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Abstract. 

 Ultrafast time-resolved electronic and infrared absorption measurements have been carried out on a 

series of Ru(II) polypyridyl complexes in an effort to delineate the dynamics of vibrational relaxation in 

this class of charge transfer chromophores. Time-dependent density functional theory calculations 

performed on compounds of the form [Ru(CN-Me-bpy)x(bpy)3-x]2+ (x = 1-3 for compounds 1 – 3, 

respectively, where CN-Me-bpy is 4,4’-dicyano-5,5’-dimethyl-2,2’-bipyridine and bpy is 2,2’-bipyridine) 

reveal features in their charge-transfer absorption envelopes that allow for selective excitation of the 

Ru(II)-(CN-Me-bpy) moiety, the lowest-energy MLCT state(s) in each compound of the series. Changes 

in band shape and amplitude of the time-resolved differential electronic absorption data are ascribed to 

vibrational cooling in the CN-Me-bpy-localized 3MLCT state with a time constant of 8 ± 3 ps in all three 

compounds. This conclusion was corroborated by picosecond time-resolved infrared absorption 
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measurements; sharpening of the CN stretch in the 3MLCT excited state was observed with a time 

constant of 3.0 ± 1.5 ps in all three members of the series. Electronic absorption data acquired at higher 

temporal resolution revealed spectral modulation over the first 2 ps occurring with a time constant of τ = 

170 ± 50 fs, in compound 1; corresponding effects are significantly attenuated in compound 2 and 

virtually absent in compound 3. We assign this feature to intramolecular vibrational redistribution (IVR) 

within the 3MLCT state and represents a rare example of this process being identified from time-resolved 

electronic absorption data for this important class of chromophores. 
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1. Introduction 

 A number of photophysical and photochemical conversions occur on ultrafast timescales, with 

phenomena such as intersystem crossing, internal conversion, and even photo-induced bond cleavage 

reactions being reported with rate constants in excess of 1012 s-1 in a wide variety of chemical systems.1-5 

The occurrence of these processes on time scales comparable to the vibrational oscillations of a molecule 

raises the question as to whether they might be initiated from so-called "hot" states, i.e., vibrational levels 

of the electronic excited state other than that corresponding to ν = 0. Such a circumstance would imply 

competition between the electronic and structural features of photoexcited molecules and therefore 

represent an important aspect of excited-state evolution in molecular systems. While it is necessary to 

understand this connection with regard to fundamental aspects of photophysics and photochemistry, the 

details of the interplay between electronic and structural degrees of freedom under the influence of an 

optical bias have more significant implications for the design and use of chromophore assemblies in 

applications ranging from optoelectronics to solar energy conversion. 

 As a class, the excited-state dynamics of transition metal complexes are dominated by the sorts of 

non-radiative processes just described; even in charge-transfer complexes, all but the most highly 

emissive compounds dissipate the majority of the photo-induced excess energy via non-emissive 

pathways. Non-radiative decay along one electronic potential energy surface in large molecules has two 

major components, namely intermolecular vibrational relaxation (herein referred to as vibrational 

cooling), and intramolecular vibrational energy redistribution (IVR). Vibrational cooling is the transfer of 

vibrational energy from the excited molecule into its surroundings (e.g., solvent), resulting in a net loss of 

energy within the chromophore: this corresponds to thermalization of the excited state. Intramolecular 

vibrational energy redistribution, on the other hand, is the transfer of vibrational energy from an excited 

vibrational mode(s) of the chromophore into other vibrational modes that were not directly coupled to the 

electronic excitation. In this process there is no net loss of energy from the chromophore; rather, the 

absorbed energy is redistributed to the various vibrational degrees of freedom of the molecule. To the 

extent that IVR affects the spatial localization of the excitation energy, this process can lead to differences 

in excited-state reactivity based on the geometric and compositional properties of the system.1,6-13 Despite 

its important role in excited state dynamics, detailed investigations of vibrational relaxation dynamics in 

transition metal-based compounds are relatively limited in number.3,6-9,12,14-21 

 In considering the general problem of understanding the mechanism of excited-state evolution in 

transition metal complexes, it occurred to us that an examination of this issue must confront two critical 

problems. First, the use of transient electronic absorption spectra to infer processes related to vibrational 

dynamics in transition metal-containing systems is a largely untested paradigm. In our work, for example, 
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assignments of kinetics being due to vibrational relaxation have been arrived at through a process of 

elimination: once electronic structure changes were deemed to be complete, small amplitude and/or band 

shape modulations in the differential absorption spectra occurring on longer time scales (but orders of 

magnitude faster than ground-state recovery) were ascribed to vibrational cooling.2,22-24 One can make a 

reasonable argument based on anticipated changes in Franck-Condon factors in support of this assertion, 

but it is still an indirect means of probing vibrational dynamics in electronic excited states. The 

development of ultrafast vibrational spectroscopies over the past several years presents tremendous 

opportunities for the direct measurement of vibrational dynamics in charge-transfer excited states,6-9,12-

16,20,21 but these methodologies tend to be more technically challenging and therefore not as commonly 

employed in the physical-inorganic community as electronic absorption spectroscopy. 

 The second issue relates to the density of vibrational states one often encounters in transition metal 

complexes. The benchmark studies of metal carbonyl complexes by Harris,25 Simon,26,27 and others,8 as 

well as the late Paul Barbara’s work on cyano-bridged mixed-valence ruthenium and iron dimers,28 were 

successful in part because the C-O and C-N stretches of these moieties occur in isolated regions of the 

infrared spectrum. Compounds such as [Ru(bpy)3]2+ present a far greater challenge for probing vibrational 

dynamics due to the large number of vibrational degrees of freedom congested in a relatively narrow 

spectral window; even excluding the protons on each bpy ligand, the seven vibronically active modes 

associated with the 1A1 → 1MLCT absorption29 can theoretically couple to a bath comprised of nearly 100 

normal modes. In this context, the studies of Mathies30 and Browne and McGarvey31 in particular 

represent important benchmarks along these lines. 

 To address these challenges, we sought to develop a molecular platform that would be amenable to 

study through the use of both ultrafast electronic and vibrational spectroscopies while at the same time 

allow for unambiguous identification and differentiation of vibrational relaxation and IVR. The series of 

compounds we have prepared to achieve this goal is illustrated in Chart 1. Following the example of 

Barbara, we have chosen the CN moiety as our probe for vibrational dynamics due to its spectral 

isolation; by placing this group at the 4 and 4’ positions of the bipyridine ligand, conjugation into the π 

system of the rings couples it to the MLCT manifold of the chromophore and thus allows it to act as a 

reporter for excited-state charge-transfer dynamics. We have previously described the synthesis, 

electrochemistry, as well as steady-state and nanosecond time-resolved absorption, emission, and infrared 

spectroscopic properties of this series of compounds:32 with this report, we shift our attention to their 

ultrafast excited-state dynamics. Results from time-dependent density functional theory calculations will 

be described that lend support to our previous assertion32 that the broad charge-transfer envelopes 

exhibited in the visible absorption spectra of these compounds can be viewed as a superposition of 
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absorption features associated with the CN- and un-substituted ligand(s) in the low and high energy 

regions, respectively. Femtosecond time-resolved electronic absorption and picosecond infrared 

absorption data were then acquired on all members of the [Ru(CN-Me-bpy)x(bpy)3-x]2+ series (x = 1-3 for 

compounds 1 – 3, respectively) in order to assess the extent to which the former can be used to draw 

conclusions concerning the dynamics of vibrational relaxation. Finally, data will be presented in the form 

of sub-100 fs time-resolved electronic absorption spectra that provide novel insights into the time scale of 

IVR in this class of charge-transfer chromophores. 

 

Chart 1. Drawings of the cations of [Ru(bpy)2(CN-Me-bpy)](PF6)2 (1), [Ru(bpy)(CN-Me-bpy)2](PF6)2 

(2), and [Ru(CN-Me-bpy)3](PF6)2 (3). 

 

2. Experimental 

 2.1. Synthesis. All members of the [Ru(CN-Me-bpy)x(bpy)3-x]2+ series (where x = 1 – 3 for 

compounds 1 – 3), respectively) were prepared as described previously.32 

 2.2. Time-Resolved Electronic Absorption Spectroscopy. Femtosecond time-resolved electronic 

absorption data were acquired using a spectrometer designed to emulate a previously reported system.33 A 

commercial Ti:Sapphire oscillator (Coherent: Mantis) provides 500 mW at 80 MHz as the seed for a 

Nd:YLF pumped Ti:Sapphire regenerative amplifier (Coherent: Legend Elite USP), producing a 1 kHz 

train of ~40 fs pulses (~1.3 mJ) at 800 nm. The output is split 70/30 with the larger portion being used to 

pump an optical parametric amplifier (Coherent: OPerA Solo), generating a tunable pump source. The 

smaller portion is used to pump a second OPA (Coherent: OperA Solo) for single-wavelength 

measurements or, for full spectrum data collection, attenuated to generate a white light continuum probe 

in the single filament regime by focusing ~2 µJ into a 6mm-thick CaF2 window attached to a continually 

moving transducer. The pump OPA output is passed through an optical chopper (446 Hz), directed on a 

computer controlled translation stage (Aerotech: 3.3 fs/step time resolution), and softly focused into a 1 
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mm path length quartz cell containing a solution of the sample. The pump polarization is horizontal with 

excitation energy in the range of 3-6 µJ at the sample; the power dependence of all data acquired was 

checked to verify linear response. The probe is polarized at 54.7° with respect to the pump to minimize 

anisotropic contributions to the observed kinetics. Off-axis parabolic mirrors are used to collimate and 

focus the white light into the sample at an acute angle (~5°) with respect to the pump. Cross-correlation 

data acquired in neat solvent were used to determine time zero as well as the instrument response function 

at various pump-probe combinations. The latter were fit to Gaussian curves with a full width at half 

maximum of 75 ± 10 fs. 

 Single wavelength kinetics measurements are made by passing the probe through a 10 nm band-pass 

filter of the appropriate wavelength positioned after the sample and focused onto an amplified Si 

photodiode (Thor labs); a reference beam of 800 nm light (not chopped) is directed onto a similar 

amplified photodiode. The signal and reference are coupled to a digital lock-in amplifier (Stanford 

Research: SR810) synchronized to the optical chopper. The reference beam intensity is attenuated to 

match that of the signal beam in order to account for laser power fluctuations. Single wavelength plots of 

kinetic data represent an average of 6-12 scans where a single scan corresponds to data collected at each 

of the time points visited by the translation stage in a forward direction averaged with data collected at the 

same time points in the reverse direction. 

 Full spectrum data were acquired by coupling the white light probe into a spectrograph (Spex 270M) 

and dispersed horizontally onto a photodiode array (Hamamatsu HC233-0900 with a NMOS C9564 

array). The grating angle can be changed with respect to the incoming light in order to select the desired 

center wavelength; spectra spanning ~300 nm are collected as a function of pump stage. Dark counts are 

collected in the absence of the probe beam at the beginning of each experiment to identify and account for 

laser scatter, whereas spectra collected at the beginning of each scan at negative time are used as the 

reference. The data reported herein are typically an average of 24-32 scans. Chirp correction due to 

dispersion of the probe beam was accomplished by acquiring traces of neat solvent capturing the cross-

correlation signal at each wavelength; the “time zero” for each wavelength was taken to be the median 

time of the response. A plot of the wavelength vs. corresponding “time zero” was then fitted to the built-

in double exponential with an x-offset function available in the Igor Pro software suite (v. 6.2.2). This fit 

was applied to the full data set, effectively correcting the timing for each full spectrum. The solvent 

response (which takes the form of stimulated Raman scattering as well as cross-phase modulation) can be 

seen during the first ~100 fs: these spectral traces were therefore not considered in the data analysis. 

Further details concerning the application of singular value decomposition and global analysis to 

differentiate genuine spectral features from artifacts can be found in the Supplementary Materials. 
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 Spectrophotometric grade acetonitrile (Aldrich Chemical Co.), which had been freeze-pump-thaw 

degassed prior to use, was used as the solvent. Samples were prepared with an absorbance of 0.4 – 0.8 at 

the excitation wavelength in air-free 1 mm pathlength cells. Ground state absorption spectra were taken 

before and after data collection in order to assess sample integrity. Compounds 1 and 2 showed no 

changes in their UV-visible absorption spectra and no other signs of decomposition over several days. 

Compound 3 showed a small change in the absorption spectrum over a two-day period, so a fresh sample 

of 3 was prepared for each measurement. 

 2.3. Time-Resolved Infrared Spectroscopy. Time-resolved infrared absorption (TRIR) data were 

collected at the Rutherford Appleton Laboratory using an instrument that has been described previously.33 

Samples were dissolved in nitromethane and placed in 0.1 mm pathlength cells with absorbances of ~0.7 

at the excitation wavelength, resulting in ground state infrared absorptions in the range of 0.005 – 0.01 for 

the CN vibration(s). The samples were excited at 490 nm for compounds 1 and 2 and 475 nm for 

compound 3. Unless otherwise stated, all time-resolved IR measurements were made at magic angle. The 

polarization anisotropy measurements were made with the infrared probe set to horizontal polarization, 

with the pump (both 400 nm and 490 nm excitation experiments) varied from horizontal to vertical using 

half waveplates. The raw data was baseline corrected with a spline function in Igor Pro. The energy axis 

was calibrated using Equations 1 and 2, 

  (1) 

  (2) 

 

where d is dispersion, a and b are pixels, ν ̅a and ν ̅b are the energies (in cm-1) of pixels a and b, νi̅ is the 

energy (in cm-1) of pixel i, and λa is the wavelength of pixel a (in cm). Dispersion was calculated using the 

maximum of the excited state absorption and the minimum of the ground state bleach as pixels a and b 

and using the energies observed in the nanosecond time resolved infrared experiment for ν ̅a and νb̅.32  

 2.4 Density Functional Theory (DFT) Calculations. Calculations on complexes 1 - 3 were performed 

using the Gaussian 03 software package.34 Geometry optimizations were carried on the ground states of 

the compounds using a spin-unrestricted formalism at the B3LYP/LANL2DZ level of theory.35,36 No 

symmetry restrictions were placed on the geometry optimizations. The influence of the solvent 

environment was accounted for through use of the polarizable continuum model (PCM).37 Frequency 

calculations were performed on the optimized structures to ensure that these geometries corresponded to 
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global minima: no imaginary frequencies were obtained for any of the optimized geometries. The first 80 

electronic transitions (singlets and triplets) of the optimized structures were calculated by time-dependent 

DFT using a spin-unrestricted formalism at the B3LYP/LANL2DZ level of theory. The orbitals 

contributing to each transition were visualized using GaussView. 

 

3. Results and Discussion 

 We have previously reported on the ground state and long-lived excited state properties of complexes 

1 – 3.32 Briefly, electrochemical data in combination with steady-state and nanosecond time-resolved 

emission, electronic and step-scan infrared absorption measurements were acquired on all members of 

this series. The electrochemistry revealed that 4,4’-dicyano-5,5’-dimethyl-2,2’-bipyrdine (CN-Me-bpy) is 

more easily reduced than 2,2’-bipyridine and should therefore house the lowest-energy, thermalized 
3MLCT excited state in all members of the series depicted in Chart 1. This was verified by the nearly 

identical nanosecond differential electronic absorption spectra of 1 – 3, particularly in the near-UV region 

which is diagnostic for bipyridyl radical anions; in the specific cases of compounds 1 – 3, the absorption 

corresponding to the (CN-Me-bpy)- moiety is observed at ~395 nm, a red-shift of ca. 25 nm from the 

~370 nm feature observed in the excited-state differential spectrum of [Ru(bpy)3]2+.14,38 Nanosecond step-

scan IR data showed identical red-shifts of ~40 cm-1 for the CN stretching frequency in compounds 1 – 3, 

a clear indication of coupling of the CN group into the ligand π system as well as establishing that the 

long-lived 3MLCT state is localized on a single CN-Me-bpy ligand in all three complexes. This 

information provides us with the necessary foundation to begin examining the process(es) by which the 

long-lived, thermalized 3MLCT states of these compounds are formed. 

 3.1. DFT and TD-DFT Calculations. An understanding of the temporal evolution of the chromophore 

immediately following photoexcitation requires knowledge about the nature of the initially formed 

Franck-Condon excited state. The ground-state electronic absorption spectra of compounds 1 – 3 are 

plotted in Figure 1. While excitation of compound 3 anywhere within the charge-transfer envelope will 

place the Franck-Condon state on a CN-Me-bpy ligand, the significant difference in reduction potential 

for CN-Me-bpy versus bpy implies that the spatial localization of the initial state in compounds 1 and 2 is 

likely to be excitation-wavelength dependent. In our previous report,32 we provided a qualitative 

assessment as to which region of the spectrum reflects coupling to which ligand, but more concrete 

information along these lines was desirable in advance of ultrafast spectroscopic measurements. 

Resonance Raman spectroscopy is the experimental method of choice in this regard given its inherent 

selectivity for modes that are vibronically coupled to the selected electronic absorption band;39,40 this 

approach would be particularly useful in the case of compounds 1 - 3 due to the distinctive nature of the 
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C-N stretch of the CN-Me-bpy ligand. Unfortunately, our efforts along these lines were unsuccessful due 

to interference from emission arising from the 3MLCT excited states of these compounds.32 We therefore 

turned to theory in order to gain further insight into the origin(s) of the transitions making up the charge-

transfer features in this system. 

 

Figure 1. Electronic absorption spectra of [Ru(bpy)2(CN-Me-bpy)](PF6)2 (1, blue line), [Ru(bpy)(CN-

Me-bpy)2](PF6)2 (2, green line), and [Ru(CN-Me-bpy)3](PF6)2 (3, red line). The spectra were acquired in 

CH3CN solution. 

 

 The ground state geometries for compounds 1 - 3 were first optimized using a PCM-based dielectric 

appropriate for CH3CN, the solvent in which the ground-state and time-resolved excited-state electronic 

absorption data were acquired:37 these optimized geometries were then used as the starting points for 

time-dependent (TD-DFT) calculations. For each compound, the first 80 transitions (both singlet-singlet 

and singlet-triplet) were calculated. Figure 2 shows the results for complex 1 along with the dominant 

orbital contributions to selected absorptive features of the molecule. The blue squares represent the 

calculated singlet-singlet transitions, whereas the red triangles are the calculated singlet-triplet transitions. 

The latter were calculated having zero oscillator strength (i.e., f = 0) since spin-orbit coupling was 

neglected, however, they can still contribute to the experimental spectra.41 Finally, the black line 

corresponds to the experimentally observed electronic absorption spectrum. 
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Figure 2. TD-DFT analysis of the electronic absorption spectrum of [Ru(bpy)2(CN-Me-bpy)]2+ (1), 

calculated at the UB3LYP/LANL2DZ level of theory. The solvent environment was modeled with 

polarizable continuum model (PCM) appropriate for CH3CN. The experimentally observed spectrum is 

shown in black and corresponds to the data plotted in Figure 1. The blue squares are calculated singlet-

singlet (i.e., spin-allowed) transitions, whereas the red triangles are spin-forbidden singlet-triplet 

transitions. The drawings to the right and left of the plot illustrate orbital descriptions depicting the 

major contributions to the transitions indicated; the strong absorption at ~4 eV is a π → π* transition 

associated with the CN-Me-bpy ligand whose orbital description has been omitted for clarity. See text for 

further details. 

 

 In general, we find excellent overall agreement between the calculated and experimental absorption 

features for compound 1. In particular, we note how well the calculated transition energies align with the 

dominant bands in the spectrum without the need for any corrections that are sometimes invoked in TD-

DFT analyses.35 The lowest energy feature near 480 nm is best described as a metal-to-ligand charge 

transfer band; the orbital contributions reveal that the transition is from a (mostly) t2g-type d orbital on the 

ruthenium center to an empty π* orbital localized on the CN-Me-bpy ligand with no significant 

involvement of orbitals associated with the unsubstituted bpy ligands. This is in agreement with 

expectations based on the electrochemical properties of this compound indicating that the CN-Me-bpy 

ligand is most easily reduced and should therefore represent the lowest-energy MLCT state(s).32 The 

spectrum becomes more complex at higher energies due to the increasing number of multielectronic 

configurations that have comparable energies, however, the most prominent features in the range of 400 – 

425 nm are clearly charge-transfer bands associated with the unsubstituted bpy ligands. The example 
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highlighted in Figure 2 has two major contributions of roughly equal weight, one that is best described as 

a t2g-to-ligand π* orbital transition and the other having some added contributions from the CN-Me-bpy 

ligand in both the ground and excited states. The wavefunctions describing the excited states in these 

transitions appear to be distributed across the two unsubstituted bpy ligands. Finally, the band centered 

near 325 nm is a ligand-localized, π → π* absorption of the CN-Me-bpy ligand. 

 Analogous calculations carried out on compound 2 yielded similar results, i.e., the lowest-energy 

absorptions being due to MLCT transitions involving the CN-Me-bpy ligands (Figure S1). The higher 

energy portion of the charge-transfer envelope is slightly more complicated than what was seen for 

compound 1 insofar as features near 400 nm derive from charge transfer transitions to both the lone bpy 

as well as the CN-Me-bpy ligands (although the former represents the dominant contribution); as with 

compound 1, absorptions in the ultraviolet are predominantly ligand-localized, π → π* transitions. In 

complex 3, the homoleptic nature of the compound means that there is only one possible ligand-type 

available to house both the initial and thermalized excited state. This is clearly evident from the 

calculations, which reveal excited states within the charge-transfer manifold involving either one or two 

of the CN-Me-bpy ligands (Figure S2). 

 The TD-DFT calculations just described support our previous assessment,32 namely that excitation in 

the low-energy portion of the MLCT absorption envelope in all three complexes in the series will result in 

a Franck-Condon state that is localized on the CN-Me-bpy ligand, whereas high-energy excitation in 

compounds 1 and 2 places the initial excited state on the unsubstituted, higher energy bpy ligand, thus 

giving rise to spatially distinct Franck-Condon and lowest-energy, thermalized excited states. Excited-

state evolution in this latter scenario necessarily involves a more complex sequence of events, including 

interligand electron transfer. In the present study, we will primarily concern ourselves with low-energy 

excitation where both excited-state formation and thermalization are associated with the same metal-

ligand fragment. This simplifies the problem considerably by limiting the dynamics to energy dissipation 

in a spatially confined region of the chromophore and should allow us to draw more definitive 

conclusions concerning the process(es) associated with excited-state thermalization. The details of 

excited-state evolution following higher energy excitation – which will presumably include the relaxation 

processes described herein, as well as additional dynamics associated with spatial redistribution of the 

excited state – will be the subject of a future report. 

 3.2. Ultrafast Time-Resolved Spectroscopy. Information about excited-state thermalization is often 

inferred from differential electronic absorption spectra where subtle modulations in band shape (e.g., 

narrowing of an absorption feature over time) are attributed to vibrational cooling.23 Such assignments are 

reasonable in the absence of significant changes in the overall spectral profile that might suggest a change 
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in electronic state, but they are nevertheless still based on indirect evidence.1,10 Far preferable is the use of 

ultrafast infrared and/or Raman spectroscopy where vibrational transitions are probed directly. With these 

techniques, vibrational relaxation is generally manifested as a narrowing and blue shifting of the infrared 

spectrum.9,20,21,29,42-45 The former occurs because the Franck-Condon excitation creates a distribution of 

vibrationally excited states which subsequently relax to the ν = 0 vibrational state, causing the spectrum 

to narrow, whereas the anharmonic nature of the potential surface gives rise to the concomitant blue-

shift.6  

 Electronic absorption and vibrational spectroscopies together can offer complementary and thus more 

complete information about excited state dynamics. Maçôas and coworkers, for example, studied 

Cr(acac)3 by ultrafast infrared absorption spectroscopy.46 Biexponential ground state recovery kinetics 

associated with the ligand C=C and C=O stretches were observed, in contrast to the single exponential 

kinetics documented from the time-resolved electronic absorption measurements reported by Juban and 

McCusker.23 Combining these results allowed for the construction of a more sophisticated model than was 

possible from either study alone. The system was observed to bifurcate at or near the Franck-Condon 

region to produce a sub-100 fs ISC to the 2E state in competition with back-ISC to the 4T2 state, the latter 

leading to a 15 ps internal conversion back to the ground state.46 With this example in mind, we carried 

out both electronic and infrared time-resolved absorption measurements on complexes 1 – 3 in an effort to 

create a well-defined benchmark for exited-state evolution in the Ru(II) polypyridyl class of 

chromophores. 

 3.2.1. Time-Resolved Electronic Absorption Measurements. A useful approach to the study of the 

excited-state evolution of transition metal complexes is to essentially work backwards in time, that is, 

identify when the spectroscopic features characteristic of the lowest-energy excited state are established, 

then analyze the evolution to that point in order to determine the nature of the ultrafast dynamics involved 

in its formation. Figure 3 compares the differential electronic absorption spectrum of the fully relaxed 
3MLCT excited state for compound 1 with one acquired at a delay of 15 ps following excitation at 480 

nm.32 Three main features are apparent: (1) the aforementioned absorption in the near-UV at ~395 nm, 

which is associated with the CN-Me-bpy-based radical anion, (2) a strong bleach in the mid-visible due to 

loss of the ground-state charge-transfer band, and (3) a weak, broad feature extending to the red past 500 

nm previously assigned to a superposition of absorptions of the CN-Me-bpy- species and an LMCT band 

associated with the RuIII-bpy chromophore present in the excited state.22,32 Superimposed on these data is 

a differential spectrum corresponding to a time delay of Δt = 15 ps. It can be seen that the two spectra 

closely match one another, a clear indication that the 3MLCT is fully formed by 15 ps. This is wholly 

consistent with the body of work that has been published on compounds of this class but in the present  
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Figure 3. Transient differential absorption spectra for [Ru(bpy)2(CN-Me-bpy)]2+ (1) following 1A1 → 
1MLCT excitation at 490 nm. The black line corresponds to the differential spectrum at a time delay of Δt 

= 15 ps, whereas the blue squares represent amplitudes derived from single-exponential fits of the 

kinetics of ground-state recovery acquired at each wavelength from nanosecond time-resolved absorption 

measurements. 

 

context serves as an important baseline for the interpretation of spectra acquired at earlier time delays. 

 In Figure 4 are plotted differential electronic absorption spectra for complex 1 over the first 25 ps 

following excitation at 490 nm. Qualitatively, it can be seen that the main spectroscopic features 

described above that are characteristic of a CN-Me-bpy-based MLCT excited state are established by ca. 

1 ps.47 Furthermore, there are no substantial changes in the overall spectral profile within this time 

window; of particular note is the fact that there are no significant perturbations to the isosbestic points in 

the excited-state/ground-state differential spectra within this time window, consistent with the notion that 

two and only two electronic states are being sampled (i.e., the ground and the lowest-energy 3MLCT 

states). These observations, coupled with the fact that excitation at 490 nm places the Franck-Condon 

state spatially coincident with the lowest-energy excited state of the compound, allows us to conclude that 

the electronic structure evolution of complex 1 is complete within 1 ps following excitation at 490 nm.  
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Figure 4. (a) Differential absorption spectra acquired for [Ru(bpy)2(CN-Me-bpy)]2+ (1) in CH3CN 

solution following 1A1 → 1MLCT excitation at 490 nm. Time delays for each spectrum are indicated in the 

inset. (b) An expanded view of the ultraviolet and near-UV region of the spectra plotted in part (a). 

 

 Although the overall spectral profile is largely invariant, a closer examination reveals some subtle 

changes occurring over the temporal window illustrated in Figure 4. This is most clearly evident in Figure 

4b, which is an expanded view of the blue region of the spectrum. When examining these spectra, it is 

important to keep in mind that they reflect a superposition of absorptions arising from the excited state – 

in this case the 3MLCT state of complex 1 – and the loss of the ground state absorption. Since the latter is 

instantaneous and static, any modulations in the differential spectra are solely due to processes associated 

with the excited state. We see the most significant changes blue of the isosbestic point at 405 nm where 

the ligand radical anion present in the 3MLCT state dominates the spectrum.48 The signal appears to 

exhibit an overall increase in intensity over the course of ~20 ps;42,49,50 the peak, which is not very 

prominent at early times (i.e., the absorption profile in the range of 370 – 395 nm is fairly flat), becomes 

better defined as the system evolves in time. If we then look at the spectrum in the bleach region near 425 

nm, we see a similar albeit less pronounced trend over the same time window but in the opposite sense: 

the signal is becoming more negative while shifting slightly toward the blue over time. These changes can 

be explained quite easily in terms of the sharpening of an excited-state absorption feature whose 

differential absorption maximum is blue of 410 nm. This is precisely the type of signature expected for 

vibrational cooling as the system dissipates energy and the population distribution across the various 

vibrational modes of the molecule shifts toward lower-energy vibrational quanta. These lower-energy 

vibrational states are characterized by wavefunctions whose amplitudes are more centered about the 
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equilibrium geometry of the excited state; as a result, the Franck-Condon factors that serve to define the 

breadth of the absorption feature become distributed over a much narrower range of nuclear 

displacements, resulting in a sharpening of the absorption band. Concomitant with this sharpening, the 

contribution of the excited-state electronic absorption toward offsetting the loss of ground-state 

absorption on the red side of the isosbestic is diminished, thereby increasing the magnitude of the bleach 

signal. In the case of the differential spectra shown in Figure 4, the manifestation of this process is 

attenuated due to superposition of these absorptive features on the ground-state bleach (vide infra), but the 

spectral dynamics identified in the data are nevertheless consistent with this general picture. 

 For the subtle changes associated with vibrational relaxation, single-wavelength measurements are 

better suited to determine the time scale of the process along the 3MLCT excited state. Plots of the 

kinetics measured at probe wavelengths on either side of the 405 nm isosbestic point for compound 1 are 

shown in Figure 5. There are processes occurring on multiple time scales: we will defer a discussion of 

the sub-picosecond dynamics and focus for now on kinetics associated with the spectral changes 

highlighted in Figure 4. The increase in signal amplitude to the blue side of 400 nm is clearly evident in  

 

Figure 5. Single-wavelength kinetics for [Ru(bpy)2(CN-Me-bpy)]2+ (1) at 390 nm following 1A1 → 1MLCT 

excitation at 490 nm. The solvent response near Δt = 0 is shown in black. The solid red line shows a fit of 

the kinetics to a biexponential kinetic model. The slower component corresponds to a time constant of 8 ± 

1 ps; an expanded view of the faster process can be found in the inset of Figure 7. Inset. Single-

wavelength kinetics acquired at λprobe = 430 nm. See text for further details. 
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Figure 5; these data can be described by an exponential with a time constant of 8 ± 1 ps that asymptotes to 

a baseline offset, i.e., the steady-state differential absorbance of the bpy radical anion associated with the 

fully thermalized 3MLCT excited state. This vibrational cooling time constant is in the same 5 – 20 ps 

range that has been reported by us2,6,22-24,42 as well as a number of other researchers1,5,21,25,29,31,46,51,52 for 

this class of compounds. 

 It is interesting to note that data acquired at 430 nm (Figure 5, inset) do not show a corresponding 

kinetic feature for vibrational relaxation despite the qualitative connection mentioned above between 

these two portions of the differential spectra. Closer inspection of Figure 4b reveals that, although the first 

two spectral traces trend in the manner described previously, there is no systematic modulation observed 

for λprobe > 400 nm. In fact, this situation is not uncommon (i.e., kinetics clearly in evidence in regions of 

net excited-state absorption not being observed in bleach regions) due to the fact that regions of net 

absorption are dominated by signals associated with the excited state whereas bleach regions 

predominantly reflect loss of ground-state absorption. Since the kinetics are associated with processes in 

the excited state, their manifestation can often be masked in regions where excited-state absorption 

represents a minority contribution to the overall signal. 

 Results similar to those just described for compound 1 were also obtained for complexes 2 and 3; 

analogous plots of the full spectrum and single-wavelength kinetics data for these two compounds are 

provided in Figures S3 – S6 of the Supplementary Materials. 

 3.2.2. Time-resolved Infrared Absorption Measurements. One of our primary goals in developing a 

CN-substituted bipyridyl ligand was to provide an infrared tag that was spectrally well-isolated, coupled 

into the MLCT excited-state manifold, and readily identifiable in terms of its role in the excited state 

(e.g., either as a spectator ligand or housing the ligand-based electron of the MLCT state). The electronic 

asymmetry coupled with excitation energies specifically chosen to localize both the Franck-Condon and 

lowest-energy excited state onto the same ligand made it relatively straightforward to assign the ~8 ps 

process evident in Figure 6 to vibrational relaxation in the 3MLCT excited state. We can now explore the 

vibrational dynamics just inferred from electronic absorption spectroscopy in greater detail by directly 

examining the MLCT excited state in the region of the C-N stretch of the CN-Me-bpy ligand. 

 Figure 6 shows time-resolved infrared absorption data acquired on compound 1 following excitation 

at 490 nm.53 As expected given the pump wavelength, a signal characteristic of the CN-Me-bpy-localized 

MLCT excited state is formed immediately upon excitation (left panel). Over the next several 

picoseconds, this absorption feature increases in intensity while it sharpens slightly, eventually yielding a 

spectral profile that matches what was observed using nanosecond time-resolved step-scan methods.32 

The overall behavior is similar to what Browne, McGarvey and coworkers observed in their time-resolved 
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Figure 6. (a) Time resolved differential infrared absorption spectra for [Ru(bpy)2(CN-Me-bpy)]2+ (1) 

collected in CH3NO2 solution following 1A1 → 1MLCT excitation at 490 nm. The inset numbers 

correspond to delay times for each spectrum. (b) Kinetic trace of the data plotted in part (a) sampled at 

the absorption maximum (2200 cm-1). The red line corresponds to a single exponential fit of the data, 

yielding a time constant of 3.0 ± 1.5 ps. 

 

infrared study of [Ru(bpy)3]2+: an increase in the intensity of the excited state absorption feature without 

any significant change in the energy or spectral profile of the band.55 The kinetics associated with this 

spectral evolution (as probed by the intensity of the band at its absorption maximum) are shown in the 

right-hand panel of Figure 6. It can be seen that the amplitude of the signal rises rapidly then levels off, 

with no further changes evident out to Δt = 100 ps, the maximum delay to which we acquired data; 

obviously, this plateau corresponds to the signal for the fully thermalized, long-lived 3MLCT excited state 

which undergoes ground-state recovery on the microsecond time scale.32 The data can be fit to a single 

exponential kinetic model with a time constant of 3.0 ± 1.5 ps, a value comparable to that reported for 

[Ru(bpy)3]2+.55  

 There are several aspects associated with the appearance of the transient IR spectra that are worth 

noting. First, the excited-state absorption band is somewhat broader and more Gaussian in shape 

(suggestive of inhomogeneous broadening) as compared to the ground-state absorption, which we have 

verified as Lorentzian based on an analysis of our previously published data FTIR data.32 This is 

reminiscent of what was observed in the nanosecond time-resolved infrared data and is likely a 

consequence of the near-degeneracy of the symmetric and asymmetric CN stretches associated with the 

bpy-CN ligand as well as solvation associated with the charge density on the ligand in the MLCT excited-
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state. The increase in the intensity of the CN stretch in the MLCT excited state relative to the ground state 

inferred by the disparate magnitudes of the transient absorption and ground-state bleach evident in Figure 

6a prompted us to carry out infrared spectroelectrochemical measurements on compound 1. Indeed, these 

data reveal that the intensity of the CN stretch of the one-electron reduced form of [Ru(bpy)2(CN-Me-

bpy)]2+ is roughly an order of magnitude larger than the corresponding feature in the ground state. We 

suspect that the underlying reason for this is due to enhanced electronic-vibrational coupling between the 

cyano group and the π system of the bipyridyl ligand that was highlighted in the TD-DFT calculations we 

reported previously,32 an interaction that could lead to an increase in the oscillator strength of the CN 

stretch in the MLCT excited state. A more detailed examination of this effect is currently underway, but 

these data nevertheless provide a qualitative explanation for the difference in the relative intensities of the 

two features seen in Figure 6a. 

 Perhaps more interesting is the fact that both the center peak position and bandwidth of the excited-

state absorption is virtually constant across most of the temporal window being sampled, suggesting that 

the ν(C≡N) mode(s) are not engaged in significant anharmonic coupling to other low-frequency 

vibrations of the ligand framework on the time scale of these measurements. This allows us to come to a 

preliminary conclusion (one which will amplify in the next section) that any intramolecular vibrational 

redistribution dynamics occurring in the excited state are largely complete within the first picosecond 

following MLCT excitation. Analogous results with regard to both the spectral evolution of the (CN-Me-

bpy-) signal and its associated kinetics were obtained for compounds 2 and 3 and are presented in Figures 

S7 and S8, respectively. 

 Although the time constants for vibrational cooling derived from the electronic and infrared 

absorption data are comparable (8 ± 1 ps and 3.0 ± 1.5 ps, respectively), the slight discrepancy deserves 

comment. We suggest that this difference arises due to the nature of what is being probed in the two 

experiments. The data presented in Figure 6 corresponds to an examination of one specific vibrational 

mode of the molecule, namely the cyano group of the CN-Me-bpy ligand. While this moiety is strongly 

coupled into the MLCT excited state, it is a high-frequency mode that is also energetically isolated: 

because of this, the  group is to a certain extent decoupled from most of the other vibrational modes of the 

compound. In addition, its high energy translates into a much faster vibrational period than lower 

frequency modes as well as imposing a limitation in terms of the amount of energy that it can assist in 

dissipating. The increase in IR intensity could be associated with the evolution of the 3MLCT electronic 

wavefunction in the course of vibrational relaxation, namely through an increase in conjugation between 

the CN groups and the rest of the ligand. Electronic absorption spectra, on the other hand, provide a 

window into the overall evolution of the exited state and are not mode-specific in this regard. 

Page 18 of 32

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  19	

Consequently, vibrational relaxation dynamics involving lower frequency modes – which are important 

for dissipating energy through intramolecular vibrational redistribution – can manifest in electronic 

spectra long after a higher-frequency vibration such as a cyano group has effectively cooled. This notion 

is indirectly supported by the work of Browne et al. on [Ru(bpy)3]2+.55 Their measurements and analysis 

keyed on the fingerprint region of the vibrational spectrum of that compound, which by its very nature 

provides a much broader snapshot of vibrational properties of the chromophore. The time constant these 

workers report is much closer to what we infer from electronic absorption spectroscopy. Although this is 

admittedly a minor point, it does appear that the incorporation of the CN group in our system has 

provided an unexpected glimpse into how different components of the molecule become involved in 

  

    

Figure 7. Differential electronic absorption spectra acquired for [Ru(bpy)2(CN-Me-bpy)]2+ (1) in CH3CN 

solution over a delay window of 2 ps following 1A1 → 1MLCT excitation at 490 nm. The time delays 

corresponding to each spectral trace are indicated in the figure; the spectra have been corrected for 

chirp due to group velocity dispersion using global analysis and singular value decomposition. The inset 

figure is an expanded view of the data presented in Figure 5 (λprobe = 390 nm) and tracks the increase in 

signal intensity evident in the spectral evolution. The time constant for the rise of the signal is 170 ± 50 fs 

and is assigned to intramolecular vibrational redistribution (IVR). See text for further details. 
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energy dissipation. The main message, however, is that the results presented herein strongly support the 

notion that one can indeed obtain reliable information concerning vibrational relaxation dynamics from a 

careful analysis of transient electronic spectra. 

 3. 3. Sub-Picosecond Dynamics:  Intramolecular Vibrational Energy Redistribution. In addition to 

the vibrational cooling identified by both time-resolved electronic and infrared absorption, there are 

additional dynamics evident in the evolution of the differential absorption spectra occurring on a sub-

picosecond time scale. In Figure 7 are plotted differential absorption spectra for compound 1 acquired at 

high temporal resolution over the first 2 picoseconds following MLCT excitation at 490 nm. It can be 

seen that there is an increase in the intensity of the feature to the blue of the isosbestic points concomitant 

with a slight deepening of the bleach signal, suggestive of an overall sharpening of the transient 

absorption at 390 nm. Qualitatively, the nature of the change in the spectral profile is very similar to what 

we described earlier for vibrational cooling (vide supra), but these changes are occurring on a 

significantly faster time scale. The inset of Figure 7 shows the kinetics associated with the rise of this 

signal at 390 nm; this is essentially an expanded view of the first two picoseconds of the kinetic trace 

shown in Figure 6. The fit corresponds to a convolution of the instrument response function with a single-

exponential amplitude rise reflecting the increase in signal intensity evident in the spectra near 390 nm. 

The time constant derived from this fit is 170 ± 50 fs, which we are attributing to intramolecular 

vibrational energy redistribution (IVR) based on the following considerations. 

IVR refers to a process by which energy is redistributed amongst various vibrational degrees of 

freedom of the molecule that are not directly coupled to the electronic transition that was initially excited. 

There is no net energy loss to the surrounding environment associated with this process (e.g., no heat 

dissipation to the solvent), but the partitioning of energy from a small subset of vibrational modes to 

encompass a larger fraction of the vibrational manifold of the molecule, combined with evolution of the 

electronic wavefunction should influence the spectroscopic observables of the chromophore in some 

manner. The most straightforward probes of IVR are vibrational in nature; when direct spectral signatures 

are absent and/or difficult to discern, vibrational redistribution can manifest as subtle modulations upon 

an already formed positive or negative feature. Ultrafast time-resolved infrared absorption and time-

resolved resonance Raman spectroscopies display very similar features that are frequently used to identify 

IVR, specifically the type of spectral shifting and bandshape evolution previously described in the context 

of vibrational cooling.52 In this model, the active vibrational modes contain all the excess energy imparted 

by the excitation pulse. As this energy is redistributed into other vibrational modes, the vibrational 

distribution broadens and modulation of the original spectral features can be observed. Because of the 

qualitatively similar imprint on excited-state absorption features, distinguishing between IVR and 
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vibrational cooling absent a direct vibrational probe tends to be a matter of time scale. 

 Ultrafast time-resolved infrared (TRIR) spectroscopic data have been reported for a number of 

transition metal-based chromophores. Studies of Cr(acac)3 employed an IR pump-IR probe experiment to 

examine the CO and C=C stretches of the ligand as a function of time.20 Both displayed a 300-700 fs time 

constant; the typical blue-shift and band narrowing were observed for the CO stretch, whereas the C=C 

lineshape was indicative of a non-Boltzmann distribution of thermal energy amongst vibrational modes. 

Given the data, IVR was assigned to the multi-hundred femtosecond time constant for both of these 

frequencies. In another relevant experiment, Hauser and coworkers studied the C-H stretching and 

bending modes in the aromatic system of [Ru(bpy)3]2+.21 Upon 400 nm excitation, two bands centered at 

1495 and 1545 cm-1 appeared, the second of which was initially broad but then narrowed within 2.8 ps. 

IVR was assigned in this case based primarily on the spectral features, time constant, and the amount of 

excess energy placed on the ligand with the near-UV excitation wavelength. And while visible pump-

visible probe experiments in which IVR is identified are rare,11,54 examples do exist that display the 

spectral modulations and time constants consistent with those reported for the more direct vibrational-

probe spectroscopies. It should be noted that the study of IVR dynamics as it occurs in transition metal-

containing systems is an area of growing interest.56-60 

 Kinetic processes detected by transient electronic absorption have typically been attributed to IVR on 

a comparative basis using previous reports on similar molecules.14,39 With the understanding of how 

signals associated with the IVR process manifest in complementary experiments, the signal from visible 

transient absorption can be rationalized. As seen in Figure 7, early time traces for complex 1 show an 

evolution of the shape of the transient absorption spectrum in both the bleach and absorption regions. 

Keeping in mind that changes in the appearance of a differential absorption spectrum reflects excited-state 

dynamics (i.e., the loss of ground-state absorption – the “bleach” – is static), the increase in intensity of 

the main absorption centered near 390 nm at the expense of absorbance on the high energy side of the 

band coupled with the increase in the magnitude of the bleach to the red of the isosbestic point indicates a 

sharpening of the underlying excited-state absorption. As mentioned previously, this is qualitatively 

similar to the signature for vibrational cooling because both processes – IVR and vibrational cooling – are 

depopulating higher energy vibrational levels of the excited-state potential energy surface. While there is 

an important fundamental difference between the two mechanisms – vibrational cooling dissipating 

energy to the surrounding medium versus IVR channeling it into other vibrational modes of the 

compound – the net effect of depopulating these higher energy vibrational quanta on the electronic 

absorption feature is the same. 

 Given the nature of the excited state (i.e., charge transfer), the observed spectral evolution could be 
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associated with solvation dynamics. To address this possibility, we carried out analogous studies in two 

longer-chain nitrile solvents, namely CH3CH2CN and CH3(CH2)2CN. As we have reported previously, 

inertial solvent dynamics can couple to excited-state evolution in this class of complexes, and although 

the time scale of what we are assigning to IVR is significantly longer than the ~60 fs inertial response of 

CH3CN, we wanted to verify that the process we are observing was intramolecular in nature. Indeed, the 

data acquired in all three solvents were indistinguishable from each other, thereby providing additional 

support for our conclusion. 

 Although the results just described point to an intramolecular origin of the dynamics reflected in 

Figure 7, it is important to note that, on these time scales, the evolution of the differential electronic 

absorption spectrum is also expected to be influenced by changes in the composition and spatial 

characteristics of the electronic wavefunction as the system evolves from the Franck-Condon to lowest-

energy excited state of the system. Parsing out the relative contributions from these possible contributions 

should be possible by carrying out systematic studies as a function of excitation wavelength and perhaps 

even temperature. This latter point notwithstanding, we believe that the data in Figure 7 are consistent 

both qualitatively and quantitatively with what one would expect for an IVR signature in differential 

electronic absorption data in this class of compounds. 

 Corresponding data were also acquired on complexes 2 and 3 and are provided in Figure S9 and S10, 

respectively. Qualitatively, we see similar features in terms of spectral evolution in these two complexes 

as we have just described for complex 1 but the magnitude of the changes are systematically attenuated as 

bpy ligands are replaced by CN-Me-bpy. Indeed, the data on complex 3 shows almost no discernable 

dynamics on a sub-200 fs time scale. In contrast to complex 1, in which the excited state can only reside 

on a single ligand, the dynamics associated with complexes 2 and 3 are potentially more complex due to 

the fact that the spatial localization of the initially formed excited state is not as clearly defined. We have 

previously discussed the role of solvent in driving excited-state charge localization,39 reflecting a balance 

between the strength of interligand coupling and the energetic asymmetry of the environment for systems 

involving higher degrees of degeneracy. Indeed, the interplay of evolving excited-state delocalization, 

inertial solvent response, and vibrational relaxation dynamics is an extremely interesting topic, but a 

detailed analysis along these lines is beyond the scope of this report. 

 3.4. High Energy Excitation. From the orbital pictures in Figure 2, it is clear that excitation of 1 at 

higher energy (i.e. 400 nm) results in a different Franck-Condon state than the low energy 490 nm 

excitation, one that is localized on the unsubstituted bpy ligand(s). Changing the excitation wavelength of 

complex 1 from 490 nm to 400 nm should therefore result in additional excited-state dynamics pathways, 

most notably interligand electron transfer (ILET) to the CN-Me-bpy ligand. As a preliminary 
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investigation into these processes, the time-resolved infrared spectra were also collected subsequent to 

excitation at 400 nm (Figure 8). The temporal evolution of the CN absorption feature (Figure 8a) is 

essentially indistinguishable from the data presented in Figure 6; this observation is underscored in Figure 

8b, which shows a superposition of the differential infrared spectrum for complex 1 at a time delay of 1 

ps following excitation at 400 nm and 490 nm. These data clearly establish that the ILET process from the 

unsubstituted bpy ligand to the CN-Me-bpy ligand occurs on a subpicosecond timescale, a result that is in 

agreement with both experimental39,49,61,62 and theoretical63 results indicating subpicosecond rates for 

ILET in ruthenium(II) diimine complexes. Similar results were obtained for complex 2 (Figure S11) 

which are also indistinguishable from the data acquired on the homoleptic complex 3 (Figure S12), 

further underscoring our conclusion.  

 On a parallel track, anisotropy TRIR measurements were made of all three complexes at both 

excitation energies (i.e., 400 and 480 nm. Interestingly, the anisotropy is found to be negligible for each 

of the complexes at earliest times accessible to us and remains relatively near 0.05, indicating that 

complete depolarization of the vibrational signature in the excited state occurs in <1 ps.64 In the cases of  

 

 

Figure 8. (a) Time-resolved differential infrared absorption spectra for [Ru(bpy)2(CN-Me-bpy)]2+ (1) 

collected in CH3NO2 solution following 1A1 → 1MLCT excitation at 400 nm. The inset numbers 

correspond to delay times for each spectrum. (b) Comparison of time-resolved differential infrared 

spectra for [Ru(bpy)2(CN-Me-bpy)]2+ (1) at a time delay of 1 ps following excitation at 400 nm (blue) and 

490 nm (red). The fact that these spectra superimpose indicates that processes associated with forming 

the lowest-energy 3MLCT excited state (e.g., interligand electron transfer) are complete in < 1 ps. 
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high-energy excitation of complexes 1 and 2, this observation is consistent with the notion that interligand 

electron transfer is occurring on a sub-picosecond time scale in these compounds. It is also possible that 

the angle between the electronic and vibrational transition dipole moment vectors is accidentally close to 

the magic angle, the anisotropy is negligible from the very beginning and its time dependence thus 

provides no information on the excited-state dynamics. A similar situation would arise of the optical laser 

pulse excites several electronic transitions with different transition moment directions. A detailed 

investigation into the excited-state dynamics associated with high-energy excitation of this system – 

including time-resolved polarized electronic and infrared spectroscopies – is currently underway and will 

be the subject of a future report. 

 

4. Concluding Comments 

 The time-resolved infrared and visible absorption experiments presented herein comprise a self-

consistent picture of vibrational relaxation dynamics in a Ru(II) polypyridyl charge transfer system. The 

utility of the chemical platform that we have developed lies in the incorporation of a functional group that 

is coupled into the charge-transfer manifold of the chromophore while at the same time possessing 

vibrational signatures in a relatively isolated region of the infrared spectrum. This provided a unique 

opportunity to simultaneously probe electronic and nuclear dynamics associated with charge transfer-state 

evolution. Vibrational cooling – the process by which energy is dissipated into the surrounding 

environment – occurs on 1-10 ps timescale in all three of the complexes studied. This conclusion was 

reached through indirect means through an analysis of changes in the differential time-resolved electronic 

absorption data, then corroborated through direct, time-resolved infrared absorption measurements using 

the CN moiety on the bipyridyl ligand. This timescale has been observed in other ruthenium bipyridyl 

systems, most definitively in the work of Browne, McGarvey and coworkers through their time-resolved 

resonance Raman measurements of [Ru(bpy)3]2+.55 Qualitatively similar spectral changes were also 

observed in the electronic absorption data but on a much faster time scale. Analysis of these data showed 

that these features are consistent with expectations for intramolecular vibrational energy redistribution 

following photoexcitation occurring with a time constant of 170 ± 50 fs. 

 It should be noted that the applicability of the methodology we have employed is not limited to 

complexes of Ru(II). Indeed, studies are currently underway to exploit this combined spectroscopic and 

computational approach to compounds of first-row transition metals (e.g., Fe(II)) in order to probe the 

interplay between electronic and vibrational degrees of freedom under conditions where kinetic 

competition among these processes is of paramount importance for understanding (and ultimately 

controlling) the photophysical and photochemical properties of such compounds. 
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