b
W)

QUEEN MARY

AND WESTFIELD COLLEGE
UNIVERSITY OF LONDON

Department of Computer Science

Research Report No. RR-01-01 ISSN 1470-5559 March 2001

An Abstract Look at Realizability
Edmund Robinson and Guiseppe Rosolini

An Abstract Look at Realizability

Edmund Robinson*! and Giuseppe Rosolini?

! Queen Mary, University of London
2 University di Genova

Abstract. This paper is about the combinatorial properties necessary
for the construction of realizability models with certain type-theoretic
properties. We take as our basic construction a form of tagging in which
elements of sets are equipped with tags, and functions must operate
constructively on tags. To complete the construction we allow a form
of closure under quotients by equivalence relations. In this paper we
analyse first the condition for a natural monoidal structure to be product
structure, and then investigate necessary conditions for the realizability
model to be locally cartesian closed and to have a subobject classifier.

Introduction

Realizability is a technique for constructing models in which all operations of a
given type are computable, according to a given notion of computation. It ex-
tends the naive approach of enumerating elements and requiring that operations
be computable with respect to the enumerations, in particular by allowing the
construction of higher-order types. It produces extensional models which vali-
date various forms of constructive reasoning, e.g. [10,17,19], and forms the basis
for PER models of polymorphic lambda calculi e.g. [11]. All this work uses tra-
ditional intensional models of untyped computation, such as the Kleene algebra
of partial recursive functions. However there is recent interest in extending this,
for example to process models [1] or to the typed setting [13,12].

These approaches tend to take quite a concrete approach, giving structures
and building combinators into the definition. For example Longley’s notion of
typed pca assumes function spaces and application, and then uses them to con-
struct a locally cartesian closed category (the category-theorists analogue of a
type theory with dependent products). The purpose of the present paper is to
attempt to reverse this. One of our results is that, modulo a condition to do
with the way pairs are represented in the realizability model, if the realizability
model is locally cartesian closed, then the model of computation has a weak
form of function space, though not quite Longley’s. This to some extent vali-
dates the use of combinatorial structures which have function spaces built in,
and is typical of the form of our results. Broadly, they say that for the realiz-
ability model to support extensional forms of type structure, i.e. with both 3

* The authors wish to acknowledge the support of the EPSRC, EU Working Group
26142 APPSEM, and MURST

and 7 laws, the underlying model of computation has to interpret corresponding
combinators, but in a weak sense. This holds both for products and for function
spaces. There is an exception to this pattern in the result which discusses what
happens when the realizability model has a subobject classifier: in this case the
model of computation must have a universal object, again in a weak sense, and
thus that from the point of view of the model a typed form of realizability gives
no extra generality over an untyped form.

We have chosen to use categorical technology and to couch our results in
categorical terms. Thus, for us, a model of computation will be a category (for
example the category with a single object, to be thought of as N, where the mor-
phisms are partial recursive functions), and the existence of combinators will be
given by structure on that category. There are two reasons for this choice. The
first is that our account of the construction of a realizability model is essen-
tially categorical. It is of course possible to give the construction in more set-
theoretic language, and indeed this appears quite natural for the first part of the
construction. However, set-theoretic constructions can be overly concrete. Our
category-theoretic framework applies immediately to pointed cpo’s, where there
are at least two possible ways of assigning a set (include bottom or not). More-
over, if one uses a set-theoretic presentation, the second part of the construction
(freely adjoining quotients of equivalence relations) is poorly motivated. It would
not be clear why that particular definition should be chosen over a number of
possible variants. Our second reason is that the categorical formulation gives a
fairly clear idea of what the minimal supporting structure might be. Set-theoretic
formulations have not.

In these senses the paper contrasts with recent work particularly by Longley
[13] and Lietz and Streicher [12], in which the basis is taken as a typed gener-
alisation of a partial combinatory algebra. We, like they, will be interested in
when the construction yields a topos, and hence gives a full interpretation of
higher-order logic. This is also a theme of Birkedal’s work, see [2, 3], and his
joint work in [4].

We present realizability toposes as the product of two constructions. First one
takes a category (which corresponds to the typed partial combinatory algebra),
and then one glues Set to it in a variant of the comma construction. This step is
the categorical equivalent of forming a category in which objects are sets whose
elements are tagged by possible realizers, e.g. natural numbers. The result should
be a category with finite products, and we study the conditions under which it is
so, or rather we study the conditions under which a natural monoidal structure
gives finite products. In this event, it has long been known [6,16] that in the
examples derived from standard realizability the associated realizability topos is
the exact completion, i.e. it is obtained essentially by freely adjoining quotients
of equivalence relations. In the general case which we study, we do not necessarily
get a cartesian closed category, still less a topos. We produce necessary conditions
for local cartesian closure (dependent products, not just function spaces) and the
existence of a subobject classifier (an object of truth values).

Our study of finite limits depends on the initial category being monoidal.
This is the level of product structure exhibited by multiplicatives in linear logic.
We show that finite products demand in addition combinators corresponding to
diagonal and projections. These results can be read as saying that Birkedal was
correct to use categories of partial maps as a basis for his theory, nothing signifi-
cantly more general would have worked. In the case of function spaces, however,
we get something slightly weaker than Birkedal’s condition. Birkedal’s condition
is an analogue of the standard partial function space, in that every partial func-
tion is representable. Our results suggest that this is too strong for the current
purpose, and all that is required is that some extension of any partial function
be representable. This is a new notion of partial function space, which, to our
knowledge, has not previously been encountered. Finally, we present our version
of a result given independently by Birkedal and Lietz and Streicher, that if the
realizability category has a subobject classifier, then the original category has
a form of universal object. Our result is slightly more general than theirs, since
it is independent of questions of cartesian closure inherent in their frameworks,
and we give an explicit account of how it relates to untyped realizability.

The motivation for this work came from two directions. The first was to pro-
vide a general categorical account of traditional work on realizability. Our results
show limitations on the use of typed forms of standard realizability in terms of
the models they produce. There remains, however, modified realizability. It is
possible to read the sets of “possible realizers” in modified realizability as a form
of type, and hence to think of modified realizability as a form of typed realiz-
ability. Alas, our results show that this can not be if by typed realizability we
mean either the construction given here, or, more particularly Longley’s setting.

Our second motivation was to provide a case study giving the limitations of
what could be achieved using these structures, but admitting the possibility of
starting out with a very different model of computation, as in Abramsky’s work
on process realizability [1]. Here we believe that our results and techniques could
be useful in narrowing down the design space.

A longer version of this paper is available from the authors. It contains a
more substantial introduction as well as those proofs which have been excised
for reasons of space.

We would like to acknowledge useful discussions with Lars Birkedal, Peter
Lietz, Thomas Streicher and particularly Federico de Marchi.

1 The F-construction

There is a simple categorical generalisation of the construction of the category of
partitioned assemblies, given by a variant of the standard comma construction.
We write Ptl for the category of sets and partial functions. The standard
cartesian product of sets is no longer a categorical product, but it does provide
a monoidal structure, which we shall use later.
Suppose U : C —— Ptl is a functor. Let F(C,U) be the category whose
objects are triples (C,S,0 : S — U(C)), where o is total, and a map

f:(C,S,0) — (C',5",0") is a (total) function f:S — S’ such that there
exists a map ¢ : C — C' in C for which

commutes.

Notation. We shall always write F(C) leaving U understood. Instead of (C, S, o :
S —— U(C)), we shall write a typical object of F(C) as ¢ : S — U(C), us-
ing the fact that we can recover C' from the notation U(C). Finally, we shall
write morphisms as pairs (f, ¢). This is redundant in that the equality between
morphisms is based only on the first component, but we shall need to use the
second in some of our constructions.

We can think of this as a category of tagged sets. o : S — U(C) represents
the tagging of the elements of S by realizers taken from U (C). The functions are
functions at the level of sets which can be traced by a function on tags.

Example 1. As part of the construction of a standard realizability topos, C can
be taken to be the monoid of representable partial endo-functions on the partial
combinatory algebra in use. In this case F(C) is the category of partitioned
assemblies (the projective objects) in the associated realizability topos. In par-
ticular, if we take C to be the monoid of partial recursive functions on N, then
we will get the projective objects of the classical effective topos.

The category F(C) always has equalizers, and we shall see that weak con-
ditions on C ensure products in F(C). Similarly, weak conditions on C ensure
that the exact completion F(C)ex is locally cartesian closed.

Like a comma category, F(C) comes equipped with a number of functors.

Let C; be the inverse image along U of the subcategory of total functions,
then there is a full functor Y : C; —— F(C) defined by

[—Ls ¢ — [(C,U(C),id) LD (¢ u(C),id)]

or
id

€~ ¢ — [(€ =+ U(0) HEL (¢

This becomes full and faithful when U is faithful.

Because of the existence condition in the definition of morphisms, there is
no forgetful functor F(C) — C, however there is one F(C) — Set. More sig-
nificantly, let C' be an arbitrary object of C, and z : 1 —— U(C) an arbitrary
element of U(C'), then there is a full embedding V¢ , : Set —— F(C) defined
by

- U(C)]

o!

V[e 87— (5 = v(e)) LT (g0 2 (o))

This definition is quite robust. If there are morphisms ¢ : C —— C' and
1 : ¢! — C'such that ¢z = 2’ and ¢z’ = =z, then V¢, is naturally isomorphic
to Ver ar.

Because of the existence condition in the definition of maps of F(C), it is
clear that F(C) is equivalent to F(U[C]) where U[C] is the quotient of C with
two maps identified when they have the same value under U (in other words,
the category sitting in the middle of the (full and identity on objects)/faithful
factorisation of U).

Notation. In order to make things less cluttered, from now on we shall write
() for the functor U, so U(C) = C and U(d) = 0.

2 Exact Completions

Our construction proceeds in two stages. We begin by constructing a base cate-
gory using the F-construction, and then we construct a better-behaved category
from that using an exact completion. In other words our final category is a free
exact category on a category obtained by means of the F-construction.

Our results, then, rely on the fundamental property of an exact completion
(cf. [7]): Given an exact category A, let P be the full subcategory on the regular
projectives of A. Then A is an exact completion of a category with finite limits
if and only if P is closed under finite limits and each object in A is covered by
a regular projective (i.e. for every A in A there is a regular epi P —> A from
a regular projective). When this is the case, A is the exact completion of P.

The crucial point here is that the base category of projectives, P, which in
our case is going to be F(C) must be left exact, and in the next section we
explore conditions under which this is so.

3 Finite Limits

First, we observe that F(C) always has equalisers. This reduces the question
to when F(C) has products. It is fairly easy to see when F(C) has a terminal
object, though the condition seems both delicate and a little unnatural. However,
characterising products seems more difficult.

Fortunately, in the cases we know about C can be taken to be a monoidal
category, and () a monoidal functor (cf. [9]). This means that F(C) has a
candidate for a monoidal structure. The unit is given by ¢ : 1 — I, and the
tensor by (f: X — C)®(g:Y —= D) =0(f xg): X xY —= C® D,
where 1) and 6 : Cx D — C ® D are the maps given by the monoidal structure
of (). These definitions give valid objects of F(C) if and only if ¢ and 6 are
total. In this case, the resulting structure is indeed monoidal. The verification is
straightforward category theory, except that at some points we have to use the
totality of various morphisms.

This allows us to ask a simpler question: when is this monoidal structure
actually a product? This simplification is not without cost. We noted above

that F(C) is equivalent to F(C) where C is the quotient of C with two maps
identified when they have the same value under (). This suggests that without
loss of generality we can take () to be faithful. This is not, unfortunately, the
case. The problem is that the monoidal structure on C does not necessarily
transfer to one on C. The reason is that unless @ is iso, the monoidal tensor does
not necessarily respect equivalence of maps. But, unless () is faithful we cannot
completely reflect properties of F(C) back into properties of C. This explains
why in general we prove properties up to the functor (), leaving the cleaner
and perhaps more interesting case where () is faithful to corollaries. This is first

evident in the characterisation of when the monoidal unit on F(C) is terminal.

Lemma 1. v : 1 — I is terminal in F(C) if and only if for each object C of
C there is a map tc : C — I such that tc = 1ol.

!

C

1
id \1{)

Yooy 2
c—< T

Proof. If 1) : 1 — I is terminal, then we obtain ¢ by considering the terminal
map from id : C — C to 1 (the diagram is as above). Conversely, given such a
family of maps, 9 is weakly terminal because for any f : X — C, we have the
following diagram (note that the upper triangle commutes because f is total).

!

X 1
!
f (8
_ to M
c—< 1
However, maps into ¢ are unique, when they exist, because maps into 1 are.
This establishes that v is terminal. O

Now, if the unit of a monoidal category is terminal, then there are candidates
for left and right projections from the tensor:

Mo, Xy = px(idx ®ty) XQRY — X TL,XY = Ay(tX(X)idy) XQRY — Y

This allows us to ask the question of when the monoidal tensor is a product,
in the precise sense that these projections together form a product cone.

Lemma 2. In the case that ¢ : 1 — T is terminal in F(C), then the can-
didates for projections above form product cones if and only if for each object
¢ of C there is a map dc : C —— C ® C such that do = 6o Ag, where
As: C —— C x C is the ordinary cartesian diagonal.

Proof. (Sketch) First, suppose that the tensor is cartesian product. Then the
tensor of id : C' —— C with itself is 8 : C x C —— C ® C. This must have a

diagonal

_ D _ _
C CxC
id 0
c_ 9. rwe

Composing with the projections we see that D must be the diagonal Az, and
the square then yields do = 0 o Ag, as required.
For the converse, suppose we have two maps

VA h X VA k Y
f g9
c_* .7 c_ .3

then we can form the pairing

7 - Zth—X]EXxY
fxg
o N N LALLM
9 9
A ,

o % 50 ® a5E

given by composing the obvious “diagonal” on Z — C (the left-hand half of
the diagram) with the tensor product. O

Note that A and # are natural considered as transformations between functors
C —— Ptl, hence d¢ is natural in C. Thus, if () is faithful, then d¢ itself is
natural in C. However, although % is natural in C, ! is only natural in the
subcategory of total maps. Whence t¢ (and hence t¢, if () is faithful) is natural
only in the category of total maps in C.

Moreover, it is not necessarily the case that I is isomorphic to 1, or that

X ®Y is isomorphic to X x Y. However:

Lemma 3. Thereis a mape: XY — X ®Y such that € is an idempotent
split by

where mp = p(id ®t) and m; = A(t ®id).
Similarly ¢; is an endomorphism on I, such that £ is split by

- !
I 1 4

T

In summary:

Lemma 4. If C is a symmetric monoidal category and () o faithful symmetric
monoidal functor C — Ptl, for which the structural maps ¢ : 1 —— I and
Oc.p: C x D —— C® D are total, then F(C) carries a symmetric monoidal
structure. This is a product structure, i.e. the unit is terminal, and the monoidal
product together with projections defined from terminal maps and monoidal struc-
ture forms product cones, if and only if for each object C of C there are maps
tc:C ——> T anddc : C — C ®C such that tc = ! and%zﬁacAa. In
addition, do is natural in C (though tc is not).

If F(C) is left exact, then we can take its exact completion. This is our
candidate for a topos. In the next two sections we see what we can say about C
when this category is (locally) cartesian closed or has a subobject classifier. It
is simpler to deal with the subobject classifier first.

4 Subobject Classifiers and Universal Objects

From this point we shall make the following running assumptions: C is a sym-
metric monoidal category and () a symmetric monoidal functor C —— Ptl,
for which the structural maps ¢ : 1 —— T and cp : C x D — C® D
are total. Moreover we require the existence of families of maps t¢ : C —— I
and do : C —— C ® C such that tc = wo! and d¢ = fc,c o Ag, as in the
last section. These assumptions ensure that F(C) is left exact, with cartesian
structure derived from the monoidal structure of C.

In this section we investigate the connection between the existence of a sub-
object classifier in F(C)ex and universal objects in C. As before, our main result
takes its cleanest form when U is faithful, but can be deduced immediately from
a more technical statement which holds in general.

Definition 1. The category C has a universal object W if each object C of C
is a retract of W.

Proposition 1. If the category F(C)ex has a subobject classifier, then there
is an object W of C, such that for each object C' of C there are morphisms
v:C —— W and 6 : W —— C such that vy is the identity on C.

Intuitively, modulo U, W is universal in C. If U is faithful, then this imme-
diately implies that dy =id¢.

Corollary 1. If the category F(C)ex has a subobject classifier, and the functor
U is faithful, then the category C has a universal object.

This result is closely connected to one in [12, 2] obtained for the subcategory
of an exact completion as above which is the regular completion of P, see [5].

Our proof builds on previous analysis of subobject classifiers in exact com-
pletions. The following is a slight variant of Menni [14].

Definition 2. A map u: W —— V is a (weakly) weak proof classifier if every

map in the category appears as weakly equivalent to a (weak) pullback of u: i.e.
for every map a : X —— A there is a diagram

X— X —W

k
\ a' u (1)
a

f

where the square is a (weak) pullback, and the triangles commute.

In an exact category A where every object is covered by a regular projective, a
weakly weak proof classifier is what can be traced directly in the full subcategory
P of projectives when A has a subobject classifier. If in addition P is a left exact
subcategory (as when A is its exact completion), then any weakly weak proof
classifier is actually a weak proof classifier in the sense of Menni (the weak
pullback in the definition can always be taken to be a pullback).

We will also need a further technical result, establishing a factorisation prop-
erty which generalises a standard lemma for subobject classifiers, and is best
seen in the abstract:

Lemma 5. Suppose that v : W —— V is a (weakly) weak proof classifier,
and that a : X —— A is an arbitrary map. The (weakly) weak proof classifier
produces a diagram

h
X—X — W
k
\ a' u
a

f

A v

Suppose, now that b : Y —— A makes [true, in the sense that f o b factors
through u, then b factors through a.

Proof (Proposition 1, sketch). Taking a weak proof classifier

o1 .p
w v (2)
AN

we prove that W is “universal” (quotation marks indicate that this holds modulo

()

To prove that C' is a “retract”, classify

_ id= _

c—Y.7C
ide tc 3)

_ te _

C ¢ .7
giving a map 7 : C — W. This is total, and we use it as an object of F(C) in
order to establish the existence of a “retraction”. O

5 Function Spaces

In this section we deal with conditions for the cartesian closure of F(C)ex. We
continue with the running assumption made at the start of section 4: that C
is a symmetric monoidal category, and U : C —— Ptl a symmetric monoidal
functor satisfying certain conditions so that F(C) is a left exact category with
product structure constructed from the monoidal structure on C. We shall abuse
the structure and refer to a map f in C as total just when its image under U,
£, is total.

As in section 4, our work builds heavily on previous work on properties of
exact completions. One of the major lessons of [8] is that in this context it is
easier to deal with local cartesian closure, than simple cartesian closure. So it is
an important fact that exact completion is a local construction.

Lemma 6. Let P be a left exact category with exact completion A. Then for
any object P of P, the slice A /P is the exact completion of P/P.

We shall use this in combination with the following facts about cartesian
closure of exact completions.

Lemma 7. Let P be a left exact category with exact completion A. If A is
cartesian closed, then for any objects P and QQ of P, there is a weak evaluation
€:FxXP——Q from P to@ inP, ie.c. any map ¢ : X X P —— @ can be
expressed as €o (f xidp) for some f : X —— F (here all of the last part of the
statement takes place in P).

We shall need to deal with a monoidal structure that approximates a product.
First some notation.

Notation. The structure on C gives operations which we can loosely think of
as pairing and projections, and which we shall write:

(f,9)=(f®g)odz:Z — X QY

7r0=pXO(idx®ty):X®Y—>X 7T1=/\y0(tx®idy):X®Y—>Y

We shall use (a,b), po and p; for the usual pairing and projections from a cate-
gorical product.

Returning to our main interest, if

h
X Y
o o'
C D

a morphism in F(C), then we can replace g by any morphism f such that f
extends g. It follows that if we have constructed some morphism f in C, then
we will not be able to prove that f is a particular partial function h, only that it
is an extension of h. Moreover, we have seen that our monoidal structure is not
a product, but the product is related by retraction. This motivates the following
definition:

Definition 3. Suppose C is a monoidal category equipped with a functor () into
Ptl, together with families of mapstc : C —— [and d¢c : C — C ® C, as
in our standard structure. Then we say that a morphism f : A —— B extends
a morphism g: A —— B (gC f: A—— B) ifg C f. We now say that a map
€: F®C —— (" is a weak partial evaluation from C to C' if for every map
¢: XQC — (' there is a total f : X —— F, such that eo (f ® id¢g) o e
extends ¢ oe, where e : X @ C —— X ® C is the “np-retraction” for pairing
e = (mg,71)-

This differs from a standard definition of partial function space in that it
does not demand that arbitrary partial functions be represented, only that some
extension of them be, and also in that the equation unexpectedly passes through
the “p-retraction” for pairing. This can be viewed as saying that the equation
does not have to hold on the whole of X ® C, but only on those elements which
are actually ordered pairs.

Moreover, the definition we have given depends upon U to give notions of
totality and extension for morphisms in C. However, instead of deriving these
notions directly from U, we could instead use the “diagonal” and “terminal”
maps in C to give internal definitions. This is a standard trick in p-categories,

and fortunately agrees with our other definition. It follows that if we regard the
“diagonal” and “terminal” maps as part of our structure, then we can reasonably
suppress mention of this dependence on U.

Proposition 2. Suppose C and U : C —— Ptl satisfy our running assump-
tions, then if the exact completion of F(C) is locally cartesian closed, then
for any pair of objects C and C' of C, there is an object F' of C and a map
€ : F® C—— (' such that for any map ¢ : X C —— C', there is a
map f : X —— F such that f is total and eo (f ®idc)oe extends poe :
XQC —— C' wheree: X C —— X ® C is the n-retraction for pairing
e = (mo, 1), as before.

Corollary 2. If in the above the functor U is faithful, then the exact completion
of F(C) is locally cartesian closed if and only if C has weak partial evaluations.

The corollary follows immediately from the proposition, which, however, is
technically the most demanding result in the paper. The proof depends on the use
of cartesian closure in a slice category to define the weak partial evaluation. More
specifically we work in a slice over a set derived from the possible subfunctions
of the identity on C' in order to get a generic function space. Details are in the
full version of this paper.

6 Consequences for Realizability

In this section we draw out the consequences of our previous results in the
case that most interests us. We shall suppose that C is a category of sets and
functions and that () is the underlying set functor. Thus () is faithful. What
we have in mind is that C is the category obtained from some form of typed
partial applicative structure, as in Longley [13], but part of the game is to see
how much of that structure we can reconstruct from properties of the resulting
realizability category.

In section 3, we examined the case when a monoidal structure induced a
product on F(C). In lemma 4 we showed that in this case we had a diagonal
dc : C — C'®C and collection of maps into the unit t¢ : C — I, satisfying
certain properties. We have seen that these induce projections mg : XY — X
and m : X®Y —— Y, and a form of pairing (a,b) : z — X ®Y. This pairing
satisfies the beta laws:

mo o {a,b) =a and m o{a,b) =b
but not necessarily the eta law
<7T0,7T1) =id: XY — XRY

The result is that we have something which is almost, but not quite, a cat-
egory of partial maps on a category with finite products. It is interesting to

compare with the formalisms given in [15], and to check when the equations
listed there are satisfied. It turns out that the transformations have the correct
naturality properties, but equations whose domains are tensors X ® Y are valid
only when composed with the retraction on X ® Y. We can therefore obtain a
category of partial maps by splitting suitable idempotents. Since idempotents
split in Ptl, () extends to the resulting category (though it is not obviously still
faithful). Now

Lemma 8. If in C, C is a retract of D
T

Cc—
)

D

then an object f : X — C of F(C) is isomorphic toio f : X — D.

Corollary 3. If () : C —— Ptl and D is a category obtained from C by

splitting idempotents, then () extends to D, and F (D) is equivalent to F(C).

So this process does not affect the resulting category.

This means that if F(C) is a left exact category (or more exactly if it is
lex and that structure is obtained from monoidal structure on C), then C must
already have interpretations of the combinators for pairing and unpairing satis-
fying similar properties to the pairing and unpairing in Ptl. At this level, then
we parallel very closely the structure used by Birkedal [3], with only the minor
details of certain equations holding only up to 7.

Suppose now, that F(C),, is locally cartesian closed. Then by corollary 2,
C has weak partial evaluations. This means that for any pair C', D of objects
of C, there is an object which we can call [C' — D] together with an evaluation
map € : [C = D] ® C —— D. This generates an “application” in Ptl: €06 :
[C = D] x C — D. This is more general than the structure used by Birkedal.
We use it to construct a partial combinatory type structure in the sense of
Longley [13].

The type world T is the set Cq of objects of C, the binary product operation
C x D is tensor product C ® D, and the arrow type is given by the weak partial
evaluations [C — D). The associated family of sets is (A¢|C € Cy) = (C|C €
Cy), and the application functions [C' — D] x C — D are as above.

Longley’s structure also requires s and k combinators, along with combina-
tors for pairing and first and second projections. These are obtained by currying
corresponding maps in C. For example, the combinator k € [C — D — (] is ob-
tained from mp : C®D — C. We first curry to get amap k; : C — [D — (],
and then again to get ko : I — [C = D — (], apply () to get a (total) func-
tion I — [C — D — (], and finally compose this with 1 : 1 — T to get k.
The construction of s is similar, this time starting with

id ®id ®d
—_

(C-D—-E)®(C—=D)C (C-D—-E)(C—-D)®CoC

— (C—=D—-E)C(C—-D)oC

¥ (D—-E)®D

s E
Pairing and unpairing combinators are also obtained in this way, and satisfy the
requisite equations. This can be seen from the following lemma.

Lemma 9. Suppose f : C —— D is curried to give F': I — [C' — D], then
for all c € C, if f(c) is defined, then so is (€00 o (F x idg) (1, c), and they are
equal.

Proof. (€06 o (F x idg)(¢,c) = (eo (F ®idc) 0 0)(¢,¢), and the result follows
from corollary 2. O

We thus have a partial combinatory type structure. This in turn generates a
graph C' equipped with a graph morphism into Ptl: the vertices are the same
as the objects of C, and the edges are the partial functions induced from the
arrow types by application. It is irritating that C’ is not necessarily a category,
but it may fail to be closed under composition (we only know that the composite
of two partial functions in the graph can be extended to a third). But we only
need this lax structure, not a full category, to define F(C'). Since any partial
function obtained from C is extended by a partial function obtained from C’,
there is an embedding F(C) — F(C’). Unfortunately, this is not necessarily
an equivalence. The problem is that there is no reason why a partial function
obtained from C’ should extend to one obtained from C. One way of viewing
the problem is that in a typed pca, as a consequence of the K combinator, every
element of a type is named by a constant function. This is not the case for
us. The K combinator corresponds to a projection. Suppose, however, that C
is concrete in the sense that every element of C is obtained from a morphism
I —— C. In this case every partial function in C’ is already in C, and the
realizability structure obtained categorically is identical to that obtained from
the partial combinatory type structure.

We now turn our attention to the case when F(C)ex has a subobject classifier.
In that case we have that C has a universal object V', and applying lemma, 8, we
get that F(C) is equivalent to F(M) where M is the monoid of endomorphisms
onV.

Corollary 4. If F(C) is a topos, then it is equivalent to the topos constructed
using the monoid of endomorphisms of the universal object in C.

Putting these observations together, we can see that if F(C)ex is a topos,
then, much as in Scott [18], V is a partial combinatory algebra, and if C is
concrete, then the topos obtained is the conventional realizability topos from
this algebra.

References

1. S. Abramsky. Process realizability. Unpublished notes available at
http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/pr209.ps.gz.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Birkedal. Developing theories of types and computability via realizabil-
ity. Electronic Notes in Theoretical Computer Science, 34, 2000. Available at
http://www.elsevier.nl/locate/entcs/volume34.html. The pdf version has ac-
tive hyperreferences and is therefore the preferred version for reading online.

L. Birkedal. A general notion of realizability. In Proceedings of the 15th Annual
IEEE Symposium on Logic in Computer Science, Santa Barbara, California, June
2000. IEEE Computer Society.

L. Birkedal, A. Carboni, G. Rosolini, and D.S. Scott. Type theory via exact cate-
gories. In Proceedings of the 13th Annual IEEE Symposium on Logic in Computer
Science, pages 188-198, Indianapolis, Indiana, June 1998. IEEE Computer Society
Press.

A. Carboni. Some free constructions in realizability and proof theory. Journal of
Pure and Applied Algebra, 103:117-148, 1995.

A. Carboni, P.J. Freyd, and A. Scedrov. A categorical approach to realizability and
polymorphic types. In M. Main, A. Melton, M. Mislove, and D.Schmidt, editors,
Mathematical Foundations of Programming Language Semantics, volume 298 of
Lectures Notes in Computer Science, pages 2342, New Orleans, 1988. Springer-
Verlag.

A. Carboni and R. Celia Magno. The free exact category on a left exact one.
Journal of Australian Mathematical Society, 33(A):295-301, 1982.

A. Carboni and G. Rosolini. Locally cartesian closed exact completions. J.Pure
Appl. Alg., 154:103-116, 2000.

S. Eilenberg and G.M. Kelly. Closed categories. In S. Eilenberg, D.K. Harrison,
S. Mac Lane, and H. Rghrl, editors, Categorical Algebra (LaJolla, 1965). Springer-
Verlag, 1966.

J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. Van Dalen, edi-
tors, The L.E.J. Brouwer Centenary Symposium, pages 165—-216. North Holland
Publishing Company, 1982.

J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the effective
topos. Proceedings of the London Mathematical Society, 60:1-36, 1990.

Peter Lietz and Thomas Streicher. Impredicativity entails untypedness. Submitted
for publication, 2000.

J.R. Longley. Unifying typed and untyped realizability. Electronic note, available
at http://www.dcs.ed.ac.uk/home/jrl/unifying.txt, 1999.

M. Menni. A characterization of the left exact categories whose exact completions
are toposes. Submitted to Journ.Pure Appl.Alg., 1999.

E.P. Robinson and G. Rosolini. Categories of partial maps. Inform. and Comput.,
79:95-130, 1988.

E.P. Robinson and G. Rosolini. Colimit completions and the effective topos. Jour-
nal of Symbolic Logic, 55:678-699, 1990.

G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis, University of
Oxford, 1986.

D.S. Scott. Relating theories of the A-calculus. In R. Hindley and J. Seldin, editors,
To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalisms,
pages 403-450. Academic Press, 1980.

J. van Qosten. History and developments. In L. Birkedal, J. van QOosten,
G. Rosolini, and D.S. Scott, editors, Tutorial Workshop on Realizability Seman-
tics, FLoC’99, Trento, Italy, 1999, volume 23 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1999.

