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Abstract 
 
In cluster randomised trials the introduction of the intervention can be staggered in different 
clusters, leading to a stepped wedge design. This strategy can lead to gains in efficiency, which might 
also translate to the context of individually randomised trials, though this has been relatively 
unexplored. Here we present one illustrative example. We consider trials in which participants start 
in a control condition such as routine care, and can cross over at any stage to the active intervention. 
We make the assumption that the effect of the intervention is the same however long the delay 
before a participant crosses over to the intervention condition. We consider designs for a trial with 
three repeated assessments, including a baseline, and show that a three-sequence design with 
staggered introduction of the intervention in two of the sequences estimates the treatment effect 
after one period more efficiently than a parallel groups design. 
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1. Introduction 
 
Staggering the introduction of an intervention for different individuals in a clinical trial can be a 
useful strategy when the trial is cluster randomised, for example at the level of a general practice or 
a local community, giving rise in this case to stepped wedge designs and other design variants.1,2 One 
motivation for doing this may be to reduce the total number of participants needed for the trial, 
while another motivation may be practicality.1,3,4 It is reasonable to wonder whether the same 
strategy could similarly improve the efficiency of an individually randomised trial, though this seems 
not to have been explored in the literature. Here we illustrate one scenario – a trial involving a 
baseline assessment of outcome and two follow-up assessments, with the first of these being the 
primary outcome – where an individually randomised trial with a staggered intervention design 
needs fewer participants to achieve the same precision or statistical power (for the primary 
outcome, at least) as a more familiar parallel groups design. 
 
In Sections 2 and 3 we set out our assumptions and statistical model, and in Section 4 we review the 
general solution for the variance of the treatment effect estimate in this framework. Section 5 
describes possible designs for a trial featuring three repeated assessments including a baseline, and 
compares the efficiency of these designs. Section 6 shows how conclusions are affected if we relax 
some of the assumptions of the model. Finally in Section 7 we discuss whether staggering the 
intervention is a useful approach in general for individually randomised trials. 
 
2. Context 
 
We focus here on pragmatic trials of healthcare technologies or innovations in which participants 
who start in the control condition (usually routine care) can cross over at any stage to the active 
intervention. We assume that participants are assessed at baseline (randomisation) and at regular 
times thereafter. While stepped wedge trials often randomise clusters simultaneously, we imagine 
here the more usual situation for individually randomised trials in which participants are randomised 
sequentially over a period of time. To compare trial designs we must make further assumptions 
about how the intervention works: here we assume the effect of the intervention is the same 
however long the delay before a participant crosses over to the intervention condition (at least over 
the timescale for which we plan to follow participants in the trial). This is, in fact, an implicit 
assumption in any study where we might consider offering the intervention to control participants at 
the end of the follow-up period on ethical grounds. 
 
To avoid making too many assumptions we will allow the expected outcomes of participants who 
remain in the control condition to change over time following randomisation. (We acknowledge a 
tension between this generalisation and the earlier assumption that the effect of intervention 
should be the same whenever it is introduced. The latter assumption is likely to become untenable if 
there is a significant, natural deterioration or improvement in participants.) In cluster randomised 
stepped wedge trials it is common to assume further that the effect of the intervention is 
maintained at a constant level once it is introduced. While this might be defensible when the 
intervention is a policy change instituted at cluster level, and participants at each assessment are 
new, incident cases, it is an assumption which is almost never made in individually randomised trials 
where participants are followed longitudinally. Here we will allow the effect of treatment to change 
over time (for example to be attenuated) following its introduction. 
 
As an example, consider a trial of bariatric (weight loss) surgery.5 Weight loss achieved by this type 
of surgery, and improvements in obesity-related conditions such as type 2 diabetes and 
hypertension, can be rapid, but need not be permanently maintained. In the UK, bariatric surgery is 
available through the National Health Service (NHS) to very obese patients (especially those with 



medical complications) who can demonstrate they have tried other weight loss methods without 
success. “Without success” means we can assume that weight is not decreasing over time in the 
population waiting for surgery. We might assume further that weight remains at a constant level, 
though it is also possible that it will continue to increase. In trials of bariatric surgery vs non-surgical 
treatments published to date, changes in weight or body mass index have typically been assessed 
over a period of 12 or 24 months.6 Waiting times for bariatric surgery in the NHS, meanwhile, can be 
longer than a year,7 making a waiting list control design appealing. Although bariatric surgery is 
already available, a Cochrane review has called for more high quality trials to evaluate and compare 
operative techniques.6 
 
We can imagine a waiting list control design for a trial in which a comparator group who receive 
non-surgical treatment for the first 12 months of their involvement are then offered surgery, with all 
participants followed for a further 12 months and assessments made at baseline, 12 and 24 months. 
The assumption is that the effect of surgery is the same in both groups. (If we model change on a 
log-ratio scale rather than a difference scale this assumption might still be reasonable even if we are 
concerned that weights in the comparator group are increasing over the first 12 months.) 
 
3. Statistical model 
 
Under the general assumptions set out above, the mean of a continuous outcome measure for an 
individual follows a trajectory with baseline 𝛽 (the mean at time 0) and time effects 𝜏𝑡 , 𝑡 = 0 … 𝑇, 
with 𝜏0 = 0 for identifiability. When the individual crosses over to the active intervention there are 
additional effects of treatment: 𝛼1 in the first period after crossing over, changing to 𝛼2 one period 
later, then to 𝛼3, and so on. One (or more) of these treatment effects 𝛼𝑘 will generally be the 
primary target for estimation in the trial. 
 
A trial design consists of two or more randomised ‘sequences’ (we use this term to be consistent 
with terminology used for cross-over and stepped wedge trials), which differ according to when (or 
if) the intervention is introduced (Figure 1). For simplicity we assume an equal number of 
participants, 𝑛, in each sequence. We assume a mixed linear regression model for outcome with a 
random effect of participant. That is, for individual 𝑖 = 1 … 𝑛 in sequence 𝑗 = 1 … 𝐽 at time 𝑡 = 0 … 𝑇 
after randomisation the outcome is 
 
 𝑌𝑖𝑗𝑡 = 𝛽 + 𝜏𝑡 + 𝐴𝑗𝑡 + 𝜂𝑖𝑗 + 𝜀𝑖𝑗𝑡  (1) 
 
where 
 

𝜂𝑖𝑗~N(0, 𝜎𝑏
2), 

𝜀𝑖𝑗𝑡~N(0, 𝜎𝑤
2 ), 

 
with 𝜂𝑖𝑗 , 𝜀𝑖𝑗𝑡  all independent, and 

 
𝐴𝑗𝑡

= {
0 if sequence 𝑗 is in the control condition at time 𝑡                                                                          

𝛼𝑘 if sequence 𝑗 crosses over to the intervention between times 𝑡 − 𝑘 and 𝑡 − 𝑘 + 1, 𝑘 ≥ 1.
 

Under this model assessments of the same participant at different times have an “exchangeable” 
correlation structure, with the same correlation, 𝑟, between outcomes at any two time-points: 
 

𝑟 = 𝜎𝑏
2 (𝜎𝑏

2 + 𝜎𝑤
2 ).⁄  



 
We also define the total variance 𝜎2 as  
 

𝜎2 = 𝜎𝑏
2 + 𝜎𝑤

2 , 
 

so that (𝜎2, 𝑟) becomes an alternative parameterisation of the variance components (𝜎𝑏
2, 𝜎𝑤

2 ). 

 
4. Precision of treatment effect estimates 
 
If we write outcomes 𝑌𝑖𝑗𝑡  as a single column vector 𝐘, and write (1) in simpler matrix form as 

 
Y = X(𝛽, 𝜏1, ⋯ , 𝜏𝑇 , 𝛼1, 𝛼2, ⋯ )′ + e,    e~N(𝟎,V) 

then for known 𝐕 the generalised least squares estimators (which are the best linear unbiased 
estimators) of the parameters are 
 

(𝛽̂, 𝜏̂1, ⋯ , 𝜏̂𝑇 , 𝛼̂1, 𝛼̂2, ⋯ )′ = (𝐗𝑇V-1X)
−1

𝐗𝑇V−1Y 
 

with variance-covariance matrix 
 

Var(𝛽̂, 𝜏̂1, ⋯ , 𝜏̂𝑇 , 𝛼̂1, 𝛼̂2, ⋯ )′ = (𝐗𝑇V-1X)
−1

. 

 
Matrices 𝐗 and 𝐕 have their simplest form when 𝑛 and 𝜎2 are both 1. We refer to these as 𝐗(1) and 

𝐕(1). 𝐗(1) has a single row for each repeated assessment in each randomised sequence (see the 

examples in Figure 1). 𝐕(1) is the Kronecker product 𝐈𝐽⨂𝐑, where 𝐈𝐽 is the identity matrix of order 𝐽 

and 𝐑 is the matrix of correlations between 𝐽 repeated assessments of the same individual. In the 
examples in Figure 1, where 𝐽 = 3, 
 

𝐑 = (
1 𝑟 𝑟
𝑟 1 𝑟
𝑟 𝑟 1

). 

 
 Then for general 𝑛, 𝜎2 and 𝑟 the variance-covariance matrix can be written 
 

Var(𝛽̂, 𝜏̂1, ⋯ , 𝜏̂𝑇 , 𝛼̂1, 𝛼̂2, ⋯ )′ =
𝜎2

𝑛
(𝐗(1)

𝑇 𝐕(1)
−1𝐗(1))

−1
 

 
or, writing the total sample size as 𝑁 = 𝐽𝑛, 
 
 

Var(𝛽̂, 𝜏̂1, ⋯ , 𝜏̂𝑇 , 𝛼̂1, 𝛼̂2, ⋯ )
′

=
𝜎2

𝑁
𝐽(𝐗(1)

𝑇 𝐕(1)
−1𝐗(1))

−1
. (2) 

 
5. Designs for trials with three repeated assessments including a baseline 
 
5.1 Parallel groups designs with baseline assessments 
 
All the designs we consider in this article include a baseline assessment at time 0, at the point of 
randomisation. Such baseline assessments are common in trials: they need not delay the overall 



timetable of the study, and they always improve the precision of the treatment effect estimate.8 

 
We use the term “parallel groups design with one or more baseline assessments” to refer to a two-
sequence design in which one sequence crosses over to the intervention condition during the trial 
while the other remains in the control condition throughout. We use designs of this type as 
comparators when discussing the relative efficiency of alternatives which stagger the intervention in 
different sequences. The parallel groups design illustrated in Figure 1a, for example, allows us to 
estimate the two treatment effects 𝛼1 and 𝛼2, with (see Appendix) 
 

Var(𝛼̂1) = Var(𝛼̂2) =
𝜎2

𝑁
4(1 − 𝑟2). 

 
If we have no interest in 𝛼2 but still want to take advantage of three repeated assessments of each 
individual then we might prefer the design illustrated in Figure 1b, which effectively includes two 
baseline assessments. In this case (see Appendix) 
 

Var(𝛼̂1) =
𝜎2

𝑁
4 (1 −

2𝑟2

1 + 𝑟
). 

 
5.2 A two-sequence, waiting list control design 
 
The design illustrated in Figure 1c could be termed a waiting list control design: here the sequence 
which acts as the control in the first follow-up period is then given the intervention and both 
sequences include a second follow-up. In practice, trials described as having a waiting list control 
design would not always bother with this second follow-up, but (as with the parallel groups design) it 
allows us to estimate both treatment effects 𝛼1 and 𝛼2, this time with (see Appendix) 
 

Var(𝛼̂1) =
𝜎2

𝑁
4(1 − 𝑟2) 

 
and 
 

Var(𝛼̂2) =
𝜎2

𝑁
8(1 + 𝑟 − 2𝑟2). 

 
5.3 A three-sequence design with staggered introduction of the intervention in two sequences 
 
Now consider the three-sequence design in Figure 1d, in which the intervention is introduced in a 
staggered fashion in two of the sequences, with a third sequence remaining in the control condition 
throughout. For this design we used numerical matrix inversion to evaluate the expression in (2) for 
different 𝑟. 
 
5.4 Relative efficiency of different designs 
 
Because the variance of a treatment effect estimate from a given design is proportional to 𝜎2 𝑁⁄ , 
the respective constants of proportionality (more specifically their inverse ratio) determine the 
asymptotic relative efficiency of two competing designs – the ratio of sample sizes needed by both 
to achieve the same precision. 
 
Figure 2 shows the asymptotic relative efficiency of the waiting list control design (Figure 1c) and the 
design with staggered introduction of the intervention (Figure 1d) relative to a parallel groups design 



with one or two baseline assessments (Figure 1a or Figure 1b) for different 𝑟. Observe that the 
waiting list control design is no more efficient for estimating 𝛼1 than a parallel groups design, and is 
between 50% and 67% less efficient for estimating 𝛼2. The staggered intervention design, on the 
other hand, is between 56% and 77% more efficient for estimating 𝛼1 than the parallel groups 
design with a single baseline measurement, though it is also between 22% and 29% less efficient for 
estimating 𝛼2. If we use a parallel groups design with two baseline assessments as the comparator 
instead, the staggered intervention design is still between 34% and 56% more efficient for 
estimating 𝛼1. 
 
5.5 Sample size calculation 
 
Suppose we want to design a trial in the bariatric surgery example so that we have 80% power at the 
5% significance level to detect a difference in body mass index at 12 months (𝛼1) of 2kg/m2, 
assuming a standard deviation of 5kg/m2, and a correlation between any two repeated 
measurements of body mass index of 0.8. 
 
Using the expressions in Section 5.1, the variance of the treatment effect estimate from a parallel 
groups design with one or with two baseline assessments is 1.44𝜎2/𝑁 or 1.1556𝜎2/𝑁, respectively. 
The variance of the treatment effect estimate from the waiting list control design in Section 5.2 is 
1.44𝜎2/𝑁. Evaluating expression (2) in the case of the three-sequence staggered intervention 
design shows that the variance of the treatment effect estimate is 0.8374𝜎2/𝑁. 
 
The ‘fundamental equation’ of sample size tells us that if the variance of the treatment effect 
estimate is 𝑤𝜎2/𝑁 then the sample size needed to demonstrate an effect of at least 𝛿 with 80% 
power at the two-sided 5% significance level is 
 

𝑁 ≥ (𝑧0.975 + 𝑧0.80)2
𝑤𝜎2

𝛿2
, 

 
where 𝑧𝑝 is the 100𝑝th centile of the standard Normal distribution.9 

 
Thus we would need 72 participants for a parallel groups design with a single baseline assessment 
(or for a waiting list control design), 58 participants for a parallel groups design with two baseline 
assessments, but only 42 participants for the staggered intervention design (sample sizes have been 
rounded up to a multiple of the number of sequences – 2 in the case of parallel groups designs, and 
3 in the case of the staggered intervention design). 
 
6. Relaxing the exchangeability assumption 
 
We could relax the assumption of exchangeability by considering an alternative correlation matrix, 
𝐑. The following correlation matrix for three repeated assessments assumes there is one correlation, 
𝑟1, between outcomes assessed at consecutive time-points, and another correlation, 𝑟2, between 
outcomes assessed at the first and last time-points: 
 

𝐑 = (
1 𝑟1 𝑟2

𝑟1 1 𝑟1

𝑟2 𝑟1 1
). 

 
Figure 3 plots the relative efficiency of the design with staggered intervention relative to a parallel 
groups design with one or two baseline assessments, using the above correlation matrix. The Figure 
shows the relationship between relative efficiency and 𝑟1 for fixed values of 𝑟2 (note that in practice 
we would not expect 𝑟2 to exceed 𝑟1). For any fixed value of 𝑟2 the design with staggered 



intervention is always at least 56% more efficient for estimating 𝛼1 than a parallel groups design 
with a single baseline measurement. The design with staggered intervention is also at worst 33% less 
efficient for estimating 𝛼2 than a parallel groups design with a single baseline measurement (the 
curves for fixed 𝑟2 tend asymptotically to a constant 67% as 𝑟2 approaches 1). If we use a parallel 
groups design with two baseline assessments as the comparator instead, the picture is less one-
sided: for some combinations of 𝑟1 and 𝑟2 with 𝑟1 > 𝑟2 the staggered intervention design is then less 
efficient for estimating 𝛼1. 
 
7. Discussion 
 
The two-sequence waiting list control design has the appealing quality, at least, that all participants 
get the intervention in the end, though whether this meets ethical objections to a parallel groups 
design has been debated.10 It does not offer any advantage in terms of efficiency over a parallel 
groups design, at least in the situation modelled here. A three-sequence design with staggered 
introduction of the intervention in two of the sequences, on the other hand, offers a more efficient 
way (in terms of the number of participants we need to recruit, and the time taken to recruit them) 
to estimate the treatment effect after one period than a parallel groups design with the same length 
of follow-up. If our primary hypothesis relates to the treatment effect after one period, with a 
secondary hypothesis relating to the treatment effect after two periods, we could address both with 
the staggered intervention design – the primary hypothesis much more efficiently and the secondary 
hypothesis only slightly less efficiently than with a parallel groups design. In our bariatric surgery trial 
with body mass index assessed at baseline, 12 and 24 months, for example, the treatment effect at 
12 months is estimated more efficiently with the three-sequence design than with a parallel groups 
design, and the effect at 24 months slightly less efficiently. We are not aware of any published or 
ongoing trials using the design in Figure 1d. 
 
Our findings depend on the assumption that the effect of the intervention is independent of the 
time when a participant crosses over from the control to the intervention, but this may be 
reasonable in trials conducted in healthy or chronically ill populations whose health status is 
relatively stable. We have only focused on designs with unidirectional cross-over (such as occurs 
with surgery), and we have not made any assumptions about what happens if and when a 
participant crosses from the intervention condition back to the control. The most efficient design of 
all may be a two-way cross-over design,11 but this requires additional assumptions and is clearly not 
appropriate to every intervention. 
 
We have compared the efficiency of designs that are ‘complete’ in that they include an assessment 
of each individual at each time-point. All the designs we have considered are run over three time-
points, so their relative efficiency in terms of the total number of individuals needed is the same as 
their relative efficiency in terms of the total number of assessments. If we want a design that 
minimises the number of assessments rather than the number of individuals then we may want to 
consider ‘incomplete’ designs, some of which have been investigated elsewhere.12 

 
The staggered intervention design presented here should not be considered a ‘magic bullet’ for 
improving the efficiency of any pragmatic clinical trial – there are still challenges. Extending the 
length of follow-up opens up the possibility of differential attrition in different sequences, leading to 
bias. We need sufficient time available for the trial to allow us to schedule two follow-up 
assessments, and the added burden of the second follow-up must be acceptable to participants. The 
extended follow-up could mean some participants remain in the control condition for longer than 
they would have to wait for treatment outside the trial – something they would need to consider 
before consenting. 
 



The superiority of the staggered intervention design also depends on our being more interested in 
the effect of the intervention after just one time period than in the effect at a later time. This will 
not apply to every context – in fact in evidence-based medicine the main focus is more usually on 
the long-term maintenance of an effect. We do not want to encourage short-termism in general in 
the selection of the primary endpoint. 
 
In spite of their limitations, however, we think that trial designs with staggered introduction of the 
intervention will repay further study in the individually randomised case, just as they have 
stimulated renewed methodological interest in the field of cluster randomised trials. 
  



Appendix 
 
Variances of treatment effect estimators from the designs considered in this article can be derived 
by analogy with parallel groups designs where a sustained treatment effect 𝛼 is estimated over 𝑣 
follow-up assessments adjusting for 𝑢 baseline assessments9: in this case the variance of 𝛼̂ is 
 
 

Var(𝛼̂) =
4𝜎2

𝑁
(

1 + (𝑣 − 1)𝑟

𝑣
−

𝑢𝑟2

1 + (𝑢 − 1)𝑟
). (3) 

 
In the parallel groups design in Figure 2a, for example, the assessments of outcome at the second 
follow-up do not contribute to the estimate of 𝛼1. This is easily demonstrated: if the estimator for 𝛼1 
is a linear combination of the means in different sequences at different times, 
 

𝛼̂1 = ∑ 𝜆𝑗𝑡𝑌̅∙𝑗𝑡, 

 
then it has expectation 
 

E(𝛼̂1) = 𝛽 ∑ 𝜆𝑗𝑡 + 𝜏1(𝜆11 + 𝜆21) + 𝜏2(𝜆12 + 𝜆22) + 𝛼1𝜆11 + 𝛼2𝜆12, 

 
and since 𝛼̂1 is unbiased the coefficients of 𝛼2 and 𝜏2 must be zero, hence 𝜆12 = 𝜆22 = 0. This 
means we estimate 𝛼1 with a single follow-up assessment adjusting for a single baseline, so we can 
use equation (3) with (𝑢, 𝑣) = (1,1). Similarly for estimating 𝛼2. The parallel groups design in Figure 
2b, meanwhile, has (𝑢, 𝑣) = (2,1). 
 
In the case of the waiting list control design in Figure 2c, a similar argument shows we can use 
equation (3) for the variance of 𝛼̂1, with (𝑢, 𝑣) = (1,1). If we write 𝛼̂2 as a linear combination of the 
means in different sequences at different times, 
 

𝛼̂2 = ∑ 𝜆𝑗𝑡𝑌̅∙𝑗𝑡, 

 
then it has expectation 
 

E(𝛼̂2) = 𝛽 ∑ 𝜆𝑗𝑡 + 𝜏1(𝜆11 + 𝜆21) + 𝜏2(𝜆12 + 𝜆22) + 𝛼1(𝜆11 + 𝜆22) + 𝛼2𝜆12, 

 
and in order for this to be unbiased we need 
 

𝜆12 = 1, 𝜆22 = −1, 𝜆11 = 1, 𝜆21 = −1, −𝜆10 = 𝜆20 = 𝜆, 
 
i.e. 

𝛼̂2 = (𝑌̅∙11 + 𝑌̅∙12 − 𝜆𝑌̅∙10) − (𝑌̅∙21 + 𝑌̅∙22 − 𝜆𝑌̅∙20). 
 
This is reminiscent of the situation where a sustained treatment effect is estimated over two follow-
up assessments adjusting for one baseline assessment, except that this gives an estimator of the 
form 
 

𝛼̂ =
1

2
(𝑌̅∙11 + 𝑌̅∙12 − 𝜆𝑌̅∙10) −

1

2
(𝑌̅∙21 + 𝑌̅∙22 − 𝜆𝑌̅∙20). 

 
Hence the variance of 𝛼̂2 is four times the variance in (3) with (𝑢, 𝑣) = (1,2).  
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Figure legends 
 
Figure 1. Designs for trials with three repeated assessments including a baseline, with the 

corresponding matrix 𝐀 = (𝐴𝑗𝑡) from equation (1), and matrices 𝐗(1) and 𝐕(1) from equation (2). In 

each case the schematic on the left shows sequences (rows) against time (columns), with shaded 
areas showing when the intervention is introduced: (a) parallel groups design with a single baseline 
assessment; (b) parallel groups design with two baseline assessments; (c) two-sequence waiting list 
control design; (d) three-sequence design with staggered introduction of the intervention in two 
sequences. 
 

Figure 2. Relative efficiency with which different designs estimate 1 (solid line) and 2 (dashed line) 
for different correlations r, assuming axchangeability. Efficiency of the waiting list control design 
(first row) and staggered intervention design (second row) is shown relative to a parallel groups 
design with a single baseline assessment (left-hand column) and with two baseline assessments 
(right-hand column). 
 

Figure 3. Relative efficiency with which different designs estimate 1 and 2 for different 
correlations 𝑟1 between consecutive time-points, and 𝑟2 between first and last time-points. 
Efficiency of the staggered intervention design is shown relative to a parallel groups design with a 
single baseline assessment (left) and with two baseline assessments (right). Where the matrix 
inversion routine concluded that a matrix was not positive definite, the graph is continued to zero or 
to infinity. 
 


