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QUENCHED LOCALISATION IN THE BOUCHAUD TRAP

MODEL WITH SLOWLY VARYING TRAPS

DAVID A. CROYDON1 AND STEPHEN MUIRHEAD2

Abstract. We consider the quenched localisation of the Bouchaud trap model on the
positive integers in the case that the trap distribution has a slowly varying tail at
infinity. Our main result is that for each N ∈ {2, 3, . . .} there exists a slowly varying
tail such that quenched localisation occurs on exactly N sites. As far as we are aware,
this is the first example of a model in which the exact number of localisation sites are
able to be ‘tuned’ according to the model parameters. Key intuition for this result is
provided by an observation about the sum-max ratio for sequences of independent and
identically distributed random variables with a slowly varying distributional tail, which
is of independent interest.

1. Introduction

This article studies localisation properties of the Bouchaud trap model (BTM) on the
positive integers in the case of slowly varying traps. To define the BTM, we first introduce
a trapping landscape σ = (σx)x∈Z+ , which is a collection of independent and identically
distributed (i.i.d.) strictly-positive random variables built on a probability space with
probability measure P. Conditional on σ, the dynamics of the BTM are given by a
continuous-time Z+-valued Markov chain X = (Xt)t≥0, started from the origin, with
transition rates

(1) wx→y =

{

1
2σx

, if y ∼ x,

0, otherwise,

where y ∼ x means that x and y are nearest neighbours in Z+. We denote the law of X
conditional on σ, the so-called ‘quenched’ law of the BTM, by Pσ. Our focus is on the
case in which the trap distribution σ0 has a slowly varying tail at infinity, i.e. when the
(non-decreasing, unbounded, càdlàg) function

L(u) :=
1

P(σ0 > u)

satisfies the slow-variation assumption

(2) lim
u→∞

L(uv)

L(u)
= 1 for all v > 0.
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Slowly varying trap models arise naturally in the study of certain random walks in
random media, such as biased random walks on critical Galton-Watson trees [5], and
spin-glass dynamics on subexponential time scales [2, 4]. They also have parallels with
Sinai’s random walk [13], as reflected in the logarithmic rate of escape to infinity and
strong localisation properties of that model. With regards to the BTM with slowly
varying traps in particular, recent work has studied localisation [12], ageing [10], and
scaling limits [6], which are qualitatively different from the equivalent phenomena in the
case of integrable or regularly varying traps.

In this work we continue the study of the BTM with slowly varying traps by considering
more delicate localisation properties of the model, namely those that hold under the
quenched law for typical realisations of the trapping landscape. We expect that similar
quenched localisation properties hold throughout the class of general slowly varying trap
models. For simplicity we have chosen to work in the one-sided case (i.e. on the positive
integers, rather than on the integers); this avoids some of the technical difficulties present
in the two-side case, yet still exhibits the phenomena that interest us. We make some
remarks about quenched localisation in the BTM on the integers below.

1.1. Localisation in the BTM. It was recently shown in [12] that the BTM on the
integers with slowly varying traps exhibits two-site localisation in probability, that is,
there exists a (P-measurable) set-valued process Γt such that |Γt| = 2 and, as t → ∞,

Pσ(Xt ∈ Γt) → 1 in P-probability,(3)

and, moreover, no set-valued process Γt with |Γt| = 1 satisfies equation (3); note that
here the probability measures P and Pσ refer to the BTM on the integers. The basic
fact underlying this localisation result is that the cumulative sum of i.i.d. sequences of
slowly varying random variables is asymptotically dominated, with high probability, by
the maximal term. Translated to the setting of the BTM, this property implies that the
BTM with slowly varying traps is highly likely to be located, at any sufficient large time,
on the largest traps on the positive and negative half-lines that are ‘within reach’ of the
BTM by this time. Note that two-site localisation is not exhibited in the BTM with
regularly varying or integrable traps.

We seek to establish an almost-sure analogue of the above result, that is, to determine
the smallest (P-measurable) set-valued process Γt such that, as t → ∞,

Pσ(Xt ∈ Γt) → 1 P-almost-surely;

whenever we refer to ‘quenched localisation’, it is a limit such as this that we mean. In
the one-sided case, it is possible to check that the analogue to (3) holds with |Γt| = 1
(see Theorem 1.1 below). From this, simple heuristics suggest that the strongest form of
quenched localisation that one might hope to observe is that there exists a localisation
set Γt such that |Γt| = 2; this follows from the fact that the probability mass function
eventually moves out to infinity and so, by continuity, must be spread over at least two
sites at arbitrarily large times.

In this paper we prove that this strongest form of quenched localisation is actually
attained for certain examples of the BTM with slowly varying traps; in other words,
we prove that there exists a certain class of slowly varying tails for which the BTM
localises on two sites eventually almost-surely, and for which one localisation site would
be insufficient.

More surprisingly perhaps, for each N ∈ {2, 3, . . .} we show that there exists a slowly
varying tail such that quenched localisation occurs on exactly N sites. As such, the BTM
with slowly varying traps is an example of a model that exhibits quenched localisation
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on a finite number of sites, with the exact number of localisation sites able to be tuned
by adjusting the parameters of the model. As far as we are aware, this is the first known
example of such a model.

1.2. Main results. In this section, we describe our main results on localisation in the
BTM on the positive integers. We assume throughout that the trap distribution satisfies
the slow-variation assumption (2). As a preliminary, we first state the one-sided analogue
of equation (3); that is, we establish the complete localisation in probability of the BTM
on the positive integers.

Theorem 1.1 (Complete localisation in probability). It is possible to define a (P-
measurable) process Zt such that, as t → ∞,

Pσ(Xt = Zt) → 1 in P-probability.

The main focus of the paper is to establish quenched analogues of Theorem 1.1. Inter-
estingly, quenched localisation in the BTM turns out to depend on rather fine properties
of the trap distribution σ0. To introduce these properties, we first recall that a function
L is said to be second-order slowly varying with rate g, if there exist functions g, k such
that g(u) → 0 as u → ∞ and

lim
u→∞

L(uv)
L(u)

− 1

g(u)
= k(v), for any v > 0,(4)

and where there exists a v such that k(v) 6= 0 and k(uv) 6= k(u) for all u > 0; as discussed
in [6], in our setting it follows from this assumption that g itself is slowly varying and
(possibly after multiplying by a constant) we can take k(v) = log v. Second-order slow-
variation is a natural strengthening of the slow-variation property (2), giving more precise
information about the fluctuations of L at infinity; see [3, Chapter 3] for an overview of
second-order slow-variation.

In particular, each of our main results will depend on the assumption that L is second-
order slowly varying. In addition, it will be convenient to assume certain extra regularity
condition on L and g, namely that L is continuous (which avoids complications in our
treatment of records of the sequence σ) and that the decay of g is eventually monotone
(which allow us to control the decay of g(x) through bounds on x).

Assumption 1 (Second-order slow-variation assumption). The function L is continu-
ous, and satisfies (4) with second-order slow-variation rate g that is eventually monotone
decreasing.

We shall now explain how the quenched localisation behaviour of the BTM depends
on the precise asymptotic decay of the second-order slow-variation rate g. For the rest of
this section we work under Assumption 1, and abbreviate the function

d(u) := g(L−1(u)),

where L−1 denotes the right-continuous inverse of L, noting that d(u) → 0 as u → ∞.
Define the integer

N := min

{

ℓ ∈ {2, 3, . . .} :
∑

n∈N

(d(en) logn)ℓ−1 < ∞

}

,(5)

setting N = ∞ if no such ℓ exists. Our first main theorem (Theorem 1.3) identifies N as
the number of quenched localisation sites of the BTM. Before stating this result, we first
need to introduce an additional assumption that is necessary for certain aspects of our
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results to hold. This assumption acts to exclude boundary cases, in which the number of
localisation sites in a sense falls intermediate between two integers.

Assumption 2 (Exclusion of boundary cases). It is the case that N < ∞, and

(a)
∑

n∈N

d(en)N−2 = ∞ , (b)
∑

n∈N

d(en)N−1(log n)N < ∞.

Remark 1.2. We note that Assumptions 1 and 2 are satisfied for a wide range of slowly
varying distributions σ0. The main examples we have in mind are distributions satisfying

L(u) := exp{(log(1 + u))γ}, γ ∈ (0, 1),(6)

for which g(u) = γ(log(1 + u))γ−1, d(en) ∼ γn− 1−γ
γ , and

N = 2 +

⌊

γ

1− γ

⌋

.

In this example, we observe that N = 2 if and only if γ < 1/2, that N → ∞ as
γ → 1, and moreover that any N ∈ {2, 3, . . .} is attainable by selecting an appropriate
γ ∈ (0, 1). Other classes of slowly varying distribution for which our results hold are
those with logarithmic decay (L(u) = (1 + log(1 + u))γ, γ > 0), or double logarithmic
decay (L(u) = (1 + log(1 + log(1 + u)))γ, γ > 0); in both cases L satisfies Assumptions 1
and 2 with N = 2.

Our first main result establishes the property of N -site localisation almost-surely.

Theorem 1.3 (N -site localisation). If Assumption 1 holds, then there exists a (P-
measurable) set-valued process Γt satisfying |Γt| ≤ N such that, as t → ∞,

Pσ(Xt ∈ Γt) → 1 P-almost-surely.(7)

Moreover if Assumption 2 also holds, then there is no set-valued process Γt satisfying
|Γt| < N such that (7) holds.

The first claim of Theorem 1.3 states that the probability mass of the BTM is asymp-
totically supported by a certain (P-measurable) collection of N sites, where N ≥ 2. To
deduce the second claim that no smaller set will do, we study the most favoured site of
the BTM. In particular, our second main result (Theorem 1.4) shows that the associated
probability mass fluctuates infinitely often between the bounds of 1/N and 1; Figure 1
shows a sketch of a typical trajectory of this probability mass. An immediate implication
of this is that there exist arbitrary large times such that the probability mass of the
BTM is approximately uniform across each of the N localisation sites, which is sufficient
to complete the proof of Theorem 1.3.

Theorem 1.4 (Probability mass on most favoured site). If Assumption 1 holds, then
P-almost-surely,

lim inf
t→∞

sup
x∈Z+

Pσ(Xt = x) ≥ 1/N and lim sup
t→∞

sup
x∈Z+

Pσ(Xt = x) = 1.

Moreover if Assumption 2 also holds, then P-almost-surely,

lim inf
t→∞

sup
x∈Z+

Pσ(Xt = x) = 1/N.
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t
0

1/N

1

Figure 1. Typical trajectories of the probability mass on the most
favoured site, supx∈Z+ Pσ(Xt = x), in the slowly varying case.

Remark 1.5. To give some intuition as to why the number of localisation sites depends
on the second-order slow-variation rate g in the way determined by (5), consider that,
for v > 1,

P (σ0 ∈ (u, uv] | σ0 > u) =
1/L(u)− 1/L(uv)

1/L(u)
= 1−

L(u)

L(uv)
∼ g(u)k(v),

and so g(u) gives an approximate measure of how likely records, or near records, of
the sequence (σi)i∈N are to cluster on the same scale u. In particular, g(u)k gives the
approximate probability that such a cluster consists of at least k sites. Next, consider
that the height of the nth record of the sequence (σi)i∈N is approximately L−1(en) (see,
e.g. Lemma 3.5). Hence, by a Borel-Cantelli argument, the summability of the sequence

(

d(en)k
)

n∈N
:=
(

g
(

L−1(en)
)k
)

n∈N

determines whether a cluster of k records, or near records, occurs around the nth record
eventually almost-surely. From here, notice that a cluster of records, or near records, on
the same scale naturally gives rise to a division of the probability mass function of the
BTM across this cluster. Counting the site of the nth record and the site from which the
BTM eventually escapes after leaving the associated cluster of records or near records,
this line of argument suggests that, under Assumptions 1 and 2, quenched localisation
will occur on N sites. With regard to the extra logarithmic factors appearing in the
definition of N in (5) and in Assumption 2, it is possible that these are artifacts of our
proof which could be removed (or at least relaxed).

The above heuristics allow us to conjecture the quenched localisation behaviour of the
BTM on the integers. In particular, we expect that quenched localisation in the BTM
on the integers occurs on a set of cardinality N + 1, i.e. one larger than for the positive
integers. The intuition is that the clustering argument described above is valid across the
whole positive and negative half-lines. The extra localisation site takes into account the
fact that the BTM can now escape, after leaving the cluster, in two directions. Never-
theless, formalising this heuristic presents additional technical challenges not present in
the one-sided case, and we do not pursue this here.

Remark 1.6. Let us draw a comparison with the BTM with regularly varying traps. In
this case, it was recently shown in [7] that

lim sup
t→∞

sup
x∈Z

Pσ(Xt = x) = 1 P-almost-surely,
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refining the original observation of [9] that the above lim sup expression is strictly positive;
note that here the probability measures P and Pσ refer to the BTM on the integers. In
other words, just as in the slowly varying case, there exist arbitrarily large times at which
the probability mass of the BTM is, up to any specified error, completely localised. On
the other hand, in [7] it was also shown that in the regularly varying case

lim inf
t→∞

sup
x∈Z

Pσ(Xt = x) = 0 P-almost-surely,

in other words, there are also arbitrarily large times at which the BTM is completely
delocalised.

In light of Theorems 1.3 and 1.4, it is natural to expect that the localisation set of the
BTM is related to the set of ‘record traps’

R :=

{

x ∈ Z+ : σx > max
0≤y<x

σy

}

.

The following result shows that the localisation set can actually be chosen to be a subset
of R if and only if N = 2. It will become clear from our proofs that for N > 2 the
localisation set will, at arbitrarily large times, also include certain ‘near records’.

Theorem 1.7 (Criterion for localisation on record traps). Suppose Assumptions 1 and
2 both hold. Then

Pσ(Xt ∈ R) → 1 P-almost-surely

if and only if N = 2.

Remark 1.8. The regimes in which two-site localisation occurs almost-surely, and in-
deed occurs on record traps, are precisely the regimes identified in [6] and [11] in which
simplified scaling limit theorems are available (see [6, Remark 1.5] and [11, Remark 2.4]).

Finally, we observe that each of our main results on localisation in the BTM with
slowly varying traps is underpinned by the analogous result regarding the sum-max ratio
for sequences of i.i.d. slowly varying random variables. As we noted above, with high
probability, the partial sums of such sequences are asymptotically dominated by the
maximum. However, it turns out that in general this is not the case almost-surely, as
is demonstrated by the following theorem. This provides a crucial ingredient in our
arguments for the BTM, and to the best of our knowledge has not appeared in the
literature before.

Theorem 1.9 (Sum/max ratio for sequences of slowly varying random variables). Let
(σi)i∈N be an i.i.d. sequence of copies of σ0. Let mi and Si denote the maximum and sum
respectively of the partial sequence (σj)j≤i . If Assumption 1 holds, then, almost-surely,

lim inf
i→∞

Si

mi
= 1 and lim sup

i→∞

Si

mi
≤ N − 1.

Moreover, if Assumption 2(a) (with N < ∞) also holds, then

lim sup
i→∞

Si

mi
= N − 1.

Remark 1.10. In the special case of L satisfying (6), this implies that

lim inf
i→∞

Si

mi
= 1 and lim sup

i→∞

Si

mi
= 1 +

⌊

γ

1− γ

⌋

,

almost-surely. Hence, in this case, limi→∞ Si/mi = 1 almost-surely if and only if γ < 1/2.
For comparison, we recall that the latter limit holds in probability for all slowly varying
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tails [8]; an observation which (together with Fatou’s lemma) already yields the lim inf
part of the previous result.

1.3. Outline of the paper. The rest of this paper is organised as follows. In Section 2
and Section 3 we collect preliminary results that will be crucial in proving the main
theorems. The results in Section 2 relate to random walks in inhomogeneous trapping
landscapes; the results in Section 3 consider general properties of sequences of slowly vary-
ing random variables, including the key almost-sure bound on the ratio of the cumulative
sum to the maximum stated as Theorem 1.9 above.

In Section 4 we study upper bounds on the size of the quenched localisation set. We first
give an explicit description of the localisation set Γt, and show that localisation does occur
on this set eventually almost-surely. Here we also show that |Γt| = 1 with overwhelming
probability, establishing the complete localisation in probability of Theorem 1.1. We
next consider the almost-sure cardinality of Γt, showing that |Γt| ≤ N eventually almost-
surely, establishing the first claim of Theorem 1.3 above. As a corollary, we show that, if
N = 2, the localisation set Γt is contained in the set of record traps R, establishing one
direction of Theorem 1.7.

Finally, in Section 5 we study the most favoured site (Theorem 1.4 above). Since
Theorem 1.1, and the first part of Theorem 1.3, will already have been proved at this
point, it will be sufficient to show that there exist arbitrarily large times at which the
BTM is evenly balanced across a certain set of N localisation sites. Since for N ≥ 3,
the above-mentioned N sites are not all contained in the record traps R, this will also
establish the converse direction of Theorem 1.7.

2. Random walks in inhomogeneous trapping landscapes

In this section we collect preliminary results on random walks in inhomogeneous trap-
ping landscapes, in particular relating to hitting times and localisation. Note that in this
section the trapping landscape σ will always be assumed to be completely arbitrary and
deterministic.

Throughout this section, fix a, b ∈ Z such that a < b and let Xa,b = (Xa,b
t )t≥0 denote

the inhomogeneous continuous-time random walk (CTRW) in an arbitrary (deterministic)
trapping landscape σ = (σx)x∈[a,b]∩Z, with reflected boundary conditions at a and b. More
precisely, Xa,b is the continuous-time Markov chain on [a, b] ∩ Z with transition rates as
at (1), where y ∼ x here means that x and y are nearest neighbours in [a, b] ∩ Z. Let
P a,b
x denote the law of Xa,b when started from the site x ∈ [a, b] ∩ Z. Henceforth, and

throughout the rest of the paper, we shall refer to Xa,b as the ‘inhomogeneous CTRW on
[a, b] ∩ Z in the trapping landscape σ’.

2.1. Hitting times for inhomogeneous CTRWs. We start by considering upper and
lower bounds on the hitting times of the boundary by Xa,b. We let τa and τb denote the
hitting time of the boundary at a and b respectively, i.e.

τa := inf{s : Xa,b
s = a} and τb := inf{s : Xa,b

s = b},

and let τ be the hitting time of either boundary, i.e.

τ := min{τa, τb}.

Proposition 2.1 (Upper bounds on hitting times). For each x ∈ [a, b] ∩ Z and t > 0,

P a,b
x (τb ≥ t) ≤ 2t−1 (b− x)

∑

a≤z<b

σz.
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Moreover, if S ⊆ [x, b) ∩ Z, then

P a,b
x (τb ≥ t) ≤ 2t−1

(

(b− x)
∑

{a≤z<b}\S

σz + |S|max
z∈S

{b− z}max
z∈S

{σz}

)

.

Proof. By basic properties of simple random walks, the expected number of times the
process Xa,b, started from x, visits a site z ∈ (a, b) ∩ Z prior to τb is equal to 2min{b−
z, b− x}, with the mean holding time at each visit to z being σz. Similarly, the expected
number of times Xa,b hits the site a prior to τb is equal to (b− x) with the mean holding
time at each visit being 2σa. Hence

Ea,b
x [τb] =

∑

a≤z<b

2min{b− z, b− x} σz.

For the first statement, we bound this expectation simply by

Ea,b
x [τb] ≤ 2(b− x)

∑

a≤z<b

σz,

and apply Markov’s inequality. For the second statement, we instead bound the expec-
tation by

Ea,b
x [τb] ≤ 2(b− x)

∑

{a≤z<b}\S

σz + 2|S|max
z∈S

{b− z}max
z∈S

{σz},

and again apply Markov’s inequality. �

Proposition 2.2 (Lower bound on hitting times). For each x ∈ [a, b) ∩Z, z ∈ [x, b) ∩Z
and t > 0,

P a,b
x (τb ≤ t) ≤

t

2(b− z)σz
.

Moreover, for each x ∈ (a, b) ∩ Z and t > 0,

P a,b
x (τ ≤ t) ≤

t

min{x− a, b− x}σx
.

Proof. Consider the first statement, and note that τb is bounded below by the time spent
by Xa,b at the site z prior to the time τb. Assume for the moment that x 6= a. By basic
properties of simple random walks, the number of times Xa,b, started from x, visits a
site z ∈ [x, b)∩Z prior to τb is distributed as a geometric random variable (supported on
{1, 2, . . .}) with mean 2(b− z). Moreover, the time spent at each visit is an independent
exponential random variable with mean σz . Hence, the time spent at z prior to τb is
exponentially distributed with mean 2(b− z)σz . This implies that

P a,b
x (τb ≤ t) ≤ 1− exp

{

−
t

2(b− z)σz

}

≤
t

2(b− z)σz

.

If x = a the proof is identical, since the extra factors of two in the means of the number
of visits and holding time distributions exactly cancel each other out.

The proof of the second statement is similar. This time, consider that the number
of times Xa,b visits x prior to the time τ is distributed as a geometric random variable
(supported on {1, 2, . . .}) with mean

2

(

1

x− a
+

1

b− x

)−1

≥ min{x− a, b− x},

and the result follows as before. �
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2.2. Localisation of inhomogeneous CTRWs. To finish the section, we state a simple
localisation property of Xa,b, expressed in terms of the trapping landscape σ.

Proposition 2.3. For each x ∈ [a, b] ∩ Z and S ⊆ [a, b] ∩ Z such that x /∈ S,

sup
t≥0

P a,b
x

(

Xa,b
t ∈ S

)

≤

∑

z∈S σz

σx
.

Proof. First note that, by standard continuous-time Markov chain theory, the process
Xa,b has a unique equilibrium distribution π. From the detailed balance equations, it is
straightforward to check that π ∝ σ, i.e. for each z ∈ [a, b] ∩ Z,

π(z) =
σz

∑

a≤y≤b σy
.

Hence, using the reversibility of the process, for each z ∈ [a, b] ∩ Z and time t ≥ 0,

P a,b
x (Xt = z) = P a,b

z (Xt = x)
π(z)

π(x)
≤

π(z)

π(x)
=

σz

σx
.

Summing over S yields the result. �

3. Sequences of slowly varying random variables

In this section we collect results on i.i.d. sequences of copies of σ0. Throughout this sec-
tion we shall assume that L is slowly varying, but we shall not necessarily assume that L
satisfies the second-order slow-variation in Assumption 1 or, indeed Assumption 2, unless
we specify this explicitly. We first prove preliminary results on general i.i.d. sequences of
slowly varying random variable; these relate to exceedences, records, and partial sums of
such sequences. We then apply these results to establish the almost-sure bound on the
ratio of the sum to the maximum of the sequence (σi)i∈N of Theorem 1.9. Finally, we
study certain types of ‘hyperbolic’ exceedence; the relevance of these exceedences to the
BTM will be made clear in Section 4.

Before proceeding, we shall first recall a useful consequence of second-order slow-
variation Assumption 1 for certain expectations involving σ0; the spirit is similar to that
of de Haan’s theorem (see [3, Section 3.7]). We also state a weaker version of the result
which holds for general slowly varying tails; the spirit is similar to that of Karamata’s
theorem.

Proposition 3.1 (See [6, Proposition 5.1]). Assume L satisfies Assumption 1. Let f :
(0,∞) → R+ be a continuously differentiable function and I ⊆ (0,∞) an interval (which
may be unbounded), and suppose there exists a δ > 0 for which: (i) f(t)1{t∈I} = o(tδ)
as t → 0; and (ii) both f ′(t)tδ and f ′(t)t−δ are integrable over the interval I. Then the
function

Γ(n) := E
[

f(σ0/n)1{σ0/n∈I}

]

satisfies

lim
n→∞

L(n)Γ(n)

g(n)
= −λ

∫

I

f ′(t) log t dt

for some constant λ > 0 that only depends on L and g. Moreover, even if L does not
satisfy Assumption 1 but is still slowly varying, we have that

lim
n→∞

L(n)Γ(n) = 0.

Remark 3.2. Note that the first statement of this result is a very slight generalisation
of [6, Proposition 5.1], which is recovered by setting I := (0,∞). It is proved in an
identical manner. The second statement is also proved in an identical manner.
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3.1. Preliminary results: Exceedences, records, and partial sums. Our prelimi-
nary results on general sequences of slowly varying random variables are split into three
categories, containing results on: (i) first exceedences of levels; (ii) records of the se-
quence; and (iii) partial sums. Note that some of the results in this section hold only if
Assumption 1 is satisfied; Assumption 2 will not be relevant to this section.

Note that when we describe a collection (Xi)i∈I of non-negative random variables as
being bounded above or bounded below in probability we mean that (Xi)i∈I or (1/Xi)i∈I ,
respectively, is tight.

3.1.1. First exceedences of levels. For a level x > 0, let ix denote the index of the first
exceedence of x in the sequence (σi)i∈N, that is ix := min{i : σi > x}. Further, denote by
i−x := argmax{σi : i < ix}.

Lemma 3.3 (Typical exceedences). As x → ∞,

ix
L(x)

,
L(σix)

L(x)
− 1,

L(σi−x
)

L(x)
and 1−

L(σi−x
)

L(x)

are all bounded above and below in probability.

Proof. We first note that
∑

i∈N

δ
( i
n
,
L(σi)

n
)
→ ν =

∑

i

δ(ui,vi),

in distribution as random measures on R+ × R+, where ν is a Poisson random measure
with intensity v−2dudv. (Here δ(u,v) is the probability measure placing all its mass at
(u, v).) It follows that

(8) min

{

i

n
:
L(σi)

n
> 1

}

→ inf {ui : vi > 1}

in distribution, where the limit is a (0,∞)-valued random variable. Taking n = L(x) in
the above yields ix/L(x) converges in distribution, and so is bounded above and below in
probability. Moreover, L(σix)/L(x) converges in distribution to the vi such that (ui, vi) is
an atom of ν and ui obtains the infimum in (8). Since the latter is a (1,∞)-valued random
variable, the second claim holds. Similarly, L(σi−x

)/L(x) converges to maximum vj such
that (uj, vj) is an atom of ν and uj is strictly less than the infimum on the right-hand
side of (8). Since this is a (0, 1)-valued random variable, the proof is complete. �

Lemma 3.4 (Level/exceedence ratio). Assume L satisfies Assumption 1. Then there
exists a c > 0 such that, as x → ∞,

E
[

σ−1
ix

]

< cx−1g(x)

eventually.

Proof. We compute as follows

E
[

σ−1
ix

]

= L(x)E
[

σ−1
0 1{σ0>x}

]

= x−1L(x)E
[

f(σ0/x)1{σ0/x>1}

]

,

where f(x) := x−1. Applying the first statement of Proposition 3.1 we deduce that

E
[

f(σ0/x)1{σ0/x>1}

]

∼
λg(x)

L(x)

∫ ∞

1

t−2 log t dt,

which yields the result. �
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3.1.2. Records of the sequence. For n ∈ N, let rn indicate the index of the nth record of
the sequence (σi)i∈N, and abbreviate σ(n) := σrn.

Lemma 3.5 (Bounds for records). Assume L satisfies Assumption 1. Then for each
ε > 0 there exists a c > 0 such that

P
(

logL(σ(n)) /∈ n(1− ε, 1 + ε)
)

< cn−2

and
P
(

rn < L(σ(n−1))/n
2 or rn > 2L(σ(n−1)) logn

)

< cn−2

hold for all n. In particular, as n → ∞,

logL(σ(n)) ∼ n and L(σ(n−1))/n
2 ≤ rn ≤ 2L(σ(n−1)) logn

eventually almost-surely.

Proof. For the first statement, note that the continuity of L (guaranteed by Assumption 1)
ensures that the sequence (logL(σi))i∈N consists of unit mean exponentially distributed
random variables. By the memoryless property of the exponential distribution, the gaps
in the sequence (logL(σ(i)))i∈N are therefore also unit mean exponentially distributed
random variables. Hence the statement is just a standard large deviation bound for
exponentially distributed random variables. For the second statement, note that

P(rn < L(σ(n−1))/n
2 | σ(n−1)) ≤ P(rn − rn−1 < L(σ(n−1))/n

2 | σ(n−1))

≤
L(σ(n−1))

n2

1

L(σ(n−1))
= n−2

by the union bound, and

(9) P(rn > 2L(σ(n−1)) logn | σ(n−1)) =

(

1−
1

L(σ(n−1))

)2L(σ(n−1)) logn

≤ n−2.

Hence, taking expectations, we have that

P(rn < L(σ(n−1))/n
2 or rn > 2L(σ(n−1)) logn) ≤ 2n−2,

which yields the result. Finally, the last statement is just an application of the Borel-
Cantelli lemma. �

Lemma 3.6 (Location/exceedence ratio for records). For each k ∈ N and n ∈ N,

E

[

(

rn
L(σ(n−1))

)k
]

< k!.

Proof. Similarly to (9), for each λ > 0 we have

P
(

rn > λL(σ(n−1))| σ(n−1)

)

=

(

1−
1

L(σ(n−1))

)λL(σ(n−1))

< e−λ.

Hence P(rn > λL(σ(n−1))) < e−λ, in other words, the random variable rn/L(σ(n−1)) is
stochastically dominated by a mean one exponential random variable. The kth moment
of the latter is precisely k!, and so we are done. �

Lemma 3.7 (Ratio of successive records). Assume L satisfies Assumption 1. Then there
exists a c > 0 and x0 < ∞ such that, almost-surely: if x ≥ x0 and n ≥ m, then

E

(

σ(m)

σ(n)

σ(m)

)

1{σ(m)≥x} < cn−m g(x)n−m.

11



Proof. Choose x0 large enough so that the bound of Lemma 3.4 holds for x ≥ x0, and let
c be the constant of that lemma. Then, applying Lemma 3.4 repeatedly, we find that,
almost-surely, if x ≥ x0 and m ≤ n, then

E

(

σ(m)

σ(n)

σ(m)

)

1{σ(m)≥x} = E

(

σ(m)

σ(n−1)

E

(

σ(n−1)

σ(n)

σ(n−1)

)

σ(m)

)

1{σ(m)≥x}

< E

(

σ(m)

σ(n−1)

c g(σ(n−1)) σ(m)

)

1{σ(m)≥x}

< c g(x)E

(

σ(m)

σ(n−1)
σ(m)

)

1{σ(m)≥x}

...

≤ cn−mg(x)n−m,

as desired. Note that we use the monotonicity of g (guaranteed by Assumption 1) to
deduce that g(σ(n−k)) ≤ g(x) for k = 1, . . . , n−m. �

Lemma 3.8 (Sum of records). Assume L satisfies Assumption 1, and recall the definition
d(u) := g(L−1(u)). Then for each ε > 0 sufficiently small, integer k ≥ 1 and positive
sequence δn, there exists a c > 0 such that

P

(

n−1
∑

i=1

σ(i) ≥ (k − 1 + δn)σ(n)

)

< cn−2 + c δ−1
n d(en(1−ε))k

for all n.

Proof. Define the event An := {σ(n−k) ≥ L−1(en(1−ε))}. Then, by Lemma 3.5 and
Markov’s inequality, there exists a c > 0 such that

P

(

n−1
∑

i=1

σ(i) ≥ (k − 1 + δn)σ(n)

)

< cn−2 +P

(

n−k
∑

i=1

σ(i) ≥ δnσ(n), An

)

< cn−2 + δ−1
n

n−k
∑

i=1

E

(

σ(i)

σ(n)

1{An}

)

.

The lower bound for σ(n−k) that holds on An allows us to apply Lemma 3.7 to deduce
that this is eventually bounded above, for some c1 > 0, by

< c1n
−2 + c1 δ

−1
n d(en(1−ε))k

n−k
∑

i=1

E

(

σ(i)

σ(n−k)
1{An}

)

.

Next, we note that the summands are bounded as follows

E

(

σ(i)

σ(n−k)

1{An}

)

≤ E

(

σ(i)

σ(n−k)

)

≤ E

(

σ(i)

σ(n−k)

1{σ(i)≥x}

)

+P
(

σ(i) ≤ x
)

.

For the first term, we again apply Lemma 3.7 to deduce that, for large enough x,

E

(

σ(i)

σ(n−k)
1{σ(i)≥x}

)

≤ (cg(x))n−k−i.

In particular, by the fact that g(x) → 0, we can choose x such that cg(x) < 1. Moreover,
it is clear that, for each fixed x, there exists a constant cx such that

P
(

σ(i) ≤ x
)

≤ P
(

logL(σ(i)) ≤ logL(x)
)

= P (Po(logL(x)) ≥ i) ≤ cxe
−i,

12



where we use that (logL(σ(i)))i≥1 simply represents the points of a unit rate Poisson
process, and denote by Po(λ) a Poisson random variable with parameter λ. Hence, we
conclude that

P

(

n−1
∑

i=1

σ(i) < (k − 1 + δn)σ(n)

)

< cn−2 + c δ−1
n d(en(1−ε))k

n−k
∑

i=1

(

(cg(x))n−k−i + cxe
−i
)

,

and since the sum is bounded in n, this completes the proof. �

3.1.3. Partial sums. For i an index, and let (σ
(1)
i , σ

(2)
i , . . . , σ

(i)
i ) be the (descending) or-

der statistics of the subsequence {σj}1≤j≤i. Moreover, let S
(k)
i denote the sum of the

collection (σ
(j)
i )k≤j≤i.

Lemma 3.9 (Bound on sum below a level). Fix a k ∈ N, and let ℓi, δi be positive sequences
such that ℓi → ∞ as i → ∞. Then, there exists a c > 0 such that, as i → ∞,

P

(

S
(k)
i > ℓiδi σ1, . . . , σi ≤ li

)

< c δ−1
i ikE

(

fk

(

σ0

ℓi

)

1{σ0/ℓi≤1}

)k

eventually, where fk(x) := x1/k.

Proof. Let i ≥ k. By symmetry and Markov’s inequality we have that

P
(

S
(k)
i > ℓiδi, σ1, . . . , σi ≤ ℓi

)

≤ ik−1P
(

S
(k)
i > ℓiδi, σ

(j)
i = σj for j = 1, . . . , k − 1, σ

(1)
i ≤ ℓi

)

= ik−1P

(

i
∑

j=k

σj > ℓiδi, σk−1 ≤ σk−2 ≤ · · · ≤ σ1 ≤ ℓi, σj ≤ σk−1 for j = k, . . . , i

)

≤ ik−1δ−1
i E

(

i
∑

j=k

σj

ℓi
1{σk−1≤σk−2≤···≤σ1≤ℓi}1{σj≤σk−1 for j=k,...,i}

)

≤ ikδ−1
i E

(

σk

ℓi
1{σk≤σk−1≤σk−2≤···≤σ1≤ℓi}1{σj≤ℓi for j=k+1,...,i}

)

.

Using the independence of the (σj)j≥1, the above expectation is equal to

E

(

σk

ℓi
1{σk≤σk−1≤σk−2≤···≤σ1≤ℓi}

)

P (σ0 ≤ ℓi)
i−k

≤ E

(

k
∏

j=1

(

σj

ℓi

)1/k

1{σj≤ℓi}

)

P (σ0 ≤ ℓi)
i−k

= E

(

fk

(

σ0

ℓi

)

1{σ0/ℓi≤1}

)k

P (σ0 ≤ ℓi)
i−k .

On dividing through by P(σ1, . . . , σi ≤ ℓi) = (1− L(ℓi)
−1)i, we thus obtain

P
(

S
(k)
i > ℓiδi σ1, . . . , σi ≤ ℓi

)

≤ ikδ−1
i E

(

fk

(

σ0

ℓi

)

1{σ0/ℓi≤1}

)k
(

1− L(ℓi)
−1
)−k

,

which proves the result. �
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Corollary 3.10. Assume L satisfies Assumption 1. Fix a k ∈ N, and let ℓi, δi be positive
sequences such that ℓi → ∞ as i → ∞. Then there exists a c > 0 such that, as i → ∞,

P

(

S
(k)
i > ℓiδi σ1, . . . , σi ≤ ℓi

)

< c δ−1
i

(

i

L(ℓi)
g(ℓi)

)k

eventually.

Proof. By the first statement of Proposition 3.1 we deduce that, for some λ > 0,

E

(

fk

(

σ0

ℓi

)

1{σ0/ℓi≤1}

)

∼ −
λ g(ℓi)

L(ℓi)

∫ 1

0

f ′
k(t) log t dt,

from which the result follows by applying Lemma 3.9. �

3.2. The ratio of the sum to the maximum. In this section we prove the key almost-
sure bound on the ratio of the sum to the maximum of the sequence (σi)i∈N in Theo-
rem 1.9. Throughout this section, we assume that L satisfies Assumption 1, and define
N as in (5).

Observe that Theorem 1.9 is a consequence of the following two results, which we prove
in the next two subsections. Recall that mi and Si denote the maximum and partial sum

of the partial sequence (σj)j≤i, and S
(k)
i is the sum from the kth largest term.

Proposition 3.11 (Upper bound on sum/max ratio). Suppose Assumption 1 holds. For
each ε > 0, as i → ∞,

Si

mi

< N − 1 + ε

eventually almost-surely. Moreover, if Assumption 2(b) (with N < ∞) also holds, then
additionally, as i → ∞,

S
(N)
i

mi
<

ε

log i

eventually almost-surely.

Proposition 3.12 (Lower bound on sum/max ratio). If Assumptions 1 and 2(a) (with
N < ∞) hold, then for each ε > 0 sufficiently small, as i → ∞,

Si

mi

> N − 1− ε

holds infinitely often.

Remark 3.13. Of course, the control on the rate of convergence in the second part of
Proposition 3.11 under Assumption 2(b) is stronger than we need for Theorem 1.9, but
this extra control will be useful in Section 5.

3.2.1. Upper bound on sum/max ratio. Recall, for each n ∈ N, the notation rn and σ(n)

for the location and magnitude of the nth record from Section 3.1, and let S−
(n) denote

the sum of the collection {σi}i<rn. Further, for each ε > 0 and n ∈ N define the events

Aε
n :=

{

S−
(n)

σ(n−1)

> N − 1 + ε

}

, Āε
n :=

{

S
(N)
rn−1

σ(n−1)

>
ε

logn

}

.

Since the ratio of the sum to the max is increasing up until new records of the sequence,
to establish Proposition 3.11, by the Borel-Cantelli lemma it is sufficient to prove the
following.
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Lemma 3.14. Suppose Assumption 1 holds. For each ε > 0 we have that
∑

n∈N

P (Aε
n) < ∞.

Moreover, if Assumption 2(b) (with N < ∞) also holds, then additionally
∑

n∈N

P
(

Āε
n

)

< ∞.

Proof. By definition, we have that

S−
(n) =

n−1
∑

i=1

σ(i) +

rn−1
∑

i=1

σi1{i 6∈R},

where we recall that R is the collection of record traps (rn)n≥1. Now, conditional on
{(ri, σ(i)) : i ≤ n}, the traps that contribute to the second sum are independent. More-
over, for i ∈ (rm−1, rm), m ∈ {1, . . . , n}, we have that the traps are distributed as
σ0|{σ0 ≤ σ(m−1)}, and so are stochastically dominated by σ0|{σ0 ≤ σ(n−1)}. It follows
that

P

(

rn−1
∑

i=1

σi1{i 6∈R} ≥ λσ(n−1) (ri, σ(i)) : i ≤ n

)

≤ F
(

rn, σ(n−1), ⌊λ⌋ + 1, λ− ⌊λ⌋
)

,

where, recalling the notation for S
(k)
r from Section 3.1,

(10) F (r, l, k, δ) := P(S(k)
r ≥ lδ|σ1, . . . , σr ≤ l).

Applying the above reasoning, we have

P (Aε
n)

≤
N−1
∑

k=0

P

(

n−1
∑

i=1

σ(i) ≥ (k + ε/2)σ(n−1),

rn−1
∑

i=1

σi1{i 6∈R} ≥ (N − 2− k + ε/2)σ(n−1)

)

≤
N−1
∑

k=0

E
(

1{
∑n−2

i=1 σ(i)≥(k−1+ε/2)σ(n−1)}
F
(

(rn, σ(n−1), N − 1− k, ε/2
)

)

.

Recall that, by Lemma 3.5 and the union bound, there exists a c > 0 such that, for
sufficiently large n,

P
(

L(σ(n−1)) < en(1−ε) , rn > 2L(σ(n−1)) logn
)

< cn−2.

Applying Lemma 3.8 and Corollary 3.10 (with δi = ε/2), it follows that there exists a
c > 0 such that, for sufficiently large n,

P (Aε
n) < cn−2 + c

N−1
∑

k=0

(

d(en(1−ε)) log n
)N−1−k

P

(

n−2
∑

i=1

σ(i) ≥ (k − 1 + ε/2)σ(n−1)

)

< cn−2 + c
(

d(en(1−ε)) logn
)N−1

.

Considering the definition of N in (5), and noting that a monotonic sequence an is sum-
mable if and only if a⌊(1−ε)n⌋ is summable, this completes the proof of the first statement.

For the second statement, a similar argument holds. In particular, we start by noting
that

S
(N)
rn−1 = min

k=1,...,N−1







(n−1)−(N−k)
∑

i=1

σ(i) + Σ(k)







,

15



where Σ(k) is the sum
∑rn−1

i=1 σi1{i 6∈R} with the largest k − 1 terms excluded. Since

{

S
(N)
rn−1 > εσ(n−1)/ logn, Σ

(k) < εσ(n−1)/2 logn
}

⊆







(n−1)−(N−k)
∑

i=1

σ(i) > εσ(n−1)/2 logn







,

decomposing the probability space into regions where Σ(k) > εσ(n−1)/2 logn ≥ Σ(k+1)

thus yields

P
(

Āε
n

)

≤ P





(n−1)−(N−1)
∑

i=1

σ(i) > εσ(n−1)/2 logn





+

N−1
∑

k=1

E
(

1
{
∑(n−1)−(N−k−1)

i=1 σ(i)≥εσ(n−1)/2 logn}
F
(

rn, σ(n−1), k, ε/2 logn
)

)

.

Noting that the proof of Lemma 3.8 shows that

P





(n−1)−j
∑

i=1

σ(i) > εσ(n−1)/2 logn



 < cn−2 + cd(en(1−ε))j logn,

uniformly for j = 1, . . . , N − 1, and applying Corollary 3.10 with δi = ε/2 log i similarly
to above, it follows that

P
(

Āε
n

)

< cn−2 + cd(en(1−ε))N−1 (log n)N ,

which is summable on Assumption 2(b). �

3.2.2. Lower bound on sum/max ratio. Again recall, for each n ∈ N, the notation rn and

σ(n) from Section 3.1, and let {r
(1)
n , r

(2)
n , . . . , r

(N−2)
n } denote the indices of the largest N−2

terms of the sequence lying between rn and rn+1 in increasing order of index (if there are

insufficient terms, set the undefined terms to be equal to rn+1), abbreviating σ
(i)
(n) := σ

r
(i)
n
.

To establish the lower bound we consider the following event, defined for each ε ∈ (0, 1)
and n ∈ N,

Aε
n :=

⋂

1≤i≤N−2

{

σ
(i)
(n)/σ(n) ∈ (1− ε, 1)

}

.

Clearly on the event Aε
n we have that

S
r
(N−2)
n

m
r
(N−2)
n

> (N − 1)(1− ε),

and so in order to establish Proposition 3.12 it is sufficient to prove that for each ε ∈ (0, 1)
the events Aε

n hold infinitely often. That this is true can be deduced by applying the
following lemma in conjunction with the conditional Borel-Cantelli lemma.

Lemma 3.15. Let Fn denote the σ-algebra generated by σ1, σ2, . . . , σrn+1. Then Aε
n ∈ Fn,

and, on Assumptions 1 and 2(a) (with N < ∞),
∑

n

P(Aε
n|Fn−1) = ∞

almost-surely.
16



Proof. That Aε
n ∈ Fn is clear by definition. For the second claim, we note that the event

Aε
n is just the event that the first N − 2 exceedences of the level σ(n)(1 − ε) after rn do

not also exceed the level σ(n). Hence

P(Aε
n | Fn−1) = P (σ0 < u | σ0 > (1− ε)u)N−2 |u=σ(n)

=

(

1−
L((1− ε)σ(n))

L(σ(n))

)N−2

.

Combining with the bounds on σ(n) from Lemma 3.5 and the definition of second-order
slow-variation, it follows that there exists a c > 0 such that

P(Aε
n | Fn−1) ∼

(

−k(1− ε)g(σ(n))
)N−2

≥ cd(en(1+ε))N−2

eventually, where we have used the eventual monotonicity of g guaranteed by Assump-
tion 1. Again noting that a monotone sequence an is summable if and only if a⌊(1+ε)n⌋

is summable, the above sequence is not summable on Assumption 2(a), completing the
proof. �

3.3. Hyperbolic exceedences. In this section we study certain ‘hyperbolic’ excee-
dences; the relevance of these exceedences to the localisation of the BTM will be made
clear in Section 4. Note that we do not apply Assumptions 1 or 2 here.

Before defining these hyperbolic exceedences, recall that ix indicates the first excee-
dence of a level x > 0 of the sequence (σi)i∈N, and Si denotes the cumulative sum of the
sequence up to an index i. Define an auxiliary function ht such that ht → ∞ as t → ∞
sufficiently slowly such that

L(th3
t )

L(t)
< 1 +

1

ht
and

L(t/h3
t )

L(t)
> 1−

1

ht
(11)

eventually. We note that the choice of such a ht is possible for any slowly varying function
L; see [6] for an explicit construction. We define the hyperbolic exceedences of the level t
to be the sites

(12) jt := min{i : iSi > t/ht} and j−t := argmax{σi : i ≤ jt}.

Lemma 3.16 (Typical hyperbolic exceedences). For each t ≥ 0, denote

(13) ℓt := min{s ≥ 0 : sL(s) ≥ t},

which is well-defined since L is càdlàg. Then, as t → ∞,

P
(

iℓt = jt = j−t
)

→ 1.

Proof. First note that, by our choice of ht in (11) and applying Lemma 3.3, we have that,
as t → ∞, iℓt > L(ℓt)h

−1
ℓt

and σiℓt
> ℓth

3
ℓt

both hold with high probability. Then it is
clear that jt ≤ iℓt , since then, with high probability,

iℓtSiℓt
> iℓtσiℓt

> L(ℓt)h
−1
ℓt

× ℓth
3
ℓt > t.

For the other direction, consider the proceeding record site rnt
prior to iℓt . Applying

Lemma 3.3 again, with high probability we have that

iℓt < L(ℓt)h
1/2
ℓt

, σrnt
= σi−

ℓt

< ℓt/h
3
ℓt and L(σi−

ℓt

) > L(ℓt)h
−1/3
ℓt

.

Thus, using the notation F from (10) and writing Γ(x) := E(σ0

x
1σ0≤x),

P
(

Siℓt−1/σrnt
> hℓt

)

= E
(

F (iℓt − 2, σi−
ℓt

, 1, hℓt − 1)
)
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≤ E

(

min

{

cL(ℓt)Γ(σi−
ℓt

)
√

hℓt

, 1

})

+ o(1),

where to deduce the inequality we have applied Lemma 3.9. Now, by Proposition 3.1,
Γ(x) = o(L(x)−1). Hence it follows that

P
(

Siℓt−1/σrnt
> hℓt

)

≤ E



min







cL(ℓt)
√

hℓtL(σi−
ℓt

)
, 1









+ o(1) ≤ ch
−1/6
ℓt

+ o(1) → 0.

This implies that with high probability eventually

(iℓt − 1)Siℓt−1 < hℓtiℓtσrnt
< L(ℓt)h

3/2
ℓt

× ℓt/h
3
ℓt = t/h

3/2
ℓt

< t/ht.

Thus we have shown that P(iℓt = jt) → 1 as t → ∞. To complete the proof, we simply
note that iℓt = jt implies jt is a record, and therefore jt = j−t . �

4. Quenched localisation on N sites

In this section we establish that localisation takes place on no more than N -sites
almost-surely, that is, we prove the first claim of Theorem 1.3. Note that this claim only
has content if N is finite, so wherever we work under Assumption 1 in this section we
shall always assume that N < ∞. On the other hand, Assumption 2 will not play a role
in this section.

We begin in Section 4.1 by giving an explicit construction of the localisation set Γt.
We note that there are several different possible approaches to defining this set; one
way, for instance, would be to select a certain set of N sites, whereby the cardinality of
Γt would be bounded by construction. We choose a construction that makes no explicit
reference to cardinality; instead Γt is defined to include all points lying in a certain region
of (x, σx)-space. The advantage of this definition is that the subsequent proof that the
BTM localises on Γt is straightforward; we do this in Section 4.2. The trade-off is that
bounding the cardinality of Γt is no longer straightforward, and requires a somewhat
lengthy computation; we undertake this computation in Section 4.3. Along the way,
we also establish that the localisation set Γt consists of a single site with overwhelming
probability, and moreover that Γt is contained on the record traps eventually almost-
surely if N = 2, hence completing the proof of Theorem 1.1 and the forward direction of
Theorem 1.7.

4.1. Defining the localisation set. We shall define the localisation set Γt by first
considering a certain region Gt ⊆ Z+ × R+ defined by an outer boundary Ot and a lower
boundary Dt; the localisation set will then consist of all points (x, σx) that lie inside this
region. Before we define these explicitly, we first motivate our construction, which is based
around certain record traps zIt and zOt such that 0 < zIt ≤ zOt . First, we construct the site
zIt to be the furthest record site from the origin such that the BTM is overwhelmingly
likely to have visited this site by time t, essentially because this site is not too far from
the origin and the traps lying between it and the origin are sufficiently shallow. Naturally
this construction demands that we use an upper bound on hitting times of the BTM, and
indeed we approximate the time until the BTM exits a certain region by the product of
the sum of the traps in the region and the length of the region. This suggests that the
site zIt should be defined via the notion of hyberbolic exceedences (see Section 3).

Second, we construct the site zOt to be the furthest record site from the origin such that
it is possible for the BTM to reach this site by time t. This time we use a lower bound
for the hitting times of the BTM, approximating the time until the BTM exits a certain
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region by the product of the length of the region and the depth of the deepest trap in
the region. We optimise our construction of zOt by a process of ‘chaining’ from the initial
site zIt , using the observation that each new record trap that is visited by the BTM by
time t reduces the successive distance that the BTM is able to travel by time t, since the
BTM now has to overcome the holding time associated with this new record trap. Note
that it is possible (and indeed will turn out to be likely) that the site zOt is actually the
same as the site zIt ; this occurs if the chaining terminates at the first stage.

Once we have defined the sites zIt and zOt , we construct the outer boundary Ot to
appropriately contain these sites, i.e. such that 0 < zIt ≤ zOt < Ot. This is done in such a
way to guarantee that the BTM is located within this boundary at time t; again we use
a lower bound for hitting times of the BTM. Our construction also guarantees that zOt is
the largest trap located in the region [0, Ot). Finally, we make use of the observation that
the BTM, at any given time t, is more likely to be located in a deep trap than a shallow
trap; the lower boundary Dt represents the trap depth above which we know that the
BTM is located with high probability.

We now formalise the above heuristics to give an explicit definition of the localisation
set Γt. In the following definitions we make reference to a certain auxiliary scaling function
hu → ∞ as u → ∞. We think of hu as being arbitrarily slowly growing, and indeed we
shall insist that hu grows sufficiently slowly to satisfy certain conditions. First, similarly
to (11), we shall require that, for any k ∈ N,

L(thk
t )

L(t)
< 1 +

1

ht

and
L(t/hk

t )

L(t)
> 1−

1

ht

(14)

for large t. Further, we shall also require that

h4
tL(th

2
t )E

[

σ0

th2
t

1{σ0<th2
t}

]

→ 0,(15)

remarking that this is possible by the second statement of Proposition 3.1. When working
under Assumption 1 (with N < ∞), defining ĥn := h2Ne2nL(e2n) logn, we shall additionally
require that

∑

n∈N

e−n/2ĥn < ∞ and
∑

n∈N

(

d(en)(log n)(ĥn)
5
)N−1

< ∞.(16)

Finally, for technical reasons, we shall also require that hu is continuous. The relevance
of these conditions will become clear later in the section; for now, note simply that it is
always possible to choose such an h (see [6] for remarks as to an explicit construction).

We first define the sites zIt and zOt . The site zIt is taken to be the record site j−t , as
introduced at (12). To define the site zOt , define iteratively

y1t := zIt , yi+1
t := min{z ∈ (yit, y

i
t + htmax{t/σyit

, 1}) : σz > σyit
}

until this chain terminates. The site zOt is defined to be the last site so-defined by the
chaining (which is possibly, and indeed probably, the same as the site zIt ). Note that
this method of ‘chaining’ can be thought of as a general procedure that starts from a
certain site zIt and occurs at a certain time t; we will refer back to this general method
of ‘chaining’ in Section 4.3. We also note that in the process of chaining we make use
of the lower bound max{·, 1} when extending the outer boundary from yit to yi+1

t ; this is
done for technical reasons, essentially to ensure that the regions we are considering are
always growing (albeit arbitrarily slowly) with t. This will allow us to successfully apply
our holding time estimates to these regions.
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We now define the localisation set Γt, by specifying an outer boundary Ot and a lower
boundary Dt for the localisation region Gt. First, define the outer boundary Ot to be

Ot := zOt + htmax{t/σzOt
, 1} .

To define the lower boundary Dt, for a level ℓ > 0 denote the quantity Sℓ
i :=

∑

z<i:σz<ℓ σz ,
and set

Dt := max{ℓ ≥ 0 : Sℓ
Ot

< σzIt
/ht}.

Note that this construction of the lower boundary can be thought of as a general procedure
that is given by a certain boundary Ot and level σzIt

/ht; we will refer back to this general
procedure in Section 4.3. We can now define the localisation set to be the point set

Γt := {x ∈ Z : (x, σx) ∈ Gt}

where Gt := {(x, σx) : x < Ot, σx ≥ Dt}. Figure 2 shows typical and atypical configura-
tions of this set.

Ot Z

ℓt
Dt

L(σz)

•

•

•

•

•

•

Gt

Γt

hypt

zIt = zOt Z

ℓt

L(σz)

•

•

•

•

•

•

Gt

Γt

hypt

zIt zOt Ot

Dt

Figure 2. The localisation set at: (i) a typical time; and (ii) a slightly
later atypical time (in particular a ‘relocalisation time’; see Section 4.3).
Depicted as well are (after rescaling by L) successive records and near
records of {σz}, the cumulative sum process Si, the hyperbola hypt :=
{(z, σz) : zσz = t}, and the level ℓt as defined as in Lemma 3.16.

To complete this section, we prove that the localisation site consists of a single site
with overwhelming probability; the precise description of this single site closely mirrors
the construction in [12]. Note that this result does not require Assumption 1, and holds
for any slowly varying L.

Proposition 4.1. For each t ≥ 0 define the level ℓt as at (13), and denote the site
Zt := iℓt (in the notation of Section 3.1). Then, as t → ∞,

P (Γt = Zt) → 1.

Proof. Since Zt = iℓt and zIt = j−t we have by Lemma 3.16 that P(Zt = zIt ) → 1. From
this it immediately follows that P(Zt ⊆ Γt) → 1. Hence, it is sufficient to show that, as
t → ∞,

P(|Γt| = 1) → 1.

To this end, we need to show that with high probability neither of the two disjoint regions

R1 := {x : x < Ot, σx > σzIt
} and R2 := {x : x < Ot, Dt ≤ σx ≤ σzIt

} \ {(zIt , σzIt
)}.

contains a point.
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Observe that

P (∃x ∈ (Zt, Zt + htmax{t/σZt
, 1}) such that σx > σZt

| σZt
) ≤

htmax{t/σZt
, 1}

L(σZt
)

.

If σZt
> ℓth

2
ℓt
, which by Lemma 3.3 and our assumptions on ht in (14) holds with high

probability, then the right-hand side is bounded above by

max

{

ht

L(ℓth2
ℓt
)
,
1

ht

}

,

and, possibly choosing an even more slowly growing h than already required by our
assumptions in (14), one can check that this converges to 0 as t → ∞. Since we also
know from the previous paragraph that Zt = zIt with high probability, it follows that
with high probability the chaining procedure terminates at the first step and we have
P(Zt = zIt = zOt ) → 1 as t → ∞. In particular, this implies P(R1 = ∅) → 1.

We now deal with R2. For this, note that Zt = zIt = zOt implies

(0, Ot) ⊆ (0, Zt + ht max{t/σZt
, 1}).

Moreover, note that if σZt
> ℓth

2
ℓt
and L(ℓt)/hℓt < Zt, then

ht max{t/σZt
, 1} ≤ htmax

{

t/ℓth
2
ℓt , 1
}

≤ ht max
{

L(ℓt)/h
2
ℓt , 1
}

≤ htmax {Zt/hℓt , 1} ≤ 2Zt,

where for the purposes of the final inequality, we suppose that h is so slowly varying as
to satisfy ht ∼ hℓt .

Since the assumptions hold with high probability (by applying our previous observa-
tions and Lemma 3.3 again), it follows that

(17) P
(

Zt = zIt , (0, Ot) ⊆ (0, 3Zt)
)

→ 1

as t → ∞. Now, define

S̃t :=
∑

{x<3Zt}\{zIt }

σx1{σx≤σZt
}.

Similarly to the proof of Lemma 3.14, applying Lemma 3.9 we have that eventually

P
(

S̃t > h−1
ℓt
σZt

| (Zt, σZt
)
)

< h2
ℓtZtΓ(σZt

),

where Γ(x) := E(σ0

x
1{σ0<x}). (For this it is useful to note that, conditional on (Zt, σZt

),
if x < Zt, then σx is distributed as σ0|{σ0 ≤ ℓt} ≺ σ0|{σ0 ≤ σZt

}, whereas if x > Zt, then
σx is simply a copy of σ0 and so σx1{σx≤σZt

} ≺ σ0|{σ0 ≤ σZt
}, and all the relevant traps

are independent.) Considering our assumptions on ht in (15), along with the fact that
σZt

> ℓth
2
ℓt
and Zt < L(ℓt)ht with high probability by Lemma 3.3, this implies that with

high probability

P
(

S̃t > h−1
t σZt

| (Zt, σZt
)
)

<
L(ℓt)

hℓtL(ℓth
2
ℓt
)
.

Since the upper bound here converges to 0 as t → ∞, we thus deduce P(S̃t > h−1
ℓt
σZt

) → 0.
Combining this with (17), we find that

P (R2 6= ∅) → 1,

which completes the proof. �

In conjunction with Proposition 4.2 (established in the next section), the previous
result yields Theorem 1.1.
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4.2. Localisation on the localisation set. In this section we prove that localisation
occurs on the set Γt eventually almost-surely. The argument follows a similar structure to
that used to show localisation of one-dimensional random walk in random environments
in [14, Theorem 2.5.3], for example, with the distinction that in our case the localisation
set can consist of more than one point. In particular, we prove the following.

Proposition 4.2. As t → ∞,

Pσ(Xt ∈ Γt) → 1 P-almost-surely.

Before we prove Proposition 4.2, we first define some notation. For each t > 0 and
trapping landscape σ, define the random times

τ 1t := min{s : Xs = zIt } and τ 2t := min{s > τ 1t : Xs ≥ Ot}.

Proposition 4.2 is then an easy consequence of the following three lemmas.

Lemma 4.3 (Hitting the localisation set). As t → ∞,

Pσ(τ
1
t ≤ t) → 1 P-almost-surely.

Proof. Applying the upper bound on hitting times in the first statement of Proposition 2.1
(with a = x = 0 and b = zIt ),

Pσ

(

τ 1t ≤ t
)

> 1− 2t−1zIt
∑

z<zIt

σz.

By the definition of the site zIt , the sum of traps here is less than t/(zIt − 1)ht. It is
a simple exercise to check that zIt ≥ 2 for large t almost-surely, and thus the result
follows. �

Lemma 4.4 (Staying within the boundary). As t → ∞,

Pσ(τ
2
t − τ 1t > t) → 1 P-almost-surely.

Proof. First, define the hitting time τOt := min{s : Xs = zOt }, which satisfies τOt ≥ τ 1t .
Applying the lower bound on hitting times in the first statement of Proposition 2.2 (with
a = 0, b = Ot and x = zOt ) yields that

Pσ(τ
2
t − τ 1t ≤ t) ≤ Pσ

(

τ 2t − τOt ≤ t
)

<
t

2(Ot − zOt )σzOt

,

By the definition of the localisation set Γt

Ot − zOt = htmax{t/σzOt
, 1} ≥ ht t/σzOt

,

and the result follows. �

Lemma 4.5 (Localisation on the localisation set). As t → ∞,

Pσ

(

Xt ∈ Γt| τ
1
t < t < τ 2t − τ 1t

)

→ 1 P-almost-surely.

Proof. For a given t, let (X̂ t
s)s≥0 be the inhomogeneous CTRW on [0, Ot] in the trapping

landscape σ (see Section 2 for the definition of this Markov process), started from zIt ,

and let P̂ denote its law. Then we have that (X(s+τ1t )∧τ
2
t
)s≥0 has the same distribution as

(X̂ t
s∧τ2t

)s≥0. In particular, applying the Markov property at τ 1t , we have

Pσ

(

Xt 6∈ Γt| τ
1
t < t < τ 2t − τ 1t

)

≤ sup
s≤t

P̂
(

X̂ t
s 6∈ Γt| τ

2
t > t

)
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≤
sups≤t P̂

(

X̂ t
s 6∈ Γt

)

Pσ (τ
2
t − τ 1t > t)

.

From Lemma 4.4, we know the denominator converges to one almost-surely. Moreover,
applying the localisation result of Proposition 2.3 (and the definition of the lower bound-
ary Dt), we have that the numerator converges to zero, so we are done. �

4.3. The cardinality of the localisation set. In this section we establish that |Γt| ≤ N
eventually almost-surely. The fact that Xt is contained on the record traps R eventually
almost-surely if N = 2 will follow as an easy corollary. Throughout this section we shall
work on Assumption 1 and additionally assume that N < ∞.

Similarly to the proof of Theorem 1.9 in Section 3 above, we prove that |Γt| ≤ N by
defining a certain sequence of events for the countable sequence R of record sites. Broadly
speaking, this event is whether there are more than N sites in Γt at the times when |Γt|
is at a local maximum. Considering the construction of Γt, it can be seen that |Γt| is at
a local maximum precisely at the ‘relocalisation times’ between successive record traps.
So let us define this event.

Recall the sequence R := (rn)n∈N of record traps, and that S−
(n) denotes the sum of the

traps prior to rn. Set t0 = 0, and for n ≥ 1, define the time tn to satisfy the equation

tn/htn = S−
(n)(rn − 1),

which is well-defined since we insisted that ht be continuous. For simplicity, we abbreviate
h(n) := htn . Note that for t ∈ [tn−1, tn), we have that zIt = rn−1. Hence the time tn
represents the ‘relocalisation time’ between the record traps at rn−1 and rn.

Observe further that for t ∈ [tn−1, tn), the boundary Ot is strictly increasing. In
particular, it will be sufficient to check that |Γt| ≤ N at the instants immediately prior
to t ∈ T := ∪n≥1{tn} (at least for large n, almost-surely). So for each n define O(n) to
be the outer boundary obtained by starting at site rn−1 and chaining according to the
procedure introduced in Section 4.1 at time tn. Moreover, define the lower boundary D(n)

using the general construction from the boundary O(n) and level σ(n−1). Then it is clear
that for all such times t ∈ [tn−1, tn) we have Γt ⊆ {rn−1, rn}∪ (∪2

i=1Ri), where (Ri)
2
i=1 are

given by the disjoint sets (depicted in Figure 3)

R1 :=
{

x : x ∈ (rn, O(n)), σx > σ(n−1)

}

,

R2 :=
{

x : x < O(n), D(n) ≤ σx < σ(n−1)

}

.

Note that here we are assuming L is continuous, by Assumption 1. Hence, to show that
|Γt| ≤ N for large t almost-surely, it will suffice to show that |R1| + |R2| ≤ N − 2 for
large n almost-surely. We begin by studying the cardinality of R1.

Lemma 4.6. Suppose Assumption 1 holds. Then for each k ∈ N and ε > 0 there exists
a constant c > 0 and a sequence (an)n≥1 satisfying

∑

n∈N an < ∞ such that, as n → ∞,

P(|R1| ≥ k) < an + c
(

d(en(1−ε))ĥ2
n

)k

eventually. In particular, |R1| ≤ N − 2 eventually almost-surely.

Proof. By definition, the chaining window from rn is given by

h(n)max

{

tn
σ(n)

, 1

}

≤ h2
(n)max

{

rnS
−
(n)

σ(n)

, 1

}

.
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Z

L(σz)

•

•

•

•

•

•

Γt
R1

R2

rn−1 rn O(n)

L(D(n))

L(σ(n−1))

Figure 3. Typical configurations of the sets R1 and R2. Depicted as
well are the records rn−1 and rn, the boundaries O(n) and D(n) and the
localisation set Γt.

Thus, by the union bound we find that

P
(

|R1| ≥ 1| σ(n−1), σ(n), rn, S
−
(n)

)

≤
h2
(n)

L(σ(n−1))
max

{

rnS
−
(n)

σ(n)

, 1

}

.

Similarly, to bound the probability of there being at least k sites in this region given that
there is at least one, we can condition on the height of the first site, which is an i.i.d.
copy of σ(n), and repeat the process. In particular,

P
(

|R1| ≥ k| σ(n−1), rn, S
−
(n)

)

≤ E

(

∏

i=1,...,k

h2
(n)

L(σ(n−1))
max

{

rnS
−
(n)

σi
(n)

, 1

}

∣

∣

∣

∣

σ(n−1), rn, S
−
(n)

)

,

where, under the conditioned law, (σi
(n))i≥2 are i.i.d. copies of σ(n) (i.e. first excee-

dences of the level σ(n−1)). Applying the independence and integrating out the σ(n)

using Lemma 3.4, it follows that, for some c > 0, as σ(n−1) → ∞ eventually

P
(

|R1| ≥ k| σ(n−1), rn, S
−
(n)

)

≤
(h(n))

2k

L(σ(n−1))k
E

(

rnS
−
(n)

σ(n)

+ 1

∣

∣

∣

∣

σ(n−1), rn, S
−
(n)

)k

<
(h(n))

2k

L(σ(n−1))k

(

c rnS
−
(n) g(σ(n−1))

σ(n−1)

+ 1

)k

<
(2c)k (h(n))

2k

L(σ(n−1))k





(

rnS
−
(n)g(σ(n−1))

σ(n−1)

)k

+ 1



 .(18)

Define the event

(19) Bn :=
{

logL(σ(n−1)) ∈ (1− ε, 1 + ε)n , rn < 2L(σ(n−1)) logn , S−
(n) < Nσ(n−1)

}

,

and recall that, by Lemmas 3.5 and 3.14 and the union bound, this event satisfies P(Bc
n) <

an for some sequence satisfying
∑

n an < ∞. Further, by the definition of ĥn, note that

on the event Bn we have h(n) < ĥn. Consequently, by the choice of ĥn in (16), we have
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that, for some constant c1 > 0, as n → ∞ eventually

P(|R1| ≥ k) < an + c1

(

d(en(1−ε))ĥ2
n

)k

E

(

(

rn
L(σ(n−1))

)k
)

.

Applying the moment estimate of Lemma 3.6, this provides the probability estimate.
The almost-sure claim follows by considering the definition of N and the properties of ĥn

in (16), and then by applying a Borel-Cantelli argument. �

We now include into the analysis the set R2. To increase our ability to exploit inde-
pendence, we shall initially substitute the set R2 for different set R̃2, which contains R2

with high probability but will be simpler to work with. To this end, recall the notation
Sℓ
t used to define the lower boundary Dt, and define

D̃(n) := max{ℓ ≥ 0 : Sℓ
rnĥ3

n
< σ(n−1)/ĥn}

and

R̃2 :=
{

x : x ∈ (0, rn ĥ
3
n), D̃(n) ≤ σx < σ(n−1)

}

.

Before analysing the cardinality of R̃2, we make the link between the sets R2 and R̃2.

Lemma 4.7. Suppose Assumption 1 holds. Then we have that
∑

n∈N

P(R2 * R̃2) < ∞.

In particular, R2 ⊆ R̃2 eventually almost-surely.

Proof. Denote by Bn the event

Bn :=
{

S−
(n) < Nσ(n−1), |R1| < N, h(n) ≤ ĥn

}

.

By considering the chaining that defines the outer boundary Ot, we observe that on Bn

we know that Ot < rnĥ
3
n. Given the respective definitions of D̃(n) and D(n), this in turn

implies D̃(n) ≤ D(n) and hence R2 ⊆ R̃2. Hence we infer that
∑

n∈N

P(R2 * R̃2) ≤
∑

n∈N

P(Bc
n),

and the result follows by Lemmas 3.14 and 4.6 (as well as the observation from the

proof of the latter lemma that h(n) ≤ ĥn holds on an event of probability greater than
1− cn2). �

To complete our analysis of the cardinality of Γt we bound P(|R1| + |R̃2| ≥ N − 1),
from where the fact that |Γt| ≤ N eventually almost-surely follows by a Borel-Cantelli
argument.

Lemma 4.8. Suppose Assumption 1 holds. We have that
∑

n∈N

P(|R1|+ |R̃2| ≥ N − 1) < ∞.

In particular, |R1|+ |R̃2| ≤ N − 2 eventually almost-surely.
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Proof. First observe that

P(|R1|+|R̃2| ≥ N − 1)

=

N−1
∑

k=0

E
[

1{|R1|≥k}P(|R̃2| ≥ N − 1− k | σ(n−1), rn−1, {(x, σx) : σx ≥ σ(n−1)})
]

.(20)

To control the conditional probability in (20), note that |R̃2| ≥ N − 1− k implies that if
we exclude the largest N − 2− k terms from sum

rnĥ3
n

∑

i=1

σi1{σi<σ(n−1)} =

n−2
∑

i=1

σ(i) +

rnĥ3
n

∑

i=1

σi1{σi<σ(n−1), σi 6∈R},

then the result is still greater than σ(n−1)/ĥn. Hence, by following the same argument as
in the proof of the second part of Lemma 3.14 we have that

P(|R̃2| ≥ N − 1− k | σ(n−1), rn−1, {(x, σx) : σx ≥ σ(n−1)})

≤ P





(n−2)−(N−k−2)
∑

i=1

σ(i) > ĥ−1
n σ(n−1) σ(n−1)





+

N−k−2
∑

l=1

P





(n−2)−(N−k−2−l)
∑

i=1

σ(i) ≥ ĥ−1
n σ(n−1) σ(n−1)



F
(

rnĥ
3
n, σ(n−1), l, ĥ

−1
n

)

.

Note that, in contrast to the proof of Lemma 3.14, we have also included the traps in
(σ(n), rnĥ

3
n) into the analysis, but this causes no problem since under the relevant condi-

tioning the terms σi1{σi<σ(n−1), σi 6∈R} are either identically zero, or have the distribution

σ0|σ0 < σ(n−1). Now, conditioning on the event Bn defined at (19) (whose probability is
estimated in Lemmas 3.5 and 3.14), applying the conditional estimate for the tail of |R1|
of (18), and the estimate for F from Corollary 3.10, one deduces that

P(|R1|+ |R̃2| ≥ N − 1)

≤ an + c
N−1
∑

k=0

(d(en(1−ε))ĥ2
n)

k ×



P





(n−2)−(N−k−2)
∑

i=1

σ(i) > ĥ−1
n σ(n−1)





+
N−k−2
∑

l=1

P





(n−2)−(N−k−2−l)
∑

i=1

σ(i) ≥ ĥ−1
n σ(n−1)



 ĥn(d(e
n(1−ε))ĥ3

n logn)
l



 .

for some sequence (an)n≥1 with
∑

n an < ∞. To estimate the remaining probabilities,

one can apply the argument of Lemma 3.8. The result is summable by the choice of ĥn

in (16), which completes the proof of the first claim of the lemma. The almost-surely
statement then follows from a Borel-Cantelli argument. �

From Lemmas 4.7 and 4.8, we have the following corollary.

Corollary 4.9. Suppose Assumption 1 holds. We have that
∑

n∈N

P(|R1|+ |R̃2| ≥ N − 1 or R2 * R̃2) < ∞ .

In particular, |R1|+ |R2| ≤ N − 2 eventually almost-surely.
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Recalling that, by construction, lim supt→∞ |Γt| ≤ 2 + lim supn→∞(|R1| + |R2|), the
previous result (together with Proposition 4.2) completes the proof of the first claim of
Theorem 1.3. To complete the section, we point out a second easy corollary of the above,
which confirms one implication of Theorem 1.7 holds.

Corollary 4.10. Suppose Assumption 1 holds. Assume N = 2. Then, as t → ∞,

Γt ⊆ R

eventually almost-surely.

Proof. As noted above, Γt ⊆ {rn−1, rn} ∪ R1 ∪ R2 for t ∈ [tn−1, tn). However, we have
by Corollary 4.9 that |R1| + |R2| ≤ N − 2 = 0 eventually almost-surely. Thus Γt ⊆
{rn−1, rn} ⊆ R eventually almost-surely. �

5. Most favoured site

In this section we consider the most favoured site; that is, we complete the proof of
Theorem 1.4. We note that by the first part of Theorem 1.3, as was proved in the previous
section, the most favoured site must have at least 1/N proportion of the probability mass
at all sufficiently large times. Moreover, by Theorem 1.1, also proved in the previous
section, and combining with Fatou’s lemma, one readily deduces that

lim sup
t→∞

sup
x∈Z+

Pσ(Xt = x) = 1 .

Hence it is sufficient to show that there exist arbitrarily large times at which the prob-
ability mass of the BTM is evenly balanced across exactly N sites. Proving this will
also finish the proof of Theorem 1.3. Furthermore, to prove the converse direction of
Theorem 1.7, we just need to show that if N ≥ 3 then additionally the N sites referred
to above are not all record traps.

We proceed in two steps. First, we establish the above ‘balanced localisation’ result on
the assumption that a certain favourable event En involving the trapping landscape holds
infinitely often. Second, we prove that this favourable event does indeed hold infinitely
often almost-surely; it is here that we will need to work under Assumption 2.

5.1. Defining the favourable event. In this section, we define the favourable event En.
The definition of this involves a certain n-dependent collection of sites (zi)1≤i≤N , (we
drop the explicit dependence on n for brevity). In particular, we fix ε0 ∈ (0, 1), define
z1 := rn−1 and set, for i = 2, . . . , N ,

zi = min
{

z > zi−1 : σz > (1− ε0)σ(n−1)

}

.

We also introduce the notation

Λn := L((1− ε0)σ(n)).

For ε1, ε2, ε3, ε4, ε5, ε6, ε7 ∈ (0, 1), satisfying ε1 < ε2, we then suppose En is defined to be
the event

{

zN = rn,
zN − zN−1

Λn−1
∈ (ε−1

1 , ε−1
2 ),

zN−1 − z1
Λn−1

< ε−1
3 ,

z1
Λn−1

< ε−1
4

}

∩















∑

z<zN :
z 6∈{z1,...,zN−1}

σz < ε4σ(n−1), σ(n) > ε−1
5 σ(n−1),

∑

zN<z≤zN+ε−1
6 Λn−1

σz < ε7σ(n−1)















.
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Constraints on (εi)
7
i=0 will be imposed later as they become necessary for the argument.

We will also allow these parameters to depend on n where needed. (Actually we only
need to do this for ε4.) See Figure 4 for a typical configuration on this event.

σz/σ(n−1)

z1/Λn−1 z2/Λn−1 zN−1/Λn−1 zN/Λn−1

min{ε4, ε7}

1

σ(n)/σ(n−1)

• • •

•
• • • •

•

< ε−1
4

< ε−1
3

∈ (ε−1
1 , ε−1

2 )

ε−1
6

< ε0

> ε−1
5

Figure 4. A typical configuration on the favourable event En, depicting
the sites {zi}

7
i=1 along with other records and near records of the sequence σ.

5.2. Balanced localisation assuming the favourable event holds. In this section,
we prove the remaining part of Theorem 1.4, as well as the converse direction of Theo-
rem 1.7, under the following assumption.

Assumption 3. The event En holds infinitely often almost-surely whenever (εi)
7
i=0 satisfy

ε−1
1 < ε−1

2 and ε4 = 1/4 logn.

To prove that balanced localisation occurs, the idea is to show that, under En, the
chain mixes quickly on {z1, . . . , zN−1}, meaning that on ‘short’ time scales the mass is
approximately evenly distributed on these sites, whereas on a suitably selected ‘long’ time
scale an appropriate amount of mass, approximately 1/N , has seeped onto zN . From this
it is possible to conclude that, at this latter time, the process is approximately uniformly
distributed over {z1, . . . , zN}.

We start by defining the long time scale. In particular, we choose tn to be the unique
time such that

Pσ (τzN ≤ tn) =
1

N
,

where τx is the hitting time of x by X (started from 0). (Note that for x ≥ 1, τx has
a continuous distribution with full support on (0,∞), and so tn is well-defined.) The
following lemma is a ready consequence of this definition.

Lemma 5.1 (Bounds on the long time scale). Suppose En holds, then

2(1− ε0)

ε1N
<

tn
Λ(n−1)σ(n−1)

< 6(ε−1
2 + ε−1

3 )N2.

Proof. For the lower bound, applying the lower bound on hitting times in the first state-
ment of Proposition 2.2 (with a = x = 0, b = zN and z = z1) and the definition of En we
have that

Pσ (τzN ≤ t) <
t

2(zN − z1)σz1

<
t

2(1− ε0)ε
−1
1 Λ(n−1)σ(n−1)

<
tε1

2(1− ε0)Λ(n−1)σ(n−1)

.
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Given the definition of tn, taking t = 2(1− ε0)Λ(n−1)σ(n−1)/ε1N in the above establishes
the result. Similarly for the upper bound, applying the upper bound on hitting times in
the second statement of Proposition 2.1 (with a = x = 0, b = zN and S = {z1, . . . , zN−1})
and the definition of En we have that

Pσ (τzN ≤ t)

> 1− 2t−1



zN
∑

{z<zN}\{z1,...,zN−1}

σz + (N − 1)(zN − z1)σ(n−1)





> 1− 2t−1
(

(ε−1
2 + ε−1

3 + ε−1
4 )ε4Λ(n−1)σ(n−1) + (ε−1

2 + ε−1
3 )(N − 1)Λn−1σ(n−1)

)

> 1− 3t−1(ε−1
2 + ε−1

3 )NΛn−1σ(n−1).

Taking t = 6(ε−1
2 + ε−1

3 )N2Λn−1σ(n−1), we have Pσ(τzN ≤ t) > 1− 1
2N

> 1
N

(since N ≥ 2),
which establishes the result. �

We now bound the probability mass on the final site at times given by the long time
scale, showing that it is very nearly 1/N .

Lemma 5.2 (Probability mass on the final site). Suppose En holds, then

Pσ (Xtn = zN ) >
1

N

(

1− ε5(ε4 + ε7)− 6ε5max{ε1, ε6}(ε
−1
2 + ε−1

3 )N2
)

.

Proof. By the Markov property and the definition of tn, we have that

Pσ (Xtn = zN ) = Pσ (Xtn = zN , τzN ≤ tn)

≥
1

N
min
t≤tn

Pσ (Xt = zN |X0 = zN) .

To estimate the probability here, we consider the inhomogeneous CTRW on

Ωn := [zN − ε−1
1 Λn−1, zN + ε−1

6 Λn−1] ∩ Z+

in the trapping landscape (σx)x∈Ωn
(see Section 2 for the definition of this Markov chain).

Note that on En we have Ωn ⊆ Z+, and hence, in particular, if X and Xn are both
started from zN , then their distributions are the same up to the hitting time of the
endpoints of Ωn. Denoting the latter stopping time by τ , we thus obtain

Pσ (Xt = zN | x0 = zN ) ≥ Pσ (Xt = zN , τ > t |X0 = zN )

= P n
zN

(Xn
t = zN , τ > t)

≥ 1− P n
zN

(Xn
t 6= zN)− P n

zN
(τ ≤ t) ,

where P n
x is the law of Xn started from x.

To bound the first term, applying the localisation result in Proposition 2.3 (with z = zN
and S = Ωn \ {zN}) and the definition of En yields that, for t ≥ 0,

P n
zN

(Xn
t 6= zN) ≤

∑

z∈Ωn\{zN} σz

σzN

< ε5(ε4 + ε7).

To bound the second term, applying the lower bound on hitting times in the second
statement of Proposition 2.2 (with x = zN) and the definition of En yields that, for t ≥ 0,

P n
zN

(τ ≤ t) <
tε5

min{ε−1
1 , ε−1

6 }Λn−1σzN

<
tε5max{ε1, ε6}

Λn−1σ(n−1)
.

Combining with the upper bound on tn in Lemma 5.1, we have that

P n
zN

(τ ≤ tn) < 6ε5max{ε1, ε6}(ε
−1
2 + ε−1

3 )N2.
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and the result follows. �

We proceed now to investigate the short time scale. To this end, let X̃n be the inho-
mogeneous CTRW on [0, zN ]∩Z in the trapping landscape (σn

x)x∈Z+ consisting of a copy

of σ but with σzN replaced by ε4σ(n−1). In particular, the processes X and X̃n have the
same distribution up to hitting zN . For ε ∈ (0, 1), we define

tnmix(ε) := inf

{

t ≥ 0 : max
i=1,...,N−1

∑

0≤y≤zN

∣

∣

∣
P̃ n
zi

(

X̃n
t = y

)

− π̃n(y)
∣

∣

∣
≤ ε

}

,

where P̃ n
x is the law of X̃n started from x, and π̃n is its invariant probability measure.

This is a version of the (ε-)mixing time of X̃n, and will provide the short time scale for
our argument. Note in particular that the maximum is only taken over starting points
from (zi)

N−1
i=1 rather than the entire interval [0, zN ]∩Z, as would be the case in the usual

definition of a mixing time. In this setting, for suitable values of ε this results in a
quantity of a much lower order, since the majority of the mass is explored quickly when
X̃n is started from one of the sites in the collection (zi)

N−1
i=1 . (Conversely, if the process

is started from a site close to zN , it would take a relatively long time to find the vertices
(zi)

N−1
i=1 .) The following lemma provides a key estimate on this quantity. The proof is

based on an argument for upper bounding mixing times presented in [1] that involves
considering a stopping time at which the random walk hits a stationary random vertex.

Lemma 5.3 (Mixing on short time scales). Suppose En holds, and that 2ε4 ≤ ε0 ≤ N−1.
Then

tnmix

(

8ε
1/2
0

)

Λn−1σ(n−1)

<
N

ε20ε3
.

Proof. We start by defining a randomised stopping time T , which will be the time taken
to hit an almost stationary random vertex in {zi : i = 1, . . . , N − 1}. In particular, let Z

be a random vertex in {zi : i = 1, . . . , N − 1} that is independent of X̃n and satisfies

P (Z = zi) =
π̃n(zi)

∑N−1
j=1 π̃n(zj)

,

and set

T := inf{t ≥ 0 : X̃n
t = Z}.

Clearly P̃ n
x (XT = zi) = P(Z = zi) for each x ∈ {0, . . . , zN}, i = 1, . . . , N − 1. (For

simplicity of notation, we suppose the law P̃ n
x is the joint law of X̃n and Z.) Moreover,

we have that

P̃ n
zi
(T > t) ≤ max

{

P̃ n
z1
(τzN−1

> t) , P̃ n
zN−1

(τz1 > t)
}

.

Applying the upper bound on hitting times in the first statement of Proposition 2.1 (first
with a = 0, b = zN−1 and x = z1, and then with a = zN , b = z1 and x = zN−1, by
symmetry) and the definition of En, yields that (recalling that σn

zN
= ε4σ(n−1))

P̃ n
zi
(T > t) ≤ 2t−1(zN−1 − z1)

(

∑

0≤z≤zN−1

σz + ε4σ(n−1)

)

(21)

< 2t−1ε−1
3 Λn−1σ(n−1) (N − 1 + 2ε4) < 4Nt−1ε−1

3 Λn−1σ(n−1).
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The remainder of the proof closely follows [1]. Specifically, for i = 1, . . . , N − 1 and
t, t0 > 0, we can write

∑

0≤y≤zN

∣

∣

∣
P̃ n
zi

(

X̃n
t = y

)

− π̃n(y)
∣

∣

∣
≤
∑

0≤y≤zN

∣

∣

∣
P̃ n
zi

(

X̃n
t = y

)

− P̃ n
zi

(

X̃n
t = y, T ≤ t0

)∣

∣

∣
(22)

+
∑

0≤y≤zN

∣

∣

∣
P̃ n
zi

(

X̃n
t = y, T ≤ t0

)

− π̃n(y)
∣

∣

∣
.

Let us denote the two sums on the right-hand side by S1 and S2. To deal with the first
of these, we simply note that

(23) S1 = P̃ n
zi
(T > t0) <

4Nε−1
3 Λn−1σ(n−1)

t0
,

where we have applied (21) to deduce the inequality. For the second term, we start by
applying Cauchy-Schwarz to deduce

S2
2 ≤

∑

0≤y≤zN

1

π̃n(y)

(

P̃ n
zi

(

X̃n
t = y, T ≤ t0

)

− π̃n(y)
)2

=
∑

0≤y≤zN

1

π̃n(y)
P̃ n
zi

(

X̃n
t = y, T ≤ t0

)2

− 2P̃ n
zi
(T ≤ t0) + 1.(24)

Now, define a measure ν on {0, . . . , zN} × [0, t0] by setting

ν (·, ·) := P̃ n
zi

(

T ≤ t0,
(

X̃n
T , T

)

∈ (·, ·)
)

,

and a function f on {0, . . . , zN} × R+ by

f(x, s) := P̃ n
zi

(

T ≤ t0, X̃
n
t0+s/2 = x

)

≡

∫

{0,...,zN}×[0,t0]

P̃ n
y

(

X̃n
t0+s/2−r = x

)

ν(dy, dr).

By the definition of f and reversibility, it is possible to deduce that
∑

0≤y≤zN

1

π̃n(y)
f(y, s)2

=

∫ ∫

∑

0≤y≤zN

1

π̃n(y)
P̃ n
y1

(

X̃n
t0+s/2−r1

= y
)

P̃ n
y2

(

X̃n
t0+s/2−r2

= y
)

ν(dy1, dr1)ν(dy2, dr2)

=

∫ ∫

1

π̃n(y2)
P̃ n
y1

(

X̃n
2t0+s−r1−r2

= y2

)

ν(dy1, dr1)ν(dy2, dr2),

where each of the integrals above is over {0, . . . , zN} × [0, t0]. Hence, for any s0,

1

s0

∫ s0

0

∑

0≤y≤zN

1

π̃n(y)
f(y, s)2ds

≤
1

s0

∫ ∫

1

π̃n(y2)

∫ 2t0+s0

0

P̃ n
y1

(

X̃n
s = y2

)

dsν(dy1, dr1)ν(dy2, dr2)

≤
1

s0

N−1
∑

j1,j2=1

1

π̃n(zj2)

∫ 2t0+s0

0

P̃ n
zj1

(

X̃n
s = zj2

)

ds
π̃n(zj1)π̃

n(zj2)
(

∑N−1
k=1 π̃n(zk)

)2 ,

where for the second inequality we note that the inner integral does not depend on r1 or
r2, and apply the definition of ν and the stopping time T . To estimate the right-hand
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side here, we note that π̃n(x) is proportional to σn
x , from which it is elementary to check

that (recalling that σn
zN

= ε4σ(n−1))

(25) π̃n ({zk : k = 1, . . . , N − 1}) >
(N − 1)(1− ε0)

N − 1 + 2ε4
.

It follows that

1

s0

∫ s0

0

∑

0≤y≤zN

1

π̃n(y)
f(y, s)2ds <

2t0 + s0
s0

×
N − 1 + 2ε4

(N − 1)(1− ε0)
.

For ε0, ε4 satisfying the assumptions of the lemma, and s0 := t0/2ε0, it is straightforward
to check that this implies

1

s0

∫ s0

0

∑

0≤y≤zN

1

π̃n(y)
f(y, s)2ds < (1 + 4ε0)

2 < 1 + 16ε0.

In particular, there must exist an s ≤ s0 such that
∑

0≤y≤zN
1

π̃n(y)
f(y, s)2 < 1+16ε0, and,

returning to (24),

(26) S2
2 < 16ε0 + 2P̃ n

zi
(T > t0)

for some t ≤ t0 + s0/2. Since the left-hand side of (22) is decreasing, if we choose
t0 := 2NΛn−1σ(n−1)/ε0ε3, then, by (23) and (26),

∑

0≤y≤zN

∣

∣

∣
P̃ n
zi

(

X̃n
t0+s0/2

= y
)

− π̃n(y)
∣

∣

∣
≤ S1 + S2 < 8ε

1/2
0 .

The result follows. �

We are now ready to put the pieces together to establish that under En the process
X is approximately balanced on the sites {z1, . . . , zN−1} at time tn. Since the result for
i = N was already established as Lemma 5.2, this will be enough to conclude the relevant
part of Theorem 1.4.

Proposition 5.4 (Balancing of the probability mass). Suppose En holds, that 2ε4 ≤ ε0 ≤
N−1 and also that N2ε1 ≤ (1 − ε0)ε

2
0ε3. Then, there exists a constant c depending only

on N such that, for i = 1, . . . , N − 1,

Pσ (Xtn = zi) >
1

N

(

1− c

(

ε
1/2
0 +

ε1
ε20ε3

))

.

Proof. We first note that under the assumptions on the (εi)
7
i=0, the lower bound in Lemma

5.1 and Lemma 5.3 imply that tn > 2tnmix(ε̃), where ε̃ := 8ε
1/2
0 . So, we have that sn :=

tn − tnmix(ε̃) > tnmix(ε̃) > 0, and we can apply the Markov property at time sn to obtain,
for i ∈ {1, . . . , N − 1},

Pσ (Xtn = zi) ≥ Pσ (Xtn = zi, τzN > tn)

≥
N−1
∑

j=1

Pσ (Xsn = zj , τzN > sn) P̃
n
zj

(

X̃n
tnmix(ε̃)

= zi, τzN > tnmix(ε̃)
)

.(27)

For the second probability in the above expression, we have that

P̃ n
zj

(

X̃n
tnmix(ε̃)

= zi, τzN > tnmix(ε̃)
)

≥ P̃ n
zj

(

X̃n
tnmix(ε̃)

= zi

)

− P̃ n
zj
(τzN ≤ tnmix(ε̃))
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> π̃n(zi)− ε̃−
tnmix(ε̃)

(1− ε0)ε
−1
1 Λ(n−1)σ(n−1)

,

where, to deduce the final inequality, we have applied the definition of the mixing time,
and bounded P̃ n

zj
(τzN ≤ tnmix(ε̃)) using the lower bound on hitting times in the first

statement of Proposition 2.2 (with a = 0, b = zN and x = z = zj). Plugging in the
definition of ε̃, noting the bound of Lemma 5.3, and estimating the measure similarly to
(25), we thus find that P̃ n

zj
(X̃n

tnmix(ε̃)
= zi, τzN > tnmix(ε̃)) is bounded below by

(28)
1

N − 1
−

3ε0
(1− ε0)

− 8ε
1/2
0 −

Nε1
(1− ε0)ε20ε3

.

For the remaining part of the sum at (27), we have that

N−1
∑

j=1

Pσ (Xsn = zj , τzN > sn) ≥ Pσ (τzN > sn)− P̃ n
0

(

X̃sn 6∈ {zj : j = 1, . . . , N − 1}
)

.

Clearly Pσ(τzN > sn) > (N − 1)/N , by the definition of tn. Furthermore

P̃ n
0

(

X̃sn 6∈ {zj : j = 1, . . . , N − 1}
)

≤ Pσ (τz1 > sn) + sup
t≥0

P̃ n
z1

(

X̃t 6∈ {zj : j = 1, . . . , N − 1}
)

< Nε1 +
ε4

(N − 1)(1− ε0)
,

where in the second inequality we used the upper bound on hitting times in the first
statement of Proposition 2.1 (with a = x = 0 and b = z1), the lower bound on sn > tn/2
of Lemma 5.1, and the localisation result in Proposition 2.3 (with S = [0, zN ] ∩ Z+ \
{z1, . . . , zN}).

In particular, we conclude that

N−1
∑

j=1

Pσ (Xsn = zj , τrn > sn) >
N − 1

N
−Nε1 −

ε4
(N − 1)(1− ε0)

.

Putting this together with (28), we obtain the result. �

Corollary 5.5 (Completion of the proof of Theorem 1.4). Suppose Assumption 3 holds.
Then

lim inf
t→∞

sup
x∈Z+

Pσ (Xt = x) =
1

N
P-almost-surely.

Proof. Fix ε ∈ (0, 1). By Assumption 3, we can suppose that almost-surely there exists
an infinite sequence (ni)i≥1 such that ∩i≥1Eni

holds for ε0 = ε5 = ε2, ε1 = ε6 = ε6,
ε3 = ε7 = ε, ε4 = 1

4 logni
and ε2 = ε7. Now, by Lemma 5.2 and Proposition 5.4, on

∩i≥1Eni
we have that

lim sup
i→∞

sup
z∈Z+

Pσ

(

Xtni
= z
)

≤
1

N
(1 + cε) ,

where c is some deterministic constant. Thus to complete the proof, it will suffice to show
that on ∩i≥1Eni

we also have tni
→ ∞ almost-surely. By Lemmas 3.5 and 5.1, we have

that on ∩i≥1Eni
, tni

> N−1ε−1
1 Λni−1σ(ni−1) → ∞ almost-surely, as desired. �
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Corollary 5.6 (Completion of the proof of Theorem 1.7). Suppose Assumption 3 holds
and that N ≥ 3. Then

lim sup
t→∞

Pσ(Xt 6∈ R) ≥
N − 2

N
P-almost-surely.

Proof. As in the proof of Corollary 5.5, by Assumption 3, Proposition 5.4 and Lemmas
3.5 and 5.1, there exists a sequence (ni)i≥i such that ∩i≥1Eni

holds for a certain choice of
(εi)0≤i≤7, and such that, on ∩i≥1Eni

, both

lim sup
i→∞

Pσ

(

Xtni
∈ {z2, . . . , zN−1}

)

≥
N − 2

N

and tni
→ ∞ hold almost-surely. To complete the proof, note simply that on the event

En the sites z2, . . . , zN−1 are not contained in the record traps R by definition. �

5.3. The favourable event occurs infinitely often. In this section, we establish that
the event En occurs infinitely often; throughout we shall work under Assumptions 1 and 2.
Our proof breaks down into two parts. We start by considering the part involving the
sum over vertices z < zN . In particular, note that, for any ε0 ∈ (0, 1),















zN = rn,
∑

z<zN :
z 6∈{z1,...,zN−1}

σz > ε4σ(n−1)















⊆
{

S
(N)
rn−1 > ε4σ(n−1)

}

,

and we recall from Lemma 3.14 that if ε4 := 1/4 logn then the right-hand side only occurs
for finitely many n almost-surely (recall that we are working under Assumptions 1 and 2).
Moreover, for the same choice of ε4, we have from Lemma 3.5 and the slow-variation of L
that, for any ε0 ∈ (0, 1), z1 = rn−1 < 2 lognL(σ(n−2)) < ε−1

4 Λn−1 eventually almost-surely.
Hence to show that En occurs infinitely often with ε4 = 1/4 logn, it will be enough to
show that

Ẽn :=

{

zN = rn,
zN − zN−1

Λn−1

∈ (ε−1
1 , ε−1

2 ),
zN−1 − z1

Λn−1

< ε−1
3

}

∩







σ(n) > ε−1
5 σ(n−1),

∑

zN<z<zN+ε−1
6 Λn−1

σz < ε7σ(n−1)







.

holds infinitely often. Together with the conditional Borel-Cantelli lemma, the following
lemma establishes that this is indeed the case.

Proposition 5.7. Suppose (εi)
7
i=0 are such that εi ∈ (0, 1), ε−1

1 < ε−1
2 and ε4 := 1/4 logn.

Let Fn denote the filtration generated by {σz : z ≤ rn+1}. Then Ẽn ∈ Fn, and, under
Assumptions 1 and 2,

∑

n

P
(

Ẽ2(n+1)|F2n

)

= ∞

almost-surely.

Proof. It is clear that
{

zN = rn,
zN − zN−1

Λn−1
∈ (ε−1

1 , ε−1
2 ),

zN−1 − z1
Λn−1

< ε−1
3 , σ(n) > ε−1

5 σ(n−1)

}

∈ Fn.
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Moreover, on the event






∑

zN<z<zN+ε−1
6 Λn−1

σz < ε7σ(n−1)







,

we have that σz < ε7σ(n−1) < σ(n) for all z ∈ {zN + 1, . . . , zN + ε−1
6 Λn−1 − 1}, and so it

must be the case that rn+1 ≥ zN + ε−1
6 Λn−1. In particular, the sum is Fn-measurable.

Thus we conclude that Ẽn ∈ Fn, as desired.
For the remainder of the proof, it is useful to note that Ẽn contains the following event:

{

zi+1 − zi
Λn−1

<
ε−1
3

N − 2
, i = 1, . . . , N − 2

}

∩
{

σzi ≤ σ(n−1), i = 2, . . . , N − 1
}

∩
{

σ(n) > ε−1
5 σ(n−1)

}

∩

{

zN − zN−1

Λn−1
∈ (ε−1

1 , ε−1
2 )

}

∩







∑

zN<z<zN+ε−1
6 Λn−1

σz < ε7σ(n−1)







.

Hence, it is easy to see using the independence properties of (σx)x≥0 that

P
(

Ẽ2(n+1)|F2n

)

≥ pN−2
1 pN−2

2 p3p4p5,

where

p1 = P

(

z2 − z1 <
Λ2n+1ε

−1
3

N − 2
σ(2n+1)

)

,

p2 = P
(

σz2 ≤ σ(2n+1) σ(2n+1)

)

,

p3 = P
(

σ(2n+2) > ε−1
5 σ(2n+1) σ(2n+1)

)

,

p4 = P

(

zN − zN−1

Λ2n+1
∈ (ε−1

1 , ε−1
2 ) σ(2n+1)

)

,

p5 = P





∑

zN<z<zN+ε−1
6 Λ2n+1

σz < ε7σ(2n+1) σ(2n+1)



 .

(Note that the indices relate to Ẽ2(n+1), and so z1 = r2n+1 and zN = r2n+2.) In particular,
it is straightforward to check that, almost-surely,

p1 = 1−

(

1−
1

Λ2n+1

)

ε
−1
3

Λ2n+1
N−2

≥ 1− e−
ε
−1
3

N−2 > 0,

p2 = 1−
L((1− ε0)σ(2n+1))

L(σ(2n+1))
∼ − log(1− ε0)g(σ(2n+1)) ≥ cd(e(1+ε)(2n+1)),

where we used the eventual monotonicity of g guaranteed by Assumption 1 and the
almost-sure bounds on records of Lemma 3.5,

p3 =
L(σ(2n+1))

L(ε−1
5 σ(2n+1))

→ 1,

p4 = P

(

zN − zN−1

Λ2n+1
> ε−1

1 σ(2n+1)

)

−P

(

zN − zN−1

Λ2n+1
> ε−1

2 σ(2n+1)

)

=

(

1−
1

Λ2n+1

)Λ2n+1ε
−1
1

−

(

1−
1

Λ2n+1

)Λ2n+1ε
−1
2

∼ e−ε−1
1 − e−ε−1

2 ,
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which is strictly positive, and finally,

p5 = P

(

L((1− ε0)ε
−1
7 Sm)

m
< ε6

)

m=ε−1
6 Λ2n+1

→ e−ε−1
6 > 0.

Hence we deduce that

P
(

Ẽ2(n+1)|F2n

)

≥ cd(e(1+ε)(2n+1))N−2.

Noting that a monotone sequence an is summable if and only if a⌊(1+ε)(2n+1)⌋ is summable,
the above sequence is not summable under Assumption 2, completing the proof. �

Note that the previous lemma shows that, under the same conditions, Assumption 3
holds. Thus, together with Corollary 5.5, this completes the proofs of Theorems 1.3
and 1.4. Moreover, together with Corollary 5.6, it completes the proof of Theorem 1.7.
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