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Abstract

An intensional model for the programming language PCF is described,
in which the types of PCF are interpreted by games, and the terms by cer-
tain “history-free” strategies. This model is shown to capture definability
in PCF. More precisely, every compact strategy in the model is definable
in a certain simple extension of PCF. We then introduce an intrinsic pre-
order on strategies, and show that it satisfies some remarkable properties,
such that the intrinsic preorder on function types coincides with the point-
wise preorder. We then obtain an order-extensional fully abstract model of
PCF by quotienting the intensional model by the inirinsic preorder. This
is the first syntax-independent description of the fully abstract model for .
PCF. (Hyland and Ong have obtained very similax results by a somewhat
different route, independently and at the same time.)

We then consider the effective version of our model, and prove a Uni-
versality Theorem: every element of the eflective extensional model is
definable in PCF. Equivalently, every recursive strategy 1s definable up to
observational equivalence. '
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1 Introduction

The Full Abstraction Problem for PCF [Plo77, Mil77, BCL85, Cur92b] is one
of the longest-standing problems in the semantics of programming languages.
There is quite widespread agreement that it is one of the most difficult; there is
much less agreement as to what exactly the problem is, or more particularly as
to the precise criteria for a solution. The usual formulation is that cne wants
a “semantic characterization” of the fully abstract model (by which we mean
the inequationally fully abstract order-extensional model, which Milner proved
to be uniquely specified up to isomorphism by these properties [Mil77]). The
problem is to understand what should be meant by a “semantic characteriza-
tion”.

Our view is that the essential content of the problem, what makes it im-
portant, is that it calls for a semantic characterization of sequential, functional
compultation at higher types. The phrase “sequential functional computation”
deserves careful consideration. On the one hand, sequentiality refers to a com-
putational process extended over time, not a mere function; on the other hand,
we want to capture just those sequential computations in which the different
parts or “modules” interact with each other in a purely functional fashion.

There have, to our knowledge, been just four models of PCF put forward as
embodying some semantic analysis. Three are domain-theoretic: the “standard
model” based on Scott-continuous functions [Plo77]; Berry’s bidomains model
based on stable functions [Ber79]; and the Bucciarelli-Ehrhard model based on
strongly stable functions [BE91]. The fourth is the Berry-Curien model based
on sequential algorithms [BC82].!1 Of these, we can say that the standard

*Cartwright and Pelleisen’s model without error values turns out to be equivalent to the
sequential algorithms model [CF92, Cur$2a]. The main result in [CF92, Cur92a] is that the
sequential algorithms model with errors is fully abstract for SPCF, an extension of PCF with
a catch construct and errors, This is a fine result, but SPCF has a rather different flavour to



model gives a good account of functional computation at higher types, but fails
to capture sequentiality, while the sequential algorithms model gives a good
analysis of sequential computation, but fails to capture functional behaviour.
In each case, the failure can calibrated in terms of definability: the standard
model includes parallel functions; the sequential algorithms model includes al-
gorithms which compute “functionals” which are sensitive to non-functional
aspects of the behaviour of their arguments. The bidomains model also con-
tains non-sequential functions; while the strongly stable model, in the light of
a recent result by Ehrhard [Ehrl, can be seen as the “axtensional collapse” of
the sequential algorithms model. In short, all these models are unsatisfactory
because they contain “junk”. On the other side of the coin, we have Milner’s re-
sult that an order-extensional model is fully-abstract iff all its compact elements
are definable.

Intensional Full Abstraction

This suggests that the key step towards solving the Full Abstraction problem
for PCF is to capture PCF definability. This motivates the following definition.
A model M (not necessarily extensional) is iniensionally fully absiract if it
is algebraic, and all its compact elements are definable in PCF. In support of
this terminology, we have the fact that thetiilly abstract model can be obtained
from an intensionally fully abstract model M in the following canonical fashion.
Firstly, define a logical relation on M induced by the ordering on the ground
types (which are assumed standard, le. isomorphic to the usual flat domains
of natural numbers and booleans). Because of the definability properties of
M, this relation is a preorder at all types. In particular, it is reflexive at all
types. This says that all elements of the model have extensional (functional)
behaviour-—there is no junk.

We can now apply Theorem 7.2.2 of [Sto88] to conclude that A can be
collapsed by a continuous homomorphism to the fully abstract model. In short,
the fully abstract model is the extensional collapse of any intensionally fully
abstract model. Moreover, note that the collapsing map is a homomorphism,
and in particular preserves application. This contrasts sharply with “collapses”™
of the standard model to obtain the fully abstract model, as in the work of
Mulmuley [Mul87] and Stoughton and Jung {J593}, which are only homomorphic
on the “inductively reachable” subalgebra.

Thus we propose that a reasonable factorization of the full abstraction prob-
lem is to look for a semantic presentation of an intensionally fully abstract
model, which embodies a semantic analysis of sequential functional computa-
tion. The construction of such a model is our first main result; it is described
in Sections 2 and 3.

We have explained how the (order-extensional, inequationally) fully abstract .
model can be obtained from any intensionally fully abstract model by means
of a general construction, described in [Sto88]. However, this description of
the fully abstract model leaves something to be desired. Firstly, just because

PCY, and arguably is no longer functional in character.



the construction in [Sto88] is very general, it is unlikely to yield any useiul
information about the fully abstract model. Secondly, it is not entirely syntax-
free: it refers to the type structure of PCF.

What would the ideal form of description of the fully abstract model be? We
suggest that it should comprise the specification of a cartesian closed category
whose objects are certain cpo’s, given together with certain additional “inten-
sional” structure, to be used to characterize sequentiality; and whose morphisms
are continuous functions between these cpo’s—not all continuous functions, of
course, but only the sequential ones, as determined by the intensional struc-
ture. The interpretation of PCF generated from this category should then be
the fully abstract model. Most of the attempts at solving the full abstraction
problem of which we are aware, including Berry’s bidomains, Curien’s bicds,
and Bucciarelli and Erhard’s strongly stable functions, clearly fall within this
general scheme. (Thus for example the intensional structure in bidomains is
the stable ordering; for domains with coherence it is the coherence.)

In Section 4, we will explain how the category of games described in Section 2
does indeed give rise to a category of sequential domains in exactly this sense.
This yields the first syntax-independent description of the fully abstract model
for PCE.

A still more stringent requirement on a description of the fully abstract
model is that it should vield effective methods for deciding observation equiva-
lence on terms. For example, consider “Finitary PCF”, i.e. PCF based on the
booleans rather than the natural numbers. The interpretation of each type of
Finitary PCF in the fully abstract model is a finite poset. It remains an open
question as to whether these finite posets can be effectively presented. Suppose
that we have a category of sequential domains as described in the previous
paragraph, yielding a fully abstract model of PCF. If the “intensional struc-
ture” part of the interpretation of each type could itself be specified in a finite,
effective fashion, then such a model would immediately yield a positive solution
to this open problem. Because of its intensional character, our model does not
meet this requirement. There are infinitely many strategies at each functional
type of Finitary PCF, and it is not known if the intrinsic preorder, which we use
to pass from the intensional to the extensional model, is recursive. The same
point occurs in one form or another with all the currently known descriptions
of the fully abstract model for PCF, and the problem of effective presentability
remains open. It is probably the main remaining theoretical problem in relation
to PCF.

Related Work

The results in the present paper were obtained in June 1993 (the results on
Intensional Full Abstraction in Section 3) and September 1993 (the results on
the intrinsic preorder and (extensional) Full Abstraction in Section 4). They
were announced on various electronic mailing lists in June and September 1993.
An extended abstract of the present paper appeared in the Proceedings of the
Second Symposium on Theoretical Aspects of Computer Science, which was
held in Sendai in April 1994 [ATMO94].



Independently, and essentially simultaneously, Martin Hyland and Luke Ong
gave a different model construction, also based on games and strategies, which
led to the same model of PCF, and essentially the same results on Intensional
Full Abstraction. Following our work on the intrinsic preorder, they showed that
similar results held for their model. What is interesting is that such similar
results have been obtained by somewhat different routes. Hyland and Ong's
approach is based on dialogue games and innocent strategies, in the tradition
of Lorentzen’s dialogue interpretations of logical proofs [Lor60, Lor61], and the
work by Kieene and Gandy on the semantics of higher-type recursion theory
[Gan93], while our approach is closer to process semantics and the Geometry of
Interaction [AJ94a, Mal93]. Further work is needed to understand more fully
the relationship between the two approaches.

Independently, Hanno Nickau obtained essentially the same meodel and re-
sults as Hyland and Ong [Nic94]. A very different description of the fully
abstract model for PCF was obtained by Peter O’Hearn and Jon Riecke, us-
ing Kripke logical relations [OR95]. This construction is very interesting, and
probably of quite general applicability, but does not appear to us to embody a
specific semantic analysis of sequentiality.

Since the results described in this paper were obtained, there has been
significant further progress in the use of game semantics to give fully abstract
models for programming languages. Recent publications include [AM95].

2  The Model

We shall refer to [AJ94a] for general background and motivation on game se-
mantics.

We begin by fixing some notation. If X is a set, we write X* for the set
of finite sequences (words, strings) on X. We shall use s, 1, u, v and primed
and subscripted variants of these to denote sequences, and a, b, ¢, d, m, n and
" yariants to denote elements of these sequences. Concatenation of sequences
will be indicated by juxtaposition, and we will not distinguish notationally
between an element and the corresponding unit sequence. Thus e.g. as denotes
a sequence with first element @ and tail s. If f: X -+ Y, then f*: X* - ¥*
is the unique monoid homomorphism extending f. We write |s| for the length
of a finite sequence, and s; for the #’th element of 5, 1 < i < ls|. Given a
set S of sequences, we write §°V°" for the subset of even length sequences and
§odd for the subset of odd length sequences. Y C X and s € X*, we wiite
s]Y for the result of deleting all occurrences of symbols not in Y from s. We
write s C ¢ if s is a prefix of ¢, i.e. for some u, su = L. We always consider
sequences under this prefix ordering and use order-theoretic notions [DP90]
without further comment. o o ,

Given a family of sets {X;}ier we write 3 ;er X for their disjoint union

(coproduct); we fix
S Xi={G,e)|i€ e X}
iel

as a canonical concrete representation. In particular, we write X1+ X, for



Sieqoy Xo s € (i Xi)" and d € [, we define sl € X; inductively by:
€le = €
oo oagsti), i=3
Gt = { 251120

We use £s5t and snd as notation for first and second projection functions. Note
that with s as above, fst*(s) is a sequence of indices 43 ++-ip € I* tracking
which components of the disjoint union the successive elements of s are in.

We will also need some notation for manipulating partial functions. We
write f : X — Y if f is a partial function from the set X to the set Y; and
fz >y for “fz is defined and equal to y”. If f: X — Y is an injective partial
function, we write f*: Y — X for the converse, which is also an injective partial
function. (NB: the reader should beware of confusing f* with f*. In practice,
this should not be a problem.) If f,g: X — Y are partial functions with disjoint
domains of definition, then we write f Vg : X — Y for the partial function
obtained by taking the union of (the graphs of) f and g. We write 0x for the
everywhere-undefined partial function on X and sometimes idy, sometimes 1y
for the identity function on X. We shall omit subscripts whenever we think we
can get away with it.

2.1 Games

The games we consider are between Player and Opponent. A play or run of
the game consists of an alternating sequence of moves, which may be finite or
infinite. Our plays are always with Opponent to move first.

A game is a structure A = (Ma, A4, P4, 1), where

e M4 is the set of moves.

e Aa: My — {P,0} x {@, A} is the labelling function.

The labelling function indicates if a move is by Player (P} or Opponent
(0), and if a move is a question (Q) or an answer (A). The idea is that
questions correspond to requests for data, while answers correspond to
data (e.g. integer or boolean values). In a higher-order context, where ar-
guments may be functions which may themselves be applied to arguments,
all four combinations of Player/Opponent with Question/Answer are pos-
sible. A4 can be decomposed into two functions AR My — {P,0} and
2G4 My — {Q, AL,

We write
(P,0}x{Q,A} = {PQ,PA,0Q,04}
(B0, 34 = A4,
ML = AP} x{Q,A)]),
M3 = A0} x {Q, 4}),
MY = X7({P,0}x{Q}),
M4 = X({P,0}x {A})
etc., and define
P=0, O=P,



30(e) = NP@), %= (0,3
e Let MA@ be the set of all finite sequences s of moves satisfying:

(pl) s=at = ac MY
(p2) (Vi:1<i< o) [MEO(siqn) = NO(s))
(p3) (¥ T 8) (jt1M4] < [1MZ)).

Then P4, the set of valid positions of the game, is a non-empty prefix
closed subset of M%.

The conditions (p1)-(p3) can be thought of as global rules applying to
all games. (pl) says that Opponent moves first, and (p2) that Opponent
and Player alternate. (p3) is known as the bracketing condition, and can
be micely visualised as follows. Write each question in a play as a left
parenthesis “(”, and each answer as a right parenthesis “)”. Then the
string must be well-formed in the gsual sense, so that each answer is
associated with a unigue previous question—the most recently asked, as
yet unanswered question. In particular, note that a question by Player
must be answered by Opponent, and vice versa.

o 22, is an equivalence relation on Py satisfying

(el) smat => My(s)= A4(Y)
(62) smat,d Cst Ttle|=t| = s'=atl
(e3) smyt,s0€ Pg = db.samy th.

Note in particular that (el) implies that if s 4 1, then |s| = |t].

For example, the game for Nat has one possible opening move * {request for
data), with Anai(*) = OQ; and for each n € w, a possible response n with
Anat(n) = PA. ~Nat IS the identity relation on Pnag. The game for Bool is
defined similarly.

2.2 Strategies

A strategy for Player in A is a non-empty subset 0 C P§'®" such that & =
o U dom(c) is prefix-closed, where

dom(c) = {sa € P3** | 3b. sab € o}

We will be interested in a restricted class of strategies, the history-free (or
history independent, or history insensitive) ones. A strategy o is history-free if
it satisfies

e sabtac€ o => b=c

o sabt € o,ta € Py = tabeo (equivalently, ta € dom(c)).



Henceforth, “strategy” will always by default mean “hastory free strategy”.
Given any strategy o, we can define fun{o) : Mq 3 - 2 by

fun(o)(a) = b i (3s) [sab € o]

Conversely, given f : M$ — MY we can define traces(f) C (M)eve® induc-
tively by:

traces(f) = {€} U {sab | s € traces(f),sa € Py, f(a) = b}.

We say that f induces the strategy oy = traces(f), if traces(f) C Pa. Note
that if 7 is a strategy, we have

:Eun(crf) G f: Tpan(+) = T

so there is always a least partial function on moves canonically inducing 2
(history-free) strategy.

Proposition 2.2.1 If f: M9 — MY is any partial function, then traces(f) C
ME.

Proor. Certainly any s € traces(f) satisfies “O moves first” and the
alternation condition. We show that it satisfies the bracketing condition by
induction on [s|. If s = tab, then since ta € Py and |ta| is odd, the number
of guestions in ta must exceed the number of answers; hence ¢ satisfies the
bracketing condition. K

The equivalence relation on positions extends to a relation on strategies,
which we shall write as k.

o &7 iff:
sab € 0,8 € T,8am s'd’ = . [sd'b € T A sebr 8] (1)
By abuse of notation we write the symmetric closure of this relation as ~:
oxt M oSTATE O

Interpreting the equivalence on positions as factoring out coding conven-
tions, o ~ T expresses the fact that ¢ and r are the same modulo coding
conventions. ¢ & o expresses a “representation independence” property of
strategies.

Proposition 2.2.2 (Properties of )
C is a partial preovder relation (i.e. transitive) on strategies. Hence = is a
pamal equivalence relation (i.e. symmetric and transitive).

Proor. Supposear—"randrﬂv and s € 0, u € v, sab € ¢ and sa & ua”.
By induction on }sa| using the definition of 057 and (3}, there is ta'é’ € T with
sab =~ ta’t'. But then ta’ ~ ua”, and since 7 E v, uab’ € v with ta't’ = ua”d”
and hence sab = ta'd’ = ua”b" as required.

From now on, we are only interested in those history-free strategies o such
that ¢ ~ o.We write Str{A) for the set of such strategies over A. If o is such
a strategy for a game A, we shall write o : A. We write A for the set of partial
equivalence classes of strategies on A, which we think of as the set of “points”
of A. We write [o] = {r|o~ 7} when o ~ 0.

8



2.3 Maultiplicatives

Tensor The game A@B is defined as follows. We call the games A and B the
component gaimes.

o Mypp = Ma+ Mg, the disjoint union of the two move sets.
o AspB = [Aa,Ap], the source tupling.
o Pygpp is theset of all s € Mf?@B such that:

1. Projection condition: The restriction to the moves in M, (resp. Mp)
is in P4 (resp. Pg). '

2. Stack discipline: Every answer in s must be in the same component
game as the corresponding question.

o s ep T liﬂ‘" s|Amatly A sIBmpgtiB A fst*(s) = £st*(1).

We omit the easy proof that m4gp satisfies (e1)-(e3). Note that, if the
equivalence relations ~4 and ~p are the identities on P4 and Pp respectively,
then ~ 4gp is the identity on Piop

The tensor unit is given by

I=(2,3, {eh {(s, )})-

Linear Implication The game A—B is defined as follows. We call the games
A and B the component games.

o My_op = Ma+ Mp, the disjoint union of the two move sets.
@ AA-—-OB - [}—/;7 )‘B]'
o Py_opis thesetof all s € Mﬁ)wB such that:

1. Projection condition: The restriction to the moves in M4 (resp. Mg)
is in P, (resp. Pg).

2. Stack discipline: Every answer in s must be in the same component
game as the corresponding guestion.

e sy opt iff sf[Amatis A 8[{B~p B A fst*(s) = fst*(f).

Note that, by (p1), the first move in any position in Fy—op must be in B.

We refer to the condition requiring answers to be given in the same com-
ponents as the corresponding guestions as the stack discipline. It ensures that
computations must evolve in a properly nested fashion. This abstracts eut a
ey structural feature of functional computation, and plays an important role
in our results.



Proposition 2.3.1 (Switching Condition) If a pair of successive moves in
a position in AQB are in different components, (i.e. one was in A and the
other in B), then the second move was by Opponent (i.e. it was Opponent
who switched components). If lwo successive moves in A—oB are in different
components, the second move was by Player (i.e. it was Player who switched
cormponents).

Proo#. Bach position in A®B can be classified as in one of four “states”:
(0, 0),i.e. an even number of moves played in both components, so Opponent
to move in both; (P, 0}, meaning an odd number of moves played in the first
component, so Player to move there, and an even number of moves played in
the second component, so Opponent to play there; (O, P); and (P, P). Initially,
we are in state (O, 0). After Opponent moves, we are in (P, 0} or (0, P), and
Player can only move in the same component that Opponent has just moved in.
After Player’s move, we are back in the state (O, 0). A simple induction shows
that this analysis holds throughout any valid play, so that we can never in fact
reach a state (P, P), and Player must always play in the same component as
the preceding move by Opponent. A similar analysis applies to A—B; in this
case the initial state is (P, 0), after Opponent’s move we are in (P, P), and
after Player’s response we are in {0, P) or (P,0).

Note that, by comparison with [AJ94a], the Switching Condition is a con-
sequence of our definition of the muitiplicatives rather than having to be built
into it. This is because of our global condition (p1), which corresponds to re-
stricting our attention to “Intuitionistic” rather than “Classical” games. Note
also that the unreachable state (P, P) in A®B is precisely the problematic one
in the analysis of Blass’ game semantics in [AJ94a].

2.4 The Category of Games
We build a category G:

Objects :° Games - .
Morphisms : lo]: A — B is a partial equivalence class {o] € A—oB

We shall write o : A — B to mean that ¢ is a strategy in A— B satisfying
oo,

There are in general two ways of defining a (history-free) strategy or op-
eration on strategies: in terms of the representation of strategies as sets of
positions, or via the partial function on moves inducing the strategy. Some
notation will be useful in describing these partial functions. Note that the type
of the function f inducing a strategy in A—B is

oMb+ Mg — M9+ ME.
Such a function can be writien as a matrix
f= fii e
fax Jaz

10



where .
f1,1 Mf——*Mﬁ) f]lglM_g—A Mg

fox: ME = ME  fo2: ME — ME.
For example, the twist map

ME + M§ = M3 + M}

where 0 is the everywhere-undefined partial fanction. (Compare the interpre-
tation of axiom links in [Gir89al.) The strategy induced by this function is the
copy-cat strategy as defined in [AJ94a)]. As a set of positions, this strategy is
defined by:

corresponds to the matrix

idy = {s € PJ0, | o]l = sl2}.

Tn process terms, this is a bi-directional one place buffer {Abr94]. These copy-
cat strategies are the identity morphismas in G. ‘

Composition The composition of (history-free) strategies can similarly be
defined either in terms of the set representation, or via the underlying functions
on moves inducing the strategies. We begin with the set representation. Given
g: A~ B, 7B — C, we define

olir = {s€(Ma+Mp+Mc)|sIA, BT, s[B,CET}
o:7 = {s]A,C| s€ofir}ren

This definition bears a close resemblance to that of “parallel composition plus
hiding” in the trace semantics of CSP [Hoa85); see [AJ94a] for an extended
discussion of the analogies between game semantics and concurrency semantics,
and [Abr94] for other aspects.

We now describe composition in terms of the functions inducing strategies.
Say we have oy : A — B, ¢, : B — (. We want to find h such that o5; 04 = Ox.
We shall compute & by the “execution formula” [Gir89b, Girgda, (:ir88]. Before
giving the formal definition, let us explain the idea, which is rather simple. We
want to hook the strategies up so that Player’s moves in B under o get turned
into Opponent’s moves in B for r, and vice versa. Consider the following
picture:

1l



M

Assume that the Opponent starts in C. There are two possible cases:

e The move is mapped by ¢ to a response in C: In this case, this is the
response of the function A.

¢ The move is mapped by ¢ to a response in B. In this case, this response
is interpreted as a move of the Opponent in B and fed as input to f. In
turn, if f responds in A4, this is the response of the function h. Otherwise,
if f responds in B, thls is fed back to g. In this way, we get an internal
dizlogue between the strategies f and g.

It remains to give a formula for computing b according to these ideas. This
is the execution formula:

h ZEX(f,g) = \/ -

kEw

The join in the definition of & can be interpreted concretely as union of graphs.
It is well-defined because it is being applied to a family of paltla,i functions
with pa.lrmse disjoint domains of definition. The functions my : ML+ M8 -~
MG + M are defined by

my =1%o ((f+g)opfo(f+g)or.

The idea is that my is the function which, when defined, feeds an input from
MZE or M8 exactly k times around the channels of the internal feedback loop
and then exits from M§ or M. The retraction

W:MA+MG<§MA+MB+MB+M0:K*

is defined by
7* = [inl,0,0,inr] = [im,ing]

and the “message exchange” function p : M$ + ME + MG + ME — MY +
M8 + ME + Mg is defined by

p = 04 [inr, inl] + 0.

12



Here, 0 is the everywhere undefined partial function.
The fact that this definition of composition coincides with that given pre-
viously in terms of sets of positions is proved in [AJ94a, Proposition 3].

Proposition 2.4.1 Composition is monotone with respect to %:
o,0' 1 A~ B, 7,71 B C, U%U’:‘ T%T! = J;T%U’;T'.

PROOF. We follow the analysis of composition given in the proof of Propo-
sition 1 of [AJ94a]. Suppose o 5 o', T L7, ca € o;7 and ¢ & ¢, Then
ca = ulA,C for uniquely determined u = cby -+ -bra such that ulA, B € o,
w|B,C € 7. We must have ¢ € Mg. Since 7 !, b € 7' for unique by, and
chy 7 c'¥,. Now by € don(c) and o & o’ implies that bi¥, € o for unique b3,
and biby /= bib,. Continuing in this way, we obtain a uniquely determined se-
quence ' = ¢'bf - --bfa’ such that WA, Beo,w[B,C¢er, and car c'al, as
required. This argument is extended to general stzings s € o; 7 by an induction
on|s|. [ '

We say that a string s € (Ma, +.. .+ Ma, y* is well-formed if it satisfies the
bracketing condition and the stack discipline; and balanced if it is well-formed,
and the number of questions in & equals the number of answers. Note that
these properties depend only on the stiing § oitained from s by replacing each
question in Aj,..., An by (1., {n respectively, and each answer in Aq,..., An
by )1, -, )n respectively.

Lemma 2.4.2 The balanced and well-formed strings in (Ma, + -+ Ma, )*
are generated by the following context-free gramimar:

BAL = ¢|BAL BAL | (;BAL); (i=1,...,n)

WF u= ¢|BALWF|(WF (i=1,...,m).

(More precisely, s is well-formed (balanced) iff § is derivable from WF (BAL) in
the above grammar.)

PROOF. It is easy to see that the terminal strings derivable from BAL are
exactly the balanced ones, and that strings derivable from WF are well-formed.
Now suppose that s is well-formed. We show by induction on |s| that s Is
derivable from wr. If s is non-empty, it must begin with a question, s = (it.
If this question is not answered in s, then ¢ is well-formed, and by induction
hypothesis { is derivable from WF, hence s is derivable via the production WF.—+
(;wr. If this question is answered, 50 s = {ju)v, then (;u); is balanced, and
hence derivable from BAL, and v is well-formed, and so by induction hypothesis
derivable from wr. Then s is derivable from WF via the production WF
BAL WF.

Lemma 2.4.3 (Projection Lemma) If s € (Ma, + -+ Ma, Y is well-
formed (balanced), then so is s{A;,.. o A, for any subsequence Apy oo Ay
OfAl,...,An.
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Proor. We use the characterization of well-formed and balanced strings
from the previous lemma, and argue by induction on the size of the derivation
of s from WP or BAL. Suppose s is well-formed. If s is empty, the result is
immediate. If s is derivable via WF — BAL WF, 50 8 = tu where ¢ is balanced
and u is well-formed, then we can apply the induction hypothesis to ¢ and
u. Similarly when s = (;¢ where t is well-formed, we can apply the induction
hypothesis to {. The argument when s is balanced is similar.

Lemma 2.4.4 (Parity Lemma) If s € oi|r is such that s = tmun, where m,
n are moves in the “visible” componenis A and C, then:

e if m, n are in the same component, then |u|B| is even.

e if m, n are in different components, then ju|B| is odd.

Proor. Firstly, we consider the case where all moves in » are in B. Suppose
for example that m and n are both in A. Then the first move in u is by o, while
the last move is by 7, since it must have been ¢ which returned to A. Thus |u|
is even. Similarly if m and n are both in C. Now suppose that m is in A while
nis in C. Then the first and last moves in u were both by o, so ju| is odd; and
similarly f m is in C and n is in A.

Now we consider the general case, and argue by induction on |4|. Suppose
m and n are both in A. Let u = wymyuy, where all moves in wy are in B,
Suppose firstly that my is in A; then |uwy| is even, and by induction hypothesis
lug| B| is even, so |u[B| is even. If my is in C, then |uy] is odd, and by induction
hypothesis lug | B| is odd, so |u| B} is even. The other cases are handled similarly.

Proposition 2.4.5 If o : A — B and 7 : B — C, then o;7 safisfies the
bracketing condition and the stack discipline.

Proor. By the Projection Lemma, it suflices to verify that every s € ollr
is well-formed. We argue by induction on |s}. The basis is trivial. Suppose
s = tm. If m is a question, it cannot destroy well-formedness. If m is an
answer with no matching question, then by induction hypothesis ¢ is balanced.
Suppose m is in 4 or B; then by the Projection Lemma, t[A, B is balanced, so
m has no matching question in s[A, B = (t[A, B)m, contradicting s[4, B € o.
A similar argument applies when m isin B or C.

So we need only consider s = umuvn where m, n are a matching question-
answer pair. It remains to show that m and » must be in the same component.
Suppose firstly that m and n both occur in A or B. Note that v is balanced,
and then by the Projection Lemma, so is o[ A, B. So m and n will be paired in
s[A,B € o, and hence they must be in the same component. Similarly when
m and n are both in B or C.

The final case to be considered is when m and n both occur in A or C.
Since » is balanced, by the Projection Lemma so is v[B. It follows that [v]B]
is even, so by the Parity Lemma, m and » must be in the same component.

Combining Propositions 2.4.2 and 2.4.6 with Proposition 2 from [AJ94al,
we obtain:
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Proposition 2.4.6 G is a category.

2.5 § as an autonomous category

We have already defined the object part of the tensor product AQ DB, linear
implication 4—B, and the tensor unit I. The action of tensor on morphisms is
defined as follows. If oy : A — B, a5 : A’ — B, then 05®0y : ARA — BRB
is induced by the partial function

(ME + MEY+ (MG + Mg)) .
o (ME + ME) + (ML + ME)) 3 (MG + MEY + (MG + ME)
= (M9 + MQ) + (ME + ME)).

“The natural isomorphisms for associativity, commutativity and unit of the ten-
sor product: :

assocapc ¢ (ARBRC = A®{B&C)
symm, o - AQB = B®A
units AT = A
are induced by th‘e,‘_gviéen‘n bijections on the sets of moves:
(AP ME )+ ME)+(MO+(ME+MZ)) = (MZ+1E)+ M)+ (ME+ME+ME))
(M + ME) + (MS + M) = (MG + M8) + (ME + M)

(ME 4 @)+ M = (M + @)+ M.

The application morphism Appy g : (A~oB)®A — B is induced by

(MG + ME)+ ME) + MZ = (M] + ME) + MZ) + ME.

M9 ME MY MB

ME  ME MR ME

15



This “message switching” function can be understood in algorithmic terms
as follows. A demand for output from the application at M§ is switched to
the function part of the input, A—oB; a demand by the function input for
information about its input at M$ is forwarded to the input port A; a reply
with this information about the input at M7 is sent back to the function; an
answer from the function to the original demand for output at ME is sent back
to the output port B. Thus, this strategy does indeed correspond to a protocol
for linear function application~linear in that the “state” of the input changes
as we interact with it, and there are no other copies available allowing us to
backtrack.

As for currying, given o5 : A@B — C, A{os): A — (B—C) is induced by

ME+(ME+MQ) = (ME+MEV+ME L (MG + M)+ ME = MG +(MG+ME).

For discussion of these definitions, and most of the verification that they
work as claimed, we refer to Section 3.5 of [AJ94a).

Proposition 2.5.1 1. Ifoxo and v = 7' then o®7 =~ o'@7.

2. o®7 satisfies the stack discipline.
Proposition 2.5.2 G is an autonomous category.
2.6 Products
The game A& B is defined as follows.

Mygp = Ma+ Mp

')\A&CB = [AA:}‘B]
Pigg = PatPp
S ~4 4+ ~p .

The projections
AEL p4B 3 B

are induced by the partial injective maps
(ML + MEY+ MQ — (M§ + M§) + MY

(ME + MEY+ ME — (M3 + ME)+ ME

which are undefined on M and MY respectively. Pairing cannot be defined
in general on history-free strategies in §; however, it can be defined on the
co-Kleisli category for the comonad !, as we will see,
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2.7 Exponentials

Our treatment of the exponentials is based on [AJ93]. The game 1A is defined
as the “infinite symmetric tensor power” of A. The symmetry is built in via
the equivalence relation on positions.

e My, =wX My =¥ e, Ma, the disjoint union of countably many copies
of the moves of A. So, moves of {4 have the form (i,m), where ¢ is 2
natural number, called the index, and m is a move of A. -

e Labelling is by source tupling:

)\!A(i, Lt) = )\A(a).

o We write s[4 to indicate the restriction to moves with index ¢. Py, is the
set of all 5 € Ma such that:

1. Projection condition: (Vi) [s[¢ € Pa].
2. Stack discipline: Every answer in s is in the same index as the cor-
responding question.

o Let §(w) be the set of permutations on w.

syt <= (In € S@))(¥i € w.slimg thw(i)) A (rotse)(s) = £s7(1)]

Dereliction For each game A and ¢ € w, we define a strategy
éeriA 14— A

induced by the partial function h;:

({4 = a.} i - j
hz(j! G,) - { undefined, i3 J
hi(a) = {i,a).

6  in;
hﬁ"(in‘g‘ 0 )

Proposition 2.7.1 1. Foralli, j:

In matrix form

derf4 = derfé.
2. der’, salisfies the stack discipline.

By virtue of this Proposition, we henceforth write der 4, meaning der?, for
arbitrary choice of ¢.
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Promotion A peiring function is an injective map
Pow X W W,

Given o5 : lA — B and a pairing function p, we define o*E ;1A — B as the
strategy induced by the partial function f;,f defined by:
- 14 : o Y B |
4 z',',a —_ (}?(2,]),&), f(d".va)_(-i'!a)
fp(P( i), a) (4,0), fG,a) =5

£6,D) (b L= )

i

In matrix form

i to(lx fin)ot™ to(lxX fi2)
P (1 X fﬁ,l) ot” 1% fz,g

where
t(i, (4, a)) = (p(4, 7}, a).

Proposition 2.7.2 1. Ifo,r 1A — B, o =~ 7, and p, ¢ are pairing func-
tions, then cr;; e TJ .

2. ag salisfies the stack discipline.

By virtue of this Proposition, we shall henceforth write of, dropping explicit
reference to the pairing function.

Proposition 2.7.3 Forallo 1A — B, r: 1B - ("

(m1) of;rt ~ (ot;r)!
(m2) derjl; o ® o
(m3) ofjderp = o

As an immediate consequence of this Proposition and standard results [Man76i:
Proposition 2.7.4 (},der, (:)!) is a comonad in “Kleisli form”. If we define,
foro: A — B, lo = (derg;a)f 114 1B, and 64 : 1A — A by 64 = id}lA,
then (1, der, §) is @ comonad in the standard sense.

Contraction and Weakening For each game A, we define weaky : 14 — I
by weak, = {€}.
A tagging function is an injective map

ciw+twr— w.

Given such a map, the contraction strategy conf : !4 — 1A®!A is induced by
the function

0 (rx1)o inl*V (s X 1) o inr*
inl o{r*x 1)Vinr o(s* x 1) 0

inl c inr c
wherte r = w = W+ W — W, § =W — W+ W — W.
. sy v . . ’ . .
Again, it is easily verified that con® = con® for any tagging functions ¢, ¢’.
H A A 1
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Proposition 2.7.5 cong, weaky are well-defined strategies which give a co-
commutative comonoid structure on 14, Le. the following diagrams commute:

14 [cona] -~ 1A®IA
[cona] [id ®cony)
IARIA 1AIA)RIA AR(IA®IA
& {cons®ida) (g0 [assoca ®(14®!4)
a4l ragia 4 1224 14
[id] [ids@weaky) ‘g [symmy 4]
v/
1A TA®I IA®IA
[unit)

2.8 The co-Kleisli category

By Proposition 2.7.4, we can form the co-Kleishi category Ky(G), with:
Objects The objects of §.

Morphisms K(G)(4,B) = G(!4, B).

Composition I ¢ : 1A =+ B and 7 : 1B — € then composition in K((G) is
given by:
TeT = UT; T,

Tdentities The identity on A in K!(g) is dery 1 14 — A

Exponential laws

Proposition 2.8.1 1. There is a natural isomorphism esp @ {A&B) %

1AR!B.
2. =1
ProoF.

1. Let define eqp :{(A&B)—o!A®!B as (the strategy induced by) the map
which sends inl(a, ) €!A®!B to (inl(a),i) €/(A&B), (inl(a),t) €!(A&B)
to inl(a,i) €!A®!B and similarly sends inr(b, i) €1A®!B to (inr(b),1) €
I(A&B), (inx(b),i) €!(A&B) to inr(b,?) clAR!B.

- »+ We define now EZ’IB : (1A®!B)—o!( A& B) as (the strategy induced by)the.. . .

map which sends inl(a,2i) €!AQ!B to (ini(a),?) €!(A&B), (inl{a),?) €
{ A& B) to inl(a, 2i) €!A®!B and (inz(d), ) €|(A&B) to inx(h,2i+1) €
AQ!B, inr(b,2i+ 1) €!A®!B to (inx(d),?) el A& B).

It is straightforward to check that e A,Q,EE}B are strategies. Let’s prove
that e A,B&E}B define the required isomorphism.
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e For es p; eE}B : (14201 B2)—(141®1B1 ) (we have used different sub-
scripts for different copies of the same game) we have that inl(e,?) €
(141 ®!B; ) is sent to inl{a,2:) € (1420 B ) and inr(b, ) € (L41®!B,)
is sent to inr(b,2j + 1) € (14;®B;) . This strategy is equivalent to
the identity. The automorphism which witnesses the equivalence is
the map which sends i in !4y to 2¢ and j in !By to 25 + 1 (and is the
identity elsewhere).

e For e;i,lB; e4,p the same map as above witnesses the equivalence of

e;}B;eA,B with the identity.

2. Immediate by definition.

Products in K(G)
Proposition 2.8.2 I is terminal in K)(G).

Proor. For any game A there is on.ly one strategy in 14A—o7, namely {e}. This
is because [ has an empty set of moves and for any opening move a in 14 we
have Aig—or(a) = P so that Opponent has no opening move in !4d~o/.

Proposition 2.8.3 A <~ A&B "2 B is a product diagram in K\(G), where

r1 = WA&B) %5 A&B 5 A
t, = WALB) 5 ALB 2% B.

If o 10 oA, 7 :1C—oB then their pairing (o, 7} }C—A&B is defined by

con UT ® TT

(o,7) =1C <2 10glC LADIB — 5 [(A&B) 25e ALB.

In fact, we have:

Proposition 2.8.4 K{(G} has countable products.

Cartesian closure We define A = B = 14—B.
Proposition 2.8.5 K\(§) is cartesian closed.

PrOOF. We already know that Ky(G) has finite products. Also, we have the
natural isomorphisms

K)\(G)(A%B,C) = G((A&B),C)
G(148!B,C)
G(14,1B—C)

= Ki(G)(A,B=C).

H2 el

Thus Ky(G) is cartesian closed, with “function spaces” given by =-. |
We shall write Z = K)(G), since we think of this category as our intensional
model.
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2.9 Order-enrichment

There is a natural ordering on strategies on a game A given by set inclusion.
It is easily seen that (history-free) strategies are closed under directed unions,
and that {e} is the least element in this ordering. However, morphisms in § are
actually partial equivalence classes of strategies, and we must define an order

on these partial equivalence classes.
We define:

[l Ca[r] iff o7

Proposition 2.9.1 £y 15 @ partial order over A. The least element in this
partial order is [{¢}].

We have no$ been able to determine whether (A,CA) is a cpo in general.
However, a weaker property than cpo-enrichment suffices to model PCF, namely
rationality, and this property can be verified for K1(G).

A pointed poset is a partially ordered set with a least element. A cartesian
closed category C is pointed-poset enriched {ppo-enriched) if:

s Every hom-set C(A, B) has a ppo structure (C(A,B),Can,LlaB)
o Composition, pairing and currying are monotone.
s Composition is left-strict: for all f: A — B,

Leoof=lac.

C is cpo-enriched if it is ppo-enriched, and moreover each poset

(C(A7 B): EA,B)

is directed-complete, and composition preserves directed suprema. Cis rational
if it is ppo-enriched, and moreover forall f:Ax B — B:

o The chain (F® | k € w) in C(4, B) defined inductively by
FO =14, fE = o (144, 5P)
has a least upper bound, which we denote by fY.
o Forallg:C — A, h: B — D,

gofioh= ngof(k)oh.

Altough the standard definition of categorical model for PCF is based on cpo-
enriched categories, in fact rational categories suffice to interpret PCF, as we
will see in Section 2.10.
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Strong completeness and continuity Let 4 be a game, and (A, <) a di-
rected set. A family {[ea] | A € A} is said to be strongly directed if there exist
strategies o} for each A € A such that ¢} € [ox] and A< p = oy C oy,

Proposition 2.9.2 A strongly directed family is C-directed. FEvery strongly
directed family has a C-least upper bound.

Now consider the constructions in ¢ we have introduced in previous sec-
tions. They have all been given in terms of concrete operations on strategies,
which have then been shown to be compatible with the partial preorder relation
%, and hence to give rise to well-defined operations on morphisms of G. Say
that an n-ary concrete operation ® on strategies is strongly continuous if it is
monotone with respect to L, and monotone and continuous with respect to
subset inclusion and directed unions:

o o1 LT, 05T = (o1, 00) 5 B(T1ye o5 T0)

o ®(Se,...,USn) = U{®(0s,....0n) |oi € 8, i€1,...,n)
for directed Sy, ..., Sn. (Note that for n = 0, these properties reduce to & =~ D)

Proposition 2.9.3 Composition, tensor product, currying and promotion are
strongly continuous.

Proposition 2.9.4 K(G) is a rational cartesian closed category.

2.10 The model of PCF

PCF is an applied simply-typed A-calculus; that is, the terms in PCF are terms
of the simply-typed A-calculus built from a certain stock of constants. As such,
they can be interpreted in any cartesian closed category once we have fixed the
interpretation of the ground types and the constants. The constants of PCF fall
into two groups: the ground and first-order constants concerned with arithmetic
manipulation and conditional branching; and the recursion combinators Y :
(T = T = T for each type T'. These recursion combinators can be canonically
interpreted in any rational cartesian closed category C. Indeed, given any object
Ain C, wecan define ©4:1x (A= A)=>A— (A= A)=> Aby

Ou=[F: (A= A)=> AFAfZAf(Ff): (A= A) = Al

Now define Y4 = 0% :1 — (A4 = A) = A. Note that
Ya=|]oP = JIvYl,
kew E€w

where . .
YS)) = AfAA L, YJ(4+1) - )\fA#A.f(Ygl)f).

These terms Yﬂf) are the standard “syntactic approximants” to Y 4.
'Thus, given a rational cartesian closed category C, a model M(C) of PCF
can be defined by stipulating the following additional information:
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e For each ground type of PCF, a corresponding object of C. This suffices
to determine the interpretation of each PCF type T as an object in C,
using the cartesian closed structure of C. (For simplicity, we shall work
with the version of PCF with a single ground type N.)

o For each ground constant and first-order function of PCF, say of type T,
a morphism # : 1 — A in C, where 1 is the terminal object in C, and
A is the object in C interpreting the type T. (z is a “point” or “global
element” of the type A.)

We say that M(C) is a standard model if C(1, N) = Ny, the flat cpo of the
natural numbers. and moreover the interpretation of the ground and first-order
arithmetic constants agrees with the standard one. We cite an important result
due to Berry [Ber79, BCL85!.

Theorem 2.10.1 (Computational Adequacy) If M(C) is a standard model,
then il is computationally adequate; i.e. for all programs M and ground con-
stants ¢,

M—"c = [M]=I[d

and hence the medel is sound: for all terms M, N : T,
[M]C[N] => MCO¥N.

{Berry stated his result for models based on cpo-enriched categories, but enly
used rational closure.)

Thus to obtain a model M(EK,(G)) it remains only to specify the ground
types and first-order constants. The interpretation of N as Nat has already
been given at the end of Section 2.1. It is readily seen that Nat = Nj.

Ground constants For each natural number n, there is a strategy 7 : I—
Nat, given by
7 = {¢,*n}.

AiSO, Q'Nat = [{E}]

Arithmetic functions For each number-theoretic partial function f:N—N
there is a strategy

of = {e,42x1} U {2 41 ymy | f() = 0}

Conditionals The strategy » interpreting 1£0: N = N = N = N is defined
as follows: in response to the initial question, k interrogates its first argument;
if the answer is 0, then it interrogates the second argument, and copies the
reply to the output; if the answer is any number greater than 0, it interrogates
the third argument, and copies the reply to the output.

Proposition 2.10.2 M(K1(G)) is e standard model of PCF.
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3 Intensional Full Abstraction
3.1 PCFc

In order to obtain our intensional full abstraction result, it turns out that we
need to consider an extension of PCF. This extension is quite “tame”, and does
not change the character of the language. It consists of extending PCF with a
family of first order constants

casep  N=>2N= . = N=> N
k

for each k € w. The functions that these constants are intended to denote are
defined by:

caser, L mgny... Ng-qp = 1L
caser & Mo My... N1 = 74, 0<4<Ek
caser ¢ Mo Mi... ket = L, 12k

The interpretation of casey as a strategy is immediate: this strategy responds
to the initial guestion by interrogating its first input; if the response is ¢, with
0 < i < k, it interrogates the 4+ 1'th input and copies the answer to the output;
otherwise, it has no response.

To see how harmless this extension, which we call PCFe, is, note that each
term in PCFe is observationally equivalent to one in PCF. Specifically,

casey =°% daV .. gl .
if0 x Yo
(if0 (pred z) u1

(i£0 (pred pred pred z) yx-1 2} .. .).

k

The point is that our intensional model is sufficiently fine-grained to distinguish
between these observationally equivalent terms. However, note that our results
in Section 4 apply directly to PCF.

3.2 Evaluation Trees

We shall now describe a suitable analogue of Bohm trees {Bar84] for PCFe.
These give an (infinitary) notion of normal forms for PCFc terms, and provide
a bridge between syntax and semantics.

We use I', A to range over type environments z3 : T3,..., 25 : Ty We define
FET(T,T), the finite evaluation trees of type T in context I, inductively as
follows:

, _MEFET(I, e : T, U)
3T M ¢ FET(T,T = U)

® O,ne FEI(T,N)
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Alz)=Ty = ...Tp = N,
P, e FET(I,T}),1< i<k,
Q, € FET(T,N),n € w,
Inecw Ym>n @, =4
® Case(zPi.. P, (Qn |7 €w)) € FET(I, N)

We regard these evaluation trees as defined “up to a-equivalence” in the
usual sense. Note that if we identify each case(zPr... P, (@nin € w)) with
case(z Py ... Py, Qo, ..., Q1-1) for the least { such that @, = @ for all n > [,
then every finite evaluation tree is a term in PCFe.

We order FET(I,T) by the “Q-match ordering”: MCN if N can be ob-
tained from M by replacing occurrences of () by arbitrary finite evlautation
{rees.

Proposition 3.2.1 (FET(I'\T),E) is a pointed poset with non-empty meets.
Every principal ideal is o finite distributive laltice.

Now we define ET(L,T), the space of evaluation irees, to be the ideal
completion of FET(I,T}. As an immediate consequence of proposition 3.2.1,
we have

Proposition 3.2.2 BT, T) is o dl-domain. The compact elements are terms
of PCFc.

Strictly speaking, the compact elements of ET(T,T) are principal ideals | (M ),
where M is a finite evaluation tree, which can be identified with a term in PCFe
as explained above.

3.3 The Bang Lemma

We now prove a key technical result. This will require an additional hypothesis
on games. Say that a game A is well-opened if the opening moves of A can only
appear in opening positions. That is, for all @ € My if @ € P4 then

sa & Py = s=¢

It is easy to see that N and [ are well-opened, that if A and B are well-opened
5o is Ak B and that if B is well-opened so is A = B. Here and henceforth we
blur the distinction between the type N and the game it denotes. Thus the
category of well-opened games is cartesian closed, and generates the same PCF
model M(T).

Now let A be well-opened and consider s € P, 5. Using the switching
condition, we see that s can be written uniquely as

s=PieBr

where each “block” S; has the form (¢;,0;)t;, L.e. starts with a move in 1B;
every move in !B occurring in f; has the form (i;, b’} for some &', i.e. has the
same index as the opening move in f;; if B;, B; are two adjacent blocks then
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i # j; and |B;] is even (so each block starts with an O-move). We refer to ¢;
as the block index for §;. For each such block index i we define s; to be the
subsequence of s obtained by deleting all blocks with index i # 1.

Some further notation. For s € My .z, we define

FST(s) = {i | Ja.(i, a) occurs in s}

ie. the set of all indices of moves in 4 occurring in s. Also, we write s{4,J
for the projection of s to moves of the form (j, a), i.e. moves in !4 with index
7; and similarly s[B,j.

Lemma 3.3.1 For all o 1A~ B with A well-opened, s € ¢, and block indices
1,7 occurring in s:

(3) 8; € 7,
(i) i # j implies FST(s;) N FST(s;) = .

Proo¥. By induction on |s|. The basis is trivial. For the inductive step, write
s = B1...Bubra1, t = Bi...B, umm’ = Brpq. Let the index of Bx+1 be
3. We show firstly that (tu);m € Pig.oip. By the induction hypothesis, for
all § € FST((fu);), (tu)ifA,§ = tufA,j, while obviously (fu);[B,i = tulB,1.
Also, m is either a move in |B with index ¢, or a move in A, In the latter
case, by the switching condition the index of m is in FST((tu);). Hence the
projection conditions are satisfied by (tu);m. Moreover (tu);m is well-formed
by the Projection Lemma 2.4.4. Thus (tu}im € Fla—oip a8 required. :

By induction hypothesis, ({u); € o, and since o = oy is a well-defined
history-free strategy, with f(m) = m/ since tumm’ € o we conclude that
(tumm’); = (tu)ymm' € o, Moreover, for j # i, (tumm’); = (tu); € o by
induction hypothesis. This establishes (4). :

Now note that, if tu satisfies (7i), so does tum by the switching condition.
Suppose for a contradiction that tumm’ does not satisfy (ti). This means that
m' = (j,a), where j € FST((tu)y) for some ¢’ 5 i and hence that sA,j = s'a
where &' # ¢, so that a is 2 non-opening movein A. But we have just shown that
(tu);mm’ € 0 C Piy—op and hence that (tw);mm'[A,j € P4. By induction
hypothesis

FST((tu);) N FST({tu)y) = @

and hence (tu);mm'[A,j = a. Thus a is both an opening and a non-opening

move of A, contradicting our hypothesis that A is well opened.
With the same notation as in lemma 3.3.1:

Corollary 3.3.2 (i) Vj € FST(s;) 8;[A, 7 = s[A, .
(it) Vi & FST(s;) 8:[A, 5 = €.
(i#) si[B,i= sl B,i.

(iv) j # @ implies $;[B,j = e.
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Lemma 3.3.3 Let 0,7 :A—o!B with A well-opened. If ojdery ~ 7;derp then
o RT.

Proor. We prove the contrapositive. Suppose o 5 7. Then w.lo.g. we can
assume that there exist positions sab, s'a’ such that sab € o, s’ € 7, sa & s,
and either s'a’ ¢ dom(r) or s'a’t/ € 7 and sab # s'a’b’. Let the block index of
ain sa be i, and of ¢’ in s'a’ be ¢'. Note that the block index of b in sab must
also be 7.

By Lemma 3.3.1, (sab); € o and s} € 7. We claim that (sa); ~ (s'a’)s.
Indeed, if s = B...5, & = B ...0,, then by definition of & .c1p We musi
have k = k' and the permutation 7 = [r4, 7] witnessing sa = s'a’ must map
the block index of each 3; to that of 8}, so that in particular sa|B,im s'd [ B, i
Moreover, 74 must map FST((sa);) bijectively onto FST((s'a’)). Using Corol-
" lary 3.3.2 for each j € FST((sa)i), (saklA,j = salA,j =~ satA,na(f) =

(s'a')a A4, 7a(5). | '

Now let ted be defined by replacing each (z,m) €8 in s;ab by m; and tc be
defined by replacing each (i',m’) €!B in sa’ by m'. Then ted € o3 derg!, t' €
riderg’ and te = t'¢’. We wish to conclude that ted,t'c’ witness the non
equivalence o;derg # 7;dery. Suppose for a contradiction that for some d’,
#'e!d’ € ryders® and ted & ¢c’'d’. This would imply that for some v, sha't € r
and s;ab ~ sha'l/. Since s'a’ € Ply—oip and 7 is a well-defined history-free
strategy, this implies that s'a’d’ € 7. Using Lemma 3.3.1 and Corollary 3.3.2 as
above, sab = &a't’. This yields the required contradiction with our assumptions
on sab,s'a’. s
Proposition 3.3.4 (The Bang Lemma) For all ¢ : A—lB with A well
opened,

o~ (o] dezB)T.

Proor. By the right identity law (onp. 2.7.4.), o;dery ~ (0} derB)T;derB.
By Lemma 3.3.3, this implies that ¢ = {0} derB)T. i

3.4 The Decomposition Lemma

In this section we prove the key lemma for our definability result. We begin
with some notational conventions. We will work mostly in the cartesian closed
category M(Z). We write arrows in this categoryaso : A = B and composition
e.g. ofo: A= Bandr: B = (C asroo. We will continue to write composition
in the Linear Category G in diagram order denoted by ; . We write

Ap:(A= B)kA= B

for the application in the cartesian closed category, and “linear” application in

G as
- LAPP : {A—B)RA — B

Al games considered in this section are assumed to be well-opened. If s €
MY g, We write

FST(s) = {3 | 3d .(¢,d) occurs in s}
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i.e. the set of all indices of moves in D occurring in s.
Now we define a strategy

x:N&ENY = N

corresponding to the case construct. Tt will actually be most convenient to
firstly define the affine version

Xe * N1®N§)“”°NO
where we have tagged the occurrences of N for ease of identification;
Yo = Pref{%g %1 0 *2.n MapMo | 7, M € W}

i.e. ¥, responds to the initial question by interrogating its first input; if it
gets the response n it interrogates the n’th component of its second input, and
copies the response as its answer to the initial question.

Now we define

x = (NGNY) 2 N gy B9 yg e Xe

We will now fix some notation for use in the next few lemmas. Let
o: C&(A = Ny) = Ny

be a strategy where we have tagged the two occurrences of N for ease of iden-
tification. We assume that o’s response to the initial question #; in Ny is to
interrogate its second input, ie. to ask the initial question #o in Nz. Thus
any non-empty position in ¢ must have the form #q #4 s. Moreover by the staclk
discipline any complete position in o, i.e. one containing an answer to the initial
question #;, must have the form

%1 kg sngtnl

where 75 is the answer corresponding to the question =5 (this is the sole—albeit
crucial—point at which the stack condition is used in the definability proof).
Thus a general description of non-empty positions in o is that they have the
form

%1 %9 8yt

where nq is the answer corresponding to #q, or
%1 %9 8
where *5 is not answered in s.
Lemma 3.4.1 Forellsixsnytco
(i) x1 %2 mpt € 0

(ii) FST(s) NFST(t) = @.
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ProoF. By induction on |f|. (The proof follows very similar lines to that of
Lemma 1 in the previous section). The basis is trivial. If t = umm', then we
firstly show that

%1 #2 nauin € Fogr g Ny
By the induction hypothesis and the switching conditions, for all 7 € FST{um)

1y %o naumtC&(A = N),j = +y % snoum|[C&(A = N), j

s0 *4 o noum satisfies the projection conditions because #1 %, sngum does. Also,
#9879 is balanced so by the Parity Lemma 2.4.3 #; t is well formed, and hence
1 %3 ngum is well formed. Thus

sy kg T UM & P"&(A:&N}ﬁﬂ\f

Now since o = oy is a well-defined history-free strategy with f(m) = m/,
and #; * neu € o by induction hypothesis, we must have 1 * ngumm’ € o,
establishing (%).

For (ii) suppose for a contradiction that m! = (§,d) for j € FST(s). Then
x1 *p st [C&(A = N), i = d'd € Pogrismmys where 8’ # ¢. On the other
hand, by induction hypothesis #q % nyumm! [C&(A = N),j = d, and by (2},
d € Pog sy This con‘cradicts_our as‘gympticn that games are well-opened.

Now we define
o' = {¥1%35 ngny | ¥1%28 N2 € gYU{#1428 | #1%28 € 0, #p not answered in o}
and for all n € w
Tp= ¥t | #1430t €0}
Lemma 8.4.2 o' : C&(A= N)= N and 7, : C&{A = N)= N (n € w) are
valid strategies.
Proor. The fact that each 7, is a set of valid positions follows from Lemma

3.4.1. That o', 7, are history-free and satisfy the partial equivalence relation
follows directly from their definitions and the fact that o is a valid strategy.

Lemma 3.4.3 ¢ ~ cong;0'®{m, | 7 € W) Xa-

Proo¥r. Unpacking the definition of the RHS 7 = cong; 0'®{(T, | N € W) Xa
we see that the second and third moves of x. synchronize and cancel out with
the first and last moves of ¢’ respectively, and the fourth and fifth moves of x.
cancel out with the first and last moves of the appropriate 7. Thus positions
in 7 have the form
%1 %o $'ngt’ OT *p #g8’

where %, %9 sngt, * *3 s are positions in o, and & ,t are bijectively reindexed
versions of ¢ and t, with the property that FST(s) N FST(#") = @. However, by
Lemma 3.4.1 we know that FST(s) N FST(t) = &, and hence

1 kg 8'ngt’ & #q %o smgl

and ¢ = 7 as required.
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Lemma 3.4.4 o= xyo{o/, (1, | n€w))

xo{o',{ta | n€w) = definition
(con; (G’Jf@)('rn | ne w)T;e;der)’f;e‘l;derQ@der; Xa
COH%(U'i®(Tn | ne w)T);e; e~ der®@der; X,

con; (0"l @(r | n € w));der@der; x

con; (J’T;der@)('rn | ne w)lf;der);xa

con; (0@(Tn | M EW))iXa ' Lemma 3.4.3 .
a.

We continue with our decomposition, and define

Bang Lemma

a &

&

2 &

o = {s | *#1 %28 € o, *3 not answered in o'}
Lemma 3.4.5 o : C&(A = N) =>4 is a well-defined strategy, and
o'~ CONGE (4N ro@c”; LAPP. (1)

PROOF. We must firstly explain how moves in ¢” can be interpreted as being of
type C&(A = N) =!4. Let the index in (C&(A = N)} of the response by ¢
to the initial question #; be ip. Then we regard all moves in s € o” with index
ip a8 moves in the target !4 , and all moves with index ¢ 5 ip as moves in the
source (C&(A = N)). The projection conditions and stack discipline are easily
seen to hold for s with respect to this type. The fact that ¢” is history-free and
satisfies the partial equivalence relation follows directly from its definition and
the fact that o' is a valid strategy. :

Now write 7 for the RHS of (). We diagram 7, tagging occurrences of the
types for ease of reference.

{Co&(tAg—oNo))
con
z(cl&(sAl—oNl))é!(Cz&(!Aszz))
ToRa"
(14s—oNg)® 1Ay

LAPP

Y
Ny
From the definitions LAPP plays copy-cat strategies between Nz and Ns
and !4z and 1Ay 7y plays a copy-cat strategy between !43—N3 and a sin-
gle index 4o in NC1&(1A1—oNy)); con splits HCo&e(lAp—Np)) into two dis-
joint address spaces W(Co&(14o—oNo))z, and !(Code(1Ao~oNo))r and plays copy-
cat strategies between Co&(!Ao—oNo))r and {Co&(tAz—oNz)) and between
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{Co&e(1Ag—Np))r and HC2&(!Az—oN3}). Thus we see that the opening move
in Ns is copied to (ip, No)r via N3 and (49, Ny), and any response in (ip, No)yz, is
copied back to Ns. Similarly, O’s moves (%0, 1 Ao) 1, are copied to 144 via (i, 1Az)
and '4s; and P’s responses in !4, following ¢” are copied back to (%0, 140)1-
Finally, O’s moves in {Co&(14o—oNo))r are copied to HCo&(1A3—N3)), and
P’s responses following o are copied back to (Cobe(lAg— No))r-

As regards sequencing, the initial move *5 is copied immediately as #j,1.
Opponent may now either immediately reply with ng, 1, which will be copied
back as ns, completing the play; or move in (i, 14p)L— the only other option
by the switching condition. Play then proceeds following ¢ transposed to

_Ci” : [(C{)&( !Ao-—ONo))R -~ (?:g}, %Ao)L,

until Opponent replies with some ng, 1, to *i,,1. Thus positions in 7 have the
form . . :
! Coaf
*g Hip T 8 Ny, L Ns O %5 *4, L &

where & is a bijectively reindexed version of s € o, with s & s, Clearly
o' = g', and hence o' ~ 7. B

We now prove a useful general lemma.

Lemma 3.4.6 For all strategies v: C = (A= B),§ : C = A

Ap o (v, 6) ~ cong; (y®81); LAPP.

ProOOF.
Ap o (7,6} = definition
& 1
(cong;v'@61; e85 der(Aﬁ,B)@A)Jf; e~l:der s p®idy; LAPP =~ Bang Lemma
conc;fyi@ﬁ'i;eA‘B;efB; der = p®ids; LAPP o

cong; 7@6*; LAPP.
Now consider a game

(A1& . .&:Ak) = N

where

A; = (Bg,I&...&Bi,zi) = N, 1<i<k.
Let A= A1&.. . &A, Bi=Bink.. .&Biy, 1<i<k
| Wedeﬁne_l_ﬁ:AﬁbeLﬁ:{e}andK}gn:AéN(nEw)by
Kjn = {e,#n}.Thus Lz is the completely undefined strategy of type A= N
while K zn is the constant strategy which responds immediately to the initial

question in N with the answer n.
Finally, if 1 <i < k,and foreach 1 <5 <l;

a; A = By ;

and for each n € w
A= N
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we define )
Ci(Ul,--.,O"l“(Tn ] nEw)):ASN

by
Ci(o1, .-+, 00 (Tn | n€w))=xo (Ap o {m,{o1,-..,01)) {Tn | NEW)).

Lemma 3.4.7 (The Decomposition Lemma (uncurried version)) Leto:
(Ar1&...&A,) = N be any strategy, where

A;=(Bi1&...&Biy) = N, 1<i<k.
Then ezactly one of the following three cases applies:
(i) o= L;.
(ii) o = K n for some n € w.

(iii) o Ci(oy, .., 00,(Ta | 7 EW))
wherelgigk,aj:fl:&.ﬂi,j, l.gjgli,m:fi-—?N, neEw.

Proor. By cases on ¢’s response to the initial question. I it has no
response, we are in case (). If its respomse is an immediate answer n for
some n € w, we are in case (3%). Otherwise, ¢ must respond with the ini-
tial question in the i’th argument, for some 1 < ¢ < k. In this case, write
C=Asd.. &hi1&A& .. &Ar. We have the natural isomorphism

a: (CkA) =Aa™!
so we can apply Lemma 3.4.4 to conclude that
cajom xo(d,(m | nEw)

By Lemma 3.4.5
o = con; my®o’; LAPP

where o : C&A; =1B;. By the Bang Lemma,
o~ (" der)T.

Moreover
o”;derp : C&A; = (Biak .. & Biy)

so by the universal property of the product,
o' derp = {(01,...,01)

where 0; : C&A; = By, 1<j < i
Thus o' = con; m2@{01,. .., o*gl.)Jf;LAPP and by Lemma 3.4.6,

o~ Apo (71'27 <0'1= .. 'vgli))
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Thus

a“l‘;a;cr |
a”i;(xo (APO<7r27(01:"'?0-15))=(7ﬂ | n 6“”))
x o (#p o (w5, {0100, @ 01)), (@77 | mE W)

59

&

Cg(a‘l;al,...,a‘l;ogi,(a‘l;fn | =€ w)

il

The Decomposition Lemma in its uncurried version is not sufficiently general
for our purposes. Suppose now that we have a game

(A& .. &Ag) = N

where
A= Biy = .. By = N, (1< [).

If for some 1 < i < kand each 1 < 7 <1; we have
g5 ‘.f; = Bi‘j

and for each n € w

i A=> N

then we define .
Cilot, 01 (T | nEW)) A= N

by
Ci(ot,...,01,(ta | REW) = Xo(Apo{... Apoln, o1}y o)y (e | B E WY,
To relate C; and C;, consider the canonical isomorphisms
;i By = ... B = N 2 (Bin&. . &By) = N ot (1<i<k)
Let & =& ... &ay) so
& A& & AR) SHATE . &AY)
where AY = (B & .. &eB; ;) = N is the uncurried version of 4;. Then
Ci{a1y. .00 (1n | nEW)) & &;Ci(6;00, .., @ 01, (87 | R EW)) (1)
In terms of A—calculus, this just boils down to the familiar equations
curry(f)oy = f(a,)

Uncurry(g)(z,y) = g2y

To see the relationship between the combinators L, Kn and C and the syntax
of PCF, we use the combinators to write the semantics of finite evaluation trees.
Given P ¢ FET(T,T) where I' = =y 1 T1,..., %5 ¢ T, we will define

ST P:T): (S(T)&k ... &S(Ti) = S(T)
o S(TFXT.P:T=U)=AST,a:T+ P:1))
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e S(HQ:N)= Lz
e S(I'Fn:N)y=Ksn

e S(T'Fcase(z;P;... P, (Qn | n€w)): N)=Cilog,...,01,(ma | €
w)) where
L= Ui,l = ---Ui,h = N,

o;=8TFP;:U;), 1<i<1L,
T =S(TFQ,:N), n€w.

We can now prove the general form of the Decomposition Lemma.

Proposition 3.4.8 (Decomposition Lemma) Leto: (41& .. . &A4,) = (App1 =
... Ay = N} be any strategy, where

Ai=Bi1= ... By, =N, 1<i<¢q

We write C = At,..., Ap, D= Apiis. .o, Ag. (Notation : if T : C,D = N,
then Ap(7): C = (Apyr = = 4, = N).)
Then exactly one of the following three cases applies.
(@) g = AE(J‘C',ﬁ .
(i) o = Ap(Kg pn) for some n € w.
(i) o= Ap(Ci{o1,...,01,(Tn | n € w))), where 1 < i < g, and

Jj:C:Z’,I:) Bij, 157 <,

o
O, D = N, nE W,

Proor. Let a; 1 A; = A¥ : a1 be the canonical isomorphism between 4; and
its uncurried version
AE = (35,1& P &Bi,l;) = N

for each 1 < i< q.

Let
a=Nor& .. &op&opa&. . Loy).
Note that N
Lep = @Glaups (2)
Kspr = &Kpgupun (3).

We can apply Lemma 3.4.7 to & = &“I;ABI(G) : 0%, D% = N. The result
now follows from equations (1)-(3) since

o~ Ap(6;5). B
With the same notations as in the Decomposition Lemma:

Lemma 3.4.9 (Unicity of Decomposition) (i) If o = Lsj then o =

L]

Lep-
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(ii) If o =~ Kg pn then o = K pn-
(iii) If Ci(og, .., 01, (T | B E W)l Ci(o},...,00,(m, | n€ w)) then

O'j%(?;, 1Sj$l't7
TnlgThy BEW
Proo¥. (i) and (i) are trivial
For (iii) write 0 = Ci(oy1,..-, 01, (Tn | n€w))and T = Cilel, ..., 00,(mn |
n € w))
Suppose firstly that s € 7. Then #; *2 nas € 7, 50 since ¢ § 7, for some {,
41 %3 ot € 7 and g %2 Nps R *( kg Mol This implies that ¢ € 7, and s~ 1. We
conclude that 7, & 7.
Now suppose that s € g;. Then #; % ¢ € o where ¢ is a reindexed version of
s with s =~ ¢’. Since ag'r, there exists ¢’ such that 1%t € 7 and #yx8 & wpratl
This implies that there exists t € ¢} with s & 1. We conclude that o; £ o7

3.5 Approximation Lemmas

The Decomposition Lemma provides for one step of decomposition of an arbi-
trary strategy into a form matching that of the semantic clauses for evaluation
trees. However, infinite stratzgies will not admit a well-founded inductive de-
composition process. Instead, we must appeal to notions of continuily and
approximation, in the spirit of Domain Theory [AJ94b].

We define a PCF type-in-contest {{Cro94]) to be a type of the form

(& .. &T,) = U

where Ti,...,Tp, U are PCF types. Given such a type-in-context T', we will
write Str(T) for the set of strategies on the game 8(T).

The Unicity of Decomposition Lemma says that decompositions are unigue
up to partial equivalence. Referring to the Decomposition Lemma, Prop. 3.4.8,
note that the proof of the decomposition

o Ci(aly"'aalgs(Tn ! n g (.:.)))

involved defining specific strategies o1,...,04,(7 | 7 € w) from the given o.
If we also fix specific pairing and tagging functions and dereliction indices in the
definition of promotion, dereliction, contraction etc.( and hence in the M(T)
operations of composition, pairing, currying etc.), we obtain an operation @ on
strategies such that

1 in case (1)
®(o) =< (2,n) in case (i)
(3,01,---,01, (7 | n€w)) in case (ii1)

according to the case of the Decomposition Lemma. which applies to 0. We
shall use ® to define a family of functions

pi : Str(T) — str(T) (k € w)

inductively as follows:
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-] pg((f) = Aﬁ('l"f,[?

]

Aﬁ'(“LfT),ZU))’ ®(o) =1
pria(e) = Ap(Kzgm), &(o) = (2,n)
Ap(Cilpr(r), - s prlon), (| nEW))), B(o) =00
where
oo = (3,01, ,00, (Tn | B € W))
and

k(T )s 0<n<k
o = Agllgp) n>k.

The principal properties of these functions are collected in the following Lemma.
Lemma 3.5.1 (Approximation Lemma for Strategies) For all k € w:

(i} o C 7 implies pu(a) C pr{T)

(i) If og C oy C ... 5 an increasing sequence,

pe(lJ o) = U pelor)

Igw lew
(iii) o 7 implies pr(o) 5 pe(T)
(iv) pr(o) 5o
(v) Vs € o |s| <2k = Feplo)smt
(vi} pr(o) € prs1(o)
() Uew (@) % 0
(viit) pr(p(c)) = pi(o)
Proor. Firstly, consider the operation ®(c). In case (i), where
®(o) = (3,01,...,00,(t | nEW))

®(o) is obtained by firstly defining ¢’ and the 7, from ¢, then o’ from o', and
finally

o; = (o der)T; 75

Note that ¢'; o and the 7, are defined locally, i.e. by operations on positions
applied pointwise to o and ¢’ respectively. Togheter with the & —monotonicity
and continuity of Promotion, Dereliction, Contraction etc. (Proposition 2.9.4)
this implies (i) and (#). Now note that C; is € — and L, monotonic by
Proposition 2.9.3. A straightforward induction using l:mmonotommty and
¢ —monotonicity of C; respectively and the Unicity of Decomp031t10n Lemma
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yelds (4i). Similarly routine inductions using %-monotonicity and C —monotonicity
of C; respectively prove (iv) and (vi). ,
We prove (v) by induction on k. The basis is trivial as are cases (i) and
(i) of the Decomposition Lemma at the inductive step. Suppose we are in case
(1i3), with
o % Ci(oy,. 00, (Ta | R EW))
Consider firstly s € o where s = #1 %38’ with % n0% answered in &/, Then ' € o
where o is derived from ¢’ and ¢’ from ¢ as in the proof of the Decomposition
Lemma. Since (01,...,(7;;}" ~ o', ¢ can be decomposed into subsequences
8i1see e, Sip; With 85, =~ 854 €05, 15 §<l,1<qg<p;
Since |s;4] < |s], we can apply the induction hypothesis to conclude that
Sig W Ujg € pi(0;), and hence that there is % %9 U € prp1(0) With 8 &2 1 *g .
The case where § = #q *3 §'not is similaz.
To prove (vii), note firstly that the union U, pi{c) is well-defined by (vi).
Now ;e pi(0) k5 o follows from (iv), while o § Ue,, pi(o) follows from {v).
Finally (viii) can be proved by induction on k and (iii) using the Unicity of
Decomposition Lemma. i '
We now turn to evaluation trees. Let I' = 1 : Ti,. g o T We define a
‘tfamily of functions

g - ET(T, Uj - ET(L,U) (k €w)

inductively by

w(P) = 0.0
gre1(AEY.Q) = AV.Q
qk+1(A§:[f.n) = MY.n

Qk+1(i\§U'Case(mi-P1 oo (@ | RE w)))
= A&V case(zigi(P1) ... qr{P), (Qn | 7€ w))

where

k(2

o {qk(gﬂ), D<n<k

= A2V .0, n>k
The following is then standard:

Lemma 3.5.2 (Approximation Lemma for Evaluation Trees) the (gr |
k € w) form as increasing sequence of continous functions with | lye, 4 =
idgy(ruy. Bach qr is idempotent and has finite image.

3.6 Main Resulis

We are now equipped to address the relationship between strategies and eval-
uation trees directly. Let I' = zy :11,..., %k Ty. We define a map

¢ : FET(T,U) — stx(T = U)
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this map is a concrete version of the semantic map defined in section 2.4. That
is, we fix choices of pairing functions etc. as in the definition of @ in 2.5, and
define o(T' - P : U) as a specific representative of the partial equivalence class
S(I'+ P U). Thus we will have

S(IFP:U)=[(T+P: U]

We were sloppy about this distinction in 2.4; we give the definition of ¢ explic-
itily for emphasis:

(T FXT.P:T =) = A(D,z:THP:UY)
g(I‘ In A N) = ”’LT
Tk n:N) = ‘ Kisn
oDk case(w;Pr... P, (Qn | mEw)) = Ci(o1,. .00, (Tn | R EW))
where

T, = Biy=...=> By, = N,

o5 = T+ P B:;), 1<5<1,

Th = sTFQy:N), n€w.

Lemma 3.6.1 [fPC Q thenc(PFP:UYC<s(I'+Q: V)

Proor. By induction on the construction of P, using C~monotonicity of C;. &
Let T = T4,...,T} and Con(T) be the set of all T'~contexts vy ST -
T,. For each k € w, we define a map

mp 2 SEr{T = U) = Tpgoonn FET(T, U)
inductively by:

n(o)T = AP0

Agff <, o= Ag{Lsg)
17k+1(a)F = AﬂU.n, G = Arj(KT’f}n)
)\gU'Case(Z@'P}. KK Pl,:s (Q'n | n w))a g~ Af](ci(gh sy Tl (Tn l ne w)))
where
r = 2y Ty 2p i T,
A = v Uy yq i Uy
K = 5171:--‘,%,&!1,---:%:
P = mp(ep)T,A, 15k
and
Qn = (o)A, 0<n<k
w Q n>k

Lemma 3.6.2 Forallk e w :

(i) o 5 7 implies me(o)T £ ()T -
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(i) If oo C oy C ... 15 an incregsing sequence,

a(J o)l = | | me(o0)y-

icw lew

(iii) (o) & megaf{e)l
(iv} qe{m(a)T) =ne(o)y, 12k

ProoF. (i) is proved similarly to part (ii) of the approximation Lemma for
strategies; (#) is proved similarly to part (ii); and (i%) to part (vi); (iv) is
proved by a routine induction on k.

Lemma 3.6.3 For all P ¢ FET(I,U), cestr(T=>U), kew:
(i) m(s(T P UNT = qe(P)
(i) <(T + (me(0)T) : U) = pe(0)

ProoF. Both parts are proved by induction on k. The induction bases are
trivial as are cases (i) and (i) of the Decomposition Lemma at the inductive
step, and the corresponding cases on the congfruction of P

(i)
e (s(T' F 2j¥case{zPr .. P, (Qu | nEW)) =
AU case(z Py .. Pl (@ | m € w))
where
pPlo= qi(<(T, A+ Py« Bi;E, A
= ind.hyp q&(F5)
Q= m(c(T,A b Qn : NPT, A, 0<n<k
” Q n>k
_ () 0<n<k
= ind.hyp Q ok
= a6(P)
(i)
(I F 71 (Ci(01, -, 01y (Tn | RENT U &
Aﬁ(Cé(Ui,--.,UL,(T;L I new)))
where

0'3- w2 g‘(F,A t (nk(o‘j)r,ﬁ) : U)

Sindhyp PHE)

ST, AF (m(r)T,A): N) 0<n<k

! o~
oo Lyg ">k
~ind.hyp Lo g n>k
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|
Now we define functions
S :ET(L,U) — stx(T,U)
& sex(T,U) — ET(T,U)

S(P)= |J T+ qu(P): U)
k€w

£(0)= || m(o)T

kcw

By Lemma 3.6.1 and the Approximation Lemma for evaluation trees, {c(I'
g(P) : U) | k € w)is an C ~increasing sequence of strategies, so S is
well-defined. Similarly, by Lemma 3.6.2 £ is well-defined.

We now prove the key result on definability.

Theorem 3.6.4 (Isomorphism Theorem) (i) For all P € EX(T, U}

£oS(P)=P

(ii) For all o € Stx(T = U),
Sollo)mo

(iii) Let T =T = U. Then there is an order-isomorplism
Sw BT, U) = S(T) 1 En

where Sx(P) = [S(P)] (i.e. the partial equivalence class of S(P)), and
Exllo]) = E(0). .

PROOF.
(1)
Eo8(P)
= definition Urew M(Urgw s(F F @ P) 1 U))T
— Lemma 3.6.2(7) UewLigw m(s(T F @(P) : U))T
Un{iw nn(c(l‘ }_ Qﬂ(P) U))I‘
= Lemma 3.6.3 Unew 9n © 4r{F)
= Lemma 3.5.2 P.
(ii)
So (o)

e UkEw ';(F = qjﬂ(Ule Wl(a)r) : U)
= continuity of ¢  Urew S(T'+ Liew ge(m(o)T) 1 U)
= Lemma 3.6.2(iv) Upew S(T F (m(0)1) 2 U)

=~ Lemma 3.6.3 Urew PE(0)

=~ Lemma 3.5.1 a.
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(iti) Firstly £~ is well-defined and monotone by Lemma 3.6.2(z). Also, Sx
is monotone by Lemma 3.6.1. By (i) and (7i), &x = Szt B

As an immediate corollary of the Isomorphism Theorem and Proposition
3.2.2:

Proposition 3.6.5 For each PCF type T, S(T) is a dI-domain. Hence M(Z)
is an algebraic cpo-based model.

Thus although a priori we only knew that M(Z) was arational model, by virtue
of the Isomorphism theorem we know that the carrier at each PCF type is an
algebraic cpo. Hence the notion of intensional full abstraction makes sense for
M(T). Recall from the introduction that a model is intensional fully abstract
for a language L if every compact element of the model is denoted by a term
of L.

We can now prove the culminating result of this section.

Theorem 3.6.6 (Intensional Full Abstraction) M (Z) is intensionally fully
abstract for PCFe.

Proo¥. Consider any PCF type 7. By the Isomorphism Theorem, the compact
elements of S(T0) are the image under Sy of the compact elements of ET(I'o, T)
(where I'g is the empty context). But the compact elements of ET(Ig,T)
are just the finite evaluation trees FET(Ty,T") and the restriction of 8w %0
FET{To,T) is the semantic map S{.) on finite evaluation trees qua terms of

4 Extensional Full Abstraction
4.1 The Intrinsic Preorder
We define the Sierpinski game % to be the game

5 = ({g,a},{(g,0Q), (a, PA)}, {e, ¢, qa}, 1dpy)

with one initial question g, and one possible response a. Note that ¥ is indeed
the usual Sierpinski space. i.e. the two-point lattice 1 < T with L = {e}, T =

te %gc}n.v for any game A we define the intrinsic preorder <a on Stxr{A) by:
xﬁAy@Va:AaE.m;agy;a
Note that if we write 2] =z =T and T =2 = 1, then:
mﬁAy@Va:AQE.m;al:}y;ai
Tt is trivially verified that Sy is 2 preorder.

Lemma 4.1.1 (Point Decomposition Lemma) (i) Ve € str(l4). z =
(m;derA)T =l(z;dery)
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(ii) Vo € Stx(A&R). z » (x;fst, z; snd)
(iii) Yz € Str{A® B). Jy € Str(A),z € Str(B). e m y@ 2

ProOF. Firstly we must explain the notation. We think of a strategy ¢ in A
indifferently as having the type ¢ : I — A. Now since !J = I, we can regard
lo 1 =14 as in Str(l1A). Similarly, since I ® I = I, we can regard ¢ ® 7 as in
Str(A @ B), where o € Str(A),r € Str(B). Finally, using I = I again we can
form {0, 7) € Str{ A& B) where ¢ € Str(4),r € stx(B).

Next we note that (i)is a special case of the Bang Lemama, while (i) foliows
from the universal property of the product.

Finally, we prove (iif). Given z € Str(A ® B), write 2 = oy, where [ :
MY + MY — MY + ME. By the switching condition, we can decompose
fas f =g+ h, where g : MG — ML, and h : Mg - Mf;. Now define
y = 04,2 = 0p. It is clear that y and » are well-defined strategies, and

Loy = Oy MO, Q0p =y ® 2.

Now we characterise the intrinsic preorder on the Linear types. The general
theme is that “intrinsic = pointwise”. This is analogous to results in Synthetic
Domain Theory and PER models, although the proofs are quite different, and
remarkably enough no additional hypotheses are required.

Lemma 4.1.2 (Extensionality for Tensor) Forallz®y,2'®y € Str(A®
B)
r@ySag e @y >z Sad’ Ay Sy

Proor. (=), f 2 @y Caep o' @ ¢y and 23, then z ® y; 5] where
~AB

id A ~
p=Agp HEIBL 4o A—2 oy,

1p,r = {¢}. This implies that z ®y; 8], and hence that z'; ). This shows that
z <4 a'; the proof that y <p ¢ is similar.

(<). Suppose that 2 $4 2,y Sp v and 2 ® y;y] where y: A®@ B — O.
Then define o : A — X by:

idg ®y

o= A —AQI AQB—— %

Then o300~ & @ y; 7], 0 250 & o' @ y; 7| since & Sy @', This shows that
T@Y Sags ¥ ®y. A similar argument shows that ' @ y Saep ¢’ @ ¥, and so

2 QY SaeB ' @y SasB PRy, |
Lemma 4.1.3 (Extensionality for Product) Forall (z,y),{2',y") € Str(A&B)

(2,9) Sagp @)= e Sad’ Ay Sey
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PRroOF. By the definition of A& B, any 7: A&B — ¥ must factor as

t
O Ry L

or as

Seagp= . p P o5

This shows the right-to-left implication. Conversely, given « : A — ¥ we can
form

AuB %0 4% %

and similarly for §: B — X. B

Lemma 4.1.4 (Linear Function Extensionality) Forall f,g € Str(A—B)
f Si—op g <= Yz € Str(A), z;f Sp 239

ProOF. {=) Suppose f Sp-op §,% € str(A),B: B — 5 and z; f; 6. Then
we define v : (4o B) — X by

Lapp B

= (AB) - (A—oB) @ 1 “H=EBL (4 oBy® A

For all h € Str{A-—B), hyy = ;i 5, s0 g B gyl since J Saen g and
il '

(«=) Suppose f;v] where 7y : (A—B) -+ %. From the switching condition
we know that + can respond to the initial move in ¥ only in B or X; to a move
in B only in B or T and to a move in A only in 4 or £. Moreover, whenever
Player is to move in A the number of moves played in B is odd, hence there Is an
unanswered question in B which must have been asked more recently than the
opening question in ¥. By the stack discipline y can in fact only respond in 4 to
amovein A, thusify € oy where f: Mf—l—Mgw{ng — Mf—kMg«i—M{? we can
decompose f as f = g+ h where: g: M/? - Mf;,h : Mg + MEO - Mg + Mg.
If we now define © = oy, = o, then:

(i} = € str{A4).
(i) B: B — =
(iii) Vh € Str(A—eB).h;y = 2; by 3.

Now ‘
fivd D z; fi Pl
2 by assumption %19 8l

> g7l

as required. :
This argument can be understood in terms of Classical Linear Logic. H we
think of A—oX as “approximately A", then

(A—B)—% ~ (A—B)* = A® B' ~ A® (B—D).

To prove our final extensionality result, we will need an auxiliary lemma.
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Lemma 4.1.5 (Separation of head cecurrence) For all o dA — B, for
somea lA® A — Tt

conyg d

oA —2 1ARIA b

idigy ®ders ey o

Proor. If ¢ = Liay or 0 = Ki4T, the result is trivial. If o responds to the
initial question ¢ with a move (4, a) in !4 we define o’ by interpreting the index
i as a separate tensorial factor rather than an index in 'A. The only non-trivial
point is to show that o' ~ o’. If g(i, a)sm = ¢(i, a)s'm’ where g(é, a)s, g(i,a)s’ €
o', then any permutation 7 witnessing the equivalence must satisfy n(i) = 1.
Let the response of o' to m be {f1,a1) and to m’ (jz,ez2). Since o &~ o we must
have g(i,a)sm{j1, a1) Mg—ox (%, @)s'm/(j2,02), and hence either j; = Jo = 1
ot j1 # jo # 1. In either cases, ¢(i, a)sm(j1, ¢1) ®aga—ox q(i,a)s'm/(Ja, a2), as
required.

Lemma 4.1.6 (Bang Extensionality) For all z,y € Str(4).
z Say >l Sialy

Proor. (<) I 'z Sialy and 25l then lz; (dera; )], so ly;(dera; @), and
hence y; o} as required.

(=) If lz; o], define |a] to be the number of indices in !A occurring in lz||cx.
We show that, for all e !4 — X such that lo;al,y;al, by induction on el
For the basis, note that lz;e] and || = 0 implies that a = Ky T. For the
inductive step, let |a| = & + 1. By Lemma 4.1.5, for some § JAR A — I,
o 7 cong; idiy ® dera; 8. For all z € str(A). lz;cony; idiy @ dery 2z ® 2z, 850
2@ z; 8 =1z a.

Now define

~ 1d,
7:Mm_aJA®IiﬁgﬁﬂA®A—£mw

)
For all z € stx(A), z;7 ~lz®2; 8. In particular, l;y mle @z 8 ~le; . Since
|} > 0, there is a first index 4o in !4 used by a. By the definition of -, lz|ly
is 1z|e with all moves at index ip deleted. Hence 7] < lal, and by induction
hypothesis ly;v].

Define § : A — X by

8

~ ly© id
feA—"Teat®t 04 5.

Then for all z € Str(4). 2;6 ~ly ® # 4. In particular, z; 8 mly @ a; 8 =ty vl
By the assumption that z <4 ¥,9;8]. This implies that o ly @ y; B, as
required.

Lemma 4.1.7 (Intuitionistic Function Extensionality)

O’S_,A::.BT@V-’E:}.ﬁ‘A,ﬁ:BﬁE.ﬁOO‘QxlD‘BOTO:El.
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Proor.
0 SampT & VzZE str(ld).z;o Sp 237

Linear Funetion Extensionality

e Yz estr(d)alio<pelr
Bang Lemma, [ = I

&= Yz € Str(4). :I:T;o'f <iB ;;;T;—H‘
Bang Extensionality, dery = idy

= Vs:EStx(A),ﬁ:EBqE.wfgdf;ﬂipﬂ;ﬁ;ﬁi

e VYr:1= A4,B:B=> 5. focoxlD>Borozl. i

Lemma 4.1.8 (Congruence Lemma) (1) ¢ Sa=p o' AT Spmc T ' DTO
0 Samo T 00

(i) 0 Sean 0 AT SoaB T D (0,7) Somates (05T
(iti) 0 Splipmc T 2 Ao) Sam(B=0) A7)
ProoF. (i)

Borovoz|l D Porocouw] T <g=mo T
D forox! 0 Sa=mB 0

(i) Forallz: 1= C, {o,m)ozm (gow,T0 z) : I — A&B; and similarly,
(o', T oa m (o' oz, oe). By (i), 00z Sa o ozand Toz Sp 7oz The
result now follows by Product Extensionality.

(iii) Identifying morphisms with points of arrow types,

'yoA(U)O:BOyl o 7000{$,y)i
D> yorof{zyl 0 Sak=c T
5 yolA(r)ezouyl.

Finally we consider the relationship between the intrinsic and intensional
preorders.

Lemma 4.1.8 (i) IfoGar, theno Sa 7

(i) Ifoo C oy C ... isan increasing sequence, and for all n, on, <A Tn, then

U'n,Ew CF'I’L 5..4 Tn'

PROOF. (i) By L—monotonicity of composition (Proposition 2.9.3) if 0 54 7
and o;a =T then T = d;a%A 7+ and hence Ty = T.
(ii) By C —continuity of composition (Proposition 2.9.3), similazly to (1). g
By Lemma 4.1.9, 0 = 7 implies 0 > 7 where = is the equivalence induced
by the preorder <. Thus each = —equivalence class is a union of ~ —clagses.
Henceforth, when we write [0] we shall mean the ~ ~equivalence class of 0.
We can define the notion of strong chain of ~ —equivalence classes, just as
we did for &~ —classes: a sequence

(Jf) [UD] < [0'1] < ...

such that there are (0!, | n € w) with o}, € [o,] and o}, Copy, Torall n € w.
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Lemma 4.1.16 Every strong < —chain has a $ —least upper bound.

PROOF. Given a strong chain (1), take | [,e,[0n] = [0'] where o' = Upeo al,.

For all n, o, ~ ¢, C o', so by Lemma 4.1.9(%), [¢'] is un upper bound for
([on] | 7 € w).

Finally, if [r] is another upper bound, then for all n, o}, < 7 so by Lemma
4.1.9(i), ¢’ < 7.

4.2 The Extensional Category

We begin with some general considerations on quotients of rational cartesian
closed categories. Let C be a rational CCC. A precongruence on C is a family
<= {<4pl A, B € 0bj(C)} of relations $4,8C C(A4, B) xC(A, B) satisfying the
following properties:

(r1) each Sy p is a preorder
(r2) f SaB ' and g Sp,c ¢  implies go f Sac g0 f
(13) f Sca [ and g Scop ¢ implies (f, ) Scaxs (5 49")
(r4) f Saxpc g implies A(f) SaBsc Alg)
(15) Cap € S4B
(x6) forall f1 AxB— B,g:C— Ah: B~ D
(Vn.e w.ho fMog<opk)DhofYoglen k.

Given such a precongruence, we define a new category C/5 as follows. The
objects are the same as those of C;

C/SJ(A,B) = (C(A,B)/ 4B, ﬁA,B)-

That is, a morphism in C/ S4,8) is a =4, ~equivalence class [f], where ~4 5
is the equivalence relation induced by S4,5. The partial ordering is then the
induced one:

fl<aplgle= fSanyg.

Note that by (r5), [La ] is the least element with respect to this partial
order, By (12)-(r4), composition, pairing and currying are well-defined on
= —equivalence classes by

[9] o [f] lgo 11,
{FLlg) = [(f-9))
AN = [AD]-

It is then immediate by (r5) and the fact that C is a rational (and hence in

particular a ppo-enriched) CCC that /< is a ppo-enriched CCC. It remains

to verify rationality for C/<. By (r2) and (15), for any f: AX B - B,g: (' —

A,h: B — D, the sequence ([ho f™ og]| n € w)is a <¢p-chain. By (r5) and

(16), [h o f¥ o g] is the <¢,p —least upper bound of this chain. In particular ,

taking g = id4 and b = idg, [fV] is the least upper bound of (If™ | n e w).
We record this result, which is a variant of [ADJ76], as
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Lemma 4.2.1 (Rational Quotient) If 5 is @ precongruence on & rational
- CCCC, then C/S dsa rational CCC.

Now we define a family $= {Ss=pl 4, B € obj{EW(G))}-
Lemma 4.2.2 < is a precongruence on E\(G).

PROOF. the fact that <4.p is a preorder has already been noted. (r2)-{r4}
are the pre-congruence Lemma 4.1.8. (r5) is Lemma 4.1.9(i). Finally, we verify
(r6). Let o : A&B = B,7: C = A,0: B = D. As already explained, since
L ¢ <, we work directly with ~ —classes of strategies, rather that o —classes

i~

of & —classes of strategies. Now (f o o™ or|new)isa C —chan (using
C —monotonicity of composition), and we can apply Lemma 4.1.9(ii) to yeld

Now we define £ = K\(G)/ 5.

Proposition 4.2.3 £ is a rational CCC. Moreover, £ is well-pointed in the
order-enriched sense;

f<apgeVe:l—o A fozxapgot.

PRrOOF. & is a rational CCC by Lemma 4.2.1 and 4.2.2. I is well-pointed by
Intuitionistic Function Extensionality (Lemma 4.1.7). -

Now we define the PCF model M(&) with the same interpretation of Nat
as in M(K\(G)). the ground and first-order constants of PCF are interpreted
by the ~ —equivalence classes of their interpretations in M{K\(G)).

Proposition 4.2.4 M(E) is an order-eztensional standard model of PCF.

PrOOF. M(E) is an order-extensional model of PCF by Proposition 4.2.3. Tt
is standard because M(K(G)) is, and SNat=kNat - L

4.3 An alternative view of &

We now briefly sketch another way of Jooking at &, which brings out its exten-
sional character more clearly, although technically it is no more than a presen-
tational variant of the above description. Given a game A, define

D(A) = ({[z]= | = € Str(A)}, <4)

Then D(A) is a pointed poset. Given o : A = B, define D(o) : D(A) — D(B)
as the (monotone) function defined by:

D(o)([z]) = [o o 2]

Write f : A —g B if f: D{4) — D(B) is a monotone function such that
f=D(c) for some o : A = B. In this case we say that f is sequentially realised
by o, and write o I J.

Note that there are order-isomorphisms
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o D(I)21
e D{A&B) = D(A) x D(B)
o D(A = B) = D(A) =¢ D(B)

Here D(A4) x D(B) is the cartesian product of the posets D(A), D(B), with
the pointwise order; while D{A) =-¢ D(B) is the set of all functions f: A —¢ B,
again with the pointwise order.

Now note that, with respect to the representations of D{ A& B) as a cartesian
product and D{A = B) as a “function space”, the interpretations of composi-
tion, pairing and projections, and currying and application in £ are the usual
set-theoretic operations on functions in extenso. That is,

D(roo) = D(r)o Do)
D(<T!G>) = ('D(G),D(T»
D(W;) = Ty

D(my) = Ty

D(A(e)) = MD(o})
Dlap) = 4p

where the operations on the right hand sides are defined as in the category of
sets (or any concrete category of domains}).
Thus an equivalent definition of £ is as follows:

Objects as in IH(G)
Arrows f:iA—gB
Composgition function composition

The r6le of the intensional structure, that is of the use of the game A to
represent the abstract space D(A), is to cut down the function spaces to the
sequentially realisable functions. Specifically, note the use of A and B in the
definition of D(A) =¢ D{B).

4.4 Full Abstraction

We recall that a model M is fully abstract for a language L if, for all types T
and closed terms M, N : T

MIMFE MIN] & M Cops N ()

where
M Cus N <V program context C[.]

CIMn > C[Nn

Here a program context C[.] is one for which C[P] is a closed term of type
N for any closed term P : T'; and {§ is the operational convergence relation.
The left—to—right implication in (}) is known as soundness and the converse
as completeness. It is standard that soundness is a consequence of computa-
tiona} adequacy [Cur93]; thus by Proposition 2.10.1, standard models are sound.
Also, full abstraction for closed terms is easily seen to imply the corresponding
statement (}) for open terms.
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Theorem 4.4.1 M(E) is fully abstract for PCF.

Proor. Firstly, M(£) is a standard model by Proposition 5.2.4, and hence
sound. We shall prove the contrapositive of completeness. Suppose M, N are
closed terms of PCF of type T = Ty = ... Tk = Nat and

M(EYIM] Lyry M(EN]-

Let [o‘]i = M(E)[M],[r] = M(E)[N]. By Intuitionistic Function Extensional-
ity, for some zy € Str([T1]);..., 2k € str([T%]),

ﬁ:!N%E,ﬁoaowlo...oxkl and foTozyo...oxp].

By £ ~monotonicity of composition, this implies that oozi0...0%% NatTOT10
.. .02y, and hence that cozy0...00p = 7 for some 1 € w, and Tozyo.. .00k £ 7.
By ¢ —continuity of composition and the properties of the projections pg given
in the Approximation Lemma 5.5.1, for some m € @, copm{21)o. . opm(Tr) = 7,
while by € —monotonicity of composition, 7 o pn{zi}o ... 0 palzr) # n. By
Lemma 3.6.3, there are finite evaluation trees,and hence PCFc terms Py, ..., P
such that [P] = [pm(zi)], 1 S0 < k. This means that [M Py ... P] = n, while
[NP...P] #n By computational adequacy, this implies that MPy ... Pn
and ~(NPy...Pdn). By Lemma 3.1.1, each PCFe term is observationally
congruent to a PCF term. Hence there isa PCTcontext CL) = [J@1.. &k,
where (J; Sops Pi, 1 £ 1 < k, such that C{M 14n and ~(C[N]§n). This implies
that M Fovs N, as required.
As an instructive consequence of this proof, we have:

Corollary 4.4.2 (Context Lemma) For all closed M,N : Ty = ... T =
Nat,
M Cops N & ¥ closed Pr Ty, Pt Ty
MP, . .PnD> NP ... Peln

Proor. The left-to-right implication is obvious, by considering applicative con-
texts [.]Py ... Ps. The converse follows from the proof of the Full Abstraction
Theorem, since if M Zops N, then [M] £ [N] by soundness, and then by
the argument for completeness this can be translated back into an applicative
context separating M and N. 4

The point of reproving this well-known result is that a semantic proof falls
out of the Full Abstraction Theorer. By contrast, Milner had to prove the Con-
text Lemma directly, as a necessary preliminary to his syntactic construction
of the fully abstract model. Moreover, the direct syntactic proof, particularly
for the \—calculus formulation of PCF [Cur93], is quite subtle. This gives some
immediate evidence of substance in our “semantic analysis”.

5 Universality

The definability result we have achieved so far refers only to compact strategies.
Our aim in this section is to characterize precisely which strategies are (exten-
sionally) definable in PCF, and in fact to construct a fully abstract model in
which all strategies are definable.
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5.1 Recursive Strategies

We shall develop effective versions of G and &£. Our treatment will be very
sketchy, as the details are lengthy and tedious, but quite roufine. We refer to
standard texts such as [Soa87] for background.

We say that a game A is effectively given if there is a surjective map e4 :
w — My with respect to which A4 (with some coding of {P,0,Q,A}) and the
characteristic functions of P4 and &4 (with some coding of finite sequences) are
tracked by recursive functions. A strategy ¢ on A is then said to be recursive if
o is a recursively enumerable subset of P4 (strictly speaking, if the set of codes
of positions in ¢ is 1.e.).

Lemma 5.1.1 ¢ = oy is recursive iff [ is tracked by a partial recursive func-
tion. There are recursive functions laking an indez for o to one for f, and vice
versa. :

Proor. The predicate f(a) ~ b < 3s.sab € o is clearly r.e. in o, hence f has
an r.e. graph and is partial recursive
Conversely, given f define a predicate G(s,n) by:

G(s,0) = §=¢ .
Gis,n+1) = Ja,b,t. 8 = tab A s € P4 AG(t,n) A fla) = b

Clearly & is r.e. and hence so is

o = graph(f) = {s | In.G(s,n)}.

These constructions are defined via simple syntactic transformations and yield
effective operations on indices.

If A and B are effectively given, one can verify that the effective structure
lifts to A®B, A—B, A&B and !A. Also, I and Nat are evidently effectively
given. The most interesting point which arises in verifying these assertions is
that =, is recursive. This requires the observation that, in checking s ~4 t,
it suffices to consider permutations 7 € §(w) of bounded (finite) support, where
the bound is easily computed from s and £.

Similarly, one can check that all operations on strategies defined in Section
2 effectivize. For example, it is easily seen that the definition of o;7 in terms
of sets of positions is r.e. in o and T; or, we can give an algorithm for comput-
ing EX(f,g). This algorithm simply consists of applying f and g alternately
starting from whichever is applicable to the input, until an “externally visible”
output appears. Note that it is not the case in general that unions of & —chains
of recursive strategies are recursive. For example every strategy of type N —oN
is a union of an increasing chain of finite and hence recursive strategies. How-
ever, given a recursive o : A& B = B, gV = Urew (™ is recursive, since it can
be enumerated uniformly effectively in n (“r.e. unions of r.e. sets are r.e.”).

Thus we can define a category Gree with objects effectively given games,
and morphisms (partial equivalence classes of ) recursive strategies. Also, the
interpretations of PCF constants in M(K((G)) are clearly recursive strategies.
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Proposition 5.1.2 (1) rec 15 @ Linear calegory
(#) Ki(Grec) is a rational cartesian closed category

(iii) M{K\(Grec)) is a standard model of PCF

We can now consider the extensional quotient £ree = K (Grec)/S where S
is defined just as for Ki(G), but of course with respect to recursive tests, ie.
recursive strategies A—X. All the results of section 5 go through with respect
to recursive tests. '

Proposition 5.1.3 £rec 18 @ well-pointed rational CCC. M(Erec) s a fully
abstract model of PCF.

Proor. The result does require a little care, since the Isomorphism Theorem
3.6.4 is not valid for M (Erec). However, the Isomorphism Theorem was not
used in the proof of the Full Abstraction Theorem 4.3.1, but rather the finitary
version Lemma 3.6.3, which is valid in M(&rec). B

It is worth remarking that a nice feature of our definition of model in terms of
rationality rather than cpo-enrichment is that the recursive version Eyec 1s again
a model in exactly the same sense as £. By contrast, in the cpo-enriched setting
one must either modify the definition of model explicitly (by only requiring
completeness with respect to r.e. chains}, or implicitly by working inside some
recursive realizability universe.

5.2  Universal Terms

The fact that M(Ki(Grec)) and M{Ezoc) are models shows that all PCI terms
denote recursive strategies, as we would expect. Our alm now is to prove a coli-
verse; every recursive strategy is, up to extensional equivalence, the denotation
of a PCF term, and hence every functional in the extensional model M(&rac)
is definable in PCF.

More precisely our aim is to define, for each PCF type T, a “universal term”
Up : Nat = T, such that

E[Uz[el] = [o]
for each recursive o. These universal terms will work by simulating the evalu-
ation tree corresponding to o.

Firstly, we recall some notations from recursion theory. We fix an acceptable
numbering of the partial recursive functions [S0a87] such that ¢, is the n’th
partial recursive function and W, is the n’th r.e. set. We also fix a recursive
pairing function (—,~) 1w X w ~r w and a recursive coding of finite sequences.

A recursive strategy o is regarded as being given by a code (natural number)
[6]. By virtue of Lemma 5.1.1 we use such a code indifferently as determining
& by

o = o where f = ¢y

or

Wi = {fs]1s €}
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The following lemma is a recursive refinement of the Decomposition Lemma,
and assumes the notations of section 3.4

Lemma 5.2.1 (Decomposition Lemma (Recursive Version)) For each PCF
type T there are partial recursive functions

Dy, Hp:w—wand Br:wXw —w
such that, if o is a recursive strategy on T’

undefined, o= Lz

Dy {O:l = (2,7?'): o= I('f“n
(3,4), R(o)
oot = e e

’ . [Tn—!: R(O‘)
Br([ol],n) = { undefined, otherwise

where R{o) stands for
@(O’) = (3,?:,0’1, .. .,{Tji,(Tn ! n e w))

Proor. Dy[e] is computed by applying ¢, to the (code of} the initial ques-
tion. The extraction of 7, from ¢, 7, = {#18 | *1 ¥ ns € o}, is obvi-
ously r.e. in o uniformly effective in n. Hence we obtain an r.e. predicate
s € Br([¢1,n), and by an application of the S-m-n theorem we obtain the
index for “Brioln = [7.]".

Similarly the extraction of ¢/ from ¢ is r.e. in o, and that of ¢” for ¢’ is
re. in o'; while oy,...,0y are obtained from ¢” by composition, dereliction
and projection, which are computable operations by Proposition 5.1.2. Hence
applying the S-m-n theorem again we obtain the codes for oy,...,0y;. :

Given a PCF type T, we define the subtypes of T' to be the PCF types
occuring as subformulas of T E.g. (N = N) and N are subtypes of (N =
N) = N. Let §y,...,5, be a listing of all the (finitely many) subtypes of 7',
where we write

Si= 81 = ...5, =N

To aid the presentation, we will use an abstract datatype Ctxty of “T'—contexts”,
which we will show later how to implement in PCF. We will make essential use
of the fact that, while contexts can grow to arbritary size in the recursive un-
folding of an evaluation tree of type 7', the types occurring in the context can
only be subtypes of T'.

Ctxtr comes with the following operations:

e emptycontexty : Ctxty
o gets: N = Ctxty = § for each subtype § of T

¢ extendg, : Ctxty = Si1 = ...5,, = Ctxty for each subtype S; of T
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o mapy : N = Ctxty = N.

T =ay:Up,...,%n: Up, then T'% is the subsequence of all entries of type
§,1<i<qgand Vyj=z;:U;
The idea is that, if T' is an “abstract context”,

8; S0
e extendg 'z 1 .:L'l; Ho— Lozt 551,052 0 Si,le‘
o mapy i I' = (i1,49) where I't = 2 ¢ Sy = I‘z;
o gatg jI' = I‘j

Now we use the standard fact that every partial recursive function drw—w
can be represented by a closed PCF term M : N = N in the sense that, for all
nE W

Mnlme ¢gn~m.

This obviously imaplies that partial recursive functions of two arguments can be
represented by closed terms of type N = N = N. Specifically, we fix terms
Dr,Hp : N = Napd Bp : N = N = N which represent D, Hy and Br
respectively.

Now we define a family of functions

Fg:CtXTT“—#N:?S
for each subtype § = Uy = ... Up = N of T, by the following mutual recursion:

Fo = AN AT At L el
l!ﬂi(k;,kg) = Dyk in
if by = 2 then ky else
if ky = 34 then
let A = extendy I'z;...ok in
let {i1,12) = mapy kz A in
case iy of

1:...

i: let {ky,..., k)= Hsk in
let n = (getsi'igA)(ng'l kiAY. .. (FSU; k‘giﬂ)
in Fn(Bgkn)A
t+1: ...

g .
otherwise: Q
endcase
else £

These functions have been defined using some “syntactic sugar”. Standard
techniques can be used to transform these definitions into PCF syntax. In
particular Bekic’s rule [Win93] can be used to transform a finite system of
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simultaneus recursion equations into iterated applications of the ¥ combinator.
The universal term Uy can then be defined by

Ur = Fr emptycontexty.

Tt remains to be shown how Ctxty can be implemented in PCF. To do this,
we assume two lower-level data-type abstractions, namely product types T'xX U
with pairing and projections, and list types 1ist(T) for each PCF type T', with
the usual operations:

o emptyy :list(T)=> N

o consy: T = 1ist(T) = list(T)

L]

hdy @ list{T) = T

L]

tly : 1iss(T) = 1ist(T)
e nily:iisty

We write []7 for the ’th component of a list.

We represent an abstract context I by the g + 1—tuple (I, .., lg,mlist)
where I; : 1ist(5;),1 €4 < ¢ and mlist : 1ist(N). The idea is that l; = I,
while mlistli = {(1,2) = mappil ()

It is straightforward to implement the operations on contexts in terms of
this represeniation.

o emptycontexty = ([J,..., L1
o mappi(ly,...,l,nlist) = mlist|s
] g@t35j(l1? . .,lq,mlist) = 017

o extendg{l1,...,lg,mlist)ey - 2y = L

where
L = extendls,, (- -(extendlg,,(extendis, (I1,..., l,,mlist)ey)zg) - )T
and
extendls, ;(i1,. .., lg,mlist)e = (1, .- L), - - Ly mlist++[(F, Tengthg (;)+1)])
and — + +~ is list concatenation.
Finally, we show how to represent lists and products in PCF. We represent lists

by
List(T) = (N = T) x N

where e.g.
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e consT =

AeT AL: List(T)
let (f,n)=1 in(g,n+1)
: where
g = iV, ifi=0 thenz
else f(i—1)

o emptyr(f,n)=n=0.

A fanction taking an argument of product type
TxU=V

can be replaced by its curried version
T=U=V

while a fanction returning a product type can be replaced by the two component
functions.

This completes our description of the universal term Up.

For each PCF type T, we definé a relation M R ra between closed PCF
terms of type T and strategies a € Stx{T') by

MTRre & [M]~a

This is extended to sequences MR @ in the evident fashion. _
We fix a type T with subtypes S1,..., S, as in the previous discussion.

Lemma 5.2.2 Let T = § be a PCF type-in-contezt and ¢ € str(T = 9) a
compact strategy, where T,8 are subtypes of T'. Let T' be o closed expression
of type Ctxty (which we will regard as a sequence of closed terms), and @ a
sequence of strategies. Then

T ’RTEL =4 (Fsl-o“-lr) i S(O’Zl).

Proo¥. By induction on the height of the finite evaluation tree correspond-
“ing to ¢ under Theorem 3.6.4 , and by cases on the Decomposition Lemma for
o. The cases for o = Az(Llsg) and 0 = As(Ky gn) are clear.
Suppose
o~ Cilon, ..ol (Tn | 7 € W)).

By Intuitionistic Function Extensionality Lemma, it suffices to show that, for
all closed M and strategies b such that M R b

Fs[o|TM R noib.
Let A = extendsI'M, &= &, b. Then AR 7,56 50 by induction hypothesis,

Fs,  {0;]1A R 5,;0€, 1= i<k
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Hence if we define
M = AZ:(FS:',I [o11A) - '(FSé,z,- [o,14)
A?(FSL& [01-: A) e (Fss,zi (UI;}A)

2

where {3y, i2) = mapiA, then M R nei(01€) - - - (o1,8). Thusif e(o18) - - - (o1, ) =
Ly, then [M] = Ly, while if ¢;(01&)---(01,€) = n then [M] = n.
In the former case, '
[Fs[o|TM] ~ Ly ~ oé.

In the latter case,

[Fs[oFM] [Fn(Ble]n)A]

[[FN [Tﬂ] A]]a

11

while ¢& o 7,&, and by induction hypothesis Fy[m|A R y7aé. |
Now we define a family of relations (<] k € ), where <€ w X w, induc-
tively as follows:
<o = wXw
n<pprm = (Dn={2,p)= Dn = (2,p))
A (Dy = {3,i) = D, = (3,4)
A (Hn = {ky,..., ki) =
Hemo= (. k) ANy By < &)
A ¥p:0 = p <k Bnp=R Bmp).
We can read n < m as: the stategy coded by m simulates the strategy
coded by n for all behaviours of size <.

We write
n < m <= Yk Ewn I m.

Lemma 5.2.3 For all PCF types T, o € Str(T),k g w:
(i) prlo) 2 a.
(ii) o 2k pr(o)
Lemma 5.2.4 With §,T, M as in Lemma 5.2.8, and o any strategy in Str(S):
[Fs[o|Ui] =n <= 3k € w. [Fs|px(o)]TM] =n

ProoF. (<) By Lemma 5.2.3(i).

(=) By Lemma 5.2.3(%i), using continuity, and hence the fact that only
finitely many calls to D, H and B are made in evaluating Fs{o] I'M. (This
can be made precise using Berry’s Syntactic Approximation Lemma for PCF
BcLss)). B

Theorem 5.2.5 (Universality Theorem) For all PCF types T and recur-
sive strategies o € Str(T) with n = [o],

M(K1(§))£{Ug~n}] i O

Thus every functional in M(Epec) (equivalently, every functional in M(E) re-
alised by a recursive strategy) is definable in PCF.
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Prooy. For all closed M:T.

[Urfo1M] =n <= 3Jkew [Ur [pi(c)1M] =n
by Lemma 5.2.4
e Fkew pp(o)[M]=n
by Lemma 5.2.2
T GﬁM}} =N
by the Approximation Lemma for strategies.

By the Intuitionistic Function Extensionality Lemma this shows that [Ur[o]] ~

In the case of cpo-enriched models, an important result due to Milner is
that the fully-abstract order extensional model is unique up to isomorphism.
For rational models, the situation is not quite so rigid, For example, both
M(EY and M(&rec) are fully abstract, but M(Erec) 15 properly contained in
M(E). To see this, note that all monotonic functions of type N => N are
sequentially realised and hence live in M(&), while only the récursive ones iive
in M(Erec). We can, however, give a very satisfactory account of the canonicity
of M(Eree). We define a category FAMOD{PCF) with objects the fully abstract
(rational) models of PCF. A homomorphism F: M(C) — M(D)} is a functor
frém the full cartesian closed sub category of C generated by the interpretation
of N in M(C) to the corresponding subcategory of D. F is additionally required
to be a rational CCC functor, and to preserve the interpretation of N and of
the PCF ground and first-order constants.

Theorem 5.2.6 (Extensional Initiality Theorem) M (Erec) is initial in FAMOD(PCF).

PROOF. Let A/ be any fuily abstract model. By the Universality Theorem,
there is only one possible definition of F: M(Erec) — N, given by

FM(Eec)M]) = N[M]
for all closed terms M of PCF. Since M(€rec) and A are both fully abstract,

MEre)[M] S M(Erec)IN]
= M gobs N
¢> NiMT < NIV]

so this map is well-defined, and preserves and reflects order. It is a homomor-
phism by the compositional definition of the semantic function. &
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