

ant. Not only is this true but moreover the Feynman diagram expansion is often really

complicated, in particular far more complicated than the final results. As soon as

the number of particles involved in collision processes increases, scattering amplitudes

become impossible to compute, especially with the precision needed in modern exper-

iments [27, 28]. The table below shows a factorial growth of the number of Feynman

diagrams in the tree-level scattering amplitude of n gluons, as a function of n1. But

still, lots of cancellations take place and the final amplitudes are sometimes very sim-

ple, too simple. Why? What is behind this and how can we overturn the traditional

approach? The answer is in the question: gauge invariance.

n 4 5 6 7 8 9 10

# diagrams 4 25 220 2, 485 34, 300 559, 405 10, 525, 900

Figure 2.1: Number of Feynman diagrams in a process of scattering of n gluons.

From now on we will change the traditional point of view and describe some of the

enormous conceptual and technical revolutions this change of perspective led to in the

past few years, with particular attention to the fields where the author’s contribution

1This table is borrowed from [28].
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is more relevant.

2.2 The formalism

The starting point of the new approach is the use of a new formalism in order to rewrite

the amplitudes, in particular the quantities they depend on, in an easier form, that

makes manifest the simplicity hidden in the complicated sums over Feynman diagrams.

The first two basic steps are the colour decomposition and the spinor helicity formalism.

2.2.1 Colour decomposition

Vast cancellations take place when computing a scattering amplitude as sum over

Feynman diagrams. This is because each diagram separately breaks gauge invariance,

which is restored only after summing over all diagrams. A clever idea is to decouple

the dependence on colour indices from the kinematic part and decompose the ampli-

tudes into colour-ordered sub-amplitudes. As it can be seen from the structure of the

Feynman rules, boson vertices bring into the amplitudes colour factors, the structure

constants fabc defining the algebra of the generators of the SU(Nc) group representing

the gauge symmetry of the theory,

[Ta, Tb] = i fabc T c , (2.2.1)

that we normalise with the convention

tr(T aT b) = δab . (2.2.2)

By rewriting the structure constants as

fabc = −i tr(T a [T b, T c]) , (2.2.3)

and using the relation

fcde T e = −i [T c, T d] , (2.2.4)

it is easy to decompose a scattering amplitude in terms of a basis of single-trace

structures tr(T a1 ... T an), where (a1...an) is a generic non-cyclic permutation of the

colour indices related to the external particles (cyclic permutations lead of course to

the same component). Moreover, by making use of the statement that the generators
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T a form a complete set of traceless hermitian matrices,

N2
c −1∑

a=1

(T a)j̄i (T
a)l̄k = δl̄

iδ
j̄
k − 1

Nc
δj̄
i δ

l̄
k , (2.2.5)

it is possible to prove that for tree-level amplitudes that involve only gluons just single-

trace terms contribute [28, 29], thus we can write the colour decomposition as

Atree
n = gn−2

∑

σ∈Sn/Zn

tr(T aσ(1)T aσ(2) ... T aσ(n)) Atree(σ(1), σ(2), ..., σ(n)) , (2.2.6)

where Sn is the set of permutations of n elements, Zn is the subset of cyclic permu-

tations and g is the coupling constant. We stress that the amplitude in Eq. (2.2.6)

manifests Bose symmetry. The sub-amplitudes Atree are colour-stripped and depend

only on kinematic invariants; they are related to one specific order of the external

particles. In order to compute the full amplitude it will be sufficient then to consider

the colour-ordered sub-amplitude and then sum over all the non-cyclic permutations.

These (n − 1)! sub-amplitudes satisfy a number of properties, for example they are

gauge-invariant and invariant under cyclic permutations and (up to a sign) under or-

der reversal. For a complete list of the properties satisfied by the sub-amplitudes see

[28].

At one loop, the situation is slightly different as terms up to two traces are present

and it is necessary to sum over the spins of the particles that can run in the loop [30].

The general colour decomposition can be written in this case as

A1-loop
n = gn

∑

σ∈Sn/Zn

Nc tr(T aσ(1)T aσ(2) ... T aσ(n)) A1-loop
n;1 (σ(1), σ(2), ..., σ(n)) +

+

⌊n/2⌋+1∑

c=2

∑

σ∈Sn/Sn;c

tr(T aσ(1) . . . T aσ(c−1)) tr(T aσ(c) . . . T aσ(n))A1-loop
n;c (σ(1), . . . , σ(n))

]
, (2.2.7)

where ⌊r⌋ is the largest integer less than or equal to r, and Sn;c is the subset of

permutations of n leaving the double trace structure invariant. It is clear that, in an

expansion in Nc, the leading contributions are planar and the structure is a single

trace.

To close this section it is interesting recall that many of these results (for instance

Eq. (2.2.6)) can be derived, sometimes even in a more immediate way, considering the

amplitudes as field theory (α′ → 0) limit of string scattering amplitudes [31–33].
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2.2.2 Spinor helicity formalism

From now on we will focus on the computation of colour-ordered amplitudes, that

for massless particles depend now only on the momenta of the external particles, via

Lorentz-invariant combinations. We will show that by introducing a new formalism

and rewriting the momenta of the particles in terms of spinors it is possible to make

manifest part of the hidden simplicity of the theory [34–37].

We start by reminding that, under complexification, the Lorentz group is isomor-

phic to

SO(1, 3, C) ∼= SL(2, C) × SL(2, C) . (2.2.8)

Its finite-dimensional representations are then labeled by two numbers (p, q), which

can be integers or half-integers.

We conventionally define negative chirality, or holomorphic, spinors λa, a = 1, 2,

the objects transforming in the (1
2 , 0) representation and positive chirality, or antiholo-

morphic, spinors λ̃ȧ, ȧ = 1, 2, the ones transforming in the (0, 1
2) representation. We

raise and lower spinor indices of type (1
2 , 0) with the antisymmetric tensor ǫab and its

inverse ǫab (where ǫ12 = 1 and ǫabǫbc = δa
c ), and spinor indices of type (0, 1

2) analo-

gously with the tensors ǫȧḃ and ǫȧḃ. It is then possible to define, given two arbitrary

spinors of the same chirality, Lorentz-invariant inner products

〈λ1, λ2〉 = ǫab λa
1 λb

2 , (2.2.9)

for negative chirality, and

[λ̃1, λ̃2] = ǫȧḃ λ̃ȧ
1 λ̃ḃ

2 , (2.2.10)

for positive chirality. Notice that with this definition the products are antisymmetric

〈λ1, λ2〉 = −〈λ2, λ1〉 , (2.2.11)

[λ̃1, λ̃2] = −[λ̃2, λ̃1] , (2.2.12)

and hence 〈λ, λ〉 = 0 and [λ̃, λ̃] = 0. Let us stress that these spinors are commuting.

The vector representation is the (1
2 , 1

2) representation. It is then possible to repre-

sent a generic vector pµ, µ = 0, ..., 3 as a bi-spinor paȧ, where a and ȧ are spinor indices

of negative and positive chirality respectively. In particular, given a momentum vector

pµ we define

paȧ = σµ
aȧ pµ , (2.2.13)

where σµ = (1, ~σ) and ~σ are the Pauli matrices. It is easy to check that pµpµ = det(paȧ),
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so for massless particles it is possible to decompose the bispinor corresponding to the

momentum vector as

paȧ = λaλ̃ȧ , (2.2.14)

defined modulo a scaling λ → uλ , λ̃ → u−1λ̃, with u a non-zero complex number. In

this new notation, given two lightlike vectors p and q, and their bispinor decompositions

paȧ = λaλ̃ȧ and qaȧ = µaµ̃ȧ, it is possible to express their scalar product as

2 p · q = 〈λ, µ〉 [λ̃, µ̃] , (2.2.15)

a relation that will be very useful in the following.

For particles with spin, the amplitudes will be functions not only of the momenta;

for example for particles of spin one there will be a dependence also on the polarisation

vectors ǫµ
i (subject to gauge invariance ǫi → ǫi + α pi and such that ǫi · pi = 0). The

spinor helicity formalism allows for a fruitful choice of a polarisation vector, given a

bispinor decomposition of the corresponding momentum. For example for a negative

helicity polarisation vector we define

ǫaȧ =
λaµ̃ȧ

[λ̃, µ̃]
, (2.2.16)

where µ̃ȧ is a generic positive helicity spinor, not multiple of λ̃, that represents a

gauge choice; and similarly for positive helicity polarisation vectors. As a consequence,

scattering amplitudes will be regarded as functions of spinors and of the helicities of

the scattered particles.

2.3 MHV amplitudes

The formalism described in the last section allows one to rewrite the perturbative

scattering amplitudes, that are usually functions of momenta and polarisations of the

external particles in terms of spinorial quantities

A = i gn−2 (2π)4 δ(4)

(
∑

i

λa
i λ̃

ȧ
i

)
A
({

λi, λ̃i;hi

})
, (2.3.1)

where the delta-function imposes momentum conservation. Let us focus for the mo-

ment our attention on tree-level scattering amplitudes of n gluons in Yang-Mills theory.

These amplitudes are extremely relevant as they constitute the dominant processes in

multi-jet production at hadron colliders; it is then very important to develop new

techniques of calculation in order to get always more accurate results necessary in
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cross-section computations at LHC. Expressed in terms of spinor products, these am-

plitudes appear to be very simple. In particular, adopting the convention where all the

particles are outgoing, it is easy to prove that the scattering amplitudes with n gluons

of the same helicity vanish, and (for n > 3) the amplitudes with n − 1 gluons of one

helicity and one of the opposite helicity also vanish.

The first non-vanishing amplitudes are the so-called maximally helicity violating,

or MHV amplitudes, the amplitudes with n − 2 gluons of one helicity (conventionally

plus) and two of opposite helicity, that in terms of spinor products show the amazingly

simple form, conjectured by Parke and Taylor [38] and proved by Berends and Giele

[39],

Atree =
〈λr, λs〉4∏n

i=1〈λi, λi+1〉
, (2.3.2)

for a given cyclic order 1 . . . n, where r and s are the two gluons of negative helicity

and we have omitted the energy-momentum delta function. Analogously, for n − 2

gluons of negative helicity and two gluons of positive helicity one can prove that

Atree =
[λ̃r, λ̃s]

4

∏n
i=1[λ̃i, λ̃i+1]

, (2.3.3)

that are called MHV amplitudes. The first ones are manifestly holomorphic in the

spinor variables, as they depend only on holomorphic spinors; the last ones are anti-

holomorphic.

The term “maximally helicity violating” is referred to the phenomenological inter-

pretation of the amplitude as the scattering of two incoming gluons into n−2 outgoing

gluons. By using the fact that two outgoing positive helicity gluons correspond to two

incoming negative helicity ones, the MHV amplitudes turn out to represent the scatter-

ing of two negative helicity gluons into two negative helicity gluons and n− 4 positive

helicity ones, which is the maximum possible number (as the ones with n−3 and n−2

vanish), producing then the maximal violation of the helicity.

Amplitudes are physical objects and, therefore, gauge invariant. The simplicity

they show after the cumbersome cancellations of Feynman diagrams was the first clue

that some kind of beautiful picture was hidden behind the wall. Working in the direc-

tion of discovering this picture, an enormous amount of literature has been produced in

the past years, trying to change the point of view and rewrite the pages of future quan-

tum field theory textbooks. New techniques of calculations have been invented; new

building blocks have been chosen as starting points for perturbative calculations; new

theoretical foundations have been sought and, sometimes, found. One breakthrough

was definitely the 2003 Witten’s paper [7], that gave birth to the MHV diagram method
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[8] [9]; we will talk extensively about this in the next chapter. Just in order not to

scare the reader, we want to anticipate that this is not the death of Feynman’s work;

in a sense, as we will see, this is just another side of the coin. But of course, as always

in science, the story is far from the end.

2.4 Supersymmetry

In this thesis we will deal with the two maximally supersymmetric theories N =

4 super Yang-Mills and N = 8 supergravity. Born within the framework of string

theory [3, 4], supersymmetry is not only a fascinating mathematical structure and a

reasonable extension of the symmetry of the nature, but it is also the unique extension

of Poincaré invariance in quantum field theory (in particular the Coleman-Mandula

theorem pointed out the impossibility of combining space-time and internal symmetries

in non-trivial ways) [5]. What is supersymmetry and which problems does it solve?

But above all, does it really play a role in nature? All these questions are out of

the scope of this thesis, what we do need to know is that if it exists, it is broken;

that it solves a number of inconsistency problems related to the presence of infinities

in quantum field theory; and that, even if it does not exist, it is an important tool

for the computation of scattering amplitudes in non-supersymmetric theories, through

a supersymmetric decomposition (see Section 2.4.2). It is then worth to study and

compute amplitudes in supersymmetric theories and investigate their properties. We

will work in this direction, providing in this way our contribution to the new physics

about to appear in the new and newest experiments. Moreover, the importance of

supersymmetry is also theoretical and supersymmetric theories are interesting to be

studied in their properties for their beauty. From a more conceptual point of view,

this can improve our knowledge of non-supersymmetric theories and shed light on our

understanding of quantum field theory in general and on what is or might be beyond

it.

2.4.1 Supersymmetric Ward identities

Supersymmetry is a first step towards a solution for the basic inconsistency of quan-

tum field theories: the existence of ultraviolet divergences. In particular, thanks to the

presence in supersymmetric multiplets of an exact matching of bosonic and fermionic

degrees of freedom, important cancellations take place, producing a better behaviour

and, in some cases, finiteness. As supersymmetry links bosonic and fermionic states,

we expect constraints on the S-matrix elements. This is indeed the case, and exploiting
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supersymmetry in perturbative quantum field theory it is possible to derive supersym-

metric Ward identities, relating scattering amplitudes of different external particles

but with the same momenta and sum of helicities [28, 29, 40–42]. For example ampli-

tudes with fermions or scalars are related to amplitudes that involve only gluons by

the relations

ASUSY
n (A−

i , ..., χ−
r , ..., χ+

s , ...) =
〈is〉
〈ir〉A

SUSY
n (A−

i , ..., A−
r , ..., A+

s , ...) , (2.4.1)

ASUSY
n (A−

i , ..., φ−
r , ..., φ+

s , ...) =
〈is〉2
〈ir〉2A

SUSY
n (A−

i , ..., A−
r , ..., A+

s , ...) , (2.4.2)

that will be very useful in the following. These relations require extended supersymme-

try and can be derived in general for all the particles in the supersymmetric multiplets.

This also allows to prove a general argument for the result shown in Section 2.3, in

particular the vanishing for the following infinite sequence of amplitudes:

ASUSY
n (1±, 2±, ..., n±) = 0 , (2.4.3)

ASUSY
n (1∓, 2±, ..., n±) = 0 . (2.4.4)

For supersymmetric theories, amplitudes with all external legs with helicity minus

(or plus) or amplitudes with all but one legs with helicity minus (or plus) vanish by

supersymmetry. For non-supersymmetric theories this result is still valid at tree level

as the Feynman diagrams contributing to the amplitudes at tree level turn out to be

the same as in supersymmetric theories. This naturally brings to the definition of

MHV amplitudes as the first non-vanishing amplitudes of the theory, as described in

the previous section, as the ratio

1

〈ij〉4 A(1+, ..., i−, ..., j−, ...n+) (2.4.5)

is independent of the positions i and j of the negative helicity particles for an MHV

amplitude. This formula is valid for N = 4 supersymmetry to all orders in perturbation

theory and for any amount of supersymmetry at tree level. The definition of next-to-

MHV (NMHV) amplitudes follows naturally as the amplitudes with 3 negative helicity

particles and n − 3 positive helicity particles, and so on for next-to-next-to-MHV

(NNMHV) amplitudes. Analogous relations can be proven for googly MHV amplitudes

(MHV).
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2.4.2 Supersymmetric decomposition

As mentioned before, supersymmetry is very useful to simplify the calculation of scat-

tering amplitudes in non-supersymmetric theories. It is possible to prove for example

that at tree level gluon scattering amplitudes in QCD are the same as in any super-

symmetric gauge theory with adjoint fields [40], as fermions and scalars always appear

in pairs into the vertices and must, then, generate loops:

Atree
QCD = Atree

N=4 = Atree
N=2 = Atree

N=1 . (2.4.6)

At one loop the situation is different as other particles can propagate into the loop.

By analysing the content of the multiplets for supersymmetric theories, it is possible

to find a very useful decomposition that allows us to rewrite QCD amplitudes in terms

of amplitudes much easier to compute. As long as amplitudes with only gluons are

concerned we have the following decomposition

Aone-loop
QCD = Aone-loop

N=4 − 4Aone-loop
N=1,chiral + Aone-loop

scalar , (2.4.7)

in terms of a term with a N = 4 multiplet propagating in the loop, a term with a

N = 1 chiral multiplet propagating in the loop and a term in pure Yang-Mills with

one complex scalar. This terms are usually much easier to compute than the QCD

one-loop amplitude.

2.5 From N = 4 super Yang-Mills to N = 8 supergravity

We will describe in this thesis some of the innovative techniques developed in the past

few years for the calculation of scattering amplitudes in the maximally supersymmetric

N = 4 Yang-Mills theory, and the author’s contribution to the extension of these

results to the maximally supersymmetric gravity cousin of super Yang-Mills, N = 8

supergravity. All these speculations have shed light on some particular structures of

the two theories, symmetries and features hidden in their similarities as well as in their

differences [23].

Already at the level of non-supersymmetric theories, general relativity and gauge

theories share a number of remarkable properties, but they are nevertheless so different.

Both constructed on the idea of local symmetry, they show a rather different dynamical

behaviour. The structure of their Lagrangians is quite different – the Yang-Mills La-

grangian contains up to four-point interactions while the Einstein-Hilbert Lagrangian

has infinitely many. Despite all this, many hints come from all sides in theoretical

28



physics that there is something deep that links, or may even unify, gravity and gauge

theory. Not only is this the common dream of all theoretical physicists (being able to

describe all the known interactions within the same framework), but also the ultimate

aim towards which most of our efforts are directed every day. String theory is one of

the candidate to this unifying ultimate theory and through the Maldacena conjecture

[43] it relates the weak coupling limit of a gravity theory on an anti-de Sitter back-

ground to a strong coupling limit of a special supersymmetric gauge field theory. We

will not describe this in detail in this thesis; the subject would deserve a thesis on its

own due to the huge amount of literature on the topic (see [44] for an introduction).

We want to mention that this revolution has important implications in field the-

ory too. It is thanks to strong coupling investigations within the framework of the

AdS/CFT correspondence that new important insights into perturbative quantum field

theory at weak coupling have been found. This led to important investigations into the

structure of supersymmetric field theories and their symmetries. We will talk exten-

sively about this revolution in Chapter 5, with particular attention to quantum field

theory implications. But apart from all these conceptual motivations string theory is

also a very powerful tool to improve our knowledge and ability to perform calculations

in quantum field theory.

Perturbative string theory allows to find important relations between gauge the-

ory amplitudes and gravity amplitudes that can be directly used for computations in

quantum gravity: the KLT relations. Due to the structures of the Lagrangians, the

perturbative expansion of quantum gravity in terms of Feynman diagrams is much

more complicated than that of gauge theory. Being able to express at least tree level

gravity amplitudes in terms of gauge theory ones vastly simplifies computations in

quantum gravity. The utility extends then immediately to loop level thanks to an-

other important technique developed in the past years and that is maybe nowadays

the most powerful tool for calculations of perturbative scattering amplitudes appearing

in hadron colliders experiments: unitarity. We will briefly describe unitarity techniques

in Section 2.7.

Moreover we want to stress that all these efforts allow us to handle with a potential

quantum field theory of gravity, and this is something even more striking. Among the-

oretical physicists a conventional belief survives that a consistent, point-like quantum

field theory of gravity in four dimensions does not exist; just another reason for the

birth of string theory. As the gravitational coupling is dimensionful, point-like theo-

ries of gravity turn out to be ultraviolet divergent and non-renormalisable. Despite

all power counting arguments, quantum gravity theories and in particular the super-

symmetric ones show a much better behaviour than expected. Explicit calculations
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have been performed for the maximally supersymmetric N = 8 supergravity [24–26],

but it is still an open question whether or not there might exist a consistent quantum

field theory of gravity. Mostly performed combining KLT relations and unitarity tech-

niques, the computations show surprising cancellations that make the theory much less

divergent in the UV. Might this be a clue that N = 8 supergravity is UV finite to all

loop orders and might then be a finite, consistent quantum theory of gravity? This

would have enormous implications in our concept and understanding of quantum field

theory but, of course, we do not know it yet. This thesis, starting from the revolutions

for N = 4 super Yang-Mills and extending them to N = 8 supergravity, hopes to give

a contribution also in this direction.

2.5.1 KLT relations

String theory in general lets us gain important insights into quantum field theory.

Well below the string scale of 1019 GeV, in the low-energy limit α′ → 0, it reduces to

field theory and so relations between string theory amplitudes imply relations between

quantum field theory amplitudes. Starting from the observation that closed string

vertex operators for the emission of a closed string state (such as a graviton) are

products of open string vertex operators, Kawai, Lewellen and Tye [45] proved that it

is possible to factorise any closed-string state into a direct product of two open-string

states as

|closed string state〉 = |open string state〉 ⊗ |open string state〉 . (2.5.1)

In the low energy limit, this relation implies a relation between gravity and gauge

theory amplitudes

|gravity amplitude〉 = |gauge theory amplitude〉⊗|gauge theory amplitude〉 , (2.5.2)

that can be translated into a set of explicit relations valid on shell at tree level in any

number of dimensions. For instance

M(1, 2, 3) = −iA(1, 2, 3)A(1, 2, 3) , (2.5.3)

M(1, 2, 3, 4) = −is12 A(1, 2, 3, 4)A(1, 2, 4, 3) , (2.5.4)
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M(1, 2, 3, 4, 5) = is12s34 A(1, 2, 3, 4, 5)A(2, 1, 4, 3, 5)

+ is13s24 A(1, 3, 2, 4, 5)A(3, 1, 4, 2, 5) , (2.5.5)

M(1, 2, 3, 4, 5, 6) = −is12s45 A(1, 2, 3, 4, 5, 6)
[
s35A(2, 1, 5, 3, 4, 6)

+ (s34 + s35) A(2, 1, 5, 4, 3, 6)
]

+ P(2, 3, 4) , (2.5.6)

where M are tree-level gravity amplitudes, A are the colour-ordered tree-level gauge

theory amplitudes and sij := (ki + kj)
2 are the kinematic invariants. P(2, 3, 4) stands

for permutations of (2, 3, 4). These relations will be very useful in the next chapter in

our construction of the MHV diagram method for N = 8 supergravity. The form of

the KLT relations for a generic number of particles can be found in [46]. It it worth

mentioning that as a simple relabeling on the gravity side gives another combination of

orderings on the gauge theory side, there are actually many forms of the KLT relations,

and we will use in the following every time the more convenient from a computational

point of view. Although this seems to break the symmetry of the gravity amplitude, it

is possible to show that all the possible realisations are equivalent through momentum

conservation (the ambiguity in the factorisation arises because a string is composed of

different sectors).

Finally, to obtain then the full gravity amplitudes from the KLT relations it is of

course necessary to include the gravitational coupling constant

M tree
n =

(κ

2

)n−2
Mtree

n . (2.5.7)

Applied to our maximally supersymmetric theories, the KLT relations allow then

to rewrite any state in N = 8 supergravity as a tensor product of two N = 4 super

Yang-Mills (SYM) states, giving then a connection between the N = 4 SYM multiplet

(16 states: a gluon, four fermions and six real scalars) and the N = 8 supergravity

multiplet (256 states: a graviton, eight graviton, 28 vectors, 56 Majorana fermions

and 70 real scalars). This constitutes the first step towards a long series of connections

that will help us to build new techniques for the calculations of scattering amplitudes

in supergravity, starting from gauge theory results.

2.6 Collinear limits

Another important connection that will shed light into the structure of N = 4 su-

per Yang-Mills and N = 8 supergravity manifests itself through the analysis of the
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behaviour of scattering amplitudes in the limit where two adjacent momenta become

collinear. The behaviour in gauge theory has been known for a long time [6, 47], while

for gravity theory it was derived by making use of the KLT relations combined with

gauge theory results [23, 46, 48, 49]. At tree level in quantum chromodynamics when

the momenta of two nearest neighboring external legs in the colour-stripped amplitudes

become collinear, the amplitude factorises into the amplitude with one fewer external

state times a universal function, called splitting amplitude, depending on the particles

going collinear and the internal state which is going on-shell [50–52]. If we parametrise

the momenta of the particles going collinear as k1 → zP and k2 → (1 − z)P , where

P = k1 + k2 and z ∈ (0, 1), we have

Atree
n (1, 2, ..., n) →

∑

λ=±1

Splittree−λ (1, 2)Atree
n−1(P

λ, 3, ..., n) , (2.6.1)

where P 2 → 0 in the collinear limit. The function Splittree−λ (1, 2) is the splitting ampli-

tude and λ is the helicity of the intermediate state P . For the pure gluon case they

have the form

Splittree− (1−, 2−) = 0 , (2.6.2)

Splittree− (1+, 2+) =
1√

z(1 − z)

1

〈12〉 , (2.6.3)

Splittree+ (1+, 2−) =
(1 − z)2√
z(1 − z)

1

〈12〉 , (2.6.4)

Splittree− (1+, 2−) =
z2

√
z(1 − z)

1

[12]
, (2.6.5)

where the “+” and “−” labels refer to the helicity of the outgoing gluons; the re-

maining splitting amplitudes can be deduced by parity. It is important to stress that

equation (2.6.1) represents the contribution that is singular in the limit k1 parallel to

k2; other terms are suppressed by a power of
√

s12, which vanishes in the collinear

limit, compared to the term in (2.6.1). In other words the splitting amplitude cap-

tures the leading divergence in the collinear limit of the amplitude. From the form of

the splitting amplitudes it is clear that they develop square-root singularities in the

collinear limits, as spinor inner products behave like
√

sij. Of course for this reason if

the collinear legs are not next to each other there is no singular contribution.

Using the KLT relations it is then immediate to derive similar relations for gravity,

and to extract the form of gravity splitting amplitudes [46, 48]. If we consider for

example the five-point gravity amplitude, taking the same parametrisation for the
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momenta k1 and k2 of the two particles going collinear, we get the relation

Mtree
5 (1, 2, 3, 4, 5) → κ

2

∑

λ=±1

Splitgravity tree
−λ (1, 2)Mtree

4 (P λ, 3, 4, 5) , (2.6.6)

where the gravity splitting amplitude has the form

Splitgravity tree(1, 2) = −s12 Splittree(1, 2) Splittree(2, 1) . (2.6.7)

By using the explicit expressions for the gauge theory splitting amplitudes we get for

example

Splitgravity tree
− (1+, 2+) =

−1

z(1 − z)

[12]

〈12〉 . (2.6.8)

The structure of the KLT relations becomes more complicated as soon as the number

of external particles increases; nevertheless the behaviour of the splitting amplitudes

turns out to be universal and for a n-point amplitude is

Mtree
n (1, 2, ..., n) → κ

2

∑

λ=±1

Splitgravity tree
−λ (1, 2)Mtree

n−1(P
λ, 3, ..., n) . (2.6.9)

This relation is valid for any configuration of the external particles, even if KLT

relations apparently break this symmetry, and for any particle content of the theory.

The kinematic factor s12 into the (2.6.7) cancels the pole coming from the gauge

theory amplitudes, so gravity splitting amplitudes are not singular in the collinear

limit. However the presence of the spinor inner products still gives rise to a phase

singularity, that distinguishes terms with the splitting amplitudes from the others (in

complexified Minkowski space
[12]

〈12〉 is a simple pole).

At one loop in supersymmetric Yang-Mills theories two different kind of terms arise

when the momenta of two particles become collinear and the amplitudes behave in the

collinear limit as

A1-loop
n (1, 2, ..., n) →
∑

λ=±1

[
Splittreeλ (1, 2)A1-loop

n−1 (P λ, 3, ..., n) + Split1-loop
−λ (1, 2)Atree

n−1(P
λ, 3, ..., n)

]
, (2.6.10)

The very important feature of the gravity splitting amplitudes, compared to the

gauge theory ones, is that they do not receive quantum corrections. Due to the di-

mensionality of the gravity coupling constant, higher-loop corrections are suppressed

by power of kinematic invariants that turn out to go to zero in the collinear limit;

this is mostly due to momentum conservation together with the fact that the structure
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of gravity amplitudes is not colour-ordered and we have to sum over all the possible

permutations every time we compute an amplitude [46].

Collinear limits are often used in perturbative quantum field theory as consistency

checks for new models and techniques of calculation. Being able to reproduce the

correct singular behaviour and the expected physical poles in the scattering amplitudes

is in fact not at all trivial. We will see in Chapter 3 and 4 that this was indeed the

case for two of the central topics of this thesis, the MHV diagram method and the

BDS ansatz. We will then come back to the study of collinear limits again in Chapter

5, where the Wilson loop/scattering amplitude duality will provide us with a new

geometrical framework for the study of collinear singularities.

2.7 Unitarity

The last ingredient we need to complete the description of the picture is unitarity.

Not only were unitarity techniques the first alternative to Feynman diagrams but

they probably are today the most powerful tool for theoretical physicists to get results

useful for high-energy physics experiments. In contradistinction with semi-numerical or

numerical techniques, unitarity-based methods allow to get analytic answers. Although

it is today a very technical subject, its theoretical foundations are quite simple [6].

Moreover they are one of the ways to go, easily and immediately, from trees to loops.

We will describe an alternative proposal in the same direction (the MHV diagram

method) in the next chapter.

The approaches based on unitarity use the analytic properties of some amplitudes

to build further more complicated amplitudes. The key to the power of unitarity-based

methods lies in that their building blocks are tree-level amplitudes, that are on-shell

and gauge-invariant quantities. They are usually referred to as on-shell analytic meth-

ods as they extract all the information from lower-loop and lower-point amplitudes.

In contrast to the conventional approach, where Feynman vertices are off-shell, these

techniques restricts the states to the physical ones. The ingredients that are necessary

to gain information and build new amplitudes are just three properties that perturba-

tive amplitudes have in any field theory: factorisation, unitarity and the existence of

a representation in terms of Feynman integrals.

The procedure is simple. The idea is to determine scattering amplitudes directly

from their poles and discontinuities across cuts [6, 47]. If we apply perturbative uni-

tarity to a one-loop amplitude we can determine its branch cuts in terms of products

of tree amplitudes; the unitarity method provides a technique for producing functions
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with the correct branch cuts in all the kinematic channels. This is based on the fact

that loop amplitudes can be decomposed into a basis of loop integral functions (boxes

with up to four external massive legs, triangles with up to three external massive legs,

and bubbles – see Appendix A for the definitions). At one loop these are basically inte-

grals arising in a scalar φ3 theory where all the integrals are computed in dimensional

regularisation (the number of space-time dimensions is taken to be D = 4− 2ǫ, where

ǫ is the dimensional regulator), that regulates both the ultraviolet and the infrared

divergences. For a generic one-loop amplitude we have the decomposition:

A1-loop
n =

∑

j

cj Ij . (2.7.1)

The problem is then reduced to finding the coefficients cj , that are rational functions of

the external momenta and polarisation vectors. The problem of the four-dimensional

version of the unitarity method is that additive rational-function terms remain unde-

termined in the amplitudes. For amplitudes satisfying certain power-counting criteria

(for example amplitudes in supersymmetric gauge theory) it happens that the cuts

provide sufficient information to fix the coefficients for all the scalar integral, without

any additional term, these amplitudes are called cut-constructible.

Unitarity has been a powerful tool since its appearance in quantum field theory.

Any consistent field theory has as fundamental requirement the conservation of prob-

ability; this implies the unitarity of the scattering matrix S. Considering the non-

forward part of the scattering matrix, T = −i(S − 1), unitarity implies

−i(T − T †) = T †T , (2.7.2)

where on the right-hand side we imply the sum over all possible intermediate phys-

ical states (and over all possible particle types). Perturbative unitarity consists of

expanding both sides in terms of (gauge theory or gravity) coupling constants and

collecting terms of the same order. At one-loop order, only two-particle intermediate

states are possible and we get for example a one-loop four-point amplitude in terms

of two four-point tree-level ones. The left-hand side corresponds to a discontinuity in

the scattering amplitude, that is a branch cut in complex momenta. This discontinu-

ity gives the absorptive part of an amplitude. This is the core of the Cutkosky rules

[53], that allow one to obtain the imaginary (absorptive) parts of one-loop amplitudes

directly from products of tree amplitudes. In fact, the right-hand side can be obtained

from a loop amplitude by cutting it. In a single Feynman diagram, the discontinuity in

a given kinematic invariant (or channel) can be computed by replacing the propagators

by a delta function,
i

p2 + iǫ
→ 2πδ(+)(p2) , (2.7.3)
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replacing then the loop integral with a phase-space integral (δ(+) is the positive-energy

branch of the delta-function).

What the unitarity method does is exactly reversing this approach, by sewing tree

amplitudes to get one-loop amplitudes, basically reconstructing the full amplitude from

its cuts. By evaluating the cuts in each channel one can represent the imaginary part

of the amplitudes as linear combinations of cuts of the integrals of the basis in the

specific channel considered, and then find the coefficients. In other words, thanks to

the decomposition (2.7.1) and as we know explicitly the integral basis, what is left

to compute is just the form of the coefficients, that can be found by analysing the

cuts in the different channels. In this way the unitarity method avoids to compute

dispersive integrals in order to get the full amplitude. In this case agreement with

the real amplitude is guaranteed only for the discontinuities in the channel considered.

As by analysing the discontinuities in different channels we can get to the same in-

tegral function, this procedure might lead to problems of “overcounting”, producing

wrong factors in the final results. The unitary method [29, 54–56] has allowed for

enormous progress in the computation of next-to-leading-order processes and is today

implemented as computer programs due do its technical complexity (see literature for

explicit results).

36



Chapter 3

The MHV diagram method

We have the basics now to introduce our first alternative technique of calculation:

the MHV diagram method. Starting from the observation that perturbative scatter-

ing amplitudes in Yang-Mills theory show some remarkable properties that do not

find an explanation within the framework of the Feynman diagrams approach, Witten

proposed at the end of 2003 to relate Yang-Mills theory to the instanton expansion

of a certain string theory in twistor space [7]. This gave birth to a new branch of

investigation in perturbative quantum field theory with the aim of exploiting gauge

symmetry and build alternative diagrammatic methods. The simplicity and the beauty

of the MHV amplitudes, together with some localisation properties in twistor space,

suggested to promote them to interaction vertices of a novel perturbative expansion of

Yang-Mills theory, and build then a new set of diagrammatic rules. In this chapter we

first present a description of the MHV diagram method for the maximally supersym-

metric Yang-Mills theory at tree level and one-loop level, and then describe in detail

the author’s contribution, namely the construction of an MHV diagram method at one

loop for the maximally supersymmetric supergravity theory.

3.1 N = 4 super Yang-Mills

We start by recalling the simple form of the MHV amplitudes (2.3.2) in terms of spinor

variables

AMHV =
〈λr, λs〉4∏n

i=1〈λi, λi+1〉
, (3.1.1)

these functions are in fact holomorphic (the delta-function representing momentum

conservation δ(4)
(∑

i λ
a
i λ̃

ȧ
i

)
has been omitted, see Eq.(2.3.1)). The idea of Witten
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was to perform a half-Fourier transform to Penrose’s twistor space [57],

λ −→ i
∂

∂µȧ
, (3.1.2)

−i
∂

∂λ̃ȧ
−→ µȧ , (3.1.3)

in this way we break the symmetry between λ and λ̃ as we have chosen to transform one

rather than the other, but we do gain an interesting localisation feature. Performing

explicitly this Fourier transform one finds [7]

ÃMHV
n (λi, µi) =

∫
d4x

n∏

i=1

δ(2)(µjȧ + xaȧλ
a
j )AMHV

n (λi) , (3.1.4)

thus MHV amplitudes are non-vanishing only when µjȧ + xaȧλ
a
j = 0 for all j and for

ȧ = 1, 2, i.e. on (complex) lines in twistor space.

Figure 3.1: Tree-level MHV amplitudes are localised on lines in twistor space.

Thanks to Penrose’s transform, a point in Minkowski space corresponds to a line

in twistor space, so a local interaction vertex, which is a local object in Minkowski

space, is supported on a line in twistor space. As tree level MHV amplitudes for the

scattering of any number of gluons of positive helicity are supported on lines, the idea

proposed by Cachazo, Svrček and Witten [8] was to interpret these amplitudes as local

interaction vertices.

In order to glue together two MHV amplitudes (that are of course on-shell quan-

tities) it is necessary to introduce a prescription to extend internal legs off-shell. This

corresponds to giving a definition for the spinor λa associated to the internal, off-shell

line, as there is no natural way to associate it to a momentum that is not lightlike.

The off-shell continuation proposed for a generic line carrying momentum paȧ, known
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as CSW prescription, is [8]

λa = paȧη
ȧ (3.1.5)

where ηȧ is an arbitrary reference spinor.

The propagators used to sew together MHV amplitudes are then standard Feynman

propagators
i

p2
, with the convention that the two ends of any propagator must have

opposite helicity labels, as an incoming gluon of one helicity is equivalent to an outgoing

gluon of opposite helicity. New diagrams built in such a way are called MHV diagrams

and this set of rules are known as MHV rules.++ + + + + +- -- - - - -
Figure 3.2: Localisation of tree amplitudes with q = 3 and q = 4.

A tree level scattering amplitude with q external gluons of negative helicity is

obtained from an MHV tree diagram with v vertices with v = q − 1. Investigating lo-

calisation properties of amplitudes with more negative-helicity gluons, it can be proved

that they are supported on algebraic curves of higher degree. For example a tree-level

amplitude with q negative-helicity gluons localises on a curve of degree q − 1. In gen-

eral, a n-particle scattering amplitude is supported on an algebraic curve in twistor

space whose degree is

d = q − 1 + l , (3.1.6)

where l is the number of loops.

+

+

+

+
+

+

_

_

_

_

_

_

Figure 3.3: Tree-level MHV diagram.

Some important features of this method are worth to be stressed.
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• First of all this method is really diagrammatic - the final result can be found

summing over all the MHV diagrams that can be drawn. This characteristic

differentiates it from unitarity techniques that can lead to problems of “over-

counting”, as we have seen at the end of Section 2.7.

• Another more conceptual feature is that, although single diagrams explicitly de-

pend on the reference spinor ηȧ, this dependence cancels out when summing over

all the possible diagrams and the final expressions turn out to be η-independent.

This is usually referred to as covariance of the amplitudes and was shown at tree

level already in [8] (see also [58]).

• Finally we want to mention that, even if the complexity of the computation

grows with the number n of external particles, there is still an improvement on

the behaviour as the number of diagrams grows at most as n2, compared to a

factorial growth of Feynman diagrams.

The proofs of the MHV diagram method at tree level can be found in the original

papers [7, 8], strongly supported by the study of collinear and multi-particles singu-

larities and, from a totally different perspective, in Risager’s work [59] on recursion

relations [60, 61]. In a very elegant way he showed that, if we consider for example the

calculation of a next-to-MHV amplitude, by introducing shifts for the anti-holomorphic

spinors associated to the negative-helicity gluons, one obtains recursive diagrams im-

mediately matching those of the CSW rules. Moreover, since gluon MHV amplitudes

are holomorphic in the spinor variables, these shifts are to all effects invisible in the

gluon MHV vertex. Finally, the spinor associated to the internal leg joining the two

vertices as dictated by the BCF recursion relation is nothing but that introduced in the

CSW prescription (see [59] for more details, [60, 61] for the appropriate formulation of

recursion relations and [62, 63] for some further developments).

3.1.1 One loop

At the quantum level, the first applications of MHV rules were considered by Brand-

huber, Spence and Travaglini in [9], where the infinite sequence of one-loop MHV

amplitudes in N = 4 super Yang-Mills was rederived using MHV diagrams. One of

the main points is the derivation of an expression for the loop integration measure,

which made explicit the physical interpretation of the calculation and its relation to the

unitarity-based approach. This integration measure turned out to be the product of a

two-particle Lorentz-invariant phase space (LIPS) measure, and a dispersive measure.
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The off-shell prescription used at one-loop level is

L = l + z η , (3.1.7)

where l2 = 0, η is a fixed and arbitrary null vector and z is a real number. Deriving

from this equation z as a function of L one gets

z =
L2

2(L · η)
, (3.1.8)

and, writing the null vectors l and η in spinor notation (lαα̇ = lα l̃α̇ and ηαα̇ = ηαη̃α̇),

it is possible to see that

lα =
Lαα̇η̃α̇

[l̃ η̃]
, (3.1.9)

l̃α̇ =
ηαLαα̇

〈l η〉 . (3.1.10)

These expressions are nothing but the CSW prescription (3.1.5), up to the denomina-

tors that will turn out to be irrelevant, as all the expressions in the following will be

homogeneous in the spinor variables. So the off-shell continuation (3.1.7) is equivalent

to the CSW prescription.

The prescription (3.1.7) introduces into the calculation of the usual integration

measure a change of variable. The first step is then rewriting the product of the

measure factor d4L with a scalar propagator in terms of the new variables l and z.

By using the definitions (2.2.13) and (2.2.14) for the spinors associated to the on-shell

momentum l defined in (3.1.7), one finds the result

dl1 ∧ dl2 ∧ dl3 =
l0
2i

(
〈l dl〉 d2 l̃ − [l̃ dl̃] d2l

)
, (3.1.11)

so, it is possible rewrite
d4L

L2 + iε
= dN (l)

dz

z + iε
, (3.1.12)

where dN (l) is the Nair measure [64]

dN (l) :=
1

4i

(
〈l dl〉 d2 l̃ − [l̃ dl̃] d2l

)
=

d3l

2l0
, (3.1.13)

that represents also the Lorentz-invariant phase space measure for a massless particle

d4l δ(+)(l2) = dN (l) , (3.1.14)

(in Minkowski space l̃ = ±l̄ depending on the sign of l0). An important feature to
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stress here is that (3.1.12) is independent of the reference vector η.

MHV MHV

2

1

. .
.
..

.PL

L

L

Figure 3.4: One-loop MHV diagram.

This allows us to get a nice decomposition of the integration measure that appears

in a generic one-loop MHV diagram,

dM :=
d4L1

L2
1 + iε

d4L2

L2
2 + iε

δ(4)(L2 − L1 + PL) , (3.1.15)

into a D-dimensional phase space measure and a dispersive measure (here L1 and L2

are the loop momenta, and PL is the external momentum flowing outside the loop).

Momentum conservation can be written as L2 − L1 + PL = 0 or, in terms of the new

variables (3.1.7), as

l2 − l1 + PL;z = 0 , (3.1.16)

where we have defined

PL;z := PL − zη , (3.1.17)

and

z := z1 − z2 . (3.1.18)

Notice that we use the same η for both the momenta L1 and L2. The core of the

off-shell continuation is using the spinors associated to l1 and l2 to represent L1 and

L2, although this seems to break momentum conservation at the vertex (3.1.16); we

will address specifically this issue in the section concerning supergravity.

Rewriting the integration measure in terms of the new variables and applying the

result (3.1.12) one finds then

dM =
dz1

z1 + iε1

dz2

z2 + iε2

[
d3l1
2l10

d3l2
2l20

δ(4)(l2 − l1 + PL;z)

]
, (3.1.19)

where the quantity in parenthesis is nothing but the two-particle Lorentz invariant
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phase space (LIPS) measure

d3l1
2l10

d3l2
2l20

δ(4)(l2 − l1 + PL;z) = −d4l1 δ(+)(l21) d4l2 δ(−)(l22) δ(4)(l2−l1+PL;z) . (3.1.20)

Performing a further change of variables from z1 and z2 to z and z′ = z1+z2, integrating

out z′ and rewriting the remaining integral in terms of P 2
L;z, we get the final result [9]

dM = 2πi θ(P 2
L;z)

dP 2
L;z

P 2
L;z − P 2

L − iε
dDLIPS(l∓2 ,−l±1 ;PL;z) , (3.1.21)

where

dDLIPS(l−2 ,−l+1 ;PL;z) := dDl1 δ(+)(l21) dDl2 δ(−)(l22) δ(D)(l2 − l1 + PL;z) , (3.1.22)

needs to be computed in D = 4 − 2ǫ dimensions in order to be regularised. We will

not describe explicitly the calculation of the one-loop MHV amplitude reconstructed

by MHV diagrams here as it will be analogous to the formulation of the MHV diagram

method for supergravity, developed by the author and explained in the next sections.

We limit ourselves to summarise the essence of the method by saying that, firstly, the

LIPS integration computes the discontinuity of the amplitude across its branch cuts

(according to the argument of the delta function), and then the discontinuities are

integrating using the dispersive measure and the full amplitude is reconstructed from

its cuts [66].

As in the tree-level case, an important feature is the covariance of the amplitudes,

that manifests itself through highly non-trivial cancellations between contributions

from different MHV diagrams. In fact, using the local character of MHV vertices and

the Feynman Tree Theorem it can be shown that one-loop Yang-Mills amplitudes cal-

culated using the MHV diagram method are independent of the choice of the reference

spinor η, that can then be chosen at will in such a way to simplify the calculation [65].

Moreover, in the original paper [9] a stronger gauge invariance was observed, namely

the possibility to choose η separately for each box function that forms the final MHV

amplitude.

We emphasise that for one-loop MHV amplitudes in N = 4 super Yang-Mills

only scalar box functions appear in the final results (in particular the 2-mass easy

box functions); bubble and triangle contributions cancel out, in accordance with the

no-triangle property [6]. An important result, that will be very useful for further

investigations, is that a generic one-loop n-point MHV amplitude turns out to be
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proportional to the corresponding tree-level MHV amplitude

AN=4
1−loop = Atree

n Mn ; (3.1.23)

by factoring out the spinorial dependence into the tree-level amplitude, what usually

remains to compute is then the contribution from the scalar box integrals, whose

explicit expressions are well known in literature (see Appendix A).

In the presence of supersymmetry, the correct collinear and soft singularities are

also reproduced, lending strong support to the correctness of the method also at one

loop. We will describe this important consistency check in the next section. Other

applications of the method include the infinite sequence of MHV amplitudes in N = 1

super Yang-Mills [67] and the cut-constructible part of the same amplitudes in pure

Yang-Mills [68], as well as the recent calculations of Higgs plus multi-gluon scattering

amplitudes at one loop [69–73]. Amplitudes in non-supersymmetric Yang-Mills were

also recently studied in [74], where derivations of the finite all-minus and all-plus gluon

amplitudes were presented.

3.1.2 Collinear singularities

The check of whether or not amplitudes computed with the MHV rules reproduce the

expected singularities in the collinear limits was an important test for the validity of

the method. The behaviour of the amplitudes in this limit was already studied at tree

level in the original paper [8] and showed agreement with known results from Feynman

diagrams. The MHV diagrams contributing to the collinear limit turn out to be the

diagrams where the two legs going collinear belong to the same MHV vertex. The

singular behaviour, that is encoded in the tree level splitting amplitudes as described

in Chapter 2, can arise from two different types of MHV diagrams, as the method is

not parity symmetric. There are then two kinds of collinear limits to consider: the

ones where the number of negative helicities is unchanged (++ → + and +− → −)

and the ones where the number of negative helicities is reduced by one (−− → − and

+− → +). The success of this check actually convinced the scientific community that

the MHV diagram method had to be valid.

At one-loop level we know that there are two terms arising from the amplitude in

the collinear limit (2.6.10). Within the framework of the MHV diagram method, it is

easy to see that these two terms have different diagrammatic origin: the first ones arise

from MHV diagrams where the kinematical invariant that vanishes in the collinear limit

corresponds to a non-singular channel and the second ones from diagrams where it is
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a singular channel. A singular channel MHV diagram is meant to be a diagram where

the two legs going collinear belong to a four-point vertex and the two remaining (loop)

legs are attached to the same MHV vertex. In such diagrams, the collinearity condition

is transferred directly to the MHV vertex on the other side through collinearity of the

loop momenta. Again, also at one loop, diagrams where the two legs becoming collinear

belong to different MHV vertices do not develop collinear singularities. The study of

the collinear behaviour of the amplitudes computed through the MHV diagram method

at one loop showed immediately agreement with the known results from literature

about one-loop splitting amplitudes and was a further motivation for the validity of

the technique.

Before closing this section on the MHV diagram method for N = 4 super Yang-

Mills we want to mention that after its empirical formulation, a transformation was

found that maps the Yang-Mills Lagrangian into one whose perturbative expansion

is given in terms of MHV vertices [75, 76]. By formulating pure Yang-Mills theory

in light-cone coordinates and performing a non-local change of variables, the three-

and four-point vertices that arise in Feynman perturbation theory are mapped into an

infinite sequence of MHV vertices. This procedure also gives a theoretical explanation

to the choice of the reference spinor used to define the off-shell continuation: η is

exactly the same null vector used to define the light-cone formulation of the theory

[77–79]. What at the beginning seemed to be a revolutionary empirical alternative to

Feynman diagrams turns out to be, with this Lagrangian formulation, just another way

to rewrite the standard approach; a more physical way, a more effective way, but just

another form of writing the same thing. This might spoil the discovery of its charm,

but offers a much more solid theoretical foundation.

3.2 N = 8 supergravity

We focus now our attention on the formulation of an MHV diagram method for gravity.

One important feature that differentiate gravity MHV amplitudes from gauge theory

ones is that they are not holomorphic in the spinor variables (as it is clear, for example,

from the kinematic factors appearing in the KLT relations), so it is not natural an

extension of the MHV diagram method to supergravity, in particular it is not clear

how to define an off-shell continuation. At tree level an approach was proposed in

[80] within the framework of recursion relations. The authors tried to derive these

MHV rules as a special case of a BCF recursion relation [60], following the insight of

the results for Yang-Mills theory [59]. In gravity a similar picture emerged, but with

the noticeable difference, as we mentioned, that graviton MHV amplitudes depend
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explicitly upon anti-holomorphic spinors, hence the precise form of the shifts is very

relevant. In particular the shifts involve the anti-holomorphic spinors related to the

negative-helicity external particles:

λ̃mi
→ ˆ̃

λmi
= λ̃mi

+ z ri η̃ , (3.2.1)

where η̃ is an arbitrary reference spinor and the ri are chosen in order to assure

momentum conservation. For example for a next-to-MHV amplitude a choice would

be:
ˆ̃
λm1 = λ̃m1 + z 〈m2m3〉 η̃ , (3.2.2)

ˆ̃
λm2 = λ̃m2 + z 〈m3m1〉 η̃ , (3.2.3)

ˆ̃λm3 = λ̃m3 + z 〈m1m2〉 η̃ , (3.2.4)

where m1, m2 and m3 are the negative-helicity legs. This involves a shift on the three

momentum vectors that leaves them on-shell, while their combination is independent

of z. The new tree-level MHV rules for gravity were successfully used to derive explicit

expressions for several amplitudes in General Relativity. At one-loop level there were

up to now no results or proposals. We describe now in detail our proposal for com-

puting one-loop graviton amplitudes in N = 8 supergravity through an MHV diagram

formulation [20].

3.2.1 One loop

We will discuss the MHV diagram calculation of the simplest one-loop amplitudes

in gravity, namely the MHV amplitudes of gravitons in maximally supersymmetric

N = 8 supergravity. The four-point amplitude, which we will reproduce in detail [20],

was first obtained from the α′ → 0 limit of a string theory calculation in [81], and

then rederived in [82] with the string-based method of [83], and also using unitarity.

The infinite sequence of MHV amplitudes was later obtained in [46].1 By construction,

two-particle cuts and generalised cuts of a generic one-loop gravity amplitude obtained

using an MHV diagram based approach automatically agree with those of the correct

amplitude, in complete similarity to the Yang-Mills case (see the discussion in Section

4 of [65]). As in Yang-Mills, the crux of the problem will be determining the off-shell

continuation of the spinors associated to the loop legs, which will affect the rational

terms in the amplitude; this off-shell continuation should be such that the final result

is independent of the particular choice of the reference vector η, which is naturally

introduced in the method. This is an important test which should be passed by any

1See [23] for a nice review on gravity amplitudes and their properties.
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proposal for an MHV diagrammatic method.

We will suggest an off-shell continuation of the gravity MHV amplitudes which

has precisely the effect of removing any unwanted η-dependence in the final result

of the MHV diagram calculation, which correctly reproduces the known expression

for the four-point MHV amplitude at one loop. Our “experimental” prescription for

the off-shell continuation, discussed in Section 3.2.2, is based on the introduction of

certain shifts for the anti-holomorphic spinors associated to the internal (loop) legs.

This prescription is unique and has the advantage of preserving momentum conser-

vation at each MHV vertex (in a sense to be fully specified in the following section).

The mechanism at the heart of the cancellation of η-dependence is that of the “box

reconstruction” found in [9], where a generic two-mass easy box function is derived

from summing over dispersion integrals of the four cuts of the function (the s- and

t-channel cuts, and the cuts corresponding to the two massive corners). Each of the

four terms separately contains η-dependent terms, but these cancel out when these

terms are added. We apply our off-shell continuation to calculate in detail the four-

and five-point MHV amplitudes of gravitons at one loop, then we outline the procedure

to perform a calculation with an arbitrary number of external gravitons.

3.2.2 Off-shell continuation of gravity MHV amplitudes and shifts

The main goal of this section is to discuss (and determine) a certain off-shell continua-

tion of the MHV amplitude of gravitons which we will use as an MHV vertex. We will

shortly see that, compared to the Yang-Mills case, peculiar features arise in gravity,

where the expression of the MHV amplitudes of gravitons contains both holomorphic

and anti-holomorphic spinors.

We start by considering the decomposition of a generic internal (possibly loop)

momentum L (3.1.7) which is commonly used in applications of the MHV diagram

method [9, 84]. We focus on a generic MHV diagram contributing to the one-loop MHV

amplitude of gravitons, see Figure 3.5. Using the parametrisation (3.1.7), momentum

conservation in the loop, L2 − L1 + PL = 0, can be rewritten as

PL + l2 − l1 − zη = 0 , (3.2.5)

where z is defined as in (3.1.18) and PL is the sum of the momenta on the left hand

side of the diagram.

The usual CSW off-shell prescription for calculating tree-level [8] and one-loop [9]
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Figure 3.5: A generic MHV diagram contributing to the one-loop graviton MHV am-
plitude. The hatted loop momenta are defined below in (3.2.7).

amplitudes from MHV diagrams in Yang-Mills consists in decomposing any internal

(off-shell) momentum L as in (3.1.7), and using the holomorphic spinor lα associated to

the null momentum lαα̇ := lα l̃α̇ in the expression of the MHV vertices. In Yang-Mills,

this prescription has been shown to work for a variety of cases at tree- [85–88] and

one-loop level [9, 65, 67, 68, 74, 89].

Using l1 and l2 in the expressions of the vertices in place of the loop momenta L1

and L2 has the consequence of effectively “breaking” momentum conservation at each

vertex2 – the momenta which are inserted in the expression of each MHV vertex do

not sum to zero, as l2 − l1 + PL = zη 6= 0. As we said, for tree-level Yang-Mills it was

shown in [59] that momentum conservation can formally be reinstated by appropriately

shifting the anti-holomorphic spinors of the momenta of the external negative-helicity

particles. These shifts do not affect the Parke-Taylor expressions of the MHV vertices,

as these only contain holomorphic spinors – they are invisible.

The situation in gravity is quite different. The infinite sequence of MHV amplitudes

of gravitons was found by Berends, Giele and Kuijf in [91] and is given by an expression

which contains both holomorphic and anti-holomorphic spinors (for a number of exter-

nal gravitons larger than three). The new formula for the n-point graviton scattering

amplitude found in [90] also contains holomorphic as well as anti-holomorphic spinors.

Thus, it appears necessary to introduce a prescription for an off-shell continuation of

anti-holomorphic spinors l̃α̇ related to the loop momenta. We look for this prescription

in a way which allows us to solve a potential ambiguity which we now discuss.

We begin by observing that, a priori, several expressions for the same tree-level

gravity MHV amplitude can be presented. For example, different realisations of the

KLT relations [45] may be used, or different forms of the BCF recursion relations (two

2This effective violation of momentum conservation was already observed and discussed in Section
2 of [90].
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of which where considered in [90] and [92]). Upon making use of spinor identities and,

crucially, of momentum conservation, one would discover that these different-looking

expressions for the amplitudes are actually identical. However, without momentum

conservation in place, these expressions are no longer equal. We conclude that if we do

not maintain momentum conservation at each MHV vertex, we would face an ambiguity

in selecting a specific form for the graviton MHV vertex – the expressions we get by

simply using the spinors liα and l̃iα̇ obtained from the null vectors li = Li−ziη, i = 1, 2

as in the Yang-Mills case, would in fact be different. Not surprisingly, the difference

between any such two expressions amounts to η-dependent terms; stated differently,

the expressions for the amplitudes näıvely continued off-shell would present us with

spurious η-dependence. This ambiguity does not arise in the Yang-Mills case, where

there is a preferred, holomorphic expression for the MHV amplitude of gluons, given

by the Parke-Taylor formula.

We propose to resolve the ambiguity arising in the gravity case by resorting to

certain shifts in the loop momenta, to be determined shortly, which have the effect

of reinstating momentum conservation, in a way possibly reminiscent of the tree-level

gravity MHV rules of [80]. As we shall see, these shifts determine a specific prescription

for the off-shell continuation of the spinors associated to the loop legs.

Specifically, our procedure consists in interpreting the term −zη in (3.2.5) as gen-

erated by a shift on the anti-holomorphic spinors of the loop momenta in the off-shell

continuation of the MHV amplitudes. Absorbing this extra term into the definition

of shifted momenta l̂1 and l̂2 allows us to preserve momentum conservation at each

vertex also off shell. Indeed, we now write momentum conservation as

PL + l̂2 − l̂1 = 0 . (3.2.6)

The hatted loop momenta are defined by a shift in the anti-holomorphic spinors,

l̂1αα̇ = l1α
ˆ̃
l1α̇ , l̂2αα̇ = l2α

ˆ̃
l2α̇ . (3.2.7)

We find that the form of the shifts is natural and unique. Solving for the anti-

holomorphic spinors
ˆ̃
l1 and

ˆ̃
l2, one gets3

ˆ̃
l1 = l̃1 − z

〈l2η〉
〈l1l2〉

η̃ ,

ˆ̃
l2 = l̃2 − z

〈l1η〉
〈l1l2〉

η̃ . (3.2.8)

3Notice that the off-shell prescription for the holomorphic spinors l1α and l2α is the usual CSW
prescription.
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It is easy to check that the contribution of the shifts is

l2αδl̃2α̇ − l1αδl̃1α̇ = −zηαη̃α̇ , (3.2.9)

where we have used the Schouten identity (〈l1η〉 l2α − 〈l2η〉 l1α)/〈l1l2〉 = ηα.

Our prescription (3.2.8) will then consist in replacing all the anti-holomorphic

spinor variables associated to loop momenta with corresponding shifted spinors. For

example, the spinor bracket [l2l1] becomes

[l̂2 l̂1] = [l2l1] − 2z
PL · η
〈l1l2〉

. (3.2.10)

Notice also that

sl̂1−l̂2
:= (l̂2 − l̂1)

2 = −〈l1l2〉[l̂2 l̂1] = P 2
L . (3.2.11)

A few comments are now in order.

1. We have seen that in [59] a derivation of tree-level MHV rules in Yang-Mills

was discussed which makes use of shifts in the momenta of external legs (3.2.1). This

approach was used in [80] where the long sought-after derivation of tree-level gravity

MHV rules was presented. We differ from the approach of [59] and [80] in that we shift

the momenta of the (off-shell) loop legs rather than the external momenta. It would

clearly be interesting to find a first principle derivation of the shifts (3.2.8), perhaps

from an action-based approach, along the lines of [75], as well as to relate our shifts to

those employed at tree level in [80].

2. Our procedure of shifting the loop momenta in order to preserve momentum con-

servation off shell can also be applied to MHV diagrams in Yang-Mills. Indeed, using

the Parke-Taylor expression for the MHV vertices would result in these shifts be-

ing invisible. We would like to point out that, in principle, one could use different

expressions even for an MHV gluon scattering amplitude, possibly containing anti-

holomorphic spinors. Had one chosen this second (unnecessarily complicated) path,

our prescription (3.2.8) for shifts in anti-holomorphic spinors would guarantee that

the non-holomorphic form of the vertex would always boil down to the Parke-Taylor

form. Clearly, having to deal with holomorphic vertices, as in Yang-Mills, is a great

simplification. The importance of holomorphicity of the MHV amplitudes is further

appreciated in Mansfield’s derivation [75] of tree-level MHV rules in Yang-Mills.

In the next section we will test the ideas discussed earlier in a one-loop calculation

in N = 8 supergravity, specifically that of a four-point MHV scattering amplitude of

gravitons. We will then consider applications to amplitudes with arbitrary number of
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external particles.

3.2.3 Four-point MHV amplitude at one loop

In this section we will rederive the known expression for the four-point MHV scattering

amplitude of gravitons M(1−2−3+4+) using MHV rules. As in the Yang-Mills case,

we will have to sum over all possible MHV diagrams, i.e. diagrams such that all the

vertices have the MHV helicity configuration. Moreover, we will also sum over all

possible internal helicity assignments, and over the particle species which can run in

the loop. Specifically, we will focus on N = 8 supergravity, where all the one-loop

amplitudes are believed to be expressible as sums of box functions only [93–97]. In

this case, the result of [81, 82] is

MN=8
1−loop = Mtree [uF (1234) + t F (1243) + s F (1324)] , (3.2.12)

where Mtree is the four-point MHV amplitude, and F (ijkl) are zero-mass box functions

with external, cyclically ordered null momenta i, j, k and l. The kinematical invariants

s, t, u are defined as s := (k1 + k2)
2, t := (k2 + k3)

2, u := (k1 + k3)
2 = −s− t. We will

see in our MHV diagrams approach that each box function appearing in (3.2.12) will

emerge by summing over appropriate dispersion integrals of two-particle phase space

integrals, similarly to the Yang-Mills case [9]. The result we will find is in complete

agreement with the known expression found in [81, 82].

3.2.4 MHV diagrams in the s-, t-, and u-channels

We start by computing the MHV diagram in Figure 3.6. This diagram has a non-

trivial s-channel cut, hence we will refer to it as to the “s-channel MHV diagram”. Its

expression is given by

Ms =

∫
dµk1+k2 M(1−2− l̂+2 − l̂+1 ) M(l̂−1 − l̂−2 3+4+) . (3.2.13)

The integration measure dµPL
[9] is again (3.1.15)

dµPL
=

d4L1

L2
1 + iε

d4L2

L2
2 + iε

δ(4)(L2 − L1 + PL) , (3.2.14)

where, for the specific case of (3.2.13), we have PL = k1 + k2. Notice the hats in

(3.2.13), which stand for the shifts defined in (3.2.8). These shifts are such to preserve

momentum conservation off shell, hence we can use any of the (now equivalent) forms
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Figure 3.6: The s-channel MHV diagram.

of MHV amplitudes of gravitons as off-shell vertices. We choose the expression for

the four-graviton MHV amplitude obtained by applying the KLT relation (2.5.4), thus

getting

M(1−2− l̂+2 − l̂+1 ) = −is12 A(1−2−l+2 − l+1 )A(1−2− − l+1 l+2 ) , (3.2.15)

M(l̂−1 − l̂−2 3+4+) = −isl̂1−l̂2
A(l−1 − l−2 3+4+)A(l−1 − l−2 4+3+) , (3.2.16)

where A’s are Yang-Mills amplitudes. We need not shift the l’s appearing inside the

gauge theory amplitudes, as these are holomorphic in the spinor variables.

Using the Parke-Taylor formula for the MHV amplitudes and the result (3.2.11),

the s-channel MHV diagram gives

Ms = − 〈12〉8
〈12〉2〈34〉2 s2

∫
dµk1+k2

〈l1l2〉4
〈1l1〉〈2l1〉〈3l1〉〈4l1〉〈1l2〉〈2l2〉〈3l2〉〈4l2〉

. (3.2.17)

MHV MHV
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^

^
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−−/+ +/−

−/++/−

Figure 3.7: The t-channel MHV diagram. The u-channel diagram is obtained by ex-
changing gravitons 1− and 2−.
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Two more MHV diagrams with a non-null two-particle cut contribute to the one-

loop four-graviton amplitude, see Figure 3.7. Since these have a non-trivial t-channel,

or u-channel two-particle cut, we will call them t-channel, and u-channel MHV di-

agram, respectively. For these diagrams, all particles in the N = 8 supergravity

multiplet can run in the loop, and moreover we will have to sum over the two possible

internal helicity assignments. Using the supersymmetric Ward identities [28, 42] it is

possible to write this sum over contributions from all particles running in the loop as

the contribution arising from a scalar loop times a purely holomorphic quantity ρN=8

[82], where

ρN=8 :=
〈12〉8〈l1l2〉8

(〈1l2〉〈2l1〉〈1l1〉〈2l2〉)4
. (3.2.18)

It is then easy to check that the results in the t- and u-channels are exactly the same

as the s-channel, with the appropriate relabeling of the external legs (apart from the

overall factor 〈12〉8). For example, in the t-channel we find

Mt = − 〈12〉8
〈23〉2〈41〉2 t2

∫
dµk2+k3

〈l1l2〉4
〈1l1〉〈2l1〉〈3l1〉〈4l1〉〈1l2〉〈2l2〉〈3l2〉〈4l2〉

. (3.2.19)

Making use of momentum conservation, it is immediate to see that the prefactors of

(3.2.17) and (3.2.19) are identical, s2/(〈12〉〈34〉)2 = t2/(〈23〉〈41〉)2 .

We will discuss the specific evaluation of the s-channel MHV diagram (3.2.17) and

the t- and u-channel diagrams in Section 3.2.6. Before doing so, we would like to first

write the expressions of the remaining MHV diagrams, which have a null two-particle

cut.

3.2.5 Diagrams with null two-particle cut

In the unitarity-based approach of BDDK, diagrams with a null two-particle cut are of

course irrelevant, as they do not have a discontinuity. However in the MHV diagram

method we have to consider them [9, 67, 68]. As also observed in the calculation

of the gauge theory amplitudes considered in those papers, we will see that these

diagrams give rise to contributions proportional to dispersion integrals of (one-mass

or zero-mass) boxes in a channel with null momentum. For generic choices of η the

contribution of these diagrams is non-vanishing, and important in order to achieve the

cancellation of η-dependent terms. For specific, natural choices of η [9], one can see

that these diagrams actually vanish by themselves; see Appendix B for a discussion of

this point.

To be specific, let us consider the diagram with particles 1, 2 and 3 on the left, and
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Figure 3.8: One of the MHV diagrams with a null two-particle cut.

particle 4 on the right (see Figure 3.8). The remaining three diagrams (with particle 4

replaced by particles 1, 2, and 3, respectively) are obtained by relabeling the external

particles and summing over the particles running in the loop, when required.

The action of the shifts (3.2.8) allows us to preserve momentum conservation off

shell in the form

k1 + k2 + k3 + l̂2 − l̂1 = 0 , (3.2.20)

on the left, and

k4 − l̂2 + l̂1 = 0 , (3.2.21)

on the right. Equations (3.2.20) and (3.2.21) again imply that global momentum

conservation
∑4

i=1 ki = 0 is also preserved.

The expression for the diagram in Figure 3.8 is given by

Mk2
4

=

∫
dµk4 M(1−2−3+ l̂+2 − l̂+1 ) M(l̂−1 − l̂−2 4+) . (3.2.22)

In order to obtain an expression for the five-point tree-level vertex entering (3.2.22),

we apply the KLT relation (2.5.5), whereas for the three-point vertex we simply use

(2.5.3). Thus, we get

Mk2
4

=

∫
dµk4

[
s12s3l̂2

A(1−2−3+l+2 − l+1 )A(2−1−l+2 3+ − l+1 )

+ s13s2l̂2
A(1−3+2−l+2 − l+1 )A(3+1−l+2 2− − l+1 )

] [
A(l−1 − l−2 4+)

]2
, (3.2.23)

where the vector l̂2 is shifted.
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We can now rewrite (3.2.23) as

Mk2
4

=
〈12〉8

〈12〉〈13〉〈32〉

∫
dµk4

[
〈13〉[21]〈2l2〉[l̂23] − 〈12〉[31]〈3l2〉[l̂22]

]
·

· 〈l1l2〉5
〈1l1〉〈1l2〉〈2l1〉〈2l2〉〈3l1〉〈3l2〉〈4l1〉2〈4l2〉2

. (3.2.24)

Notice that apparently (3.2.24) contains unphysical double poles in 〈4l1〉 and 〈4l2〉,
generated by the presence of the three-point vertex

[
A(l−1 − l−2 4+)

]2
in (3.2.23). What

we are going to show is that thanks to momentum conservation – now always preserved

in terms of the shifted momenta – these double poles disappear. Furthermore, we will

show that the integrand has exactly the same form as that in (3.2.17), obtained from

diagrams with a two-particle cut.

We start by factoring out of the integrand (3.2.24) the quantity

Q =
〈l1l2〉4∏4

i=1〈il2〉
∏4

j=1〈jl1〉
. (3.2.25)

We are then left with

〈12〉8
〈12〉〈13〉〈32〉

[
〈13〉[21]〈2l2〉[l̂23] − 〈12〉[31]〈3l2〉[l̂22]

] 〈l1l2〉
〈4l1〉〈4l2〉

. (3.2.26)

By using momentum conservation (3.2.21) on the right hand side MHV vertex, we can

rewrite (3.2.26) as

〈12〉8
〈12〉〈13〉〈32〉

[
〈13〉[21][34]〈2l2〉〈4l2〉

− 〈12〉[31][24]〈3l2〉〈4l2〉

]
. (3.2.27)

Using momentum conservation
∑4

i=1 ki = 0 in the form

〈3l2〉[31] = −〈4l2〉[41] − 〈2l2〉[21] , (3.2.28)

we get

〈12〉8
〈12〉〈13〉〈32〉

[
〈12〉[24][41] + (〈13〉[34] + 〈12〉[24])[21]〈2l2〉〈4l2〉

]
=

〈12〉8
〈12〉〈13〉〈32〉 〈12〉[24][41] .

(3.2.29)

The surprise is that the coefficient (3.2.29) is actually the negative of the prefactor

which multiplies the integral in the expression (3.2.17) for the MHV diagrams corre-

sponding to the s-channel. We can thus rewrite (3.2.24) as

Mk2
4

=
〈12〉8

〈12〉2〈34〉2 s2

∫
dµk4

〈l1l2〉4
〈1l1〉〈2l1〉〈3l1〉〈4l1〉〈1l2〉〈2l2〉〈3l2〉〈4l2〉

, (3.2.30)
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which is the opposite of the right hand side of (3.2.17) – except for the integration

measure dµk2
4

appearing in (3.2.30), which is different from that in (3.2.17) (as the

momentum flowing in the cut is different). As we shall see in the next section, the

relative minus sign found in (3.2.30) compared to (3.2.17) is precisely needed in order

to reconstruct box functions from summing dispersive integrals (see (3.2.68)), one for

each cut, as it was found in [9].

3.2.6 Explicit evaluation of the one-loop MHV diagrams

In the last sections we have encountered a peculiarity of the gravity calculation, namely

the fact that the expression for the integrand of each MHV diagram contributing to

the four-point graviton MHV amplitude turns out to be the same – compare, for

example, (3.2.17), (3.2.19), (3.2.30), which correspond to the s-, t-, and k2
4-channel

MHV diagram, respectively. Therefore we will focus on the expression of a generic

contribution of these MHV diagrams, for example from (3.2.17),

M = − 〈12〉8
〈12〉2〈34〉2 s2

∫
dµPL

〈l1l2〉4
〈1l1〉〈2l1〉〈3l1〉〈4l1〉〈1l2〉〈2l2〉〈3l2〉〈4l2〉

, (3.2.31)

and perform the relevant phase space and dispersion integrals.

In order to evaluate (3.2.31), we need to perform the Passarino-Veltman (PV)

reduction [98] of the phase-space integral of the quantity Q defined in (3.2.25). To

carry out this reduction efficiently, we use the trick of performing certain auxiliary

shifts, which allow us to decompose (3.2.25) in partial fractions. Each term produced

in this way will then have a very simple PV reduction.

Firstly, we write Q as

Q := 〈l1l2〉4 X Y , (3.2.32)

where

X =
1

∏4
i=1〈il2〉

, (3.2.33)

Y =
1

∏4
j=1〈jl1〉

, (3.2.34)

and perform the following auxiliary shift

λ̂l2 = λl2 + ωλl1 , (3.2.35)

on the quantity X in (3.2.33) (we will later apply the same procedure on Y ). We call
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X̂ the corresponding shifted quantity,

X̂ =
1

∏4
i=1(〈il2〉 + ω〈il1〉)

. (3.2.36)

Next, we decompose X̂ in partial fractions, and finally set ω = 0. After using the

Schouten identity, we find that X can be recast as

X =
1

〈l1l2〉3
4∑

i=1

〈il1〉3∏
m6=i〈im〉

1

〈il2〉
. (3.2.37)

One can proceed in a similar way for Y defined in (3.2.34), and, in conclusion, (3.2.25)

is re-expressed as

Q =

4∑

i,j=1

1∏
m6=i〈im〉

1∏
l 6=j〈jl〉

1

〈l1l2〉2
〈il1〉3 〈jl2〉3
〈il2〉 〈jl1〉

. (3.2.38)

We now set

Q =

4∑

i,j=1

1∏
m6=i〈im〉

1∏
l 6=j〈jl〉

K , (3.2.39)

where

K :=
1

〈l1l2〉2
〈il1〉3 〈jl2〉3
〈il2〉 〈jl1〉

, (3.2.40)

and substitute the Schouten identity for the factor (〈il1〉〈jl2〉)2 in K. By multiplying

for appropriate anti-holomorphic inner products (of unshifted spinors), we are able to

reduce K to the sum of three terms as follows:

K =
〈i| l2PL;z |i〉〈j| l2PL;z |j〉

(P 2
L;z)

2
+ 2〈ij〉〈j| l2PL;z |i〉

P 2
L;z

+ 〈ij〉2R(ji) , (3.2.41)

where

PL;z := PL − zη , (3.2.42)

and z is defined in (3.1.18). The first term in (3.2.41) gives two-tensor bubble integrals,

the second linear bubbles, and the third term generates the usual R-function, familiar

from the Yang-Mills case. This is defined by

R(ji) =
〈jl2〉〈il1〉
〈jl1〉〈il2〉

. (3.2.43)
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We can then decompose the R function as

R(ji) =
2 [(l1j)(l2i) + (l1i)(l2j) − (l1l2)(ij)]

(l1 − j)2(l2 + j)2

= −1 +
1

2

[
PL;zi

l2i
− PL;zj

l1j

]
+

2(iPL;z)(jPL;z) − P 2
L;z(ij)

4(l2i)(l1j)
. (3.2.44)

The phase-space integral of the first term on the right hand side of (3.2.44) corresponds

to a scalar bubble, whereas the second and the third one correspond to triangles; finally,

the phase-space integral of the last term in (3.2.44) gives rise to a box function. The

last term is usually called Reff(ji),

Reff(ji) :=
N(PL;z)

(l1 − j)2 (l2 + i)2
, (3.2.45)

where

N(PL;z) := −2(iPL;z) (jPL;z) + P 2
L;z(ij) . (3.2.46)

We now show the cancellation of bubbles and triangles, which leaves us just with box

functions.

To start with, we pick all contributions to (the phase-space integral of) (3.2.39)

corresponding to scalar, linear and two-tensor bubbles, which we identify using (3.2.41).

These are given by

Qbubbles =

4∑

i,j=1

1∏
m6=i〈im〉

1∏
l 6=j〈jl〉

·

·
[
〈i| l2PL;z |i〉〈j| l2PL;z |j〉

(P 2
L;z)

2
+ 2〈ij〉〈j| l2PL;z |i〉

P 2
L;z

− 〈ij〉2
]

. (3.2.47)

Explicitly, the phase-space integrals of linear and two-tensor bubbles are given by4

Iµ =

∫
dLIPS(l2,−l1;PL;z) lµ2 = −1

2
Pµ

L;z , (3.2.48)

and

Iµν =

∫
dLIPS(l2,−l1;PL,z) lµ2 lν2 =

1

3

[
Pµ

L;zP
ν
L;z −

1

4
ηµνP 2

L;z

]
. (3.2.49)

Thus, we find that the bubble contributions arising from (3.2.47) give a result propor-

4Up to a common constant, which will not be needed in the following.
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tional to

C =

4∑

i,j=1

〈ij〉2∏
m6=i〈im〉∏l 6=j〈jl〉

. (3.2.50)

Using the Schouten identity, it is immediate to show that C = 0. We remark that the

previous expression vanishes also for a fixed value of i.

We now move on to consider the triangle contributions. From (3.2.39) and (3.2.44),

we get

Qtriangles =

4∑

i,j=1

1∏
m6=i〈im〉

1∏
l 6=j〈jl〉

〈ij〉2
2

[
PL;zi

l2i
− PL;zj

l1j

]
. (3.2.51)

We observe that the combination

∫
dLIPS

[
PL;zj

l1j
− PL;zi

l2i

]
= −4πλ

ǫ
, (3.2.52)

is independent of i and j [67], hence we can bring the corresponding term in (3.2.51)

outside the summation, obtaining again a contribution proportional to the coefficient

(3.2.50), which vanishes; this proves the cancellation of triangles. We conclude that

each one-loop MHV diagram is written just in terms of box functions, and is explicitly

given by

M = − 〈12〉8
〈12〉2〈34〉2 s2

∫
dµPL

∑

i6=j

〈ij〉2∏
m6=i〈im〉 ∏l 6=j〈jl〉

N(PL;z)

(l1 − j)2 (l2 + i)2
. (3.2.53)

We remind that PL is the sum of the (outgoing) momenta in the left hand side MHV

vertex. To get the full amplitude at one loop we will then have to sum over all possible

MHV diagrams.

The next task consists in performing the loop integration. To do this, we follow

steps similar to those discussed in [9], namely:

1. We rewrite the integration measure as the product of a Lorentz-invariant phase

space measure and an integration over the z-variables (one for each loop momentum)

introduced by the off-shell continuation,5

dµPL
:=

d4L1

L2
1

d4L2

L2
2

δ(4)(L2 − L1 + PL) =
dz1

z1

dz2

z2
dLIPS(l2,−l1;PL;z) . (3.2.54)

5In this and following formulae, the appropriate iε prescriptions are understood. These have been
extensively discussed in Section 5 of [65].
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2. We change variables from (z1, z2) to (z, z′), where z′ := z1 + z2 and z is defined

in (3.1.18), and perform a trivial contour integration over z′.

3. We use dimensional regularisation on the phase-space integral of the boxes,

P =

∫
dDLIPS(l2,−l1;PL)

N(PL)

(l1 − j)2 (l2 + i)2
. (3.2.55)

This evaluates to all orders in ǫ to

P =
π

3
2
−ǫ

Γ(1
2 − ǫ)

1

ǫ

∣∣∣∣
P 2

L

4

∣∣∣∣
−ǫ

2F1(1,−ǫ, 1 − ǫ, aP 2
L) , (3.2.56)

where

a :=
P 2 + Q2 − s − t

P 2Q2 − st
. (3.2.57)

The phase space integral in (3.2.56) is computing a particular discontinuity of the box

diagram represented in Figure 3.9, with p = i and q = j, where the cut momentum is

PL.

s

t

p

q.

.
..

..

Q
2

P
2

Figure 3.9: A generic two-mass easy box function. p and q are the massless legs, P
and Q the massive ones, and s := (P + p)2, t := (P + q)2.

4. We perform the final z-integral by defining the new variable

s′ := P 2
L;z = P 2

L − 2zPL · η . (3.2.58)

One notices that [9]
dz

z
:=

ds′

s′ − P 2
L

, (3.2.59)
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hence the z-integral leads to a dispersion integral in the P 2
L-channel. At this point

we select a specific value for η, namely we choose it to be equal to the momentum of

particles j or i.6 Specifically, performing the phase-space integration and the dispersive

integral for a box in the P 2
L-channel, we get

∫
dµPL

N(PL;z)

(l1 − j)2 (l2 + i)2
= −cΓ

ǫ2
(−P 2

L)−ǫ
2F1(1,−ǫ, 1 − ǫ, aP 2

L) (3.2.60)

:= FP 2
L
(p, P, q,Q) ,

where

cΓ :=
Γ(1 + ǫ)Γ2(1 − ǫ)

(4π)2−ǫΓ(1 − 2ǫ)
. (3.2.61)

The subscript PL refers to the dispersive channel in which (3.2.60) is evaluated; the

arguments of FP 2
L

correspond to the ordering of the external legs of the box function.

We can rewrite (3.2.53) as

M = −2
〈12〉8

〈12〉2〈34〉2 s2

∫
dµPL

∑

i<j

〈ij〉2∏
m6=i〈im〉 ∏l 6=j〈jl〉

N(PL;z)

(l1 − j)2 (l2 + i)2
, (3.2.62)

or, in terms of the Reff functions introduced in (3.2.45),

M = −2
〈12〉8

〈12〉2〈34〉2 s2

∫
dµPL

[
Reff(13) + Reff(24)

〈12〉〈14〉〈32〉〈34〉 +
Reff(23) + Reff(14)

〈12〉〈13〉〈42〉〈43〉

+
Reff(12) + Reff(34)

〈13〉〈14〉〈23〉〈24〉

]
. (3.2.63)

For the sake of definiteness, we now specify the PV reduction we have performed to

the s-channel MHV diagram (PL = k1 + k2), and analyse in detail the contributions

to the different box functions. In this case, the first two R-functions contribute to the

box F (1234), and the second two to the box F (1243). Specifically, from these terms

we obtain

Mtree [uFs(1234) + t Fs(1243)] , (3.2.64)

where the subscript indicates the channel in which the dispersion integral is performed

(s := s12), and

Mtree :=
〈12〉7 [12]

〈13〉〈14〉〈23〉〈24〉〈34〉2 (3.2.65)

is the tree-level four-graviton MHV scattering amplitude.

The last two terms in (3.2.63) give a contribution to particular box diagrams where

6These natural choices of η, discussed in Section 5 of [9], are reviewed in appendix B.
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one of the external legs happens to have a vanishing momentum. In principle, these

1

2

s

t

2
Q

3

4

η

η+ z

z−

z

z

z

Figure 3.10: Cut-box function, where – before dispersive integration – one of the exter-
nal legs has a momentum proportional to zη.

boxes are reconstructed, as all the others, by summing over dispersion integrals in

their cuts (note that in this case there is one cut missing, corresponding to the η2-

channel). However, one can see that these box diagrams give a vanishing contribution

already at the level of phase space integrals, when η is chosen, for each box, in exactly

the same way as in the Yang-Mills calculation of [9]. For example, consider the box

diagram in Figure 3.10, for which these natural choices are η = k1 or η = k2. Prior

to the dispersive integration, this box has three non-trivial cuts: sz = (k1 − zη)2,

tz = (k2 − zη)2, and Q2
z = (k3 + k4 + zη)2. Using (3.2.56) to perform the phase space

integrals, one encounters two distinct cases: either the quantity aP 2
L;z is finite but

P 2
L;z → 0 (PL;z is the momentum flowing in the cut); or aP 2

L;z → ∞. It is then easy

to see that in both cases the corresponding contribution vanishes.7 The conclusion is

that such boxes can be discarded altogether. For the same reason these diagrams were

discarded in the Yang-Mills case.

Next, we consider the t-channel MHV diagram. In this case the second term in

(3.2.63) gives contribution to vanishing boxes like that depicted in Figure 3.10, the

first and last terms instead give the contribution:

Mtree
[
uFt(1234) + s Ft(1324)

]
. (3.2.66)

7In the second case, we make use of the identity

2F1(1,−ǫ, 1 − ǫ, z) = (1 − z)ǫ
2F1

“

−ǫ,−ǫ, 1 − ǫ, −z

1−z

”

.
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Similarly, for the u-channel we obtain:

Mtree
[
s Fu(1324) + t Fu(1243)

]
. (3.2.67)

Again the subscript indicates the channel in which the dispersion integral is performed

(t := s23 and u := s13).

As in the Yang-Mills case, we have to sum over all possible MHV diagrams. In

particular, we will also have to include the k2
1-, k2

2-, k2
3- and k2

4-channel MHV diagrams.

In Section 3.2.5 we have seen that, prior to the phase space and dispersive integration,

these diagrams produce expressions identical up to a sign to those in the s-, t-, and

u-channels. Hence they will give rise to dispersion integrals of the same cut-boxes

found in those channels, this time in their P 2- and Q2-cuts. They appear with the

same coefficient, but opposite sign. We can thus collect dispersive integrals in different

channels of the same box function, which appear with the same coefficient, and use

the result proven in [9]

F = Fs + Ft − FP 2 − FQ2 , (3.2.68)

in order to reconstruct each box function from the four dispersion integrals in its s-,

t-, P 2- and Q2- channels.8 For completeness, we quote from [65] the all orders in ǫ

expression for a generic two-mass easy box function,

F = −cΓ

ǫ2

[(−s

µ2

)−ǫ

2F1 (1,−ǫ, 1 − ǫ, as) +
(−t

µ2

)−ǫ

2F1 (1,−ǫ, 1 − ǫ, at)

−
(−P 2

µ2

)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, aP 2

)
−
(−Q2

µ2

)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, aQ2

)]
, (3.2.69)

where cΓ is defined in (3.2.61).

As an example, we discuss in more detail how the box F (1324) (depicted in Figure

3.11) is reconstructed. Due to the degeneracy related to the particular case of four

particles, both the R-functions R(12) and R(34) give contribution to this box (see the

third term in the result (3.2.63)).9 Let us focus on the contribution from the function

R(12), corresponding to the box in Figure 3.11. This box function gets contributions

from MHV diagrams in the channels u = s13, t = s32, k2
3 and k2

4. They all appear with

the same coefficient, given by the third term in (3.2.63), the last two contributions

having opposite sign, as shown (we note that for all the others diagrams this term

8Notice that in (3.2.68), the subscript refers to the channels of the box function itself (which are
different for each box). For instance, the s-channel (t-channel) of the box F (1324) is s13 (s23).

9This box is reconstructed as a two-mass easy box with massless legs given by the entries of the
R-function; in the specific four-particle case, the massive legs of the two-mass easy function are, of
course, also massless.
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Figure 3.11: The box function F (1324), appearing in the four-point amplitude (3.2.71).
We stress that in this particular case the contributions in the P 2 and Q2 channels
vanish. As explained in the text, they derive from diagrams with null two-particle cut
for specific choices of η (see Appendix B).

in the result gives contribution to vanishing boxes, as the one in Figure 3.10). These

four contributions to the box F (1324) correspond to its cuts in the s = s13-, t = s32-,

P 2 = k2
3- and Q2 =k2

4-channels. By summing over these four dispersion integrals using

(3.2.68), we immediately reconstruct the box function F (1324), which appear with a

coefficient

Mtree(1−2−3+4+) s F (1324) . (3.2.70)

This procedure can be applied in an identical fashion to reconstruct the other box

functions. Summing over the contributions from all the different channels, and using

(3.2.68) to reconstruct all the box functions we arrive at the final result

M1−loop(1−2−3+4+) = Mtree(1−2−3+4+) [uF (1234) + t F (1243) + s F (1324) ] .

(3.2.71)

This is in complete agreement with the result of [82] found using the unitarity-based

method.

3.2.7 Five-point amplitudes

We would like to discuss how the previous calculations can be extended to the case

of scattering amplitudes with more than four particles. To be specific, we consider
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the five-point MHV amplitude of gravitons M(1−2−3+4+5+). Clearly, increasing the

number of external particles leads to an increase in the algebraic complexity of the

problem. However, the same basic procedure discussed in the four-particle case can be

applied; in particular, we observe that the shifts (3.2.8) can be used for any number

of external particles. This set of shifts allows one to use any on-shell technique of re-

duction of the integrand. In Appendix C we propose a reduction technique alternative

to that used in these sections, which can easily be applied to the case of an arbitrary

number of external particles.

We now consider the MHV diagrams contributing to the five-particle MHV ampli-

tude. We start by computing the MHV diagrams which have a non-null two-particle

cut. Firstly, consider the diagram pictured in Figure 3.12. Its expression is given by

2

5

−

+

+
4

MHV MHV

l2

3
+

1
−

^

^
l1

Figure 3.12: MHV diagram contributing to the five-point MHV amplitude discussed in
the text.

M1−loop
(123)(45) =

∫
dµP123 M(1−2−3+l+2 − l+1 ) M(l−1 − l−2 4+5+) , (3.2.72)

where dµPL
is given by (3.2.14) and P123 := k1 + k2 + k3. We make use of the off-shell

continuation for the anti-holomorphic spinors of the loop momenta given by (3.2.8),

which guarantees momentum conservation off shell – irrespectively of the number of

the particles in the vertex, as the shifts act only on the two loop legs.

In order to evaluate (3.2.72), we need expressions for the four- and five-point tree-

level gravity MHV vertices; these can be obtained by using the KLT relations (2.5.4)

and (2.5.5). Thus, we find

M(1−2−3+ l̂+2 − l̂+1 ) = i s12s3l̂2
A(1−2−3+l+2 − l+1 )A(2−1−l+2 3+ − l+1 )

+ i s13s2l̂2
A(1−3+2−l+2 − l+1 )A(3+1−l+2 2− − l+1 ) , (3.2.73)

M(l̂−1 − l̂−2 4+5+) = −i sl̂1−l̂2
A(l−1 − l−2 4+5+)A(l−1 − l−2 5+4+) , (3.2.74)
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where A are Yang-Mills amplitudes. Plugging the Parke-Taylor formula for the Yang-

Mills MHV amplitudes appearing in (3.2.73), we get

M1−loop
(123)(45) =

〈12〉8
〈12〉〈13〉〈23〉〈45〉2

∫
dµP123 sl̂1−l̂2

·

·
[
〈13〉[21]〈2l2〉[l̂23] − 〈12〉[31]〈3l2〉[l̂22]

]
·

· 〈l1l2〉5
〈1l1〉〈1l2〉〈2l1〉〈2l2〉〈3l1〉〈3l2〉〈4l1〉〈4l2〉〈5l1〉〈5l2〉

. (3.2.75)

With shifted spinors defined as in (3.2.8), momentum conservation is expressed as

k1 + k2 + k3 + l̂2 − l̂1 = 0 . (3.2.76)

This allows us to rewrite

〈l1l2〉[l̂23] = −〈l11〉[13] − 〈l12〉[23] , (3.2.77)

and similarly for the term in the first line of (3.2.75) containing [l̂22]. As in (3.2.11),

we can also write sl̂1−l̂2
= P 2

L = P 2
123. Next, using relations such as (3.2.77), the

dependence on the shifted momenta can be completely eliminated. Each of the four

terms generated in this way will be of the same form as (3.2.17), but now with different

labels of the particles. (3.2.75) then becomes,

M1−loop
(123)(45) =

〈12〉8
〈23〉〈45〉2

∫
dµP123 P 2

123 ·

·
[

[21]

〈12〉 ([13]Qi=1,3,4,5;j=2,3,4,5 + [23]Qi,j=1,3,4,5)

+
[31]

〈13〉
(
[21]Qi=1,2,4,5;j=2,3,4,5 + [23]Qi,j=1,2,4,5

)]
,

(3.2.78)

where, similarly to (3.2.25), the Q functions are defined as

Q =
〈l1l2〉4∏

i〈il2〉
∏

j〈jl1〉
. (3.2.79)

Next, we decompose the integrand in (3.2.78) in partial fractions, in order to allow for

a simple PV reduction, as done earlier in the four-particle case. It is easy to see that

the outcome of this procedure is a sum of four terms, each of which has the same form
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as (3.2.38). Specifically, the box functions contributions is

M(123)(45)

∣∣
box

=
〈12〉8

〈23〉〈45〉2 P 2
123

∫
dµP123

[
[21][13]

〈12〉 Ai=1,3,4,5;j=2,3,4,5 +
[21][23]

〈12〉 Ai,j=1,3,4,5

+
[31][21]

〈13〉 Ai=1,2,4,5;j=2,3,4,5 +
[31][23]

〈13〉 Ai,j=1,2,4,5

]

(3.2.80)

where we have defined10

A :=
∑

i,j

〈ij〉2∏
m6=i〈im〉 ∏l 6=j〈jl〉

N(PL;z)

(l1 − j)2 (l2 + i)2
. (3.2.81)

s

t

Q

4

P
2

2

2

1

5

3

Figure 3.13: One of the box functions appearing in the expression of the one-loop
amplitude M1−loop(1−2−3+4+5+).

Performing integrations in (3.2.80) using the result (3.2.60), we see that the various

terms appearing in (3.2.80) give P 2
123-channel dispersion integrals of cut-boxes. A

similar procedure will be followed for all the remaining MHV diagrams. One then

sums over all MHV diagrams, collecting contributions to the same box function arising

from the different diagrams.

As an example, let us focus on the reconstruction of the box integral in Figure 3.13.

One needs to sum the three contributions from the function R(31) in the first three

terms of (3.2.80), and the contribution from the function R(13) in the second term of

10This function is nothing but the integrand of (3.2.53).
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(3.2.80). These will appear with a coefficient

〈12〉8
〈12〉2〈23〉2

[45] s12s23

〈14〉〈15〉〈34〉〈35〉〈45〉 , (3.2.82)

which is precisely what expected from the result derived in [46].11

One should then consider the contributions to this box function from the MHV

diagrams in the null-cuts. In appendix B we argue, following [9], that specific choices

of η allow to completely discard such diagrams. Using this procedure, we have checked

that our result for the five-point amplitude M1−loop(1−2−3+4+5+) precisely agrees

with that of [46].

3.2.8 General procedure for n-point amplitudes

Finally, we outline a step-by-step procedure which can be applied to deal with MHV

diagrams corresponding to MHV amplitudes with an arbitrary number of particles.

The building blocks of the new set of diagrammatic rules are gravity MHV am-

plitudes, appropriately continued to off-shell vertices. MHV amplitudes of gravitons

are not holomorphic in the spinor variables, hence in Section 3.2.2 we have supplied a

prescription for associating spinors – specifically the anti-holomorphic spinors – to the

loop momenta. This prescription is defined by certain shifts (3.2.8), which we rewrite

here for convenience:

ˆ̃l1 = l̃1 − z
〈l2η〉
〈l1l2〉

η̃ ,

ˆ̃l2 = l̃2 − z
〈l1η〉
〈l1l2〉

η̃ . (3.2.83)

These shifts are engineered in such a way to preserve momentum conservation at the

MHV vertices, and therefore give us the possibility of choosing as MHV vertex any of

the equivalent forms of the tree-level amplitudes. The calculation of a one-loop MHV

amplitude with an arbitrary number of external legs is a straightforward generalisation

of the four- and five-graviton cases discussed earlier, and proceeds along the following

steps:

1. Write the expressions for all relevant MHV diagrams, using tree-level MHV ver-

tices with shifted loop momenta given by (3.2.8). The expression for these ver-

11In order to match our result to that in [46], one should remember the relation between the box
functions F 123(45) = s12s23 I

123(45) .
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tices can be obtained by e.g. applying the appropriate KLT relations. When

required, sum over the particles of the supermultiplet which can run in the loop.

2. If a diagram has a null two-particle cut, one applies momentum conservation of

the three-point amplitude in order to cancel the presence of unphysical double

poles. Our calculations (and similar ones in Yang-Mills [9, 67, 68]) show that

these diagrams give a zero contribution upon choosing the gauge in an appro-

priate way; thus they can be discarded (see Appendix B for a discussion of this

point).

3. Use momentum conservation (with the shifts in place) in order to eliminate any

dependence on shifted momenta. Once the integral is expressed entirely in terms

of unshifted quantities, one can apply any reduction technique in order to produce

an expansion in terms of boxes and, possibly, bubbles and triangles (which in

N = 8 should cancel [93, 96, 97]).

4. Perform the dispersive integrations as in Section 3.2.6, sum contributions from

all MHV diagrams which can be built from MHV vertices, and finally reconstruct

each box as a sum of four dispersion integrals – in its s-, t-, P 2- and Q2-channels,

using (3.2.68).

Clearly, it would be desirable to derive our prescription to continue off shell the

loop momenta from first principles. In particular, it would be very interesting to find

a derivation of the MHV diagram method in gravity similar to that of Mansfield, by

performing an appropriate change of variables which would map the lightcone gravity

action into an infinite sum of vertices, local in lightcone time, each with the MHV

helicity structure. It would also be interesting if the MHV diagram description for

gravity could be related, at least heuristically, to twistor string formulations of su-

pergravity theories. We also notice that using the same shifts as in (3.2.83), one

should be able to perform a calculation of one-loop MHV amplitudes of gravitons in

theories with less supersymmetry. For pure gravity, rational terms in the amplitudes

are not a priori correctly reproduced by the MHV diagram method, similarly to non-

supersymmetric Yang-Mills. For instance, pure gravity has an infinite sequence of

all-plus graviton amplitudes which are finite and rational. As for the all-plus gluon

amplitudes in non-supersymmetric Yang-Mills theory, it is conceivable that the all-

plus graviton amplitudes arise in the MHV diagram method through violations of the

S-matrix equivalence theorem in dimensional regularisation, or from four-dimensional

helicity-violating counterterms.
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Chapter 4

Iterative Structures

In this chapter we will describe a particular feature of supersymmetric quantum field

theories that represents another hint that a simple, beautiful picture is behind their per-

turbative series: the appearance, in the perturbative expansion, of iterative structures.

In general four-dimensional quantum field theories are very complicated, not only in

their perturbative expansions but also because of the presence of non-perturbative

effects. As we have seen already in the previous chapters, gauge theories happen to

show enormous cancellations that give rise to amazingly simple results. From a more

theoretical point of view, the AdS/CFT correspondence states that the planar limit of

maximally supersymmetric four-dimensional gauge theory (N = 4 super Yang-Mills)

at strong coupling is dual to weakly-coupled type IIB string theory in AdS5×S5. How

can such a complicated perturbative series produce so simple results? It really looks

like it knows about its strong coupling limit and organises itself accordingly. For some

quantities protected by supersymmetry, non-renormalisation theorems produce some

zeros in the perturbative expansion, but for other quantities it remains unknown how

(and, above all, why) this feature appears.

The intuition, confirmed by analysing and rearranging in non-trivial ways the ex-

pressions for multi-loop scattering amplitudes, is that an iterative structure exists, that

allows the perturbative series to be resummed into a simple result [10, 11]. Of course

perturbative amplitudes in four-dimensional massless gauge theories are not finite but

suffer from infrared divergences due to soft and collinear virtual momenta, as we have

already seen. In dimensional regularisation, with D = 4 − 2ǫ, these divergences man-

ifest themselves as poles in ǫ, starting for a L-loop amplitude at order 1/ǫ2L. What

is important to stress is that these iterative structures appear only near four dimen-

sions, where maximally supersymmetric Yang-Mills is conformal and is supposed to

be dual to a gravity theory, elements that seem then to be crucial for the conceptual
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understanding of this feature. Moreover, the presence of these structures might be

closely related to the issue of integrability of N = 4 super Yang-Mills (see [99–104]

and references therein). If an infinite number of conserved charges were present, the

form of the quantum corrections would be highly constrained and these constraints

might be exactly those imposed by the iterative structures [105]. In the following we

will introduce in detail how the idea of rearranging loop amplitudes into such a simple

and amazing structure was born and developed historically for N = 4 super Yang-Mills

and the recent analysis of iterative structures for N = 8 supergravity, developed by

the author.

4.1 N = 4 super Yang-Mills

In his seminal work ’t Hooft gave hope to the possibility of solving quantum chro-

modynamics in the so-called planar limit, when the number of colours Nc is taken to

infinity [106]. For QCD this issue is far from being solved, but the Maldacena con-

jecture made it more real for four-dimensional maximally supersymmetric Yang-Mills

theory, by proposing a duality between the theory at strong coupling (λ = g2Nc → ∞)

and type IIB string theory in AdS5 × S5 at weak coupling. This duality implies the

matching of the full quantum anomalous dimensions of various series of gauge-invariant

composite operators with the energies of different gravity modes or configurations of

strings in anti-de Sitter space. The perturbative series is expected then to resum into

a simple form and, together with non-perturbative effects, it should reproduce the

results for the appropriate observables in weakly-coupled supergravity or string the-

ory. This theoretical motivation led to the investigation of the structure of multi-loop

amplitudes in N = 4 super Yang-Mills, and the search for symmetries or particularly

simple patterns.

In a conformal field theory like N = 4 super Yang-Mills, scale invariance implies

that the interactions never switch off, so a scattering process, and the S-matrix, as

we are used to interpret it, cannot really be defined. The coupling constant does not

run, so conformality prevents a natural definition of asymptotic states. The presence

of infrared divergences imposes to use a regularisation scheme and to define scattering

amplitudes in D = 4−2ǫ dimensions, where the theory is not conformal. As the regula-

tor in dimensional regularisation explicitly breaks the conformal invariance, a running

of the coupling constant appears, due only to the regularisation scheme. Once the in-

frared singularities are subtracted, it is meaningful to take the four-dimensional limit

of the remaining parts in the scattering amplitudes, and this allows for speculations

on the AdS/CFT correspondence through the analysis of particles collisions.
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Apart from this theoretical reason, there are many hints in the features shown

by perturbative scattering amplitudes that suggest the presence of a certain pattern.

At one loop, for example, they have a very simple analytic structure, and as the

number of loops increases, the integrands of some of the multi-loops amplitudes show

an iterative structure1. The natural tool that can bring the simplicity appearing into

tree-level or one-loop amplitudes directly into multi-loop ones is definitely, as described

in Chapter 2, unitarity. And it was thanks to unitarity techniques that these integrals

were translated into explicit results, first for four-point amplitudes and then for higher-

point ones.

It was the accurate analysis of the relation between the two-loop and the one-loop

four-point gluon amplitude in super Yang-Mills the first sign that a kind of iterative

structure was present [10], a conjecture confirmed by three-loop results and that led

Bern, Dixon and Smirnov to put forward a proposal for planar n−point MHV ampli-

tudes at L loops [11]. This ansatz amazingly reproduces each loop amplitude as an

iteration of lower-loop amplitudes, up to a set of constants. The analysis of the be-

haviour of the amplitudes in the simple collinear limit, that we already mentioned and

analysed earlier, not only inspired and supported the four-point result, but brought

also a strong evidence to the validity of the conjecture for n-point amplitudes. An inti-

mate understanding of what is actually surprisingly new in this ansatz can come only

from an accurate study and reinterpretation of the well known factorisation properties

of the infrared divergences.

4.1.1 From the four-point amplitude to the BDS ansatz

We will consider only the leading-colour planar contributions to scattering amplitudes,

because an iterative structure appears to be present just in this case. These terms

have the same colour decomposition as tree amplitudes, up to overall factors of the

number of colours Nc, so we can use the same formalism introduced earlier. From the

extension of formula (2.2.7) to the L-loop SU(NC) gauge-theory n-point amplitudes,

the leading-Nc contribution is given by

A(L)
n = gn−2

[
2eǫγg2Nc

(4π)2−ǫ

]L ∑

σ∈Sn/Zn

tr(T aσ(1)T aσ(2) ... T aσ(n)) A(L)
n (σ(1), σ(2), ..., σ(n)) .

(4.1.1)

1This was the content of the rung insertion rule, an ansatz for computing the planar contributions
to the integrands, based on generating a generic (L + 1)-loop amplitude by inserting in the L-loop
amplitude a new leg between each possible pair of internal legs [48, 107]. It was shown in [11] that
the rung rule does not provide all the contributions to multi-loop amplitudes, for instance it does not
reproduce three-loop non-planar contributions.
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In N = 4 super Yang-Mills L-loop n-point scattering amplitudes are proportional

to the tree-level ones, analogously to (3.1.23),

A(L)
n = Atree

n M(L)
n , (4.1.2)

where the important point is that the functions M(L)
n (ǫ) are helicity-blind and can

contain just trivial kinematic invariant factors (sij = (ki + kj)
2). They do not contain

any spinorial product, that are all included in the tree-level factor, and do not depend

on the helicity configuration of the external particles. From now on we will concentrate

on the structure of these functions M(L)
n (ǫ).

Let us focus for the moment on the four-point gluon amplitude. Computing the two-

loop four-point amplitude using the unitarity method [6], Anastasiou, Bern, Dixon and

Kosower discovered in 2003 [10] that it was possible to rewrite the two-loop amplitude

as a polynomial in the one-loop amplitude, as

M(2)
4 (ǫ) =

1

2

(
M(1)

4 (ǫ)
)2

+ f (2)(ǫ)M(1)
4 (2ǫ) + C(2) + O(ǫ) , (4.1.3)

where

f (2)(ǫ) = −(ζ2 + ζ3 ǫ + ζ4 ǫ2 + ... ) , (4.1.4)

and the constant C(2) is given by

C(2) = −1

2
ζ2
2 . (4.1.5)

This equality is achieved through a set of highly non-trivial cancellations which require

the use of polylogarithmic identities. Note that it is necessary to know the expressions

of some contributions at a higher order in ǫ, for example terms through order O(ǫ2) in

M(1) contribute at order O(ǫ0) in M(2) as they can multiply 1/ǫ2 terms. This might

be the first clue that this relation is not accidental but hides a stronger conceptual

foundation.

Later, in 2005, Bern, Dixon and Smirnov [11] computed the planar three-loop four-

point amplitude again via the unitarity method by using Mellin-Barnes integration

techniques, and found out for the three-loop amplitude an analogous structure

M(3)
4 (ǫ) = −1

3

[
M(1)

4 (ǫ)
]3

+M(1)
4 (ǫ)M(2)

4 (ǫ)+f (3)(ǫ)M(1)
4 (3ǫ)+ C(3)+O(ǫ) . (4.1.6)

Again, this could not be an accident. These clues, together with an important con-

nection with the resummation and exponentiation of infrared divergences [108–115],

that we will discuss in detail in the next section, motivated the authors of [11] to

put forward a conjecture for a compact exponential form for the planar MHV n-point
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amplitudes in maximally supersymmetric Yang-Mills at L loops:

Mn ≡ 1 +

∞∑

L=1

aLM(L)
n (ǫ) = exp

[
∞∑

l=1

al
(
f (l)(ǫ)M(1)

n (lǫ) + C(l) + E(l)
n (ǫ)

)]
. (4.1.7)

This is the so-called BDS ansatz, that such a revolution brought into physics for the

possibility to express multi-loop amplitudes in such a simple form. Investigations on the

validity of this conjecture have involved in the last years many branches of theoretical

physics and different techniques of calculation, like Wilson loops computations, that

we will discuss in the next chapter, or strong-coupling calculations.

Collinear limits

We analyse now the behaviour of multi-loop amplitudes in the collinear limit, that

represented historically one of the motivations for the birth of the conjecture. We

already saw in Chapter 2 that the behaviour of one-loop amplitudes when two momenta

go collinear (2.6.10) is regulated by universal and gauge-invariant functions, called

splitting amplitudes. Due to supersymmetric Ward identities and to the structure

(4.1.2) of multi-loop amplitudes, L-loop splitting amplitudes are all proportional to

the tree-level ones, where the ratio depends only on z (the momentum fraction) and

ǫ, not on the helicity configuration nor on kinematic invariants (apart from a trivial

dimensional factor). We can then write the L-loop planar splitting amplitude as

Split(L)(1, 2) = r(L)
s (ǫ, z, s) Splittree(1, 2) , (4.1.8)

where r
(L)
s is a “renormalisation” function and s = (k1+k2)

2. In terms of the amplitude

ratios M(L)
n (stripped out of the tree-level factor from (4.1.2)), the collinear limit of

the amplitudes (2.6.10) gives then

M(1)
n (ǫ) → M(1)

n−1(ǫ) + r(1)
s (ǫ) , (4.1.9)

at one loop and

M(2)
n (ǫ) → M(2)

n−1(ǫ) + r(1)
s (ǫ)M(1)

n−1(ǫ) + r(2)
s (ǫ) , (4.1.10)

at two loops. The one-loop splitting amplitude has been calculated at all orders in ǫ

[50–52], by explicit computation of the two-loop, leading Nc, splitting amplitude and

comparing non trivially the two expressions, it was found in [10]

r(2)
s (ǫ; z, s) =

1

2
(r(1)

s (ǫ; z, s))2 + f(ǫ) r(1)
s (2ǫ; z, s) . (4.1.11)
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This was another hint that supported and motivated the proposal for an iterative

structure, and the extension to more particles. Even when explicit results were not

known yet, knowledge of the behaviour of the amplitudes in the collinear limits severely

constrains the final results and could then shed light on physics yet to be discovered.

We want to close this section with two important observations that can help to

understand the conjecture, and its limitations:

• Firstly, the non-planar terms do not appear to have the same iterative structure

as the planar ones. Why? The answer might shed light on the conceptual

foundations of this behaviour and, thinking more deeply about this feature, this

is perfectly consistent with the motivation that brought to this investigation: the

AdS/CFT correspondence.

• Secondly, the iterative structure is not present at order O(ǫ). This means that

the relation holds only as D → 4. The symmetry principle hidden behind the

appearance of iterative structures, and that constraints the amplitudes to fol-

low such a simple pattern, is then expected to be a symmetry which becomes

anomalous as D − 4 6= 0. A first näıve observation is that four is the number

of dimensions where the theory is conformal, but further investigations showed

that the key role is played by another (dual) conformal symmetry [16]. We will

see how this symmetry appears and manifests itself in the next chapter.

Basically multi-loop amplitudes should be, accordingly to the conjecture, just itera-

tions of the one-loop amplitudes, leaving to the theory few basic quantities to calculate

(the cusp anomalous dimension and the collinear anomalous dimension, as we will see

in the following section). The BDS ansatz opened a new branch of investigation into

perturbative quantum field theory. We want to analyse, in the next section, its con-

sistency with the general behaviour of the infrared divergences: this represents an

important step in order to understand the core of the problem.

4.1.2 Infrared divergences

As we have already seen, the presence of infrared divergences at loop level makes

necessary a regularisation scheme, and a regulator breaks conformal invariance. What

is usually used is a supersymmetric version of dimensional regularisation, with space-

time dimension D = 4− 2ǫ and ǫ < 0. As we already mentioned, for the one-loop case

there are two kinds of infrared divergences, soft and collinear, and each one produce
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a 1/ǫ pole, leading to a behaviour of 1/ǫ2 for one-loop amplitudes and of 1/ǫ2L for a

generic L-loop amplitude.

For planar gauge theory a vast literature is available on infrared divergences [108–

116], dating back in time well before the appearance of the BDS ansatz. Both for

QCD and for maximally supersymmetric Yang-Mills theory, in the planar limit the

pole terms are given in terms of three quantities: the beta function β(λ) (that for

N = 4 super Yang-Mills vanishes), the cusp anomalous dimension γK(λ) (that appears

in the renormalisation group equation for the expectation value of a Wilson line for two

semi-infinite straight lines meeting at a cusp) and the collinear anomalous dimension

G0(λ).

For massless gauge theory scattering amplitudes it turns out that it is possible to

factorise soft singularities, which arise from long-distance gluon exchange, and collinear

singularities, which are at long distance but only along the axis of a hard parton. A

generic n-point scattering amplitude can be then factorised into the form

Mn = J

(
Q2

µ2
, αs(µ), ǫ

)
× S

(
ki,

Q2

µ2
, αs(µ), ǫ

)
× hn

(
ki,

Q2

µ2
, αs(µ), ǫ

)
, (4.1.12)

where J is a jet function, S a soft function and hn a finite remainder function, which

is finite as ǫ → 0 (µ is the renormalisation scale and Q a physical scale associated with

the scattering process). In the leading-colour (planar) approximation, soft gluons can

connect only adjacent external partons and there is no mixing between the different

colour structures. So S is proportional to the identity matrix and can be absorbed into

the definition of the jet function J . At large Nc then, as soft exchanges are confined

to wedges between colour-adjacent external lines, the process (see Figure 4.12) can be

split into n equivalent wedges. Each wedge represents the square root of the Sudakov

form factor, that is the amplitude M[1→gg](si,i+1/µ
2, αs(µ), ǫ) for the decaying of a

colour-singlet state (like for example a Higgs boson) into a pair of partons (say two

gluons). The leading-colour structure of an n-point amplitude (4.1.12) becomes then

Mn =

n∏

i=1

[
M[1→gg]

(
si,i+1

µ2
, αs, ǫ

)]1/2

× hn (ki, µ, αs, ǫ) , (4.1.13)

where we have set αs(µ) to a constant because maximally supersymmetric Yang-Mills

is conformal.

By writing down a differential equation obeyed by the Sudakov form factor and

the renormalisation group equations for the two constants appearing in this equation

and by solving them for N = 4 super Yang-Mills (the collinear anomalous dimension

2This figure is borrowed from [11].
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Figure 4.1: Infrared structure of leading-colour scattering amplitudes for particles in
the adjoint representation.

G0(λ) appears exactly as constant of integration for one of these constants G) [117],

it is possible to rewrite the n-point amplitude as

Mn ≡ 1 +
∞∑

L=1

aLM(L)
n (ǫ) = exp

[
−1

8

∞∑

l=1

al

(
γ

(l)
K

(lǫ)2
+

2G
(l)
0

(lǫ)

)
n∑

i=1

(
µ2

−si,i+1

)lǫ
]
× hn .

(4.1.14)

The argument of the exponential looks like the one-loop amplitude but with ǫ replaced

by lǫ, so it makes sense to rewrite

Mn = exp

[
∞∑

l=1

al
(
f (l)(ǫ)M(1)

n (lǫ) + h(l)
n (ǫ)

)]
, (4.1.15)

where moving the hard function into the exponent is trivially obtained by allowing a

new function h
(l)
n at each order. Here the function f (l)(ǫ) ≡ f

(l)
0 + ǫf

(l)
1 + ǫ2f

(l)
2 collects

three series of constants, the first two are identified with the cusp anomalous dimension

and the collinear anomalous dimension,

f
(l)
0 =

1

4
γ

(l)
K , (4.1.16)

f
(l)
1 =

l

2
G

(l)
0 , (4.1.17)

and the third one f
(l)
2 is related to the consistency under collinear limits.

By comparing this formula (4.1.15) representing the well-known exponentiation of

infrared divergences with the BDS ansatz (4.1.7) we see that they agree if we identify

h(l)
n (ki, ǫ) = C(l) + E(l)

n (ǫ) , (4.1.18)

and here we go to the nitty-gritty of the novelty of the BDS ansatz. Basically, beyond
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the level of consistency with the resummation of IR divergences, the true content of

the discovery of iterative structures for maximally supersymmetric Yang-Mills theory is

that the suitably-defined exponentiated hard remainders h
(l)
n (ki, ǫ) approach constants,

independent of the kinematics and of n, as ǫ → 0 (E
(l)
n (ǫ) is in fact of order O(ǫ)).

Basically the finite parts of the MHV amplitude follow the same pattern induced by

the expected exponentiation of the infrared divergences and can then be organised

into the same exponentiated form as the divergent terms. The BDS proposal was

checked at three loops in the four-point case in [11], and subsequently in [118] for

the two-loop, five-point amplitude. Recently, a discrepancy was found between the

form of the amplitude conjectured by BDS and an explicit two-loop calculation of the

six-point amplitude [119]. The result at six points shows that the structure is that of

a polynomial in the one-loop amplitude, plus a kinematic-dependent finite remainder

function.

4.2 N = 8 supergravity

It is natural to ask if gravity shares any of these remarkable properties. As we have seen

in the previous section, these iterative structures in gauge theory have been found at the

planar level. Planarity appears to be a key ingredient of the story, also in any kind of

relation to integrability. Gravity is a non-planar theory, hence it is perhaps even more

unexpected to find regularities in the higher-loop structure of its S-matrix. However,

the mounting evidence of interconnections between the maximally supersymmetric

theories of N = 4 Yang-Mills and N = 8 supergravity3 gives reason to be more

optimistic.

Perhaps the potentially most impressive similarity between these two theories is

the conjecture that the N = 8 theory could be ultraviolet finite [26, 93, 120–124],

just like its non-gravitational maximally supersymmetric counterpart. Furthermore,

gravity is also well understood in the infrared thanks to the results of [21], where it

was found that infrared singularities can be resummed to the exponential of the one-

loop infrared divergences, in complete similarity to those of QED [116, 125]. A very

important observation is certainly the feature, showed by the four-point supergravity

amplitude, that it is possible to factorise the loop amplitude into the product of the

corresponding tree-level amplitude (that includes all the spinorial dependence) and

a helicity-blind function, that does not depend on the helicity configuration of the

external particles, exactly as in N = 4 Yang-Mills.

3The paper [23] reviews the subject up to 2002.
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These reasons motivated the author to look for possible iterative structures and

cross-order relations in N = 8 supergravity [22], using the known results at one and

two loops for the four-point MHV scattering amplitudes. We will confirm that the

infrared-divergent parts exponentiate, but we observe a failure for this to occur for the

finite parts, in contradistinction with the four- and five-point amplitudes in N = 4

Yang-Mills. On the other hand, we find that, similarly to the N = 4 MHV amplitude,

each term in the expansion of the one- and two-loop N = 8 MHV amplitudes in the

dimensional regularisation parameter ǫ has a uniform degree of transcendentality (or

polylogarithmic weight). This is very intriguing, and leads to the speculation that

maximal transcendentality [126] could be yet another common feature of N = 4 super

Yang-Mills and N = 8 supergravity. In the following we will describe the known one-

and two-loop MHV amplitudes in N = 8 supergravity, and use them to show that

the two-loop amplitude, minus one half of the square of the one loop amplitude, is

finite, consistently with general arguments concerning the exponentiation of infrared

divergences in gravity. We give the explicit expression for this finite term.

4.2.1 MHV amplitudes in N = 8 supergravity

We start by briefly reviewing the expressions of the four-point MHV amplitude in N =8

supergravity at one and two loops, before moving on to study iterative structures at

two loops. As anticipated, the form of the four-point MHV amplitude at L loops in

maximal supergravity, as in N = 4 Yang-Mills, is very simple. It is given by the

tree-level four-point MHV amplitude Mtree
4 , times a scalar (helicity-blind) function,

A(L)
4 = Mtree

4 M(L)
4 . (4.2.1)

The simplicity of (4.2.1), where the tree-level amplitude factors out leaving a

helicity-blind function of the particle momenta is clearly reminiscent of the structure

for the infinite sequence of MHV scattering amplitudes in maximally supersymmetric

Yang-Mills. This motivates the search for an iterative structure in the higher-loop

amplitude similar to that discovered in [10, 11] for the N = 4 amplitude and described

in the previous section.

As we have seen, this amplitude was first calculated at one loop in [81] from the

α′ → 0 limit of a string theory calculation, and later rederived in [82] using string-

inspired techniques [83], as well as unitarity [6, 47]. The infinite sequence of one-

loop MHV amplitudes was obtained in [46]. Recently, the four- and five-point MHV

amplitudes have been also rederived in [20] using MHV diagrams, as we have fully
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described in Chapter 3. The two- and three-loop expressions were derived in [48], [26],

respectively.

At one loop, the function M(1)
4 is simply given by a sum of three zero-mass box

functions,

M(1)
4 = −i s t u

(κ

2

)2[
I(1)

4 (s, t) + I(1)
4 (s, u) + I(1)

4 (u, t)
]

, (4.2.2)

where

I(1)
4 (s, t) :=

∫
dDl

(2π)D
1

l2(l − p1)2(l − p1 − p2)2(l + p4)2
(4.2.3)

is a zero-mass box function with external, cyclically ordered null momenta p1, p2, p3

and p4, which sum to zero. We set s := (p1 + p2)
2, t := (p2 + p3)

2, u := (p1 + p3)
2 =

−s − t, and D = 4 − 2ǫ.

1

2 3

4

s

t

P

Q

2

2

Figure 4.2: A zero-mass box function. It is obtained as the smooth limit of the two-mass
easy box as P 2 and Q2 become null.

Explicitly

I(1)
4 (s, t) = i

cΓ

st

[
2

ǫ2

[
(−s)−ǫ + (−t)−ǫ

]
−
(
log2 s

t
+ π2

)]
, (4.2.4)

where cΓ := (4π)ǫ−2Γ(1 + ǫ)Γ2(1 − ǫ)/Γ(1 − 2ǫ). Using (4.2.4), we can rewrite (4.2.2)

as

M(1)
4 =

(κ

2

)2
cΓ

[
2

ǫ2

[
(−s)1−ǫ + (−t)1−ǫ + (−u)1−ǫ

]
− u log2 s

t
− s log2 t

u
− t log2 u

s

]
.

(4.2.5)
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In the Yang-Mills case, in order to check an iterative relation such as (4.1.7), one

takes the logarithm and expands both sides in perturbation theory. At two loops, one

gets

M(2)
n,YM(ǫ) − 1

2

(
M(1)

n,YM(ǫ)
)2

= f (2)(ǫ)M(1)
n,YM(2ǫ) + C(2) + E(2)

n . (4.2.6)

We wish to follow the same path here for N = 8 supergravity, starting from the

observation that in gravity the one-loop infrared divergences exponentiate [21]. In the

four-point case, the leading infrared divergences are expected to resum to [49, 82]

exp

[
cΓ

(κ

2

)2 2

ǫ

(
s log(−s) + t log(−t) + u log(−u)

)]
. (4.2.7)

Notice the appearance of the invariant u = (p1 + p3)
2, due to the lack of colour

ordering. Moreover, in [46] it was shown that the tree-level soft and collinear splitting

amplitudes in gravity, as mentioned before, are exact to all orders in perturbation

theory. This is due to the fact that the coupling constant κ is dimensionful, and it is

always accompanied by a power of a kinematic invariant which vanishes in the limit

considered [21, 46].

We write the four-point MHV amplitude in N = 8 supergravity (stripped of the

tree-level prefactor) as4

M4 = 1 +
∞∑

L=1

M(L)
4 = exp

[
∞∑

L=1

m
(L)
4

]
, (4.2.8)

where

m
(1)
4 = M(1)

4 , (4.2.9)

m
(2)
4 = M(2)

4 − 1

2

(
M(1)

4

)2
, (4.2.10)

and so on. Motivated by (4.1.7) and, specifically at two loops, by (4.2.6), we will

calculate in the following section the difference appearing on the right hand side of

(4.2.10).

Let us make a final comment before moving on to explore in detail iterative struc-

tures at two loops. We observe that, unlike in the N = 4 Yang-Mills case, the simplicity

of (4.2.1) does not extend immediately beyond the four-particle case, as the explicit

results for the n-point amplitude of [46] show. It was shown in [46], using N = 8 Ward

identities, that the ratio M(L)(1+, 2+, . . . , i−, . . . , j−, . . . , n+)/〈i j〉8 is independent of

the positions i, j of the negative-helicity gravitons, i.e. it is helicity blind. This is

4Notice that in (4.2.8) we absorb the appropriate power of κ in the definition of M
(L)
4 and m

(L)
4 .
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similar to the Yang-Mills case [127], where N = 4 supersymmetric Ward identities

allow one to move the position of the negative-helicity particle, and show that the

corresponding ratio in N = 4 Yang-Mills M(L)
YM(1+, 2+, . . . , i−, . . . , j−, . . . , n+)/〈i j〉4

is independent of i and j. In gravity however, this helicity-blind function is in general

expressed as a sum of terms containing different spinor bracket valued coefficients. An

immediate consequence of this we would like to stress is that it is not immediately

clear what sort of iterative structures could be realised beyond four points; that is why

we only concentrate on the four-point MHV scattering amplitudes.

4.2.2 Iterative structure of the N = 8 MHV amplitude at two loops

The previous discussion shows that, in searching for prospective iterative structures

in the N = 8 MHV amplitudes at two loops, it is meaningful to analyse the quantity

(4.2.10) in supergravity, corresponding to the two-loop term in the expansion of the

logarithm of the amplitude. We will carry out this computation in detail for the four-

point MHV gravity amplitude described in the previous subsection. We observe that

unlike the Yang-Mills ABDK conjecture [10], but in agreement with Weinberg’s result

for gravity amplitudes [21], the one-loop infrared divergent terms of the amplitude

exponentiate. More precisely, we will show that

M(2)
4 − 1

2

(
M(1)

4

)2
= finite , (4.2.11)

and calculate the function on the right hand side of (4.2.11) [22].

The one-loop amplitude M(1)
4 is given in (4.2.2). The two-loop amplitude was

computed in [48], and is

M(2)
4 =

(κ

2

)4
stu
[
s2 I(2),P

4 (s, t)+s2 I(2),P
4 (s, u)+s2 I(2),NP

4 (s, t)+s2 I(2),NP
4 (s, u) + cyclic

]
.

(4.2.12)

Here I(2),P
4 (s, t) and I(2),NP

4 (s, t) are the planar and non-planar double box functions:

I(2),P
4 (s, t) =

∫
dDl

(2π)D
dDk

(2π)D
1

l2 (l − p1)2 (l − p1 − p2)2 (l + k)2k2 (k − p4)2 (k − p3 − p4)2
,

I(2),NP
4 (s, t) =

∫
dDl

(2π)D
dDk

(2π)D
1

l2 (l − p2)2 (l + k)2 (l + k + p1)2 k2 (k − p3)2 (k − p3 − p4)2
,

(4.2.13)

and in (4.2.12) we have to sum over the three cyclic permutations of the momenta p2,

p3 and p4 (i.e. over the three cyclic permutations of s, t and u).
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The two-loop planar box function was first evaluated by Smirnov [128] (see also [11])

and the non-planar double-box function was evaluated by Tausk [129]. These expres-

sions need to be evaluated in different analytic regions, due to the permutation of

kinematic invariants: we fix s, t < 0 but we will then need functions in which s or

t are replaced by u = −s − t > 0, requiring a rather delicate procedure for analytic

continuation. This procedure was not necessary in the Yang-Mills case; it is outlined

in Appendix F.

Smirnov’s result for the planar double box integral (we use the form given in [11])

is given in terms of functions F (2),P(s, t) as

I(2),P
4 (s, t) = α2

ǫ

[
F (2),P(s, t)

s2t

]
, (4.2.14)

where αǫ := i (4π)ǫ−2Γ(1 + ǫ) and

F (2),P(s, t) = − e−2ǫγ

Γ2(1 + ǫ)
(−s)−2ǫ

4∑

j=0

cj(−t/s)

ǫj
, (4.2.15)

with the coefficients cj in (B.5) of [11]. This expression is valid in the region s, t < 0 and

we must carefully analytically continue into other regions as described in Appendix F.

Tausk’s expression [129] for the non-planar double box is given in terms of functions

F (2),NP(s, t) as

I(2),NP
4 (s, t) = α2

ǫ

[
F (2),NP(s, t)

s2t
+

F (2),NP(s, u)

s2u

]
. (4.2.16)

The function F (2),NP(s, t) is given in [129] in all analytic regions (there it is called Ft).

Using the above results for the integrals, we arrive at the following expression for

the two-loop amplitude,

M(2)
4 =

(
κ2αǫ

4

)2 [
suF (2),P(s, t) + 2suF (2),NP(s, t)

+ suF (2),P(u, t) + 2suF (2),NP(u, t) + cyclic
]
.

(4.2.17)

Notice that the functions F (2),P(s, t) and F (2),NP(s, t) always appear together in the

combination F (2),P + 2F (2),NP, although F (2),P(s, t) corresponds to the planar double

box function (4.2.14), whereas F (2),NP(s, t) corresponds to one of the two terms in the

non-planar double box function (4.2.16).
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The one-loop amplitude (4.2.2) is expressed as a sum of zero-mass box functions

I(1)
4 , where

I(1)
4 (s, t) = αǫ

[
F (1)(s, t)

st

]
, (4.2.18)

and

F (1)(s, t) =
e−ǫγ

Γ(1 + ǫ)
(−s)−ǫ

2∑

j=−2

c̃j(−t/s)

ǫj
. (4.2.19)

The coefficients c̃j are given in (B2) of [11]. Again this is valid for s, t < 0 and we

analytically continue to other regions. Together with (4.2.2), this gives the following

expression for the one-loop amplitude,

M(1)
4 = −i

(
κ2αǫ

4

) [
uF (1)(s, t) + t F (1)(s, u) + s F (1)(u, t)

]
. (4.2.20)

On putting in the functions for all permutations – correctly defined in their re-

spective analytic regions – into the formula for the amplitude (4.2.17), we find that

M(2)
4 − 1

2(M(1)
4 )2 is finite. This finite remainder is explicitly given in (F.0.6). As

described in detail in Appendix F, this function can be considerably simplified to the

following expression:5

M(2)
4 − 1

2
(M(1)

4 )2 = −
( κ

8π

)4 [
u2
[
k(y) + k(1/y)

]
+ s2

[
k(1 − y) + k(1/(1 − y))

]

+ t2
[
k(y/(y − 1)) + k(1 − 1/y)

]]
+ O(ǫ) ,(4.2.21)

where

k(y) :=
L4

6
+

π2L2

2
− 4S1,2(y)L +

1

6
log4(1 − y) + 4 S2,2(y) − 19π4

90

+ i

[
−2

3
π log3(1 − y) − 4

3
π3 log(1 − y) − 4Lπ Li2(y) + 4πLi3(y) − 4πζ(3)

]

(4.2.22)

where y = −s/t and L := log(s/t). Generalised polylogarithms, including the Nielsen

polylogarithms Sm,n which appear above, are discussed in [130].

5Notice that (4.2.21) is somewhat formal, as there is no common region where all the functions
appearing are away from their branch cuts. The precise analytic continuations for the case s, t < 0
are explained in detail in Appendix F, and the explicit, somewhat lengthier expression for the right
hand side of (4.2.21) valid in that region, is given in (F.0.6).
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In [131], a different form for the finite remainder (4.2.21) is present. By comparing

the results it is possible to prove that the two expressions are in complete agreement.

Specifically, one can rewrite (4.2.21) as

M(2)
4 − 1

2
(M(1)

4 )2 =
( κ

8π

)4
[
st h
(−s

u

)
+ st h

(
− t

u

)
+ permutations

]
+ O(ǫ) ,

(4.2.23)

where

h(w) :=
log4(w)

3
+8S1,3(w)+

4π4

45
+i

[
4

3
π log3(w) − 8πS1,2(w) + 8 πζ(3)

]
, (4.2.24)

which after taking into account the different analytic regions considered (here we con-

sider s, t < 0 whereas the authors of [131] consider s, u < 0) is in precise agreement

with the result of [131].

An interesting observation is that the functions appearing in the expression for the

amplitude have uniform transcendentality. This is somewhat surprising – although

the box function and the planar double box function have uniform transcendental-

ity, the non-planar double box does not. Nevertheless, the combination of functions

F (2),NP(s, t) + F (2),NP(u, t), which appears after summing over all permutation, does

have uniform transcendentality. We notice that amplitudes in N = 1, 4 supergrav-

ity do not have this property. This is explicitly shown by the calculations in [82] of

the one-loop four-graviton MHV amplitudes, see Eq. (4.6) of that paper. Perhaps

unexpectedly, the N = 6 MHV amplitude is also maximally transcendental at one

loop. It would be interesting to know if this property persists at higher loops in the

perturbative expansion of the amplitudes in these theories.
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Chapter 5

Wilson loop/Scattering

amplitude duality

With the aim of testing the BDS conjecture at strong coupling, Alday and Maldacena

[12] in 2007 applied for the first time AdS/CFT correspondence to the calculation

of scattering amplitudes. In their remarkable paper they found out that at strong

coupling partial amplitudes are closely related to a special class of polygonal lightlike

Wilson loops, so they can be evaluated as the area of certain minimal surfaces with

boundary conditions fixed by the momenta of the massless particles participating in the

scattering process. This result inspired the investigation of possible relations between

Wilson loops and scattering amplitudes also at weak coupling. Surprisingly, such a

correspondence was found first at one loop and then also at higher order in perturba-

tion theory [13–18] and gave birth to a new branch of investigation within perturbative

quantum field theory. The conjecture came then natural that MHV amplitudes and

null polygonal Wilson loops are equal order by order in weakly coupled perturbation

theory. A priori Wilson loops and scattering amplitudes are totally unrelated quan-

tities, therefore it is amazing that such a relation exists. Moreover, it is surprising

that a duality at strong coupling survives all the way down to weak coupling, as we

are dealing with a non-protected quantity. Of course this is probably the hint that

unknown deep and powerful structures might govern the dynamics of four-dimensional

gauge theories, but nowadays we are still far from the full understanding of the origin

and foundations of this feature. In this chapter we will introduce how this beautiful

duality manifests itself in N = 4 super Yang-Mills and then we will describe the au-

thor’s contribution to extend these results to N = 8 supergravity, where a suitable

definition of Wilson loop is highly non-trivial.
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5.1 N = 4 super Yang-Mills

The high degree of symmetry of N = 4 super Yang-Mills theory in the planar limit

makes its high-energy behaviour sufficiently good to allow high order perturbative

calculations. The strong coupling regime is directly accessible through the AdS/CFT

duality. In this framework Alday and Maldacena were able in [12] to verify the form

of the exponentiation of the four-point amplitude at strong coupling, and prove the

correctness of the BDS proposal for the scattering of four gluons. They discovered that

the computation of amplitudes at strong coupling is dual to the computation of the

area of a string ending on a lightlike polygonal loop embedded in the boundary of AdS

space. This, in turn, is equivalent to the method for computing a lightlike polygonal

Wilson loop at strong coupling using AdS/CFT, where the edges of the polygon are

determined by the momenta of the scattered particles [132]. In their calculation, the

exponentiation of the one-loop amplitude occurs through a saddle point approximation

of the string path integral à la Gross-Mende [133, 134], which in the AdS case turns

out to be exact. In a subsequent paper [135] the same authors showed that the BDS

conjecture should be violated for a sufficiently large number of scattered particles.

Further evidence of a breakdown of the BDS conjecture was also found in [136].

The work of [12] suggested that the calculation of a Wilson loop with the same

polygonal contour could be related to that of the MHV scattering amplitude even at

weak coupling. This was proved by Drummond, Korchemsky and Sokatchev in [13] for

the one-loop four-point N = 4 amplitude, and by Brandhuber, Heslop and Travaglini in

[15] for the infinite sequence of one-loop MHV amplitudes in N = 4 super Yang-Mills.

This surprising Wilson loop/amplitude duality was later confirmed at two loops for the

four- [14], five-[16], and six-point case [17, 18]. On the Wilson loop side, exponentiation

naturally emerges as a result of the maximal non-Abelian exponentiation theorem

[137, 138]. Furthermore, the form of the four- and five-point expression of the Wilson

loop is determined (up to a constant) by an anomalous dual conformal Ward identity

[16], and was found to be of the form predicted by the BDS ansatz. A similar dual

conformal symmetry was found for the integral functions appearing in the expression

of the multi-loop amplitudes in [139]. Since conformal invariance is not restrictive

enough to fully constrain the n-sided polygonal Wilson loop for n ≥ 6, it was perhaps

not surprising that at precisely six points the BDS conjecture turned out to be incorrect

[119]. It is intriguing however that the Wilson loop/amplitude duality does not seem to

break down. Indeed, the results of [119] and [18] show numerical agreement between

the Wilson loop and the six-point gluon amplitude at two loops. But, what is the

nature of this duality, and what is it hiding? An understanding of this behaviour is

still far from being complete, but what appears crucial is certainly the invariance under
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dual conformal symmetry.

5.1.1 Pseudo-conformal integrals

N = 4 super Yang-Mills is a conformal theory at the quantum level. In the context

of the AdS/CFT correspondence this symmetry is related to the existence of an exact

SO(2,4) isometry of the anti-de Sitter space. At the level of on-shell scattering am-

plitudes (super)conformal invariance is obscured beyond tree level. Nevertheless by

analysing the results for the one-, two- and three-loop four-point amplitude, a new

SO(2,4) symmetry manifests itself in the integrals appearing in the amplitude M4

(stripped off of the tree-level factor), apparently unrelated to the four-dimensional

conformal group. In this framework it is necessary to take all the external legs off-

shell, p2
i 6= 0, in order to be able to perform the integrals in four dimensions. This

symmetry appears in terms of dual momentum variables xi, such that the original

momentum variables pi are differences of the xi,

pµ
i = xµ

i − xµ
i+1 , (5.1.1)

that corresponds to solve the momentum conservation constraint at each vertex. In

this way momentum conservation is replaced by an invariance under uniform shifts

of the dual coordinates xi → xi + c, that represents a translation. Invariance under

Lorentz transformations follows directly from the transformation properties of the

original momenta. Moreover it is possible to define an inversion operator I,

Ii : xµ
i → xµ

i

x2
i

, (5.1.2)

and prove directly that, using an off-shell “regularisation” of infrared divergences,

planar loop integrals are invariant under inversion. Finally it is also possible to check

the invariance of the loop integrals under a generic conformal boost Kµ, where

Kµ = IPµI . (5.1.3)

These symmetries build an invariance of the integrals under an SO(2,4) algebra, called

dual conformal symmetry. It turns out for example that all the integrals appearing in

the four-gluon amplitude up to three loops, as anticipated, show invariance under dual

conformal transformations if “regularised” with an off-shell regulator. As usually these

amplitudes are computed in dimensional regularisation, the change in the dimension

of the integration measure breaks the inversion invariance. That is why these integrals

are referred to as pseudo-conformal integrals. It is not clear yet why dual conformal
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invariance manifests itself at weak coupling. Nevertheless we will see in the next section

that these dual variables play a crucial role in the Wilson loop/amplitude duality, both

at strong and at weak coupling, and this is certainly a clue to build the puzzle.

5.1.2 From strong to weak coupling

In the previous chapter we extensively explained the content of the BDS conjecture.

As mentioned before, thanks to the work of Alday and Maldacena it was possible to

prove the validity of the exponential ansatz (4.1.7) at strong coupling for the four-

point case using the AdS/CFT correspondence [12]. The AdS dual description of

a planar colour-ordered amplitude in N = 4 SYM is given by a classical open string

worldsheet ending on a brane placed in the far infrared region of AdS space. According

to their proposal, at strong coupling the planar gluon amplitude is related to the area

of a minimal surface in AdS5 space attached to a specific contour made of n lightlike

segments [xi, xi+1] defined exactly by the gluon momenta introduced in the last section

(5.1.1), with the ciclicity condition xn+1 = x1. These xi are sometimes referred to as

region momenta [106].

Basically the calculation of the amplitude thus becomes that of finding the classical

action Scl of a string worldsheet whose boundary is a polygon with vertices xi lying

within the AdS boundary,

Mn ∼ eiScl . (5.1.4)

For the four-point amplitude, the corresponding string solution can be determined [12]

giving iScl = div + (
√

λ/8π) log2 (s/t) + C where div represents divergent terms. This

agrees precisely with the structure of the BDS conjecture (4.1.7).

Now, the minimal area of a string ending on a path in the boundary of AdS space

is mathematically equivalent to the calculation of the vacuum expectation value of the

Wilson loop over the same lightlike contour in the CFT at strong coupling [140, 141].

A subtlety arising in this case is the presence of singular points or cusps in the path,

which lead to divergences [12, 142]. Nevertheless the divergences can be regularised by

dimensional reduction even in the string calculation. So, at least at strong coupling

there is evidence for a dual description of amplitudes as Wilson loops. An important

point to note here is that the string calculation does not depend on the species or

helicities of the particles in the amplitude. These are subleading terms which would

require α′ corrections [12, 143].

One mysterious and intriguing consequence of this dual description of amplitudes

as Wilson loops is the unexpected appearance of conformal symmetry. Wilson loops
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of smooth paths in N =4 SYM are conformally invariant objects (modulo an anomaly

which does not depend either on the shape or size of the loop [144, 145]). However here

the Wilson loop is divergent, since the path is not smooth, and regularisation spoils the

conformal symmetry. Moreover, as mentioned in the previous section, a similar pseudo-

conformality seems to appear at weak coupling where all the integrals contributing

to four-point MHV diagrams can be determined by rewriting them using the region

momenta and appealing to off-shell conformality [13, 139, 146]. Furthermore at four

points all conformal integrals of a certain type and with certain singular properties

appear with coefficients ±1. The Wilson loop picture would seem to suggest that

this pseudo-conformal invariance should continue for n-point functions. We want to

mention, before moving on to the weak coupling description, that Alday and Maldacena

in [135] addressed the problem for n → ∞ at strong coupling. They were able to

compute explicitly some terms, that show disagreement with the BDS ansatz. This

indicates that the BDS conjecture should fail for a sufficiently large number of gluons

and/or at sufficiently high loop level.

All this work inspired the search for possible duality relations between Wilson loops

and scattering amplitudes also at weak coupling, and the consequent computation of

Wilson loop vacuum expectation values for loops made of the dual-momentum variables

corresponding to a n-point amplitude. As we have seen the dual momentum variables

xi play a crucial role in the strong coupling computation, which is basically equivalent

to compute a Wilson loop vacuum expectation value at strong coupling. What was

really surprising was that the same kind of correspondence was also found at weak

coupling. The first result was found at one-loop for the four-point amplitude [13] and

then for the generic n-point MHV amplitude [15].

The Wilson loop knows nothing about the polarisations of the external particles.

Now, for n = 4 and n = 5 a Ward identity makes all the helicity configurations in

N = 4 super Yang-Mills equivalent and the amplitudes Mn have the same symmetries

as the Wilson loop. But beyond n = 5 there are non-MHV configurations which do

not have the same symmetries. How does the Wilson loop know that it has to match

only the MHV amplitude? Results were found also at two loops for n = 4 and n = 5,

again finding agreement with the BDS ansatz [14, 16]. However the two-loop six-point

calculation immediately showed the first variation from the BDS ansatz. This could

mean the failure of the BDS ansatz (or at least the necessity to modify it), the failure of

the Wilson loop/amplitude duality, or both. A complicated and explicit calculation of

the two-loop six-gluon amplitude was performed through unitarity techniques in [119],

and compared with the Wilson loop result [17]. This comparison showed indeed the

failure of the present form of the BDS ansatz against a numerical agreement between

the real amplitude and the Wilson loop computation [18].
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Probably there are some hidden first principles behind this property, yet to be

discovered, and the real challenge is now understanding the deep reason behind this

duality between two apparently unrelated objects in N = 4 SYM. One might spec-

ulate that scattering amplitudes and Wilson loops share the same (maybe infinite)

set of symmetries, of which conformal symmetry is just the most visible part. This

could be a manifestation of a new kind of integrability of N = 4 super Yang-Mills.

It is important for example to stress that the duality holds only in the planar limit,

and non-planar contributions break dual conformal symmetry, that then appears once

again crucial in the understanding of the duality. Recently an extension of dual con-

formal symmetry was proposed, namely a dual superconformal symmetry, arising by

formulating scattering amplitudes in an appropriate dual superspace [19]. We will not

discuss this in detail here.

We close this speculation by underlining an important feature of this duality, that

might help to shed light on the question. Both at strong and at weak coupling, as

we have seen, Wilson loop calculations are insensitive to the helicities of the scattered

particles: they do not generate in fact the tree-level Parke-Taylor amplitude. Why?

This represents one of the limitations and the most important difficulty in an analo-

gous formulation for next-to MHV amplitudes in Yang-Mills or for gravity amplitudes

beyond four particles, as we will see later on (in both cases in fact the loop amplitudes

are not proportional to the tree-level ones times a helicity-blind function). But this

might actually also be a key ingredient of the story, and help us to understand the

theoretical foundations of such an unexpected and surprising feature.

5.1.3 One-loop n-point MHV amplitude from Wilson loops

We close this section regarding N = 4 super Yang-Mills theory summarising the explicit

formulation of the Wilson loop/scattering amplitude duality for the one-loop n-gluon

amplitude. This is really pedagogical, as it shows how divergences and finite parts

of the amplitude combine themselves into the amplitude in the framework of Wilson

loop computations, and will be very useful in the next section, where the author will

extend, not without difficulties, this duality to N = 8 supergravity. In N = 4 SYM,

the Wilson loop operator takes the following form (suppressing fermions) [147–149]

W [C] := TrP exp

[
ig

∮

C
dτ
(
Aµ(x(τ))ẋµ(τ) + φi(x(τ))ẏi(τ)

)]
, (5.1.5)

where the φi’s are the six scalar fields of N =4 SYM, and (xµ(τ), yi(τ)) parametrise the

loop C. The specific form of the contour C is dictated by the gluon momenta p1, · · · , pn

in the way described in the previous section. Specifically, the segment associated to
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momentum pi will be delimited by xi and xi+1,

pi := xi − xi+1 , (5.1.6)

and will be parametrised as xi(τi) := xi+τi(xi+1−xi) = xi−τipi, τi ∈ [0, 1]. Momentum

conservation
∑n

i=1 pi = 0 implies that the contour is closed. The coordinates xi can

be interpreted as dual, or region momenta [106]. Indeed, for any planar diagrams one

can express the momentum carried by a line as the difference of the momenta of the

two regions of the plane separated by the segment.

Three different classes of diagrams give one-loop corrections to the Wilson loop.1

In the first one, a gluon stretches between points belonging to the same segment. It

is immediately seen [13] that these diagrams give a vanishing contribution. In the

second class of diagrams, a gluon stretches between two adjacent segments meeting at

a cusp. Such diagrams are ultraviolet divergent and were calculated long ago [150–157],

specifically in [156, 157] for the case of gluons attached to lightlike segments.

Figure 5.1: A one-loop correction to the Wilson loop, where the gluon stretches between
two lightlike momenta meeting at a cusp. Diagrams in this class provide the infrared-
divergent terms in the n-point scattering amplitudes.

In order to compute these diagrams, we will use the gluon propagator in the dual

configuration space, which in D = 4 − 2ǫUV dimensions is

∆µν(z) := −π2−D
2

4π2
Γ
(D

2
− 1
) ηµν

(−z2 + iε)
D
2
−1

(5.1.7)

= −πǫUV

4π2
Γ(1 − ǫUV)

ηµν

(−z2 + iε)1−ǫUV
.

1Notice that, for a Wilson loop bounded by gluons, we can only exchange gluons at one loop.
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A typical diagram in the second class is pictured in Figure 5.12. There one has x1(τ1)−
x2(τ2) = p1(1 − τ1) + p2τ2, where we used p1 = x1 − x2 and p2 = x2 − x3. The cusp

diagram then gives3

−(igµ̃ǫUV)2
Γ(1 − ǫUV)

4π2−ǫUV

∫ 1

0
dτ1dτ2

(p1p2)

[−
(
p1τ1 + p2τ2

)2
]1−ǫUV

= −(igµ̃ǫUV)2
Γ(1 − ǫUV)

4π2−ǫUV

[
−1

2

(−s)ǫUV

ǫUV
2

]
. (5.1.8)

The UV divergence should be interpreted as a divergence at small differences of region

momenta, i.e. momenta, hence we interpret it as an infrared singularity in momentum

space. Notice that ǫUV > 0, in order to regulate the divergence in (5.1.8). Furthermore

the scale used in the Wilson loop calculation is related to the scale used to regulate the

amplitudes µ as µ̃ = (cµ)−1 (the precise coefficient c in front of µ can be reabsorbed

into an appropriate redefinition of the coupling constant).

The last class of diagrams consists of diagrams where the gluon connects non-

adjacent segments, such as that pictured in Figure 5.2. We denote by p and q the

momenta carried by the two segments, and calculate the one-loop contribution due to

the gluon exchange.

The one-loop diagram in Figure 5.2 is equal to

−(igµ̃ǫUV)2
1

2

Γ(1 − ǫUV)

4π2−ǫUV
Fǫ(s, t, P,Q) , (5.1.9)

where Fǫ(s, t, P,Q) is the two-dimensional integral,4

Fǫ(s, t, P,Q) =
∫ 1

0
dτpdτq

P 2 + Q2 − s − t

[−
(
P 2 + (s − P 2)τp + (t − P 2)τq + (−s − t + P 2 + Q2)τpτq

)
]1+ǫ

. (5.1.10)

The integral, for a generic ǫ 6= 0, gives the result

Fǫ = − 1

ǫ2
(5.1.11)

·
[( a

1 − aP 2

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − aP 2

)
+
( a

1 − aQ2

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − aQ2

)

−
( a

1 − as

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − as

)
−
( a

1 − at

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − at

)]
,

2Figures 5.1 and 5.2 are taken from [15].
3After changing variables 1 − τ1 → τ1.
4In the following we set ǫ := −ǫUV < 0, where ǫ will correspond to the usual infrared regulator.
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Figure 5.2: Diagrams in this class (where a gluon connects two non-adjacent segments)
are finite, and give a contribution equal to the finite part of a two-mass easy box function
F 2me(p, q, P,Q) (p and q are the massless legs of the two-mass easy box, and correspond
to the segments which are connected by the gluon).

that is in precise agreement with the finite part of the all-orders in ǫ two-mass easy

box function.

For the particular case of four particles, combining the infrared-divergent and finite

terms, one gets the result

M(1)
4 (ǫ) = − 2

ǫ2

[(−s

µ2

)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, 1 +

s

t

)
+

(−t

µ2

)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, 1 +

t

s

)]
,

(5.1.12)

in agreement with [81].

At the time it was found this result was very surprising. Brandhuber, Heslop and

Travaglini were able to reproduce the n-point one-loop MHV amplitudes in N =4 SYM

(divided by the tree-level amplitude) from a one-loop gluon exchange calculation of a

Wilson loop. One of the important features of the calculation summarised here is that

it neatly separates the infrared-divergent terms from the finite parts. The Wilson loop

calculation gives a precise, one-to-one mapping of Wilson loop diagrams to the finite

part of two-mass easy box functions (or, in specific cases, the degenerate one-mass and

zero-mass functions). The massless legs of the box function, p and q, are simply those

to which the gluon is attached. The calculation is only sensitive to p, q, and the sum

P of the momenta between p and q.
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5.2 N = 8 supergravity

All these interesting and surprising discoveries in N = 4 super Yang-Mills theory

motivated the author to investigate whether or not relationships between scattering

amplitudes and Wilson loops might exist also for the maximally supersymmetric N =

8 supergravity theory [22]. The first motivation is certainly the similarity between

the structure of one-loop MHV amplitudes in Yang-Mills and the four-point N = 8

supergravity amplitude (4.2.1). In both cases it is possible, as we have seen, to factor

out the tree-level amplitude, that includes all the spinorial factors. What is left is

a helicity-independent function, that in the case of N = 4 super Yang-Mills can be

recovered by a Wilson loop computation. This is then further motivated by some

calculations of gravity amplitudes in the eikonal approximation [158, 159], and by our

belief that there should exist a strong link between the eikonal approximation [160–

162] (performed in specific kinematic regions) and the more recent polygonal Wilson

loop calculations (performed without reference to any specific kinematic region).

One candidate for the Wilson loop expression, given by an integral of an exponential

involving the Christoffel connection, is shown not to give the one-loop supergravity

amplitude correctly. A second expression for the gravity Wilson loop is then studied,

motivated by its application in the eikonal approximation to gravity. This involves the

metric explicitly and is not gauge invariant, however the failure of gauge invariance

is restricted to terms localised at the cusps of the Wilson loop. We will show that

the individual cusp diagrams and finite diagrams have the structure expected for the

N = 8 MHV amplitude (with the tree-level amplitude stripped off); however, after

summing over all diagrams, we find an incorrect relative factor of −2 between the

infrared-singular and the finite terms in comparison to the gravity amplitude. This is

presumably related to the lack of gauge invariance of the Wilson loop at the cusps.

Motivated by these results, we will then turn to consider a gauge where the cusp

diagrams vanish, which we call the conformal gauge. We show that in this gauge

the Wilson loop diagrams, where the propagator connects two non-adjacent segments,

precisely yield the full four-point N = 8 supergravity amplitude, including finite and

divergent terms, to all orders in the dimensional regularisation parameter ǫ. This is

in complete analogy to what happens in N = 4 Yang-Mills in a similar gauge, as we

show in Appendices D and E.

We would like to stress that, as anticipated, the very simple structure of one-loop

amplitudes in N = 4 super Yang-Mills, namely the fact that they are proportional to

the tree-level amplitude, is valid in N = 8 supergravity only for the four-point case

(we have studied in detail the structure of the four-graviton amplitude in the previous
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chapter) and does not extend beyond four gravitons. As Wilson loop computations

happen to be helicity-blind (they usually do not reproduce helicity-dependent factors

like the Parke-Taylor formula), it is then not obvious how a Wilson loop calculation

could reproduce correctly a generic n-graviton amplitude (this situation is somehow

parallel to the problem one would encounter in attempting a derivation of non-MHV

amplitudes in N = 4 super Yang-Mills from Wilson loops). For these reason, we

only concentrate in this section on the four-point MHV scattering amplitudes. The

extension to more particles will be mentioned in the next section in the framework of

collinear limits.

5.2.1 One-loop four-graviton amplitude from Wilson loops

In this section we describe the one-loop calculation of the four-point MHV amplitude

of gravitons from a Wilson loop. The expression we are going to use is motivated by its

application in the eikonal approximation [160–162] to gravity [158, 159], and it reads

W [C] :=

〈
P exp

[
iκ

∮

C
dτ hµν(x(τ))ẋµ(τ)ẋν(τ)

]〉
, (5.2.1)

where hµν(x) is the metric tensor and xµ(τ) parametrises the loop C.5 Note that the

exponent in (5.2.1) can be rewritten as6

∫
dDx T µν(x)hµν(x) , (5.2.2)

where, in the linearised approximation, the energy-momentum tensor is

T µν(x) :=

∫
dτ ẋµ(τ)ẋν(τ)δ(D)(x − x(τ)) . (5.2.3)

The specific form of the contour C we choose is dictated by the graviton momenta

p1, · · · , p4. In gravity there is no colour ordering – the amplitude M(1)
4 (4.2.2) is a sum

over the permutations (1234), (1243), (1324) of the four external gravitons. In order

to match this from the Wilson loop side, we will therefore include the contribution

of three Wilson loops with contours C1234, C1243, C1324, where Cijkl is a contour made

by joining the four graviton momenta pi, pj, pk, pl in this order. More precisely, the

quantity we calculate at one loop will be

W := W [C1234]W [C1243]W [C1324] . (5.2.4)

5The same expression for the gravity Wilson loop has recently been used in [163].
6In this section we set D = 4 − 2ǫUV.
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Although this choice might seem not natural, we want to anticipate that it reproduces

the correct result at one loop. In fact, writing W [Cijkl] := 1 +
∑∞

L=1 W (L)[Cijkl] =

exp
∑∞

L=1 w
(L)
ijkl, the one-loop term of (5.2.4) is

W (1) = W (1)[C1234] + W (1)[C1243] + W (1)[C1324] . (5.2.5)

Before presenting the one-loop calculation, we would like to make a few preliminary

comments.

1. One can check that the expression in (5.2.1) is not invariant under the gauge

transformations

hµν → hµν + ∂µξν + ∂νξµ , (5.2.6)

where ξµ(x) is an arbitrary vector field. Furthermore, it is easy to see that for contours

composed of straight line segments joined at cusps such as those considered here, the

failure of gauge invariance is restricted to terms localised at the cusps. We think it is

therefore not completely surprising that the infrared divergent parts of the Wilson loop

will come out with an incorrect numerical prefactor from our calculation, compared to

the finite parts, as we shall see below.

2. The expression (5.2.1) is not explicitly reparametrisation invariant, but it can

be seen to arise from a reparametrisation invariant expression involving an einbein e,

by writing the action of a free, massless particle as

S ∼
∫

dτ

e(τ)
ẋµẋνgµν .

The energy momentum tensor resulting from this action is the one we use in our

definition of the Wilson line in (5.2.1), after gauge fixing e = 1. The equation of

motion for the einbein just imposes the condition that the path of the particle is null.

The contour of the Wilson loop we use is piecewise null so that no problems can arise

from reparameterisation invariance away from the cusps.

3. We note that the three contours appearing in (5.2.4) are obtained by permuting

the external momenta, not the vertices. Due to the inherently non-planar character

of gravity, one cannot consistently associate T-dual momenta to the external graviton

momenta. For this reason, it is therefore unlikely that a version of dual conformal

invariance might constrain the form of the amplitude here.

4. A different expression for a gravity Wilson loop has been considered by Modanese
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[164, 165], where the right hand side of (5.2.1) is replaced by

〈TrU(C)〉 , (5.2.7)

where

Uα
β(C) := P exp

[
iκ

∮

C
dyµ Γα

µβ(y)

]
, (5.2.8)

and Γα
µβ is the Christoffel connection. The quantity TrU(C) has the advantage of

being manifestly invariant under coordinate transformations [165]. The calculation of

the one-loop correction to TrU(C) for a closed loop has been considered already in

[165], and the result is proportional to

κ2

∮

C
dxµ1dyµ2 〈Γα

µ1β(x)Γβ
µ2α(y)〉 . (5.2.9)

We refer the reader to Appendix G for the details of the evaluation of (5.2.9) in the

linearised gravity approximation. The result is, dropping boundary terms,

κ2

∮

C
dxµdyν 〈Γα

µβ(x)Γβ
να(y)〉 = c(D)

∮

C
dxµdyµ δ(D)(x − y) , (5.2.10)

where c(D) is a numerical constant which is finite as D → 4. Parameterising the

contour as x = x(σ), we can rewrite the right hand side of (5.2.10) as

c(D)

∫
dτ

∫
dσ ẋµ(τ)ẋµ(σ) δ(D)(x(τ) − x(σ)) . (5.2.11)

We observe that, because of the delta function appearing in it, this expression receives

contribution only from cusps and self-intersections present in the contour. The expres-

sion (5.2.11) does not reproduce (parts or all of) the N = 8 supergravity amplitude

(4.2.2), for example the evaluation of (5.2.11) for a cusp fails to reproduce the expected

infrared divergences of the gravity amplitudes. Therefore, in the following we will work

with the Wilson loop defined for a polygonal contour as in (5.2.1).

We now proceed to describe the calculation. We work in the de Donder gauge,

where the propagator is given by

〈hµ1µ2(x)hν1ν2(0)〉 =
1

2

(
ηµ1ν1ηµ2ν2 + ηµ1ν2ηµ2ν1 −

2

D − 2
ηµ1µ2ην1ν2

)
∆(x) , (5.2.12)

where

∆(x) := −π2−D
2

4π2
Γ
(D

2
− 1
) 1

(−x2 + iε)
D
2
−1

(5.2.13)

= −πǫUV

4π2

Γ(1 − ǫUV)

(−x2 + iε)1−ǫUV
.
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The gravity calculation is very similar to the one-loop calculation performed in [13, 15]

for the one-loop Wilson loop in maximally supersymmetric Yang-Mills theory and de-

scribed in the previous section. As in that case, three different classes of diagrams

contribute at one loop.7 In the first one, a graviton stretches between points belonging

to the same segment. As in the Yang-Mills calculation, these diagrams give a vanish-

ing contribution since the momenta of the gravitons are null. In the second class of

diagrams, a graviton stretches between two adjacent segments meeting at a cusp. In

the Yang-Mills case, such diagrams lead to ultraviolet divergences [150–157]. As in

the Yang-Mills Wilson loop case [13], these divergences are associated with infrared

divergences of the amplitude by identifying ǫUV = −ǫ.

We will now see how in our gravity calculation, these divergences are still present

but will be softened (from 1/ǫUV
2 to 1/ǫUV) after taking into account the sum over the

contributions of the three Wilson loops.

Figure 5.3: A one-loop correction to the Wilson loop bounded by momenta p1, · · · , p4,
where a graviton is exchanged between two lightlike momenta meeting at a cusp. Dia-
grams in this class generate infrared-divergent contributions to the four-point amplitude
which, after summing over the appropriate permutations give rise to (5.2.16).

A typical diagram in the second class is pictured in Figure 5.3. There one has

x1(τ1) − x2(τ2) = p1(1 − τ1) + p2τ2. The cusp diagram gives

−(iκµ̃ǫUV)2
Γ(1 − ǫUV)

4π2−ǫUV

∫ 1

0
dτ1dτ2

(p1p2)
2

[−
(
p1τ1 + p2τ2

)2
]1−ǫUV

= −(iκµ̃ǫUV)2
Γ(1 − ǫUV)

4π2−ǫUV

[
1

4

(−s)1+ǫUV

ǫUV
2

]
. (5.2.14)

7For a Wilson loop bounded by gravitons, only gravitons can be exchanged to one-loop order.
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Here again we choose ǫUV > 0 in order to regulate the divergence in (5.2.14).

Summing this over the four cusps of the first Wilson loop, one gets8

c(ǫUV)

2ǫUV
2

[
(−s)1+ǫUV + (−t)1+ǫUV

]
. (5.2.15)

Adding the contributions of the two other Wilson loops, we get

c(ǫUV)

ǫUV
2

[
(−s)1+ǫUV + (−t)1+ǫUV + (−u)1+ǫUV

]
. (5.2.16)

Upon expanding this expression in ǫUV, the cancellation of the 1/ǫUV
2 pole becomes

manifest (after using s + t + u = 0), and (5.2.16) becomes, up to terms vanishing as

ǫUV → 0,

−c(ǫUV)
[ 1

ǫUV

(
s log(−s)+t log(−t)+u log(−u)

)
+

1

2

(
s log2(−s)+t log2(−t)+u log2(−u)

)]
.

(5.2.17)

We recognise that this expression is the infrared-divergent part of the four-point MHV

gravity amplitude (4.2.2). We notice however that, after summing over the appropriate

permutations as in (5.2.4), one finds that these infrared-divergent terms have an extra

factor of −2 compared to the finite parts, to be calculated below. We believe this

mismatch is not unexpected, given that the failure of gauge invariance of (5.2.1) occurs

at the cusps.9

We now move on to the last class of diagrams, where a graviton is exchanged be-

tween two non-adjacent edges with momenta p and q; one such example is depicted in

Figure 5.4. In the Yang-Mills case these diagrams were found to be in one-to-one corre-

spondence with the finite part of the two-mass easy box functions with massless legs p

and q. We will show now that (5.2.1) leads exactly to the same kind of correspondence

with the finite part of the one-loop four-graviton amplitude.

Indeed, the one-loop diagram in Figure 5.4 is equal to

c(ǫUV)

∫ 1

0
dτ1dτ2

(p1p3)
2

[−
(
p1(1 − τ1) + p2 + p3τ2

)2
]1−ǫUV

. (5.2.18)

This integral is finite in four dimensions, and gives

c(ǫUV)
u

2

1

4

[
log2

(s

t

)
+ π2

]
. (5.2.19)

8We set c(ǫUV) = (κµ̃ǫUV)2 Γ(1 − ǫUV)/(4π2−ǫUV).
9A factor of 2 could be explained because we are effectively double-counting the cusps in summing

over the permutations, however at the moment we are unable to explain the relative minus sign.
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Figure 5.4: Diagrams in this class, where a graviton stretches between two non-adjacent
edges of the loop, are finite, and give in the four-point case a contribution equal to the
finite part of the zero-mass box function F (1)(s, t) multiplied by u.

Summing over the two possible pairs of non-adjacent segments and including the con-

tributions of the two other Wilson loop configurations, we get exactly the finite part

of the one-loop MHV amplitude in N = 8 supergravity (4.2.5) up to the tree-level

amplitude.10

5.2.2 Calculation in the conformal gauge

The gravity Wilson loop defined above, unlike the Yang-Mills Wilson loop, is gauge

dependent. It turns out that one can define a gauge in both cases in which the cusp

diagrams vanish completely. We call these “conformal” gauges.11 In the Yang-Mills

Wilson loop one obtains the same answer in either gauge, but in the gravity Wilson

loop the conformal gauge appears to be the unique gauge which gives the amplitude,

both infrared-divergent and finite pieces correctly, to all orders in ǫ.

10A Wilson loop calculation clearly cannot produce any dependence on helicities and/or spinor
brackets. Incidentally, we also observe that in Yang-Mills, a Wilson loop calculation cannot produce
any parity-odd terms such as those appearing in the five- and six-point two-loop MHV amplitudes.

11This name is motivated by the fact that, in the Yang-Mills case, the D-dimensional propagator
turns out to be proportional to the inversion tensor Jµν (x) := ηµν −2xµxν/x2. The Yang-Mills confor-
mal propagator is described in Appendix D, where we show that it can be obtained from a Feynman-’t
Hooft gauge-fixing term with a specific coefficient. In Appendix E we perform the calculation of the
n-point polygonal Wilson loop. The outcome of this calculation is that cusp diagrams in the confor-
mal gauge vanish, and the N = 4 amplitude is obtained from summing over diagrams where a gluon
connects non-adjacent edges. In this case, each such diagram is in one-to-one correspondence with a
complete two-mass easy box function.
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Gravity propagator in general gauges

We first need to define a general class of gauges in the gravity case. To do this, we

consider the free Lagrangian of linearised gravity:

L = − 1

2
(∂µhνρ)

2 + (∂νhν
µ)2 +

1

2
(∂µhλ

λ)2 + hλ
λ∂µ∂νhµν , (5.2.20)

which can be easily checked to be invariant with respect to the gauge transformation

δhµν = 2∂(µξν). We then add a gauge fixing term of the following form:

L(gf) =
α

2

(
∂νh

ν
µ − 1

2
∂µhα

α

)2
, (5.2.21)

which is de Donder-like, but with an arbitrary free parameter α. We will call this the

α-gauge.

In momentum space, the corresponding gauge-fixed Lagrangian has the form

(1/2)hµνKµν,µ′ν′hµ′ν′

, where

Kµν,µ′ν′(k) = k2ηµ′(µην)ν′ − 2k(µην)(ν′kµ′) − k2ηµνηµ′ν′ + ηµνkµ′kν′ + ηµ′ν′kµkν

− α
[
k(µην)(ν′kµ′) −

1

2
(ηµνkµ′kν′ + ηµ′ν′kµkν) +

1

4
k2ηµνηµ′ν′

]
.(5.2.22)

Now we define the propagator Dµν,ν′µ′ to be the inverse of Kµν,µ′ν′ , i.e.

Kµν,µ′ν′Dµ′ν′,mn = δ(m
µ δn)

ν . (5.2.23)

By writing down the most general Lorentz covariant terms which have the correct

index symmetries and have mass dimension equal to -2, we see that Dµν,µ′ν′ must take

the form

Dµν,µ′ν′(k) =
1

k2
ηµ′(µην)ν′ +

a

k4
k(µην)(ν′kµ′) +

b

k2
ηµνηµ′ν′

+
c

k4
(ηµνkµ′kν′ + ηµ′ν′kµkν) +

d

k6
kµkνkµ′kν′ . (5.2.24)

Then (5.2.23) gives a set of equations for the free parameters which have the unique

solution (for D 6= 2), a = −(4 + 2α)/α, b = −1/(D − 2), c = d = 0. Thus, the

propagator corresponding to the α-gauge defined by the gauge-fixing term (5.2.21) is

given by

Dµν,µ′ν′(k) =
1

k2

(
ηµ′(µην)ν′ − 1

D − 2
ηµνηµ′ν′

)
− 4 + 2α

α

1

k4
k(µην)(ν′kµ′) . (5.2.25)

Notice that (5.2.25) reproduces the standard de Donder propagator for α = −2.
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Propagator in position space in the α-gauge

We now perform the Fourier transform to position space. The Fourier transform of

1/k2λ has the form12

F [1/k2λ] = c(D,λ)(−x2)λ−D/2 , (5.2.26)

where

c(D,λ) = −4−λπ−D/2 Γ(2 − D/2)Γ(D/2 − 1)

Γ(λ + 1 − D/2)Γ(λ)
. (5.2.27)

By differentiating twice with respect to x and setting λ = 2 we find that the Fourier

transform of kµkν/k4 is

2c(D, 2)ǫUV

[
ηµν

(−x2)1−ǫUV
+

2xµxν

(−x2)2−ǫUV
(1 − ǫUV)

]
. (5.2.28)

Using this we take the Fourier transform of (5.2.25), and obtain the propagator in

position space:

Dµν,µ′ν′(x) = A
ηµ′(µην)ν′

(−x2)1−ǫUV
− c(D, 1)

D − 2

1

(−x2)1−ǫUV
ηµνηµ′ν′+B

1

(−x2)2−ǫUV
x(µην)(ν′xµ′) ,

(5.2.29)

where

A = c(D, 1) + 2a ǫUV c(D, 2) B = 4a ǫUV(1 − ǫUV) c(D, 2) , (5.2.30)

and

a = −4 + 2α

α
. (5.2.31)

The conformal gauge

By direct analogy with the Yang-Mills case, discussed in Appendix E, where we show

that in the “conformal” gauge the cusp diagrams vanish, we define the gravity confor-

mal gauge to be the gauge in which the cusp diagrams vanish. We show in this section

that this particular gauge can be obtained from an α-gauge fixing term as defined in

the previous section for an appropriate value of the parameter α.

To begin with, consider the cusp defined by momenta p, q and then let x = pσ+qτ .

12More details can be found in Appendix D.
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Then the term appearing in the cusp at one loop is

pµpνDµν,µ′ν′(x)qµ′

qν′

= (−x2)ǫUV−2(pq)3στ(B − 2A) . (5.2.32)

Therefore, the cusp diagrams vanish for B = 2A. One can quickly check that this

implies a = −c(D, 1)/(2ǫUV
2c(D, 2)) = 4/(D − 4). The result is the propagator in the

conformal gauge:

Dµν,µ′ν′(x) = c(D, 1)
ǫUV − 1

ǫUV

[
1

(−x2)1−ǫUV

(
ηµ′(µην)ν′ +

ǫUV

2(ǫUV − 1)2
ηµνηµ′ν′

)

+ 2
1

(−x2)2−ǫUV
x(µην)(ν′xµ′)

]
, (5.2.33)

which requires

α = −2(D − 4)/(D − 2) . (5.2.34)

Gravity Wilson loop in the conformal gauge

We now proceed to calculate the gravity Wilson loop in this conformal gauge. We have

shown that the cusp diagrams are equal to zero in this gauge, therefore we need only

calculate the “finite” diagrams (which are now no longer finite). Consider the Wilson

loop with edges p1, p2, p3, p4 (in that order) and the graviton stretching between sides

1 and 3. Then we have x = σp1 + τp3 + p2 and x2 = sσ + tτ + uστ . The contribution

of this diagram is then

∫ 1

0
dσdτ p1

µp1
νDµν,µ′ν′(x)p3

µ′

p3
ν′

(5.2.35)

= c(D, 1)
ǫUV − 1

ǫUV

u

4

∫ 1

0
dσdτ

st

(−(sσ + tτ + uστ))2−ǫUV

= c(D, 1)
1

ǫUV
2

u

4
·

·
[
− (−s)ǫUV

2F1(1, ǫUV, 1 + ǫUV, 1 +
s

t
) − (−t)ǫUV

2F1(1, ǫUV, 1 + ǫUV, 1 +
t

s
)
]

.

We see that we obtain the complete (infrared-divergent as well as finite pieces) two-

mass easy box function to all orders in ǫUV. Adding the other diagram (which gives the

same result) and then summing over the remaining permutations as described above,

gives the correct one loop N = 8 supergravity amplitude (4.2.20).

Despite this encouraging result, we should remember that our starting expression

for the Wilson loop (5.2.1) was not gauge invariant. It would be important to rem-

edy this gauge non-invariance, which is localised at the positions of the cusps, by an
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appropriate subtraction procedure. Furthermore, it would be interesting to study the

derivation of finite parts of gravity amplitudes at higher loops using the Wilson loop

proposed in (5.2.4).

5.3 Collinear limits

We already analysed the behaviour of the amplitudes in the collinear limit in Chapter

2, exploiting the connections between Yang-Mills and gravity theory, and in Chapter

4, within the analysis of iterative structure. We now want to show how the Wilson

loop formulation of scattering amplitudes provides us with a new geometric description

of collinear limits. In the framework of the Wilson loop/scattering amplitude duality,

it becomes immediate and natural to deal with collinear limits. It is clear in fact

the geometric interpretation of the collinear limits: two legs going parallel in the

scattering amplitude correspond to two adjacent segments merging into a single one.

We will analyse in particular one-loop splitting amplitudes, so one-loop Wilson loop

contributions.

The N = 4 super Yang-Mills case is more pedagogical, as in this case we already

have a generic result for the one-loop n-point amplitude. Nevertheless it is very useful

to build a set of diagrammatic rules that show how different Wilson loop contributions

combine themselves into the splitting amplitudes. For the case of N = 8 supergravity,

where a Wilson loop formulation has been shown just in the four-point case, it could

really shed light on the validity, and at the same time the limitations, of our prescrip-

tion (remember that any Wilson loop computation is helicity blind and cannot then

reproduce, at least in the present form, spinorial factors).

We start with the super Yang-Mills case and remind that the behaviour of scattering

amplitudes in the limit where two adjacent momenta become collinear is given at tree

level by (2.6.1)

Atree
n (1, 2, ..., n) →

∑

λ=±1

Splittree−λ (1, 2)Atree
n−1(P

λ, 3, ..., n) , (5.3.1)

and at one loop by (2.6.10)

A1-loop
n (1, 2, ..., n) →
∑

λ=±1

[
Splittreeλ (1, 2)A1-loop

n−1 (P λ, 3, ..., n) + Split1-loop
−λ (1, 2)Atree

n−1(P
λ, 3, ..., n)

]
, (5.3.2)

where the sum is over the possible helicities and the momenta of the particles going
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collinear are parametrised as k1 = zP and k2 = (1 − z)P , where P = k1 + k2, with

P 2 → 0.

If we restrict to MHV amplitudes we can factor out the tree-level amplitude (4.1.2)

and the one-loop relation (5.3.2) becomes

M(1)
n (ǫ) → M(1)

n−1(ǫ) + r(1)
s (ǫ) , (5.3.3)

where r
(1)
s is the one-loop “renormalisation” function defined by

Split1-loop(1, 2) = r(1)
s (ǫ) Splittree(1, 2) . (5.3.4)

An expression for the renormalisation function to all orders in ǫ was found in [50–52].

It takes the form

r(1)
s (z) =

cΓ

ǫ2

(−s12

µ2

)2[
1− 2F1

(
1,−ǫ, 1− ǫ,

z − 1

z

)
− 2F1

(
1,−ǫ, 1− ǫ,

z

z − 1

)]
, (5.3.5)

where

cΓ =
Γ(1 + ǫ)Γ2(1 − ǫ)

(4π)2−ǫΓ(1 − 2ǫ)
, (5.3.6)

and s12 = (k1 + k2)
2 → 0 in the collinear limit.

We wish to prove this expression here starting from the prescription provided by

Yang-Mills Wilson loop computations. What our Wilson loop calculation will repro-

duce is exactly the expression (5.3.3) (and the explicit form of the r
(1)
s (z) function),

as we have already emphasised that the helicity information (in this case the tree-level

splitting amplitude times the tree-level (n−1)-point amplitude on the right-hand side)

is not generated by the Wilson loop. As in this case the explicit result is known both

for cusp (5.1.8) and for finite diagrams (5.1.11), it is possible either to perform the

collinear limit directly in the result or to perform it, wherever possible, already in the

integrand (this second procedure is particularly useful to simplify the calculation when

the integrals are not trivial to compute). This will allow us to build a set of very nice

diagrammatic rules. It will be interesting to see how diagrammatically the various

contributions recombine themselves through a set of cancellations in order to give the

correct result.

Let us consider a generic one-loop Wilson loop diagram, where the gluon stretches

between two generic legs p and q (this diagram will correspond to a cusp, as in Figure

5.1, if p and q are adjacent and to a finite diagram, as in Figure 5.2, if they are not). We

can group all the contributions into three classes of diagrams, that have a particular

behaviour in the collinear limit, easy to interpret in terms of the expression (5.3.3):
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• Diagrams with both p and q 6= k1, k2.

These diagrams are not “affected” by the collinear limit: they näıvely contribute

to the term M(1)
n−1(ǫ) in (5.3.3). In fact, as k1 and k2 appear just in a sum, the

limit is irrelevant and they will produce the same diagram with one leg less.

• Diagrams with p = k1 or k2 and a generic q 6= k3, kn.

For these diagrams, even though the derivation is less straightforward, an anal-

ogous feature appears. In fact it is possible to prove that the sum of these two

diagrams produces exactly (after some cancellations) the diagram with the gluon

stretching between p = k1 + k2 and q, that is part of M(1)
n−1(ǫ).

• Diagrams with p = k1 or k2 and q = k3 or kn.

These four diagrams, together with the remaining cusp (that has p = k1 and

q = k2), recombine themselves (after some cancellations) to give the cusp with

p = k1 +k2 and q = k3 and the cusp with p = k1 +k2 and q = kn (that are two of

the cusps of M(1)
n−1(ǫ)) and to reconstruct the renormalisation function r

(1)
s (z).

As this last case is the most interesting, giving rise to the function r
(1)
s (z), we

want to describe it in more detail.

Let us start considering the diagram with p = k1 and q = k3. By performing the

collinear limit of the expression (5.1.11), making use of some hypergeometric identities,

we obtain the contribution13:

1

ǫ2
(−s12)

−ǫ

[
1 − 2F1

(
1,−ǫ, 1 − ǫ,

z

z − 1

)]
− (−s1+2,3)

−ǫ

ǫ2
+

(−s2,3)
−ǫ

ǫ2
, (5.3.7)

where it is easy to recognise in the last two terms the cusp with p = k1 +k2 and q = k3,

and the cusp with p = k2 and q = k3 (with a minus sign).

The diagram with p = k2 and q = kn is analogous, but with k1 and k2 exchanged

(that corresponds to exchange z and 1 − z). In the collinear limit it gives the contri-

bution:

1

ǫ2
(−s12)

−ǫ

[
1 − 2F1

(
1,−ǫ, 1 − ǫ,

z − 1

z

)]
− (−s1+2,n)−ǫ

ǫ2
+

(−s1,n)−ǫ

ǫ2
. (5.3.8)

The last three diagrams of this class are cusps, and give the contributions:

−(−s2,3)
−ǫ

ǫ2
for p = k2 and q = k3 , (5.3.9)

−(−s1,n)−ǫ

ǫ2
for p = k1 and q = kn , (5.3.10)

13We omit in the following the factor −(igµ̃ǫUV)2 1
2

Γ(1−ǫUV)

4π
2−ǫUV

.
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−(−s1,2)
−ǫ

ǫ2
for p = k1 and q = k2 . (5.3.11)

The first cusp (5.3.9) cancels the last term of (5.3.7), the second cusp (5.3.10) cancels

the last term of (5.3.8) and the last cusp (5.3.11) combines with the first terms of

(5.3.7) and (5.3.8) to give the renormalisation function r
(1)
s (z). So we are left with the

cusp with p = k1 + k2 and q = k3 and the cusp with p = k1 + k2 and q = kn (that

are the only cusps of M(1)
n−1(ǫ) that cannot be derived by a limit on a cusp of M(1)

n (ǫ))

and with the function r
(1)
s (z) (5.3.5).

This computation, although very useful and diagrammatic, was expected to give

the right result as the Wilson loop/amplitude duality has already been proved at one

loop for the n-point MHV amplitude [15]. Where this approach could really make

the difference is within the framework of supergravity computations. We have already

observed that beyond four particles the gravity amplitude does not have any more

the simple form (4.2.1), that inspired our work. Spinorial factors will be present

that seem to be complicated to include into a Wilson loop computation, that in its

present formulation does not reproduce any kind of spinorial quantity. The test of

the behaviour of the gravity Wilson loop (5.2.1) in the collinear limit constitutes then

an important consistency check in order to verify the duality for an arbitrary number

of gravitons. We will not present the explicit computation here, we limit ourselves

to summarise the result. Although a certain pattern appears in terms of a one-to-

one correspondence between Wilson loop contributions and parts of the five-point

amplitude, the Wilson loop produces the amplitude up to kinematic (even though not

spinorial) factors sij, that are not the same for all the contributions, so that they cannot

be factored out to reconstruct the five-point amplitude. It would be really interesting

in this framework to be able to provide for a mechanism to generate spinorial factors

by modifying the original definition of the Wilson loop.
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Chapter 6

Conclusions and Outlook

Through the leitmotif of the interconnections between the two maximally supersym-

metric N = 4 super Yang-Mills and N = 8 supergravity theories, we have explored

in this thesis some recent developments in perturbative calculations of field theory

amplitudes. Starting from the standard approach, the Feynman diagram expansion

of the amplitudes, we immediately discovered its limitations, both of theoretical and

technical nature. The pressure of obtaining increasingly more accurate results, arising

in particle physics experiments (in particular the LHC at CERN), motivated the search

for novel techniques of calculation of amplitudes which are more efficient than those

based on Feynman rules.

We discovered the magic of the MHV diagram method, which arises partly from the

fact that the vertices of this new expansion – the off-shell continued MHV amplitudes

– already resum vast numbers of Feynman diagrams. The MHV diagram method

allowed for computations of many interesting quantities, such as infinite sequences of

MHV amplitudes in theories with various amount of supersymmetry. Unfortunately,

the technical complexity encountered in higher-loop calculations has so far prevented

the method from being applied beyond one loop and even to non-MHV amplitudes at

one loop.

We then moved to discussing more theoretical aspects, following inspiration from

the gauge/gravity duality. Specifically, we discussed the appearance of iterative struc-

tures, as well as the Wilson loop/scattering amplitude duality, that are today very

active areas of research and are still far from being fully understood. The BDS con-

jecture has been proved to be incomplete for n > 5 scattered particles, and needs at

least a reformulation or modification. The Wilson loop/scattering amplitude duality

still misses a proper theoretical foundation; further investigation on the appearance of
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the dual conformal invariance might hopefully shed light on the duality, and deepen

our understanding of N = 4 super Yang-Mills theory.

The problem of extending these remarkable properties found in N = 4 SYM to

N = 8 supergravity requires even greater effort. The theoretical motivations support-

ing the appearance of iterative structures, and clues of a duality between amplitudes

and Wilson loops are in supergravity much weaker, and require a more in-depth ex-

amination. At the same time, as in Yang-Mills, the level of technicality of the MHV

diagram method left the ground to unitarity techniques, that nowadays appear to be

the most powerful and useful tool for higher-loop calculations. They have recently

allowed for interesting four-loop results in N = 8 supergravity, leading to the bold

conjecture that this could be a finite, consistent theory of gravity.

Exciting years lie ahead of us. More than ever before we have to call upon the

theory, and the age-old pursuit of a consistent framework for all these features that

still miss the big picture. In all likelihood, the last words will be up to LHC.
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Appendix A

The integral basis

We have seen that all amplitudes in massless gauge field theories can be written in

terms of a basis of integral functions; in this appendix we report the definitions and the

explicit expressions for the integral basis, constituted by boxes, triangles and bubbles

[6].

The box integrals are defined as

I4(K1,K2,K3,K4) = −iµ2ǫ

∫
d4−2ǫL

(2π)4−2ǫ

1

L2(L + K1)2(L + K1 + K2)2(L − K4)2
,

while the correspondent box functions as

I4(K1,K2,K3,K4) =
cΓ

G F4(K1,K2,K3,K4) , (A.0.1)

where

cΓ =
1

(4π)2−ǫ

Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)
=

1

16π2
+ O(ǫ) , (A.0.2)

and G is the Gram determinant. We remind that vertices are named massive if the

correspondent momentum does not square to zero, namely if they have attached more

than one external momentum. Integrals are then classified according to the number

and reciprocal position of the massive and massless legs (see [6] for a full description).

We limit ourselves to write down here the explicit expression for the zero-mass, 1-mass,

2-mass easy and 2-mass hard box functions:

F 0m
4 (k1, k2, k3, k4) = − 1

ǫ2

[(
µ2

−s

)ǫ

+

(
µ2

−t

)ǫ]
+ log2

(−s

−t

)
+ π2 (A.0.3)
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F 1m
4 (k1, k2, k3,K4) = − 1

ǫ2

[(
µ2

−s

)ǫ

+

(
µ2

−t

)ǫ

−
(

µ2

−K2
4

)ǫ]

+ Li2

(
1 − K2

4

s

)
+ Li2

(
1 − K2

4

t

)
+

1

2
log2

(−s

−t

)
+

π2

6
, (A.0.4)

F 2me
4 (k1,K2, k3,K4) = − 1

ǫ2

[(
µ2

−s

)ǫ

−
(

µ2

−K2
4

)ǫ

+

(
µ2

−t

)ǫ

−
(

µ2

−K2
2

)ǫ

−
(

µ2

−K2
4

)ǫ]

+ Li2

(
1 − K2

2

s

)
+ Li2

(
1 − K2

2

t

)
+ Li2

(
1 − K2

4

s

)

+ Li2

(
1 − K2

4

t

)
− Li2

(
1 − K2

2K2
4

st

)
+

1

2
log2

(
s

t

)
, (A.0.5)

F 2mh
4 (k1, k2,K3,K4) =

− 1

ǫ2

[(
µ2

−s

)ǫ

+

(
µ2

−t

)ǫ

−
(

µ2

−K2
3

)ǫ

−
(

µ2

−K2
4

)ǫ

+
1

2

(
− µ2s

K2
3K2

4

)ǫ]

+ Li2

(
1 − K2

3

t

)
+ Li2

(
1 − K2

4

t

)
+

1

2
log2

(
s

t

)
. (A.0.6)

The Gram determinants are

G0m = G1m = G2mh = −1

2
st , (A.0.7)

G2me = −1

2

(
st − K2

2K2
4

)
. (A.0.8)

Figure A.1: The integral basis: Boxes, Triangles and Bubbles.

The triangles integrals are defined as

I3(K1,K2,K3) = iµ2

∫
d4−2ǫL

(2π)4−2ǫ

1

L2(L + K1)2(L − K3)2
, (A.0.9)
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while the triangle functions as

I3 =
cΓ

G F3 . (A.0.10)

We report the explicit expression for the 1-mass and 2-mass triangle functions:

F 1m
3 (K1, k2, k3) =

1

ǫ2

(
µ2

−K2
1

)ǫ

, (A.0.11)

F 2m
3 (K1,K2, k3) =

1

ǫ2

[(
µ2

−K2
1

)ǫ

−
(

µ2

−K2
2

)ǫ]
, (A.0.12)

where

G1m = −K2
1 , (A.0.13)

G2m = −K2
1 + K2

2 . (A.0.14)

The bubble integral is then defined as

I2(K) = −iµ2ǫ

∫
d4−2ǫL

(2π)4−2ǫ

1

L2(L + K)2
≡ cΓF2(K

2)

= cΓ

[
1

ǫ
+ log

(
µ2

−K2

)
+ 2

]
+ O(ǫ) . (A.0.15)
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Appendix B

Comments on diagrams with null

cuts

In this appendix we would like to reconsider the contributions to the MHV amplitudes

arising from MHV diagrams with a null two-particle cut.

An example is the MHV diagram in Figure B.1, contributing to the five-point MHV

amplitude discussed in Section 3.2.7. The expression for this diagrams is

M1−loop =

∫
dµk5 M(−l̂+1 1−2−3+ l̂+2 4+) M(l̂−1 − l̂−2 5+) . (B.0.1)

MHV MHV

l2

5
+

+

1
−

2
−

3
+

4 ^

^
l1

Figure B.1: MHV diagram with null two-particle cut contributing to the five-point
graviton MHV amplitude at one loop.

Using KLT relations for six- (2.5.6) and for three-graviton amplitudes (2.5.3), we

can write (B.0.1) as a sum of two terms plus permutations of the particles P(123).

Similarly to Section 3.2.5, momentum conservation k5 − l̂2 + l̂1 = 0 allows to prove
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easily the cancellation of unphysical double poles appearing because of the presence of

a three-point graviton vertex. Furthermore, all the dependence on hatted quantities

can be eliminated using momentum conservation in the form

〈l1l2〉[l̂2i] = 〈l15〉[5i] , 〈l2l1〉[l̂1j] = −〈l25〉[5j] . (B.0.2)

Following this procedure, the starting expression (B.0.1) is decomposed into a sum of

terms, on which one easily applies PV reduction techniques. Similarly to the four-point

case, one can see that only box functions in null cuts are produced.

The remark we would like to make now is that such terms actually vanish with

appropriate choices of the null reference vector η, as observed in the Yang-Mills case

in [9]. The same choice of η has been used in [67, 68, 89] in deriving gluon amplitudes

in Yang-Mills theory, and recently in [69–71] in deriving one-loop φ-MHV amplitudes,

i.e. amplitudes with gluons in an MHV helicity configuration and a complex scalar φ

coupled to the gluons via the interaction φTrFµνFµν .

In [9], it was found how a generic two-mass easy box function is reconstructed by

summing over four dispersion integrals, as in (3.2.68). These dispersion integrals are

performed in the four channels s, t, P 2 and Q2 of the box function. As explained

in that paper, the evaluation of these integrals is greatly facilitated by choosing the

reference vector η to be one of the two massless momenta, p and q, of the box function

(see Figure 3.9 for the labeling of the momenta in a generic two-mass easy box). By

performing this choice, one finds that the contribution of a single dispersion integral

of a cut-box in a generic cut scut is proportional, to all orders in the dimensional

regularisation parameter ǫ, to [65]

−cΓ

ǫ2
(−scut)

−ǫ
2F1(1,−ǫ, 1 − ǫ, ascut) , (B.0.3)

where cΓ is defined in (3.2.61) and a is defined in (3.2.57). In the four-point box

function, one obviously has P 2 = Q2 = 0. Using (B.0.3), it is then immediate to see

that the dispersion integrals in these two channels vanish because of the presence of

the factor (−scut)
−ǫ. Therefore, when summing over all the possible MHV diagrams,

it is in fact enough to consider only the MHV diagrams with non-vanishing cuts.

Finally, we notice that for arbitrary choices of η, this would no longer be true; the

MHV diagrams in null channels would be important to restore η-independence in the

final expressions of one-loop amplitudes.

As a side remark, it is instructive to apply the above comments to rederive with

MHV diagrams, almost instantly, the expression to all orders in the dimensional reg-
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ularisation parameter, ǫ, of the one-loop four-gluon amplitude in N = 4 super Yang-

Mills. In this case, the result comes from summing two dispersion integrals, namely

those in the s = (k1 + k2)
2 and in the t = (k2 + k3)

2 channels; indeed, the specific

choices of η mentioned above allow us to discard the MHV diagrams with null two-

particle cut. In the four-particle case, the expression for a in (3.2.57) simplifies to

a|P 2=Q2=0 = 1/s + 1/t. One then quickly obtains, to all orders in ǫ [65],

A1−loop = 2Atree cΓ

ǫ2

[
(−s)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, 1 +

s

t

)
+ (−t)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, 1 +

t

s

)]
.

(B.0.4)

(B.0.4) agrees with the known result [81].
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Appendix C

Reduction technique of the

R-functions

In dealing with expressions of gravity amplitudes derived using the MHV diagram

method, one often encounters products of “R-functions”, where

R(ij) =
〈il2〉〈jl1〉
〈il1〉〈jl2〉

. (C.0.1)

The appearance of products of these functions is related to the structure of tree-level

gravity amplitudes, which can be expressed, using KLT relations, as sums of products

of two Yang-Mills amplitudes. Here we would like to discuss how to reduce products

of R-functions to sums of R-functions and bubbles.

To begin with, we observe some useful properties of these functions:

R(ab)R(bc) = R(ac) ⇒ R(ab)R(ba) = 1 , (C.0.2)

R(ab)R(cd) = R(ad)R(cb) ⇒ R(ab)R(da) = R(db) . (C.0.3)

Let us now consider a generic product R(ij)R(hk) with i 6= j 6= h 6= k,

R(ij)R(hk) =
〈il2〉〈jl1〉
〈il1〉〈jl2〉

〈hl2〉〈kl1〉
〈hl1〉〈kl2〉

. (C.0.4)

Using Schouten’s identity in the form

〈al〉
〈bl〉〈cl〉 =

〈ac〉
〈bc〉

1

〈cl〉 +
〈ba〉
〈bc〉

1

〈bl〉 , (C.0.5)
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one can separate contributions from different poles. Applying this to the two ratios

〈kl1〉/(〈il1〉〈hl1〉) and 〈hl2〉/(〈jl2〉〈kl2〉), we get

R(ij)R(hk) =
〈ik〉〈jh〉
〈ih〉〈jk〉R(ij) +

〈hk〉
〈ih〉〈jk〉

[
〈kh〉 K(ij)

K(kh)
+ 〈hj〉 K(ij)

K(jh)
+ 〈ik〉K(ij)

K(ki)

]
,

(C.0.6)

where we have defined

K(ij) := 〈il2〉〈jl1〉 . (C.0.7)

Notice that R(ij) can be expressed in terms of Kij as

R(ij) =
K(ij)

K(ji)
(C.0.8)

We can use again the same decomposition on a generic term

K(ij)

K(hk)
=

〈il2〉〈jl1〉
〈hl2〉〈kl1〉

〈hl1〉
〈hl1〉

〈kl2〉
〈kl2〉

, (C.0.9)

to get

K(ij)

K(hk)
=

〈kj〉〈hi〉
〈kh〉〈hk〉R(kh) +

1

〈kh〉〈hk〉

[
〈jh〉〈ik〉 + 〈jh〉〈hi〉 〈kl2〉

〈hl2〉
+ 〈kj〉〈ik〉〈hl1〉

〈kl1〉

]
.

(C.0.10)

By substituting this expression into (C.0.6), we see that we are left with a bubble plus

the sum of R-functions. Using the Schouten identity, we arrive at the final result

R(ij)R(hk) = −1 +
〈hk〉〈ij〉
〈ih〉〈jk〉 [R(hj) + R(ik)] +

〈ik〉〈jh〉
〈ih〉〈jk〉 [R(ij) + R(hk)] . (C.0.11)

This formula allows us to perform immediately PV reductions of R-functions. Further

reducing the R-functions as usual (3.2.44), we are then left with bubbles, triangles and

boxes.
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Appendix D

The conformal propagator in

Yang-Mills

In this section we briefly outline the construction of the conformal propagator. It is

defined to be proportional to the inversion tensor

Jµν(x) := ηµν − 2
xµxν

x2
. (D.0.1)

By using

∫
dDp

(2π)D
eipx 1

p2
= −π−D

2

4
Γ
(D

2
− 1
) 1

(−x2 + iε)
D
2
−1

, (D.0.2)

∫
dDp

(2π)D
eipx pµpν

p4
= −π−D

2

8
Γ
(D

2
− 1
)ηµν − (D − 2)xµxν/x

2

(−x2 + iε)
D
2
−1

,

it is easy to see that the following combination has the desired property:

∫
dDp

(2π)D
eipx ηµν

p2
+

4

D − 4

∫
dDp

(2π)D
eipx pµpν

p4
= ∆conf

µν (x) , (D.0.3)

where we define the conformal propagator

∆conf
µν (x) := −D − 2

D − 4

π−D
2

4

Γ
(

D
2 − 1

)

(−x2 + iε)
D
2
−1

[
ηµν − 2

xµxν

x2

]
. (D.0.4)

Thus, the expression (D.0.4) is obtained by choosing a Feynman-’t Hooft gauge-fixing

term (α/2)
∫

dDx (∂µAµ)2 for the particular choice of α = (D − 4)/D. The vanishing

of this gauge-fixing term in D = 4 dimensions is reflected in the presence of a factor of

1/(D−4) in (D.0.4), which makes this propagator not well defined in four dimensions.
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Appendix E

The Yang-Mills Wilson loop with

the conformal propagator

As a simple but illuminating application of the above conformal propagator, we would

like to outline the calculation of the Yang-Mills Wilson loop with a contour made of n

lightlike segments performed in [15]. Of course, the usual expression of the Wilson loop

in Yang-Mills is gauge invariant, hence evaluating it in any gauge leads to the same

result. The use of this gauge leads however to a recombination of terms, where the

cusp diagrams vanish.1 Consider for instance the cusped contour depicted in Figure

E.1. Using the conformal propagator, and xp1(τ1)−xp2(τ2) = p1(1− τ1)+ p2τ2, we see

Figure E.1: A one-loop correction for a cusped contour. We show in the text that,
when evaluated in the conformal gauge, the result of this diagram vanishes.

1The usual infrared-divergent terms are produced by diagrams which, in the Feynman gauge cal-
culation of [15], were finite.
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that the one-loop correction to the cusp is given by an expression proportional to

∫
dτ1dτ2 p1µp2ν

ηµν − 2 [p1(1−τ1)+p2τ2]µ[p1(1−τ1)+p2τ2]ν

2(p1p2)(1−τ1)τ2

[−2(p1p2)(1 − τ1)τ2]D/2−1
, (E.0.1)

which vanishes.

We now move on to consider diagrams where a gluon is exchanged between non-

adjacent segments, such as that in Figure E.2. In [15] it was shown that this diagram

Figure E.2: A one-loop diagram where a gluon connects two non-adjacent segments.
In the Feynman gauge employed in [15], the result of this diagram is equal to the finite
part of a two-mass easy box function F 2me(p, q, P,Q), where p and q are the massless
legs of the two-mass easy box, and correspond to the segments which are connected by
the gluon. In the conformal gauge, this diagram is equal to the full box function. The
diagram depends on the other gluon momenta only through the combinations P and Q.
In this example, P = p3 + p4, Q = p6 + p7 + p1.

is equal to the finite part of a two-mass easy box function. In the conformal gauge, a

simple calculation shows that it is equal to2

fǫ ·
1

2
(st − P 2Q2)

∫ 1

0

dτ1 dτ2

[−D(τ1, τ2)]2+ǫ
, (E.0.2)

where

D(τ1, τ2) := (xp(τ1) − (xq(τ2))
2 (E.0.3)

= P 2 + (s − P 2)(1 − τ1) − (t − P 2)τ2 − u(1 − τ1)τ2 ,

where we used 2(pP ) = s − P 2, 2(qP ) = t − P 2, and s + t + u = P 2 + Q2. We have

2In the following we set ǫ = −ǫUV.
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also introduced

fǫ :=
1 + ǫ

ǫ

Γ(1 + ǫ)

π2+ǫ
. (E.0.4)

In [15] it was found that

∫ 1

0

dτ1 dτ2

[−D(τ1, τ2)]2+ǫ
=

Fǫ+1

P 2 + Q2 − s − t
, (E.0.5)

where

Fǫ = − 1

ǫ2
(E.0.6)

·
[( a

1 − aP 2

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − aP 2

)
+
( a

1 − aQ2

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − aQ2

)

−
( a

1 − as

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − as

)
−
( a

1 − at

)ǫ

2F1

(
ǫ, ǫ, 1 + ǫ,

1

1 − at

)]
,

where we have introduced

a :=
P 2 + Q2 − s − t

P 2Q2 − st
. (E.0.7)

Notice that in (E.0.5) the function F appears with argument ǫ + 1. After a moderate

use of hypergeometric identities, we find that the one-loop correction in (E.0.2) is equal

to
1

2

Γ(1 + ǫ)

4π2+ǫ
F 2me(s, t, P 2, Q2) , (E.0.8)

where F 2me(s, t, P 2, Q2) is the all-orders in ǫ expression of the two-mass easy box

function derived in [65],3

F 2me(s, t, P 2, Q2) = − 1

ǫ2

[(−s

µ2

)−ǫ

2F1 (1,−ǫ, 1 − ǫ, as) +
(−t

µ2

)−ǫ

2F1 (1,−ǫ, 1 − ǫ, at)

−
(−P 2

µ2

)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, aP 2

)
−
(−Q2

µ2

)−ǫ

2F1

(
1,−ǫ, 1 − ǫ, aQ2

)]
(E.0.9)

Summing over all possible gluon contractions in the Wilson loop, one finds complete

agreement with the result derived in [15] for the same Wilson loop, as anticipated.

3Omitting a factor of cΓ = Γ(1 + ǫ)Γ2(1 − ǫ)/(4π)2−ǫ compared to [65].
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Appendix F

Analytic continuation of

two-loop box functions

In Section 4.2.1 the one and two loop amplitudes are given in terms of functions

F (2),P(s, t), F (2),NP(s, t) and F (1)(s, t). In Yang-Mills, colour ordering means that

we need to define the functions explicitly in only one analytic regime. In gravity

however, we must sum over permutations of the kinematic invariants. Even if we fix

the kinematic regime to be s, t < 0 we must also consider for example F (s, u), and the

second argument of this function will be greater than zero (recall that u = −s − t).

There will be three different kinematic regimes of interest and, following Tausk [129],

we label them in the following way:

F (s, t) =





F1(s, t) t, u < 0

F2(s, t) s, u < 0

F3(s, t) s, t < 0 .

(F.0.1)

Tausk gives explicit formulae for the non-planar box function in all three regions,

but it is nevertheless useful to know how to obtain the function in any region from

its manifestation in a particular region. The Mathematica package HPL [166] is very

useful for this.

We will sketch the procedure below. Let us begin by considering the analytic

continuation from region 1 to 2. In general, functions in this region take the following

form:

F1(s, t) = f(log(s), log(−t), log(−u),H~a,1(−t/s)) . (F.0.2)
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Here H~a,1(z) is a harmonic polylogarithm where ~a represents a string of zeros or ones.

Note that at two loops we need not use harmonic polylogarithms as they can all be

re-expressed in terms of Nielsen polylogarithms. On the other hand, at higher loops

harmonic polylogarithms will appear which cannot be so expressed; it is nevertheless

useful to use harmonic polylogarithms even here (see [130, 166] for more details on

harmonic polylogarithms). Such a harmonic polylogarithm is analytic everywhere on

the complex plane except for a branch cut on the real axis for z > 1. Note that the

arguments of all the (poly)logarithm functions in (F.0.2) lie away from the branch cut.

Now the function continued to region 2 takes the following form:

F2(s, t) = f(log(−s) + iπ, log(t) − iπ, log(−u),H~a,1(−t/s)) . (F.0.3)

We have analytically continued the logs appropriately, however the argument of the

HPL functions now lies on the branch cut in region 2 (−t/s = 1 + u/s > 1). We

use the HPL package to transform away from the branch cut. Specifically putting

−t/s = 1/y the command ‘HPLConvertToSimplerArgument’ will rewrite this in terms

of HPLs with the argument y = −s/t which lies off the branch cut (one must also use

the command ‘HPLReduceToMinimalSet’ to write the functions in a standard form).

If we wish to obtain the formula in region 3 from that in region 1 we immediately

have a problem. The argument of our HPL functions is −t/s which is not on a branch

cut for either region. However, close examination shows that as we pass smoothly from

region 1 to region 3, we must first pass along the branch cut – for example we must

pass through the point s = 0, i.e. −t/s = ∞. The HPL programme will not take this

into account and the näıve analytic continuation gives the wrong result. So it is better

to first perform a transformation y → 1 − y on the HPLs in F1(s, t) to find a new

expression for F1(s, t) in terms of HPLs with argument 1 + t/s = −u/s, i.e.

F1(s, t) = g(log(s), log(−t), log(−u),H~a,1(−u/s)) . (F.0.4)

Then in region 3 we find −u/s > 0, and hence we are on the branch cut and we can

proceed as before. We analytically continue as follows,

F3(s, t) = g(log(−s) + iπ, log(−t), log(−u) − iπ,H~a,1(−u/s)) . (F.0.5)

Now use the HPL programme to transform back off the cut using the transformation

y → 1/y yielding HPLs with argument −s/u.

Now we have found the functions in all three analytic regions, and we can trans-

form the arguments to obtain all the different permutations entering in the two-loop
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amplitude (4.2.12). For example F (s, t) = F3(s, t) since we are in the region s, t < 0,

but F (u, t) = F1(u, t) since the first argument is positive etc.

At this point, after summing all contributions, the two-loop amplitude will be a

linear combination of harmonic polylogarithms with different arguments. We therefore

use the HPL programme again to transform them all to the same argument, ensuring

that we never land on a branch cut in so doing. For example, for harmonic polyloga-

rithms of the form H~a,1(x) (i.e. where the defining string of numbers ends in a ‘1’) we

restrict ourselves to transformations of the form y → 1 − y and y → y/(y − 1) which

the HPL program performs assuming we are away from the branch cut.

Using the above techniques we obtain the following form for the two-loop finite

remainder M(2)
4 − 1

2(M(1)
4 )2:

M(2)
4 − 1

2
(M(1)

4 )2 =

(
κ2αǫ

4

)2 [
s2f (s)(y) + t2f (t)(y) + u2f (u)(y)

]
, (F.0.6)

where

f (s)(y) =
L4

3
− 2

3
log(1 − y)L3 − log2(1 − y)L2 + π2L2 +

2

3
log3(1 − y)L

− 4π2 log(1 − y)L + 8S1,2(y)L − 4π2Li2(y) + 8S1,3(y) − 8S2,2(y) − 7π4

30

+ i
[2πL3

3
+ 2π log(1 − y)L2 − 2π log2(1 − y)L + 8πLi2(y)L

+
4π3L

3
− 8πLi3(y) + 8πS1,2(y)

]
, (F.0.7)

f (t)(y) =
2

3
log(1 − y)L3 + log2(1 − y)L2 + 4Li2(y)L2 − π2L2 − 2

3
log3(1 − y)L

+ 4π2 log(1 − y)L − 8Li3(y)L + 4π2Li2(y) + 8Li4(y) − 8S1,3(y) +
π4

2

+ i
[2πL3

3
− 2π log(1 − y)L2 + 2π log2(1 − y)L

− 4π3L

3
− 8πS1,2(y) + 8πζ(3)

]
, (F.0.8)

f (u)(y) =
1

3
log4(1 − y) − 2

3
L log3(1 − y) + L2 log2(1 − y) − 2

3
L3 log(1 − y) − 4L2Li2(y)

+ 8LLi3(y) − 8Li4(y) − 8LS1,2(y) + 8S2,2(y) − π4

2
+ L2π2

+ i
[
− 2πL3

3
− 2π log(1 − y)L2 + 2π log2(1 − y)L − 8πLi2(y)L

+
4π3L

3
− 4

3
π log3(1 − y) − 8

3
π3 log(1 − y) + 8πLi3(y) − 8πζ(3)

]
, (F.0.9)
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where y = −s/t and L := log(−y).

Since the amplitude is invariant under crossing symmetry (arbitrary permutations

of the momenta or equivalently arbitrary permutations of s, t, u) we must have

f (u)(y) = f (u)(1/y) = f (s)(1 − y) = f (t)(y/(y − 1)) , (F.0.10)

which one can indeed verify as long as one takes suitable care over the analytic con-

tinuation in the manner outlined above.

Simplifying slightly f (u)(y) by writing it as k(y)+k(1/y) we obtain the form of the

amplitude given in (4.2.21).
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Appendix G

Derivation of (5.2.10)

In this Appendix we derive (5.2.10) from (5.2.9) in the linearised gravity approximation.

Upon expanding the metric about flat space, gµν(x) = ηµν + κhµν(x), one finds that

(5.2.9) is equal to

κ2

∮

C
dxµdxν 〈Γα

µβ(x)Γβ
να(y)〉 (G.0.1)

=
1

2

∮

C
dxµdxν

[
−∂x

α∂x
β〈hα

µ(x)hβ
ν (y)〉 + �x〈hµβ(x)hβ

ν (y)〉
]

.

To perform the calculation in (G.0.1) we choose the de Donder gauge, where the

propagator in D = 4 − 2ǫUV dimensions is given by (5.2.12). Boundary terms can be

dropped as the contour is a closed loop. Doing this, one easily finds that1

κ2

∮

C
dxµdyν 〈Γα

µβ(x)Γβ
να(y)〉 = c(D)

∮

C
dxµdyµ

�x∆(x − y)

= c(D)

∮

C
dxµdyµδ(D)(x − y) , (G.0.2)

where c(D) is a numerical constant, finite as D → 4. This is the result quoted in

(5.2.10).

1In [165], terms such as those appearing on the right hand side of (G.0.2) are referred to as “ultra-
local”.
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[8] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge

theory, JHEP 0409 (2004) 006, hep-th/0403047.

[9] A. Brandhuber, B. Spence and G. Travaglini, One-Loop Gauge Theory Amplitudes

in N=4 super Yang-Mills from MHV Vertices, Nucl. Phys. B 706 (2005) 150,

hep-th/0407214.

[10] C. Anastasiou, Z. Bern, L. J. Dixon and D. A. Kosower, Planar amplitudes in

maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91, 251602 (2003),

hep-th/0309040.

[11] Z. Bern, L. J. Dixon and V. A. Smirnov, Iteration of planar amplitudes in maxi-

mally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D

72 (2005) 085001, hep-th/0505205.

128



[12] L. F. Alday and J. Maldacena, Gluon scattering amplitudes at strong coupling,

0705.0303 [hep-th].

[13] J. M. Drummond, G. P. Korchemsky and E. Sokatchev, Conformal properties of

four-gluon planar amplitudes and Wilson loops, 0707.0243 [hep-th].

[14] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, On planar

gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52, 0709.2368

[hep-th].

[15] A. Brandhuber, P. Heslop and G. Travaglini, MHV Amplitudes in N=4 Su-

per Yang-Mills and Wilson Loops, Nucl. Phys. B 794 (2008) 231, 0707.1153

[hep-th].

[16] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Conformal

Ward identities for Wilson loops and a test of the duality with gluon amplitudes,

0712.1223 [hep-th].

[17] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, The hexagon Wil-

son loop and the BDS ansatz for the six-gluon amplitude, 0712.4138 [hep-th].

[18] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Hexagon Wilson

loop = six-gluon MHV amplitude, 0803.1466 [hep-th].

[19] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Dual super-

conformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory,

0807.1095 [hep-th].

[20] A. Nasti and G. Travaglini, One-loop N=8 Supergravity Amplitudes from MHV

Diagrams, Class. Quant. Grav. 24 (2007) 6071 0706.0976 [hep-th].

[21] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.

[22] A. Brandhuber, P. Heslop, A. Nasti, B. Spence and G. Travaglini, Four-point

Amplitudes in N=8 Supergravity and Wilson Loops, Nucl. Phys. B 807 (2009)

290 0805.2763 [hep-th].

[23] Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living

Rev. Rel. 5, 5 (2002) gr-qc/0206071.

[24] R. Kallosh, On UV Finiteness of the Four Loop N=8 Supergravity, 0906.3495

[hep-th].

[25] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson and R. Roiban, The Ultraviolet

Behavior of N=8 Supergravity at Four Loops, 0905.2326 [hep-th].

129



[26] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, D. A. Kosower and R. Roiban,

Three-Loop Superfiniteness of N=8 Supergravity, Phys. Rev. Lett. 98 (2007)

161303, hep-th/0702112.

[27] R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron

colliders, Nucl. Phys. B 312 (1989) 616.

[28] M. L. Mangano and S. J. Parke, Multiparton amplitudes in gauge theories, Phys.

Rept. 200 (1991) 301, hep-th/0509223.

[29] L. J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359.

[30] Z. Bern and D. A. Kosower, Color Decomposition Of One Loop Amplitudes In

Gauge Theories, Nucl. Phys. B 362 (1991) 389.

[31] M. L. Mangano, S. J. Parke and Z. Xu, Duality and Multi - Gluon Scattering,

Nucl. Phys. B 298 (1988) 653.

[32] J. E. Paton and H. M. Chan, Generalized veneziano model with isospin, Nucl.

Phys. B 10 (1969) 516.

[33] Z. Koba and H. B. Nielsen, Manifestly Crossing Invariant Parametrization Of N

Meson Amplitude, Nucl. Phys. B 12 (1969) 517.

[34] G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs. I: Spinors,

Phys. Rev. D 59 (1999) 045012 hep-ph/9708251.

[35] G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs. II: Spinor

helicity from the spacecone, Phys. Rev. D 59 (1999) 045013 hep-ph/9801220.

[36] G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs. III: Massive

vectors, Phys. Rev. D 63 (2001) 125027 hep-th/0101025.

[37] F. Cachazo and P. Svrcek, Lectures on twistor strings and perturbative Yang-Mills

theory, PoS RTN2005 (2005) 004 hep-th/0504194.

[38] S. J. Parke and T. R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev.

Lett. 56 (1986) 2459.

[39] F. A. Berends and W. T. Giele, Recursive Calculations for Processes with n Glu-

ons, Nucl. Phys. B 306 (1988) 759.

[40] S. J. Parke and T. R. Taylor, Perturbative QCD Utilizing Extended Supersymme-

try, Phys. Lett. B 157 (1985) 81

[41] M. T. Grisaru and H. N. Pendleton, Some Properties Of Scattering Amplitudes

In Supersymmetric Theories, Nucl. Phys. B 124 (1977) 81.

130



[42] M. T. Grisaru, H. N. Pendleton and P. van Nieuwenhuizen, Supergravity And The

S Matrix, Phys. Rev. D 15 (1977) 996.

[43] J. M. Maldacena, The large N limit of superconformal field theories and super-

gravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999)

1113] hep-th/9711200.

[44] J. M. Maldacena, Lectures on AdS/CFT, Prepared for Theoretical Advanced

Study Institute in Elementary Particle Physics (TASI 2002): Particle Physics

and Cosmology: The Quest for Physics Beyond the Standard Model(s), Boulder,

Colorado, 2-28 Jun 2002

[45] H. Kawai, D. C. Lewellen and S. H. H. Tye, A Relation Between Tree Amplitudes

Of Closed And Open Strings, Nucl. Phys. B 269 (1986) 1.

[46] Z. Bern, L. J. Dixon, M. Perelstein and J. S. Rozowsky, Multi-leg one-loop gravity

amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423, hep-th/9811140.

[47] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, One loop n point gauge

theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217,

hep-ph/9403226.

[48] Z. Bern, L. J. Dixon, D. C. Dunbar, M. Perelstein and J. S. Rozowsky, On the re-

lationship between Yang-Mills theory and gravity and its implication for ultraviolet

divergences, Nucl. Phys. B 530 (1998) 401, hep-th/9802162.

[49] D. C. Dunbar and P. S. Norridge, Infinities within graviton scattering amplitudes,

Class. Quant. Grav. 14 (1997) 351 hep-th/9512084.

[50] Z. Bern, V. Del Duca and C. R. Schmidt, The infrared behavior of one-loop

gluon amplitudes at next-to-next-to-leading order Phys. Lett. B 445 (1998) 168

hep-ph/9810409.

[51] D. A. Kosower and P. Uwer, One-Loop Splitting Amplitudes in Gauge Theory,

Nucl. Phys. B 563 (1999) 477 hep-ph/9903515.

[52] Z. Bern, V. Del Duca, W. B. Kilgore and C. R. Schmidt, The infrared behavior

of one-loop QCD amplitudes at next-to-next-to-leading order, Phys. Rev. D 60

(1999) 116001 hep-ph/9903516.

[53] R. E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math.

Phys. 1 (1960) 429.

[54] Z. Bern, L. J. Dixon and D. A. Kosower, Progress in one-loop QCD computations,

Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 hep-ph/9602280.

131



[55] Z. Bern, L. J. Dixon and D. A. Kosower, On-Shell Methods in Perturbative QCD,

Annals Phys. 322 (2007) 1587 0704.2798 [hep-ph].

[56] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes

in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 hep-th/0412103.

[57] R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345.

[58] H. Elvang, D. Z. Freedman and M. Kiermaier, Proof of the MHV vertex expansion

for all tree amplitudes in N=4 SYM theory, JHEP 0906 (2009) 068 0811.3624

[hep-th].

[59] K. Risager, A direct proof of the CSW rules, JHEP 0512 (2005) 003,

hep-th/0508206.

[60] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of

gluons, Nucl. Phys. B 715, 499 (2005) hep-th/0412308.

[61] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level re-

cursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602,

hep-th/0501052.

[62] S. D. Badger, E. W. N. Glover, V. V. Khoze and P. Svrcek, Recursion Relations

for Gauge Theory Amplitudes with Massive Particles, JHEP 0507 (2005) 025

hep-th/0504159.

[63] S. D. Badger, E. W. N. Glover and V. V. Khoze, Recursion Relations for Gauge

Theory Amplitudes with Massive Vector Bosons and Fermions, JHEP 0601 (2006)

066 hep-th/0507161.

[64] V. P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B

214 (1988) 215.

[65] A. Brandhuber, B. Spence and G. Travaglini, From trees to loops and back, JHEP

0601 (2006) 142, hep-th/0510253.

[66] A. Brandhuber and G. Travaglini, Quantum MHV diagrams, hep-th/0609011.

[67] J. Bedford, A. Brandhuber, B. Spence and G. Travaglini, A Twistor Approach to

One-Loop Amplitudes in N = 1 Supersymmetric Yang-Mills Theory, Nucl. Phys.

B 706 (2005) 100, hep-th/0410280.

[68] J. Bedford, A. Brandhuber, B. Spence and G. Travaglini, Non-supersymmetric

loop amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59,

hep-th/0412108.

132



[69] S. D. Badger and E. W. N. Glover, One-loop helicity amplitudes for H →
gluons: The all-minus configuration, Nucl. Phys. Proc. Suppl. 160 (2006) 71,

hep-ph/0607139.

[70] S. D. Badger, E. W. N. Glover and K. Risager, One-loop phi-MHV amplitudes

using the unitarity bootstrap, 0704.3914 [hep-ph].

[71] S. D. Badger, E. W. N. Glover and K. Risager, Higgs amplitudes from twistor

inspired methods, 0705.0264 [hep-ph].

[72] L. J. Dixon, E. W. N. Glover and V. V. Khoze, MHV rules for Higgs plus multi-

gluon amplitudes, JHEP 0412 (2004) 015, hep-th/0411092.

[73] S. D. Badger, E. W. N. Glover and V. V. Khoze, MHV rules for Higgs plus multi-

parton amplitudes, JHEP 0503 (2005) 023, hep-th/0412275.

[74] A. Brandhuber, B. Spence and G. Travaglini, Amplitudes in pure Yang-Mills and

MHV diagrams, JHEP 0702 (2002) 88, hep-th/0612007.

[75] P. Mansfield, The Lagrangian origin of MHV rules, JHEP 0603 (2006) 037,

hep-th/0511264.

[76] A. Gorsky and A. Rosly, From Yang-Mills Lagrangian to MHV diagrams, JHEP

0601 (2006) 101, hep-th/0510111.

[77] J. H. Ettle and T. R. Morris, Structure of the MHV-rules Lagrangian, JHEP 0608,

003 (2006), hep-th/0605121.

[78] J. H. Ettle, C. H. Fu, J. P. Fudger, P. R. W. Mansfield and T. R. Morris, S-matrix

Equivalence Theorem Evasion and Dimensional Regularisation with the Canonical

MHV Lagrangian, hep-th/0703286.

[79] A. Brandhuber, B. Spence, G. Travaglini and K. Zoubos, One-loop MHV Rules

and Pure Yang-Mills, 0704.0245 [hep-th].

[80] N. E. J. Bjerrum-Bohr, D. C. Dunbar, H. Ita, W. B. Perkins and K. Risager,

MHV-vertices for gravity amplitudes, JHEP 0601 (2006) 009, hep-th/0509016.

[81] M. B. Green, J. H. Schwarz and L. Brink, N=4 Yang-Mills And N=8 Supergravity

As Limits Of String Theories, Nucl. Phys. B 198 (1982) 474.

[82] D. C. Dunbar and P. S. Norridge, Calculation of graviton scattering amplitudes

using string based methods, Nucl. Phys. B 433, 181 (1995), hep-th/9408014.

[83] Z. Bern and D. A. Kosower, The Computation of loop amplitudes in gauge theories,

Nucl. Phys. B 379 (1992) 451.

133



[84] D. A. Kosower, Next-to-maximal helicity violating amplitudes in gauge theory,

Phys. Rev. D 71 (2005) 045007, hep-th/0406175.

[85] G. Georgiou and V. V. Khoze, Tree amplitudes in gauge theory as scalar MHV

diagrams, JHEP 0405 (2004) 070 hep-th/0404072.

[86] J. B. Wu and C. J. Zhu, MHV vertices and fermionic scattering amplitudes in

gauge theory with quarks and gluinos, JHEP 0409 (2004) 063 hep-th/0406146.

[87] J. B. Wu and C. J. Zhu, MHV vertices and scattering amplitudes in gauge theory,

JHEP 0407 (2004) 032, hep-th/0406085.

[88] G. Georgiou, E. W. N. Glover and V. V. Khoze, Non-MHV tree amplitudes in

gauge theory, JHEP 0407 (2004) 048, hep-th/0407027.

[89] C. Quigley and M. Rozali, One-Loop MHV Amplitudes in Supersymmetric Gauge

Theories, JHEP 0501 (2005) 053, hep-th/0410278.

[90] J. Bedford, A. Brandhuber, B. Spence and G. Travaglini, A recursion relation for

gravity amplitudes, Nucl. Phys. B 721, 98 (2005), hep-th/0502146.

[91] F. A. Berends, W. T. Giele and H. Kuijf, On relations between multi-gluon and

multigraviton scattering, Phys. Lett. B 211 (1988) 91.
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