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Abstract 

How do we know that a melody is a melody?  In other words, how does the human brain extract 

melody from a polyphonic musical context?  This thesis begins with a theoretical presentation 

of musical auditory scene analysis (ASA) in the context of predictive coding and rule-based 

approaches and takes methodological and analytical steps to evaluate selected components of 

a proposed integrated framework for musical ASA, unified by prediction.  Predictive coding 

has been proposed as a grand unifying model of perception, action and cognition and is based 

on the idea that brains process error to refine models of the world.  Existing models of ASA 

tackle distinct subsets of ASA and are currently unable to integrate all the acoustic and 

extensive contextual information needed to parse auditory scenes.  This thesis proposes a 

framework capable of integrating all relevant information contributing to the understanding of 

musical auditory scenes, including auditory features, musical features, attention, expectation 

and listening experience, and examines a subset of ASA issues – timbre perception in relation 

to musical training, modelling temporal expectancies, the relative salience of musical 

parameters and melody extraction – using probabilistic approaches.  Using behavioural 

methods, attention is shown to influence streaming perception based on timbre more than 

instrumental experience.  Using probabilistic methods, information content (IC) for temporal 

aspects of music as generated by IDyOM (information dynamics of music; Pearce, 2005), are 

validated and, along with IC for pitch and harmonic aspects of the music, are subsequently 

linked to perceived complexity but not to salience.  Furthermore, based on the hypotheses that 

a melody is internally coherent and the most complex voice in a piece of polyphonic music, 

IDyOM has been extended to extract melody from symbolic representations of chorales by J.S. 

Bach and a selection of string quartets by W.A. Mozart.  
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1   Introduction 

 

Take a moment to listen to your favourite song in your mind’s ear.  Hum the melody.  

Pay attention to the accompaniment.  What subtleties are you remembering this time?  Perhaps 

the bass line surfaces with an interesting lick, or the horns call your attention.  Our memory for 

music is amazing, especially for pieces we know and love.  But in order to remember them, we 

first have to first make sense of them; organize the mass of soundwaves hitting our eardrums 

into something comprehensible.  Where is the melody?  Is there even a melody?  Is there a 

theme?  How is it developed?  What instruments are involved and how do they blend together 

or split apart into merging or dividing lines?  Just like we understand the world around us by 

matching sounds to their sources through a process called auditory scene analysis (ASA; 

(Bregman, 1990), music can be described as a special case of ASA, where we understand music 

by organizing it into melody and accompaniment, such as is typical in a classical period piano 
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sonata, or one unified sound mass, such as in homophonic chorales by J.S. Bach, or many 

interacting independent voices, such as in a baroque fugue.  Unlike typical day-to-day ASA, in 

music the auditory system is manipulated by composers into perceiving more or fewer sound 

sources than there are instruments.  In a sense, composers are masters of auditory illusions.  So 

how does this auditory illusion called music become organized into melody, accompaniment, 

counterpoint, or sound mass and phrases, movements and pieces? 

This thesis has two main goals: 1) it proposes an integrated framework for musical ASA 

that combines multiple sources of information to create an analytical tool for future research in 

auditory streaming; 2) it examines a range of relevant aspects of musical ASA presented in this 

theoretical model using a probabilistic approach  inspired by predictive coding (Clark, 2013b). 

There are many sources of information contributing to the formation of an organized 

auditory scene.  In the case of music, we can summarize these into five high-level categories, 

incorporating top-down and bottom-up, as well as vertical and horizontal aspects of music 

perception. 

Auditory features. The first is auditory features, which address all the bottom-up 

acoustic information processed from the cochlea and the primary auditory cortex before being 

passed to higher-level processes.  These include such cues as frequency, location, intensity, 

timbre and rate of occurrence (Bregman, 1990; Hartmann & Johnson, 1991; Iverson, 1995; 

Marozeau, Innes-Brown, & Blamey, 2013; Micheyl & Oxenham, 2010; van Noorden, 1975; 

Vliegen, Moore, & Oxenham, 1999).  All of these cues apply to music as well as to auditory 

scenes in everyday life. 

Musical features. The second category is musical features, which address relevant 

information specific to music including harmonic relationships, phrase boundary perception, 

repetition and similarity.  Though harmonic quality is a feature of all sounds, music is 
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overwhelmingly harmonic and the relationship between simultaneous pitches in multi-

instrument music is crucial to understanding musical scene analysis.  Boundary detection is 

important to comprehension of both speech and music, and horizontal musical structure is 

important to organizing a musical auditory scene.  Similarly, repetition at the scale at which it 

happens in music is a unique feature of this sound world, where exact repetitions are not only 

normal but highly enjoyed.  If it weren’t, no recorded music could ever be sold or consumed.  

Not all repetition is exact however, and similarity plays a large part in musical structure, 

making it also relevant to breaking down a musical auditory scene. 

Attention. The third category is attention, where a listeners’ attentional set lends top-

down biases to their perception of the auditory scene, musical or otherwise (Barnes & Jones, 

2000; E. Bigand, McAdams, & Forêt, 2000; Carlyon, Cusack, Foxton, & Robertson, 2001; 

Macken, Tremblay, Houghton, Nicholls, & Jones, 2003). 

Expectation. The fourth category is expectation, where again a listeners’ expectations 

are a top-down influence on their perception, and expectancy has recently been investigated as 

an auditory streaming cue (Bendixen, Denham, Gyimesi, & Winkler, 2010; Huron, 2006; 

Schröger et al., 2014; Southwell et al., 2017). 

Musical training. Finally, the last category is listener experience, which here will be 

approximated by musical training as measured by the training sub-scale of the Goldsmiths 

Musical Sophistication Index (Gold-MSI).  Musical expertise has been shown to affect low-

level perceptual skills (Fujioka, Ross, Kakigi, Pantev, & Trainor, 2006; Fujioka, Trainor, Ross, 

Kakigi, & Pantev, 2004; Micheyl, Delhommeau, Perrot, & Oxenham, 2006; Skoe & Kraus, 

2013; Strait, Parbery-Clark, Hittner, & Kraus, 2012), cognitive skills (Carey et al., 2015; 

Corrigall & Trainor, 2011; Franklin et al., 2008; Tsang & Conrad, 2011) and expectancies 

(Hansen & Pearce, 2014) in relation to both music and everyday listening situations. 
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This thesis will address all these categories at least once throughout in varying 

combinations, with each chapter exploring one subset of auditory streaming.  As mentioned, 

these subsets will be investigated using primarily probabilistic methods.  To do so, an existing 

predictive model implementing statistical learning of various aspects of the musical surface 

will be used.  This model is called IDyOM, or information dynamics of music (Pearce, 2005), 

and has been validated behaviourally, computationally and neurophysiologically (Pearce, Ruiz, 

Kapasi, Wiggins, & Bhattacharya, 2010) and is increasingly used and discussed in the literature 

(Dean, 2016; Demorest & Morrison, 2016; Gingras et al., 2016; Hansen & Pearce, 2014; 

Hansen, Vuust, & Pearce, 2016; Pearce & Müllensiefen, 2017; Pearce, Müllensiefen, & 

Wiggins, 2010; van der Weij, Pearce, & Honing, 2017). 

The thesis will be structured as follows.  Chapter 2 will introduce the literature 

surrounding auditory stream analysis, both musical and non-musical, as well as provide an 

introduction to predictive coding.  Chapter 3 will present IDyOM in more detail, as well as our 

chosen measurement of musical training, the Goldsmiths Musical Sophistication Index (Gold-

MSI) and all musical corpora used.  Chapter 4 will present a theoretical integrated framework 

for musical ASA that will integrate all five sources of information listed above using statistical 

learning models (IDyOM and extensions) to process music in both horizontal (over time) and 

vertical (simultaneous) aspects.  These will be applied in modules, units of analysis each 

addressing a particular subset of the musical ASA problem.  Together, these modules will 

estimate the perceived simultaneous organization of a piece of music at any given time and 

identify the melody.  This design by module, unified by the concept of prediction is intended 

to allow the model to expand and to be developed collaboratively, a rare occurrence in current 

music cognition research.  It also allows the evaluation of isolated concepts, a number of which 

will be addressed in this thesis.  The first of these, Chapter 5, will use a standard behavioural 
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streaming paradigm to examine the effects of attention, expectation and musical training on 

streaming perception as manipulated by timbre, incorporating four of the five above-mentioned 

categories, namely auditory features, attention, expectation and musical training.  Chapter 6 

will achieve two things: it will validate some of IDyOM’s temporal viewpoints, where previous 

validation of the model focuses on the pitch domain.  It will also investigate the role of pitch 

and temporal predictability on the perception of musical emotion while taking into account 

musical training, incorporating two streaming information categories: expectation and musical 

training.  Chapter 7 will explore the link between melodic, rhythmic and harmonic expectancy 

and salience, where the relative salience of musical parameters is crucial to auditory streaming.  

The focus of attention on pitch content as opposed to rhythmic or harmonic content for example 

would lead to organization of an auditory scene relying more on pitch features while attention 

towards rhythm would lead to a scene organized more heavily by temporal features.  The 

chapter also links expectancy with perceived complexity while considering musical training, 

thus once again including three categories of streaming information.  Chapter 8 presents an 

extension of IDyOM in the form of a melody extracting feature based on the hypotheses that a 

melody is both internally coherent and the most interesting stream in a piece of music.  Finally, 

Chapter 9 will both summarize the work presented in this thesis and re-evaluate the theorized 

integrated framework for ASA in the context of the findings presented in Chapters 5 through 

8.  
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2 Auditory 
streaming 
Understanding the special case of 
music perception 

 

 

Auditory scene analysis (ASA) is the process of parsing the jumble of messy sound 

waves that reach our eardrums into coherent, sensible and interpretable sound sources.  Coined 

by Albert Bregman, ASA has many parallels with visual scene analysis in the use of Gestalt 

psychology to explain grouping and in the consideration of the top-down influences of attention 

and expectation in scene perception.  Parsing perceptual scenes can be looked at as a 

segregation problem, where the challenge is to separate sound sources from each other in a 

‘messy’ scene, or an integration problem, where the challenge is to bind features together to 

form a coherent sound source from diverging input.  The problem can also be divided into 

vertical and horizontal aspects of sound organization, attempting to understand grouping of 
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simultaneous, or sequential sounds respectively.  Either way, a successful computer model of 

ASA – one that can parse an auditory scene like a human does – is the ultimate goal of 

investigating ASA, where the assumption is that a successful model provides support for a 

given hypothesis regarding how the brain parses auditory scenes.  This problem is also called 

stream segregation, where it is preferred to separate a full scene by its constituent sources rather 

than build up a source from parts of the scene.  For the remainder of this thesis, the terms 

auditory scene analysis and stream segregation will be used interchangeably.  By simulating 

stream segregation, problems like declining speech-in-noise perception in aging adults and 

improving music perception for cochlear implant users can be tackled, increasing the quality 

of life of thousands of individuals. 

Bregman presented an excellent analogy of the kind of challenge the brain is facing 

when performing ASA: 

 “Imagine that you are on the edge of a lake and a friend challenges you to play a game.  

The game is this: Your friend digs two narrow channels up from the side of the lake.  Each is 

a few feet long and a few inches wide and they are spaced a few feet apart.  Halfway up each 

one, your friend stretches a handkerchief and fastens it to the sides of the channel.  As waves 

reach the side of the lake they travel up the channels and cause the two handkerchiefs to go 

into motion.  You are allowed to look only at the handkerchiefs and from their motions to 

answer a series of questions: How many boats are there on the lake and where are they?  Which 

is the most powerful one?  Which one is closer?  Is the wind blowing?  Has any large object 

been dropped suddenly into the lake?” (Bregman, 1990, p. 5-6) 

Answering these questions seems impossible, but his analogy is strictly representative 

of our auditory system, where the lake is the air, the channels are ear canals and the 

handkerchiefs are ear drums, vibrating with the multitude of incoming sound waves from  
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Figure 2.1. An example of pseudo-polyphony in Bach’s Violin Partita No. 3, BWV 1006.  The lower 
notes are perceptually segregated from the higher notes, creating an illusion of two voices from the 
single instrument. 

objects in the environment.  This analogy clearly illustrates how difficult understanding the 

auditory environment is, though it is taken for granted at every moment of every day. 

This thesis is concerned with the special case of music.  Though not a universally  

accepted definition, music is often described as organized sound (Varèse & Wen-Chung, 1966, 

p.).  It can also be described as a case of auditory scene illusions where instruments are blended 

to simulate a common source or played to simulate separate sources (called pseudo-polyphony 

as found in Bach solo string music, Figure 2.1).  Despite this trickery, humans love music; there 

is no known human society that did not have music as part of its culture.  Is music perception 

a special case of perception or can more general perceptual principles successfully be applied 

to music?  This thesis proposes an integrated framework for auditory streaming based on the 

general perceptual principle of prediction, where the brain learns about patterns in music just 

like it can learn about anything else, such as language.  In this framework, the specificity of 

music perception, and similarly any other domain, again such as language, comes only from 

the types of patterns it contains.  This pattern learning can be simulated by a computational 

model and applied in turn to simulate how a typical listener would organize a piece of music 

while listening to it. 

As a complex process, there is much to consider when attempting to model stream 

segregation, especially in the context of music.  First, the basic auditory features of the scene 

being heard must be included (Section 2.1); second, considering the musical relationships 

between parts on the score is important in this particular context (Section 2.2); third, attention 
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may be applied – an endogenous process such as choosing an instrument to listen to – or drawn 

– an exogenous process, for example by a loud outburst from the horns (Section 2.3); fourth, 

every listener develops expectations about what will come next (Section 2.4); and finally, the 

listener’s experience with that particular type of scene will affect how it is perceived (Section 

2.5).  For example, a mechanic might be able to diagnose an engine problem just by listening 

to it, and a conductor can identify exactly who in the orchestra played a wrong note!  Bringing 

all these considerations together is a daunting task, but one overarching theory of brain function 

is capable of doing so: predictive coding (Section 2.6). 

Before beginning any discussion of the streaming literature, it is worth defining the 

terms voice and stream as they will be used in this thesis.  Voice defines a musical line either 

from a score (i.e., soprano, alto, tenor or bass voice in choral music) or constructed to match a 

line from a score.  It is always monophonic.  Stream defines a perceptual construct, such as 

melody or accompaniment.  A stream may be monophonic or polyphonic.  Furthermore, while 

auditory stream segregation can be applied to either audio or symbolic input, this thesis focuses 

exclusively on symbolic auditory streaming. 

2.1 Auditory features 

In this section, an overview of the most commonly researched auditory features in 

stream segregation is given, including frequency (or pitch), loudness, synchronicity, timbre, 

periodicity, location, and harmonicity. 

The concept of streaming focuses foremost on studying sound segregation rather than 

sound integration.  Integration is typically considered the default percept where the gathering 

of evidence from various auditory cues informs source separation (Bregman, 1990); therefore 

research focus tends to be on the point at which cues cause scenes to break apart into their 

constituent sources.  Some of the earliest work in sound segregation began several decades ago, 
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when Miller and Heise (1950) presented participants with an alternating sequence of A and B 

tones to form an ABAB pattern.  When A and B were close in pitch, participants heard 

something akin to a musical trill, while as the pitch difference between the A and B tones grew, 

the percept changed to two isochronous streams of tones, one with just As and one with just 

Bs.  This was the first controlled demonstration of the role of pitch as a cue for sound 

segregation, where the magnitude of the pitch difference dictated whether a sequence of tones 

would be heard as coming from one integrated source or two distinct sources.  Leon van 

Noorden (1975) extended this by showing that both an increase in pitch distance and an 

increase in tempo led to a streaming percept.  van Noorden also introduced a clever alteration 

to the paradigm, where A tones sounded at twice the rate of the B tones, producing the pattern 

ABA-, where the ‘-’ represents a silence.  This small change causes two distinct percepts: when 

integrated, the sequence will sound like ‘galloping’ triplets; when segregated, a listener will 

hear two series of isochronous tones where one series is at twice the tempo of the other.  These 

alternate percepts are illustrated in Figure 2.2a.  Two thresholds were proposed in van 

Noorden’s work, replacing the single trill threshold previously identified by Miller and Heise 

(1950) and thus offering more defined perceptual options: the fission boundary and the 

temporal coherence boundary.  The fission boundary marks the point below which segregation 

is impossible while the temporal coherence boundary marks the point above which integration 

is impossible.  This is illustrated in Figure 2.2b.  These thresholds differ based on the perceptual 

cue being manipulated.  For example, manipulating pitch alone, tempo alone and pitch and 

tempo together each produce a unique threshold profile describing when a listener would 

perceive the A and B tones as integrated or segregated.  This paradigm has recently been 

extended to more complex scenes containing three different frequencies, or ABC tones rather 

than only A and B tones (Thomassen & Bendixen, 2017).  The role of frequency distance, and  
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A B  

Figure 2.2.  Illustration of the integrated and segregated percepts (A) and fission and temporal 
coherence boundaries (B) and how these separate integrated and segregated percepts based on pitch 
distance and inter-onset-interval (IOI). 

additionally location was demonstrated in this more complex context.  Furthermore, outer 

voices were more often perceived in the foreground as compared to the middle voice. 

Since the pioneering work that studied the effects of frequency and tempo on stream 

segregation, many other parameters have been studied as potential streaming cues.  These 

include: synchrony, harmonicity, timbre, loudness, location, attention and predictability.  In the 

first case, sequences of tones presented in synchrony promote integration (Duane, 2013), 

sometimes even at large frequency separation (Micheyl, Kreft, Shamma, & Oxenham, 2013).  

For example, Micheyl and colleagues (2013) presented participants with a 9-tone target 

sequence surrounded by multiple channels of masking tones that were either synchronous or 

asynchronous with the target sequence and asked participants to identify whether the 9th target 

tone was higher or lower than the other eight.  While also investigating harmonicity (here 

harmonic relationship between streams) as a segregating cue, the results indicated that both 

cues influenced results, where asynchrony and inharmonicity (unharmonic relationship) 

between target and distractors promoted segregation.  Using a very different approach, Duane 

(2013) calculated the percent of synchronous onsets and offsets between pairs of instruments 

in 18th and 19th century string quartet expositions and found that these were strong predictors 

of integration, outperforming pitch comodulation and harmonic overlap. 
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 Studies of timbre’s effect on streaming break down into manipulations of spectral, 

temporal and periodicity sub-cues, where bigger differences between A and B tones, or target 

and distractor melodies on any of these cues, leads to increased segregation (Marozeau et al., 

2013; Singh & Bregman, 1997; Vliegen et al., 1999).  Spectral cues tend to be more important 

than temporal and periodicity cues, requiring less contrast to cause segregation, for example in 

a target/distractor paradigm where more similar distractors masked the target more effectively 

(Marozeau et al., 2013).  Larger differences in loudness also promote segregation (Marozeau 

et al., 2013; van Noorden, 1975).  Finally, humans are very good at locating sounds relative to 

each other, unless they are directly in front of or behind the listener, with conductors developing 

particularly good location-based segregation through training (Münte, Kohlmetz, Nager, & 

Altenmüller, 2001; Nager, Kohlmetz, Altenmuller, Rodriguez-Fornells, & Münte, 2003). 

 To complicate matters further, segregation and integration are not the only perceptual 

options.  Recall the fission and temporal coherence boundaries from van Noorden’s work.  

When first introducing these, only one side of each threshold was described, leaving out the 

space between them; this is addressed now.  Just as visual stimuli can have alternating percepts 

(i.e. the vase/face illusion), so can auditory stimuli and this, it has been argued, is particularly 

helpful for studying the neural correlates of ASA (Pressnitzer, Suied, & Shamma, 2011) as it 

allows the matching of reported percepts to signals emitted in the brain.  Bi-stability has been 

shown to occur in conditions spanning combinations of frequency difference from 1 to 24 semi-

tones and tempo of 75-250ms stimulus onset asynchrony (SOA), with features investigated 

limited to frequency difference and tempo (Denham, Gyimesi, Stefanics, & Winkler, 2013).  

While the organization of these features affects the initial percept, bi-stability is present across 

all contexts and it is the rate of switching between percepts that is affected.  Researchers who 

have considered this difficult problem conclude that bi-stability is necessary to any complete 
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model of stream segregation (Pressnitzer et al., 2011; Winkler, Denham, Mill, Bohm, & 

Bendixen, 2012).  As previously mentioned, music is a special case of ASA and is in itself an 

elaborate auditory illusion, making it easy to agree with this conclusion: a model of stream 

segregation should consider multiple plausible percepts and select the most likely one, while 

allowing the possibility of changing to another.  It is worth noting that calling music an auditory 

illusion implies that music, with perhaps the exception of some solo instrumental music, would 

tend not to include cues that would only fall either below the fission boundary or above the 

temporal coherence boundary but a mix of these in addition to cues that fall in between the 

boundaries, in the realm of ambiguity. 

2.2 Musical features 

 While studies involving stream segregation in music do consider some of the basic 

auditory features introduced in Section 2.1 above (Cambouropoulos, 2008; Chew & Wu, 2004; 

Duane, 2013), some higher-level musical features must also be taken into consideration.  These 

include harmony, phrase boundaries, repetition and similarity. 

 Harmony can be considered on a number of different levels.  A combination of sine 

tones at different frequencies with specific ratio relationships between each consecutive 

ascending pair is considered a harmonic sound, or a complex tone, and is perceived as one 

single sound, a pitch, defined by the lowest frequency, the fundamental.  If one of these sine 

tones is mistuned, it segregates from its harmonic complex and two tones are heard: one 

complex tone with pitch corresponding to the fundamental frequency and one sine tone at the 

mistuned frequency.  The combination of complex tones with high overlap between component 

frequencies sound both pleasant and even richer.  The most pleasant ratios, or the most 

consonant, are 2:1, 3:2 and 4:3, equivalent to the octave, fifth and fourth intervals in music 

theory.  The most unpleasant ratio, or the most dissonant, is 45:32, the tritone.  Musical 
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harmony is based on these relationships between complex tones, or pitches.  Western classical 

music is highly consonant overall, where simultaneously sounding notes tend to have close 

harmonic relationships and these relationships change over time to form different types of 

simultaneous sonorities called chords: combinations of pitches with different ratios between 

them form different chord identities such as major, minor, diminished and augmented.  This 

high degree of consonance favours the integration of simultaneous pitches into a single piece 

of music (Duane, 2013).  It is possible to use harmony to group simultaneous pieces of music 

together, but this is a relatively rare compositional device used in the 20th century by composers 

such as Charles Ives, Igor Stravinsky, Béla Bartók and Raymond Murray-Schafer.  In terms of 

musical auditory scene analysis, the harmonic nature of music implies strong vertical 

integration of a musical piece into one source.  The balance between this overall vertical 

integration and the lower-level division of the piece into melody, counter-melody, 

accompaniment or texture is specific to music ASA. 

 Phrase boundary identification is an important part of music perception, lending 

structure to musical works and typically equating to sentences in speech.  Research in this 

domain has explored the effects of musical training (Neuhaus, Knösche, & Friederici, 2006), 

cultural knowledge (Nan, Knösche, & Friederici, 2006; Nan, Knösche, Zysset, & Friederici, 

2008), timing (Istók, Friberg, Huotilainen, & Tervaniemi, 2013; Palmer & Krumhansl, 1987; 

Silva, Barbosa, Marques-Teixeira, Petersson, & Castro, 2014) and Gestalt principles (Bod, 

2002) on boundary identification in an effort to understand how listeners perceive these 

structural points in the music.  Some prediction-based approaches have also been explored, 

where points of high predictability followed by low predictability signal the end, and beginning 

of a phrase, respectively (Aslin, Saffran, & Newport, 1999; Lattner, Grachten, Agres, & 

Chacón, 2015; Marcus T. Pearce, Müllensiefen, et al., 2010).  Boundary perception works hand 
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in hand with auditory scene analysis, addressing the horizontal processing aspect of the 

problem (Bregman, 1990), where music is grouped into phrases over time.  Phrase boundaries 

inform vertical auditory scene analysis by pinpointing potential locations of change in 

streaming structure, while a vertical streaming organization will tend to stay the same 

throughout a phrase. 

 Repetition is another defining characteristic of music, even labelled a music universal 

as it is present in all known music cultures (Nettl, 2010).  It is particularly noticeable in popular 

music but also incredibly prevalent in Western art music.  Not only is music internally 

repetitive, but listeners enjoy listening to repetitive music repeatedly.  A speaker repeating an 

exact sentence two or three times in a row would be nonsensical, whereas phrase repetition in 

music is both normal and pleasant, particularly for unfamiliar music (Margulis, 2013).  It has 

been proposed that this is because of the rewarding aspect of recognition, and correctly 

predicting the completion of a pattern once it has begun (Huron, 2006).  Repetitions in music 

can be either exact, or varied in some way, while still being similar enough to the original to 

be recognized as related: these are variations.  Algorithmically detecting repetition in music is 

a challenge that has been approached by a number of researchers over the past few decades, 

where aims include compression (how to more efficiently encode music; (Meredith, Lemström, 

& Wiggins, 2002; Rolland, 1999), generation (how to best incorporate repetition in music 

generation; Rolland, 1999) or cognitive modelling (how can human repetition detection be 

simulated; Cambouropoulos, 2006).  Margulis has probed the processing of repetition 

(Margulis, 2012, 2014), finding that listeners are good at detecting repetition at an optimal 

segment length (with pattern length resulting in an inverted U-curve pattern of performance) 

and with increased exposure.  Repetition also helps auditory scene analysis by emulating the 

principle of common fate, where similar sounds are presumed to come from one same source 
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(Bregman, 1990).  Whether this source is an orchestra or a soloist depends on contextual 

information, which will be discussed further in Chapter 9. 

 Closely related to repetition is similarity: how similar must two passages be to be 

termed variations, and how is similarity encoded in the brain?  Work in perceptual similarity 

attempts to understand what aspects of a sequence, such as contour, rhythm and mode, 

influence similarity judgments most.  Halpern, Bartlett & Dowling (1998) found that young 

and old, musically trained and untrained listeners rating similarity of pairs of sequences (on a 

Likert scale) almost always based their ratings on mode first, followed by contour and finally 

by rhythm, so that a pair of sequences that differed only in mode were rated as more similar 

than a pair that differed only in rhythm.  The only exception was that older musically trained 

listeners judged rhythms as more similar than contour, though rhythm was still a stronger 

predictor of dissimilarity than contour.  Bartlett & Dowling (1980; 1981) found that differences 

between sequences were well recognized when pitch interval was modified, but contour and 

rhythm were constant, suggesting that interval patterns supersede these other measures of 

similarity.  Modelling musical similarity is challenging, and has been the topic of special 

journal issues (I. Deliège, 2003; Toiviainen, 2007), specialized workshops (Benetos, 2015; 

Volk, Chew, Hellmuth Margulis, & Anagnostopoulou, 2016), the MIR community 

(Aucouturier, Pachet, & others, 2002; Berenzweig, Logan, Ellis, & Whitman, 2004; Bogdanov, 

Serrà, Wack, Herrera, & Serra, 2011; Flexer, Schnitzer, & Schlüter, 2012; Li & Ogihara, 2004; 

Mardirossian & Chew, 2005, 2006; Pampalk, Flexer, Widmer, & others, 2005; Pohle, 

Schnitzer, Schedl, Knees, & Widmer, 2009; Slaney, Weinberger, & White, 2008; West & 

Lamere, 2007) and psychology research (Cambouropoulos, 2009; Irène Deliège, 2001, 2007; 

Harrison, Müllensiefen, & Collins, 2017; M. Pearce & Müllensiefen, 2017).  It is relevant to 
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musical auditory streaming in a similar way to repetition, where similar sounds tend to group 

together as a common source. 

 The general concept to be drawn from the body of literature presented in the last two 

sections is that dissimilarity lends itself to sound segregation.  This makes sense intuitively, as 

an object tends to produce sounds that are more similar than they are different, particularly 

when compared to other objects.  Complications arise because sounds can be similar and 

dissimilar in various ways.  Given a piece of music where the violin and the oboe play in unison 

(or at any other interval), their timbres alone are considered dissimilar (McAdams, Winsberg, 

Donnadieu, De Soete, & Krimphoff, 1995), encouraging segregation, while their absolute 

rhythmic unity – perfect similarity – encourages integration.  In this case, it is most likely that 

a single musical line with an interesting timbre would be perceived rather than two separate 

lines that happen to be played at the same time.  This is just one example of music as a special 

case of ASA where composers constantly and deliberately manipulate ASA processes to create 

captivating auditory illusions.  This challenging question of relative salience and complex 

interplay of acoustic and musical parameters will be studied experimentally in Chapter 7 and 

addressed again in Chapter 9. 

2.3 Attention 

 A particularly important, but immensely tricky aspect of auditory scene analysis to 

consider is attention.  Attention has been a particularly interesting area of debate in the 

literature, where the principal question of interest has been whether attention is needed for the 

creation of auditory streams, or whether auditory streams are formed automatically, and 

attention is simply allocated to these streams.  Researchers investigating this question often 

rely on the idea of auditory stream build-up, which claims that the default percept is to perceive 

everything as coming from one sound source, and divide it into multiple sound sources as 
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evidence for these builds up over time (Bregman, 1978).  This build-up effect is observed as a 

gradual increase in the probability of hearing a sequence as segregated over time.  Evidence 

for the necessity of attention for stream build-up is given by Carlyon et al. (Carlyon et al., 

2001), where participants who were instructed to switch their attention from a different 

auditory task to a streaming task – for which an integrated percept made the task more difficult 

– performed worse than participants who had focused on the streaming task for the duration of 

the trial.  However, more recent evidence suggests it is possible to initially hear a segregated 

percept (Deike, Heil, Böckmann-Barthel, & Brechmann, 2012; Susan L. Denham et al., 2013) 

and it has even been argued that this concept of streaming buildup is an artefact of averaging 

data across subjects (Pressnitzer & Hupé, 2006).  This evidence calls into question previous 

assumptions made in attention research and highlights attention as a highly relevant and active 

research area. 

 One major criticism of work involving the investigation of attention is that auditory 

streaming paradigms require a listener’s attention to complete the task, and attention is simply 

directed.  For example, participants may be asked to identify an error or irregularity in one 

stream while ignoring the other (Bigand et al., 2000).  Macken et al. (2003) use the irrelevant 

sound effect paradigm to address this problem, where task-irrelevant sounds distract from a 

serial recall task when they are integrated into a single stream but not when segregated, as 

integrated sequences contain a greater range of sounds while multiple segregated sequences 

each contain more similar sounds that can be grouped and therefore more easily ignored. 

 A particularly interesting attentional strategy proposed especially for music listening 

has been called prioritized integrated attention, and it includes a mix of integration and 

segregation (e.g. Uhlig, Fairhurst, & Keller, 2013).  It is prioritized because a listener can 

choose to mainly integrate the music as a whole piece or segregate the music, focusing on one 
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or a few parts.  Neither a perfect balance of the two strategies nor the use of only one strategy 

is considered possible.  It is integrated because it includes both integrated and segregated 

percepts.  This combination lends itself particularly well to music listening or music 

performance: hearing the melody clearly does not exclude hearing the integrated musical 

context and a performer must listen to what is happening around them while also focusing on 

their own part.  Bigand and colleagues (Bigand et al., 2000) propose a similar mechanism when 

alternate possibilities including integration, divided attention, figure-ground and attentional 

switching are not supported by an experiment asking participants to detect wrong notes in 

simultaneously presented popular French folk songs (an octave apart).  The discussion 

surrounding the effect and importance of attention for auditory streaming is far from over, but 

it is important to acknowledge that attention has an effect on perception and something as 

simple as the choice of instructions (i.e. try to segregate vs try to integrate) has an influence on 

the results obtained in a given experiment (van Noorden, 1975). 

2.4 Expectation 

Where this thesis will deal extensively with expectation, it is worth defining some 

recurring terms and concepts before diving in.  Expectation will refer to the general concept of 

having an idea of what will happen in the future, near or far.  Expectancy will be used when 

referring to the subjective feeling of expectation, i.e., specific expectancies in relation to a 

particular event or note.  Prediction and uncertainty are also closely tied to the concept of 

expectation, where a prediction refers to a specific expected event (i.e., a tonic chord will 

follow the dominant chord in the last bar of this piece of music) and uncertainty reflects how 

sure an agent is about their prediction.  It is important to note that expectancy and uncertainty 

can be completely contradictory.  For example, it is possible to be absolutely certain and be 
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wrong.  Therefore it is important to consider expectancy and uncertainty separately; this thesis 

focuses on expectancy. 

 Furthermore, there are multiple sources of expectancy (Huron, 2006).  Schematic 

influences reflect general stylistic patterns acquired through extensive musical listening to 

many pieces of music while veridical influences reflect specific knowledge of a familiar piece 

of music.  Dynamic influences reflect dynamic learning of structure within an unfamiliar piece 

of music (e.g. recognizing a repeated motif).  Listening to new, unfamiliar music in a familiar 

style engages schematic and dynamic mechanisms, the former reflecting long-term learning 

over years of musical exposure and the latter short-term learning within an individual piece of 

music.  Listening to familiar music engages both of these in addition to veridical expectations, 

though veridical expectation may be weighed more heavily. 

While it is clear that expectations are developed during music processing, the role of 

predictability as a streaming cue itself has received little attention in the literature until recently 

(Andreou, Kashino, & Chait, 2011; Bendixen et al., 2010; S. L. Denham & Winkler, 2006; 

István Winkler, Denham, & Nelken, 2009).  Presumably, regularity binds a sequence together 

into one stream while simultaneously ‘removing’ it from the rest of the auditory scene as it 

becomes a unified source, segregated from its context.  An early study by French-St. George 

and Bregman (1989) in which two streams were manipulated to have either repeated 4-note 

patterns or random pitch patterns and isochronous or non-isochronous timing and where 

participants were asked to integrate the sequences into one stream found no effect of 

predictability on streaming percept.  Similarly, Rogers and Bregman (1993) found that the 

regularity of an induction sequence did 

Regular Random 
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A  B  

Figure 2.3. Illustration of the frequency dimension in stimuli used by Bendixen et al. (2010).  
There are two different A tones and 3 different B tones organized so that both sequences 
were predictable (A) or random (B) or a combination of the two, where one sequence was 
predictable and one random (not pictured). 

not affect streaming.  However, authors in both cases acknowledged that predictability in the 

streams translated to predictability of the overall sequence and that these two levels of 

predictability should be controlled for in the future.  This was indeed picked up by Bendixen 

and her colleagues (Bendixen et al., 2010), who modified the typical ABA paradigm so that 

patterns could be regular only within certain streams, or across both.  To do so, either frequency 

or intensity were random or regular in the A stream (two different tones), the B stream (three 

different tones), or both (Figure 2.3).  This resulted in ten conditions with varying degrees of 

regularity over two parameters for the two streams.  Participants reported a larger proportion 

and longer periods of segregated percept for increasingly regular conditions and a smaller 

proportion but equal periods of integrated percept for increasingly random conditions.  The 

lack of an effect of predictability on the phase length of the integrated percept was interpreted 

as evidence that regularity helps stabilize a segregated percept once it has occurred and 

regularity can be detected, but does not have an effect on its formation.  If regularity had an 

effect on stream formation, there would be a decrease in phase length of the integrated percept 

as it would switch to a segregated percept more quickly; this was not the case.  Additionally, 

regularity in both intensity and frequency increased integration for random patterns and 

segregation for regular patterns more than regularity in one or no features, supporting a 
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proportional link between regularity and perception.  Finally, attention seems to have an 

influence as well, where regularity in A the stream had a greater impact on perception than 

regularity in the B stream.  It was suggested that the A stream was most likely chosen as the 

foreground stream because of its faster rate of presentation (twice that of the B stream), drawing 

attention more strongly than the B stream.  Thus, regularity has the greatest impact in stream 

sustainability when multiple cues are regular and these regularities are present in the 

foreground stream. 

Andreou et al. (2011) took the paradigm modification one step further and modified the 

temporal regularity of the A and B tones, while keeping frequency and intensity constant.  

Based on previous literature suggesting that listeners keep track of acoustic regularities, 

humans are quick to form temporal expectancies in order to optimize behaviour (Honing, 

Ladinig, Háden, & Winkler, 2009; Mari R. Jones, 1976; Lange, 2010; McAuley, Jones, Holub, 

Johnston, & Miller, 2006).  Using an objective streaming measure where participants detected 

frequency modulation patterns (in either the A or the B stream, counterbalanced), the influence 

of regularity of the unattended sequence was investigated.  The unattended sequence was either 

random, or regular for three tempos: faster, equal to, or slower than the mean inter-tone-interval 

(ITI) of the attended sequence.  While there was no effect of unattended sequence regularity 

when the frequency difference between A and B tones was four semitones, an effect was clear 

when the frequency difference between tones was only two semitones, suggesting that while 

temporal regularity may aid segregation, this mechanism may only be engaged when 

alternative cues provide minimal evidence for segregation. 

While research on the role of predictability and expectation in auditory processing is 

progressing with an increasing number of publications (i.e., (Bendixen, Denham, & Winkler, 

2014; Bendixen, SanMiguel, & Schröger, 2012; S. L. Denham & Winkler, 2006; Vuust, 
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Ostergaard, Pallesen, Bailey, & Roepstorff, 2009; Vuust & Witek, 2014; I. Winkler et al., 2012; 

István Winkler et al., 2009), addressing predictability of frequency (Bendixen et al., 2010; 

Pearce, Müllensiefen, & Wiggins, 2010; Pearce & Wiggins, 2006), intensity (Bendixen et al., 

2010), time (Andreou et al., 2011; Pearce, 2005; Chapter 5), and simple (Bendixen, Roeber, & 

Schröger, 2007; Bendixen & Schröger, 2008; Schröger et al., 2014) and complex patterns 

(Bendixen et al., 2014; Bendixen, Prinz, Horváth, Trujillo-Barreto, & Schröger, 2008), there is 

still much room for development.  In particular, neural markers (Bendixen et al., 2012) and 

computational implementations (Pearce, 2005; Schröger et al., 2014) of prediction-based 

cognitive mechanisms are in their infancy and there is a need for new methodologies to test 

prediction-based processing hypotheses (Clark, 2013).  While only an introduction was 

provided here, a comprehensive review of prediction as it relates to auditory streaming will be 

given in Chapter 4.  This line of research is very closely aligned to the concept of predictive 

coding, introduced in more detail in Section 2.6 below. 

2.5 Musical training 

This section discusses the literature investigating the various effects of musical training, 

in this thesis an approximation of listening background, on perceptual and cognitive abilities 

as well as existing tools for measuring musical sophistication.  Together, this body of literature 

demonstrates that musical training has a substantial effect on music perception, including 

stream segregation. 

The most reliable and well understood effects of musical training are its effects on 

perceptual abilities, using techniques including both brain imagery and behavioural paradigms.  

A number of studies suggest that musicians encode sound more accurately and at a finer level 

of detail than those without musical training.  For example, musicians are typically faster and 

more accurate in tasks of pitch discrimination (Brattico, Näätänen, & Tervaniemi, 2001), 
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contour and interval processing (Fujioka et al., 2004), temporal discrimination (T. Rammsayer 

& Altenmüller, 2006; T. H. Rammsayer, Buttkus, & Altenmüller, 2012), temporal performance 

(Repp & Doggett, 2007), timbre discrimination (Marozeau et al., 2013), processing harmonic 

information (Aksentijevic, Smith, & Elliott, 2014; Brattico et al., 2009; Spada, Verga, Iadanza, 

Tettamanti, & Perani, 2014) and stream segregation (François, Jaillet, Takerkart, & Schön, 

2014; Fujioka, Trainor, Ross, Kakigi, & Pantev, 2005; Zendel & Alain, 2009).  It is worth 

noting that the majority of these studies do not demonstrate causal effects of musical training 

but rather correlations between musical training and the given ability being investigated.  It is 

entirely possible that musicians have better perceptual abilities prior to training and this aided 

their training.  However, a few studies compare perceptual abilities before and after training, 

demonstrating positive effects of training (Fujioka et al., 2006; Menning, Roberts, & Pantev, 

2000).  Together with the large volumes of correlational evidence, these studies support a link 

between musical training and perceptual abilities. 

One problem with treating musicians as a single category is that differences between 

musicians may be missed, either based on their instrumental (Tervaniemi, 2009) or stylistic 

(Nan et al., 2006) speciality.  For example, one might suppose that orchestral instrumentalists 

have a more sensitive ear to tuning and percussionists to rhythm, and that jazz or folk musicians 

might have more developed improvisation skills.  Pioneers of this type of investigation, Pantev 

and colleagues (Pantev, Roberts, Schulz, Engelien, & Ross, 2001) found that certain 

instrumentalists were more sensitive to the timbre of their own instrument than to others, as 

measured by auditory evoked fields (AEF).  Violinists and trumpet players were presented with 

trumpet, violin and sine tones while MEG was recorded.  Both instrumentalists presented 

stronger AEFs for complex over sine tones, and stronger AEFs still for their own instrument.  

In a similar study (Shahin, Roberts, Chau, Trainor, & Miller, 2008), professional violinists and 
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amateur pianists as well as young piano students and young non-musicians were presented with 

piano, violin and sine tones while reading or watching a movie while EEG was recorded.  

Gamma band activity (GBA) was more robust in professional musicians for their own 

instruments and young musicians showed more robust GBA to piano tones after their one year 

of musical training.  Furthermore, Drost, Rieger, & Prinz (2007) found that pianists and 

guitarists’ musical performance was negatively affected by auditory interference, but only if 

this interference came from the same instrument.  Taking a step further and using more 

ecological stimuli, Margulis, Mlsna, Uppunda, Parrish, & Wong (2009) explored neural 

expertise networks in violinists and flautists as they listened to excerpts from partitas for violin 

and flute by J. S. Bach.  Increased sensitivity to syntax, timbre and sound-motor interactions 

(activity in the motor cortex in response to the instrumentalist’ timbre) were seen for musicians 

when listening to their own instrument.  This effect of musical training on timbre will be 

explored in a behavioural streaming paradigm in Chapter 5.  

Beyond its effects on perception and the brain at the neural and structural levels, musical 

training has also been studied in relation to cognitive skills such as memory (Chan, Ho, & 

Cheung, 1998; Franklin et al., 2008; Strait et al., 2012), spatial-temporal skill (Gromko & 

Poorman, 1998; Hurwitz, Wolff, Bortnick, & Kokas, 1975; Rauscher & Hinton, 2011) and 

general IQ (Bilhartz, Bruhn, & Olson, 1999; Phillips, 1976), with links between musical 

training and reading comprehension (Corrigall & Trainor, 2011) or reading skill (Anvari, 

Trainor, Woodside, & Levy, 2002; Moreno, Friesen, & Bialystok, 2011; Tsang & Conrad, 

2011) and music and speech processing (Strait & Kraus, 2011) also explored.  This body of 

literature has a much more complex output of results than the sections discussed above: some 

find benefits of musical training (Chan et al., 1998), others do not (Haimson, Swain, & Winner, 

2011; Steele, Ball, & Runk, 1997) and some find improvements to some abilities (i.e., auditory 
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psychophysical measures) but not to others (i.e., multi-modal sequence processing; Carey et 

al., 2015).  Careful consideration and appropriate controls should therefore be taken when 

evaluating effects of musical training on cognitive tasks. 

Musical expectations are also influenced by training, where musicians form more 

specific expectations in relation to many aspects of music, including pitch (Granot & Donchin, 

2002; Habibi, Wirantana, & Starr, 2013; Hansen & Pearce, 2014), chords (Bigand, Parncutt, & 

Lerdahl, 1996) and stream segregation (François et al., 2014) due to their extensive exposure 

to music and its patterns throughout their training.  However, extensive listening can be enough 

to develop these expectations (Bigand & Poulin-Charronnat, 2006), which contributes to the 

ongoing discussions about the extent of effects of musical training on the brain and behaviour. 

It is easy to see how modelling polyphonic music as opposed to tone sequences can 

become very complicated very fast, what with all the unique streaming threshold profile 

combinations possible for pitch, tempo, rhythm, timbre and harmony to name just a few and 

how these interact between multiple voices – often more than two.  Add attentional bias and 

individual differences in musical training and listening history and a model becomes practically 

impossible.  Though not currently computationally viable, a model that processes all of these 

features and considers all these issues within one, integrated framework should be the focus of 

future research.  This proposed framework is predictive coding. 

2.6 Predictive coding 

Predictive coding has become a popular theory in the literature recently (over 15 000 

hits in Google Scholar for “predictive coding” since 2017), including in music cognition 

(Agres, Abdallah, & Pearce, 2017; Bendixen et al., 2014; Globerson et al., 2017; Schröger et 

al., 2014; Vuust et al., 2009; Vuust & Witek, 2014; I. Winkler et al., 2012).  A candidate for a 

grand unifying model of brain function, its attractiveness is obvious: it is a simple idea that has 
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been developed to explain perception (including the special cases of binocular rivalry and 

delusions), action, emotion, music perception, learning, inference, brain plasticity, attention, 

social action and multi-agent coordination among others.  Its dangers are equally obvious: it is 

hugely ambitious, difficult to disprove in its current formulation, and may tempt forced 

explanations of phenomena to fit the framework so that it remains truly unifying. 

First developed as a data compression strategy (Shi & Sun, 1999), predictive coding 

posits that the brain encodes error rather than raw sensory information.  Of course for there to 

be an error, there needs to be some kind of comparison being made, which is where prediction 

comes into play.  This framework describes the brain as a prediction machine that develops 

models of the environment and derives predictions about the environment using these models; 

this is the top-down aspect of the framework.  These predictions, made on several timescales 

and cascaded from higher- to lower-order levels, are met with the incoming sensory signals – 

the bottom-up portion of the framework – and are either correct, a rare case in which case the 

model remains, or incorrect to varying degrees, where error is sent back up the necessary 

hierarchical levels until the model is updated.  A fairly simple concept, this framework 

nevertheless generates large amounts of discussion in the literature (see Clark, 2013b – special 

issue of Behavioural and Brain Sciences –  and Clark, 2013a for a fascinating, in-depth 

discussion) as details of its implementation, implications and scope are debated.  Collecting 

evidence in support of this framework is particularly challenging at this time as the 

methodology for investigating brain function in terms of prediction error is not yet developed; 

thus far, there is only evidence that demonstrates the brain behaving “as if” it were employing 

this framework, with direct testing still to be developed. 

Perception, learning and attention can be explained by the framework in a 

straightforward manner.  It is intuitive to think of perception as a series of predictions that are 
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validated or corrected.  Predictive processing explains change blindness (a person is not 

expected to be replaced by someone else when something passes between them and an 

observer) and binocular rivalry (two objects are not expected to occupy the same space at the 

same time at the same scale so while one percept becomes stable, the error generated by the 

other percept causes a switch, and when that percept becomes stable the error generated by the 

first percept causes a switch, and the bi-stability continues) with the basic idea of error 

encoding.  Learning is explained by the continuous development of the brain’s models through 

error incurred from interaction with the environment and attention is explained by controlling 

the gain, or relative importance, of uncertain input where attentional focus is reflected in higher 

gains. 

On the other hand, the connection between predictive coding and action, emotion and 

the development are slightly less intuitive.  The inclusion of action in the predictive processing 

framework began with work by Friston (2003, 2010), where he proposes that perception and 

action are deeply unified by making use of the same computational strategies.  He proposes 

that perception and action (and cognition) are both results of prediction: humans perceive what 

they expect to perceive and do what they expect to do.  As predictions are made about where 

fingers will be while typing for example, the error generated by a finger not being at the place 

it is expected to be will induce a motor sequence to eliminate that error and arrive at the place 

initially predicted.  In Bayesian terms, the goal (prediction) is the observed state and Bayesian 

inference is performed to find the appropriate actions to get there (Toussaint, 2009).  

Furthermore, action elicits the streams of sensory information that the brain predicts, so in a 

sense, perceiving and moving (and thinking) continually work together in a sort of “self-

fulfilling prophecy” (Friston, 2009).  This is where one of the biggest criticisms of the 

framework is raised, and explained.  If the brain’s sole purpose is to reduce error between what 
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is predicted and what is perceived, why is it that humans do not hole themselves up in a dark 

room and never move from it?  Clark proposes that it is because humans do not expect to be in 

a dark room.  Hunger, thirst, light and other humans are expected and therefore sought out in 

order to eliminate the error caused by their absence.  However, this is only true because humans 

are born in or evolved in such a world.  Perhaps if humans only knew darkness and isolation, 

these would be expected.  There is also the possibility that these expectation are innate due to 

thousands of years of living circadian rhythms and community.  At this time, only speculation 

is possible. 

In a response to Clark’s Behavioural and Brain Sciences 2013 article, Seth & Critchley 

present evidence for the extension of predictive coding to emotion as interoceptive inference 

(Seth & Critchley, 2013).  Their model (Critchley & Seth, 2012; Seth, Suzuki, & Critchley, 

2011) explains subjective feeling states with predictions of the causes of interoceptive input.  

These predictions are continually updated and compared to visceral, autonomic and motor 

signals.  Minor, low-level violations in prediction will not cause noticeable emotional reactions 

but larger, high-level violations can cause deep emotional trauma, with daily emotions falling 

somewhere between these two extremes.  This type of model provides potential explanations 

for chronic anxiety (Paulus & Stein, 2006) and schizophrenia (Frith, 2012; Silverstein, 2013), 

where interoceptive error is heightened or imprecise, respectively. 

A further stretch of the predictive coding concept includes cultural practice, proposing 

that culture is a reflection of shared predictions and shared error reduction.  If everyone behaves 

in a certain way (i.e. start a conversation with a greeting), then predictions about a situation are 

validated and collective error is reduced.  This applies to conversation, ritual, convention and 

shared practices, making life in society that little bit easier.  Paton et al.’s (2013) response to 

Clark’s Behavioural and Brain Sciences 2013 article and Clark’s own response to it discuss 
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this further (Paton, Skewes, Frith, & Hohwy, 2013).  There are many unanswered questions 

about how emotion, shared culture and action fit into the predictive coding framework, all 

highly compelling and worth investigation. 

However, as mentioned previously, collecting evidence for such a unifying model is 

challenging as it is difficult to know whether the brain is actually producing prediction and 

error in a hierarchical way, or if it is acting as if it was doing so.  Neural evidence will be the 

only way to effectively test hypotheses generated by such a model, as its details lie in neural 

function and not in behaviour.  Specifically, an important consequence of the predictive coding 

framework is that it involves two neural sub-populations: one encoding expectations, and the 

other encoding error.  These are thought to be deep and superficial pyramidal cells, 

respectively, though there is no direct evidence for this as of yet. 

Invasive and non-invasive neural imaging techniques such as fMRI, TMS and single-

cell recording will be the most informative methods in exploring and testing the predictive 

coding framework moving forward.  Current behavioural, neural and computational evidence 

is indirect at best, though encouraging.  For example, one fMRI study demonstrated the 

suppression of primary visual cortex area V1 once higher level areas had settled on an 

interpretation of a visual shape (Murray, Kersten, Olshausen, Schrater, & Woods, 2002), which 

is exactly what is expected in a case where the top-down mechanism is “explaining away” 

bottom-up input.  Another found decreased responses to predictable stimuli (Alink, 

Schwiedrzik, Kohler, Singer, & Muckli, 2010) while another found that predictive processing 

was by far the best explanation of their results (Egner, Monti, & Summerfield, 2010), where 

the fusiform face area (FFA) brain region activation was indistinguishable for both house and 

face stimuli when faces were highly expected but differentiated when faces were unexpected.  

This suggests that the FFA was encoding expectation and error rather than features.  In the 
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auditory domain, EEG and MEG evidence for pitch and pitch sequence processing has also 

been found in support of hierarchical, predictive processes (Furl et al., 2011; Kumar et al., 

2011).  One of the biggest current strengths of the predictive coding framework is that it can 

be effectively implemented in a computationally tractable way with neural models of the 

Bayesian Brain.  Simulations so far can reproduce phenomena such as the non-classical 

receptive field effect (Rao & Sejnowski, 2002), the repetition suppression effect (Summerfield, 

Monti, Trittschuh, Mesulam, & Egner, 2008) and bi-phasic response profiles (Jehee & Ballard, 

2009).  The non-classical receptive field effect describes a situation where an active neuron 

will be suppressed if surrounding neurons are stimulated by an identically oriented stimulus 

but enhanced when the surrounding neurons are stimulated by an orthogonally oriented 

stimulus, demonstrating error encoding: similar stimuli, therefore more predictable, do not 

trigger error and therefore the central neuron is suppressed, with the opposite for a different 

stimulus.  The repetition suppression effect describes the reduction in neural response as a 

result of stimulus repetition.  However, if that repetition is unexpected, neural response is 

increased.  Bi-phasic response profiles describe neurons whose optimal driving stimulus 

changes rapidly (as quickly as 20ms), for example in low-level visual processing centres (Jehee 

& Ballard, 2009).  This can be explained by neurons as error detectors rather than feature 

detectors.  While these are only a few explained phenomena and all the evidence cited is 

indirect, the predictive coding framework can explain all the above data and phenomena with 

the same basic, unifying principle of prediction formulation and error propagation and 

subsequent cancellation. 

To summarize, predictive coding proposes a mechanism for action, perception and 

cognition based on prediction, where the brain generates biased models with low variance 

whose ultimate goal is to minimize error.  Previous experience, and perhaps even innate 
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knowledge – though this is unclear and not much discussed – shape models of the world which 

are validated or violated by incoming sensory data.  If violated, an error signal is generated and 

propagated up the neural hierarchy until the model is updated.  Its scope is enormous, as it 

proposes to explain everything about how the brain works and that processes previously 

thought of as separate – action, perception, cognition – are actually intricately related and 

driven by the same underlying mechanism: prediction.  It has quickly become a popular 

framework for brain function, with details being the focus of debate (Clark, 2013b).  However, 

it is also limited by the lack of direct evidence for neural prediction and error encoding.  Only 

further research can clarify its implementation and true scope.  This thesis contributes to this 

effort by investigating predictive coding in the context of musical auditory scene analysis by 

primarily using information content as a metric. 

This chapter has introduced the literature surrounding the various sources of 

information that require consideration to achieve a comprehensive model of auditory streaming 

– basic auditory features, musical features, attention, expectation and musical training – 

concluding with the presentation of predictive coding, a unifying framework of perception, 

action and cognition that will inspire the use of expectation and heuristic-like rules as the 

centrepieces of an integrated framework for auditory streaming.  Though introduced separately, 

these sources of information interact in highly complex ways to decode a given auditory 

environment.  In this thesis, some of these interactions will be explored in Chapters 5-8, 

investigating aspects of the proposed integrated, prediction-based framework for auditory 

streaming presented in Chapter 4.  First, a description of the materials common to multiple 

chapters and of all musical corpora used is given in Chapter 3. 
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3 Materials 

 

This chapter introduces tools and data that will be used repeatedly throughout the thesis: 

IDyOM (information dynamics of music; Pearce, 2005), a number of training and evaluation 

corpora of music, and the Goldsmiths Musical Sophistication Index (Gold-MSI; (Müllensiefen, 

Gingras, Musil, & Stewart, 2014). 

3.1 IDyOM 

IDyOM is a computational model of auditory expectation that harnesses the power of 

statistical learning.  It learns the frequencies of variable-order musical patterns from a large 

corpus of music (via the long-term model, or LTM) and from the current piece of music being 

processed (via the short-term model, or STM) in an unsupervised manner and generates 

probabilistic predictions about the properties of the next note in a melody given the preceding 

melodic context. IDyOM is a multiple-viewpoint model, capable of learning patterns from 

pitch- and time-derived note properties (source viewpoints) to predict relevant note properties 
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(target viewpoints).  These viewpoints can be use-defined or selected through optimization.  Its 

implementation is described here in detail. 

N-gram models are common in data compression and statistical language modelling 

(Cavnar, Trenkle, & others, 1994; Manning & Schütze, 1999; Ziv & Lempel, 1978) and are the 

basis of the IDyOM system.  An n-gram is a sequence of n symbols and an n-gram model is a 

collection of sequences, each associated with a frequency count.  This frequency count is 

obtained by training the model on a corpus of sequences.  To date, IDyOM is limited to 

monophonic music.  For the present purposes, this is sufficient; however, a representation 

scheme for polyphonic music is needed and will be introduced below.  In relation to music, an 

n-gram model of length 1 is equivalent to a basic frequency count of every different event 

occurring in the particular piece or group of pieces of music analysed.  An n-gram model of 

length 2 tabulates pairs of events while higher-order n-grams simply count longer sequences.  

No one order of n-gram models can explain music in a comprehensive way as the lower orders 

cannot capture melodic patterns specific to a particular piece of music while higher orders do 

not necessarily generalise to new contexts and lack statistical reliability as these particular 

patterns may not occur frequently, with frequency decreasing as context length increases. 

To allow for this parallel use of variable n-gram orders, prediction by partial-matching 

(PPM) (Cleary, Teahan, & Witten, 1995) is implemented.  PPM is a statistical compression 

technique based on prediction and context modelling.  While an n-gram model can capture 

low- as well as high-level contextual patterns, all levels should be considered to form an 

accurate representation of the musical surface being analysed, where lower-order models allow 

generalization to new contexts and higher statistical power, and higher-order models provide  
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Figure 3.1. Context tree for the word abracadabra, where the arrows identify all possible 
contexts for ‘a’, the last letter of the word. 

structural specificity.  This particular technique allows for the efficient storage of multiple 

lengths of context using what are called context trees (see Figure 3.1) that store contexts as 

leafs on branches so that there is no need to store an entire context multiple times for every  

potential following event but instead simply update the core branch.  PPM works for contexts 

of any lengths, and deals with new material by using escape probabilities: for each context  

length, starting from the longest, if the new event has never been seen in any recorded context, 

the system ‘escapes’ and looks at the next shortest context, continuing until a previously known  

context is found, or until the alphabet of events itself, tracking and combining all probabilities 

as it goes along.  In this way, PPM combines probabilities at multiple levels and can handle 

brand new material in an elegant manner to make a final prediction of appropriate viewpoints, 

which include basic, derived and linked viewpoints.  Basic viewpoints are data that are directly 

encoded at import, such as pitch, duration and mode; derived viewpoints are created from the 

basic data, such as interval (difference between two pitches) and scale degree (from pitch and 

key signature); linked viewpoints have their predictions combined at model creation rather than 

producing separate models for two viewpoints, allowing the representation and modelling of  
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Cpitch 3.36 2.01 2.30 2.20 2.49 3.85 0.78 0.78 1.14 1.12 

Cpint 5.20 2.32 2.73 2.09 3.54 4.95 1.20 3.32 1.14 2.38 

IOI 4.52 1.49 1.04 1.96 0.67 1.75 0.87 0.86 0.85 0.86 

Cpitch 
x Cpint 

5.20 2.30 2.26 2.02 2.14 3.90 0.78 0.76 1.07 1.10 

Cpitch 
x IOI 

7.88 3.51 3.34 4.17 3.16 5.61 1.66 1.64 2.00 2.12 

Figure 3.2. An example IDyOM analysis for the first two bars (and pickup) of a British folk 
song (A162) from Schellenberg’s experiments (1996; see also Section 5.3.2).  The LTM here 
was trained on the typically used set of 185 Bach chorale melodies, Nova Scotia folk songs, 
and the fink subset of the Essen Folk Song Collection’s German collection (see also Section 
5.3.2).  Information content for chromatic pitch (basic), pitch interval (derived), and linked 
viewpoint pitch and interval predicting chromatic pitch as well as IOI (derived) predicting 
onset and a linked viewpoint pitch and IOI predicting pitch and onset respectively.  The first 
pitch has the highest value, as all pitches or onsets are equally likely before the piece begins.  
As the piece progresses, IC fluctuates, where repetition lowers IC (i.e. A to G occurs twice).  
Higher IC values reflect low predictability, or higher unexpectedness. 

dependencies between features (see Table 3.1 for the list of IDyOM viewpoints referred to or 

used in this thesis).  For example, a user can give a command to learn about the interval and 

scale degree patterns found in a training set to predict pitch in a given new piece of music.  

Figure 3.2 presents an example analysis of a folk song using various viewpoints and 

combinations of viewpoints. 

Furthermore, IDyOM contains options for short-term, and long-term learning, or both.  

The long-term model (LTM) learns exclusively from the given training set while the short-term 

model (STM) learns from the piece currently being analysed.  In this way, the LTM captures 

stylistic patterns while the STM captures patterns contained within each individual piece of 

music.  When combined, the system contains knowledge about both the greater stylistic 

context, and the current piece of music, just as a human listener combines schematic and  
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Table 3.1. All basic and derived viewpoints of the musical surface implemented in IDyOM and used in 
this thesis, with a short description (linked viewpoints can be combinations of any two or three of the 
viewpoints listed below).  The default timebase is 96, corresponding to a whole note. 

Viewpoint Type Viewpoint Name Description 

Basic cpitch Chromatic pitch, encoded with MIDI numbers 
onset Event start time; depends on timebase 
dur Event duration; depends on timebase 

deltast Duration between last note and its predecessor 
bioi Basic Inter Onset Interval between last note and its 

predecessor 
voice Voice number as in the score 

Derived cpint Chromatic pitch interval 
cpintfref Chromatic interval from tonic 

ioi Like BIOI but undefined for first event 

dynamic expectations when exposed to new music (Huron, 2006).  The system also offers a 

‘plus’ option, which adds knowledge from each composition to the LTM as it analyses a 

dataset. 

 IDyOM accepts MIDI, kern and text files into its database for both monophonic and 

polyphonic music.  In the case of polyphony, a system of slices is used, where a slice is created 

at every existing pitch onset, containing all the sounding notes at that time.  This can be thought 

of as a cross-sectional view of the music.  The user can choose between full expansion 

(Conklin, 2002), where pitches are repeated at every onset, or an extension called continuation 

expansion, implemented for use in this thesis, where pitches whose durations extend into a new 

onset are labelled as continuations rather than simply a new pitch.  This has advantages for 

modelling melody extraction and auditory streaming, allowing the prevention of voice crossing 

into a pitch mid-duration.  Figure 3.3 illustrates this, where red vertical lines delimit slices and 

blue note-heads indicate pitches sounding throughout those particular slices but whose onsets 

belong in a previous slice.  In full expansion, these blue note-head events would not be related 

to the pitches in the previous slice that they are continuations of, leaving open the possibility  
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Figure 3.3. Illustration of the expansion possibilities in IDyOM using the first two measures 
of BWV 001 by J.S. Bach.  Red vertical lines mark slices.  In full expansion, blue note heads 
are not related to the previous event, of which they are continuations.  In continuation 
expansion, these same note heads are marked as continuations of the previous event, forcing 
all events in a melody extraction or streaming model to begin at onsets corresponding to the 
score. 

for one of these events to be considered a new pitch onset.  By marking these as continuations,  

or part of the previous pitch onset, it is impossible for a stream to contain a pitch beginning 

anywhere other than its initial onset. 

IDyOM has been validated by computational, behavioural and neuropsychological 

studies, making it an attractive cognitive model.  Computationally, IDyOM was used to 

reanalyse data from Cuddy and Lunney (1995), where participants rated continuation of 25 

chromatic pitches after a two-tone context on a scale of 1 to 7.  IDyOM’s long term model 

(contexts were too short to meaningfully employ the short term model) explained more of the 

participants’ responses, 72%, than Schellenberg’s two-factor model, which explained 68% 

(Schellenberg, 1997).  Though not found to be significantly better, IDyOM did subsume both 

the proximity and reversal components of the two-factor model (Pearce & Wiggins, 2006).  

Moving on to more complex stimuli, IDyOM was also used to reanalyse data from 

Schellenberg (1996, Experiment 1), where participants rated the continuation of tones 

presented after 8 different English folk songs, four major and four minor and all ending on 
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implicative intervals.  In this analysis, IDyOM explained significantly more of the behavioural 

data than the two-factor model, explaining 83% of the data, as compared to 75% (Pearce & 

Wiggins, 2006).  Finally, IDyOM was used to analyse data from a betting paradigm from 

Manzara et al. (Manzara, Witten, & James, 1992), which allows the measurement of 

expectations as a sequence unfolds.  Participants are given a certain amount of capital and they 

spend it by proportionally placing bets on the pitches they feel are more or less likely to appear 

next.  If they are correct, they gain capital and if they are incorrect, they lose capital.  The 

proportion of bets are a direct measure of relative expectation between potential upcoming 

pitches.  Here, IDyOM outperforms the two-factor model by explaining 63% of the data, 

compared to 13% (Pearce & Wiggins, 2006), as well as entirely subsuming the proximity and 

reversal factors.  These three data re-analyses with comparison to the two-factor model 

demonstrate that IDyOM consistently performs better in explaining behavioural data for 

different levels of musical complexity and different paradigm measurements.  It is interesting 

to note that different viewpoints maximised results in each of the three analyses (details in 

Table 3.2), presumably reflecting the relative length of the stimuli in each of the behavioural 

experiments re-analysed. 

In Pearce et al. (Pearce, Ruiz, et al., 2010), a new behavioural paradigm for studying  

Table 3.2. Summary of viewpoints included in optimal models in the re-analysis of three data sets.  
Viewpoints with an ‘x’ indicate linked viewpoints. 

Experiment Viewpoints 

Experiment 1 – Cuddy & Lunny data (1995) Interval x Duration; IntFirstPiece; 
IntervalDuration 

Experiment 2 – Schellenberg data (1996) IntFirstBar; IntFirstPiece; ScaleDegree x 
Interval; Pitch x IOI 

Experiment 3 – Manzara et al. data (2002) IntFirstPiece; ScaleDegree x DurRatio; 
ThreadInitPhr 
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auditory expectation is introduced.  In this paradigm, listeners are watching a clock figure 

whose arrow moves clockwise as the probe tone approaches; when the arrow reaches twelve 

o’clock, the participant rates the expectedness of that tone.  This allows for a continuous 

collection of expectation ratings that do not interfere with the flow of the sequence, as the 

betting paradigm does.  This paradigm also avoids the closure confound present in any 

paradigm requiring a rating at the end of a sequence.  There was a strong correlation between 

the probability of notes as predicted by IDyOM, and the perceived degree of unexpectedness 

as rated by participants. 

 
An electrophysiological study was also undertaken, where participants simply listened 

to the same stimuli as in the behavioural paradigm above while EEG was being recorded.  

Results revealed novel, robust ERPs in response to high- and low-probability notes, 

comparable to the N400 (Miranda & Ullman, 2007), as well as distinct beta oscillation patterns 

for each type.  In conclusion, this model is a powerful, flexible and validated tool for simulating 

statistical learning based on prior experience of the listener (Hansen, Wallentin, & Vuust, 2013; 

Hansen et al., 2013; van der Weij et al., 2017), and melodic expectations in human listeners as 

they are implied by the musical surface (Egermann, Pearce, Wiggins, & McAdams, 2013; 

Gingras et al., 2016; N. C. Hansen & Pearce, 2014; Marcus T. Pearce, Müllensiefen, et al., 

2010). 

3.2 Musical corpora 

 All music corpora, or datasets, used in this thesis are introduced here.  All training 

datasets are monophonic.  Where training datasets are predicting polyphonic datasets (Bach 

Chorale and String Quartet Datasets), each monophonic voice is treated as a separate 

composition and combined into one dataset. 
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3.2.1 Montreal Billboard Corpus 

The Montreal Billboard Corpus was created to provide a large set of data for the music 

information retrieval (MIR) community.  In summary, the Corpus contains 1365 audio 

recordings and matching transcriptions taken from the Billboard “Hot 100”, a weekly 

compilation of the most popular music singles in the USA.  The parameter of interest here is 

chord labelling, used to model harmonic progressions in Chapter 5.  There are 414 059 labelled 

beats in the corpus, spread over 638 distinct chords and 99 chord classes, including inversions 

and chord extensions.  These chords are encoded as integers (i.e., C major in root position is 

1).  The full set of chord progressions (average 11.8 chords per piece) was used to train IDyOM 

in Chapter 5.  Details of the construction, transcriptions and descriptive statistics of the 

Montreal Billboard Corpus can be found in Burgoyne, Wild, & Fujinaga (2011). 

3.2.2 Bach Chorale Dataset 

The Bach Chorale dataset was constructed from the 371 Chorales set of kern files 

downloaded from the Humdrum website1.  This represents all the chorales written by J. S. Bach 

and published by Breitkopf & Härtel (Breitkopf & Härtel, 1875).  The last 20 chorales were 

removed to be reserved for further validation once primary testing of the melody extraction 

model was undertaken (Chapter 7).  Chorales with a rest in one of the voices were removed so 

that the final dataset contained 350 4-voice chorales and the validation set contained 19 4-voice 

chorales. 

                                                
1 http://kern.ccarh.org/cgi-bin/ksbrowse?l=/users/craig/classical/bach/371chorales 
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3.2.3 String Quartet Dataset 

The String Quartet Dataset is divided into a test set and a training set.  The test set is 

composed of 7 Mozart quartet movements.  These were selected from the composers’ complete 

string quartet output based on opening with only four voices (no double stops).  Furthermore,  

Table 3.3. Catalogue and 
movement details of the seven 
Mozart string quartets from the 
test set of the String Quartet 
Dataset. 

 all double stops were removed from test and 

validation sets (see Chapter 7 for justification).  A 

total of 218 tokens were removed, only 18 of which 

were suspensions.  Kern files were downloaded 

from the Humdrum website2.  Table 3.3 contains 

the quartets’ catalogue and movement details. 

The training set is composed of 61 Mozart 

quartet movements and 156 Haydn quartet 

movements. 

String Quartet Movement 

K428 1 
K428 2 
K458 3 
K464 2 
K499 3 
K575 2 
K590 1 

3.2.4 Nova Scotia Folk Songs 

This is a collection of 152 (monophonic) folk songs from Nova Scotia, Canada, 

collected by Helen Creighton3. 

3.2.5 Essen Folksong Collection Subset 

The full Essen Folksong Collection is a collection of over 20 000 folk songs from 

around the world, encoded by Helmut Schaffrath and now led by Ewa Dahlig-Turek.  8473 

have been translated into kern notation, consisting mostly of German and Chinese songs, with 

fewer from a variety of European and North American, Asian and African countries.  In this 

                                                
2 http://kern.humdrum.org/help/data/ 
3 http://kern.ccarh.org/cgi-bin/ksbrowse?s=nova 
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thesis, the Musikalischer Hausschatz der Deutschen, or ‘fink’, subset of the Essen Folksong 

Collection is used.  It is a set of 566 German folk songs with an average of 58.45 events each. 

3.2.6 Bach Soprano 

 This dataset is formed of the soprano lines from the collection of 185 Bach Chorales as 

encoded in kern format (BWV 253-438)4.  This dataset is used to train certain IDyOM models 

for consistency and comparison with previous published research that used this dataset prior to 

the availability of the full set of 371 chorales described in Section 3.2.2 above. 

3.3 Goldsmiths Musical Sophistication Index 

Briefly introduced in Section 2.5, the Goldsmiths Musical Sophistication Index, or 

Gold-MSI is described here in more detail.  The Gold-MSI is a recently developed test of 

musical sophistication that aims to measure musical skill outside of performance and 

perception such as writing about, analysis of and emotional management using music.  This 

test consists of two music perception tests and a self-report questionnaire and has been 

validated in the UK (Müllensiefen et al., 2014) and in Germany (Fiedler & Müllensiefen, 2015; 

Schaal, Bauer, & Müllensiefen, 2014).  It has already been translated to German and Danish5, 

with a French version coming soon.  A benefit of the Gold-MSI is that it treats musical 

sophistication as a scale, allowing the user to treat the measurement of musical training as a 

covariant rather than a two-factor category.  The Gold-MSI, specifically the musical training 

sub-scale (see Figure 3.4), will be used throughout the work presented in this thesis. 

                                                
4 http://kern.ccarh.org/cgi-bin/ksbrowse?type=collection&l=/musedata/bach/chorales 
5 http://www.gold.ac.uk/music-mind-brain/gold-msi/download/ 
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3.3.1 Perceptual tests 

In the melodic memory test, participants hear three melodies and must identify the odd 

one out.  Difficulty is manipulated in terms of contour (same or different), scale degree (in-key 

vs. out-of-key) and transposed distance around the circle of fifths.  In the beat perception test, 

participants are to indicate whether or not a series of beeps played alongside a musical excerpt 

is on or off the beat.  The beeps are either shifted in phase or in tempo.  Both tests are adaptive, 

adjusting the difficulty of the task to each participant, allowing for a shorter and more accurate 

test. 

3.3.2 Self-report questionnaire 

The self-report portion of the test consists of 7 sub-scales that evaluate a variety of 

skills, from the emotional regulation with music (i.e. “Pieces of music rarely evoke emotions 

for me”) to engagement with music (i.e. “I spend a lot of my free time doing music-related 

activities”) to extent of formal musical training (e.g. “I have had __ years of formal training on 

a musical instrument (including voice) during my lifetime“).  Questions are either positive or 

negatively phrased, where the scale is inverted in analysis for the negatively phrased questions.  

Each question can receive a minimum score of 1 point and a maximum score of 7 points, 

resulting in a minimum of 7 and maximum of 49 for this musical training sub-scale. 
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Please circle the most appropriate category: 

1 – Completely Disagree    2 – Strongly Disagree   3 – Disagree   4 – Neither Agree nor 
Disagree 

5 – Agree   6 – Strongly Agree   7 – Completely Agree 

I have never been complimented for my talents as a musical performer.  1     2     3     4     5     
6     7 

I would not consider myself a musician.  1     2     3     4     5     6     7 

Please circle the most appropriate category: 

I engaged in regular, daily practice of a musical instrument (including voice) for __ years. 

0     1     2     3    4-5     6-9     10+ 

At the peak of my interest, I practiced __ hours per day on my primary instrument. 

0     0.5     1     1.5     2     3-4     5+ 

I have had formal training in music theory for __ years. 

0     0.5     1     2     3     4-6     7+ 

I have had __ years of formal training on a musical instrument (including voice) during my 
lifetime. 

0     0.5     1     2     3-5     6-9     10+ 

I can play __ musical instruments. 

0     1     2     3     4     5     6+ 

The instrument I play best (including voice) is ___________________________ 

Age: ____ 

Gender: Male/Female 

Figure 3.4. The musical sophistication sub-scale of the Gold-MSI. 
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4 An integrated 
framework for 
musical auditory 
streaming 

 

 

 With an understanding of the complexities involved in modelling musical ASA and 

some tools to study them, this chapter proposes an integrated framework for musical ASA, 

where all information sources required for modelling musical ASA discussed in Chapter 2 will 

be addressed using the unifying concept of prediction.  However, before it is outlined in detail, 

an in-depth review of existing approaches to modelling auditory streaming in general and 

musical streaming in particular will be presented (Sections 4.1-2), where auditory streaming 

has been explained by models using such varied inspiration as neural firing patterns (Beauvois 

& Meddis, 1997; McCabe & Denham, 1997), temporal coherence (Elhilali, Ma, Micheyl, 

Oxenham, & Shamma, 2009), neural oscillatory patterns (von der Malsburg & Schneider, 

1986; Wang & Brown, 2006), and predictive processing (Schröger et al., 2014).  Musical 
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auditory streaming in particular has been modelled using corpus analysis (Duane, 2013; Huron, 

2001), probability (Temperley, 2009) and perceptual principles (Cambouropoulos, 2008).  

Sections 4.3-4 will present the framework in more detail, Section 4.5 will describe the type of 

training data this framework would employ, Section 4.6 will compare the framework to a 

selection of the models introduced in Sections 4.1-2 and Sections 4.7-8 will discuss limitations 

of the framework along with the potential it brings for future research in auditory streaming.  

Finally, Section 4.9 will outline the selection of specific concepts from the framework that will 

be tested in subsequent chapters. 

4.1 General models of auditory streaming 

4.1.1 Neural-based models 

 Beauvois & Meddis (1991) built one of the earliest computer model simulations of 

auditory stream segregation.  It is inspired by neural firing patterns and relies mostly on 

frequency information, while also incorporating temporal information.  Input to peripheral 

frequency analysis establishes channels (high, medium, low frequency) that are then fed 

through an inner hair cell and auditory nerve simulation based on physiological information, 

and divided into pathways based on excitation-level.  The channels represent the A frequency, 

the B frequency, and the harmonic mean of the two, remaining at these frequencies throughout.  

The dominant channel becomes the foreground while the non-dominant channels are attenuated 

and become the background.  Streaming is detected based on the relative channel amplitude: if 

the A and B streams have similar amplitude below a given critical threshold, the percept is 

integrated, if not, the percept is segregated.  They later further developed this model to simulate 

the build-up of segregation over time, the fission and temporal coherence boundaries and the 

trill threshold in ABAB sequences, as well as the effects of frequency difference between A 
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and B tones and tempo (Beauvois & Meddis, 1996).  McCabe and Denham (1997) developed 

Beauvois & Meddis’ model for multi-channel streaming and considered two stages of 

processing as originally proposed by Bregman (1990), namely the initial, automatic stage based 

on bottom-up information (in this case pitch and tempo) and the later stage based on top-down 

information (here attention).  The model organizes input based on competitive interaction 

between frequency channels and consists of two tonotopically organized arrays of neurons, one 

for the foreground and one for the background.  Activation of one frequency in one array 

inhibits this frequency in the other, creating a divide between the foreground and background.  

This model accounts for the effects of frequency difference between A and B tones and tempo, 

bi-stability and the influence of background organization on the foreground, where capture 

tones were either near or far from the A and B tones, imitating an experiment by Bregman & 

Rudnicky (1975) where capture tones close in pitch to one set of tones but not the other aided 

segregation. 

Neural oscillatory patterns have recently been explored as an explanation for attention 

(Niebur, Hsiao, & Johnson, 2002; Womelsdorf & Fries, 2007), where neural firing in a region 

in response to a particular feature(s) increases in synchrony when it is attended to while 

unattended features’ neural firing is desynchronized, a process called active suppression.  

Similarly, in relation to auditory scene analysis and streaming, a number of models based on 

neural oscillation have been proposed, where sound objects are represented by units, in turn 

representing neurons or networks of neurons (Mill, Bőhm, Bendixen, Winkler, & Denham, 

2013; Pichevar & Rouat, 2007; Rankin, Sussman, & Rinzel, 2015; von der Malsburg & 

Schneider, 1986; D. Wang & Brown, 2006; D. L. Wang & Brown, 1999; DeLiang Wang & 

Chang, 2008).  Now a potential understanding of the neural mechanisms of attention, von der 

Malsburg & Schneider (1986) propose a model based on the simple idea that neural firing of 
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features in the same stream are synchronized while neural firing of features across streams are 

desynchronized.  A more advanced, comprehensive model was later built by Wang and Brown 

(1999), where both segmentation and grouping are represented sequentially by two layers of 

two-dimensional, time-frequency grids of oscillators.  The first layer forms blocks of 

synchronized oscillatory activity from similar regions of energy (i.e. harmonics, formants) into 

segments, which are then grouped together based on compatibility with a fundamental 

frequency.  This model successfully separates vowel pairs but is not applied to tones or musical 

streams.  Wang & Chang’s (2008) more recent model is similar, where two-dimensional 

oscillators are dynamically adjusted by local excitatory and global inhibitory connections to 

represent pure tones (frequency and time) as integrated or segregated, replicating van 

Noorden’s (1975) integrated, segregated and ambiguous regions.  While this model does not 

simulate perceptual multi-stability, Mill et al.’s (2013) and Rankin et al.’s (2015) models were 

explicitly designed to do so.  Mill et al.’s (2013) model relies on prediction applied to objects, 

a series of linked sound events which once formed is represented by a coupled excitatory and 

inhibitory population of neurons that interacts with other objects.  Objects are cyclically 

repeating patterns of events, where links between events form probabilistically and competition 

between objects is affected by the rate of successful predictions the object makes, the rate of 

pattern rediscovery (where faster equals stronger representation), adaptation, self-excitation, 

noise and inhibition from other objects predicting the same events.  Multi-stability and 

stochastic switching between percepts was simulated with this model, where objects with high 

states are considered to be present in perception.  The main difference in Rankin et al.’s (2015) 

model is that the number of possible perceptual objects is fixed (3: A tones, B tones, or A and 

B tones), while in Mill et al.’s (2013) they are discovered in real time, assuming a tonotopic 

space with three neural units that accept input from the primary auditory cortex (tokenized 
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ABA- input).  The output is segregation or integration, determined by whether or not the 

activity of the AB object is more than the average activity of the A and B objects. 

4.1.2 Temporal coherence models 

Another approach has been to give more consideration to the temporal aspect of 

streaming, where synchronized onsets are more likely to reflect an integrated percept while 

unsynchronized onsets encourage a streaming percept.  Elhilali et al.’s (Elhilali et al., 2009) 

model sends input through two stages: temporal integration, and coherence analysis.  The 

degree of multiscale (50-500ms) temporal integration is analysed to inform a coherence matrix 

over time; areas of non-zero activation in this matrix represent a perceived stream.  Tested with 

either synchronous or alternating A and B tones at frequency separations of .25, .5 and 1 

octaves, the model predicts an integrated percept for all synchronous conditions and for the 

smallest frequency separated asynchronous condition and a segregated percept for the larger 

two frequency separated asynchronous conditions.  These predictions match an experiment 

where participants identified temporal changes in the B tone sequence in the same sequence 

conditions as the model: participants performed worse when they perceived two streams, 

matching the model’s predicted segregated conditions.  Furthermore, the authors also claim 

that the model predicts transition points from one to two streams and back, but this aspect has 

not been explicitly validated by human behavioural data.  A model by Ma (2011) also 

segregates sound based on feature correlation, with features including frequency, scale 

(frequency component spacing, in cycles per octave), pitch and location.  Correlation matrices 

are calculated for each feature, resulting in a measurement of temporal coherence.  Nonlinear 

principal component analysis is applied to an enlarged correlation matrix to group features into 

a number of pre-specified units.  The model outputs two masks, which when applied to the 

original sound source, reconstruct the identified segregated (or not) source(s).  Krishnan et al. 
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(Krishnan, Elhilali, & Shamma, 2014) have built a similar model, where features are time, 

frequency, scale and rate (temporal spacing, in Hz) for one function and time and pitch for 

another.  This model was tested on tone sequences and mixed speech streams, simulating van 

Noorden’s (1975) perceptual regions, the bouncing effect (Tougas & Bregman, 1990; tones 

group together by frequency rather than continuity, similar to the scale illusion (Deutsch, 

1975)), and successfully segregating a new tone into a new stream. 

4.1.3 Prediction-based models 

Some more recent models of auditory scene analysis have been founded on the concept 

of expectation and predictive regularity (Barniv & Nelken, 2015; Nix & Hohmann, 2007; 

Schröger et al., 2014).  These first two models use Bayesian inference to break down the sound 

environment into state vectors estimated from input.  Barniv & Nelken’s (2015) model, which 

successfully simulates behavioural streaming experiment results, accepts simplified tokens 

(tones represented by frequency and timing) and assigns these to a ‘class’, or stream.  The 

assignment decision is made as evidence for one class or another is accumulated over time 

(dynamic priors); if no existing class is appropriate, a new class is created.  Nix & Hohmann’s 

(2007) model relies on sound spectrum direction rather than frequency and timing for state 

vectors of sound representation, though they only train their model on spectral information.  

The goal of the model is to determine the state vector’s posterior probability, which is adjusted 

by filtering out vectors that are unlikely to match the input.  This model has been successfully 

applied to voice separation.  Another recent example is the Auditory Event Representation 

System (AERS) by Schröger and colleagues (2014), which brings together research on auditory 

violation detection and auditory scene analysis.  The AERS model has four major components: 

the formation of auditory stimulus representations, the formation of regularity representations 

that predict subsequent input, the comparison of prediction and the input at multiple anatomical 
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and temporal levels and finally the evaluation of the relevance of the relationship between the 

input and the context.  It accepts monophonic, non-overlapping sound sequences, such as ABA 

sequences and outputs a percept: integration or segregation.  CHAINS, the implementation of 

the AERS framework, uses prediction to assign new objects to existing streams (chains) by 

detecting and preferring regularity, implementing competition between streams through 

excitation and inhibition and modelling auditory multi-stability.  This model is grounded in the 

anatomy of the auditory system and all stages are testable experimentally, making it one of the 

most concrete explanatory models of auditory scene analysis in the literature so far. 

4.1.4 Hybrid models 

Denham & Winkler’s (2006) auditory streaming model combines neural and 

prediction-based approaches and is inspired by perception as a generative process (Friston, 

2005) as well as evidence that auditory bi-stability is similar to visual bi-stability (Pressnitzer 

& Hupé, 2006).  With models of visual bi-stability typically including principles of exclusivity 

(competition between interpretations), stochasticity (allowing the interpretation to change) and 

adaptation (interpretations vary in stability), this auditory streaming model applies all three and 

more, for a model that includes segregation, predictive modelling, competition, stochasticity 

and adaptation (these last two are subsumed into adaptation). 

The model begins by segregating incoming sounds based on evidence of neural 

functioning from the primary auditory cortex, where prolonged exposure to an ABAB sequence 

will eventually cause suppression of B tones in the A stream and A tones in the B stream, 

resulting in two independently encoded streams of tones.  Streaming itself depends on 

frequency difference between A and B tones and the rate of presentation of the sequence, 

characteristics well established by van Noorden (1975).  Each stream then generates predictions 

about what is coming next, a process here proposed to be the same process that generates the 
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well-known mismatch negativity (MMN), a neural marker indexing departure from regularity.  

Once streams are formed and the model has made predictions about what is coming next, 

competition between alternative predictions is introduced and predictions that best match the 

incoming stimulus are selected as the dominant interpretation.  The model takes into account 

both local and global predictions as the sequence unfolds over time, where local predictions 

are more likely to support integration while global predictions can induce segregation over time 

as evidence for separate streams builds.  Finally, an adaptation mechanism is implemented in 

the model to account for the observation that bi-stability is present in both auditory and visual 

situations (Leopold & Logothetis, 1999; Pressnitzer & Hupé, 2006).  This mechanism simply 

allows interpretations in the foreground at any given time to weaken over time and allow 

another interpretation to ‘take over’.  The speed of the initial change from integration to 

segregation depends on stimuli parameters, as does the overall rate of change between percepts. 

To summarize, existing models of auditory streaming vary in approaches, goals and 

implementations.  Some models target multi-stability, competition and adaptability (Denham 

& Winkler, 2006; McCabe & Dehnam, 2006; Mill et al., 2013; Rankin et al., 2015), others 

focus on replicating van Noorden’s (1975) or their own behavioural data (Barniv & Nelken, 

2015; Krishnan et al., 2014; Wang & Chang, 2008).  Some models allow the creation of new 

streams (Barniv & Nelken, 2015; Krishnan et al., 2014; Rankin et al., 2015), while most are 

fixed.  However, with only one exception (Nix & Hohmann, 2007), they all rely heavily, if not 

exclusively, on frequency and timing information to inform the model.  This is most likely 

heavily influenced by the early work of van Noorden (1975) and Bregman (1990).  While these 

seem to function well by successfully modelling perceptual data, the stimuli in these 

experiments are reduced to two alternating frequencies, or in a few cases two voices (Nix & 
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Hohmann, 2007; Wang & Brown, 2006), far simpler than the complex sounds humans are 

exposed to in daily life, and also far simpler than music. 

In the next section, musical auditory streaming models will be presented.  While still 

generally focusing on frequency and timing, the level of abstraction of the information 

processed by the models is higher.  While for example Beauvois & Meddis (1991) model neural 

firing patterns, Duane (2013) models pitch distance and harmonic relationships between more 

than two simultaneous sound sources (i.e. a string quartet). 

4.2 Musical auditory streaming models 

 Before presenting existing musical auditory streaming models, it is useful to note the 

difference between voice separation and true auditory scene analysis.  While the former is tied 

to the score, the latter is a perceptual phenomenon and cannot be so easily defined.  The 

majority of existing models of musical ASA deal with voice separation, often seen as an 

engineering problem (Chew & Wu, 2004; Jordanous, 2008; Kilian & Hoos, 2002; Kirlin & 

Utgoff, 2005; Madsen & Widmer, 2006), while relatively few approach the problem concerned 

with perceptual accuracy (Cambouropoulos, 2008; Temperley, 2009).  However, these two 

phenomena are closely related and, as will be introduced in Section 8.3, the proposed model 

performs both voice separation and stream segregation, using the former to inform the latter. 

4.2.1 Perceptual principles 

Many musical ASA models have been built by codifying a number of perceptual 

principles (Cambouropoulos, 2008; Chew & Wu, 2004; Kilian & Hoos, 2002; Madsen & 

Widmer, 2006; Marsden, 1992; Szeto & Wong, 2003), where the most common principles are 

the temporal continuity and pitch proximity principles.  Together, these state that within a 

perceptual stream, notes are closer in time and closer in pitch than across streams.  An early 
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model aimed at improving music transcription is presented by Kilian & Hoos (2002).  In this 

model, polyphonic music is divided into slices where each note in a slice is assigned to a voice.  

The assignment is done via a cost function that reflects both the relationship between notes 

within the slice and between slices.  The added consideration of groupings within slices allows 

chords to be assigned to a voice, making this algorithm’s output perceptually accurate, where 

chordal accompaniment, in pop music for example, is typically perceived as one musical voice 

rather than multiple voices in unison. 

Chew & Wu (2004) developed a model based on units called contigs, a collection of 

vertically overlapping notes where the number of voices is constant within a contig.  Once a 

piece of music is divided into these contigs, the notes within each contig are separated into 

voices using the principle of pitch proximity.  Finally, voices from each maximal contig 

(contigs with the maximum amount of voices) is connected to the appropriate voice from the 

contig before and after it using a cost function that penalizes large leaps, continuing outwards 

until the extremities of the piece.  It also allows the algorithm to intuitively connect notes that 

had been broken up between contigs.  Though this algorithm performs very well on J.S. Bach’s 

Well-Tempered Clavier and Two- and Three-part Inventions, achieving voice separation with 

88.98% accuracy overall (84.39%, 99.29% and 93.35% respectively), it cannot be performed 

in real time and therefore is not a perceptually accurate reflection of musical ASA.  An addition 

to this approach was proposed by Ishigaki, Matsubara, & Saito (2011), where contig 

connections are prioritized by number of voices, where contig transitions that increase in voice 

count are connected first. 

Madsen & Widmer (2006) combine the perceptual principle of pitch proximity and real 

time processing to create an algorithm that performs highly accurate (best 97.58%) assignment 

of note transitions, termed soundness, (two notes in the same voice in the ground truth remain 
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in the same voice) and moderately accurate (best 73.76%) assignment of notes to the correct 

voice, termed completeness, for the same music by J.S. Bach as Chew and Wu’s (2004) 

evaluation, referred to as the ‘chewBach’ dataset.  Running a few sets of experiments testing 

various values for their cost function, they also implemented a pattern matching heuristic in 

one experiment, where if the last five intervals were present in the piece previously, that this 

pattern not be broken up into multiple voices.  This improved the algorithm’s performance in 

some cases, but not in all as the competition between the pattern matching and pitch proximity 

introduces other types of errors which are not described. 

Following in the footsteps of Killian & Hoos (2002), Cambouropoulos’ voice 

integration/segregation algorithm, or VISA (Cambouropoulos, 2008; Karydis, Nanopoulos, 

Papadopoulos, Cambouropoulos, & Manolopoulos, 2007; Makris, Karydis, & 

Cambouropoulos, 2016), also allows more than one note per voice, naming this the 

synchronous note principle.  This implementation differs from Killian & Hoos (2002), aiming 

to model vertical and horizontal grouping simultaneously and progressively as the music 

unfolds (though here knowledge of future events at any particular time is still necessary).  VISA 

accepts quantized MIDI data, ‘sweeping’ through a given work by processing vertical slices of 

music at each possible onset.  If a slice contains more than one note, the context in a window 

around that slice is examined: if co-sounding notes have different onsets and/or offsets, 

polyphony is assumed and the slice is divided into different voices; if co-sounding notes are 

synchronous, homophony is assumed and the slice is considered to be one voice.  Thus each 

slice is divided into multiple single-note clusters, or remains one multi-note cluster.  Each 

cluster is then linked to each voice from the set of previously detected voices and a cost function 

encoding the principles of temporal continuity and pitch proximity is calculated so that clusters 

closer in time and pitch to a particular voice are assigned to it.  The concept of pitch co-
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modulation is also incorporated into the latest version of the model (Makris, Karydis & 

Cambouropoulos, 2016), where synchronous streams moving in non-parallel motion are 

segregated.  Two additional constraints are added: voice crossings should be avoided, even if 

this results in a sub-optimal cost value, and the top voice (the assumed melody) should be 

minimally fragmented, where clusters can be further divided if necessary to fulfil this 

requirement. 

4.2.2 Score-based models 

Consulting musical scores is a less common, but informative way to gather insight 

about streaming.  In voice leading and orchestration, certain rules and conventions (more or 

less explicit) aid or deter the streaming percept, based on the goal of the composer.  Huron 

(2001) and Duane (2013) adopted this approach to explore streaming, albeit somewhat 

differently.  Huron (2001) used psychological constructs to derive existing and new voice 

leading principles, all supported by empirical research, either through the collection of 

participant data or score analysis.  The psychological constructs he explored are toneness 

(clarity of pitch), temporal continuity (preference for continuous over intermittent sounds), 

minimum masking (necessity for more space between simultaneous pitches as pitch descends), 

tonal fusion (consonance encourages fusion), pitch proximity (nearby pitches group together), 

pitch comodulation (simultaneous pitches moving together group together), onset synchrony 

(synchronous onsets promote integration), limited density (more than three voices cannot be 

perceived accurately), timbral differentiation (larger differences encourage segregation) and 

source location (larger distances encourage segregation).  The voice leading principles are the 

registral compass rule (voice leading is best between pitches F2 and G5), the textural density 

rule (there should be three or more parts; typically four), the chord spacing rule (wider intervals 

in lower voices), the avoiding unisons rule (voices shouldn’t share the same pitch), the common 
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tone rule (if a pitch can be repeated in a voice it should), the nearest chord tone rule (voices 

move to the nearest chord tone), the conjunct motion rule (if a pitch must change, a diatonic 

step is best), the avoiding leaps rule (smaller movement promotes integration within a voice), 

the part-crossing rule (parts should not cross), the part overlap rule (parts should not overlap), 

the parallel unisons, fifths and octaves rule (they should be avoided) and the consecutive 

unisons, fifth and octaves rule (they should be avoided).  All of these textbook voice leading 

rules are derived as realizations of empirically demonstrated psychological principles to 

promote integration within voices and segregation between voices.  Duane (2013) on the other 

hand analysed string quartets to find features in the music that encourage streaming.  Onset 

synchrony (percent synchronous onsets), offset synchrony (percent synchronous offsets), pitch 

comodulation (two lines moving in the same distance and the same direction) and harmonic 

overlap (measure of shared overtones in a given vertical interval) were calculated for pairs of 

measures coming either from different quartets or from the same quartet but always from 

different instruments.  For each pair, multiple regression using the four measures as predictors 

revealed that pitch onset and offset were the most important factors in predicting the percept 

of streaming, according to author and other participants’ annotations, followed by pitch 

comodulation and finally harmonic overlap.  Duane also made a distinction between textural 

streams and musical streams, where textural refers to voices within a work (e.g. violins doubled 

at the third form a stream) and musical refers to a whole piece of music (e.g. two marches form 

separate streams in some music by Charles Ives).  Harmonic overlap was not an important 

factor in forming textural streams but was for musical streams.  This is likely because harmony 

is usually a whole-work concept: all voices are involved in harmony at any point in time and 

so would not play a large role in forming textural streams within pieces. 



 
78 

 

4.2.3 Data-driven models 

Here data-driven models will be discussed, where algorithms are trained on music, 

learning real patterns rather than following rules imposed by the user. 

 Kirlin & Utgoff (2005) created VoiSe, a voice separation algorithm in two steps: first 

a predicate identifies whether two notes are in the same voice or not, and then notes are 

numbered based on this predicate, where notes in the same voice receive the same number label 

and notes in different voices receive different number labels.  Quite simply, notes with the same 

number label belong to the same voice.  The predicate is based on both pitch and time 

information, learned from a set of training data.  The soundness and completeness evaluation 

metrics varied widely in accuracy, depending on the training and test data: just above 40% at 

its worst and 100% at its best.  Surprisingly, the algorithm was only evaluated on three 3-

measure segments of J.S. Bach’s Ciaccona. 

Another data-driven approach is suggested by Jordanous (2008), who modifies Chew 

& Wu’s (2004) contig approach by replacing user-defined rules with probabilities acquired 

through training.  The training learns the likelihood of occurrence for each pitch in each voice, 

and the likelihood for each transition between pitches.  Once separated into contigs, the 

algorithm begins with marker contigs that have all possible voices present and whose voices 

are maximally far apart.  Voices are then connected between pairs of these contigs, working 

towards each other until connection is made.  The beginning and end of the piece are then 

processed from the first and last identified marker contig.  This approach performs better on 

music by J.S. Bach than on Beethoven string quartets, a new style of music for evaluating 

streaming models thus far, and comparably to other existing models such as Kirlin & Utgoff’s 

(2005), Chew & Wu’s (2004), and Madsen & Widmer’s (2006). 
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Temperley (Temperley, 2009) has worked extensively with probabilistic modelling of 

music (Temperley, 2007, 2008, 2013, 2014), specifically using a Bayesian approach to analyze 

the musical surface.  In his 2009 paper, Temperley introduced a unified probabilistic model of 

polyphonic music analysis which included metrical analysis, harmonic analysis and stream 

segregation.  The rationale is that these three processes are intimately related, both intuitively 

and with support from prior research.  Harmonies will almost exclusively change on a metrical 

beat and most often on a strong beat (based on an analysis of the Kostka-Payne corpus), which 

completely links harmony and meter, while streams tend to begin and end at metrically 

appropriate places such as a strong beat or the end of a metrical cycle respectively, linking 

streaming structure to meter, and harmony by extension.  The model contains two overarching, 

chronological processes: a generative process and an analytical process. 

The generative process begins with the meter, generating first a tactus level, followed 

by one beat structure level above and two below, defining the meter as simple or complex, and 

duple or triple.  Events (onsets, offsets, harmonic changes, beats, stream start and end) are 

restricted to pips, discrete timeline points 50ms apart.  Note onsets are generated before note 

offsets.  The harmonic structure is then generated, labelling segments of the piece with a chord 

root.  Harmonic changes are only allowed on a tactus beat, an acknowledged simplification.  

Movement by fifths is highly preferred, if a change is preferred at all.  Finally, a stream 

structure is generated: at each tactus beat, a decision is made as to whether an existing stream 

will continue or not, or whether a new stream should be generated.  Once all these structures 

are generated, a pattern of notes is generated to fit into these structures.  The model first decides 

whether a note will occur on a particular beat or not, determined by a combination of the 

probability of a note occurring based on the metrical level and a concept Temperley calls 

metrical anchoring, where a pitch is more likely to occur if there is already another pitch before 
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it.  The pitches are then generated to fit the harmonic structure determined.  Parameters for 

model generation can be set manually or by training on a corpus of monophonic music. 

The goal of the analytical process it to find the most probable metrical, harmonic and 

streaming structures for a given note pattern.  Since it is intractable to search the full problem 

space, the process is broken down into steps, similarly to the generative process.  The analytical 

process begins where the generation process ended: with streaming structure.  The model 

searches for a streaming structure where the number of streams is fairly small, there are not 

many rests within streams and pitch intervals within streams are small.  Additionally, two 

different streams cannot cross in pitch not occupy the same pip.  Metrical and harmonic analysis 

are then undertaken together, making use of the concept of the tactus-root combination (TRC), 

the combination of a tactus interval (between two tactus beats) and a chord root, where the 

probability of a given TRC depends only on the previous TRC and the probability of beats and 

notes in a given TRC depend only on that TRC itself. 

As no other directly comparable model exists, this unified probabilistic model was 

evaluated by its component parts.  The model’s metrical and harmonic analysis components 

compare favourably to Melisma (Temperley & Sleator, 2001) when evaluated on quantized 

and performed musical corpora.  The streaming analysis was not evaluated due to a lack of 

clarity as to what consists a correct response and no annotated corpora addressing this issue 

exist.  Melisma is a similar, module-based model of more general music perception, based not 

on probability but on a set of rules, or heuristics: it contains modules for meter extraction, 

segmentation, streaming, harmony analysis and key detection. 

4.2.4 Summary 

The models summarized above present a range of strengths and weaknesses.  First, 

general models of ASA (Section 4.1) are typically applied to very simple auditory scenes and 
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though it may be possible and eventually interesting to break down music to the neural firing 

patterns it creates, this has not yet been done, nor is it likely to happen soon.  Therefore, models 

of musical ASA are needed to approach the problem from a higher level, in this case symbolic 

musical events that can be identified as standalone perceptual entities.   Second, as previously 

mentioned, musical ASA and voice separation, though related, are different tasks and existing 

musical ASA models focus on the latter, musicological, problem rather than the psychological 

process of ASA.  Separating music into voices as they are in a score, while useful for 

engineering problems such as automatic transcription, does not tell us about how a listener 

parses that same music into meaningful streams such as melody and accompaniment.  Third, a 

systematic comparison of existing streaming models is non-existent due to the variety of stimuli 

tested, ranging widely in complexity.  However, the framework introduced below will combine 

the strengths of these models to synthesize an integrated framework for musical ASA and 

address some of these weaknesses.  This framework will allow the comparison of all influences 

to perceptual auditory streaming, as presented in Chapter 2, with each other as well as 

comparing different types of stimuli complexity.  To accomplish this, it is important to analyse 

music in real time without knowledge of the future; Cambouropoulos’ analysis by slice 

approach will be taken here.  Second, Temperley & Sleator’s module-based approach will be 

taken to integrate the many sources of information formulating musical ASA.  Finally, these 

modules will use probabilistic methods applied sequentially and simultaneously to tackle ASA 

as a perceptual construct applicable to a variety of stimuli. 

4.3 A new framework for musical ASA 

This thesis proposes a novel framework for an integrated, prediction-based streaming 

model, fusing top-down and bottom-up information as well as combining vertical and 

horizontal analysis to imitate human auditory scene analysis of polyphonic music.  This 
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information includes: auditory features, musical features, musical training, attention and 

expectation.  This framework makes use of predictive coding (Section 2.6), where predictions 

are generated from frequencies present in training data.  These predictions will be used to 

separate symbolic musical input into perceptual streams.  Predictions for different types of 

streaming information will be calculated in modules, which can be combined to produce a 

single streaming decision, with an identified melody stream and accompaniment stream(s). 

This framework will extend the prediction-based approach of the IDyOM model, for 

three reasons: 1) IDyOM has been behaviourally validated as a cognitive model of musical 

expectation; 2) IDyOM already employs multiple viewpoints, thus lending itself to a module-

based approach; and 3) IDyOM functions in real time, using only past and current information.  

The basic functioning of the model will be presented in the context of one viewpoint before 

being discussed in the context of the full range of information required for musical auditory 

streaming. 

4.3.1 Basic framework function 

This framework, to be implemented as a predictive model, will perform its analysis in 

real time following the example of Cambouropoulos’ VISA model, where music is divided into 

vertical slices in time, where each new event onset begins a new slice.  Events that span 

multiple slices are tracked so that they are linked together throughout the analysis.  For each 

slice, the model breaks these slices up into all possible stream structure combinations, with the 

restriction that non-adjacent voices cannot be a part of the same stream.  For example, in an 

SATB context, one might perceive all four voices as one perceptual stream, SATB, or each as 

its own stream, S-A-T-B, or the top voice accompanied by the bottom three, S-ATB, vice versa, 

SAT-B, and so on, but an ST-AB or STB-A combination are not possible.  The most probable 

continuation, given the preceding context (n-1 slices), is added to the context and the analysis  
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Figure 4.1. Illustration of a predictive module’s process, where predictions are generated for 
each potential streaming structure continuation.  These relationships are complex, therefore 
predictions will be focused on a single viewpoint per module, for example the interval 
structure of a slice. 

 

continues throughout the piece until all slices are organized into perceptual streams with 

corresponding average predictability in the form of information content.  Figure 4.1 illustrates 

this process. 

The first slice is treated slightly differently due to a lack of contextual information.  

Presumably like a human listener waiting to hear a piece of music for the first time, 

expectations would be biased towards the most common type of streaming structure heard 

previously.  Thus, the first slice will be divided into this most common streaming structure, as 

determined by the model through training.  This initial bias, as well as the evaluation of any 

output by this model will require data annotated with perceptual streaming information, which 

can be collected from listeners of various musical backgrounds.  Finally, to identify the melody 
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and accompaniment streams, the stream with the highest information content – in other words, 

the most interesting line – is labelled as melody (Chapter 8). 

Outlined above is the overall process of the framework.  This iterative analysis process 

occurs simultaneously in many modules, where each module takes symbolically encoded music 

as input, here MIDI, kern or text as per IDyOM’s current implementation and outputs 

information content based on the viewpoint information it models.  At each streaming 

assignment decision, the predictions are linearly combined across modules based on the relative 

perceptual salience (described in Section 4.4.2) of the viewpoints involved to produce a final 

 

Figure 4.2. An illustration of the proposed streaming model’s work flow.  At any point in the 
analysis, the model will consider the possible streaming structures of the next slice, for example 
the seven combinations of a four-voice work.  Each module will process a feature as described 
in Section 4.4.1, for example pitch interval.  The output of all feature-based modules are simply 
added together, with each module given a weight designated by the salience module, described 
in Section 4.4.2.  The streaming structure with the lowest combined IC, in other words the most 
likely continuation, is added to the existing context (see Figure 4.1). 
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stream assignment decision (Figure 4.2).  Therefore, it is important that each module is 

independent and does not rely on the output of another module to create its own. 

The remainder of this chapter presents the proposed implementation of all sources of 

streaming information (Section 4.4) followed by a description of the type of data needed 

(Section 4.5) and a discussion of potential future research based on the framework (Section 

4.6), and its limitations.  In Section 4.4.1, acoustic and musical sources of streaming 

information will be discussed in the context of feature-based modules.  In Sections 4.4.2-3, the 

particular challenges of attention and timbre respectively will be discussed as well as their 

proposed implementations.  Musical training and individual listener’s musical knowledge can 

be modelled using IDyOM’s long-term memory implementation.  This will be discussed in 

Section 4.4.4.  Finally, in Chapter 2, expectation was also identified as a source of streaming 

information.  As it is prediction-based, expectation is inherently included in the framework.  

Sections 4.7 and 4.8 will compare this framework to a selection of models reviewed in Sections 

4.1-2 and proposes ways in which the framework might be used by researchers from differing 

backgrounds respectively. 

4.4 Streaming information sources in the framework 

4.4.1. Feature-based modules 

Auditory modules. Based on existing research, modules can be created to process pitch 

distance, loudness difference, onset synchrony, spatial differences (if relevant) and timbre 

distance to name a few.  In each case, a relevant and meaningful viewpoint must be developed 

in order for IDyOM to learn its patterns in music and make predictions.  These already exist 

for pitch, interval, scale degree, inter-onset interval and duration, to name a few of the most 

commonly used in existing research (for a full list, see Chapter 3).  Harmonic, timbral and 
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spatial viewpoints are yet to be implemented, though work on harmonic viewpoints is ongoing 

in the Music Cognition Lab. 

Musical modules. As presented in Chapter 2, parsing musical scenes is influenced by 

a number of features that play a particular role in the musical auditory scene: harmony, phrase 

boundaries, repetition and similarity.  Harmony strengthens integration in a piece of music 

overall, where more consonant harmonies (Conklin & Bergeron, 2010) result in the strongest 

integration.  A harmony-processing module can be implemented to reflect this, where an 

appropriate harmonic viewpoint is developed to learn and predict harmonic patterns. 

Phrase boundaries are also a helpful guideline for predicting streaming structure as 

phrases are typically contained to a single streaming structure throughout.  Some models use 

this to their advantage, easily preventing voice-crossing within segments by analysing 

segments rather than individual pitches (Chew & Wu, 2004; Ishigaki et al., 2011; Madsen & 

Widmer, 2006; Rizo et al., 2006). IDyOM already performs real-time phrase boundary 

detection, therefore this information could be harnessed in its own module to inform streaming 

decisions, for example by biasing the decision towards inertia – in other words keeping the 

same streaming structure – between phrase boundaries and allowing more flexibility to change 

streaming structure at phrase boundaries.  This could be implemented by outputting a lower IC 

for the streaming structure that matches the immediately previous context between phrase 

boundaries, and outputting a uniform IC across all potential streaming structures at phrase 

boundaries. 

 Repetition and similarity are closely related (see Section 2.2), and inform auditory 

streaming in a similar way: things that are repeated or similar are more likely to originate from 

the same source.  Repetition is inherently modelled in IDyOM through the STM model, where 

repeated sequences result in low IC as they become increasingly predictable.  However, as we 
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have seen in the context of music, the source can be the overall piece of music performed by 

either a soloist or an ensemble, or the melody in a piece of music, played by one instrument, or 

a group of instruments.  This complicates repetition and similarity in music substantially, as 

comparisons must be made between the similarity of phrase variations played by the same 

instrument and exact phrase repetitions played by two different instruments: which is most 

similar?  Is an exact phrase repetition played by another instrument part of the same perceptual 

stream, or is it considered a separate, perhaps temporary stream?  Further research is required 

to answer these questions and guide the implementation of modules incorporating repetition 

and similarity information into this integrated streaming model. 

4.4.2 Including attention 

 Though most auditory and musical aspects of auditory streaming described above can 

be relatively easily modelled, modelling attention remains elusive and timbre remains a 

challenging aspect of music to understand.  The difficulties of studying and modelling attention 

have previously been summarized in Section 2.3.  An attention module in an integrated 

framework for auditory streaming would modulate the relative importance, or weight, of all 

other modules informing the final streaming structure decision for any given musical phrase.  

This is equivalent to determining the relative salience of all features informing auditory 

streaming.  This would be once again done using information content, where the relative mean 

IC proportions of feature categories (i.e. pitch, time, harmony) for each stream built up in the 

model so far is translated into a corresponding weight accorded to the output of feature-based 

modules.  For example, if the mean IC of pitch interval for all existing streams is 1.2 times the 

mean IC of inter-onset interval for all existing streams, the IC output of all pitch-related 

feature-based modules – auditory and musical – making predictions about the streaming 

structure of the next slice will be weighted 1.2 higher than time-related feature-based modules 
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for those same streaming structures.  The work presented in Chapter 6 of this thesis will explore 

this hypothesis. 

4.4.3 Timbre 

Commonly defined as the aspects of sound that are not pitch, duration or loudness, a 

straightforward definition of timbre still eludes researchers.  Attempts to break the concept 

down result in either many components with limited psychological interpretation in the case of 

MIR or two main temporal and spectral components that still fail to fully explain timbre in the 

case of music cognition (Alluri & Toiviainen, 2010; Caclin, McAdams, Smith, & Winsberg, 

2005; Lakatos, 2000; McAdams et al., 1995).  While determining the distance between pairs 

of timbres in a two-dimensional space and associating this with an integration or segregation 

threshold is possible (Sauvé, Stewart, & Pearce, 2014), musical timbre presents two particular 

challenges: 1) timbre changes as a function of pitch; and 2) music contains timbral blends, as 

a result of different instruments playing simultaneously in the case of ensemble music.  The 

first challenge is particularly relevant to solo instrumental music, where timbral differences 

between voices (i.e. piano) or across a piece of music (i.e. flute) are much more subtle than in 

ensemble music.  How important is timbre as a streaming cue in these situations?  Furthermore, 

timbre changes differently as a function of pitch for different instruments, making the creation 

of an accurate model of solo timbre very complex to begin with; what about when instruments 

combine?  The challenge of instrumental blend has begun to be investigated for pairs of 

instruments (Kendall & Carterette, 1991; Sandell, 1995).  While these studies provide a much-

needed start into understanding timbral blend, this line of research is only still in its infancy, 

and much work is needed to develop timbral understanding for the blend of not only two 

instruments, but many, in order to model timbral perception in large ensembles such as 

orchestras. 



 
89 

 

 It is clear that many questions still remain to be answered in order to better understand 

timbre perception, and I would argue that this issue is the most important to address in order to 

better model musical ASA.   Existing research has established timbre as a relevant streaming 

cue (Albert S. Bregman & Pinker, 1978; Handel & Erickson, 2004; Iverson, 1995; Marozeau 

et al., 2013; Sauvé, Stewart, & Pearce, 2014; Singh & Bregman, 1997) and the art of 

orchestration is concerned with choosing the most appropriate instruments for achieving the 

desired auditory scene.  The same is true in composition, where timbre is one of the most 

important cues for segregating the melody from the accompaniment, or creating one unified 

sound mass.  Therefore, if timbre perception can be appropriately modelled, so can musical 

ASA and the challenge in the context of this framework is to create a meaningful viewpoint 

that can do so. 

4.4.4 Including musical training 

 A further challenge of modelling musical auditory scene analysis is the influence of 

individual differences on perception.  In some cases, these even exceed musical training group 

definitions (Dean et al., 2014a).  Research in musical training suggests that it is a prolonged 

and focused exposure to music that causes differences in perception between musicians and 

non-musicians (Fujioka et al., 2006, 2004; Habib & Besson, 2009; Micheyl et al., 2006), but 

only for domain-specific (i.e., musical) tasks (Bigand & Poulin-Charronnat, 2006; Carey et al., 

2015).  Those who receive Western musical training are also more likely to be exposed to and 

understand Western classical music, where non-musicians may have less exposure to this genre 

(though exposure is unlikely to be zero) and more to popular genres such as rock, pop or dance.  

Musicians will likely have been exposed to popular genres as well; it is difficult to avoid music 

in everyday life and individuals have probably been exposed to more genres than they realize.  
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Therefore, it is the relative contribution of each genre’s knowledge that will help define a 

listener’s background. 

 IDyOM has been shown to differentiate between jazz and classical music when trained 

on each of these specific genres of music (Hansen et al., 2016) by generating lower information 

content for music in the same genre it was trained on (see also van der Weij, Pearce, & Honing, 

2017).  This can theoretically be extended to simulate individual or groups of listeners’ musical 

backgrounds, including different cultures, where IDyOM’s long-term model can be trained on 

any chosen (currently restricted to monophonic) pieces of music.  The choice of training 

material then becomes crucial as it influences the information content output of the core model, 

which informs melody selection.  As melody selection is based on the highest average 

information content relative to other voices, the absolute IC value does not matter (i.e., higher 

IC for a lesser known genre will be higher for the entire piece of music, not just one voice); 

however, it is possible that highly idiomatic instrument-specific figures (e.g., violin 

arpeggiations) become well-learned and receive low information content, potentially low 

enough to push a melody into a non-melodic position according to the melody extraction 

module.  This possible limitation should be explored in future research. 

4.5 Training data 

 One of the biggest obstacles to studying perceptual stream segregation is that there is 

no existing annotated corpus of data identifying perceptual streams.  This makes streaming 

pattern learning and evaluation of any model output currently impossible.  However, as soon 

as a corpus is created, such models can begin to be tested.  This particular framework requires 

the labelling of perceptual streams in its symbolic music input, and might look something like 

the following: for each slice, the relationship between each voice is labelled as integrated (0) 

or segregated (1), so that a four-voice slice may have a completely integrated streaming 
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structure (SATB) – [(0, 0, 0) (0, 0) (0)] – or a melody and accompaniment – [(1, 1, 1) (0, 0) 

(0)].  In this notation, each group of integers represents the relationship between pairs of voices, 

i.e. [(SA, ST, SB) (AT, AB) (TB)].  In this way, the model can learn which features result in 

vertical integration and which features result in vertical segregation in combination with 

sequential patterns.  This vastly expands the number of transitions being calculated as the 

model considers such probabilities as the transition between a three-voiced stream with a 

particular set of pitches to a two-voiced stream with another particular set of pitches or any 

other combination of voices.  Therefore, it is likely that basic viewpoints, such as chromatic 

pitch, become irrelevant as they would be much too situationally specific, and the model learns 

best by detecting interval patterns, such as parallel movement (i.e. parallel third and sixths are 

common but not fifths or octaves) between voices in a same stream, or diverging movement 

that leads to voices splitting into different perceptual streams. 

 This type of data is also crucial to model evaluation, where a ground truth is needed.  

While perceptual stream segregation is subjective, a representative ground truth can be 

generated from a wide range of listeners.  It would also be possible to collect ground truths for 

different types of listeners (i.e. classical musicians, rock musicians, piano players, non-

musicians) and compare this ground truth to model outputs trained on corpora approximating 

these listener profiles. 

 While the collection of such a corpus is a significant undertaking, it would add 

significant value to the field of musical auditory scene analysis research.  However, as this is a 

theoretical framework at this stage, this collection was not done as part of this thesis. 

4.6 Model comparisons 

In this section, the proposed framework just presented will be compared to a selection 

of existing models of auditory stream analysis, identifying potential areas of improvement 
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while demonstrating good generalizability.  Comparisons will be made with the CHAINS 

model by Schröger et al., (2014), Denham & Winkler’s (2006) predictive model of auditory 

streaming and Cambouropoulos’ VISA model (Cambouropoulos 2008; Karydis, Nanopoulos, 

Papadopoulos, Cambouropoulos, & Manolopoulos, 2007; Makris, Karydis, & 

Cambouropoulos, 2016).  These were selected to be representative of high- and low-level 

streaming analysis models applied to both musical and non-musical stimuli. 

CHAINS (Schröger et al., 2014), is an implementation of the Auditory Event 

Representation System (AERS; Section 4.3.1).  While a preference for regularity and 

competition between stream organizations are implemented in the proposed framework, multi-

stability as it is understood in CHAINS – switching between one and two streams – is not.  It 

is possible to change streaming structure in the proposed framework, but these changes include 

more than the two options considered in CHAINS.  The phenomenon of switching between 

integrated and segregated percepts has only been studied in any depth with very simple stimuli 

(Pressnitzer & Hupé, 2006; Pressnitzer et al., 2011).  Presumably, musical stimuli are more 

stable, where a change in percept might be accompanied by an important change in texture and 

percepts would remain stable for the duration of a musical phrase at least, as implemented in 

the framework.  Furthermore, the proposed framework, like CHAINS, builds streams using 

predictive processes.  Therefore, the proposed framework subsumes the CHAINS model. 

Similar to CHAINS, Denham & Winkler’s (2006) auditory streaming model is low-

level and deals with simple, monophonic tone sequences.  Inspired by a combination of 

neurophysiological and behavioural evidence from auditory research and visual models of bi-

stability, this model incorporates the concepts of segregation, predictive modelling, 

competition and adaptation.  While segregation is established by relative suppression of neural 

activity between different tones, streams are formed by regularity detection, where each stream 
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becomes its own predictive model.  While this is an interesting approach to using predictive 

processes to perform auditory streaming analysis, this currently only applies to monophonic 

sequences, while the proposed framework extends to polyphonic contexts.  Finally, adaptation 

is included in the proposed framework as it can flexibly change percepts over time, with each 

musical slice labelled with its own streaming structure. 

Though the proposed framework conceptually subsumes these two low-level models of 

auditory streaming, it is worth explicitly considering whether the proposed framework is 

capable of processing similar simple sequences, having been primarily designed for polyphonic 

musical input.  In its current formulation, monophonic input would lead to only one voice being 

created by the model and therefore to a single integrated stream, as there would be no other 

alternative.  It would be necessary to allow the segregation of sequential events into separate 

streams, where perhaps sharp increases in information content might signal the presence of a 

new stream. 

Finally, the VISA model (Cambouropoulos, 2008) performs both vertical and 

horizontal integration/segregation analysis, in that order, on a range of musical textures by 

using the perceptual principles of temporal continuity, pitch proximity and pitch co-

modulation.  VISA’s strengths include that it does not a priori establish a fixed number of 

streams, a strength shared by the proposed framework, and that it can be adjusted to function 

in real time.  The proposed framework incorporates all of VISA’s perceptual principles and 

adds information, thus subsuming VISA. 

To summarize, while the proposed framework is comparable to and theoretically 

subsumes a number of existing auditory streaming models spanning high- and low-level 

processes and simple and complex stimuli, addressing the majority of the same issues as these 

models, some discrepancies can be identified, targeting differences between the types of stimuli 
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handled.  Primarily, the proposed framework is restricted to polyphony, where monophonic 

input can only produce a single integrated streaming percept as output.  Importantly, the data 

needed to implement the proposed framework does not yet exist, keeping it squarely in the 

realm of theory until such data can be produced.  These comparisons have demonstrated the 

scope and limits of the generalizability of the proposed framework, where generally concepts 

associated with auditory streaming are well covered while details of implementation for 

varying inputs are limited. 

4.7 Sample use cases 

 To demonstrate the framework’s flexibility and collaborative potential, here are two 

examples of how researchers from differing disciplines might use the proposed framework. 

Musicology. Musicological analysis is score-based (e.g., Duane, 2013; Huron, 2001), 

where analysis is typically concerned with identifying aspects of the musical surface that 

inform perception.  A musicologist might be interested in investigating particular auditory 

features such as the relative explanatory power of pitch and loudness, as given by notation and 

dynamics respectively on collected streaming annotations.  These two modules can be used 

together or in isolation, where the relative weight of each can be systematically manipulated.  

Thus, the relative weight combination of the two modules that best explain the variance in the 

streaming annotation data provide new information about how the brain uses information that 

is specifically encoded on a musical score. 

 Neuroscience. Neuroscience, on the other hand, is concerned with the neural 

mechanisms behind perception and cognition, modelling neural activity at a very low level.  

While such low-level analysis is not currently implemented in the framework, it is possible to 

add such low-level processing modules, where these might operate on pairs of voices, a simpler 

stimulus input for which most neural-based streaming models are designed.  These low-level 
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modules could similarly be designed to interpret neural firing patterns induced by the analysed 

voice pair to produce a streaming decision. 

This type of comparison between approaches provides a valuable opportunity to obtain 

converging evidence for a concept, for example that small pitch distances promote integration, 

and the potential for increased collaboration across disciplines, where a musicological module 

can be compared to a neural module, and ideas from one discipline can be tested by another 

through a different implementation, all within the same overarching framework.  This variation 

in analysis levels also allows the exploration of concepts at various time scales.  For example, 

this may confirm the primacy of pitch in segregation at the neural and cognitive stages, while 

harmonic movement may only be relevant in higher-level cognitive processing. 

4.8 Limitations 

 A current practical limitation of this framework, based on known use of IDyOM, is 

long processing time.  It is possible that the brain, if indeed making use of mechanisms such as 

statistical learning, simply has more computing power than current computers, resulting in real-

time, millisecond processing of acoustic information.  However, it is also possible that the brain 

is more parsimonious than previously thought and thus exploring parsimony with respect to 

the information used when making streaming decisions is a useful place to begin in order to 

reduce processing time.  This will be discussed further when the framework is re-evaluated in 

Chapter 9. 

 An important theoretical limitation is that the primary assumption made by the model, 

that statistical learning approximates predictive processes in the brain, is based on a single 

broad theoretical framework, where if this is ever falsified, the entire framework becomes 

invalid.  Despite this, it remains that assumptions must be established in order to investigate a 
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theory in new and interesting ways, and to allow it to be disproven.  Furthermore, there is a 

highly established precedent in the literature for the use of this theoretical framework. 

 This framework also assumes a linear combination of module output, where all feature-

based module outputs are simply added.  While their relative contribution to the final 

information content value is modelled by relative salience, the model does not account for the 

possible discrepancies in time scales at which various parameters operate, treating all equally.  

For example, while it is possible that pitch is a strong influence in onset to onset streaming 

perception, harmony is likely to play an important role over a longer period of time.  While this 

approach captures harmonic information, the scale may not be accurate.  It will be important 

to take this limitation into account in investigating auditory streaming using this framework, 

and investigate potential solutions to overcome it. 

 Finally, as a high-level, cognitive framework, this proposal contains no direct 

physiological model.  While this was a motivation for the creation of this framework, it is 

important to recognize its restriction to higher-level concepts, thus limiting compatibility and 

comparability with low-level, neural implementation models of auditory streaming. 

Aside from these limitations, the proposed framework described in this chapter relies 

on current theories and empirical evidence to create a tool for musical auditory scene analysis 

research that is flexible, integrative and collaborative by design.  With further formal 

specification, quantification and implementation, the framework can potentially allow 

researchers to flexibly investigate subsets of auditory scene analysis, working together to 

improve understanding of the human auditory system, and the brain. 

4.9 Conclusion 

Thus far, this thesis has presented a theoretical integrated framework for musical ASA, 

focused on using prediction as a unifying concept.  The remaining chapters will be dedicated 
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to better understanding five aspects of music perception selected from this proposed 

framework: expectation generated by rhythm, musical emotion, complexity, relative salience 

of musical parameters and melody extraction.  Initially, the effects of timbre, attention and 

musical training on auditory streaming will explored in Chapter 5. Then, with IDyOM 

validation previously focused on pitch viewpoints, Chapter 6 will validate the temporal 

viewpoints onset and inter-onset-interval, further supporting IDyOM as a cognitively valid 

predictive model of musical expectation.  Next, musical expectations as generated by pitch and 

timing aspects of music will be linked to real-time emotional response in listeners, as measured 

by arousal and valence.  In Chapter 7, the hypothesized link between information content and 

perceived complexity, and complexity and salience, will be tested.  Chapter 8 will present an 

extension of IDyOM that uses two prediction-based hypotheses to extract melody from a 

symbolic polyphonic context: melodies are internally predictable, and they are the most 

interesting (unpredictable) voice in a polyphonic work.  This model will be evaluated on a 

selection of string quartets by W.A. Mozart and chorales by J.S. Bach.  The final chapter will 

re-evaluate the theorized framework presented above in the context of the results provided from 

testing these five concepts. 
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5 Attention but not 
musical training 
affects auditory 
grouping 

 

 

The role of timbre as an auditory cue for auditory streaming was briefly introduced in 

Chapter 2, more specifically Section 2.1 focusing on basic auditory features.  This chapter will 

investigate timbre as a streaming cue, exploring the potential influences of listener background, 

attentional set and prior expectation on the streaming percept.  Furthermore, while timbre is an 

established streaming cue, stimuli are always simplified for finer control; here, the use of 

ecological stimuli confirms timbre as such a cue in an increasingly more natural context, using 



 
99 

 

both the previously introduced ABA paradigm (Section 5.2) and a more ecological paradigm, 

the interleaved melody paradigm (Section 5.4). 

5.1 The study of timbre perception 

Timbre is a complex auditory parameter and timbral perception has been investigated 

in detail using both synthesized tones and real instrumental sounds (Alluri & Toiviainen, 2010; 

Caclin, McAdams, Smith, & Winsberg, 2005; McAdams et al., 1995).  The most common 

method of investigating timbre has been multidimensional scaling, or MDS.  Based on 

dissimilarity ratings between pairs of timbres, sounds are mapped into a multi-dimensional 

space representing perceptual distance. In research to date, three dimensions seems to provide 

an optimal representation of perceptual timbre space; though the first two are fairly stable across 

experiments, the third is less well established.  The first two represent log rise time (the attack), 

and spectral centroid while the third dimension that emerges is usually a spectro-temporal 

feature such as spectral flux or spectral irregularity.  One of the biggest issues with this research 

however is that in most cases the rated sounds are synthesized (though see Kendall & Carterette, 

1991; Lakatos, 2000 for examples of MDS using natural stimuli).  Besides this, our perceptual 

system is not used to hearing synthetic sounds such as these and may process them differently 

than natural sounds (Gillard & Schutz, 2012).  Therefore, it is important to complement studies 

using controlled synthesized tones with investigations using natural sounds. 

The role of musical training has been extensively studied in the context of auditory 

skills, including auditory streaming (François et al., 2014; Zendel & Alain, 2009).  As a result 

of training, musicians are more sensitive to changes in auditory stimuli based on pitch, time 

and loudness for example (Marozeau et al., 2013; Marozeau, Innes-Brown, Grayden, Burkitt, 

& Blamey, 2010), with discrimination thresholds being lower in musicians than in non-

musicians.  One problem with treating musicians as a single category is that differences between 



 
100 

 

instrumentalists may be missed (Tervaniemi, 2009).  Pantev and colleagues (Pantev et al., 2001) 

found that certain instrumentalists were more sensitive to the timbre of their own instrument 

than to others, as measured by auditory evoked fields (AEF).  Violinists and trumpet players 

were presented with trumpet, violin and sine tones while MEG was recorded.  Both 

instrumentalists presented stronger AEFs for complex over sine tones, and stronger AEFs still 

for their own instrument.  In a similar study (Shahin et al., 2008), professional violinists and 

amateur pianists as well as young piano students and young non-musicians were presented with 

piano, violin and sine tones while reading or watching a movie and EEG was recorded.  Gamma 

band activity (GBA) was more robust in professional musicians for their own instruments and 

young musicians showed more robust GBA to piano tones after their one year of musical 

training.  Furthermore, Drost, Rieger, & Prinz, (2007) found that pianists and guitarists’ 

performance on a performance task was negatively affected by auditory interference, but only 

if it was their own instrument.  Taking a step further and using more ecological stimuli, 

Margulis, Mlsna, Uppunda, Parrish, & Wong, (2009) explored neural expertise networks in 

violinists and flautists as they listened to excerpts from partitas for violin and flute by J. S. 

Bach.  Increased sensitivity to syntax, timbre and sound-motor interactions were seen for 

musicians when listening to their own instrument.   

More recently, pianists, violinists and non-musicians listened to music during fMRI 

scanning (Burunat et al., 2015).  The authors investigated the effects of musical training on 

callosal anatomy and interhermispheric functional symmetry and found that symmetry was 

increased in musicians, and particularly in pianists, in visual and motor networks. They 

concluded that motor training, including differences between instrumentalists, affects music 

perception as well as production.  Other research has investigated differences between types of 

musical training. For example, one study used EEG to show that conductors have improved 
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spatial perception, when compared to non-musicians and pianists (Nager et al., 2003).  Another 

line of research investigates pianists’ formation of action-effect mappings due to the design of 

their instrument (Baumann et al., 2007, p. 200; Drost, Rieger, Brass, Gunter, & Prinz, 2005; 

Repp & Knoblich, 2009; Stewart, Verdonschot, Nasralla, & Lanipekun, 2013). 

However, such specific effects of instrumental training have not yet been observed in 

auditory streaming, where an effect would be seen by a change in streaming threshold. Two 

studies, presented in Sections 5.2 and 5.4, test the hypothesis that due to increased sensitivity 

to a particular timbre, it would take less time to detect two separate auditory objects when one 

of these objects is one’s own instrument.  These use the ABA streaming paradigm in the first 

instance, and a more ecologically valid paradigm called the interleaved melody paradigm in the 

second.  Another third study, presented in Section 5.3, is a control study examining the effects 

of prior expectation on streaming perception. 

5.2 Study 1: Timbre as a streaming cue 

The ABA_ paradigm (van Noorden, 1975) is used here and timbre is manipulated 

instead of pitch.  While the timbre of a standard sequence remains static throughout a given 

trial, a target sequence morphs from one timbre to another, creating a qualitative change from 

a galloping ABA_ rhythm to the perception of two simultaneous, isochronous A_A_A and 

B___B___B patterns as the standard and target sequences’ timbres become more and more 

different, or vice versa as the timbres become more similar.  The point of change in rhythmic 

perception reflects the detection of a new sound object, or, in the other direction, the merging 

together of two sound objects.  The sound objects (standard and target streams) are defined 

solely by their timbre, as pitch, length and loudness are controlled.  Based on previous work 

(Sauvé et al., 2014), detection of a sound object defined by one’s own instrumental timbre is 

predicted to occur sooner than for other instrumental timbres, when the participants’ instrument 
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is the target (i.e. it is ‘new to the mix’ and captures attention) and later than for other 

instrumental timbres when the instrumentalists’ timbre is the standard (i.e. it already holds 

attention and delays perception of the arrival of a new sound object).  This previous study 

compared seven different instrumental timbres in the same ABA_ paradigm, while additionally 

exploring the effect of attention on streaming by manipulating participants’ attentional focus.  

Results guided the design of the current study by providing target effect sizes, refining the test 

timbres and allowing the elimination of the attention manipulation, as it was confirmed to have 

a significant impact on the perception of auditory streams. 

5.2.1 Participants 

Participants were 20 musicians (13 females, average age 34.45; SD = 7.59; range 21-

69) recruited from universities and the community.  Their average Gold-MSI score 

(Müllensiefen et al., 2014) for the musical training subscale was 40.15 (SD = 4.23); 5 were 

violinists, 6 were cellists, 5 were trumpet players and 4 were trombone players.  Ethical 

approval was obtained from the Queen Mary Ethics Committee, QMERC1333. 

 

 

 

 

Figure 5.1. Illustration of ABA_ paradigm, ascending and descending, modifying timbre 
only. 
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5.2.2 Stimuli 

All four timbral sounds (violin, trumpet, trombone, cello) were chosen from the MUMS 

library (McGill University master samples collection on DVD, 2006) with pitches spanning an 

octave  (all 12 pitches between A220 to G#415.30).  The files were adjusted to equal perceptual 

length of 100ms and equal loudness, based on the softest sound.  A 10ms fade out was applied 

to each timbral sound.  All editing was done in Audacity and the final product was exported as 

a CD quality wav file (44,100 Hz, 16 bit).  See Appendix A for full details. 

Using a metronome in Max/MSP 6, the standard sequence was presented by playing a 

selected timbre with an inter-onset interval of 220ms.  The target sequence was presented using 

another metronome at a rate of onset of 440ms, beginning 110ms after the standard sequence 

to create the well-known galloping ABA_ pattern (van Noorden, 1975).  The target sequence 

was a series of 100ms sound files representing a 30s morph between the standard timbre and 

the target timbre, achieved using a slightly modified Max/MSP patch entitled ‘convolution-

workshop’.  This patch is distributed by Cycling ‘74 with Max/MSP.  The target sequence 

morphed from standard to target timbre in the ascending condition, creating a galloping to even 

rhythm change, and from target to standard timbre in the descending condition, creating an 

even to galloping rhythm change (see Figure 5.1).  Each trial ended when the participant 

indicated a change in perception or after 30s if participants did not reach a change in perception. 

5.2.3 Procedure 

The experiment was coded and run in Max/MSP 6, with output presented through 

headphones and input taken from mouse clicks.  Participants were first presented with a 

practice block with instructions and an opportunity to listen to each timbre and rhythm 

separately. Up to four practice trials were included in the block and questions were welcomed.  

Participants then began the first of two experimental blocks. 
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For each trial, participants indicated by clicking a button on the screen at which point 

the galloping sequence became perceived as two separate streams of standard and target tones, 

or the opposite for descending presentation.  This point was recorded as the percent of time 

passed in the trial, which equates to the percent of morphing at that time.  Each trial lasted a 

maximum of 30s, at which point the trial ended automatically and a value of ‘-1’ was recorded, 

indicating that the participant had not reached a change in perception on that trial.  Trials were 

presented in two blocks, and participants were instructed to indicate a change in rhythm as soon 

as it was perceived for the ascending block and to hold on to the original rhythm as long as 

possible for the descending block.  Together, this gives two measures of the fission boundary 

(van Noorden, 1975).  The fission boundary was measured instead of the temporal coherence 

boundary due to its higher sensitivity for detecting timbral effects in perception, and due to 

confirmation that the fission and temporal coherence boundaries are separate phenomena that 

can be manipulated by instruction (Sauvé et al., 2014).  For every block, every timbre 

modulated to every other timbre once for a total of 12 trials (4 timbres each modulating to the 

3 other timbres), each separated by 4s and each at a different pitch, to reduce trial to trial 

expectancy and habituation.  Participants were randomly assigned to one of two different orders 

to control for any order effects. 

Once both blocks were completed, participants filled out the musical training sub-scale 

of the Gold-MSI (Müllensiefen et al., 2014). 

5.2.4 Analysis 

Effect sizes and confidence intervals were used in the analysis of Experiments 1a and 

1b, in addition to traditional methods.  These methods are based on Cumming (2012; 2013), 

who advocates wider use of effect sizes and confidence intervals in the research community to 

increase integrity, accuracy and the use of replication.  According to Cumming, the low 
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occurrence of null results in the literature and a pressure towards new studies and away from 

replication translates into misrepresentation and inhibition of scientific knowledge. Cumming 

advocates the use of effect sizes, confidence intervals, and meta-analysis in place of null 

hypothesis significance testing (NHST).  This method is preferred because confidence intervals 

give more information both about the current effect size, and about potential future replications 

by offering a range of potential values for a measure, rather than one indicator of significance 

or non-significance.  For more information about effect size and confidence interval methods, 

see Cummings’ book, The New Statistics (2012) or the corresponding article for a shorter 

summary (2013). 

5.2.5 Results 

Percentage of time passed (degree of morphing) is the dependent variable analysed; for 

descending trials the percentage was subtracted from 100 so that ascending and descending 

conditions can be compared directly.  A low percentage indicates early streaming in the 

ascending condition and late integration in the descending condition while a high percentage 

indicates late streaming in the ascending condition and early integration in the descending 

condition.  Furthermore, trials in the ascending condition where the percentage exceeded 100 

were replaced with 100 and trials in the descending condition where the percentage was 

negative were replaced with 0.  These are all cases where the participant listened to the trial for 

more than 30 seconds and still did not hear a change in rhythm.  Five participants’ data were 

removed because they did not hear a change in rhythm in more than half of the trials, in either 

or both blocks (two violinists, two cellists and a trumpet player).  The difference between mean 

percentage for ascending and descending conditions was 1.2, 95% CI [-4.4, 6.8].  As the CIs 

include zero, the difference was not significant.  However, mean percentage of time passed was 

significantly higher for the first block of trials than the second, with a difference of 10.6 [2.6, 
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18.6] for the ascending and 10.7 [3.1, 18.1] for the descending conditions.  As both CIs do not 

include zero, the difference is significant. 

Effects of specific instrumental training were investigated next.  Data were grouped by 

instrumentalist and then sub-grouped by standard timbre.  For violinists, mean percent time 

passed when violin was the standard timbre was 56.5 [50.7, 62.3], mean percent for cello was 

59.8 [53.5, 66.1], mean percent for trumpet was 65.8 [51.8, 79.8] and mean percent for 

trombone was 64.6 [50.8, 78.4].  See Table 5.1 for details of all instrumentalists.  Data were 

then sub-grouped by target timbre.  When violin was the target timbre, mean percent for 

violinists was 62.1 [50.0, 74.2], mean percent for cellists was 48.2 [36.9, 59.5], mean percent 

for trumpeters was 54.5 [44.5, 64.5] and mean percent for trombonists was 48.4 [38.1, 58.7].  

See Table 5.1 for details of all target timbres.  Figure 5.2 displays results graphically. 

 Thresholds for an instrumentalists’ own timbre were hypothesised to be lower when 

Table 5.1. Mean percent of trial duration by standard and target timbre, and by instrumentalist, 
with 95% confidence interval margins of error (MOE). 

  Mean Duration ± MOE 

 Violin Cello Trumpet Trombone 

St
an

da
rd

 T
im

br
e Violinist 56.5 ± 5.8 59.8± 6.3 65.8 ± 14.0 64.6 ± 13.8 

Cellist 50.7 ± 12.0 46.3 ± 12.1 55.7 ± 11.9 47.8 ± 11.0 

Trumpeter 53.7 ± 11.8 50.8 ± 6.6 50.0 ± 10.3 59.6 ± 12.1 

Trombonist 49.4 ± 13.9 57.0 ± 9.1 48.0 ± 9.9 39.5 ± 9.5 

T
ar

ge
t 

T
im

b
re

 Violinist 62.1 ± 12.1 62.1 ± 13.4 62.9 ± 9.1 62.0 ± 9.8 

Cellist 48.2 ± 11.3 51.3 ± 11.4 46.8 ± 13.9 53.2 ± 11.6 

Trumpeter 54.5 ± 10.0 47.3 ± 9.0 67.1 ± 11.4 49.2 ± 9.8 

Trombonist 48.4 ± 10.3 45.3 ± 12.3 45.4 ± 11.4 53.4 ± 7.4 
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A B 

Figure 5.2. Percent target timbre contained in the morphing stream at the point of a change 
in percept as a function of instrumentalist, and standard (A) and target (B) timbres. Error 
bars represent 95% CIs. 

their own instrument was the target and higher when it was the standard. However, interpreting 

the CIs above does not reveal any reliable pattern of results. If more than half the margins of 

error (MOE), which is one half of the CI, overlap when comparing between subject groups, the 

difference is not considered significant.  While two comparisons attain significance (trombone 

players have a lower threshold than trumpet players for the trombone sound as standard, and 

trombone players have a lower threshold than trumpet players for the trumpet sound as target), 

this is not enough to establish a pattern.  Comparison of confidence intervals cannot be done 

so easily for within-subject measures, therefore a mixed effects linear regression model was 

applied to predict threshold value, where instrument played and standard, or target timbre were 

fixed effects and participant number was a random effect on intercepts.  The instrument played 

had no effect on perceptual threshold, χ2 (3) = 3.83, p = .28 and χ2 (3) = 3.82, p = .28 for 

standard and target models respectively. 

Effects of instrumental family were also investigated.  Performance by instrumental 

group was analysed for string pair and brass pair trials (i.e. where the standard and target 
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timbres were both string or both brass instruments).  String players performed with a mean 

percentage of 54.5 [46.0, 63.0] on string pairs and 62.4 [52.2, 72.6] on brass pairs.  Brass 

performed with a mean percentage of 56.0 [46.7, 65.3] on string pairs and 58.4 [48.2, 78.6] on 

brass pairs (see Figure 5.3).  Interpreting the CIs indicates that there was no difference between 

string players and brass players; however, a mixed effects model to investigate within group 

differences found that instrument played had an effect on threshold, χ2 (1) = 3.54, p = .05, 

where string players had a lower discrimination threshold for string instruments than for brass 

instruments. 

Trials where participants did not hear a change in rhythm were examined separately.  

Most participants only had a few trials where this happened, if at all.  As noted above, for five 

participants, this case was more prominent and their data were removed (it is interesting to note 

that the mean age for these five participants is 51.8 (SD = 12.7) and every participant was at or 

 

 above the average age for all participants). Every 

type of instrumentalist was represented in this 

group of trials; all for the ascending block and all 

but cellists for the descending blocks.  The 

frequency of each of the standard and target 

timbres was different within each direction by 

timbre type condition (i.e. the number of times a 

trial had cello as the standard or target timbre, 

versus the other instruments, in the ascending or 

descending block), but no single timbre was 

consistently more or less represented.  When  

Figure 5.3. Percent target timbre 
of the morphed stream at the 
point of a change in percept for 
brass and string instrumental 
family groups.  Error bars 
represent 95% CIs. 
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looking at pairs of timbres, the cello-trumpet and trombone-trumpet pairs were mostly 

commonly still perceived as an even percept by the end of a trial in the descending condition 

and the violin-trombone pair was the most commonly still perceived as a galloping percept by 

the end of a trial in the ascending condition. 

5.2.6 Discussion 

This study was designed to corroborate neuroscientific measures showing that 

instrumentalists are more sensitive to their own instrument’s timbre than to others (Pantev et 

al., 2001). Accordingly, in the ABA_ paradigm, it was hypothesised that a lower timbre 

discrimination threshold would be found for instrumentalists hearing their own instrument 

when their instrument is the target timbre, and a higher discrimination threshold when their 

instrument is the standard timbre. 

Results show no reliable effect of instrument played on the perception of timbral stream 

segregation when looking at individual target instruments. Though thresholds for an 

instrumentalists’ timbre were slightly lower than for other timbres when looking at standards, 

contrary to the hypothesis, none of these differences were significant. Similarly for target 

timbres, no threshold differences were significant, though the largest effect was seen in trumpet 

players, where the threshold when trumpet was the target was higher than for other instruments.  

There was a small effect of instrument played when comparing performance on instrumental 

families: string players detected the difference between two brass instruments later than for 

two string instruments.  However, they were no better than brass players at detecting the 

difference between two string instruments, nor did brass players show an advantage for brass 

instruments.  Thresholds for string instruments were overall lower than for brass instruments.  

Perhaps the two string instruments were more different than the two brass instruments, thus 

making them overall easier to distinguish (this is supported by timbre dissimilarity ratings 
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collected in the second study, reported in Section 5.3).  The effect of order is unexpected and 

could be the result of a familiarization with the task that led to greater sensitivity in the second 

block. 

How can such results be explained when the literature reviewed, particularly Pantev’s 

work (2001), suggests an effect of instrumental training on perception?  Let the question first 

be placed in a more generalized context.  Imagining a trained musician listening to an orchestral 

work, it can be assumed that they clearly hear the melody.  What if they were asked to listen to 

the bass line?  Or another instrument?  If instrumentalists are more sensitive to their own 

instrument’s timbre, then it would be expected that they could more easily and more accurately 

pick out (and perhaps transcribe, for potential experimental purposes) their own instrument 

than any other.  However, according to the present results, they could also pick any instrument 

out of the auditory scene and transcribe it just as well.  This would suggest that ability to pick 

out and transcribe a particular line in a polyphonic work is not related to the instrument one 

plays, but rather to general musical training, and to where attention is directed.  It would be 

interesting to conduct a transcription experiment along these lines in the future. However, a 

reasonable explanation of the present results is that listeners simply heard what they paid 

attention to, though it is only a proposition here and cannot be supported or countered with the 

current data.  The possibility of attention directing perception will be further explored in 

Sections 5.3 and 5.4. 

One of the basic claims of auditory streaming is that coherence is the default percept 

(Bregman, 1978; Bregman, 1990; Rogers & Bregman, 1998).  However, if this were the case, 

then initial segregation in the descending condition of this experiment would not be possible.  

The fact that participants were told what they would be hearing (even to galloping for 

descending blocks and galloping to even for ascending blocks) could have influenced their 
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perception of the stimuli by setting up a specific expectation.  Therefore, a study to control for 

this was designed and is reported next. 

5.3 Study 2: Expectancy control 

This study was designed to control for the possible expectation effect of the instructions 

given in the study presented in Section 5.2 above.  Participants were presented with 10s of 

ABA_ pattern where the timbres are unchanging and maximally different (the same as the 

beginning of a descending block trial in Study 1) and were asked to report whether they heard 

an even or a galloping pattern.  If participants tend to hear these stimuli as even, then there is 

cause to revisit the default coherence concept; alternatively, if participants tended to hear the 

stimuli as galloping, then the instructions given in Study 1 likely set up an expectation which 

strongly influenced perception, enough to hear an even pattern at first hearing.  Participants 

were also asked to indicate which of the two timbres was most salient. If the standard timbre 

(the faster stream) is chosen most often then timing tends to attract attention more than timbre; 

if the standard and target timbres are chosen approximately equally often, then it is the timbre 

itself that is most salient in capturing focus. 

5.3.1 Participants 

Data was collected in two groups: first, undergraduate and graduate musicians and, 

second, individuals with various backgrounds recruited from universities in London and the 

community.  The first group of participants were the same 20 participants as in Study 1 (the 

same five participants’ data was excluded here); they completed both paradigms.  The second 

group was tested separately and included a wider range of backgrounds to control for effects 

of musical training in the first group.  This second group consisted of 20 individuals (7 males, 

mean age 22.5 years; SD = 4.33; range = 18-32; mean Gold-MSI score = 23.3, SD = 11.9, 
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range = 7-46) recruited through volunteer email lists, credit scheme and acquaintances.  

Participants in the first group were entered in a draw for an Amazon voucher while participants 

in the second group were either entered in a draw for an Amazon voucher or given course credit 

as part of a university credit scheme. 

5.3.2 Stimuli 

The stimuli were the same as Study 1, except that there were seven timbres (piano, 

violin, cello, trumpet, trombone, clarinet, bassoon) and there was no morphing.  One timbre 

was presented at 220ms and the other at 440s with a 110ms offset and the total length of one 

trial was 10s. 

5.3.3 Procedure 

This paradigm was also presented in Max/MSP 6.  After reading the information sheet 

and giving written consent, instructions were presented on the screen along with examples of 

the even and galloping patterns, each accompanied by an illustration to help clearly distinguish 

the two rhythms.  Five practice trials were provided and were compulsory, giving a chance for 

questions and clarification before beginning the data collection. 

When ready to begin, for each trial participants indicated as they were listening which 

percept they heard first using the keyboard, pressing ‘H’ (horse) for the galloping pattern and 

‘M’ (morse) for the even pattern (terminology from Thompson, Carlyon, & Cusack, 2011).  At 

the end of the trial, they clicked on the timbre that was most salient to them (the appropriate 

two were displayed at each trial).  Every possible timbre pair was explored, for a total of 21 

trials. 

Participants then completed the musical training sub-scale of the Gold-MSI 

(Müllensiefen et al., 2014). 
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Timbre dissimilarity ratings. Timbre dissimilarity ratings were collected separately 

using Max/MSP 6. 15 listeners of varying backgrounds, none of which participated in the 

reported studies, rated the similarity of pairs of timbres on a 7-point Likert scale where 1 was 

the least similar timbre pair and 7 was the most similar timbre pair, with other pairs rated 

between these numbers.  The participants could listen to the seven musical tones at any time.  

These were the same as in Sauvé et al. (2014) (piano, violin, cello, trumpet, trombone, clarinet, 

bassoon). Participants clicked a button to begin a trial: two timbres were presented for 

comparison and participants rated the similarity between the sounds.  There was no time limit 

and participants submitted each rating on their own time, completing the trial.  Pairs of timbres 

were presented randomly.  Results are shown in Figure 5.4. 

5.3.4 Results 

A comparison of the two groups revealed no significant difference between the initial 

percept for musicians and for non-musicians, where the difference in proportions was .03 [-

.04, .10].  Therefore the remaining analysis was performed on the two participant groups’ 

aggregated data. 

The mean of the initial percept, where even was coded as 0 and galloping was coded as 

1, was .35 [.32, .39].  Interpreting the CIs in Figure 5.5 indicates that this is significantly 

different from chance (.5).  Because the mean of the initial percept is closer to zero than it is to 

one, the initial percept is dominantly even.  To investigate the relative salience of timbre and 

timing, a ‘matching’ variable was created, where if the timbre identified as salient matched the 

standard timbre, a value of 1 was assigned and if it did not, a value of 0 was assigned.  The 

mean of the matching variable was .69 [.65, .72].  Once again, interpreting the CIs in Figure 

5.5 indicates that this is significantly different from chance (.5), confirmed by an exact binomial 

test, p < .01.  Therefore, the most salient timbre is most often the standard timbre, which is also  
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A B 

Figure 5.4. A) Timbre dissimilarity ratings (1-7 Likert scale; 1 is very dissimilar, 7 is very 
similar).  When the initial percept is even, timbres are less similar (2.30 [2.22, 2.38]) and 
when the initial percept is galloping, timbres are more similar (2.90 [2.80, 3.00]). B) Timbre 
dissimilarity ratings presented in a heat map, where red is most dissimilar and green is most 
similar. 

 

 the fastest presented stream.  The influence of 

timbre on initial percept was investigated 

using timbral dissimilarity ratings to assess 

whether more similar timbral pairs would 

encourage integration while less similar pairs 

would encourage segregation.  This pattern 

was indeed observed in the data. The average 

dissimilarity rating over all trials where 

segregation was the initial percept was lower, 

2.30 [2.22, 2.38], than when integration was 

the initial percept, 2.90 [2.80, 3.00], confirmed 

by a t-test, t (499) = -8.11, p < .01. 

Figure 5.5. Mean of initial (left) and 
matching (right) variables, both 
significantly different from chance. 
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5.3.5 Discussion 

This study was designed to investigate whether the instructions in Study 1 enabled the 

possibility of initial segregation in the descending blocks by setting up the expectation for 

segregation, as according to streaming theory, integration is always the default percept until 

enough evidence is gathered for the existence of two separate streams (Bregman, 1990). 

Results indicate that the even percept is the most common initial percept, which is 

contrary to the streaming theory discussed above.  However, this experiment does not rule out 

the possibility that the build-up of evidence for two streams simply happened very quickly.  A 

reliable neural streaming marker is needed to investigate this question at the millisecond level. 

While some such markers have been suggested (Alain et al., 2001; Fujioka, Trainor, & Ross, 

2008; Sussman, Ritter, & Vaughan, 1999), none of them constitute direct measures of 

streaming and further research is needed to identify such markers. 

Furthermore, the initial percept was depending on similarity between pairs of timbres.  

Presumably, it takes longer for the brain to find evidence for two streams if the sources are 

more similar.  A similar pattern for pitch was found by Deike et al. (2012), where participants 

were presented with ABAB sequences and asked to indicate as quickly as possible whether 

they heard one or two streams.  The separation between A and B tones varied from 2 to 14 

semitones.  Results showed that the larger the pitch separation between A and B tones, the 

more likely participants were to hear the sequence as segregated in the first place. Predictability 

was also found to influence degree of segregation (Bendixen et al., 2014): when degree of 

predictability between two interleaved sequences was high, an integrated percept was 

supported, while when the predictability within each interleaved sequence alone was high, a 

predominantly segregated percept was induced.  This is contrary to the integration-by-default 

concept proposed by Bregman (1990).  However, auditory scene analysis is complex and the 
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role of context has yet to be considered, where previous work has shown that context can speed 

or slow the buildup of evidence for perceptual segregation (Sussman-Fort & Sussman, 2014). 

Attentional mechanisms were probed in this study by asking participants which timbre 

was most salient.  Results show that the standard timbre was most often the most salient timbre.  

In feedback, some participants described it as more driving and therefore more attention-

drawing.  This suggests that rhythm is a more salient feature than timbre, adding interesting 

evidence to discussions about the relative salience of different features in the perception of 

polyphonic music (Chapter 6; Esber & Haselgrove, 2011; Prince, Thompson, & Schmuckler, 

2009; Uhlig et al., 2013). 

In terms of the influence of instructions in Study 1, it seems that they did influence 

participants’ perception; otherwise, initial segregation on trials with similar pairs of timbres 

would not be possible.  It is already known that attention influences perception in this paradigm 

(Sauvé et al., 2014), and this experiment suggests that prior expectation about the number of 

streams also has an impact. 

5.4 Study 3: Ecological extension 

Study 1 aimed to behaviourally test the hypothesis that instrumentalists are more 

sensitive to their own instrument’s timbre than to others.  Study 2 was designed to control for 

the effect of expectation.  However, neither of these paradigms are particularly ecologically 

valid; the ABA_ pattern is especially synthetic and though the sounds are recorded and not 

synthesized, the way they are combined is not reminiscent of actual music.  This study was 

designed with the same goal as Study 1 and to allow results to be extended towards more 

ecological musical listening.  The interleaved melody paradigm introduced by Dowling (1973) 

was selected to achieve this goal.  In this paradigm, the notes of two melodies are presented in 

an alternation, such that melody ‘ABCDEF’ and melody ‘abcdef’ become ‘AaBbCcDdEeFf’.  
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Dowling found that as pitch overlap decreased, participants were more easily able to detect, or 

segregate, each individual melody.  Trained musicians could tolerate more pitch overlap than 

non-musicians.  The concept can similarly be applied with many other parameters including 

loudness and timbre (Hartmann & Johnson, 1991), where it is easier to track a melody if the 

two interleaved melodies are of different loudness, or played by different instruments. 

Here, this paradigm was adapted to timbre perception and the task was to detect one or 

multiple mistunings, as intonation is a developed skill in many instrumentalists.  As in the 

original paradigm, it is expected that the segregation of the two melodies will be easier with 

minimal pitch overlap.  Additionally, it is hypothesized that instrumentalists should identify 

mistunings more accurately for their own instrument overall, where the melodies are played by 

different instruments. 

5.4.1 Participants 

Participants were 15 musicians, 8 flautists and 7 violinists, recruited from music schools 

and conservatoires in London and in Canada.  If desired, they were entered in a draw for one 

of two Amazon vouchers. 

5.4.2 Stimuli 

Melodies were two excerpts from compositions by J. S. Bach: BWV 772-786 Invention 

1, mm13 and BWV 772-786, Invention 9, mm14-15.1 (only the first beat of mm15).  They are 

in different meters (4/4 and 3/4 respectively) and different keys (A minor and F minor 

respectively), but have similar ranges (perfect 12th - octave + perfect 5th - and diminished 12th 

- octave + diminished 5th - respectively) and similar median pitches (C#4 and B4 respectively). 

The 4/4 melody was played on a violin and the 3/4 melody on a flute. 

A violinist and a flautist were recorded using a Shure SM57 microphone, recorded into 

Logic Pro 10 and exported as CD quality audio files.  These original recordings were verified 
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by a separate violinist and flautist for good tuning and corrections to tuning were made using 

Melodyne Editor by Celemony.  Melodies were recorded at notated pitch and for every 

necessary transposition to create each overlap condition, as tuning in a solo instrument changes 

slightly as a function of key, especially in Baroque music (just intonation). 

Using Melodyne Editor, 50 cent sharp mistunings were inserted. Each trial contained 

either zero, one or two mistunings that could be in either one or both the melodies. The location 

of each mistuning is presented in Table 5.2.  Though it is recognized that sharp or flat tuning 

may be perceived differently and is dependent on context (Fujioka et al., 2005), only one 

direction was used here for simplicity.  The tempo and note length of the melodies were 

quantized, and the melodies interleaved, so that the onset of the first note of the second melody 

fell exactly between the onsets of the first and second notes of the first melody, the second  

Table 5.2. Experimental design: details of metrical and instrument location of mistunings 
(where there are two mistunings, these are separated by a backslash), the higher melody, where 
attention was directed and the amount of pitch overlap between the mean pitch of the two 
melodies for each trial, including practice and control trials. 

Trial Location 
(metrical) 

Location 
(instrument) 

Highest 
melody 

Attentional 
focus  

Pitch 
overlap 

Practice 1 4.1 Violin Violin Violin 5th 
Practice 2 1.3 / 2.4 Flute / Flute Flute Flute 5th 
1 1.3 / 3.3 Flute / Violin Flute Flute 2nd 
2 2.4 / 4.2 Violin / Violin Flute Violin 2nd 
3 None None Violin Flute 2nd 
4 3.1 Violin Violin Flute 2nd 
5 2.2 Flute Flute Flute 3rd 
6 1.4 / 2.1 Flute / Violin Flute Both 3rd 
7 1.2 / 3.4 Violin / Flute Violin Flute 3rd 
8 3.2 / 4.3 Flute / Flute Violin Violin 3rd 
9 None None Flute Violin 5th 
10 2.4 / 4.1 Flute / Flute Flute Flute 5th 
11 2.3 / 4.1 Violin / Violin Violin Violin 5th 
12 3.2 / 4.2 Violin / Flute Violin Both 5th 
Control 1 2.3 Violin - - - 
Control 2 3.1 Flute - - - 
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between the second and the third, and so on. 

Twelve experimental trials were created, along with two practice trials and two control 

trials.  Five variables were manipulated: metrical mistuning location, instrumental mistuning 

location, highest melody, attentional focus and pitch overlap.  The mistunings were located 

either on strong or weak beats, where location is indicated by beat (first number) and 

subdivision (second number) i.e. 4.2 = beat 4, second subdivision (where each beat is divided 

into four sixteenth notes).  The mistunings were either in the violin or the flute melody, the 

highest (also the first tone heard) melody was either the violin or the flute melody and the 

participants’ focus was directed at either the violin melody, the flute melody, or both.  Pitch 

overlap was either a 2nd, a 3rd or a 5th, where the distance between the central (in terms of range) 

pitches of each melody matched these intervals. The instrumental mistuning location, highest 

melody and attentional focus were manipulated so that they sometimes match and sometimes 

do not (i.e. the mistuning may not be in the same melody to which the participant is asked to 

attend).  This was intended to assess whether a mistuning in the non-attended melody 

influences identification of mistunings in the attended melody. 

The control trials were single melodies, designed to ensure that participants were able 

to detect mistunings in a simpler listening situation.  In a pilot study, a 50 cent mistuning in a 

single melody was always detected. 

5.4.3 Procedure 

This experiment was carried out online, using the survey tool Qualtrics.  Once presented 

with the information sheet and detailed instructions, participants could give informed consent.  

The two original melodies (with no mistunings) were both presented for participants via 

SoundCloud to familiarize themselves with the tunes, and in every subsequent trial in case 

participants wanted to refresh their memory.  Each page of the survey contained the two 
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original melodies, the current trial (also via SoundCloud) and a click track.  Participants clicked 

on the beats where they heard a mistuning; this was set up using Qualtrics’ hot spot tool.  There 

was one click track for trials where focus was on one instrument and two, stacked vertically 

and labelled with the corresponding instrument, when participants were instructed to listen to 

both (see Figure 5.6).  The word ‘none’ under the click track was also a selection option if 

participants detected no mistuning. 

Participants started with two practice trials, always in the same order.  Then, trial 11 

was always presented first because it was one of the trials with the least amount of overlap 

(and, therefore, presumably easier) and all other trials followed in random presentation.  

Finally, the two control trials were presented, always in the same order.  Participants finally 

selected their primary instrument, either violin or flute, and had the option to submit their email 

address for the Amazon voucher draw. 

5.4.4 Results 

Initial inspection of the data showed a high rate of false alarms.  Participants were first 

screened by performance on the control trials; only participants who had correctly identified 

the mistunings in both control trials, without false alarms, were included in analysis.  This left 

12 participants; 6 violinists and 6 flautists.  A mixed effects binomial logistic regression was 

performed, with musicianship (violinist or flautist), metrical mistuning location, instrumental  

 

Figure 5.6. Single (left) and double (right) click tracks presented to participants alongside 
the relevant audio files. 
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Table 5.3. Details of the mixed effects binomial logistic regression, where accuracy is 
predicted by fixed effects as described in the text and participant number as random effects on 
intercepts. 

Predictor Estimate p-value 

Intercept -2.43 < .01 

Musicianship 0.23 .32 

Metrical mistuning location 0.30 .07 

Instrumental mistuning location 0.47 .03 

Highest melody 0.87 < .01 

Attentional focus -0.94 < .01 

Pitch Overlap 0.04 .61 

Random Intercepts Variance  

Participant 0.02  

mistuning location, highest melody, attentional focus and pitch overlap as fixed effect 

predictors for accuracy (1 for correctly identified mistuning and 0 for an unidentified 

mistuning),and participant number as a random intercepts effect.  Where there were two 

mistunings in a trial, each mistuning was considered as its own data point. 

Only attentional focus and highest melody were strong significant predictors, z (1) = -

4.85 and z (1) = 3.65 respectively, both p < 0.01 while instrumental mistuning location was 

moderately significant, z (1) = 2.15, p = .03.  There were no significant interactions (see Table 

5.3 for details). 

When averaged across relevant trials, accuracy when attention was directed to the violin 

line was highest, at .28 [.22, .35], to the flute line was .25 [.20, .32] and to both was lowest, at  

.10 [.06, .17], where accuracy of 1.00 would reflect the correct identification of all mistunings.  

Accuracy when the violin line was on top was lower than when the flute was on top, at .17 [.13, 
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.22] and .29 [.24, .34] respectively.  Accuracy when the mistuning was in the violin line was 

.38 [.31, .46] and in the flute line was .20 [.16, .25]. 

5.4.5 Discussion 

In this study, the interleaved melody paradigm was used to examine whether musical 

training on a particular instrument increases timbral sensitivity to that instrument, using 

mistuning detection in real melodies rather than rhythm judgements for artificial tone 

sequences, as in Study 1. Contrary to the hypothesis, results converge with Studies 1 and 2 

above: musical training does not have an influence on timbre sensitivity, and support the 

alternate hypothesis proposed in Study 1: attention influences perception. Similarly to the 

hypothetical orchestral line transcription described before, in this paradigm detection of 

mistunings, which first requires the separation of the melody from its context, did not depend 

on the instrument in which the mistuning appeared, but rather which line the listener’s attention 

was directed to.  The idea that attention influences perception is certainly not new (Carlyon et 

al., 2001; W. Jay Dowling, 1990; Snyder, Gregg, Weintraub, & Alain, 2012; Spielmann, 

Schröger, Kotz, & Bendixen, 2014) and the above results suggest that attentional focus is more 

important than specific musical training in driving auditory stream segregation, leading to the 

lack of effect of specific instrumental musical training. 

5.5 General Discussion 

Though previous literature would suggest that instrumentalists are more sensitive to 

their own instrument’s timbre (Margulis et al., 2009; Pantev et al., 2001), behavioural evidence 

for this claim was not found in the studies reported in this chapter.  Instead, results suggest that 

behaviour is more strongly guided by attention than musical training, consistent with literature 

exploring the effects of attention on auditory scene analysis (Andrews & Dowling, 1991; 
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Bigand et al., 2000; Jones, Alford, Bridges, Tremblay, & Macken, 1999; Macken et al., 2003). 

This interpretation was supported in both Studies 2 and 3.  In Study 2, trials where rhythm 

captured attention more often also resulted in a segregated percept.  In Study 3, attentional 

focus was a predictor of response accuracy for identifying mistunings, where accuracy depends 

on participants successfully streaming the relevant melody.  Furthermore, performance when 

participants were asked to identify mistunings in both lines at once was particularly poor, 

highlighting the importance of attentional focus for successful task completion and the 

difficulties of divided attention (Bigand et al., 2000). 

It is interesting to consider why the present results diverge from those found in 

cognitive-neuroscientific studies which have found instrument-specific effects of musical 

training.  It may be that methods such as EEG, MEG and fMRI provide more sensitive measures 

that are capable of picking up on small effects of instrument-specific training which are not 

expressed in behavioural measures such as those used here.  Greater sensitivity of neural over 

behavioural measures has been observed in research on processing dissonant and mistuned 

chords (Brattico et al., 2009) and harmonic intervals varying in dissonance (Schöön, Regnault, 

Ystad, & Besson, 2005). Alternatively, it may be that the instrument-specific effects observed 

in previous research were actually driven by greater attention to an instrumentalists’ own 

instrument.  Further research is required to disentangle these alternative accounts. 

Turning to the ABA- paradigm for a closer look, the results of Studies 1 and 2 highlight 

some interesting observations.  Despite listeners most often initially perceiving maximally 

different timbres as segregated, there were still a fairly large proportion of trials heard as 

integrated.  This was explained above by timbre similarity, but it may not be the only factor: 

based on personal listening, and participant feedback, the stimuli are clearly bistable, 

suggesting that timbre alone may not be enough to fully segregate two sounds played with the 
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same pitch, loudness and length.  In a musical sense, this is very useful and is often employed 

by composers wanting to create instrumental chimerae or even simply writing passages 

involving the entire sections of the orchestra playing the same line.  This suggests that timbre 

is a less important feature in this simple listening context, with pitch, rhythm and loudness 

taking precedence.  Relative importance of these four parameters for auditory streaming could 

be evaluated by combining parameters to see which causes streaming first.  Some questions 

concerning salience and combining musical parameters in a streaming paradigm have been 

investigated (Dibben, 1999; Prince et al., 2009; van Noorden, 1975) but a clear map of 

relationships between parameters has not yet been established, largely due to the complexity 

of polyphonic music.  Chapter 7 of this thesis uses predictive processes to begin investigating 

this question of relative salience in the context of polyphonic music, a more complex context 

than the ABA_ paradigm used here. 

To summarize, this chapter confirmed timbre as an auditory streaming cue, notably 

using ecological stimuli.  Together, the three presented studies also addressed the influence of 

attention, expectation and listening background on streaming perception.  While attention and 

expectation were found to affect streaming, where attention guides perception more strongly 

than listening background and expectation affected listeners’ initial percepts, the instrumental 

differences between musician participants were not found to have any effects on streaming 

perception.  Furthermore, results suggest that in this simple context, timbre is less salient than 

pitch, rhythm and loudness.  The relationship between different musical parameters and their 

relative salience will be investigated in more detail in Chapter 7; first, Chapter 6 validates one 

of the measures necessary for this investigation. 
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6   Modelling temporal 
expectations alongside pitch 
expectations 

 
 

An understanding of pitch perception through the lens of predictability has been well 

covered in the research community (from Meyer, 1956 to Eerola, 2016), including behavioural 

validation of various proposed models of pitch expectation specifically (Carlsen, 1981; Huron, 

2006; Krumhansl, Louhivuori, Toiviainen, Järvinen, & Eerola, 1999; Marcus T. Pearce, Ruiz, 

et al., 2010; Schellenberg, 1996, 1997; Trainor & Trehub, 1992).  In the time domain, focus 

has tended to be on the higher-level temporal structure called meter, the hierarchical 

organization of beats in music (Desain & Honing, 1999; Dixon, 2001; Temperley, 2010; Volk, 

2008).  In this chapter, predictability will be used to model low-level pitch and rhythm 

perception and musical emotion, presenting a study validating two of IDyOM’s time-domain 

viewpoints – onset and inter-onset-interval (IOI) – while jointly investigating the potential role 
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of predictability and the influence of musical training in eliciting musical emotion (Huron, 

2006; Juslin, Liljeström, Västfjäll, & Lundqvist, 2011; Juslin & Västfjäll, 2008; L. Meyer, 

1956). 

6.1 Rhythm and Predictability 

Metrical patterns, similarly to pitch, can be learned through exposure (Cirelli, Spinelli, 

Nozaradan, & Trainor, 2016; Hannon, Soley, & Ullal, 2012; Hannon & Trehub, 2005a; Hannon 

& Trehub, 2005), where Western music is dominated by beat patterns in divisions of two, and 

to a lesser extent, divisions of three.  As a result of this dominance, Western listeners develop 

models of musical rhythm biased towards beat divisions of two and three and are surprised by 

violations of expectations generated by these models.  It is important to keep in mind that as 

these models and biases are built up through learning, different cultures may exhibit different 

biases and therefore experience different patterns as surprising.  For this reason, focus will 

remain on Western music and Western listeners only.  Proposed computational 

implementations for such human rhythmic models of music have been suggested using 

predictive coding (Vuust et al., 2009; Vuust & Witek, 2014) and statistical learning (Pearce, 

2005). 

Predictive coding, introduced in Section 2.6, has recently been applied to explain music 

perception as a whole (Gebauer, Kringelbach, & Vuust, 2012; Vuust et al., 2009). For example, 

Gebauer et al. (2012) present a framework in which dopamine is released during anticipation 

and an increase or decrease (depending on prediction error) in its release during the evaluation 

of a given prediction modulates pleasure.  This framework explains pleasure in music on a 

Wundt inverted U-curve (Wundt, 1874), with prediction error magnitude on the x-axis and 

pleasure on the y-axis.  In cases with very low or very high prediction error, music is unpleasant 

because it is either uninteresting or, conversely, too complex for the brain to predict.  In the 
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range between these two extremes lies musical pleasure, explaining why some expectancy 

violations can be pleasurable (i.e., musical chills).  Predictive coding has also been more 

specifically applied to rhythm perception as a framework that can explain brain responses to 

metrical deviation (Vuust et al., 2009) as well as the special cases of syncopation, polyrhythms 

and groove (Vuust & Witek, 2014).  In the case of brain responses, the MMNm and P3am (the 

magnetic equivalents of the MMN and P3a, classically markers of pattern violation and 

expectancy respectively (Jongsma, Desain, & Honing, 2004; Näätänen, Gaillard, & Mäntysalo, 

1978)) are interpreted as the encoding of prediction error, and subsequent integration of that 

error higher in the processing hierarchy, respectively.  This is supported by a study where jazz 

musicians and non-musicians listened to drum sequences with three levels of metrical 

violation: none, syncopation, and missing beat (Vuust et al., 2009).  An MMNm was 

consistently elicited for both musicians and non-musicians, though stronger in musicians, and 

was consistently localized near the auditory cortex.  The P3am on the other hand was elicited 

more often in musicians and was not consistently localized, spanning the parietal and frontal 

cortices depending on the participant.  This suggests that the P3am is not specific to the auditory 

cortex and supports its role as integrator of the signal.  Syncopation is explained by the 

predictive coding framework as presenting a tolerable amount of prediction error to the brain, 

where the metrical violation is perceived and error is generated but the metrical model is 

maintained.  Polyrhythms, the simultaneous occurrence of two different meters (3 against 2 for 

example) is presented as an example of auditory bi-stability, directly comparable to visual bi-

stability (Hohwy, Roepstorff, & Friston, 2008).  In the auditory version, since divisions of two 

or three do not occur simultaneously (similarly to a house and a face not occurring on the same 

scale at the same time) in the vast majority of Western music, listeners only have models 

developed for one or the other; while one is being perfectly modelled, the other is receiving 



 
128 

 

error signals and the listener oscillates between perceiving 3 against 2 and 2 against 3, for 

example.  Finally, groove is a case of continuous syncopation, where the constant pull between 

the meter and the rhythm falls in the peak of the inverted U, causing a pleasurable reaction. 

Statistical learning has much in common with predictive coding: a model of the given 

environment (here musical features) is built based on exposure, where commonly occurring 

events or patterns have a high probability of re-occurring and rare events or patterns have a low 

probability of re-occurring.  Those events and patterns that are highly probable are unsurprising 

and have low information content, while the improbable events and patterns are surprising and 

have high information content.  As described in Section 3.2, IDyOM implements such a model 

for music over various musical parameters called viewpoints.  Use of IDyOM so far has almost 

exclusively been restricted to the pitch domain (Egermann, Pearce, Wiggins, & McAdams, 

2013; Gingras et al., 2016; Hansen & Pearce, 2014; Pearce, Müllensiefen, & Wiggins, 2010; 

Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010), with only a recent expansion into the 

time domain (Pearce & Müllensiefen, 2017; van der Weij, Pearce, & Honing, 2017), despite 

the wide range of viewpoints implemented.  In this chapter both pitch and timing viewpoints 

will be used, extending the use of IDyOM and behaviourally validating a subset of time-based 

viewpoints with respect to perceived expectation. 

6.2 Emotion and Predictability 

As it was alluded to in Section 6.1, it has been suggested that musical emotion is 

induced by the fulfilment and violation of expectations (Gebauer et al., 2012; Huron, 2006; 

Meyer, 1956).  While it is not the only possible mechanism for emotional induction (Juslin et 

al., 2011; Juslin & Västfjäll, 2008), Gebauer et al. (2012) suggest it is the most fundamental 

mechanism as expectation is a direct internal connection between music and existing 

psychological mechanisms, while other suggested mechanisms such as evaluative 
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conditioning, emotional contagion, visual imagery, episodic memory and cognitive appraisal 

rely on extramusical associations and can be seen as additional sources of emotional meaning 

on top of expectation (Juslin et al., 2011; Juslin & Västfjäll, 2008).  These additional 

mechanisms are defined as follows: (1) brain stem reflexes refer to changes in arousal caused 

by sudden psychoacoustic signals (i.e., loudness, dissonance); (2) evaluative conditioning 

creates a positive or negative emotional reaction when a piece has been repetitively paired with 

a positive, or negative, situation; (3) emotional contagion is the induction of emotion through 

mimicry of behavioural or vocal expression of emotion, and is reflected in musical structure; 

for example shorter durations and ascending pitch contours tend to reflect happiness while 

longer durations and descending pitch contours communicate sadness; (4) visual imagery refers 

to the mental imagery evoked by the music, which can have positive or negative affect; (5) 

episodic memory refers to the pairing between a sound and a past event, triggering the emotion 

related to that event when the sound is subsequently heard; (6) rhythmic entrainment refers to 

the induction of emotion through the proprioceptive feedback of internal body entrainment 

(i.e., heart rate) to the music and; (8) cognitive appraisal refers to the evaluation of music in 

the context of goals or plans of the listener. 

At its simplest, the expectation mechanism of musical emotion proposes that 

unexpected events are surprising and associated with an increase in tension while expected 

events are associated with resolution of tension (e.g. Gingras et al., 2016).  According to this 

account, surprising events generally evoke high arousal and low valence (Egermann et al., 

2013; Koelsch, Fritz, & Schlaug, 2008; Steinbeis, Koelsch, & Sloboda, 2006).  However, there 

are two cases where these reactions may differ: first, listeners familiar with a piece of music 

can come to appreciate an event that has low expectancy through an appraisal mechanism, 

resulting in a high valence response (Huron, 2006); second, as mentioned in Section 6.1, a 
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certain amount of surprisal (prediction error) can be pleasing and lack thereof uninteresting, 

leading to high arousal and high valence for moderate levels of surprisal and low arousal and 

high valence for low levels of surprisal.  To avoid the first possibility, only unfamiliar music 

will be used.  The second possibility offers an alternative hypothesis to the simplest 

interpretation of the expectation mechanism, to be tested in the study described in sections 6.3-

6.6.  It is worth remembering that there are different sources of influence on musical 

expectation (Huron, 2006): schematic, veridical and dynamic musical expectations were 

introduced in Chapter 2 (Section 2.4).  Both schematic and dynamic expectations can be 

simulated as a process of statistical learning and probabilistic generation of expectations in 

IDyOM (Pearce, 2005) via its LTM and STM models.  Furthermore, these may be different for 

musicians and non-musicians due to extensive exposure and training in a particular style (Juslin 

& Vastfjall, 2008). 

Musical expectancy as a mechanism for the induction of emotion in listeners has 

previously been studied in an ecological setting: Egermann et al. (2013) asked 50 participants 

to attend a live concert, during which 6 flute pieces were played. These pieces spanned various 

musical styles and levels of pitch expectancy. Three types of measure were taken: subjective 

responses (i.e. arousal levels or ratings of musical expectancy, both of which changed 

continuously throughout the piece), expressive responses (using video and facial EMG) and 

peripheral arousal measured by skin conductance, heart rate, respiration and blood volume 

pulse. IDyOM (Pearce, 2005) was used to analyse pitch patterns of the music and predict where 

listeners would experience and report low expectancy. Results suggested that expectancy had 

a modest influence on emotional responses, where high IC segments led to higher arousal and 

lower valence ratings as well as increases in skin conductance and decreases in heart rate as 

compared to low IC segments while no event-related changes were found in respiration rate or 
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facial electromyography (EMG) measures; however, this study was conducted in an 

ecologically valid, thus non-controlled environment where participants could have focused on 

something other than the music. For example, visual aspects of performance are highly 

important to emotional engagement in live music settings (Thompson, Graham, & Russo, 2005; 

Vines, Krumhansl, Wanderley, & Levitin, 2006).  Furthermore, other potential emotion 

inducing mechanisms, as proposed by Juslin & Vastfjall (2008) were not explicitly controlled 

for and effects of temporal expectancy on emotional responses were not considered. 

6.2.1 Current study 

Since pitch and temporal structures generate distinct expectancies, the influence of each 

as a potential emotional inducer is explored using both correlational and causal methods while 

also allowing for the possibility of interactions between pitch and timing.  The current study is 

designed to validate pitch and temporal musical expectancy as predicted by IDyOM in a 

restricted experimental environment, and in the context of musical emotion, controlling for 

other potential emotional mechanisms (Juslin et al., 2011).  To validate IDyOM’s 

implementation of temporal musical expectancy, real-time expectancy ratings are collected.  

To investigate expectancy as a mechanism of emotional induction, the other mechanisms are 

controlled as follows: (1) brain stem reflexes are controlled for by maintaining equal tempo, 

intensity and timbre across all musical excerpts; (2) evaluative conditioning and episodic 

memory are controlled for by presenting unfamiliar musical excerpts, so that expectation 

ratings and emotional reactions are not confounded by previous experience with the music; (3) 

potential effects of emotional contagion are controlled for in the analysis by including pitch 

and inter-onset-interval (IOI) as predictors of subjective ratings in addition to pitch and IOI 

predictability (i.e. higher mean pitch and shorter IOI could result in higher arousal and valence 

ratings, regardless of expectancy); (4) episodic memory is avoided by using unfamiliar music; 
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(5) the absence of a strong, driving beat and the relatively short duration of the musical excerpts 

makes deep, emotion-inducing rhythmic entrainment highly unlikely; (6) all participants are 

listening to these musical excerpts in the context of an experiment, with any other goal or 

motive being highly unlikely, thus minimising the relevance of the cognitive appraisal 

mechanism; and (7) irrelevant visual imagery cannot be categorically avoided but the rating 

tasks are expected to require enough cognitive load to render it unlikely. Furthermore, to the 

extent that visual imagery is variable between individuals, averaging across participants should 

remove its influence. 

This research aims to address three questions.  First, do the predictability of pitch and 

timing (as simulated by IDyOM) have an effect on listeners’ expectations and emotional state, 

and can explicit manipulation of the stimuli causally influence this effect?  It is hypothesized 

that the degree of musical expectancy for pitch (based on pitch interval and scale degree) and 

temporal (based on IOI) structures, as predicted objectively by information content provided 

by IDyOM, will predict listeners’ expectation ratings. and have an effect on emotion as 

measured by the arousal-valence model (Russell, 2003).  According to Russell (2003), 

unexpected events will invoke negative valence and cause an increase in arousal and expected 

events will invoke positive valence and decreased arousal.  Appraisal was not expected to affect 

this initial reaction as ratings were collected in real time.  It is also hypothesized that when both 

pitch and timing are either expected or unexpected, the emotional response will be more 

extreme than in conditions of mixed expectedness.  Furthermore, direct manipulation of pitch 

expectancy while keeping temporal expectancy and all other musical features constant is 

expected to produce the predicted changes in ratings (i.e. transforming unexpected pitches to 

expected pitches will decrease unexpectedness and arousal, and increase valence ratings). 
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Second, how do pitch and timing predictability combine to influence expectation and 

emotion?  Though the combination of pitch and timing in music perception has been a research 

interest for decades (Boltz, 1999; Duane, 2013; Jones, Boltz, & Kidd, 1982; Palmer & 

Krumhansl, 1987; Prince et al., 2009), no clear conclusions can be drawn as findings regarding 

this question have low agreement and seem highly dependent on the choice of stimuli, 

participants and paradigm.  For example, while Prince et al. (2009) suggest that pitch is more 

salient, results from Duane’s (2013) corpus analysis suggest that timing is the most reliable 

predictor of streaming.  While the former study uses monophonic melodies, it could be argued 

that if salience is linked to complexity (Prince et al., 2009), then for melodies where pitch or 

timing are highly predictable (low complexity), the predictable feature will be less salient than 

its unpredictable counterpart because it requires less “processing power”, and therefore less 

attention.  For melodies where pitch and timing are relatively equally predictable or 

unpredictable, their relative importance currently remains unknown. 

Finally, is there a difference in the effect of pitch and timing predictability on 

expectation and emotional responses between musicians and non-musicians? The effect of 

musical training will be evaluated by comparing the responses of musicians and non-musicians, 

with the expectation that musicians will have higher expectation ratings and more extreme 

emotional responses to pitch and timing violations due to training (Hansen & Pearce, 2014; 

Strait, Kraus, Skoe, & Ashley, 2009), where Western musical patterns are more familiar, 

resulting in violations of these patterns eliciting stronger responses. 

6.3 Method 

6.3.1 Participants 

Forty participants (22 female, 18 male; age range 14-54) were recruited from 

universities, secondary school and colleges for this experiment: 20 were musicians (mean 3.6 
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years of musical training, range 1 – 12 years) and 20 were non-musicians (0 years of musical 

training).  Ethical approval was obtained from the Queen Mary Research Ethics Committee, 

QMREC1078. 

6.3.2 Stimuli 

The stimuli consisted of 32 pieces of music in MIDI format rendered to audio using a 

piano timbre: 16 original melodies and 16 artificially-manipulated melodies.  Original melodies 

were divided into the following four categories of predictability: predictable pitch and 

predictable onset (PP), predictable pitch and unpredictable onset (PU), unpredictable pitch and 

predictable onset (UP) and unpredictable pitch and unpredictable onset (UU).  The artificial 

melodies were created by changing the pitch predictability of each melody so that PP became 

aUP, UU became aPU, PU became aUU and UP became aPP, where a denotes artificial.  All 

melodies were presented at the same intensity, which was held constant for the duration of all 

melodies. 

Original melodies. The sixteen original melodies were selected from a group of nine 

datasets, totalling 1834 melodies (see Table 6.1 for details and Figure 6.1 for some examples), 

all from Western musical cultures to avoid potential cultural influences on expectancy ratings 

(Hannon & Trehub, 2005a; Palmer & Krumhansl, 1990).  All nine datasets were analysed by 

IDyOM for target viewpoints pitch and onset with source viewpoints pitch interval and scale 

degree (linked), and inter-onset-interval (IOI) respectively.  Both STM and LTM models were 

engaged; the LTM model was trained on three datasets of Western music, described in Table 

6.2. 
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PP 

 

PU 

 

UP 

 

UU 

 

Figure 6.1. Excerpts from one melody from each of the four different predictability-based types 
of experimental stimuli.  Patterns or notes of interest are marked with a bracket or an arrow 
respectively.  Melody PP is predictable in both pitch and time, where an exact repetition in both 
dimensions can be seen, marked by a square bracket.  Melody PU is predictable in pitch but 
unpredictable in time, where long notes in general and the rhythmic switch in the last measure 
specifically contribute to low predictability.  Melody UP is unpredictable in pitch but predictable 
in time, with large leaps to and from C# (marked by arrows) and regular note durations.  Melody 
UU is unpredictable in both pitch and time, where a leap is surprising after such repetitive unison, 
and the bracketed rhythmic excerpt is a hemiola (here 3 notes in the time of 2). 

The 1834 melodies were divided into four categories based on high or low pitch or 

onset information content (IC).  Melodies were considered predictable if they had a lower IC 

than the mean IC of all samples and unpredictable if the IC was greater than the mean IC of all 

samples.  Four melodies from each category were selected as the most or least predictable by 

finding maximum and minimum IC values as appropriate for the category; these are the original 

sixteen melodies.  See Table 6.3 for details of mean pitch and onset IC and mean MIDI pitch 

and IOI values for PP, PU, UP and UU melodies.  Notice that categories with unpredictable 

onset have higher average IOI values; this potential confound is discussed below (see Table 

6.4). 
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Table 6.1. Details of the datasets used in stimulus selection. 

Dataset Description 
Number of 
melodies 

Mean 
events/composition 

1 Chorale soprano melodies harmonized by J.S. 
Bach 

100 46.93 

2 Alsatian folk songs from the Essen Folk Song 
Collection 

91 49.40 

3 Yugoslavian folk songs from the Essen Folk Song 
Collection 

119 22.61 

4 Swiss folk songs from the Essen Folk Song 
Collection 

93 49.31 

5 Austrian folk songs from the Essen Folk Song 
Collection 

104 51.01 

6 German folk songs from the Essen Folk Song 
Collection: ballad 

687 40.24 

7 German folk songs from the Essen Folk Song 
Collection: kinder 

213 39.40 

8 British folk song fragments used in the 
experiments of Schellenberg (1996) 

8 18.25 

9 Irish folk songs encoded by Daiman Sagrillo 62 78.5 

 

Artificial melodies. The sixteen artificial melodies were created as follows. For each 

original melody, the notes with the highest (for PP and PU) or lowest (for UP and UU) 

information content were selected for replacement. The notes were replaced with another 

note from the same melody which shared the same preceding note as the original note in that 

melody. If several instances of such a note pair existed, the associated IC values were 

averaged. If several such replacement notes existed, the one with the lowest (for UP and UU) 

or highest(for PP and PU) information content was selected to replace the original note. 

Table 6.2. Details of the training sets used to train IDyOM. 

Dataset Description 
Number of 
melodies 

Mean 
events/composition 

1 Songs & ballads from Nova Scotia, Canada 152 56.26 
2 Chorale melodies harmonized by J.S. Bach 185 49.88 
3 German folk songs 566 58.46 
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Table 6.3. Mean pitch IC, mean onset IC, mean MIDI pitch and mean IOI (quarter note equals 
24) for all melody types.  Note that onset IC and mean IOI does not change between original 
and artificial melodies. 

  PP PU UP UU 
O

ri
gi

n
al

 

Pitch IC 1.37-1.85 2.22-2.43 2.83-5.24 2.61-2.78 

Onset IC 0.80-0.92 2.49-4.34 1.13-1.32 4.20-4.39 

Mean pitch 66.85-70.17 66.05-70.23 68.67-72.76 64.40-71.63 

Mean IOI 12.71-21.28 21.41-69.81 13.84-21.69 21.53-64.00 

A
rt

if
ic

ia
l 

Pitch IC 3.49-5.50 4.20-4.56 4.13-6.59 2.79-3.80 

Onset IC 0.80-0.92 2.49-4.34 1.13-1.32 4.20-4.39 

Mean pitch 64.88-69.80 67.05-73.18 64.05-67.76 66.78-72.89 

Mean IOI 12.71-21.28 21.41-69.81 13.84-21.69 21.53-64.00 

 

Where no such replacement existed, the key of the melody was estimated using the 

Krumhansl-Schmuckler key-finding algorithm (Krumhansl & Schmuckler, 1986) using key 

profiles updated by Temperley (1999) and the replacement was selected as the scale degree 

with highest (for UP and UU) or lowest (for PP and PU) tonal stability.  All notes labelled as 

having extremely high or low IC were replaced by a pitch with a less extreme IC.  An 

example of a melody from each category can be seen in Figure 6.1.  See Table 6.3 for details 

of mean pitch and onset IC and mean MIDI pitch and IOI values for aPP, aPU, aUP and aUU 

melodies.  Mean onset IC and mean raw IOI values were unchanged from the corresponding 

original stimulus predictability category (e.g. aPP has the same mean IOI IC and IOI values 

as UP).  Figure 6.2 illustrates the mean information content of all 32 melodies. 
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Table 6.4. Summary of 16 original melodies used in this experiment. 

File name 
Dataset 
of origin 

Number 
of events 

Average 
pitch 
(60 = 

midC) 

Average 
note 

duration 

(24 = 
quarter) 

Mean 
pitch 

IC 

Mean 
onset 

IC 

Stimulus 
Predicta 

bility 

Kindr138 7 33 67.69 74.18 1.3624 .8962 PP 

A162 8 21 70.23 27.42 1.4328 .8955 PP 

Kindr151 7 51 66.05 22.82 1.5971 .8114 PP 

Kindr162 7 19 68.36 26.52 1.5574 .9254 PP 

Deut3480 6 19 72.89 36.94 2.4272 4.4488 PU 

Jugos052 5 54 66.22 6.77 2.2543 3.7433 PU 

I0511 9 53 66.83 11.67 2.0089 2.4660 PU 

Deut3284 6 67 69.71 6.52 2.0913 2.5380 PU 

I0533 9 39 67.76 11.79 5.6137 1.1401 UP 

A120 8 35 64.05 17.31 5.2750 1.3358 UP 

Oestr045 5 30 68.90 36.40 4.7200 1.1290 UP 

Oestr046 5 35 64.40 32.22 4.6734 1.1983 UP 

Deut3244 6 39 67.64 21.84 3.0216 4.7589 UU 

Deut3206 6 52 68.67 22.15 2.9122 4.5098 UU 

Deut3437 6 29 71.62 19.86 3.0114 4.3796 UU 

Deut3524 6 38 72.76 15.15 2.8472 4.3009 UU 
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A  

 

B  

Figure 6.2. Mean (A) pitch IC and (B) onset IC of each melody plotted by stimulus predictability 
and modification, where original melodies are symbolized by empty symbols and artificial 
melodies by full symbols. 

6.3.3 Procedure 

Participants were semi-randomly allocated to one of four (between-subjects) 

conditions: they were either a musician or a non-musician and, within these groups, randomly 

assigned to rate either expectancy or emotion (arousal and valence).  The experiment was run 

on software constructed in-house, and on a Samsung Galaxy Ace S5830 (3.5 inches in 

diameter; running Android 2.3.6).  Participants listened through standard Apple headphones 

and were tested individually in a closed room.  The information sheet was presented and 

informed consent gathered; detailed step-by-step instructions were then presented to 

participants.  Regardless of condition, there was a mandatory practice session: participants 

heard two melodies and answered the questions appropriate to the condition they were assigned 

to (either expectancy rating or arousal and valence rating).  Participants could also adjust the 

volume to a comfortable setting during the practice session.  Once the practice session was 

completed, the experimental app was loaded.  Participants entered a unique ID number 
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provided by the experimenter and responded to a short musical background questionnaire.  

Participants then heard the 32 musical excerpts (mean duration 18.34 s) presented in random 

order without pause or repeat and performed the appropriate ratings by continuously moving a 

finger on the screen.  Those in the expectancy rating condition reported expectancy on a 7-

point integer Likert scale, where 1 was very expected and 7 was very unexpected. Those in the 

arousal/valence condition rated induced arousal (vertical) and valence (horizontal) on a two-

dimensional arousal/valence illustration (Russell, 2003).  Responses, in integers, were 

collected at a 5Hz sample rate (200ms) (Khalfa, Isabelle, Jean-Pierre, & Manon, 2002).  The 

rating systems used were: Expectancy: 1 – 7 (expected – unexpected); Arousal: 0 – 230 (calm 

– stimulating); Valence: 0 – 230 (unpleasant – pleasant). 

6.3.4 Data collection 

Due to the large number of variables included in this analysis, each is described here 

for clarity.  First, the dependent variables are the expectancy, arousal and valence ratings. 

The data acquisition software had a sampling rate of 5Hz; for each point in time for 

each melody and each participant, a data point, a value for pitch, IOI, musical training, stimulus 

predictability, stimulus modification, pitch IC and onset IC is assigned, along with melody ID 

and participant ID.  The first independent variables described are those that were not explicitly 

manipulated: time, pitch, IOI and musicianship.  As mentioned, time is measured in steps of 

200ms, the sampling rate of the data acquisition software.  Since pitch (interpreted here in 

MIDI numbers) does not change every 200ms and IOI (in ms) is longer than 200ms in these 

folk songs (or in Western music in general), their values were interpolated to match the 

participant ratings’ sampling rate of 5Hz so that each point in time has a pitch and IOI value.  

Finally, the musical training variable had a value of 0 or 1, depending on whether the participant 

had no musical training or any musical training, respectively. 
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Next, the following manipulated variables will be described: stimulus predictability, 

stimulus modification, pitch IC, onset IC.  For each data point, the variable stimulus 

predictability was given a value of 1 if it belonged to the category PP, 2 if it belonged to the 

category PU, 3 for UP and 4 for UU, regardless of whether these are original or artificial 

melodies.  Similarly, the variable stimulus modification was given a value of 0 if the melody 

was original or 1 if the melody was artificial.  Finally, pitch IC and onset IC, as calculated by 

IDyOM, were interpolated in the same way as pitch and IOI to match the participant ratings’ 

5Hz sampling rate.  These are the only variables whose values are not integers. 

6.3.5 Statistical analysis 

For each type of rating (expectancy, arousal, valence) two kinds of analysis were 

performed: first, a melody-level analysis, in which the time-series for each melody was 

averaged across participants separately for musicians and non-musicians and temporal position 

was a discontinuous factor; second, a cross-sectional time-series analysis of the continuous 

ratings given by each participant throughout each melody. In the melody-level analysis, for 

each melody, a mean expectancy rating was calculated at every time point across the musician 

and non-musician groups (10 responses per group).  Linear multiple regression modelling was 

used to evaluate the impact of time (point in time at sampling rate of 200ms), musical training 

(musician or non-musician), stimulus modification (original or artificial), stimulus 

predictability (predictable/unpredictable pitch/onset), pitch and IOI on mean expectancy 

ratings by using a log likelihood test to compare a model with each predictor to a model 

containing only an intercept. Two additional predictors, pitch predictability and onset 

predictability, were derived from stimulus predictability in order to examine the interaction 

between these two subcomponents: here melodies were coded as having either predictable (1) 

or unpredictable (0) pitch or onset.  While musical training, stimulus modification, pitch 
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predictability and onset predictability were simple binary factors, stimulus predictability 

contained four levels, labelled PP, PU, UP and UU. Apart from that between pitch 

predictability and onset predictability, interactions were not considered due to the difficulty of 

interpretation for such a complex model.  Following these log likelihood comparisons, two 

global linear multiple regression models containing all the above predictors of interest (one 

containing stimulus predictability and the other containing pitch predictability and onset 

predictability) plus time, pitch and IOI to parse out any potential effects of time and to analyse 

potential effects of musical contagion, were evaluated to confirm results. 

For the analysis of continuous ratings throughout each melody, cross-sectional time 

series analysis was employed (CSTSA) similarly to Dean et al. (Dean, Bailes, & Dunsmuir, 

2014a, 2014b) to evaluate the predictive impact effects of pitch IC, onset IC, stimulus 

predictability (predictable/unpredictable), stimulus modification (none/artificial), musical 

training and individual differences modelled by random effects on participants’ ratings of 

expectedness, arousal and valence. CSTSA takes account of the autoregressive characteristic 

of music and the continuous responses of the participants.   Pitch IC and onset IC predictors 

were both scaled to values between 0 and 1 to allow for direct comparison of model coefficients 

in analysis.  A predictor of combined pitch and onset IC was also tested, replacing the 

individual pitch IC and onset IC predictors.  In practice, CSTSA is a mixed-effects model, 

fitted with maximum random effects as per Barr et al. (Barr, Levy, Scheepers, & Tily, 2013) 

and fixed effects to account for autocorrelation (lags of endogenous variables, i.e. ratings, 

denoted by P), and exogenous influence (i.e. information content and its lags, denoted by L).  

Only optimal models are presented, selected based on BIC, confidence intervals on fixed effect 

predictors, log likelihood ratio tests between pairs of models, correlation tests between models 

and the data, and the proportion of data squares fit. 
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In order to test the relative salience hypothesis put forward in Section 4.2 above, where 

increased predictability will equate to less salience, four sub-models of each of the three 

CSTSA models optimised for expectancy, arousal and valence ratings were created, one for 

each stimulus predictability (PP, PU, UP, UU) in order to compare coefficients between 

models.  Linear multiple regression modelling was used to evaluate the impact of stimulus 

predictability, lag type (pitch, onset) and rating type (expectancy, arousal, valence) on the 

coefficients of the sub-models. 

6.4 Results 

6.4.1 Melody level analysis 

 In this section, analyses of the mean ratings melody by melody and participant by 

participant are described: these are discontinuous data, and the experiment manipulated the 

pitch expectancy of the original melodies to provide a causal test of its influence.  Mean ratings 

are shown in Figure 6.3 and important comparisons are highlighted in Figure 6.4. 

Expectancy ratings.  There were significant effects of musical training, where 

musicians rated melody unexpectedness higher (musicians mean = 4.40; non-musicians mean 

= 4.16; F (1, 8343) = 73.12, p < .0001); stimulus modification, where modified melodies, 

regardless of direction of manipulation (predictable to unpredictable or vice versa), were rated 

as more unexpected (original melodies mean = 3.92; modified melodies mean = 4.65; F (1, 

8342) = 569.75, p < .0001); and stimulus predictability, where more predictable melodies were 

rated with lower unexpectedness than unpredictable melodies (PP melodies mean = 3.48; PU 

melodies mean = 4.71; UP melodies mean = 3.92; UU melodies mean = 4.66; F (3, 8340) = 

251.58, p < .0001).  Pitch predictability and onset predictability were both significant predictors 

where mean ratings for melodies with predictable pitch, unpredictable pitch, predictable onset 
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and unpredictable onset were 4.09, 4.29, 3.70 and 4.68 respectively (F (1, 8342) = 83.05, p < 

.0001 and F (1, 8342) = 644.31, p < .0001), and the interaction between the two predictors was 

also significant, such that there is a more pronounced effect of onset predictability on ratings, 

t (3) = -7.36, p < .0001.  We also investigated the effect of stimulus predictability on ratings 

for original and modified melodies separately, where means for PP, PU, UP and UU melodies 

were 1.88, 4.47, 3.58 and 5.19 respectively (F (3, 4223) = 1866.2, p < .0001) and for aPP, aPU, 

aUP and aUU melodies were 4.27, 4.16, 5.29 and 4.96, respectively (F (3, 4112) = 264.36, p < 

.0001). The two global models confirmed nearly all the above results, producing two additional 

findings: pitch (t (8336) = -3.76, p = .0001) and IOI (t (8336) = -3.72, p = .0001) were 

significant predictors in both global models and pitch predictability became insignificant in its 

model (t (2) = 0.24, p =.80).  In summary, all predictors of interest were significant apart from 

pitch predictability becoming superseded by pitch and IOI, including the interaction between 

pitch predictability and onset predictability. 

 Arousal ratings. There were significant effects of musical training where musicians 

rate melodies as more arousing overall as compared to non-musicians (musicians mean = 

118.16; non-musicians mean = 112.90; F (1, 8017) = 25.30, p < .0001) and stimulus 

predictability where more predictable melodies were rated as more arousing (PP melodies 

mean = 151.73; PU melodies mean = 109.45; UP melodies mean = 128.86; UU melodies mean 

= 95.95; F (3, 8015) = 667.31, p < .0001).  There was no effect of stimulus modification in 

either direction of manipulation (original melodies mean = 115.83; modified melodies mean = 

115.27; F (1, 8017) = .62, p = .42).  Pitch predictability and onset predictability were both 

significant predictors where mean ratings for melodies with predictable pitch, unpredictable 

pitch, predictable onset and unpredictable onset were 125.29, 112.40, 135.29, and 102.7 

respectively (F (1, 8017) = 208.38, p < .0001 and F (1, 8017) = 1804.3, p < .0001), and though 
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similarly to expectancy ratings, onset predictability had a larger effect on mean ratings than 

pitch predictability numerically, this effect was not significant, t (3) = 1.08, p = .28. Stimulus 

predictability was also a significant predictor when original and artificial melodies’ ratings 

were investigated separately, with ratings for PP, PU, UP and UU melodies averaging 138.62, 

111.14, 121.07 and 100.79 respectively, F (3, 3956) = 210.16, p < .0001, and aPP, aPU, aUP 

and aUU melodies averaging 137.10, 91.56 144.96 and 107.83, respectively, F (3, 4054) = 

556.76, p < .0001.  The two global models confirm all the above results, and add pitch (t (8011) 

= -17.72, p < .0001) and IOI (t (8011) = 18.58, p < .0001) as significant predictors.  In summary, 

stimulus modification is the only predictor of interest that did not have a significant effect on 

arousal ratings, while pitch predictability and onset predictability did not interact significantly. 

Valence ratings. There were significant effects of musical training where musicians 

overall rated melodies as having lower valence (musicians mean = 81.26; non-musicians mean 

= 84.08; F (1, 8017) = 5.38, p = .02); stimulus modification, regardless of direction of 

manipulation, where original melodies had more positive valence than artificial melodies 

(original melodies mean = 91.20; artificial melodies mean = 74.33; F (1, 8017) = 206.84, p < 

.0001) and stimulus predictability where more predictable melodies are rated more positively 

than unpredictable melodies (PP melodies mean = 109.87; PU melodies mean = 74.00; UP 

melodies mean = 87.00; UU melodies mean = 70.02; F (3, 8015) = 224.81, p < .0001).  Pitch 

predictability and onset predictability were both significant predictors where mean ratings for 

melodies with predictable pitch, unpredictable pitch, predictable onset and unpredictable onset 

were 91.93, 78.51, 98.43, and 72.01 respectively (F (1, 8017) = 122.51, p < .0001 and F (1, 

8017) = 559.04, p < .0001), and the interaction between the two predictors was significant, 

where onset predictability again had a larger effect on mean ratings than pitch predictability, t 

(3) = 8.40, p < .0001.  Stimulus predictability was also a significant predictor when 
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investigating original and artificial melodies separately, where PP, PU, UP and UU melodies 

have mean arousal ratings of 171.90, 77.96, 94.59 and 44.46 respectively, F (3, 3956), 1582.6, 

p < .0001 and aPP, aPU, aUP and aUU melodies have mean ratings of 78.98, 93.21, 45.66 and 

70.19 respectively, F (3, 4054) = 276.84, p < .0001.  The two global models include IOI (t 

(8011) = 22.07, p < .0001) but not pitch (t (8011) = -1.48, p = .13) as significant predictors (in 

both models) and remove pitch predictability (t (8011) = 0.90, p = .36) from the set of 

significant predictors found above.  In summary, all predictors of interest are significant, 

including the interaction between pitch predictability and onset predictability, except where 

pitch predictability was superseded by IOI. 

This melody-level analysis has demonstrated that musical training and stimulus 

predictability predict expectancy, arousal and valence ratings.  Furthermore, there is a 

significant interaction between pitch predictability and onset predictability for expectancy and 

valence ratings, and a similar pattern for arousal ratings, where onset predictability has a larger 

effect on ratings than pitch predictability.  Stimulus modification is a significant predictor for 

expectancy and valence ratings only.  The results of a cross-sectional time series analysis are 

presented next. 
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Figure 6.3. Mean expectancy (A, B), arousal (C, D) and valence (E, F) ratings for each melody 
for musicians (A, C, E) and non-musicians (B, D, F). Hollow shapes illustrate original melodies 
while filled shapes illustrate artificial melodies. 
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Figure 6.4. Box plots illustrating important mean comparisons between musicians and non-
musicians (A, B, C), original and artificial melodies (D, E, F), stimulus predictability categories 
for original (F, H, I) and artificial (J, K, L) melodies for expectation (A, D, G, J), arousal (B, 
E, H, K) and valence (C, F, I, J) ratings. 
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6.4.2 Cross-sectional time series analysis  

Here the analyses of the continuous time series data resulting from participants’ 

ongoing responses during listening to the melodies is presented. 

Expectancy, arousal and valence ratings were modelled separately using mixed-effects 

autoregressive models with random intercepts on participant ID and melody ID as well as 

random slopes on the fixed effect predictor with the largest coefficient before slopes were 

added.  Fixed effects predictors were time, musical training, stimulus predictability, stimulus 

modification, autoregressive lags of up to 15 (equivalent of 3 seconds) and exogenous lags of 

pitch and onset information content of up to 15.  A combined pitch and onset information 

predictor was also tested to evaluate whether a combined measure superseded the separate pitch 

and onset information content predictors.  Maximum lags were selected based on previously 

reported rate of change of emotional responses (Juslin & Västfjäll, 2008) as well as precedent 

in this type of analysis (Dean et al., 2014a).  Pitch and IOI were subsequently added as fixed-

effect predictors to investigate the potential confounding effects of musical structure affecting 

ratings through an emotional contagion mechanism. Figures 6.5 and 6.6 illustrate the variance 

fitted by random effects, and the fit of the models for a selection of melodies and participants. 

Expectancy ratings. The best CSTSA model for expectancy ratings is summarized in 

Table 6.5. In this model, while autoregression and random effects were duly considered, an 

effect of musicianship was still clearly observed in addition to pitch IC and onset IC and the 

optimal selection of their lags. Thus the model included random intercepts and random slopes 

for L1pitchIC on melody ID and participant ID as well as fixed effects of musicianship, L = 0-

1, 7-8 of pitch IC, L = 0-2, 10, 12 of onset IC and P = 1-2, 4-6, 15 of autoregression.  All 

predictors were significant, as Wald 95% confidence intervals did not include zero.  The 

addition of stimulus predictability as a fixed effect did not improve the model, χ2 (3) = 1.80,  
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p = .61 while musicianship and stimulus modification did, χ2 (2) = 13.36, p = .001 and χ2 (1) 

= 3.91, p = .04 respectively.  The further addition of pitch and IOI significantly improved the 

model, χ2 (2) = 409.33, p < .0001, and removed stimulus modification as a significant predictor.  

Combined pitch and onset information content with lags of pitch and onset from the best model 

outlined above was significantly worse, χ2 (6) = 972.6, p < .0001. 

A correlation test between the data and the model was highly significant, with 

correlation .93, t (82486) = 783.09, p < .0001.  A proportion of data squares fit test was also 

high, with the model explaining 98% of the data.  While this particular model did not converge, 

a model without random slopes removed did converge where all fixed effects were significant, 

model fit was equally good (correlation test: .93, t (82486) = 780.53, p < .0001; proportion of 

data squares fit: 98%) and the inclusion of slopes improved the model significantly; therefore 

random slopes were reinserted into the best model as per the experimental design (Barr et al., 

2013).  The final model thus includes design-driven random effects, musicianship, stimulus 

modification, pitch, IOI, optimal autoregressive lags of expectancy ratings and optimal lags of 

pitch IC and onset IC. 

Arousal ratings. The best CSTSA model for arousal ratings is summarized in Table 

6.6.  This model revealed stimulus predictability as a significant predictor of arousal ratings in 

addition to pitch IC and onset IC and a selection of their lags when autoregression and random 

effects were considered.  The model included random intercepts and random slopes for 

L1onsetIC on melody ID and participant ID as well as fixed effects L = 0-1, 6-8, 10-13, 15 of 

pitch IC, L = 0-4, 7, 10, 12-15 of onset IC and P = 1, 3, 5-6, 15 of autoregression.  All predictors 

were significant, as Wald 95% confidence intervals did not include zero.  The addition of 

musicianship and stimulus modification as fixed effects did not improve the model, χ2 (2) = 

.60, p = .74 and χ2 (2) = 1.72, p = .42 respectively while stimulus predictability did,  
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Table 6.5. CSTSA modelling of expectancy ratings for all melodies; coefficients for fixed 
width 95% CI’s and variance of random effects. 

 Predictor Coefficient 95% CI 95% CI 

Fixed effects 

Intercept 0.307 0.251 0.364 
Time 0.001 0.001 0.001 
Musicianship 0.030 0.014 0.004 
Pitch -0.002 -0.002 -0.001 
IOI 0.003 0.003 0.003 
L1ratings 0.960 0.953 0.967 
L2ratings -0.065 -0.073 -0.058 
L4ratings -0.061 -0.069 -0.053 
L5ratings 0.015 0.006 0.025 
L6ratings 0.035 0.023 0.037 
L15ratings 0.015 0.012 0.018 
PitchIC -0.263 -0.309 -0.217 
L1pitchIC 0.486 0.306 0.666 
L7pitchIC 0.123 0.079 0.167 
L8pitchIC -0.059 -0.103 -0.016 
OnsetIC -0.731 -0.794 -0.667 
L1onsetIC 0.845 0.769 0.920 
L2onsetIC -0.181 -0.240 -0.123 
L10onsetIC -0.084 -0.129 -0.039 

 L12onsetIC 0.138 0.092 0.183 

 Predictor Variance - - 

Random effects on 
individuals 

Intercept 0.000   

L1pitchIC 0.000   
Random effects on 

melody ID 
Intercept 0.019   
L1pitchIC 0.245   

Residual variance  0.421   

 

χ2 (2) = 14.91, p = .0005.  The further addition of pitch and IOI significantly improved the 

model, χ2 (2) = 178.89, p < .0001, where both are significant predictors of arousal ratings.  

Combined pitch and onset information content with lags of pitch and onset from the best model 

outlined above was significantly worse, χ2 (13) = 4482.2, p < .0001. 

A correlation test between the data and the model was highly significant, with 

correlation .96, t (80183) = 978.48, p < .0001.  A proportion of data squares fit test was also  
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Table 6.6. CSTSA modelling of arousal ratings for all melodies; coefficients for fixed width 
95% CI’s and variance of random effects. 

 Predictor Coefficient 95% CI 95% CI 

Fixed effects 

(Intercept) 1.98 -0.07 4.03 

Time 0.06 0.06 0.07 

Predict2 -3.42 -5.77 -1.06 

Predict3 -0.50 -2.86 1.85 

Predict4 -4.53 -6.88 -2.17 

Pitch -0.04 -0.05 -0.03 

IOI -0.03 -0.03 -0.02 

L1ratings 0.95 0.94 0.95 

L3ratings 0.01 0.00 0.01 

L5ratings -0.05 -0.06 -0.05 

L6ratings 0.03 0.02 0.03 

L15ratings 0.01 0.01 0.01 

PitchIC -16.6 -17.7 -15.4 

L1pitchIC 16.6 15.5 17.8 

L6pitchIC 2.46 1.31 3.62 

L7pitchIC 2.05 0.70 3.39 

L8pitchIC -2.14 -3.37 -0.92 

L10pitchIC 1.86 0.63 3.08 

L11pitchIC -4.43 -5.77 -3.10 

L12pitchIC 4.91 3.57 6.25 

L13pitchIC -1.95 -3.18 -0.72 

L15pitchIC 2.18 1.23 3.13 

OnsetIC -11.4 -12.9 -9.83 

L1onsetIC 72.4 48.2 96.6 

L3onsetIC 6.96 5.26 8.66 

L4onsetIC -8.38 -9.98 -6.77 

L7onsetIC 1.55 .345 2.76 

L10onsetIC -6.81 -8.12 -5.49 

L12onsetIC 5.43 3.73 7.13 

L13onsetIC 4.47 2.55 6.39 

L14onsetIC -2.93 -4.83 -1.04 

L15onsetIC 3.09 1.59 4.58 

 Predictor Variance - - 

Random effects on 
individuals 

Intercept 0.47   

L1onsetIC 2.94   
Random effects on 

melody ID 
Intercept 13.5   
L1onsetIC 4815.2   

Residual variance  276.7   
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high, with the model explaining 98% of the data. While this particular model did not converge, 

a model without random slopes removed did converge where all fixed effects were significant, 

model fit was equally good (correlation test: .95, t (80183) = 959.73, p < .0001; proportion of 

data squares fit: 98%) and the inclusion of slopes improved the model significantly, χ2 (5) = 

335.3, p < .0001; therefore random slopes were reinserted into the best model as per the 

experimental design (Barr et al., 2013).  The final model thus includes design-driven random 

effects, stimulus predictability, pitch, IOI, optimal autoregressive lags of expectancy ratings 

and optimal lags of pitch IC and onset IC. 

Valence ratings. The best CSTSA model for valence ratings is summarized in Table 

6.7.  This model revealed significant effects of only pitch IC and onset IC and a selection of 

their lags when autoregression and random effects were considered.  The model included 

random intercepts and random slopes for L1onsetIC on melody ID and participant ID as well 

as fixed effects L = 0-1, 5, 8-9, 11-13, 15 of pitch IC, L = 0-1, 3-4, 10, 13 of onset IC and P = 

0, 3-7, 9, 15 of autoregression.  All predictors were significant, as Wald 95% confidence 

intervals did not include zero.  The addition of musicianship, stimulus predictability and 

modification as fixed effects did not improve the model, χ2 (1) = .29, p = .58, χ2 (3) = 4.77, p 

= .18 and χ2 (1) = 3.46, p = .06 respectively.  The further addition of pitch and IOI significantly 

improved the model, χ2 (1) = 600.99, p < .0001, where both are significant predictors of arousal 

ratings.  Combined pitch and onset information content with lags of pitch and onset from the 

best model outlined above was significantly worse, χ2 (10) = 194.72, p < .0001. 

A correlation test between the data and the model was highly significant, with 

correlation .94, t (80183) = 827.83, p < .0001.  A proportion of data squares fit test was also 

high, with the model explaining 98% of the data.  While this particular model did not converge, 

a model without random slopes removed did converge where all fixed effects were significant, 
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Table 6.7. CSTSA modelling of valence ratings for all melodies; coefficients for fixed width 
95% CI’s and variance of random effects. 

 Predictor Coefficient 95% CI 95% CI 

Fixed effects 

(Intercept) 5.38 3.56 7.20 
Time 0.03 0.03 0.04 
Pitch -0.09 -0.10 -0.08 
IOI 0.16 0.15 0.18 
L1ratings 0.92 0.92 0.93 
L3ratings -0.02 -0.03 -0.01 
L4ratings -0.03 -0.04 -0.02 
L5ratings -0.01 -0.02 -0.00 
L6ratings 0.01 0.00 0.02 
L7ratings 0.01 0.00 0.02 
L9ratings 0.00 0.00 0.01 
L15ratings 0.00 0.00 0.01 
PitchIC -9.19 -10.6 -7.72 
L1pitchIC 11.2 9.74 12.6 
L5pitchIC 2.62 1.45 3.79 
L8pitchIC -3.26 -4.72 -1.79 
L9pitchIC 3.29 1.74 4.83 
L11pitchIC -1.68 -3.22 -0.15 
L12pitchIC 2.91 1.47 4.83 
L15pitchIC 1.28 0.20 2.36 
OnsetIC -20.0 -22.2 -17.9 
L1onsetIC 48.5 29.7 67.3 
L3onsetIC 4.05 1.92 6.18 
L4onsetIC -4.02 -5.90 -2.13 
L10onsetIC -5.35 -6.65 -4.05 
L13onsetIC 3.59 2.32 4.86 

 Predictor Variance - - 

Random effects on 
individuals 

(Intercept) 0.11   

L1onsetIC 0.12   
Random effects on 

melody ID 
(Intercept) 22.2   
L1onsetIC 2878.7   

Residual variance  439.9   

 

model fit was equally good (correlation test: .94, t (80183) = 959.73, p < .0001; proportion of 

data squares fit: 95%) and the inclusion of slopes improved the model significantly, χ2 (4) = 

805.25, p < .0001; therefore random slopes were reinserted into the best model as per the 
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experimental design (Barr et al., 2013).  The final model thus includes design-driven random 

effects, pitch, IOI, optimal autoregressive lags of expectancy ratings and optimal lags of pitch 

IC and onset IC.  
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Figure 6.5. Intercept (left) and slope (right; predictors correspond to their respective models) 
values of random effects on Participant and MelodyID for expectancy, arousal and valence 
models.  These show how each individual participant and melody was modelled and illustrate 
the variance among participants and melodies. 
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Figure 6.6. Expectancy (A, B, C, D), arousal (E, F, G, H) and valence (I, J, K, L) ratings for 
single randomly selected participants (6 musicians (A, B, E, F, I, J; participants 14, 35, 34, 18, 
27, 7) and 6 non-musicians (C, D, G, H, K, L; participants 1, 10, 8, 33, 5, 37)) are plotted for 
Melodies 1 (A, C, E, G, I, K) and 13 (B, D, F, H, J, L), examples of PP and UU categories 
respectively.  Ratings predicted by the model (teal) for those melodies for each of those 
participants only (single extracts) are plotted alongside their actual ratings (pink).  Residuals 
were too small to illustrate on the same plot. These plots illustrate the high explanatory power 
of our model due to its random effects structure fitted specifically to this data set. 
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Table 6.8. Coefficients of sub-models for expectancy ratings. 

 Coefficient PP PU UP UU 

Fixed 

effects 

Intercept 0.393 0.399 0.235 0.204 
Time 0.002 0.001 0.003 0.001 

Musicianship 0.035 0.031 0.024 0.031 
Pitch -0.001 0.002 -0.002 -0.002 
IOI 0.001 0.003 0.004 0.005 

L1ratings 0.777 1.00 1.01 1.03 
L2ratings 0.042 -0.100 -0.141 -0.110 
L4ratings -0.045 -0.075 -0.075 -0.035 
L5ratings -0.010 -0.031 0.031 0.021 
L6ratings 0.052 -0.007 0.039 0.008 
L15ratings 0.027 0.013 0.019 0.009 

PitchIC -0.192 -0.197 -0.142 -0.549 
L1pitchIC 0.197 0.461 0.604 0.842 
L7pitchIC 0.242 0.210 -0.021 0.008 
L8pitchIC -0.005 -0.169 0.030 -0.087 
OnsetIC -0.756 -1.26 -0.316 -0.769 

L1onsetIC 1.15 1.50 0.687 0.277 
L2onsetIC -0.258 -0.469 -0.231 0.078 
L10onsetIC -0.530 -0.169 -0.038 -0.153 
L12onsetIC 0.188 0.034 0.058 0.235 

Random 
effects 

Participant – 
Intercept 

0.002 0.000 0.002 0.000 

Participant – 
l1pitchIC 

0.014 0.003 0.000 0.000 

MelodyID – 
Intercept 

0.105 0.005 0.010 0.006 

MelodyID – 
l1pitchIC 

0.078 0.174 0.337 0.178 

Residual 
variance 

 
0.455 0.397 0.536 0.319 

6.4.3 Relative salience 

Multiple linear regression models were conducted on the coefficients of CSTSA sub-

models, one for each stimulus predictability for each rating type; details of these models can 

be found in Tables 6.8-6.10.  Predictors were stimulus predictability, lag type (pitch, onset) and 

rating type (expectancy, arousal, valence): no predictor was significant, F (3, 168) = .50, p = 
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.67, F (1, 170) = 2.23, p = .13, F (2, 169) = .51, p = .59 respectively.  There was also no 

interaction between category and lag type, F (7, 164) = .79, p = .59. 

6.5 Discussion 

The results presented above provide answers to all three research questions posed.  

First, there is evidence that predictability of both pitch and temporal musical structure has an 

effect on listeners’ expectancies and emotional reactions, and that these can be manipulated.  

This not only agrees with previous behavioural validation of IDyOM pitch-based viewpoints 

(Pearce et al., 2010) but contributes behavioural validation of IDyOM temporal viewpoints.  

Second, contrary to a prediction based on complexity, for these stimuli temporal expectancy 

influences perception more strongly than pitch expectancy.  Finally, individual differences 

generally supersede effects of musical training (Dean et al., 2014a) and inter-melody 

differences are more substantial than differences between melody predictability groups (PP, 

UP, PU and UU) or manipulation type, where differences between predictability groups could 

nevertheless be detected in the discontinuous, melody-level analysis.  While the melody-level 

analysis yielded more significant effects, the CSTSA analysis supplemented it with evidence 

for a common perceptual mechanism and the importance of individual differences, neither of 

which could have been detected in the melody-level analysis. Overall, the two types of analysis 

converge and the implications of these results are discussed further below. 

Using IDyOM (Pearce, 2005) to calculate average pitch and onset information content, 

folk songs were classified into four categories based on overall expectedness, where average 

pitch expectancy and average onset expectancy could be high or low. Furthermore, pitch 

expectancy was manipulated to transform expected pitches into unexpected ones, and vice 

versa.  The four melody categories resulted in different subjective ratings of expectancy, 

arousal and valence, where high pitch and onset information content (UU) resulted in high 
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unexpectedness ratings, higher arousal and lower valence, low pitch and onset information 

content (PP) resulted in low unexpectedness ratings, lower arousal and higher valence, and 

mixed high and low pitch and onset information content (PU and UP) lay somewhere in 

between, where only the predictable pitch and onset (PP) and unpredictable pitch and 

predictable onset (UP) categories were not different from each other in arousal ratings.  This 

confirms previous evidence that statistical learning and information content may influence 

listener expectancies for pitch (Pearce et al., 2010; Pearce & Wiggins, 2006) and arousal and 

valence ratings of music (Egermann et al., 2013), and provides evidence for statistical learning 

of temporal information, a hypothesis previously unconfirmed.  Additionally, there is a 

significant interaction between pitch predictability and onset predictability for expectancy and 

valence ratings, with a similar non-significant pattern for arousal ratings, where onset 

predictability has a more pronounced effect on ratings than pitch predictability.  Cross-sectional 

time series analysis support these results with excellent models explaining between 93-96% of 

expectancy, arousal and valence ratings, all including pitch and onset information content, and 

lags of these of up to 3s (Egermann et al., 2013) as predictors. Additionally, explicit causal 

manipulation of pitch expectancy – the modification of selected pitches from high to low or 

from low to high expectancy – results in a change in ratings in the expected direction.  For 

example, melodies transformed into the UP category (filled triangle in Figure 6.3) are rated 

with higher unexpectedness ratings and lower valence than their original PP counterparts 

(hollow square in Figure 6.3), yet are also different from the original UP category (hollow 

triangle in Figure 6.3) melodies.  This effect is more pronounced for expectedness and valence 

ratings than for arousal ratings, which can be explained by the intentionally inexpressive nature 

of the stimuli.  Therefore, the manipulation of pitch expectancy adds causal evidence to  
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Table 6.9. Coefficients of sub-models for arousal ratings 

 Coefficients PP PU UP UU 

Fixed 
effects 

Intercept -5.66 0.77 -4.68 -3.45 
Time 0.25 0.04 0.24 0.05 
Pitch -0.02 -0.02 -0.10 -0.00 
IOI -0.03 0.00 -0.12 -0.00 

L1ratings 0.87 0.96 0.89 0.95 
L3ratings 0.02 0.01 0.01 -0.00 
L5ratings -0.05 -0.08 -0.03 -0.02 
L6ratings 0.03 0.04 0.04 0.01 

L15ratings 0.05 0.01 0.02 0.01 
PitchIC -18.3 -12.7 -11.6 -20.5 

L1pitchIC 19.8 8.85 14.5 24.1 
L6pitchIC 9.35 1.42 -1.65 0.32 
L7pitchIC -2.64 3.32 8.12 2.05 
L8pitchIC -0.20 -3.68 -3.71 -4.12 

L10pitchIC 6.03 0.66 2.15 0.08 
L11pitchIC -10.0 -6.78 2.50 -1.29 
L12pitchIC 6.54 8.64 -2.35 1.75 
L13pitchIC 0.08 -7.88 3.12 -0.45 
L15pitchIC 3.69 0.04 2.14 5.71 

OnsetIC -24.7 -21.1 3.90 -7.01 
L1onsetIC 78.4 91.46 123.5 17.4 
L3onsetIC 10.2 1.84 10.5 4.73 
L4onsetIC -15.0 -7.82 -7.92 -2.71 
L7onsetIC -3.79 7.51 0.01 -1.55 
L10onsetIC -24.2 -1.00 -6.14 -1.82 
L12onsetIC 13.5 -3.32 5.03 6.53 
L13onsetIC 6.51 11.9 1.76 0.47 
L14onsetIC -3.12 -6.33 -4.64 -0.81 
L15onsetIC 1.30 1.28 5.12 2.40 

Random 
effects 

Participant – 
Intercept 

0.44 1.17 0.12 0.72 

Participant – 
l1onsetIC 

0.51 0.08 0.24 1.10 

MelodyID – 
Intercept 

35.3 8.23 56.4 3.90 

MelodyID – 
l1onsetIC 

2443.5 3846.0 11190.0 447.2 

Residual 
variance 

 368.1 225.3 323.7 186.2 
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Table 6.10. Coefficients of sub-models for valence ratings. 

 Coefficients PP PU UP UU 

Fixed 
effects 

Intercept -2.42 9.68 1.35 -1.88 
Time 0.16 0.00 0.17 0.05 
Pitch -0.06 -0.11 -0.13 -0.00 
IOI 0.17 0.14 0.23 0.14 

L1ratings 0.90 0.94 0.88 0.92 
L3ratings -0.00 -0.01 -0.05 -0.00 
L4ratings -0.02 -0.01 -0.05 -0.02 
L5ratings -0.02 -0.04 0.02 -0.01 
L6ratings 0.02 0.02 0.00 0.01 
L7ratings 0.00 0.00 0.03 0.00 
L9ratings 0.01 0.00 0.02 0.00 

L15ratings 0.01 0.00 0.02 0.01 
PitchIC -8.42 -6.56 -7.56 -14.7 

L1pitchIC 12.9 8.24 6.30 19.05 
L5pitchIC 2.98 -0.13 3.96 3.18 
L8pitchIC -1.07 -3.18 -3.32 -8.26 
L9pitchIC 3.10 5.09 1.15 5.82 
L11pitchIC -0.54 -7.44 2.52 -.53 
L12pitchIC 4.25 1.02 2.46 2.62 
L15pitchIC 1.71 -0.69 2.30 2.92 

OnsetIC -22.7 -24.0 -4.81 -21.2 
L1onsetIC 49.1 80.7 81.4 6.13 
L3onsetIC 17.6 3.28 0.22 3.28 
L4onsetIC -13.1 -0.27 -1.83 -2.87 

L10onsetIC -14.3 -4.66 -6.26 0.21 
L13onsetIC 7.75 6.75 -.153 -0.94 

Random 
effects 

Participant – 
Intercept 

0.03 0.72 0.10 0.20 

Participant – 
l1onsetIC 

0.14 0.00 1.37 1.06 

MelodyID – 
Intercept 

46.5 9.41 49.8 4.26 

MelodyID – 
l1onsetIC 

2972.0 4176.0 5024.3 36.0 

Residual 
variance 

 519.6 375.9 712.1 251.5 
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previous research by demonstrating a direct link between expectancy manipulation and 

expectancy, arousal and valence ratings.  It would be especially interesting to extend this to 

include the manipulation of temporal expectancy in the future, additionally allowing better 

evaluation of the relative contribution of these two dimensions to perceived expectancy, arousal 

and valence.  Furthermore, these patterns support the most basic predictions of an expectancy 

mechanism while providing no evidence for an inverted U-curve pattern for emotional 

reactions to music (Gebauer et al., 2012).  However, rather than contest the U-curve pattern, it 

is more likely that the stimuli for this study fall towards extreme ends of the curve. 

While melody-level analysis demonstrates an effect of pitch and onset information 

content, CSTSA assesses the relative contribution of pitch and onset information content to 

expectancy, arousal and valence ratings in more detail.  In the models presented above, onset 

information content coefficients are almost always approximately 1.1 to 4.3 times larger than 

pitch information content coefficients for exactly (i.e. L1pitchIC and L1onsetIC) or loosely 

(i.e. L5pitchIC and L6onsetIC) matching lags.  Furthermore, the sum of onset IC lag 

coefficients is far greater than the sum of pitch IC lag coefficients for arousal and valence rating 

models, while the sum of pitch IC lag coefficients is greater than onset IC lag coefficients for 

the expectancy ratings model (though absolute values of individual onset IC coefficients are 

greater than the pitch IC coefficients).  The discrepancy between these results and predictions 

based on complexity will be discussed further in Section 6.5.1 on Relative Salience.  The sum 

of lag coefficients is considered rather than the effect of each coefficient individually because 

the choice of exact combination of lags had minimal effect on the quality of the final model 

during optimization.  This suggests that each lag coefficient does not carry very much 

interpretable information on its own, nor is this particular combination of lags, with a mix of 

positive and negative coefficient values, generalizable.  Incidentally, every model includes 
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pitch IC and onset IC lags of 0 and 1, with little overlap beyond this, suggesting that processing 

time scales for both pitch and onset expectancy are similar soon after a particular note event 

and diverge after this.  This variation in time scales could also explain why a combined pitch 

and onset IC predictor did not replace the separate pitch IC and onset IC predictors. 

 Though analysis of mean ratings yielded a main effect of musical training, the amount 

of variance explained by musical background was superseded by the amount of variance 

explained by random effects on participant ID for arousal and valence ratings, indicating that 

though groups can be formed, individual strategies are more important to explain these ratings.  

Though a large body of literature supports the existence of certain differences between 

musicians and non-musicians (Brattico et al., 2001; Carey et al., 2015; Fujioka et al., 2004; 

Granot & Donchin, 2002), similar research by Dean et al. (Dean et al., 2014a; Dean, Bailes, & 

Dunsmuir, 2014b) has also found that though there were differences between groups, 

individual differences explain more variance than musical background when rating arousal and 

valence of electroacoustic and piano music.  However, musical background did hold important 

predictive power for expectancy ratings, where musicians gave slightly higher ratings overall, 

showing greater unexpectedness.  This is in line with the hypothesis presented in Section 6.2, 

where training is expected to produce stronger expectancies and therefore more extreme 

reactions to violations (Hansen & Pearce, 2014; Strait et al., 2009).  That being said, it is worth 

noting that the overall difference in ratings between musicians and non-musicians is small, 

with musicians’ ratings being only 0.2 points higher. 

Similarly, the differences between individual melodies, as modelled by random 

intercepts and slopes on Melody ID, outweigh categories of stimulus predictability and 

stimulus modification in all but two cases: expectancy ratings, where stimulus modification 

was a significant predictor, and arousal ratings, where stimulus predictability was a significant 
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predictor, such that PP > UP > PU > UU in terms of arousal ratings.  The predictive power of 

stimulus modification in the context of expectancy ratings can be explained by the overall 

higher pitch IC in artificial melodies, as shown in Figure 6.3.  This is likely due to the fact that 

the modifications were made by an algorithm and are therefore not as smooth as human-

composed changes might have been.  As the original melodies already had relatively low IC, 

it would be difficult to keep mean IC as low or lower with the change of even one note, as this 

change could also have an effect on the IC of all subsequent notes in a given melody. 

As for the importance of stimulus predictability in predicting arousal ratings, which was 

in the opposite direction to what was expected based on previous empirical (Egermann et al., 

2013; Steinbeis et al., 2006) and theoretical (Meyer, 1956; Huron, 2006) research, this could 

be explained by the potentially confounding effect of duration on ratings.  The analysis revealed 

that note duration did indeed have a significant effect on ratings, where melodies with longer 

durations, corresponding to low onset expectancy, were rated as more unexpected, less 

arousing and less pleasant.  The pattern of mean arousal ratings by stimulus predictability, with 

PP and UP (high onset expectancy) rated as more arousing than PU and UU (low onset 

expectancy) matches this interpretation, which is further supported by previous research 

establishing a positive correlation between tempo and arousal (Carpentier & Potter, 2007; 

Husain, Thompson, & Schellenberg, 2002). The significant effect of pitch on ratings is more 

surprising; a pattern of higher average pitch for PP and UP categories corresponds to lower 

unexpectedness ratings, higher arousal ratings and higher valence ratings for these categories 

as compared to PU and UU categories.  However, coefficients for pitch and IOI are smaller 

than almost all other predictors in expectancy, arousal and valence models, suggesting that 

their overall influence is minimal compared to pitch and onset IC on subjective expectancy and 

emotion responses. 
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Also similarly to Dean et al. (2014a), the use of CSTSA evaluates evidence for the 

presence of a common perceptual mechanism across all pieces of music heard.  To do this, 

predictors encoding melodies by stimulus predictability and modification were added to the 

basic models, where a null effect of these additional predictors would indicate that the type of 

melody does not matter and the listeners’ ratings depend only on pitch and onset IC in all 

melodies.  In the case of valence ratings, neither stimulus predictability nor stimulus 

modification were found to provide any additional predictive power to the model, while 

stimulus modification was a significant predictor for expectancy ratings and stimulus 

predictability for arousal ratings.  However, explanations were proposed for these results (see 

previous paragraph) and overall the data provides support for a common perceptual mechanism 

across all melodies. 

6.5.1 Relative salience 

Having considered the relative importance of pitch and onset IC in the context of 

models of participant expectancy, arousal and valence ratings, relative salience should also be 

considered.  While the question of relative perceptual weighting between musical parameters 

such as pitch, timing, structure, and harmony in music cognition will be addressed in more 

detail in Chapter 7, it is worth mentioning the impact of the above results on this area of 

research.  Studying relative musical salience is challenging and the term itself lacks a unified 

explanation (Dibben, 1999; Esber & Haselgrove, 2011; Prince et al., 2009; Uhlig, Fairhurst, & 

Keller, 2013).  Generally, pitch or melody is considered the most salient aspect of a piece of 

music. Prince et al. (2009), for example, argue that there are many more possible pitches than 

there are rhythmic durations or chords; therefore, pitch takes more attentional resources to 

process and is more salient.  On the other hand, in a corpus analysis of eighteenth- and 

nineteenth-century string quartets, Duane (2013) found that onset and offset synchrony were 



 
167 

 

the most important predictors of streaming perception of these string quartets, with pitch 

explaining half the variance that onset and offset synchrony did, and harmonic overlap 

explaining an almost insignificant amount.  It is also important to consider musical genre when 

discussing salience, as certain genres are more rhythmically driven (i.e., rap, electronic dance 

music, African drum music) while others are more melodically driven (i.e., opera).  Folk music 

is more ambivalent and may vary from song to song.  Other genres may well produce different 

results; something which would be worth exploring in the future.  The stimuli used in this study 

best fit Prince et al.’s (2009) description of musical salience, as these melodies contain more 

different pitches than different rhythmic values.  This would imply that the pitch dimension is 

more complex, and therefore more salient.  However, results indicate that onset information 

content is more salient than pitch information content, though here perception of emotion, as 

opposed to auditory streaming, was evaluated alongside the subjective experience of 

expectancy.  Interestingly, work in cue salience in the context of associative learning explores 

the effect of predictability and uncertainty on salience (Esber & Haselgrove, 2011), with one 

model predicting increased salience for cues with high predictability (Mackintosh, 1975) and 

another model predicting increased salience for cues with high uncertainty (Pearce & Hall, 

1980). Though contradictory, these models have each accumulated significant evidence and 

have more recently led to the development of both hybrid (Pearce & Mackintosh, 2010) and 

new unified models of cue salience (Esber & Haselgrove, 2011).  The possibility that high and 

low uncertainty and pitch and onset lag coefficients interacted was considered so that melodies 

with high pitch predictability (expectancy) and low onset predictability (PU) led to larger pitch 

IC coefficients than onset IC coefficients, and vice versa.  This effect was not found in the data 

(see Section 6.3.3), so it is concluded that in this particular paradigm, onset is the more salient 

cue overall. 
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6.6 Conclusion 

In addition to validating IDyOM’s implementation of statistical learning for temporal 

viewpoints, the present study makes a single but significant step towards isolating individual 

mechanisms for the induction of musical emotion.  The study explicitly controlled for six of 

the eight proposed mechanisms (Juslin et al., 2011) and manipulated one while considering 

another as a covariate.  Brain stem reflexes, evaluative conditioning, episodic memory, visual 

imagery, rhythmic entrainment and cognitive appraisal were controlled for by presenting novel 

stimuli with equal tempo, intensity and timbre alongside a rating task.  Emotional contagion, 

information conveyed by musical structure itself, was addressed by including pitch and 

duration values into the CSTSA models of the expectancy, arousal and valence ratings.  Though 

these were significant predictors, they carried less weight than the lags of information content 

predictors.  Musical expectancy was examined by selecting stimuli with either high or low 

pitch and onset expectancy and additionally explicitly manipulating pitch expectancy, finding 

evidence for a consistent effect of pitch and onset expectancy on ratings of arousal and valence 

by musicians and non-musicians.  Additionally, onset was found to be more salient than pitch 

and musicians gave higher unexpected ratings than non-musicians, where group differences 

were overridden by individual differences on emotion ratings. 

In this chapter, IDyOM’s implementation of the temporal viewpoints inter-onset-

interval and onset were validated experimentally by collecting expectedness ratings from 

participants listening to musical excerpts in real time.  These excerpts had either high or low 

objective expectancy along the pitch and temporal dimensions, as modelled by statistical 

learning of folk and Baroque music.  In addition, this chapter provided strong evidence for 

expectancy as a mechanism for the induction of musical emotion, demonstrating the versatility 

and potential explanatory power of predictiveness in the context of cognitive mechanisms.  
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Though applied to a monophonic context, this chapter has addressed some of the basic auditory 

features relevant to auditory streaming, validating an expectancy approach to these, as well as 

taking into account musical training.  In the next chapter, expectancy of basic auditory, as well 

as musical features will be applied to a polyphonic context to further explore relative salience 

between the pitch and temporal domains, as well as the harmonic domain, helping gradually 

build the knowledge necessary for the design of an integrated, prediction-based framework for 

auditory streaming. 
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7    Relative Salience 
in Polyphonic Music 

 
 

In Chapter 2, one of the challenges of modelling auditory streaming discussed is that 

many auditory factors influence how sounds are grouped – from auditory features such as raw 

frequency and timbre to cognitive mechanisms such as attention and prediction to musical 

training – with each factor, or combination of factors having a distinct impact on perception 

This chapter investigates this issue, evaluating an information content-based solution 

to relative perceptual salience.  A combination of existing conceptual and methodological 

approaches is employed to investigate the relative perceptual salience of melody, harmony and 

rhythm.  The long-term aim is to predict what feature of a piece of music a listener is most 

likely to be focused on at any given time – knowledge that is essential to modelling auditory 

streaming. 
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7.1 Defining Salience 

From the start, salience is a tricky term.  In laymen’s terms, salience can be defined as 

something that stands out, but operationalizing it is more elusive, as evidenced by the varying 

existing approaches in the literature (Collins, Laney, Willis, & Garthwaite, 2011; Dibben, 

1999; Lerdahl, 1989; Prince, Thompson, & Schmuckler, 2009).  To summarize the state of the 

salience literature in music cognition, three definitions of salience will be discussed. 

First, Collins et al. (2011) relate salience to repetition in a study of pattern importance in 

Chopin’s Mazurkas, where it is proposed that a repeated pattern has some sort of musical 

importance.  They studied 90 patterns from a selection of Chopin Mazurkas that encompassed 

five types of repetition: 

● Exact; 

● With interpolation: indicates the presence of additional notes in repetitions, usually 

between existing pattern notes; 

● Transposed real: each pattern note is transposed the same number of semitones; 

● Transposed tonal: the pattern is transposed, but some minor changes are allowed to 

keep the excerpt in its key; and 

● Durational: a rhythmic pattern. 

Half of the patterns were selected by the first author and the other half by Meredith et al.’s 

(2002) structural inference algorithm for translational equivalence classes (SIATEC), to cover 

a range of pattern plausibility.  For each of these patterns, 29 features were calculated and used 

to predict pattern importance as rated by music students on a scale of 1-10 (where 1 is 

unimportant and 10 is very important).  The final model, explaining 71% of their data, included 

three features: (1) compactness, the ratio of number of notes in the pattern to total number of 

notes in the texture while the pattern occurs; (2) expected occurrences, the likelihood of 
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occurrence of a given pattern based on empirical distributions representing the music; formula 

given by Conklin & Bergeron (2008); and (3) compression ratio, equal to coverage divided by 

the sum of cardinality and number of occurrences minus 1, where coverage is the number of 

notes in the analysed piece(s) of music that are included in the given pattern and cardinality is 

the number of notes in a pattern (Formula 6.1).  This model suggests that the more compact 

and the more often a pattern occurs, the more likely it is to be salient to a listener.  This supports 

the intuition that less information is easier to remember, leading to the conclusion that a short 

and memorable pattern will be more salient. 

௖௢௩௘௥௔௚௘

(௖௔௥ௗ௜௡௔௟௜௧௬ା௢௖௖௨௥௥௘௡௖௘ )ିଵ
     (6.1) 

Second, Dibben (1999) and Lerdahl (1989) explore salience in music without tonal 

hierarchy, arguing that the stability of tonal music subsumes salience where musical structure 

is concerned.  Salience here refers to attention-drawing musical mechanisms that define a 

piece’s structure, where there is no tonality to do so.  In other words, if a piece of music is 

tonal, tonality provides structure; if not, salience provides structure in place of tonality.  Several 

features of the musical surface (as opposed to hierarchical structure) are defined as carriers of 

salience.  Lerdahl develops a rather sophisticated hierarchy of these features that he suggests 

are inferred by listeners.  It is not clear however how this hierarchy was established and is 

presumably based on Lerdahl’s own intuition; it should be tested empirically before it can 

explain perception in a reliable way.  There are more parameters than need to be mentioned 

here, but here are a few of the most straightforward: in this hierarchy, notes will be more salient 

if they are in an extreme registral position or parallel to a choice made elsewhere in the piece 

(parallelism), slightly less if they are relatively loud, long or timbrally prominent and even less 

if they are in a relatively strong metrical position.  Dibben also identifies register and 

parallelism as carriers of salience, and summarizes other attention-drawing parameters 
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suggested by Lerdahl as phenomenal accents (i.e. a loud note).  Unlike Collins, this approach 

to salience deals with individual events and considers events that are different from their 

context to be salient as opposed to simple, repeated patterns. 

Third, Prince et al. (2009) link salience to complexity, arguing that increased feature 

complexity requires higher processing demands, leading to increased allocation of attention to 

that feature – in other words, that feature becomes salient.  This conclusion is derived from a 

set of two goodness-of-fit probe tone experiments, and four speeded classification tasks.  In 

these, tonal and metrical hierarchies of two-bar contexts and the tonal and metrical 

relationships between these contexts and a probe were manipulated both together and 

independently to evaluate each parameter’s impact on goodness-of-fit ratings or classification 

performance.  Goodness of fit ratings ranged from 1 (poor fit) to 7 (good fit) and the 

classification tasks asked participants whether a probe tone was on or off beat, or in or out of 

key, depending on the parameter under investigation.  Results showed that pitch class of the 

probe tone better predicted goodness-of-fit ratings than its temporal position, even when 

listeners were instructed to ignore pitch.  In the speeded classification tasks, temporal 

classification was biased by tonal relationships but pitch classification was not affected by 

temporal position.  To explain this asymmetry, the authors apply their definition of salience as 

it relates to complexity: in Western music, there are many more commonly used different 

pitches (not pitch classes) than there are different commonly used durational values, therefore 

pitch is more complex, requires more attention to process, and is more salient.  This of course 

ignores octave equivalence; if octave equivalence was taken to make two pitches absolutely 

equal perceptually, then the overall pitch options in Western music are reduced to the 12 pitch 

classes of the chromatic scale.  This would render pitch and rhythm almost equal in complexity.  

However, two pitches an octave apart are still two different frequencies and, assuming neuro-
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typical perception, can be recognized as two different pitches, alongside the recognition of 

belonging to the same pitch class.  Thus, the argument for pitch superiority can be considered 

convincing, particularly as Western music is heavily melody-based, and even atonal music is 

pitch-based (for example serialism).  Unlike the previous two, this definition of salience 

considers the contents of a given parameter isolated from the others and over the span of a 

whole piece of music. 

The differences between these definitions have already quickly been highlighted: for 

Collins et al. (2011), simplicity and repetition is salient, for both Dibben (1999) and Lerdahl 

(1989), extreme events are salient, and for Prince et al. (2009), complexity is salient.  However, 

an investigation into the broader psychology literature on salience sheds some light on these 

discrepancies and proposes a definition that supersedes all those above.  The school of Gestalt 

psychology first defined salience as contrast (Wundt, 1874), where the more different an object 

is from its context, the more salient it will be perceived to be.  Spanning research in vision 

(Fink, Marshall, Halligan, & Dolan, 1998; Hoffman & Singh, 1997; Parkhurst, Law, & Niebur, 

2002), attention (Horstmann, Becker, & Ernst, 2016; Summerfield & Egner, 2009) and 

language acquisition (Ellis, 2006; Pruden, Hirsh-Pasek, Golinkoff, & Hennon, 2006), the 

concept of salience was still both varied and ill-defined.  A recent special edition of Frontiers 

in Psychology (Blumenthal-Dramé et al., 2017) addresses this issue.  A number of papers 

suggest that different definitions may simply reflect different aspects of salience: top-down 

salience or bottom-up salience, and that these can be explained as a function of expectation 

(Blumenthal-Dramé, Hanulíková, & Kortmann, 2017; Horstmann et al., 2016; Jaeger & 

Weatherholtz, 2016; Schmid & Günther, 2016).  In this interpretation, bottom-up salience is a 

result of surprise in response to an unexpected event while top-down salience is a result of 

confirmed expectation, where an object, or a word, is salient if one expects that object or word 
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because it was recently mentioned, imagined, or part of a routine for example.  This is 

supported by Ellis’ (2006) explanation of some of the challenges of second language 

acquisition, particularly grammatical subtleties and link words.  Ellis argues that these aspects 

of language are so common (i.e. the ‘s’ in the third person conjugation) that they become 

dropped by first language speakers because they are implied.  This lack of salience, driven by 

high frequency, makes second language acquisition more difficult for these aspects of 

language, where less common vocabulary is spoken more clearly and is therefore more salient 

and better understood.  Also in language processing research, Zarcone et al. (Zarcone, van 

Schijndel, Vogels, & Demberg, 2016) integrate salience into the predictive coding framework, 

where predictability and attention at multiple processing levels, already incorporated into the 

framework, influence perceived salience.  For example, a highly predictable event outside of 

attention will not be salient, while the same type of event inside the focus of attention will be 

salient.  In vision research, salience has been measured by reaction and fixation times using 

eye tracking, where faster reaction times indicate higher salience and salience is correlated with 

higher contrast, supporting the bottom-up aspect of salience perception (Fink et al., 1998; 

Hoffman & Singh, 1997; Parkhurst et al., 2002).  Though this unifying, expectancy-based 

definition is encouraging, it is very new and more research is needed to validate it; this chapter 

contributes to this need. 

Jaeger & Weatherholtz (2016) specifically suggest that computational models of 

expectation are the way forward in salience research; in the present chapter this idea is applied 

to a musical context.  The expectancy framework, with its two contrasting types of salience, 

largely resolves discrepancies between the definitions discussed from the music cognition 

literature.  Each of those definitions relies on some type of information content calculated 

(algorithmically) or extracted (by a human annotator) for a given feature.  In the case of Collins 
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et al. (2011), as a listener (real or algorithmic) experiences a repeated pattern, that pattern will 

become more predictable and IC for that pattern will decrease.  Alternatively, IC can also 

replace compactness by measuring similarity through compression (Pearce & Müllensiefen, 

2017).  In the case of Dibben (1999) and Lerdahl (1989), IC for viewpoints such as loudness, 

timbre and register (though these do not yet exist in IDyOM) would be high for extreme events 

as these are also unlikely, thus identifying these events as surprising and salient.  In the case of 

Prince et al. (2009), IC is a potential measure of complexity, where high IC reflects 

unexpectedness and higher unexpectedness equates to more complexity, and therefore salience.  

This is similar to Dibben and Lerdahl’s definitions, where low IC reflects expectedness and 

lack of complexity, and therefore lack of salience.  Again, while these definitions are contrary 

to Collins’, the expectation framework can resolve this: these studies are addressing different 

aspects of salience, where Collins et al. considers top-down salience, Dibben, Lerdahl and 

Prince et al. address bottom-up salience.  Furthermore, the scale of application of each 

definition of salience differs, where Collins et al. refers to patterns repeated throughout a piece 

of music, Prince et al. to parameters spanning a piece of music and Dibben and Lerdahl to 

individual events in relation immediate context.  Finally, the paradigms used in Collins et al. 

and Prince et al. differ, where Collins et al. investigates the effect of sequential repetition while 

Prince et al. investigates the simultaneous perception of multiple lines.  As the goal of this 

chapter is to investigate the relative salience of musical parameters in polyphonic music, which 

involves simultaneous perception and bottom-up salience, the predictions associated with 

Prince et al. (2009)’s definition of salience will guide its hypotheses. 
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7.1.1 Operational definitions 

Given that information content provides a common thread to the music cognition 

definitions of salience given above and can represent both types of salience suggested, the 

following operational definition of salience is proposed: 

Salience is proportional to information content  (1) 

To validate this definition, it is decomposed into two sub-definitions: 

Information content is proportional to complexity  (2) 

Complexity is proportional to salience  (3) 

This serves two purposes: (1) to methodologically break the statement down into 

smaller, more concentrated studies and (2) to provide empirical evidence linking complexity 

to information content as calculated by IDyOM, theorized here and elsewhere (Eerola, 2016; 

Huron, 2006) but not yet tested. 

The next section will present the stimuli that will be used for two studies, one for each 

sub-definition, described in Sections 7.3 and 7.4 respectively, while Section 7.5 summarizes 

and discusses the results of both in the context of the wider salience and music perception 

literature.  The first of these studies tests the hypothesized link between information content 

and complexity by asking participants to rate the perceived complexity of short 3-voice musical 

excerpts specially composed for these studies and manipulated in terms of melodic, harmonic 

and rhythmic information content.  The second tests the hypothesized link between complexity 

and salience by asking participants to listen to pairs of these same excerpts and identify whether 

the middle voice, called target melody, is the same or different.  Both simple and complex 

target melodies were created to test two types of relationship between the outer and middle 

voices: middle voice less complex than outer voices, and middle voice more complex than 

outer voices (details in Section 7.4). 



 
178 

 

7.2 Materials 

A total of 24 basic stimuli were designed, 8 for each of the three musical parameters 

investigated: melody, harmony and rhythm.  These eight stimuli represent eight objective levels 

of complexity where information content, as measured by IDyOM, is progressively larger as 

levels increase.  Each two-bar excerpt is written for three voices, where only the two outer 

voices are manipulated according to information content and the middle voice (target melody) 

remains mostly static: there are four versions of the simple target and four versions of the 

complex target, each differing by only one note (see Figures 7.1 and 7.2).  These differences 

are important for the same-different paradigm in which participants are asked to identify 

whether a pair of stimuli are the same or different (details in Section 7.4).  Two of these versions 

contain all in-key notes and two contain out-of-key notes according to the implied harmony of 

the target melody alone; however, in-key notes and out-of-key notes could become out-of-key 

or in-key depending on the harmonic context they are set in.  Each of the 24 basic stimuli were 

created in four versions, each with a different target melody, for each of the simple and complex 

targets, for a total of 192 different two-bar musical excerpts.  Each was rendered to an audio 

file, with a violin sound applied to the upper voice, a clarinet sound applied to the target 

melody, and a bassoon sound applied to the lower voice.  These instruments were chosen so 

A  B  

C  D  

Figure 7.1. Simple target stimuli (A), all in the key of C, with each of the following 
modifications: A instead of F in the third beat of bar 1 (B), C# instead of C in the second 
half of the downbeat of bar 2 (C), and Eb instead of F in the third beat of bar 1 (D). 
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that each outer/inner voice timbral pair would be roughly equally perceptually dissimilar, as 

found from collecting timbre dissimilarity ratings in a previous study (Chapter 5, Figure 5.4; 

Sauvé, Stewart, & Pearce, 2014).  Other combinations piloted include oboe as the target 

melody, with violin the upper and bassoon in the lower voices, and piano for all voices, but 

these combinations were too easy and too difficult, resulting in ceiling and floor performance, 

respectively.  The combination of timbres used in the present studies resulted in a mean pilot 

performance around 75%. 

The construction of these stimuli, including the information content details of the target 

melodies, and the manipulations of the outer voices in terms of melodic, harmonic and 

rhythmic information content will now be described. 

7.2.1 Simple target stimuli 

All melodic information content was measured using IDyOM, using pitch interval and 

scale degree source viewpoints to predict pitch.  IDyOM was trained on soprano lines from 185 

Bach chorales, a collection of 152 Nova Scotia folk songs, and the German fink sub-collection 

of the Essen Folk Song Collection, which consists of 566 songs.  Both the long- and short-term 

models were engaged.  All rhythmic information content was measured using the inter-onset-

interval source viewpoint to predict onset.  All other model parameters were held constant.  The 

A  B  

C  D  

Figure 7.2. Complex target stimuli (A), all in the key of C, with each of the following 
modifications: A instead of F in the third beat of bar 1 (B), C# instead of C in the second half 
of the downbeat of bar 2 (C), and Eb instead of F in the third beat of bar 1 (D). 
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mean melodic information content of simple target melodies A, B, C and D (Figure 7.1) was 

3.08, 3.63, 4.52, and 4.45 respectively and the mean rhythmic information content was 1.59 for 

all versions.  Though there is some variation in IC between these four versions of the target, 

the range and variation are smaller than the possible values of mean melodic IC for the eight 

levels of complexity presented in Section 7.2.3.  Furthermore, any potential effect of this 

difference in target stimuli IC will be included in the analysis.  Mean harmonic information 

content is not calculated for this monophonic line. 

7.2.2 Complex target stimuli 

 Complex target stimuli contain the same pitch classes as simple stimuli, where some 

pitches have simply been shifted down one octave.  Using the same models, the mean melodic 

information content of complex target melodies A, B, C and D (Figure 7.2) were 5.61, 6.55, 

8.66, and 8.13 respectively and the mean rhythmic information content was 3.70 for all 

versions. 

7.2.3 Melodic complexity levels 

The outer voices of these excerpts were designed to vary in mean information content 

between each of eight levels, so that level 1 had the lowest mean IC and level 8 had the highest.  

Mean melodic information content for each complexity level ranged from 2.79 to 7.62 (SD = 

1.57).  Figure 7.3 illustrates the mean information content for all parameters for all 24 basic 

stimuli, for each of simple and complex target melodies.  Increased IC was reflected in larger 

intervals and more out-of-key pitches, which is logical considering the source viewpoints used.  

Harmonic complexity varied across levels (range = 4.20-8.87, SD = 1.78) while rhythmic 

complexity did not, IC = 1.59.  See Figure 7.4 for the excerpts. 
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7.2.4 Harmonic complexity levels 

Harmonic complexity was also measured using IDyOM.  Chord progressions were four 

chords long, two beats per chord, with information content of chord transitions determined by 

training IDyOM on chord progressions from the Montreal Billboard Corpus (see Section 3.2.1 

for details), where chords were encoded as integers to simulate MIDI pitch.  The long- and 

short-term models were both engaged.  Possible chords included major, minor, seventh, and 

various extension chords in almost any inversion.  Each stimuli’s chords were encoded as a 

series of four integers, one for each chord.  For example, the progression I – IV6 – V – I was 

encoded as 1 – 55 – 3 – 1.  This type of input simulates the existing cpitch viewpoint in IDyOM.  

Average harmonic information content for each complexity level ranged from 5.67 to 9.55 (SD 

= 1.89), where higher information content was reflected in rarer chords and chord transitions.  

Melodic complexities were fairly equal across levels (range = 2.35-4.04, SD = 0.66) while 

rhythmic complexity remained fixed, IC = 1.59.  The close relationship between melody and 

harmony makes complete independence impossible, though as illustrated in Figure 7.3, some 

separation is possible.  This relationship will affect interpretation of the results, where a 

significant effect of harmonic IC implies a related influence of melodic aspects of the music.  

An effect of melodic IC in this polyphonic context would also imply some influence of 

harmony.  See Figure 7.4 for the stimuli. 

7.2.5 Rhythmic complexity levels 

IDyOM’s inter-onset interval (IOI) viewpoint was used to predict note onset for the 

outer voices of each stimulus, using the same training set and parameters as the melodic 

complexity stimuli.  Average rhythmic information content for each complexity level ranged 

from 1.49 to 3.04 (SD = 0.53), where higher information content was reflected in greater 

diversity of IOI values, or decreased repetition.  The melodic and harmonic complexities 
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remained fairly equal across levels for both melody and harmony, ranging from 3.55 to 4.32 

(SD = 0.28) and 6.13 to 9.13 (SD = 1.78) respectively.  See Figure 7.3 for an illustration of 

relative parameter IC and Figure 7.4 for the excerpts.
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Figure 7.3. The mean IC of each voice plotted for each of the 48 stimuli by type of manipulation and type of target.  The manipulation of 
melodic information content in the outer voices as compared to the target melody is clear in the first column, with more diffuse distributions in 
last two columns and the manipulation of rhythmic information content is similarly clear in the third, with a flat distribution in the first two 
columns.  The manipulation of harmonic information content is closely entangled with melody and is therefore difficult to manipulate 
completely independently, though some separation is possible; the outer columns have identical, more sporadic patterns than the central column.
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Figure 7.4. Scores of excerpts for complex target stimuli for Levels 1-4. 
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Figure 7.4 con’d. Scores of excerpts for complex target stimuli for Levels 5-8. 
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7.3 Linking information content to complexity 

To test the hypothesis that objectively measured information content approximates 

subjective perceived complexity, complexity ratings on 96 3-voice stimuli were collected, 

using all 4 versions of each of the 24 basic stimuli set with a complex target melody.  All four 

versions were used to verify that ratings were stable when only one note in a given excerpt was 

changed.  Ratings ranged from 1 – 7, where 1 was not complex and 7 was very complex.  

Participant ratings are expected to correlate with information content for melodic, harmonic 

and rhythmic IC manipulations, where high IC will yield higher complexity ratings. 

7.3.1 Participants 

Data was collected from 28 participants (12 female), mean age 43.03 (SD = 16.34) and 

mean Gold-MSI musical training subscale (see Chapter 3, Section 3.3 for details) score 36.60 

(SD = 9.31).  Participants were recruited through musicology and psychology mailing lists and 

social media.  Ethical approval was obtained from the Queen Mary Research Ethics Committee, 

QMREC1536a. 

7.3.2 Procedure 

Data was collected via online survey tool Qualtrics.  Participants first read through the 

information sheet and provided consent before reading the instructions and answering two 

practice trials to familiarise themselves with the type of stimuli and form an idea of their 

complexity.  Participants were not given any definition of complexity but rather instructed to 

decide for themselves what it meant to them when listening to these stimuli.  This way, if a 

relationship is found between information content and complexity, it is not because participants 

were told it existed.  They were encouraged to use the full range of the complexity scale and to 

perform these ratings by judging complexity of an excerpt in relation to the other excerpts  
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 rather than in relation to other music 

they know.  Each participant rated 

48 excerpts, where two from each 

set of four modifications were 

randomly selected.  The 48 excerpts 

were divided into three blocks of 16 

excerpts, one for each of the 

melodically, harmonically and 

rhythmically manipulated stimuli. 

Figure 7.5. Mean complexity ratings for each 
level by parameter. 

 

These 16 excerpts were presented in random order and the presentation order of the blocks was 

also randomized. 

7.3.3 Analysis 

 Primary analysis was performed in R (3.3.2) on mean complexity ratings, averaged 

across the four versions and across participants for each of the 24 basic stimuli.  Mean 

complexity ratings are plotted in Figure 7.5.  This primary analysis consisted of three multiple 

linear regression models answering three questions about the relationship between the stimuli 

and the collected complexity ratings.  These are specified in Section 7.3.4 below.  These models 

included fixed effects only and were constructed according to the question being posed.  

Variance explained by each model is given by R-squared, calculated by a correlation test 

between the model’s predictions and the data.  The overall F-statistic of the model is also given.  

Statistical significance of each predictor is given by the result of a likelihood-ratio test between 

a null model (intercept only) and a model containing the single evaluated predictor.  Statistical 

significance of each individual factor level for a given predictor is evaluated by the t statistic 
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given by the lme4 package for a multiple linear regression model, and by the 95% confidence 

intervals, where an interval not including zero indicates a significant predictor. 

 The influence of musical training on complexity ratings was also evaluated for each 

analysis question posed.  This was done by adding a fixed effect for training, reflected by Gold-

MSI scores for each participant, where each trial’s response was treated individually (long 

format data).  In this format, and to model with maximal effects in accordance with the 

experimental design (Barr et al., 2013), random intercepts on participant and stimulus number 

were added to all models including musical training to create multiple linear mixed effects 

models.  To evaluate the significance of musical training, mixed effects models with and 

without the predictor were compared using a log likelihood ratio test. 

 Finally, the multiple linear mixed effects model was evaluated using a correlation test 

between the model’s predictions and the data. 

7.3.4 Results 

As described in Section 7.3.3 above, multiple linear regression analyses were carried 

out to answer three questions about the relationship between the stimuli and the complexity 

ratings.  The influence of musical training (fixed effect) was then evaluated for each question. 

First, does the objective manipulation of complexity predict subjective ratings?  For this 

model, objective complexity (1-8), parameter (melody, harmony or rhythm) and version (four 

types of target melody) were included as predictors of mean ratings.  For objective complexity, 

all factor levels were compared to Level 1, for parameter factor levels were compared to rhythm 

and for version, comparisons were made to Version A.  All but the second and fourth levels of 

objective complexity had a significant impact (t (83) = -0.19, p = .27, t (83) = 0.43, p = .01, t 

(83) = 0.27, p = .12, t (83) = 0.54, p = .002, t (83) = 0.82, p < .0001, t (83) = 0.76, p < .0001, t 

(83), 1.10, p < .0001 for levels 2 through 8 respectively) along with one factor  
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Table 7.1. Summary of the fixed effects manipulation model, including coefficients, 95% 
confidence intervals and R2 of each predictor.  Each factor of objective complexity is in relation 
to Level 1; each factor of parameter is in relation to rhythm; and each factor of version is in 
relation to version A. 

Predictor Coefficient 2.5% 97.5% R2 

(Intercept) 3.25 2.93 3.57 - 
Level 2 -0.19 -0.54 0.15 

.68 

Level 3 0.43 0.07 0.78 
Level 4 0.27 -0.07 0.62 
Level 5 0.54 0.19 0.89 
Level 6 0.82 0.46 1.17 
Level 7 0.76 0.41 1.12 
Level 8 1.10 0.75 1.45 
Melody 0.19 -0.01 0.41 

.03 
Harmony 0.27 0.06 0.49 
Version B -0.13 -0.38 0.11 

.01 Version C -0.02 -0.27 0.22 
Version D 0.07 -0.17 0.32 

 
of parameter, harmony (t (83) = 2.55, p = .01 for harmony and t (83) = 1.86, p = .07 for melody); 

no level of version was significant (all p > .05).  Overall, objective complexity was a significant 

predictor, F (7, 88) = 11.36, p < .0001, parameter was not, F (3, 93) = 1.89, p = .15 and version 

was not, F (3, 92) = 0.47, p = .69.  This model has an R2 of .72 and F (12, 83) = 7.78, p < .0001.  

The addition of musical training to predict ratings in long format marginally improved a model 

without it, χ2 (1) = 3.58, p = .05, but the model’s fit to the data was low, r2 = .27, t (2686) = 

14.94, p < .0001.  A summary of the fixed effects model predicting mean ratings and of the 

maximally fitted mixed effects model predicting individual ratings can be found in Tables 7.1 

and 7.2 respectively. 

The second question is whether complexity is accurately simulated by information 

content?  This model included mean melodic information content, mean harmonic information 

content and mean rhythmic information content, based on the mean IC of the outer voices  
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Table 7.2. Summary of the maximally fitted manipulation model, including coefficients, 95% 
confidence intervals and R2 of each predictor.  Each factor of objective complexity is in relation 
to Level 1; each factor of parameter is in relation to rhythm; and each factor of version is in 
relation to version A. 

Predictor Coefficient 2.5% 97.5% R2 

(Intercept) 2.72 2.22 2.96 - 
Level 2 -0.10 -0.48 0.27 

-.01 

Level 3 0.22 -0.15 0.60 
Level 4 0.11 -0.25 0.49 
Level 5 0.22 -0.15 0.60 
Level 6 0.50 0.02 0.78 
Level 7 0.34 -0.04 0.72 
Level 8 0.54 0.16 0.92 
Melody 0.11 -0.11 0.34 

.00 
Harmony 0.12 -0.11 0.35 
Version B 0.01 -0.25 0.27 

-.00 Version C -0.05 -0.33 0.21 
Version D 1.16 -0.10 0.43 
Gold-MSI -0.15 -0.32 0.00 .00 

 Predictor Variance   

Random 
intercepts 

Participant 0.15  .20 

Stimulus 0.06  .08 
Residual 
variance 

 4.53   

 

calculated from a selection of pitch and timing viewpoints (see Section 7.2.1 for details).  As 

the range of mean information content for these predictors varies (mean melodic IC range = 

2.35 – 7.62; mean harmonic IC range = 4.20 – 9.55; mean rhythmic IC range = 1.27 – 3.04), 

each predictor was transformed into z-scores (mean  = 1, SD = 1) so that the mean melodic IC 

range became -1.42 – 3.48, mean harmonic IC range became -2.03 – 1.32 and mean rhythmic 

IC range became -0.55 – 3.20.  To confirm its influence, or lack thereof, melodic IC of the 

target voice was also included as a predictor (rhythmic IC was not included because it does not 

vary).  Melody and harmony IC predictors were significant (F (1, 94) = 16.18, p = .0001 and 
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Table 7.3. Summary of the fixed effects information content model, including coefficients, 
95% confidence interval and R2 for each predictor. 

Predictor Coefficient 2.5% 97.5% R2 

(Intercept) 3.86 3.75 3.96 - 
Melody IC 0.17 0.06 0.28 .38 
Harmony IC 0.22 0.11 0.33 .15 
Rhythm IC -0.02 -0.12 0.08 .00 
Target Pitch IC -0.02 -0.12 0.08 .00 

 

 

Table 7.4. Summary of the maximally fitted information content model, including coefficients, 
95% confidence interval and R2 for each predictor. 

Predictor Coefficient 2.5% 97.5% R2 

(Intercept) 2.93 2.75 3.10 - 
Melody IC 0.09 -0.00 0.19 .00 
Harmony IC 0.11 0.01 0.21 -.01 
Rhythm IC -0.01 -0.11 0.08 .00 
Target Pitch IC 0.03 -0.06 0.12 .00 
GoldMSI -0.15 -0.32 0.00 .00 

 Predictor Variance   

Random 
intercepts 

Participant 0.15  .20 
Stimulus 0.06  .08 

Residual 
variance 

 4.54   

 

F (1, 94) = 23.05, p < .0001 respectively) but not rhythm IC nor melodic IC for the target voice  

(F (1, 94) = 0.09, p = .75 and F (1, 94) = 0.11, p = .73 respectively), with an R2 of .53 and F (3, 

92) = 12.03, p < .0001.  The addition of musical training, predicting ratings in long format, 

marginally improved the model, χ2 (1) = 3.57, p = .05, but correlation to the data was low, r2 = 

.27, t (2686) = 14.96, p < .0001.  A summary of the fixed effects model, predicting mean ratings, 
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and of the maximally fitted mixed effects model, predicting individual ratings, can be found in 

Tables 7.3 and 7.4 respectively. 

The third question is: what musical properties might correspond to the variations in 

complexity ratings?  In other words, how can the differences in complexity perception be 

characterised in musical terms?  For this model, the mean interval size (in semitones; range 

0.41 – 8.41) of the two outer voices of each stimuli, the mean pitch (MIDI; range 72.14 – 78.14 

for the upper voice and 43.85 – 51 for the lower voice) of each of the two outer voices 

separately, the mean note duration (in milliseconds, where 1 beat = 24ms; range 16 – 27.42) of 

the two outer voices, the proportion of out-of-key notes in relation to the total number of pitches 

in the two outer voices, key proportion (range 0 – 0.38) and syncopation score, where a lower 

score equates to more syncopation (Lerdahl & Jackendoff, 1983) were calculated.  Mean 

duration and key proportion were significant predictors in this model, though only key 

proportion was significant when tested against a null model, F (1, 94) = 50.63, p < .0001.  Mean 

duration has significance only in the context of the rest of the model, t (89) = -3.21, p = .001.  

The model overall has a total R2 of .68 and F (5, 90) = 12.53, p < .0001.  The addition of musical 

training marginally improved the model, χ2 (1) = 3.588, p = .05, but correlation to the data 

remains low, r2 = .27, t (2686) = 14.75, p < .0001.  A summary of the fixed effects model and 

of the maximally fitted mixed effects model can be found in Tables 7.5 and 7.6 respectively. 
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Table 7.5. Summary of the fixed effects musical properties model, including coefficients, 95% 
confidence intervals and R2 for each predictor. 

Predictor Coefficient 2.5% 97.5% R2 

(Intercept) 8.83 1.46 16.20 - 
Key proportion 3.59 2.65 4.53 .59 
Mean Duration -0.11 -0.18 -0.04 .06 
Syncopation 
Score 

-0.06 -0.14 0.006 .01 

Mean Interval 
Size 

-0.02 -0.09 0.04 .00 

Mean Pitch – 
Upper voice 

-0.02 -0.09 0.05 .00 

Mean Pitch – 
Lower voice 

0.06 -0.006 0.13 .02 

 

 

Table 7.6. Summary of the maximally fitted musical properties model, including coefficients, 
95% confidence intervals and R2 for each predictor. 

Predictor Coefficient 2.5% 97.5% R2 

(Intercept) 4.84 -2.75 12.43 - 
Key proportion 1.77 0.80 2.74 -.01 
Mean Duration -0.05 -0.12 0.01 .00 
Syncopation 
Score 

-0.03 -0.10 0.04 .00 

Mean Interval 
Size 

-0.01 -0.08 0.05 .00 

Mean Pitch – 
Upper voice 

-0.00 -0.08 0.07 .00 

Mean Pitch – 
Lower voice 

0.03 -0.03 0.11 .00 

GoldMSI -0.15 -0.32 0.00 .00 

 Predictor Variance   

Random 
intercepts 

Participant 0.15  .20 
Stimulus 0.05  .08 

Residual 
variance 

 4.53   
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7.3.5 Discussion 

In order to validate the operational definition stating that information content is 

proportional to complexity, complexity ratings were collected for a series of stimuli 

manipulated in terms of melodic, harmonic and rhythmic information content as calculated by 

IDyOM.  The primary analysis results support the definition, as both the experimental 

manipulations, based on information content, and raw information content successfully 

predicted mean ratings, explaining 72% and 53% of the variance in the data respectively.  When 

random effects are added to account for individuals and stimulus, the fixed effects lose almost 

all their predictive power, but do not consistently explain more of the data.  Musical training 

did not significantly improve any models when added as a fixed effect.  These additions will 

be addressed in more detail below.  While the information content model demonstrates a 

correlational relationship between information content and complexity, the explicit 

manipulation of information content in the experimental design crucially also provides causal 

evidence.  The coefficients and the relative R2 of these models can be interpreted to draw some 

interesting conclusions. 

First, the intercepts are both close to the centre of the rating scale, indicating a slightly 

lower than mid-scale baseline rating.  Continuing with the manipulations model, there is an 

imperfect, yet steady increase in the coefficients for every factor level of the objective 

complexity predictor, and positive coefficients for both factor levels of the parameter predictor.  

In the case of objective complexity, this equates to stimuli with higher objective complexity 

resulting in higher subjective complexity ratings as compared to Level 1, as expected.  In the 

case of parameter, these coefficients indicate that melodic and harmonic complexity stimuli 

receive higher complexity ratings overall than rhythmic complexity stimuli, with harmony 

being the highest and significantly different from those stimuli manipulated in terms of rhythm.  
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This suggests that listeners consider unpredictable harmonic progressions to be more complex 

than unpredictable melodies (e.g., large leaps or out-of-key notes), and these more complex 

than rhythmic variety.  However, note that the explanatory power of parameter is negligible 

compared to objective complexity.  Finally, version was not a significant predictor, supporting 

the assumption that the four versions of each stimulus would be rated similarly.  The 

information content model provides somewhat conflicting evidence for the interpretation of the 

above predictor parameter, where melodic IC carries the most explanatory power, followed by 

harmonic IC and finally rhythmic IC, with the same pattern of magnitude seen in their 

coefficients.  However, as mean information content is a more fine-grained measure than 

objective complexity level and parameter, melody IC captures some of the features of 

unpredictable harmonic progressions, such as out-of-key pitches, resolving the discrepancy 

between the results of the two models.  Thus far, rhythmic complexity is rated as simpler, and 

onset information content negligible when explaining ratings. 

Several raw musical properties of the stimuli were also tested for potential predictive 

power to attempt to locate the musical features the models and the listeners are responding to 

when assessing complexity.  Mean interval size for both outer voices, mean pitch of each outer 

voice, mean note duration for both outer voices, the proportion of out-of-key notes among both 

outer voices and the degree of syncopation of both outer voices was calculated.  Together, these 

represent melodic, harmonic and rhythmic dimensions of music.  Analysis on mean ratings 

reveals an effect of note duration and proportion of out-of-key notes.  Both are in the expected 

direction, where higher proportions of out-of-key notes lead to higher complexity ratings, and 

longer mean durations, corresponding to stimuli in the lower levels, result in slightly lower 

complexity ratings.  The proportion of out-of-key notes not only provides the most explanatory 

power, its coefficient combined with the intercept add up to a complexity rating of 
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approximately 6.5, near the top end of the rating scale.  Knowing that the range of the key 

proportion predictor is small (ranging from 0 – 0.38), this interestingly puts all ratings quite 

high on the scale when ratings are predicted by a model based on musical features.  The 

importance of the out-of-key versus in-key proportion is in line with the two previous models 

where experimental manipulations and information content are predictors: the composed 

unexpected harmonic progressions contain more out-of-key pitches, which is accounted for in 

melodic information content since these will have low probability in context. 

There was, perhaps surprisingly, no effect of musical training on ratings, where it might 

be expected that increased exposure to music would yield better models and therefore lower 

information content, and lower perceived complexity.  Additionally, when random effects for 

participants were included in the mixed effects models, this explained the majority of the 

variance.  Thus, it can be concluded that individual differences supersede any effects of 

experimental manipulation, information content, musical features or musical training on 

ratings, and in the cases of information content, increase the predictive power of the model.  

However, when results are collapsed across participants and more general patterns are 

considered, these same experimental manipulations, measures of information content and 

musical features explain at least half the variance in the data in each case, up to as much as 

72% in the case of experimental manipulations. 

In summary, we find that the results demonstrate a strong link between information 

content and perceived complexity and furthermore, that harmonically manipulated stimuli, 

melodic information content and out-of-key notes – all closely related – have the largest 

influence on complexity ratings, followed by melodic manipulations and harmonic information 

content and finally rhythmic manipulations and information content, where other melodic and 

rhythmic musical features have negligible influence. 
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7.4 Linking complexity to salience 

In the above study, information content was validated as a reasonable proxy for 

perceived complexity, providing evidence for operational definition 2: information content is 

proportional to complexity.   The current study will test operational definition 3: complexity is 

proportional to salience.  In accordance with Prince et al. (2009), it is hypothesized that more 

complex stimuli will be more salient, as they demand more attention to process.  This 

relationship will be tested with a modified version of a streaming paradigm used by Marozeau 

and colleagues (Marozeau et al., 2013).  It is worth emphasizing that raw information content 

is not a perfect proxy for perceived complexity, only explaining half of the variance in the 

collected complexity ratings, while experimental manipulations of objective complexity (based 

on information content) for melody, harmony and rhythm explained 72% and musical features 

explained 68%.  Nevertheless, a link between these measures of complexity and salience is 

worth exploring as there is theoretical (Jaeger & Weatherholtz, 2016; Prince et al., 2009) 

evidence for such a link as well as empirical evidence for a proxy link (Section 7.3). 

In the Marozeau et al. paradigm, a four-note target melody was interleaved with a four-

note pseudorandom distractor sequence and participants rated how easy it was to hear the target 

as the distractor was gradually manipulated over repeated exposure to the pattern.  This 

distractor sequence was manipulated such that it masked the target more or less well based on 

how closely it matched the target melody on a given parameter.  Intensity and spectral and 

temporal envelopes were manipulated to investigate effects of loudness and timbre on auditory 

streaming.  For example, in the case of intensity, the distractor tones were manipulated where 

equal intensity between target and distractors made the task very difficult – because the two 

sequences were integrated – while a difference in intensity eventually allowed identification of 
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Figure 7.6. Theoretical task performance patterns according to the similarity (A, B) and 
complexity (C, D) hypotheses for complex (A, C) and simple (B, D) target conditions. 

the target – because the sequences were segregated.  The parameter distance between the target 

and distractor – the threshold – needed to perceive the target varied with musical training and 

with the parameter itself.  The parameters that required the least amount of difference from the 

target – those that triggered segregation first – were considered the most salient. 

In this study, the parameters are higher-level, but the same principle applies.  In 3-voice, 

two-bar excerpts, melodic and rhythmic information content in the outer voices match or differ 

from the melodic and rhythmic information content of the target voice.  Harmonic information 

content must be treated differently, as harmony applies to the voices as a unit rather than to 

individual voices (implied harmony is not considered here); it will be manipulated for the whole 
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excerpt.  The task associated with the paradigm is also modified: instead of participants rating 

how easy it is to perceive the target melody, participants must decide whether pairs of stimuli 

are the same or different.  In the Marozeau et al. (2013) paradigm, increased similarity between 

target and distractors made the task more difficult.  In the present study, for the condition with 

a complex target and increasingly complex outer voices, this would result in a decrease in 

performance as outer voice complexity increases (Figure 7.6A), while for the condition with a 

simple target and increasingly complex outer voices, performance should increase as outer 

voice complexity increases (Figure 7.6B).  On the other hand, based on the relationship between 

information content and complexity (Section 7.3), it is also possible that higher melodic and 

rhythmic information content in the outer voices – equating to higher complexity – will mask 

the target more effectively and make streaming of the target voice difficult, thus making a same-

different judgment task between two excerpts difficult.  This is because voices with high 

information content require more attention to process and become more salient, distracting 

from the target.  If the outer voices are less salient than the target, as in the case of the complex 

target condition, the target will be easy to identify and performance will decrease with increased 

outer voice complexity (Figure 7.6C).  Similarly, if the outer voices are more salient than the 

target, as in the case of the simple target condition, the target will be difficult to identify and 

performance will also decrease with increased outer voice complexity (Figure 7.6D).  To 

disentangle these two contrasting interpretations in terms of similarity and complexity, a two 

by two factorial design was employed.  To locate a threshold where the outer voices mask, or 

reveal, the target melody (as in Marozeau et al., 2013), eight levels of complexity for each of 

melodic and rhythmic dimensions were designed for the outer voices along with eight levels of 

harmonic complexity incorporating all three voices.  Furthermore, as is illustrated in Table 7.7, 

the target melody is either simple or complex while the outer voices vary from simple to 
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Table 7.7. Illustration of experimental design, with levels of target and outer voice complexity.  
X’s highlight the 2 x 2 factorial portion of the design. 

 Outer voices complexity 
Simple - - - - - - Complex 

1 2 3 4 5 6 7 8 

Target melody 
complexity 

Simple X       X 
Comple

x 
X       X 

 

complex.  This creates situations where either all voices are relatively simple, all voices are 

relatively complex or a fully factorial comparison of the two. The four marked squares represent 

the 2x2 factorial part of the design.  Figure 7.3 shows the relationship between target melody 

complexity and melodic, rhythmic and harmonic complexity for the outer voices of the 24 basic 

stimuli. 

 In the case of the effect of harmonic sequence information content on task performance, 

two possibilities exist.  In the first case, as above, a simple harmonic sequence will allow the 

target melody to stand out while a complex harmonic sequence will detract attention.  The 

alternative possibility is that the simple harmonic sequence creates such strong integration that 

the target is more difficult to pick out, while a complex harmonic sequence is more disjointed 

and allows the target melody to be perceived through the texture.  It is worth noting that the 

integrating nature of harmony is likely to make the task more difficult overall in comparison to 

the original paradigm (Marozeau et al., 2013). 

While outer voice complexity and manipulated musical parameter remained within-

subject variables, target melody complexity was between-subjects, with participants 

completing the experiment with either the complex target or the simple target. 
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7.4.1 Participants 

Data was collected from 245 participants (152 female, mean age 27.05, SD = 9.80) for 

the complex target version of the study and 90 participants (62 female, mean age 27.02, SD = 

10.72) for the simple target version of the study.  All participants only took part in one of the 

two versions and none had taken part in the complexity rating study (Section 7.3).  Complex 

target participants had mean Gold-MSI musical training sub-scale scores of 24.70 (SD = 9.90) 

and simple target participants had a mean score of 26.28 (SD = 10.51), a non-significant 

difference, t (151) = -1.31, p = .18.  Participants were recruited through musicology and 

psychology mailing lists and social media, as well as Slice the Pie, a crowdsourcing website6.  

Ethical approval was obtained from the Queen Mary Research Ethics Committee, 

QMREC1536a. 

7.4.2 Procedure 

Both complex and simple versions of the same-different paradigm were presented using 

online survey system Qualtrics; the procedure was the same for both.  After reading the 

introduction and providing informed consent, participants had the opportunity to hear each of 

the four simple target melodies, followed by a short training session in which participants had 

to correctly identify each target (arbitrarily labelled 1, 2, 3 and 4) twice.  Targets were presented 

in blocks of four, with each version present once in each block.  If one or more of the four were 

labelled incorrectly, a new block was presented until each was correctly identified twice (not 

necessarily in sequential blocks).  This was followed by two practice trials and 48 experimental 

trials, where in half the cases the two stimuli were the same and in half the cases they were 

different.  Each trial consisted of two stimuli and the participant’s task was to identify whether 

                                                
6 https://www.slicethepie.com/ 
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the target melody was the same or different.  As there are four target melodies, there are three 

possibilities for the pairs of stimuli to be different; only one was randomly selected for each 

participant.  There were three blocks of 16 trials, each containing the stimuli from a different 

parameter: melodic complexity, harmonic complexity and rhythmic complexity.  The 16 trials 

were presented in random order within each block, and the presentation order of the three 

blocks was randomized to avoid order effects.  Between blocks, participants could listen to the 

four target melodies and were offered a short break; they could resume when they felt ready.  

The study concluded with the eight questions of the Gold-MSI musical training sub-

questionnaire and basic demographic questions. 

7.4.3 Analysis 

 Analysis for this study follows a similar methodology to the complexity ratings analysis 

(see Section 7.3.3), where the effects of experimental manipulations, raw information content 

and musical features, as well as musical training are evaluated.  In addition, complexity ratings 

for each stimulus from the previous experiment (Section 7.3) were tested as a predictor.  This 

analysis differs in the type of model used: here, logistic regression models are employed, as the 

dependent variable is binomial, where 0 is an incorrect response and 1 is a correct response.  

Evaluation criteria for the models are therefore slightly different.  While confidence intervals 

on model coefficients and model comparisons using likelihood ratio tests still apply, R2 cannot 

be calculated.  Instead, a combination of ΔAIC (with respect to a null model), ΔBIC (with 

respect to a null model) and residual deviance will be employed, where residual deviance will 

be evaluated in relation to the χ2 value for the associated degrees of freedom for that model: the 

more deviance is larger than the χ2 value, the better the model.  ΔBIC will also be calculated 

for each predictor, as an equivalent measure to R2.  Here, the ΔBIC value will be reported  
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Figure 7.7. Mean hit rate (chance = 50%, red line) by objective complexity level for complex 
(A, C, E) and simple (B, D, F) targets for melody (A, B), harmony (C, D) and rhythm (D, F).  
Error bars represent standard error.  In comparison to Figure 7.6, the hypotheses, no clear 
pattern can be seen or matched. 

always in relation to the null model, with predictors added sequentially as they are presented in 

each table, with random effects before fixed effects where applicable. 
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For illustration purposes, mean hit rates were calculated for each trial (see Figure 7.7) 

as the number of correct responses divided by the number of participants. 

7.4.4 Results 

Mean hit rates for each trial (four measurements per trial, one for each version) are 

plotted in Figure 7.7.  Initial visual inspection indicates that few conditions in the complex 

target condition achieved performance above chance (error bars include 50%) while 

performance in the simple condition exceeds chance (error bars do not include 50%) most of 

the time.  All further analysis, as described in Section 7.4.3 above, will be carried out on 

individual responses. 

Complex targets. Each of the 96 trials received at least one response, with ‘different’ 

trials receiving on average 80.73 responses each (SD = 7.08), corresponding to approximately 

1/3 of total participants.  The experimental manipulation model, with predictors objective 

complexity, parameter and version, yielded a significant effect of Level 4 complexity (z 

(11614) = 2.24, p = .02) and all versions (z (11614) = -2.45, p = .01, z (11614) = -7.66, p < 

.0001 and z (11614) = -6.69, p < .0001 for versions B, C and D respectively), with a ΔAIC of 

-74, ΔBIC of 15 and residual deviance of 15835 (df = 11614), p < .0001.  Overall, neither 

objective complexity nor parameter were significant predictors, χ2 (2) = 5.53, p = .06, and χ2 

(7) = 10.41, p = .16 while version was, χ2 (3) = 83.69, p < .0001.    The addition of musical 

training improved the model significantly, χ2 (1) = 50.08, p < .0001.  This model has ΔAIC = 

-179, ΔBIC = -84 and residual deviance of 15728 (df = 11565), p < .0001.  Finally, the 

maximally fitted mixed effects model performed best overall with ΔAIC = -703, ΔBIC = -560 

and residual variance of 15232 (df = 11611), p < .0001.  One level of version and musical  
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Table 7.8. Summary of the fixed effects manipulation model for complex targets, including 
coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC associated 
with the addition of each parameter).  Each factor of objective complexity is in relation to Level 
1; each factor of parameter is in relation to rhythm; and each factor of version is in relation to 
version A. 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.39 0.27 0.51 - 
Level 2 0.06 -0.08 0.20 

55 

Level 3 0.10 -0.04 0.25 
Level 4 0.17 0.02 0.32 
Level 5 -0.00 -0.15 0.14 
Level 6 0.05 -0.09 0.20 
Level 7 0.00 -0.14 0.15 
Level 8 0.04 -0.11 0.19 
Melody -0.06 -0.15 0.02 

69 
Harmony 0.04 -0.04 0.13 
Version B -0.12 -0.21 -0.02 

15 Version C -0.43 -0.54 -0.32 
Version D -0.37 -0.48 -0.26 
GoldMSI 0.13 0.09 0.17 -33 

 

training were significant predictors in this maximal model, z (11611) = -2.25, p = .02 and z 

(11611) = 4.18, p < .0001 respectively.  Random effects on participant explained more variance 

than random effects on trial number (see Table 7.9).  A summary of the fixed effects model 

and of the maximally fitted mixed effects model can be found in Tables 7.8 and 7.9 respectively. 

The information content model, with predictors mean melodic IC, mean harmonic IC, 

mean rhythmic IC and target IC (all scaled), yielded a significant effect of harmonic IC only (z 

(11622) = -2.14 p = .03), with ΔAIC = 31, ΔBIC = 24, and a residual variance of 15920 (df = 

11622), p < .0001.  The addition of musical training improved the model significantly, χ2 (1) = 

50.13, p < .0001.  This model has ΔAIC = -53, ΔBIC = -17 and residual deviance of 15870 (df 

= 11621), p < .0001.  Finally, the maximally fitted mixed effects model performed best with 
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Table 7.9. Summary of the maximally fitted manipulation model for complex targets, including 
coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC associated 
with the addition of each parameter, beginning with random effects).  Each factor of objective 
complexity is in relation to Level 1; each factor of parameter is in relation to rhythm; and each 
factor of version is in relation to version A. 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.17 -0.16 0.50 - 
Level 2 0.07 -0.29 0.44 

-621 

Level 3 0.15 -0.21 0.53 
Level 4 0.24 -0.13 0.61 
Level 5 -0.00 -0.37 0.37 
Level 6 0.20 -0.16 0.58 
Level 7 -0.09 -0.47 0.27 
Level 8 0.15 -0.21 0.52 
Melody -0.08 -0.31 0.14 

-574 
Harmony 0.03 -0.19 0.26 
Version B -0.02 -0.28 0.23 

-552 Version C -0.30 -0.57 -0.04 
Version D -0.20 -0.47 0.05 
GoldMSI 0.15 0.08 0.23 -552 

 Predictor Variance   

Random 
intercepts 

Participant 0.24  -273 
Trial number 0.17  -652 

 

ΔAIC = -676, ΔBIC = -624 and residual variance of 15243 (df = 11619), p < .0001.  Only 

musical training was a significant fixed effect predictor (z (11619) = 4.18, p < .0001) and 

random effects on participant explained more variance than random effects on trial number  

 (see Table 7.11).  A summary of the fixed effects model and of the maximally fitted mixed 

effects model can be found in Tables 7.10 and 7.11 respectively. 
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Table 7.10. Summary of the fixed effects information content model for complex targets, 
including coefficients, 95% confidence interval and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.25 0.21 0.29 - 
Melody IC -0.02 -0.06 0.01 4.5 
Harmony IC -0.02 -0.08 -0.00 9.3 
Rhythm IC 0.00 -0.03 0.04 18 
Target Pitch IC -0.03 -0.07 0.00 24 
GoldMSI 0.13 0.09 0.16 17 

Table 7.11. Summary of the maximally fitted information content model for complex targets, 
including coefficients, 95% confidence interval and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.11 -0.00 0.22 - 
Melody IC 0.00 -0.10 0.11 -643 
Harmony IC -0.06 -0.17 0.04 -634 
Rhythm IC 0.04 -0.06 0.15 -625 
Target Pitch IC 0.00 -0.10 0.10 -616 
GoldMSI 0.15 0.08 0.23 -17 

 Predictor Variance   

Random 
intercepts 

Participant 0.24  -273 

Trial number 0.20  -652 

The musical features model, with predictors mean interval, mean pitch – upper voice, 

mean pitch – lower voice, mean duration, key proportion and syncopation score, yielded a 

significant effect of mean interval, z (11620) = -2.32, p = .02, had ΔAIC = 2, ΔBIC = 46 and a 

residual variance of 15923 (df = 11620), p < .0001.  The addition of musical training to 

significantly improved the model, χ2 (1) = 50.12, p < .0001.  This model has ΔAIC = -46, ΔBIC 

= 5 and a residual variance of 15873 (df = 11619), p < .0001.  Finally, the maximally fitted 

mixed effects model is nearly unidentifiable.  Previously, when this occurred (Chapter 6), a 



 
208 

 

model without random effects was tested for soundness and random effects were reintroduced 

in order to represent the experimental design.  Therefore, random effects were kept, though 

coefficients are not as reliable here.  The maximally fitted model had ΔAIC = -673, ΔBIC = -

606 and residual variance of 15262 (df = 11617), p < .0001.  Only musical training was a 

significant fixed effect (z (11617) = 4.18, p < .0001) and random effects on participant 

explained more variance than random effects on trial number (see Table 7.13).  A summary of 

the fixed effects model and of the maximally fitted mixed effects model can be found in Tables 

7.12 and 7.13 respectively. 

 Finally, mean complexity ratings for each trial, collected from the previous study 

(Section 7.3) were also tested as a predictor, which was significant, z (11625) = -2.26, p = .02.  

The model has ΔAIC = -3, ΔBIC = 4, and a residual variance of 15923 (df = 11625), p < .0001.   

The addition of musical training improves the model, χ2 (1) = 50.02, p < .0001, with ΔAIC = -

46, ΔBIC = -31 and a residual variance of 15883 (df = 11624), p < .0001.  A maximally fitted 

model performs best, with significant fixed effect of musical training (z (11622) = 4.18, p < 

.0001) random effects on participant explaining more variance than trial number (see Table 

7.15).  This model has ΔAIC = -680, ΔBIC = -650, and a residual variance of 15245 (df = 

11622), p < .0001.  A summary of the fixed effects model and of the maximally fitted mixed 

effects model can be found in Tables 7.14 and 7.15 respectively. 

Overall, performance on this task was poor and rarely above chance.  Fixed effects 

representing experimental manipulation, raw information content, musical features and mean 

complexity ratings are weak predictors of the data, generally increasing a null model’s BIC, 

while random intercepts on participants explain the most variance in all models in which it is 

included. 
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Table 7.12. Summary of the fixed effects musical properties model for complex targets, 
including coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) -2.38 -5.13 0.36 - 
Mean Interval 
Size 

-0.04 -0.07 -0.00 3.7 

Mean Duration 0.01 -0.00 0.04 13 
Key Proportion 0.11 -0.31 0.54 22 
Syncopation 
Score 

0.01 -0.00 0.03 29 

Mean Pitch – 
Upper voice 

0.01 -0.01 0.04 37 

Mean Pitch – 
Lower voice 

0.00 -0.02 0.04 46 

GoldMSI 0.13 0.09 0.16 5 

Table 7.13. Summary of the maximally fitted musical properties model for complex targets, 
including coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) -3.50 -10.87 3.86 - 
Mean Interval 
Size 

-0.04 -0.14 0.04 -643 

Mean Duration 0.00 -0.04 0.04 -634* 
Key Proportion 0.41 -0.74 1.57 -625* 
Syncopation 
Score 

0.01 -0.04 0.07 -616* 

Mean Pitch – 
Upper voice 

0.03 -0.04 0.12 -608* 

Mean Pitch – 
Lower voice 

0.00 -0.09 0.10 -598* 

GoldMSI 0.15 0.08 0.23 -606* 

 Predictor Variance   

Random 
intercepts 

Participant 0.24  -273 
Trial number 0.19  -652 

*model does not converge 
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Table 7.14. Summary of the fixed effects complexity ratings model for complex targets, 
including coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.53 0.28 0.78 - 
Complexity 
Ratings 

-0.07 -0.13 -0.00 4 

Table 7.15. Summary of the maximally fitted complexity ratings model for complex targets, 
including coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) -0.01 -0.67 0.63 - 
Complexity 
Ratings 

0.03 -0.13 0.20 -643 

GoldMSI 0.15 0.08 0.23 -650 
 Predictor Variance   

Random 
intercepts 

Participant 0.24  -273 
Trial number 0.20  -652 

 

Simple targets.  All 96 trials received at least one response, with the remaining 

‘different’ trials receiving on average 29.95 responses each (SD = 4.07), corresponding to 

approximately 1/3 of total participants.  Performance on simple target stimuli was better than 

on complex target stimuli, χ2 (1) = 161.03, p < .0001, where overall success rates were 67% 

and 56% respectively.  The experimental manipulation model, with predictors objective 

complexity, parameter and version, yielded a significant effect of version C and D only, z  

(4298) = -6.11, p < .0001 and z (4298) = 03.36, p = .0007 respectively, with a ΔAIC of -43, 

ΔBIC of 34 and residual deviance of 5374 (df = 4298), p < .0001.  Overall, neither objective 

complexity nor parameter were significant predictors, χ2 (2) = 3.44, p = .17, and χ2 (7) = 11.83, 
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Table 7.16. Summary of the fixed effects manipulation model for simple targets, including 
coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC associated 
with the addition of each parameter).  Each factor of objective complexity is in relation to Level 
1; each factor of parameter is in relation to rhythm; and each factor of version is in relation to 
version A. 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.96 0.74 1.18 - 
Level 2 -0.15 0.10 0.13 

47 

Level 3 -0.23 0.02 0.13 
Level 4 0.03 -0.23 0.30 
Level 5 -0.11 -0.37 0.13 
Level 6 -0.12 -0.38 0.12 
Level 7 -0.15 -0.41 0.09 
Level 8 -0.15 -0.41 0.10 
Melody -0.08 -0.23 0.29 

60 
Harmony 0.06 -0.09 0.22 
Version B -0.01 -0.18 0.15 

34 Version C -0.58 -0.77 -0.39 
Version D -0.33 -0.52 -0.13 
GoldMSI 0.28 0.22 0.35 -35 

 

p = .10 while version was, χ2 (3) = 54.38, p < .0001.    The addition of musical training as a 

predictor improved model significantly, χ2 (1) = 77.59, p < .0001.  This model has ΔAIC = -

118, ΔBIC = -35 and residual deviance of 5297 (df = 4297), p < .0001.  The previously 

significant effects of versions C and D remain significant.  Finally, the maximally fitted mixed 

effects model does not converge, with ΔAIC = -584, ΔBIC = -478 and residual variance of 

4837 (df = 4295), p < .0001.  Only one level of version remained significant, version C with z 

(4295) = -2.93, p = .003 along with musical training, z (4295) = 3.46, p < .0001 and random 

effects on participant explained more variance than random effects on trial number (see Table 

7.17).  A summary of the fixed effects model and of the maximally fitted mixed effects model 

can be found in Tables 7.16 and 7.17 respectively. 
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Table 7.17. Summary of the maximally fitted manipulation model for simple targets, including 
coefficients, 95% confidence intervals and ΔBIC for each predictor.  Factors are the same as in 
Table 7.16 above. 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 1.11 0.59 1.63 - 
Level 2 0.09 -0.43 0.62 

-502 

Level 3 0.00 -0.52 0.53 
Level 4 -0.02 -0.54 0.50 
Level 5 -0.10 -0.63 0.41 
Level 6 -0.16 -0.69 0.36 
Level 7 -0.41 -0.93 0.11 
Level 8 -0.18 -0.71 0.33 
Melody -0.14 -0.46 0.18 

-487 
Harmony 0.05 -0.27 0.37 
Version B 0.03 -0.32 0.40 

-505* Version C -0.60 -0.98 -0.23 
Version D -0.29 -0.67 0.09 
GoldMSI 0.39 0.17 0.62 -478* 

 Predictor Variance   

Random 
intercepts 

Participant 1.01  -339 
Trial number 0.29  -557 

*model does not converge 

The information content model, with predictors mean melodic IC, mean harmonic IC, 

mean rhythmic IC and target IC (all scaled), yielded a significant effect of melody IC only (z 

(4306) = -1.97 p = .04), with ΔAIC = -5, ΔBIC = 20, and a residual variance of 5428 

 (df = 4306), p < .0001.  The addition of musical training improved the model significantly, χ2 

(1) = 74.88, p < .0001.  This mixed model has ΔAIC = -78, ΔBIC = -46 and residual deviance 

of 5353 (df = 4305), p < .0001.  Melody IC remained a significant fixed effect, z (4305) = -

1.99, p = .04.  Finally, the maximally fitted mixed effects model performed best with ΔAIC = 

-575, ΔBIC = -530 and residual variance of 4852 (df = 4303), p < .0001.  Musical training was 

the only significant fixed effect predictor, z (4303) = 3.45, p = .0005 and random effects on 
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Table 7.18. Summary of the fixed effects information content model for simple targets, 
including coefficients, 95% confidence interval and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.74 0.67 0.80 - 
Melody IC -0.07 -0.14 -0.00 3.0 
Harmony IC -0.06 -0.13 0.01 6.1 
Rhythm IC -0.04 -0.11 0.02 12 
Target Pitch IC 0.01 -0.04 0.08 20 
GoldMSI 0.28 0.21 0.34 -46 

Table 7.19. Summary of the maximally fitted information content model for simple targets, 
including coefficients, 95% confidence interval and ΔBIC for each predictor. 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.77 0.51 1.02 - 
Melody IC -0.09 -0.25 0.07 -550 
Harmony IC -0.06 -0.23 0.09 -543 
Rhythm IC -0.05 -0.21 0.10 -535 
Target Pitch IC 0.04 -0.10 0.20 -527 
GoldMSI 0.39 0.17 0.61 -530 
 Predictor Variance   

Random 
intercepts 

Participant 1.01  -399 
Trial number 0.37  -557 

 

participants explained more variance than random effects on trial number (see Table 7.19).  A 

summary of the fixed effects model and of the maximally fitted mixed effects model can be 

found in Tables 7.18 and 7.19 respectively. 

 The musical features model, with predictors mean interval, mean pitch – upper voice, 

mean pitch – lower voice, mean duration, key proportion and syncopation score, yielded no 

significant effects, with ΔAIC = 3, ΔBIC = 42 and a residual variance of 5432 (df = 4304), p 

<.0001.  The addition of musical training significantly improved the model, χ2 (1) =74.74, p < 

.0001, with ΔAIC = -70, ΔBIC = -25 and a residual variance of 5358 (df = 4303), p < .0001. 
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Table 7.20. Summary of the fixed effects musical properties model for simple targets, including 
coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC associated 
with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.20 -4.63 5.06 - 
Mean Interval 
Size 

-0.02 -0.08 0.04 5.8 

Mean Duration 0.02 -0.00 0.05 13 
Key proportion -0.56 -1.32 0.18 17 
Syncopation 
Score 

0.01 -0.02 0.05 25 

Mean Pitch – 
Upper voice 

-0.00 -0.06 0.05 33 

Mean Pitch – 
Lower voice 

-0.00 -0.07 0.06 42 

GoldMSI 0.28 0.21 0.34 -25 

Table 7.21. Summary of the maximally fitted musical properties model for simple targets, 
including coefficients and ΔBIC for each predictor.  Confidence intervals were not computable 
for this unidentifiable model. 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 0.18 - - - 
Mean Interval 
Size 

-0.04 - - -549 

Mean Duration 0.03 - - -541 
Key proportion -0.59 - - -534* 
Syncopation 
Score 

0.02 - - -526* 

Mean Pitch – 
Upper voice 

-0.03 - - -518* 

Mean Pitch – 
Lower voice 

0.02 - - -509* 

GoldMSI 0.39 - - -512* 
 Predictor Variance   

Random 
intercepts 

Participant 1.01  -399 
Trial number 0.37  -557 

*model does not converge 
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Finally, the maximally fitted mixed effects model did not converge, with ΔAIC = -570, ΔBIC 

= -512 and residual variance of 4853 (df = 4301), p < .0001.  Musical training was a significant 

fixed effect, z (4301) = 3.45, p = .0005, and random effects on participant explained more 

variance than random effects on trial number (see Table 7.21).  A summary of the fixed effects 

model and of the maximally fitted mixed effects model can be found in Tables 7.20 and 7.21 

respectively. 

Finally, mean complexity ratings for each trial, collected from the previous study 

(Section 7.3) were also tested as a predictor, which was not significant, z (4309) = -1.67, p = 

.09.  The model has ΔAIC = -1, ΔBIC = 6, and a residual variance of 5438 (df = 4309), p < 

.0001.  The addition of musical training improves the model, χ2 (1) = 74.50, p < .0001, with  

Table 7.22. Summary of the fixed effects complexity ratings model for simple targets, 
including coefficients, 95% confidence intervals and ΔBIC for each predictor (change in BIC 
associated with the addition of each parameter, beginning with random effects). 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 1.07 0.67 1.48 - 
Complexity 
Ratings 

-0.08 -0.19 0.01 -11 

GoldMSI 0.28 0.21 0.34 -61 

Table 7.23. Summary of the maximally fitted complexity ratings model for simple targets, 
including coefficients, 95% confidence intervals and ΔBIC for each predictor. 

Predictor Coefficient 2.5% 97.5% ΔBIC 

(Intercept) 1.16 0.17 2.15 - 
Complexity 
Ratings 

-0.10 -0.35 0.14 -549 

GoldMSI 0.39 0.16 0.65 -552 
 Predictor Variance   

Random 
intercepts 

Participant 1.01  -399 
Trial number 0.38  -557 
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ΔAIC = -74, ΔBIC = -61 and a residual deviance of 5363 (df = 4308), p < .0001.  A maximally 

fitted model performs best, with random effects on participant explaining more variance than  

trial number (see Table 7.22).  This model has ΔAIC = -578, ΔBIC = -552, and a residual 

variance of 4855 (df = 4306), p < .0001.  A summary of the fixed effects model and of the 

maximally fitted mixed effects model can be found in Tables 7.22 and 7.23 respectively. 

Overall, performance on this task was generally above chance and below 75%.  Fixed 

effects representing experimental manipulation, raw information content, musical features and 

subjective complexity ratings are weak predictors of the data, generally increasing a null 

model’s BIC, while musical training is consistently a good predictor, where increased training 

is proportional to increased performance, and random intercepts on participants explain the 

most variance in all models in which it is included. 

7.4.5 Discussion 

In this study, the aim was to validate operational definition number three, stating that 

complexity is proportional to salience.  To do so, complexity of the outer voices of short 3-

voice musical excerpts was systematically manipulated in terms of melody, harmony and 

rhythm and participants were asked to identify whether the middle voice – the target – was the 

same or different when presented with pairs of these stimuli.  While a similarity hypothesis 

(Marozeau et al., 2013) predicted that in the complex condition, performance would decrease 

with increasing complexity and in the simple condition, performance would increase with 

increasing complexity, a complexity hypothesis (Prince et al., 2009) predicted that performance 

would decrease with increasing complexity for both complex and simple target conditions (see 

Figure 7.7). 

Though results do not provide strong statistical support for a link between complexity 

and salience, nor for either the similarity or complexity hypotheses, several patterns are worth 
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discussing.  Firstly, despite piloting with diverse listeners achieving performance ranging from 

chance to ceiling, the complex target condition proved to be very difficult and participants 

rarely achieved performance above chance.  The simple target condition was easier and 

provides a wider range of performance, mostly above chance. 

Second, random effects on participants consistently explain the majority of variance in 

all conditions, though musical training remains significant throughout.  This suggests that 

listeners’ streaming success was due to a combination of musical training and individual 

differences and not due to information content or various musical features.  Perhaps different 

information content, or complexity between voices, is not a sufficiently strong segregator and 

musicians performed better due to their training improving their auditory streaming skills 

(François et al., 2014).  They presumably used cues other than complexity to successfully 

segregate the target from the outer voices.  Alternatively, it is possible that individual 

differences masked any variance in salience due to complexity.  The adaptation of existing 

paradigms investigating relative salience in the general psychology literature to music would 

be an interesting avenue to pursue, perhaps disentangling these two possibilities.  For example, 

the well-known Stroop task (Stroop, 1935) might be adapted to music by presenting congruent 

or incongruent visual and auditory stimuli in terms of pitch, harmony or time in order to 

compare the interference levels of each on the other parameters.  Another task asks participants 

to rate the similarity of two objects that were either explored visually or haptically (Lakatos & 

Marks, 1999) and found that haptic exploration resulted in higher salience of local object 

features (i.e., grooves) as compared to global object features (i.e., shape) for short handling 

periods (1s) but not for longer handling periods (16s).  Musical excerpts could be manipulated 

to differ in varying parameters as was done in the present study, where the task is instead to 
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rate the similarity of pairs of excerpts, where small variations to the most salient parameter will 

result in the lowest similarity ratings. 

Third, for models without random effects, fixed effect predictors (other than musical 

training) overwhelmingly worsened the AIC and BIC values with respect to a null model, 

though residual variance did decrease somewhat.  Only three of these fixed effects were 

significant predictors of performance, where ΔBIC had a smaller positive value than for other 

predictors: target versions C and D, as well as increased melodic IC led to worse performance 

(as indicated by coefficients; Tables 7.8, 7.9, 7.16 and 7.17).  This pattern of decreasing 

performance with increased melodic complexity (higher IC) corresponds to predictions made 

by the complexity hypothesis (Figure 7.6); however, this effect is weak and random effects 

explain more variance than complexity ratings when included.  It is interesting that versions C 

and D also led to worse performance in all analyses.  These versions contain out-of-key notes 

in the context of the target itself but are not necessarily out of key in the context of the overall 

3-voice stimulus due to varying harmonic progressions.  A decrease in performance, in this 

paradigm caused by the inability to segregate the target from its polyphonic context, suggests 

increased integration for these stimuli.  This in turn suggests that unexpected chord 

progressions (chords containing out-of-key target notes tend not to be ‘regular’ chord 

progressions; see Figure 7.3) are either particularly strong integrating factors or strong 

distractors, taking attention away from the target.  While the latter possibility is in line with the 

complexity hypothesis, the integration hypothesis cannot be supported or rejected by these 

results.  Nevertheless, both possibilities are partially supported by the influence of harmonic IC 

on performance in the complex target condition, where an increase in IC leads to a decrease in 

performance (as indicated by coefficients; Tables 7.10 and 7.11).  The same pattern exists in 

the simple target condition, but does not reach significance (see Tables 7.18 and 7.19).  Instead, 
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melodic IC is a significant predictor of performance in the simple target condition, where once 

again increased IC leads to a decrease in performance (as indicated by coefficients; Tables 7.18 

and 7.19).  This provides some support for the complexity hypothesis, where increased IC in 

the outer voices distracts from the simple target, making discrimination between a pair of 

simple targets more difficult. 

In summary, though results provide only weak statistical support for a link between 

complexity and salience, some interesting patterns emerged that support the complexity 

hypothesis, but not the similarity hypothesis, of salience.  These results will next be discussed 

together with results from Section 7.3 and Section 6.4, bringing these studies together in the 

context of relative perceptual salience. 

7.5 General Discussion 

Thus far, this chapter has presented an operational definition of salience – salience is 

proportional to information content – and has broken this statement down into two parts for 

individual testing, beginning with the lowest-level concept: (1) information content is 

proportional to complexity; and (2) complexity is proportional to salience. 

The first reported study (Section 7.3) provided evidence supporting a relationship 

between information content and complexity by collecting complexity ratings on musical 

excerpts that were manipulated in terms of melodic, harmonic and rhythmic information 

content.  Excerpts with higher information content resulted in higher complexity ratings.  

Though predictors approximating all three examined musical parameters had some influence 

on ratings, pitch-based predictors carried the most predictive power, and substantially more 

than time-based predictors.  While predictors such as rhythmic information content, mean 

duration and rhythmic complexity levels had little impact on ratings, melodic information 
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content, the proportion of out-of-key pitches in the outer voices and harmonic complexity levels 

– all closely related – explained the majority of the variance in the data in each of their models.  

While different types of objective measurements exist (Eerola, 2016; Narmour, 1992; Vuust & 

Witek, 2014), this is the first time that a relationship between information content as produced 

by IDyOM and perceived complexity has been empirically tested and serves as a very useful 

link to current research in complexity in music by providing a valid, objective proxy. 

The second reported study did not find evidence for a relationship between complexity 

and salience.  A same-different paradigm was employed asking participants to identify whether 

the target melodies in a pair of musical excerpts (the same as for the complexity rating task) 

were the same or different.  Performance was rarely above chance for the complex target 

condition and no higher than 75% for the simple target condition.  Despite this, existing patterns 

weakly support a complexity-based definition of salience over a similarity-based definition, 

where performance matches the former’s predictions more closely than the latter (Figure 7.7).  

Effects of melodic and harmonic features of the music are found here as in the first study, where 

stimuli with higher information content in these parameters and larger intervals (rated as more 

complex) lead to worse performance on the same-difference task. 

It is interesting that melodic and harmonic aspects of the stimuli are the most important 

in this pair of studies, as the study presented in Chapter 6 rather provided evidence for rhythm 

being more salient than pitch.  It is possible that this discrepancy is due to the difference in 

overall complexity of both the stimuli and the task involved in the two sets of studies.  While 

the study in Chapter 6 used longer stimuli and some had high mean IC, these were monophonic.  

The polyphonic stimuli for the studies reported here were designed to interfere with the target 

to varying degrees.  Furthermore, the three voices were harmonically related, increasing the 

chances of integration of these voices; this was observed particularly for complex harmonic 
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progressions.  It is worth remembering here that Duane (2013) found evidence that onset and 

offset synchronization were the most important streaming factor in 18th and 19th century string 

quartets, while these excerpts are also harmonically integrated.  In the current study’s stimuli, 

onset synchrony between all voices was 0.88 for simple target stimuli and 0.46 for complex 

target stimuli, reflecting higher integration in simple target stimuli; however, performance was 

better for these simple target stimuli overall and rhythmic aspects of the stimuli had little to no 

effect on performance, indicating that something was counteracting this integration and 

performance here is influenced by other sources of information.  An important difference 

between Duane’s stimuli and the present stimuli is that the latter, though following Western 

classical common practice as much as possible, are synthetic in comparison to existing string 

quartets.  However, it is important to approach this issue with both natural and manipulated 

stimuli to examine it from different angles.  Another possibility is that the paradigm task also 

affected perception, where in Chapter 6, listeners were asked to make ratings in real time while 

these studies require single decisions after hearing the stimuli.  While all music occurs over 

time, it is possible that a time-dependent task such as providing continuous ratings may have 

drawn attention to temporal aspects of the music. 

Clearly, more research is needed to explore when and why different musical parameters 

appear to be more or less salient in different contexts.  It would be interesting to pursue this 

line of research in the context of expectation more explicitly (Jaeger & Weatherholtz, 2016), 

as this approach is hypothesized to explain bottom-up salience as well as top-down salience.  

Furthermore, this universality and grounding in prediction is in line with the predictive coding 

framework (Zarcone et al., 2016), offering yet another avenue of research into the applications 

of this potential grand unifying theory.  Some recent work fits into this research agenda, 

investigating whether predictable, rather than unpredictable sequences are salient (Southwell 
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et al., 2017).  Southwell et al. used either regular or random sequences as irrelevant distractors 

from a task where participants were asked to identify a change in an auditory scene.  The task 

scene and distractors were presented to different ears.  If predictability was salient and captured 

attention, worse performance on the task would be expected when a regular distractor was 

presented; however, a regular distractor resulted in better performance than a random distractor, 

supporting a negative relationship between information content and saliency, the top-down side 

of the salience question. 

Before concluding, one major question must be addressed: if there is such a strong link 

between information content and complexity, and increasing evidence and discussion in the 

literature (Blumenthal-Dramé et al., 2017; Ellis, 2006; Horstmann et al., 2016; Jaeger & 

Weatherholtz, 2016; Prince et al., 2009; Schmid & Günther, 2016; Southwell et al., 2017) for 

a link between information content and salience and complexity and salience, why was this link 

so weakly observed here?  As previously suggested (Section 7.4.5), it is possible that 

information content, or complexity, are not strong enough segregation cues to allow successful 

performance on the same-difference task, which relies on successfully streaming the target 

voice from the outer voices.  This is supported by the positive effect of musical training on 

performance, where musical training improves auditory streaming (François et al., 2014).  

Perhaps if the three voices were less strongly integrated and the overall perception was 

ambiguous, then relative complexity of the voices would have a stronger effect.  For example, 

each outer voice could have been another octave away from the target voice.  Furthermore, it 

seems that harmony, which appears to have a particularly strong integrative role, should not be 

considered equal to melody and rhythm in its perception and thus not directly compared, as was 

the case here. These are interesting considerations for future research. 
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7.6 Conclusion 

 Overall, this chapter validates information content as a proxy for perceived complexity.  

While not a perfect proxy, the majority of variance in the behavioural data is explained by 

experimental design and information content.  Furthermore, pitch-based musical features were 

found to be the best indicators of perceived complexity and melodic complexity seems to be 

the most salient parameter for complex auditory scenes.  Despite these preliminary conclusions, 

more research is needed to understand more specifically when and in what contexts various 

musical parameters are most salient.  Finally, the results presented in this chapter are relevant 

to the use of relative salience in the proposed auditory streaming framework, where it is 

suggested that modules modelling parameters with higher average information content should 

carry more weight to make a streaming decision.  However, the relationship between 

information content and salience was not supported by the results of these studies, so an 

alternative approach should be explored.  The implications of these results will be discussed 

further in Chapter 9, where the proposed integrated framework for auditory streaming will be 

re-evaluated in the context of all results presented in this thesis. 
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8 Prediction-based 
melody extraction 

 

 

How do we know a melody is a melody?  This is probably not a question often 

contemplated when listening to music, as listeners just know a melody when they hear one.  It 

is however a very relevant question when considering musical ASA, as it can inform the process 

of melody extraction, or in other words, identifying the foreground of a musical scene.  This 

task, which became very popular in the past few decades in the music information retrieval 

(MIR) community, consists of identifying the melody in a polyphonic music context, either 

from audio or symbolic data.  As a core part of the proposed integrated framework for auditory 

scene analysis presented in Chapter 4, a predictive approach to melody extraction is 

investigated in this chapter.  However, due to some constraints, the implementation of this task 

will be different from how it is described in Chapter 4 while keeping to the same principles.  

First, as IDyOM does not yet have implemented harmonic viewpoints, each stream will be 
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monophonic.  Secondly, as there is yet to be any annotated data for perceptual streams, this task 

will identify score-based voices, evaluated on chorales by J.S. Bach and string quartets by W.A. 

Mozart.  This approach is based on two hypotheses: melodies are internally coherent and 

melodies are the most interesting stream in a given musical work. 

To begin, melody will be defined and work in MIR melody extraction will be 

summarized, including common performance metrics and datasets (Section 8.1).  In Section 

8.2, the proposed prediction-based model and its implementation, an extension of the current 

IDyOM system, will be presented.  Section 8.3 will present the model evaluation and results, 

and finally, Section 8.4 will discuss the model’s output and potential improvements for its 

future development. 

8.1 Melody: definition and literature 

When discussed in an informal setting, people usually understand each other as to what 

is meant by melody.  It’s one of those things that everyone understands without needing to put 

specifically into words.  However, for the purposes of empirical research, a definition is needed.  

Drawn from music theory (Toch, 1923), melody can be defined as a succession of different 

pitch sounds brightened up by the rhythm.  A more recent music dictionary, the New Grove 

Dictionary of Music and Musicians (Rycroft & Sadie, 1983), similarly defines melody as a 

combination of a pitch series and a rhythm having a clearly defined shape.  These are quite 

generic; the most commonly employed definition of melody in audio MIR is that it is the 

sequence of monophonic pitches that a listener might sing or hum when asked to reproduce a 

polyphonic piece of music, and encompasses the core identity of the piece (Salamon, Gomez, 

Ellis, & Richard, 2014).  While still generic, this last definition allows for a “correct 

interpretation” through the identification of melody by a listener.  Beyond this general 
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definition, melody has been broken down further into different types, as described by Selfridge-

Field (1998): 

 compound melodies describe melodies where some pitches are melodic and some are 

either another melody or an accompaniment; this is also called pseudopolyphony and 

is most common in solo string music 

 self-accompanying melodies are melodies where some pitches act as both main theme 

and harmonic support, also another form of pseudopolyphony 

 submerged melodies are melodies in inner voices of a polyphonic work 

 roving melodies are melodies that move from part to part, or instrument to instrument, 

in an ensemble 

 distributed melodies are melodies spread across various instruments and the theme 

cannot be represented by one part alone 

Overall, these definitions are heavily biased towards Western ideas of melody in that it 

is assumed that there is only one such dominant line, characterized by pitch (as opposed to 

rhythm or timbre), that can be sung to represent a piece of music and that this line is 

monophonic (though doublings aren’t especially rare in Western music, a melody is generally 

thought of as monophonic).  One caveat to keep in mind is that it is not guaranteed that every 

listener will sing back the same line; currently, when there is disagreement, the most common 

interpretation is considered correct.  Another typical assumption in the MIR field is that the 

melody cannot change instruments throughout the piece, which is appropriate and performs 

well for pop music but performs substantially worse for Western classical music, where in 

instrumental ensembles it is common for the melody to change instruments or rove, as defined 

by Selfridge-Field.  Another related challenge is to identify whether there is a melody present 

at all, a problem called voicing (Salamon et al., 2014).  For this chapter, melody will be defined 
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by the MIR definition presented above, considering the melody to be a monophonic sequence 

of pitches and that the majority of listeners agree to be labelled “melody”.  However, a few 

differences will be allowed: 1) the melody is allowed to change instrumental lines (the sub-

definition roving melodies), and 2) voicing will not be considered.  While not every moment 

in Western classical music contains a voice that could be called melody, thinking particularly 

of textural passages and transitions between themes, here any non-melodic notes identified as 

melody will simply be considered false positives when compared to a ground truth.  Though 

this would have a negative influence on performance, this will happen in a small enough 

proportion of the music analysed to have negligible impact (J. J. Bosch, Marxer, & Gómez, 

2016). 

Now that melody is defined, current methods for melody extraction in MIR from both 

audio and symbolic data formats will be summarized.  First tackled in (1999) by Matasaka 

Goto, approaches to the melody extraction problem have multiplied since then, presenting both 

improvements and new challenges (Salamon et al., 2014).  Algorithms that extract melody from 

audio files can generally be divided into two broad categories: source separation based 

approaches and salience based approaches, while algorithms using symbolic data tend to use 

variations of probability-based strategies. 

With such a variety of approaches, it is worth first defining some common performance 

measures and thinking about challenges in evaluating performance.  These measures are either 

related to pitch - whether the correct pitch was extracted (audio) or assigned (symbolic); or 

voicing - whether the melody was currently identified as present. 

 Raw pitch accuracy is defined as the proportion of melody frames (vertical time 

divisions of the music) of the ground truth where pitch is considered correct (within 

half a semitone for audio-based approaches). 
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 Raw chroma accuracy is similar to raw pitch accuracy, but pitch is mapped to a single 

octave, allowing forgiveness for octave errors in audio-based approaches. 

 Voicing recall rate is the proportion of frames labelled as melody in the ground truth 

that are also labelled as melody by the algorithm. 

 Voicing false alarm rate is the proportion of frames labelled as non-melody in the 

ground truth that are labelled as melody by the algorithm. 

 Overall accuracy combines pitch and voicing measures and is defined by the 

proportion of all correctly labelled frames (whether labelled melody or non-melody) 

and for correctly labelled melody frames, the pitch is also correctly identified (within 

half a semitone of the ground truth for audio-based approaches). 

The evaluation of this chapter’s model will employ raw pitch accuracy alone, as voicing is not 

considered. 

The evaluation datasets for these approaches vary widely, with all datasets being 

relatively small in MIR terms.  This is due to the need for a ground truth – a definitive labelling 

of melody pitches for a piece of music – which is a perceptual construct and, as mentioned, 

may differ between listeners and therefore cannot simply be lifted from a score.  Datasets 

containing annotations indicating melody in a polyphonic context are few and far between due 

to the extensive time commitment involved in building such a dataset, though over the past few 

years a number of datasets have been built, the majority for audio-based melody extraction.  

Tables 8.1 and 8.2 summarize known existing datasets for audio and symbolic research 

respectively.  Through the Music Information Retrieval Evaluation eXchange (MIREX) 

competition, there are a few datasets on which many approaches have been tested; however, 

these are quite small and inaccessible due to the way the competition is designed and so many  
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Table 8.1. Details of audio datasets used for melody extraction evaluation; partially reproduced 
from (Bittner et al., 2014). 

Name # 
Songs 

Song 
Duration 

Total 
Duration 

% 
Vocal 
Songs 

Genres Content 

ADC2004 20 ∼20 s 369 s 60% Pop, jazz, 
opera 

Real 
recordings, 
synthesized 
voice and 
MIDI 

MIREX05 25 ∼10–40 s 686 s 64% Rock, R&B, 
pop, jazz, solo 
classical piano 

Real 
recordings, 
synthesized 
MIDI 

INDIAN08 8 ∼60 s 501 s 100% North Indian 
classical music 

Real 
recordings 

MIREX09 374 ∼20–40 s 10020 s 100% Chinese pop Recorded 
singing with 
karaoke 
accompani-
ment 

MIR1K 1000 ∼10 s 7980 s 100% Chinese Pop Recorded 
singing with 
karaoke 
accompani-
ment 

RWC 100 ∼240 s 24403 s 100% Japanese Pop, 
American Pop 

Real 
recordings 

MedleyDB 108 ∼20–600 s 26831 s 57% Rock, pop, 
classical, jazz, 
rock, pop, 
fusion, world, 
musical 
theater, singer-
songwriter 

Real 
recordings 

ORCHSET 64 ~10-32 s 1379 s 0% Classical, 
Romantic and 
20th century 
period 
symphonic 
works 

Real 
recordings 
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Table 8.2. Details of symbolic datasets used in melody extraction evaluation, including the 
String Quartet dataset, previously described in Chapter 3. 

Name # Pieces Genres Content 

CL200 200 Classical MIDI files 
JZ200 200 Jazz MIDI files 
KR200 200 Popular music MIDI files 
String Quartets (test & 
validation) 

41 Classical Kern files 

 

evaluation datasets are built by authors to suit their needs.  More recently, datasets such as 

MedleyDB (Bittner et al., 2014) and ORCHSET (Bosch & Gómez, 2014) have been developed 

with the aim of providing annotated audio datasets for MIR research in general.  Symbolic 

datasets are also difficult to compile for this particular problem as existing symbolic data 

repositories lack melody annotations.  Ponce de León et al. (Ponce de León Amador, Iñesta 

Quereda, & Rizo Valero, 2008) created three annotated datasets of 200 MIDI files, each in a 

different genre: classical, jazz and karaoke.  For each file, none, one or more tracks in each file 

were hand labelled as melody by a musician, and the other tracks were labelled non-melody. 

8.1.1 Melody extraction from audio 

Salience-based. Emilia Gómez is one of the most well-known leaders in the field of 

audio-based melody extraction and has mentored many in developing this line of research 

(Bittner, Salamon, Essid, & Bello, 2015; J. Bosch & Gómez, 2015; Gómez, Klapuri, & Meudic, 

2003; Salamon & Gomez, 2012; Salamon et al., 2014).  With Salamon, they have created one 

of the best salience-based melody extraction algorithms yet (Salamon & Gomez, 2012), in 2009 

achieving the best overall accuracy seen in the MIREX competition at the time.  Since then, 

improvements seem to be stagnating (Salamon et al., 2014).  This particular approach is 

salience-based, where salience refers to the relative presence of a particular frequency 

throughout at slice of time, called a frame.  A frame is a slice in time encompassing all 
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frequencies present in the signal at that moment.  Salience algorithms extract peaks, particular 

frequencies that are salient relative to other frequencies in the frame.  There may be more than 

one peak in any given frame if more than one frequency (translating to note) is relatively salient; 

thresholds are fine-tuned for each algorithm to strike a balance between removing non-melody 

notes, while keeping all potential melody notes. 

There are a number of innovations that make Salamon and Gómez’s approach 

particularly successful.  First, their approach targets pitch contours, extracted with some initial 

audio processing and a salience function, rather than defined notes with fixed onsets and offsets.   

Note offsets are particularly difficult to identify in audio, and this approach simply bypasses 

the problem by dealing with a continuous pitch estimation over time.  This is a sensible thing 

to do, as the beginning and end of each individual note isn’t necessarily helpful in identifying 

a melody against an accompaniment.  Second, rather than selecting melody notes (peaks) 

directly, non-melody notes are filtered out.  Once pitch contours, which can be anywhere from 

the equivalent of one note to a short phrase consisting of multiple joined salient peaks are 

formed, some straightforward characteristics are computed: pitch mean, pitch deviation, 

contour mean salience, contour total salience, contour salience deviation, length and vibrato 

presence (true or false, based on Herrera & Bonada, 1998).  This information is used to filter 

out non-melody notes.  Most prominently, contour mean salience is useful as melody and non-

melody notes have separate distributions in a pitch contour, where non-melody notes are less 

salient, meaning that a threshold can be determined where most non-melody notes can be cut 

out while only minimally affecting potential melody notes.  Furthermore, notes with vibrato 

are automatically included, as the probability of a non-melody note performed with vibrato is 

less than 5%.  This keeps potentially less salient melodic notes for consideration.  The use of 

pitch contours also minimizes octave errors by allowing computation of contour trajectories 
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over time.  If two contours are an octave apart, then clearly there is a case of an octave doubling.  

The correct octave is chosen through a combination of salience (the most salient probably being 

the melody), and context, where large leaps are avoided.  Finally, outliers can be removed by 

removing anything outside an octave of the mean pitch of the remaining contour. 

Source separation. Durrieu et al. (Durrieu, Richard, David, & Fevotte, 2010) employ 

an approach akin to a source/filter model (Fant, 1971), where pitch and timbre characteristics 

of the audio are extracted separately.  In this particular approach, the original audio source is 

modelled by a combination of two source/filter models, one for the melody and one for the 

accompaniment, where the melody model retains the melody and filters out the accompaniment 

and the accompaniment model does the opposite.  This is also carried out over frames, as is 

standard in MIR. 

Combined approaches. More recently, Bosch has combined the two main approaches 

described above and fine-tuned melody extraction for orchestral music (Bosch & Gómez, 2015; 

Bosch, Bittner, Salamon, & Gómez, 2016).  More specifically, this algorithm combines 

Salamon & Gómez’s and Durrieu et al.’s methods to use both aspects of salience-based 

extraction and source separation, namely source-filter models (Durrieu et al., 2010) and pitch 

contour extraction (Salamon & Gomez, 2012), including some basic auditory streaming cues 

to minimize octave errors and outliers, as in Salamon & Gómez (2012).  Furthermore, by testing 

aspects of several approaches, Bosch et al. (2016) found that a good salience function is the 

most important aspect of a successful melody extraction model and the combination of 

harmonic summation and pitch contour selection give the best results for orchestral music, 

which is particularly dense and rich in doublings. 

While research in audio-based melody extraction continues to develop, the remaining 

review of the literature will focus on symbolic melody extraction, the method employed by this 
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chapter’s proposed extraction model.  Symbolic representation is chosen because this model is 

concerned with the cognitive processing of music once relevant features (such as pitch, rhythm, 

harmony) have already been abstracted. 

8.1.2 Melody extraction from symbolic data 

Approaches to melody extraction from symbolic data tend to rely on the use of the 

statistical properties of certain musical features, typically chosen for their perceptual relevance.  

Some approaches consider full tracks or voices, and select one as the melody, while others 

separate the polyphonic material into a set of monophonic voices and subsequently select the 

melody from these extracted voices. 

One of the earliest attempts at melody extraction relies on a very simple heuristic: 

choose the highest sounding pitch at any given time.  Known as the skyline algorithm 

(Uitdenbogerd & Zobel, 1998), this works well for pop music or for a style like Bach chorales, 

but breaks down for instrumental music.  Friberg & Ahlbäck (Friberg & Ahlbäck, 2009) give 

us an example of entirely perception-inspired melody extraction, where they use a number of 

basic features, some derived from Huron’s principles of voice-leading (Huron, 2001) to identify 

melody.  These are: 

 pitch is derived from the toneness principle, which states that pitch perception is more 

accurate around a central pitch of D4 

 articulation, defined using duration/IOI, so that a legato note is near or exactly 1 and a 

staccato note closer to 0, is derived from the temporal continuity principle, where an 

auditory stream is more stable if it is continuous 
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 interval size is derived from the pitch proximity principle, where smaller intervals 

make groups of notes fuse more easily (the Gestalt principle of good continuation also 

applies here) 

 IOI is derived from the authors’ temporal sensitivity principle, where music is best 

perceived when IOI is an average of around 250ms – not too slow so as not to lose 

continuity and not too fast so as not to miss events 

 timbre, labelled as 0, 0.5 or 1 (nonharmonic, percussive harmonic or sustained 

harmonic), based on the idea that harmonic sounds are overwhelmingly more likely to 

also be melodic 

 sound level, where the loudest voice is often the melody 

 total duration, where the melody would be expected to be long but not as long as the 

whole piece, with the accompaniment occupying more time than the melody 

 polyphony, measured as the number of simultaneous notes in each voice; the melody 

is assumed to most often be monophonic 

 narrative, a measure introduced by the authors that is designed to convey the melody 

as an interesting story, where the more new material is encountered in a voice or track 

over the course of the piece, the more likely it is to be the melody 

Using multiple regression on 242 polyphonic ringtones in MIDI format whose tracks 

were manually labelled melody or accompaniment (half were used for training and half for 

evaluation), it was found that all features but articulation were correlated with melody, in the 

expected direction based on the definitions given above.  While this model correctly identified 

the melody track in 90% of the evaluation set, annotator agreement (the two authors) was only 

81%.  Overall, the authors conclude that melody is voice-like, with pitch and duration close to 

speech height and speed, overwhelmingly monophonic, louder than the accompaniment and 
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more original (narrative).  They also recognize that ideal feature selection is an ongoing 

exploration and that these selected features in particular are not all ideal for symbolic 

representation, as in particular articulation, timbre and loudness were not systematically 

encoded. 

Guided less explicitly by perceptual features, Rizo et al. (Ponce de León Amador et al., 

2008; Rizo, De León, Pérez-Sancho, Pertusa, & Quereda, 2006) select the most melodic track 

of a given MIDI file by using pattern recognition on pitch, interval, duration and rhythmic 

information.  More specifically, a set of 19 descriptors, based on the four labels just listed or 

track information, is computed for each track.  Then, some tracks are used to train a random 

forest classifier (Breiman, 2001) and others are used for evaluation, where the random forest 

has learned the statistical properties of the 19 descriptors and assigned a likelihood of 

‘melodiness’ to each track.  The track with the highest melody likelihood is selected as the 

melody.  This method was tested on three sets of 200 MIDI pieces, one classical, one jazz and 

one pop (karaoke) (see Table 8.2), where overall success exceeded 96% in all three datasets. 

Madsen & Widmer (2007) present the approach that is the most similar to the approach 

presented in Section 8.2 below, computing various measures of complexity and information 

content to select the melody amongst given (whether from the score or separated by algorithm) 

voices in a polyphonic piece of music.  They cite the link between complexity and attention, 

observed in music cognition research as motivation for this type of approach.  As seen in 

Chapter 7, increased complexity demands more processing power and therefore draws more 

attention.  Madsen and Widmer selected Shannon entropy (Shannon, 1948) as a measure of 

complexity.  Shannon entropy is a measure of uncertainty; in this case, uncertainty about what 

pitch will come next in a given sequence.  However, an important difference between Madsen  
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Figure 8.1. Illustration of window formation in Madsen & Widmer’s (2007) streaming 
algorithm.  Lettered boxes represent pitches and windows are numbered.  Prediction periods 
include all pitches between the start of two windows and are represented by gray boxes (note 
that these are different from IOI).  The first prediction period includes only window 1 while the 
second includes windows 1 and 2, and therefore events A and B. 

& Widmer’s model and the present work is that the former uses zeroth-order models while the 

latter uses variable-order models, through IDyOM. 

Being very certain of what comes next equates to low entropy, while being very 

uncertain to high entropy.  For example, before a piece of music begins, entropy is very high 

because there is no indication as to what the first pitch or pitches could be.  By the end of the 

piece, in certain styles (such as most Western classical music) the last pitch is predictable with 

nearly absolute certainty, so the prediction has very low entropy.  In this approach, a given 

piece of polyphonic MIDI music is processed from beginning to end in a series of windows, so 

that each window is different but every transition between notes in the music is included: a new 

window will begin either at the first offset of a pitch in the current window or at the first onset 

of a pitch beginning after the current window.  Prediction periods are created, including all 

notes between the start of two windows (see Figure 8.1 for an illustration of this).  Entropy for 

each voice in a prediction period is calculated from the frequency tabulations of three features 

and three combinations of these in each window included in the prediction period: pitch, pitch 

interval and duration, as well as the combination of pitch and duration, pitch interval and 

duration, and a weighted combination of all three.  In each prediction period, the voice with the 
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highest average entropy is labelled as melody and the rest as non-melody.  In this way, the 

melody can move from voice to voice.  In terms of cognitive relevance, a drawback of this  

method is that it includes pitches beyond the current prediction period in the entropy 

calculation, which equates to using information about pitches that has not yet been heard by a 

listener.  This happens when there are overlapping windows: the prediction period ends when 

the second window begins, but the whole window is included in the entropy calculation. 

This model was evaluated on two melody-annotated pieces: String Quartet No 58, Op. 

54, No. 2 in C major, first movement by Franz Joseph Haydn and Symphony No 40 in G minor 

(KV550), first movement by Wolfgang Amadeus Mozart.  Window sizes of 1, 2, 3, and 4 

seconds were tested for each of the six different entropy measures.  The combination of pitch 

and interval gave the best precision, recall and F-measure for all window sizes, ranging from 

.81 to .87, except 4s for the string quartet, where pitch alone had slightly better recall, and 

therefore also F-measure.  Performance was much better for the string quartet than for the 

symphony, which is not surprising as one has four voices and the other, ten.  As compared to a 

skyline algorithm baseline, this approach performed much better in the symphony (mean .51 as 

opposed to .36), but worse for the string quartet (mean .85 as opposed to .93).  This is not 

surprising, as in a string quartet the first violin most often plays the melody, while in a 

symphony it is not only more variable, but woodwinds’ accompaniment, particularly in the case 

of the flute, often has higher pitch than the melody, even if the latter is played by a violin.  

Despite its drawbacks, this latest approach, which uses a measure of complexity, is a successful 

model of symbolic melody extraction when tested on music by Haydn and Mozart. 
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8.2 Melody extraction: a prediction-based approach 

As seen in Section 8.1, while many use probability-based techniques, existing 

approaches to symbolic melody extraction vary widely in their implementations.  The model 

proposed here is similarly grounded in prediction and is based on two rules: a melody is 

internally coherent and is the most interesting stream.  These rules are both intuitive and 

empirically supported.  The first hypothesis, that a melody is internally coherent, is supported 

by the Gestalt principle of good continuity and the perceptual principle of pitch proximity, 

where pitches that are closer together form coherent streams (Huron, 2001; Wundt, 1874).  In 

this implementation, this rule translates to high probability, or low information content: 

melodies tend to contain steps and small leaps, therefore these patterns will be more probable 

and preferred to model melody.  The second hypothesis, that a melody is the most interesting 

stream in a piece of music, is supported by previous work demonstrating this pattern using 

measures of information content (Duane, 2012; Friberg & Ahlbäck, 2009).  In this 

implementation, this rule translates to melody being identified as the voice with the highest 

information content.  Voice is used here instead of stream because auditory streaming has not 

been performed; rather, for reasons outlined in the opening of this chapter, this model performs 

voice separation.  Details of the model’s implementation are presented in Section 8.2.1 below. 

Highly influenced by Madsen & Widmer’s (2007) approach described above, the 

current models nevertheless differs in a number of respects.  First, the model’s measure of 

information content comes from IDyOM, a cognitively valid method of simulating prediction 

of music listening (Pearce et al., 2010).  Unlike the zeroth-order distributions used by Madsen 

& Widmer (2007), IDyOM combines predictions from multiple time scales, simulates short- 

and long-term memory and can automatically select the best feature (optimized by lowest 

information content) if desired.  Second, as a result of using IDyOM, only information that 
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would also be known to the listener is used (i.e. all in the past), creating a non-causal process.  

Third, the analysis windows are much smaller, only considering the current sounding pitches.  

Music is, after all, processed both vertically and horizontally and as context is included in the 

analysis of the current window by default, a larger window size is not necessary.  Fourth, said 

context consists of one voice at any given time so that each currently sounding pitch is 

considered as a potential continuation for each existing voice.  Furthermore, voice information 

is unknown and therefore voice separation is performed, an additional task not present in 

Madsen & Widmer’s (2007) model.  Finally, as a result of this build-up of voices over time, 

the melody is selected at the end of the piece rather than at each prediction period as the voice 

with the highest information content: the most complex. 

While it is theoretically possible to calculate information content for any viewpoint 

implemented in IDyOM, this method will focus on pitch-based viewpoints.  While rhythm and 

timing play a role in melodic identity, pitch can be considered the most important aspect of 

Western music (Prince et al., 2013).  Furthermore, rhythm as a predictor of melody is irrelevant 

for Bach chorales since these are homophonic; all voices share the same rhythmic patterns, 

which would not help separate the melody from its context based on predictability.  While this 

is not the case for string quartets, focus will remain on pitch for simplicity and comparison. 

In summary, the approach taken in this chapter takes symbolic source material, breaks 

it down into multiple monophonic voices based on the lowest information content option and 

selects the melody from these voices based on the highest average information content.  The 

implementation of this approach is presented next. 

8.3.1 Model implementation 

The model proposed here was implemented in three versions, each an improvement on 

the last.  The overall approach is identical and the versions differ in small details, highlighted  
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A  B  C   D  

Figure 8.2. Illustration of the iteration process of the first and second model 
implementations.  For each slice, each voice (A-D) is processed in turn and each potential 
following note is considered; the most likely continuation is selected and added to that voice. 

throughout the description that follows.  The models all process music in vertical slices, 

chronologically over time, similarly to Cambouropoulos’ (2008) streaming model.  A slice is 

created at each note onset in the polyphonic texture and contains all notes sounding at the time,  

Table 8.3. Tabulation of all transitions 
between bars 1 and 2 of Mozart’s 
String Quartet No. 16, second 
movement.  The current voice 
corresponds to the model’s voice 
numbers and the source voice 
corresponds to the score voice, where 1 
corresponds to the first violin and 4 to 
the cello. 

 whether that represents a new onset or a 

continuation of a previous note.  The model 

initiates the analysis of a piece of music by 

creating one voice for each note in the first 

vertical slice, which also makes up the first 

interpretation.  This is organized so that the 

soprano is “on top”, or voice 1, and the bass is 

“on the bottom”, or voice 4.  Remaining in this 

first slice, the first version of the model then 

iterates through each voice, beginning with the 

highest pitch.  The model generates 

predictions using both IDyOM’s LTM and 

STM models.  At each voice, the information 

content of each potential next pitch (the next  

Current 
voice 

Source 
voice 

Pitch 
(MIDI) 

IC  

1 1 63 0.73  

1 2 60 5.37  
1 3 56 6.86  
1 4 44 9.47  
2 1 63 3.96  
2 2 60 3.55  
2 3 56 5.52  
2 4 44 6.91  
3 1 63 6.00  
3 2 60 3.77  
3 3 56 3.20  
3 4 44 13.85  
4 1 63 8.11  
4 2 60 12.75  
4 3 56 11.86  
4 4 44 0.93  
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slice) is determined by using the current voice as context, where this context is specifically 

modelled by the STM in addition to the LTM, and the pitch with the lowest information content 

is selected to be added to that stream.  The model then moves to the next slice, and iterates 

through its voices and so on until the end of the work (Figure 8.2).  The voices with  the highest 

average information content (Duane, 2012) is then returned as the melody.  In the first version, 

LTM predictions for each voice are drawn from an LTM trained on the equivalent chorale voice 

(i.e. soprano predictions are generated by an LTM trained on soprano voice only).  This was to 

ensure that each voice would be modelled as accurately as possible.  In the second version, only 

one LTM is employed, trained on all four chorale voices.  This is the preferred implementation, 

as IDyOM’s STM should be capable of adjusting predictions to each voice according to context.  

The biggest drawback of these first two versions is that they do not handle fluctuations in the 

number of voices.  The third version of the model addresses this drawback and is highly similar 

to the first two, differing in its iteration procedure.  Instead of iterating through each slice and 

each voice in order, the model tabulates the information content of all possible transitions 

between streams and iteratively selects the transition with the lowest information content (see 

Table 8.3).  At each iteration, all potential transitions that include (1) the voice with a newly 

assigned pitch, (2) that pitch, and/or (3) the voice that pitch came from (score-based) are 

removed from the possible transitions.  This modification was implemented to handle the 

frequent addition and subtraction of voices in string quartets, so that all potential pitches are 

assigned to a voice first before voices left without new pitches are assigned rest objects, created 

with pitch -1 as ‘placeholders’ to maintain vertical alignment until a pitch is assigned in that 

voice again.  These rest objects are ignored when information content is calculated as this model 

is only currently dealing with pitch-based viewpoints.  See Figure 8.3 for an illustration of this 

process. 
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Table 8.4. Tabulation of all transitions between bars 5 and 6 of Mozart’s String Quartet 
No. 16, first movement.  This transition table corresponds to the illustrated example given 
in Figure 8.3, where transitions are marked on the score. 

Current voice Source voice Pitch (MIDI) IC Transition 

1 1 65 3.16 A-B 
1 2 60 7.89 A-D 
2 1 65 3.16 C-B 
2 2 60 7.89 C-D 
3 1 65 3.76 E-B 
3 2 60 5.46 E-D 
4 1 65 3.76 F-B 
4 2 60 5.46 F-D 

Mozart K.428, movement 1, mm 4-5 

 
             A                 B 

 
            C                D 

 
             E 

 
             F 

 Voice 1   68         67          #1  65 
 Voice 2   68         67          #3 -1 
 Voice 3   56         55          #2  60 
 Voice 4   56         55          #4 -1 

Figure 8.3. Illustration of the iteration process of the third model implementation, where for 
each slice the IC of each possible transition between voices is calculated (Table 8.4) and the 
lowest IC is assigned first.  Focusing on the transition over the barline, the lowest IC value 
is 3.16 and represents the transition from G to F (labels A – B and C – B); this value exists 
for two transitions because the previous context is exactly the same for Voices 1 and 2.  The 
pitch is assigned to Voice 1 simply because it occurs first in iteration as everything else is 
equal.  Once all transitions containing the F are removed from the table, the lowest IC left is 
5.46, for the transition between Voices 3 or 4 and middle C (E – D and F – D).  It is assigned 
to Voice 3.  As there are voices left with unassigned pitches, these are assigned rest objects, 
with a place-holder pitch value of -1. 
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Though a straightforward concept, a few heuristics were added to avoid certain issues 

such as crossing streams and dealing with equidistant or equally probable pitches.  First, any 

pitches that are a continuation of an already sounding pitch are assigned to the voice containing 

that pitch before any transitions are considered based on IC; this currently assumes that there 

will only be one such pitch match.  Second, as IDyOM relies on local context as well as a 

training corpus for generating its predictions, this model initially chooses the next pitch for 

each voice by selecting the closest pitch for s slices before engaging the information-content 

based selection method.  The default value of s is 5 and can be adjusted by the user.  This 

provides the model with a context in order to generate more accurate predictions for each voice 

early in the analysis.  Third, if two potential pitches are equidistant from the current pitch or 

are equally likely to follow the current pitch, in the first two versions of the model the first 

option is assigned to the current interpretation and a new interpretation is created for each 

alternate possibility, retaining all previous context from all voices until that point, and 

continuing with the slice and voice iteration as usual.  In the case where there are multiple 

possible interpretations for the organization of pitches into voices, the interpretation with the 

least amount of similarity between its voices is selected, based on the assumption that different 

voices in polyphonic music do not share many pitches.  Similarity is simply measured by the 

number of unique pitches in each slice of each interpretation, where more unique pitches 

equates to less similarity.  Melody is then selected from the streams of this selected 

interpretation.  In the third version of the model, no alternative interpretations were necessary 

as the instrumentation in string quartets results in a larger pitch spread and extremely low 

probability of equidistant or equally probable pitches for any given voice.  In the rare instance 

where the situation does occur, in the case of equal distance, either the pitch that has not been 
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previously assigned to a voice, or the highest pitch is assigned for simplicity and in the case of 

equiprobable transitions, the transition with the smallest distance between pitches is assigned. 

8.3 Model evaluation 

 The model was evaluated on two types of polyphonic music: chorales by J. S. Bach and 

a selection of string quartet movements by W. A. Mozart.  In the first instance, Bach chorales 

were chosen because of the straightforward ground truth: these chorales are by definition 

harmonized melodies and so the melody simply equates to the soprano voice.  String quartets 

were chosen both for comparison to previous work identifying melody as the most complex 

voice (Duane, 2012) and to evaluate the model in a musical situation where voice does not 

equate to stream and the melody may move between voices. 

8.3.1 Bach chorales 

The Bach chorale test and validation datasets are described in Chapter 3, Section 3.2.2.  

All 350 test set chorales were analysed using tenfold cross-validation, where for each validation 

set, in this case a subset of 35 chorales were analysed while the remaining chorales were used 

as a training set.  As IDyOM only learns from monophonic sequences, two training sets were 

constructed: the first is a combination of all four monophonic chorale voices for all training 

chorales, considering information from the full chorales; the second contains only the soprano 

voice, training the model on melodic information only.  The first two versions of the model 

were tested using the first training set along with a variety of source viewpoints: chromatic 

pitch, pitch interval and scale degree, and every combination of these three.  Only Version 2 

of the model was trained on a melody-only training set, as having only one voice to train on 

would render testing Version 1 redundant.  A further caveat is that training on one voice restricts 

the viewpoints that can be tested to derived viewpoints only.  Since the model is not exposed 
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to alto, tenor and bass voice pitches in training, it cannot process them when they appear in the 

music analysed; therefore, only pitch interval, scale degree, and their combination can be tested 

as these higher-level patterns are present in all voices.  Three performance metrics were 

calculated: 1) percent match of the extracted melody to each score voice; 2) percent overlap 

between voices extracted by the model and 3) percent match between each extracted voice and 

its corresponding score voice (based on the first pitch of the extracted voice).  While the first 

metric explicitly evaluates melody extraction, the second verifies whether the model effectively 

separates the voices as they are written in the score and the third verifies the quality of this 

voice separation.  Percent match is calculated by comparing the extracted melody pitch to each 

score voice for each slice in each chorale.  Percent overlap is calculated by averaging the 

percentage of unique pitches for every slice, where the minimum is 25% (1/4) and the 

maximum is 100% (4/4).  As this represents the number of unique pitches, minimal overlap 

equates to a mean percentage of 100% and maximal overlap of 25%.  This is counterintuitive; 

therefore, values are subtracted from 100 so that a low percentage reflects low overlap and a 

high percentage, high overlap and the new minimum is 0% and the new maximum is 75%.  This 

type of metric is only possible because of the nature of chorales, where each voice is 

independent and has a straightforward ground truth.  Percent match between extracted voices 

and corresponding score voices is calculated the same was as percent match between the 

extracted melody and score voices, where extracted voices and score voices are compared based 

on the first pitch of each extracted voice.  Table 8.5 presents the results of these tests alongside 

results returned by the first version of the model, with a different LTM for each voice, using 

IDyOM’s LTM modelling only, without considering local context.  This additional test allows 

the evaluation of the influence of context on results. 
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Subsequent validation was performed on the 19 remaining chorales from the original 

370 that had never before been seen by the model, whether during model development or initial 

evaluation.  Training sets were derived from the 350 chorales of the Bach chorale test dataset.  

Table 8.6 presents the results of this validation test. 

Finally, as it has been used in melody extraction elsewhere (Madsen & Widmer, 2006; 

Manzara et al., 1992), entropy will also be tested as an alternative measure to information 

content for the sake of comparison.  While closely related, information content and entropy 

measure different aspects of prediction: information content  measures how expected an event 

is, while entropy measure how certain the model is of its expectedness (see Section 2.3).  There 

is no change in the model implementation, only in the metric that the decisions are based on; 

entropy is already implemented in IDyOM (Pearce, 2005).  Results of this analysis can be found 

in Tables 8.7 and 8.8. 

To evaluate the impact of test type and viewpoints used, a multiple linear regression 

model was constructed, with test type (version 1, 2, version 1 LTM only or version 2 melody-

training), data type (information content or entropy) and viewpoint as fixed effects predicting 

voice match performance.  Neither predictor was significant when compared to a model 

containing only an intercept using a likelihood ratio test, F (3, 188) = 0.01, p = .99, F (1, 190) 

= 0.005, p < .94) and F (6, 185) = 0.001, p = 1.  While these values are extreme, the residual 

sum of squares was equal for both models compared, indicating that neither test type nor 

viewpoint had any influence on model performance.  However, values fluctuate according to 

voice, and this was indeed found to be a significant predictor of performance, F (3, 188) = 

16.12, p < .0001.  Voice also significantly interacted with data type, where the voice match 

values for the bass and tenor voices are lower, and voice match values for the soprano and alto 

voices are higher when entropy is used as a prediction metric, F (7, 184) = 29.43, p < .0001.  
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Results for the validation set show no significant predictors of version, data type or viewpoint, 

F (3, 188) = 0.07, p = .97, F (1, 190) = 0.02, p = .88 and F (6, 185) = 0.05, p = .99 respectively, 

where voice was a significant predictor, F (3, 188) = 9.99, p < .0001. 



 
248 

 

Table 8.5. Results of the evaluation of two model versions on the Bach chorale test dataset as well as an LTM-only Version 1 and Version 2 training 
on melodic information only, using seven different viewpoint combinations of chromatic pitch (CP), pitch interval (PI) and scale degree (SD).  All 
values are percentages.  Voice match describes the percent match between the extracted melody line and each of the SATB chorale voices.  Voice 
overlap describes the percent overlap between the four voices extracted by the algorithm.  Voice:Ground describes the percent match between each 
extracted voice and its ground truth (i.e., the SATB voices respectively).  The best performing condition is highlighted in bold in each column. 

  Version 1 Version 2 Version 1 LTM only Version 2 melody training 

  Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

CP 

S 0.7 

35.8 

28.4 10.3 

42.8 

45.5 0.7 

28.8 

59.6  
- 

 

 
A 2.7 45.8 22.7 58.3 5.1 58.1 - - 
T 18.2 51.3 29.9 59.8 28.3 61.7   
B 82.0 36.2 40.4 46.6 69.3 69.7   

PI 

S 2.4 

32.7 

38.4 12.9 

42.8 

46.0 2.2 

37.1 

48.5 21.7 

62.2 

33.8 
A 9.9 34.8 23.6 55.0 12.6 47.8 17.2 29.4 
T 29.7 40.3 29.7 55.5 41.8 42.5 20.3 30.0 
B 61.5 46.6 37.1 50.1 46.8 47.9 38.9 33.5 

SD 

S 1.9 

33.8 

42.9 15.1 

40.0 

44.0 2.0 

35.5 

55.0 16.9 

50.9 

32.7 
A 12.3 39.0 24.0 47.0 13.6 39.2 24.7 37.5 
T 37.5 41.3 26.6 50.0 43.7 39.3 27.5 42.7 
B 51.9 43.2 37.2 51.1 43.8 43.9 32.5 47.2 

CP 
PI 
 
 

S 2.4 

21.9 

78.0 3.6 

23.6 

75.5 0.3 

27.8 

66.7  

- 
 

 
A 17.4 69.8 9.6 73.6 3.0 59.8   
T 47.5 70.0 23.6 71.3 27.3 62.3 - - 
B 36.7 79.9 66.8 60.2 72.8 73.0 
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CP 
SD 

S 2.5 

37.2 

27.0 11.1 

45.0 

45.5 1.1 

24.5 

71.3   
- 

 
A 9.6 45.7 24.8 58.9 2.2 61.9 - - 
T 29.9 51.3 31.3 57.5 21.2 66.0   
B 61.6 34.4 36.1 41.6 78.7 80.2   

PI 
SD 

S 1.1 

32.7 

41.5 3.2 

23.3 

75.9 2.0 

38.3 

53.4 16.3 

47.9 

20.9 
A 3.3 36.8 9.1 72.3 12.8 49.8 23.7 21.4 
T 18.7 41.9 23.2 71.2 41.9 45.4 28.6 19.4 
B 80.6 49.0 68.1 71.9 46.4 47.0 32.6 14.4 

CD 
PI 
SD 

S 1.2 

34.3 

38.0 8.0 

38.0 

51.8 1.4 

29.2 

71.1   
- 

 
A 6.1 41.5 17.9 60.2 7.7 59.6 - - 
T 24.5 47.2 28.6 60.9 32.5 60.5   
B 71.8 37.5 49.0 57.5 62.6 62.5   

 
 
Table 8.6. Results of the evaluation of two model versions and their variations on the Bach chorale validation dataset, using seven different viewpoint 
combinations. 

  Version 1 Version 2 Version 1 LTM only Version 2 melody training 

  Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

CP 

S 0.1 

26.5 

64.5 10.2 

44.4 

46.3 0.1 

25.6 

68.9  
- 

 

 
A 1.6 60.4 26.4 55.0 1.5 57.7 - - 
T 21.7 63.6 29.0 53.9 20.0 66.7   
B 80.1 80.1 37.1 46.5 81.7 81.7   

PI 
S 1.1 

36.6 
51.5 13.2 

46.0 
42.0 1.1 

36.2 
54.3 10.7 

45.8 
44.3 

A 6.6 52.4 28.1 53.4 6.2 48.2 27.6 54.2 
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T 44.3 46.2 29.8 47.1 42.1 45.6 31.0 49.7 
B 51.4 51.4 32.1 46.0 53.9 53.9 33.8 45.5 

SD 

S 1.6 

35.2 

56.1 17.1 

49.1 

32.8 1.0 

34.6 

43.6 22.9 

51.2 

33.4 
A 10.5 39.9 24.1 35.0 9.2 39.7 19.6 30.7 
T 46.3 39.6 28.0 41.7 47.0 36.8 31.2 42.8 
B 44.9 44.9 33.7 45.0 46.2 46.2 29.5 45.1 

CP 
PI 

S 0.2 

28.3 

65.2 10.8 

44.0 

47.8 0.2 

27.5 

66.1  

- 
 

 
A 3.0 54.0 26.1 54.4 2.4 54.8 - - 
T 23.7 63.7 28.0 52.6 23.3 65.2   
B 76.4 76.4 38.0 45.6 77.3 77.3   

CP 
SD 

S 0.1 

25.1 

66.7 12.1 

46.9 

40.1 0.2 

23.3 

71.3  

- 
 

 
A 1.9 62.7 28.2 57.4 1.5 62.1 - - 
T 21.2 67.2 30.5 56.7 18.8 69.9   
B 80.5 80.5 31.8 41.2 83.2 83.2   

PI 
SD 

S 1.2 

36.4 

58.6 12.5 

43.7 

49.2 1.2 

37.0 

59.3 39.2 

44.9 

51.0 
A 7.2 50.9 20.0 50.9 7.5 50.2 31.5 48.7 
T 42.2 47.2 28.3 55.2 41.8 49.0 21.8 53.4 
B 52.6 52.6 42.1 48.9 52.8 52.8 9.8 47.7 

CD 
PI 
SD 

S 0.5 

28.2 

69.4 10.2 

47.3 

38.5 0.6 

28.5 

71.0  

- 
 

 
A 5.3 58.0 23.0 49.3 6.4 58.2 - - 
T 29.9 62.9 28.3 53.3 31.5 61.0   
B 67.8 67.8 41.4 51.4 65.0 65.0   
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Table 8.7. Results of the evaluation of entropy models on the Bach chorale training dataset, using seven different viewpoint combinations. 
  Version 1 Version 2 Version 1 LTM only Version 2 melody training 

  Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

CP 

S 40.4 

71.1 

59.7 31.3 

52.0 

62.1 40.4 

70.9 

10.6 - 

- 

- 
A 35.4 58.1 27.8 42.6 39.9 22.0 - - 
T 14.9 61.7 22.3 30.3 13.5 49.9 - - 
B 14.1 69.8 20.7 27.1 10.9 10.6 - - 

PI 

S 41.8 

62.7 

48.5 29.3 

50.6 

40.7 41.5 

61.1 

70.1 25.4 

44.9 

43.1 
A 13.0 47.8 23.6 39.6 12.9 15.7 31.8 49.2 
T 13.2 45.2 24.7 38.6 14.1 21.2 28.6 49.0 
B 37.0 48.0 21.8 34.4 36.8 79.3 17.2 49.9 

SD 

S 16.4 

64.3 

55.0 20.6 

51.0 

22.4 16.9 

55.4 

25.3 20.2 

49.9 

32.5 
A 25.2 39.2 23.9 37.2 25.2 28.4 22.9 37.5 
T 30.3 39.3 25.4 40.2 30.3 31.0 29.8 42.7 
B 33.2 43.9 32.3 45.4 30.1 35.7 30.1 47.2 

CP 
PI 

S 55.8 

71.9 

66.7 30.2 

52.7 

60.6 56.2 

72.6 

8.6 - 

- 

- 
A 29.5 59.8 28.0 42.7 26.1 20.4 - - 
T 8.9 62.3 22.1 30.6 8.9 46.0 - - 
B 13.7 73.0 22.0 26.9 13.0 10.0 - - 

CP 
SD 

S 40.2 

75.3 

71.2 29.3 

52.8 

62.7 40.7 

65.6 

10.4 - 

- 

- 
A 34.7 61.9 26.9 44.1 38.7 30.1 - - 
T 15.7 65.9 23.0 30.9 14.1 40.9 - - 
B 14.4 80.2 22.9 28.9 11.4 10.9 - - 

S 34.5 61.5 53.5 26.1 54.1 39.3 34.8 64.2 47.8 22.7 46.1 42.0 
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PI 
SD 

A 16.3 49.8 27.0 40.7 16.4 19.6 30.8 47.6 
T 18.3 45.4 23.2 38.5 18.3 24.6 29.8 49.0 
B 36.4 47.0 25.2 36.2 35.9 59.2 19.9 52.1 

CD 
PI 
SD 

S 53.4 

70.6 

70.8 28.8 

53.5 

59.9 50.3 

69.9 

8.5 - 

- 

- 
A 28.9 59.2 27.1 44.9 32.1 25.8 - - 
T 10.0 60.7 23.5 31.7 10.7 39.0 - - 
B 12.4 62.5 22.9 28.2 11.9 10.4 - - 

 

Table 8.8. Results of the evaluation of entropy models on the Bach chorale validation dataset, using seven different viewpoint combinations. 
  Version 1 Version 2 Version 1 LTM only Version 2 melody training 

  Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

Voice 
match 

Voice 
overlap 

Voice: 
Ground 

CP 

S 48.2 

28.8 

10.2 34.9 

53.0 

66.6 46.2 

28.7 

10.5 - 

- 

- 
A 32.0 22.2 28.9 41.6 39.2 21.2 - - 
T 8.3 49.1 19.9 23.9 8.4 50.0 - - 
B 15.4 11.8 18.2 27.0 10.4 10.4 - - 

PI 

S 37.3 

39.6 

73.8 32.5 

50.4 

41.9 37.7 

39.8 

73.6 30.6 

45.7 

45.1 
A 12.7 14.2 23.3 36.4 12.6 14.1 33.0 46.1 
T 12.9 21.1 22.8 36.5 12.9 21.0 24.8 43.8 
B 42.6 82.7 23.6 36.2 42.3 82.5 15.0 48.2 

SD 

S 18.2 

44.0 

27.3 23.9 

51.7 

34.6 20.0 

44.7 

27.4 18.4 

51.1 

31.0 
A 27.1 29.1 20.2 33.2 26.2 27.1 21.9 35.6 
T 29.4 30.2 27.2 36.7 29.9 29.8 28.9 41.2 
B 30.8 35.8 31.6 47.7 29.3 34.8 32.9 45.5 
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CP 
PI 

S 62.1 

25.5 

8.3 32.7 

53.8 

64.0 63.3 

25.4 

8.0 - 

- 

- 
A 25.6 21.2 30.9 42.3 24.9 22.1 - - 
T 5.4 43.3 19.4 24.4 5.5 44.7 - - 
B 10.5 10.5 18.8 26.6 9.7 9.7 - - 

CP 
SD 

S 45.1 

32.2 

8.8 28.0 

55.2 

63.7 42.7 

32.5 

8.1 - 

- 

- 
A 36.4 30.4 30.0 44.0 39.2 29.3 - - 
T 11.0 37.4 20.5 26.2 11.8 39.5 - - 
B 11.7 11.7 23.8 29.6 11.2 11.2 - - 

PI 
SD 

S 27.7 

36.1 

49.6 24.6 

54.7 

36.9 30.6 

36.3 

49.5 23.8 

46.0 

40.6 
A 13.2 16.6 26.6 39.1 13.8 16.3 33.8 48.7 
T 21.4 26.3 27.1 34.6 21.3 25.1 28.0 45.4 
B 43.4 62.7 23.4 35.6 40.2 62.6 17.4 53.9 

CD 
PI 
SD 

S 56.1 

29.4 

8.4 28.1 

54.8 

60.7 53.5 

29.9 

7.9 - 

- 

- 
A 30.1 29.0 28.2 44.3 33.3 28.6 - - 
T 6.7 36.3 19.8 28.1 7.0 36.3 - - 
B 11.0 11.0 26.0 29.4 10.5 10.5 - - 
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8.3.2 String quartets 

The String quartet dataset is described in Chapter 3, Section 3.2.2.  Cross-validation 

was not used here; rather, the test, training and validation datasets are described in Section 

3.2.2.  This is due to the monumental task of obtaining a ground truth for this large amount of 

data.  While there is a bias towards the first violin, or the highest pitch (Duane, 2012), it is not 

guaranteed that the melody will be perceived as the quartet’s ‘soprano’ voice.  Therefore, a 

ground truth was built by annotation, where each quartet in the test set was annotated by three 

different listeners, the author and two others.  All listeners studied music formally at the 

university level.  Listeners were instructed to highlight (or otherwise mark) the melody on a 

score as they listened to the piece.  It was specified that in this situation melody was restricted 

to monophony and only one pitch could be highlighted at a time (i.e., if harmonized, pick one 

note).  They were also instructed to not leave any marks if they felt there was no melody at any 

point (i.e., textural passages).  Rather than generating one common ground truth from the three 

annotations, analysis was performed for each annotation and results presented as an average of 

these three.  This was done to maximise the information given by each annotation, as a ground 

truth containing parts of each annotation is not representative of any single one and valuable 

information may be lost.  As results demonstrate, the deviation in performance of the model 

between annotations is low, indicating high agreement overall. 

An important adjustment to the string quartets analysed is that all double stops were 

removed.  This is due to the definition of melody being employed, which is restricted to 

monophony.  While it would be possible to assign extra vertical sonorities to a new voice, this 

would be perceptually inaccurate the majority of the time, where double stops tend to provide 

harmonization and texture.  Of the 218 tokens removed from the kern files, only 18 made up 

musical relevant voices (suspensions) for one or two measures at a time.  Though it renders the 
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resulting analysis partially incomplete, this omission represents a negligible fraction of the 

overall analysis. 

Though not a problem in Bach chorales, voicing becomes more relevant in string 

quartets as it is not guaranteed that a melody will always be present.  It is however expected 

that unvoiced segments form only a negligible percentage of the music analysed.  To verify 

this, the number of unvoiced slices, averaged according to the three annotators, were counted 

and represent 2.53% of the total number of slices (489 unvoiced slices of 19258). 

As the voices of a string quartet do not directly correspond to an equivalent instrument 

in the score, voice overlap and comparisons between individual voices and their score 

equivalents as were carried out for the J.S. Bach chorales could not be done here.  Instead, the 

percent match between the extracted melody and the annotated melody was calculated for each 

quartet, using the same viewpoints and combinations thereof as for the chorale analysis.  In 

order to effectively evaluate model performance, two extremely simple comparison models 

were created.  The first is a model that randomly selects one pitch or rest from the options 

present in the next slice as melody was also run.  This model did not consider continuations 

and could therefore select a pitch whose onset belonged in a previous slice.  This comparison 

is necessary because chance performance in string quartets does not equate to 25% due to rests 

and common thin textures.  Output from this random model was only considered a hit when the 

selected pitch corresponded to the onset of a pitch but not when the selected pitch was already 

sounding.  The second is a model that implements the skyline rule, selecting the highest 

sounding pitch at any given time.  This comparison allows evaluation of the model against a 

simple heuristic.  Results can be found in Table 8.9. 

To effectively compare these values, a multiple linear mixed effects model was run, 

with random intercepts for each piece (7) and each annotation (3) and viewpoint (incl. random) 
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as a fixed effect.  Viewpoint was a significant predictor when compared to a model containing 

only an intercept, F (7, 160) = 212.76, p < .0001, and remained significant when random 

intercepts were contained in the model, where scale degree, linked pitch interval and scale 

degree, and skyline performed significantly better than the rest, t (161) = 4.06, p < .0001, t 

(161) = 2.58, p < .01 and t (161) = 34.96, p < .0001 respectively, and a random model performed 

significantly worse, t (161) = -2.24, p < .02.  The random intercepts improved a basic model, 

Table 8.9. Mean (standard deviation) percent match for the Mozart string quartets between 
extracted melody and annotated melody for all three annotations for all combinations of 
chromatic pitch (CP), pitch interval (PI) and scale degree (SD) viewpoints, as well as a random 
model and skyline analysis.  Performance for each string quartet is given separately as well as 
an overall mean across quartets.  The best performing viewpoint (excluding random and skyline 
analyses) is bolded in each column. 

 K428-1 K428-2 K458-3 K464-2 K499-3 K575-2 K590-1 
Overall 
Mean 

RAND 
11.26 
(0.55) 

7.84 
(2.82) 

11.43 
(2.10) 

12.69 
(2.90) 

10.72 
(1.07) 

15.05 
(0.88) 

16.77 
(0.25) 

12.25 
(3.17) 

SKY 
87.30 
(2.92) 

89.64 
(3.85) 

84.59 
(1.63) 

79.48 
(8.26) 

83.31 
(8.46) 

83.37 
(5.18) 

79.62 
(2.71) 

83.90 
(5.70) 

CP 
27.18 
(0.37) 

13.35 
(1.36) 

16.79 
(0.98) 

16.30 
(0.81) 

12.81 
(2.18) 

8.74 
(1.27) 

10.57 
(0.97) 

15.10 
(5.83) 

PI 
26.55 
(0.74) 

31.84 
(2.29) 

25.81 
(4.23) 

13.91 
(0.56) 

17.48 
(1.72) 

5.21 
(0.91) 

11.85 
(0.45) 

18.95 
(9.13) 

SD 
25.79 
(1.00) 

19.40 
(1.40) 

25.73 
(0.45) 

16.48 
(0.36) 

19.63 
(0.72) 

22.14 
(2.28) 

41.59 
(0.51) 

24.39 
(7.94) 

CP 
PI 

27.87 
(0.25) 

12.60 
(0.83) 

14.17 
(0.36) 

13.63 
(2.60) 

13.68 
(0.36) 

10.72 
(1.49) 

9.37 
(1.22) 

14.58 
(5.90) 

CP 
SD 

26.72 
(1.07) 

18.09 
(1.07) 

13.53 
(2.47) 

12.05 
(1.09) 

13.43 
(1.58) 

6.34 
(0.87) 

9.30 
(0.45) 

14.21 
(6.38) 

PI 
SD 

26.01 
(0.41) 

32.00 
(2.22) 

28.30 
(1.22) 

9.62 
(0.74) 

35.41 
(1.26) 

6.14 
(0.44) 

13.11 
(0.55) 

21.53 
(11.12) 

CP 
PI 
SD 

25.28 
(0.42) 

29.12 
(3.23) 

13.54 
(0.09) 

12.43 
(1.73) 

17.14 
(1.05) 

6.74 
(0.88) 

11.44 
(1.45) 

16.57 
(7.69) 
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with BIC reduced from -296.55 to -288.10, with random intercepts on piece explaining more 

variance than random intercepts on annotation, which had an associated variance of zero. 

8.4 Discussion 

While prediction-based, symbolic voice extraction is not new, the model presented 

above was created to offer a cognitively valid approach to the problem.  In the first instance, it 

is an extension of an existing, validated model of cognitive expectancy in music, processing 

music in a non-causal manner and integrating long and short-term memory while taking past 

context into account.  Second, its guiding hypotheses, that a melody is internally coherent and 

that it is the most interesting voice, are based on perceptual principles (Huron, 2001) and human 

and computational corpus analysis respectively (Duane, 2012).  This new model was tested on 

chorales by J.S. Bach, which are by definition harmonized melodies, offering a straightforward 

ground truth where the melody is the soprano voice, and a selection of string quartet movements 

by W.A. Mozart, where ground truth was established using human annotation. 

8.4.1 Bach chorales 

Three metrics were used to evaluate the quality of the voice extraction algorithm for 

Bach chorales: 1) percent match between extracted melody and each score-based voice; 2) 

percent overlap between extracted voices; and 3) percent match between each extracted voice 

and its corresponding score-based voice.  Several pitch viewpoint combinations were tested, 

using chromatic pitch, pitch interval and scale degree, as well as two test sets, using either all 

voices or only the soprano voice.  Furthermore, two versions of the model were tested on the 

Bach chorales: one with an LTM especially trained for each voice, where for example 

predictions for the soprano line only had knowledge of other soprano lines and one with only 

one LTM model, with knowledge of all chorale voices to make all predictions.  The first version 
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of the model was also tested using the LTM portion of IDyOM only in order to evaluate the 

impact of context on melodic extraction. 

Results for Version 1 of the model (Table 8.5) suggest an advantage of chromatic pitch, 

with an 82% match between the extracted melody and the score’s bass line.  However, the 

lowest amount of overlap and best match between each extracted voice and corresponding score 

voice was achieved by a linked viewpoint between chromatic pitch and pitch interval.  This 

pattern suggests that pitch is the best viewpoint for melody extraction, while a combination of 

pitch and pitch interval are better at source separation.  However, results from multiple linear 

regression analyses indicate that viewpoint had no statistical effect on performance overall.  

Scale degree performs particularly badly on its own, though performs almost equally to 

chromatic pitch when combined with pitch interval.  These results are somewhat surprising, 

particularly when thinking about voice separation, as it might be expected that pitch performs 

best on all metrics due to each extracted voice learning only from its corresponding score voice.  

Intuitively, these voices are defined by pitch much more than interval or scale degree patterns, 

where for example the soprano and bass lines may both utilise similar scale degrees but have 

no pitch overlap.  The influence of local context in this version of the model is important as a 

model using LTM alone performed worse for most viewpoints.  The exceptions to this are two 

pairs of linked viewpoints: chromatic pitch and pitch interval, and chromatic pitch and scale 

degree.  The latter combination is the best performing viewpoint on all metrics, the most 

uniform result of all model tests undertaken.  This pattern suggests that interval and scale 

degree, and particularly scale degree, can define chorale voices when large amounts of data are 

considered; however, when only considering a single chorale, these large-scale patterns are lost 

in the influence of the preceding context, which seems to blur the distinction between voices  
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 based on interval and scale degree in 

favour of pitch alone.  Once again, despite 

these observed patterns, no statistical effect 

of viewpoint was observed. 

           When moving to a single LTM, best 

performance decreases overall, where the 

best viewpoints for melody extraction and  

Figure 8.4. First measures of Bach 
Chorale No. 6, where the closest next 
pitch in the soprano voice is in fact the 
same pitch, that occurs in the alto voice. 

 

the majority of source separation metrics are linked pitch interval and scale degree.  Linked 

pitch and pitch interval performs best for some of the source separation metrics but only by a 

very narrow margin.  Similarly, where the interval and scale degree linked viewpoint performs 

best, the pitch and pitch interval linked viewpoint is only marginally worse.  It is surprising that 

given these combinations, the combination of all three viewpoints does not perform particularly 

well in any metric with either model implementation.  A further test using a combination of the 

two pairs of linked viewpoints chromatic pitch and pitch interval and chromatic pitch and scale 

degree does not perform better than any single linked viewpoints on their own.  This indicates 

that an increase in musical information available to the model is in fact detrimental to melody 

extraction and voice separation, where focus on one or a single pair of viewpoints separates 

voices and selects the most interesting voice most effectively.  Training on melody alone did 

not produce better results.  On the contrary, though the extracted voice was most often matched 

to the score’s soprano voice, all metrics demonstrated worse performance.  While this 

experiment tested whether learning from melody alone could better identify the melody in 

context, voice separation comes first and thus results show that training on melody alone does 

not perform good voice separation. 
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In terms of voice overlap, where 75% is the maximum possible overlap with this metric, 

an overlap in half the slices equates to 37.5%.  While no condition using Version 1 of the model 

reaches this, some come very close.  This is due to convergence in extracted voices, where if 

an ‘incorrect’ pitch is assigned to a voice once, it may continue in the voice where this 

‘incorrect’ pitch originated from, so that the final analysis contains two voices that are partially 

identical.  Voice overlap is worse overall when training on melody alone, once again due to 

poor performance on voice separation with a restricted training set.  The s=5 heuristic where 

the algorithm initially selects the closest pitch rather than the most probable is also sometimes 

a nuisance rather than a benefit and can lead to voice overlap from the first transition between 

slices.  For example, in Chorale No. 6 (Figure 8.4), while the soprano voice moves from an F 

to an A, the closest pitch is in fact another F, sung by the alto voice.  In this case, the algorithm 

is incorrect from the start.  An s value of 5 was selected in prior piloting on a smaller dataset; 

it would be interesting to investigate the effect of context using this heuristic in the future.  

Despite these occasional errors, voice separation is generally successful for this test set, as 

evidenced by most extracted voices matching their respective score voices by more than 50%. 

Entropy was also tested as a comparison measure of predictive processes in melody 

extraction.  Results show that entropy performs more poorly in terms of voice separation, 

including some cases of particularly high, almost maximal, voice overlap.  This leads to the 

following major difference seen in the voice match metric: while a model based on information 

content predominantly and clearly matches the score’s bass voice, a model based on entropy 

predominantly but less distinctly matches the score’s soprano voice.  This pattern is supported 

by the significant interaction between voice and data type.  This presents an interesting pattern 

of results, particularly when comparing to previous research: entropy has been used to extract 

melody from scores that were already separated into their respective voices (Madsen & 
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Widmer, 2007), whereas here entropy is used to perform both voice separation and melody 

extraction.  Perhaps these processes are better served by different types of predictive 

information: information content is best at voice separation, using predictability to track voices, 

while entropy is best at melody extraction, using uncertainty to measure the ‘interest’ of a voice 

(Friberg & Ahlbäck, 2009).  This combination could be tested in future research.  In terms of 

viewpoints, best performance across metrics was mostly shared by pitch interval, scale degree 

and linked chromatic pitch and scale degree.  However, there is no statistical difference in 

performance between these, and ‘best’ performance is often marginally better than the next best 

value. 

Results of testing on the 19-chorale validation set are similar on all points, where the 

linked viewpoint chromatic pitch and scale degree performs well overall and in these chorales 

even outperforms chromatic pitch alone for tests using Version 1 of the model, though not by 

very much.  Entropy still performs poorer voice separation.  The similarities and small 

differences between the test and validation datasets highlight the vital importance of evaluation 

on varied datasets of various sizes, where the influence of training set size as well as musical 

style is currently under investigation in the Music Cognition Lab and preliminary results 

indicate an influence on predictions generated by IDyOM as a function of these factors. 

The results presented in Section 8.3.1 also demonstrate a clear disagreement with one 

of the central assumptions of this study, where the soprano voice was defined as melody.  

Rather, the model has identified the bass line as the most interesting line.  An analysis of mean 

information content for each voice in all chorales from the evaluation set, as calculated by the 

default IDyOM model with chromatic pitch as a source viewpoint, reveals that the bass voice 

is the most ‘interesting’ voice, as defined by information content.  The soprano voice has an 

average IC of 2.07, the alto voice of 2.51, the tenor voice of 2.51 and the bass voice of 2.68.  
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This may vary based on the viewpoint selected, therefore the same analysis was performed 

using pitch interval, with average IC 2.11, 2.74, 1.80 and 2.77 for soprano, alto, tenor and bass 

voices respectively, where here the bass voice is the most complex and using scale degree, with 

average IC 2.89, 3.39, 3.33 and 3.57 for each voice respectively, where the bass voice is again 

the most complex.  This simple analysis demonstrates that the algorithm successfully 

accomplished what it was designed to do by extracting the most interesting voice in the 

polyphonic context; therefore, the definition of melody was inappropriate for application to 

Bach chorales, and the second hypothesis of this chapter is unsupported.  The same analysis 

using entropy as a metric yielded mean entropies of 2.58, 2.78, 2.74 and 3.27 respectively for 

the soprano, alto, tenor and bass voices when chromatic pitch was the source viewpoint; 2.88, 

2.98, 3.00 and 2.99 when pitch interval was the source viewpoint; and 4.16, 4.20, 4.22 and 4.61 

when scale degree was the source viewpoint.  The mean entropy of the soprano voice is 

consistently the lowest, which also disproves the chapter’s second hypothesis and counters the 

suggestion above that while information content is best for voice separation, entropy may be a 

better metric for melody selection.  Given that the Bach chorale melodies’ mean entropies are 

lower than all other voices, it is likely that the higher prevalence of melodic notes extracted by 

the model when using entropy are a confound of poorer voice separation.  This is supported by 

the greater presence of all voices in the extracted melody (see Table 8.7, Voice Match). 

It is worth noting that the percentages for the first metric, voice match, do not add up to 

100%.  This is because of voice overlap in the score, which occurs from time to time in Bach 

chorales.  In these cases, a match will be recorded for more than one voice, thus exceeding 

100%.  Similarly, there is an apparent discrepancy between the first and third metrics, however, 

these are not directly related.  The voice identified as melody may not be the bass voice as 

determined by the first pitch; for example, what began as the tenor voice may have been 
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assigned a higher proportion of bass notes, and due to occasional shared pitches between voices 

in the ground truth and overlap between extracted voices, the third metric is not directly 

comparable to the first.  It is interesting that this discrepancy only appears in the test dataset 

and not in the validation set, where it is clear that the bass voice was maintained and selected 

as the melody.  This is likely due to the scale of the dataset, where the bass voice was selected 

as melody in all 19 validation chorales but not in all 350 test chorales. 

8.4.2 String Quartets 

 While Bach chorales are harmonized melodies, string quartets present new challenges 

to melody extraction: the potential for roving melodies, the presence of rests and fluctuating 

voice numbers, and the presence of non-melodic segments.  Where existing models of melody 

extraction cannot handle roving melodies, the melody extraction model described in Section 

8.3.1 can do so as it selects the most likely continuation for each voice without knowledge of 

the corresponding score-based voice.  Versions 1 and 2 of the model require homophonic 

textures, whereas Version 3 was created to handle rests and fluctuating voice numbers, where 

sounding notes are assigned to voices first.  It was therefore this version that was used to extract 

the melody in seven string quartet movements by W.A. Mozart (see Table 3.3 for details).  

These movements were randomly selected from all Mozart quartet movements that contain 

exactly four notes in the opening slice.  This choice was made for simplicity and to restrict the 

otherwise large amount of data available for analysis.  Of these seven, two are first movements, 

three are second movements and two are third movements.  This in turn reflects differing styles, 

as string quartet movements are designed to be contrasting.  Some of these are adagio 

movements, characterized by many scalar and decorative passages, and one is a minuet, a 

particularly sparse and repetitive style.  These differences have a visible effect on results, as 

will be discussed in more detail below. 
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 Due to the potential for the melody to rove, straightforward comparison between model 

output and score is not possible here, therefore melody annotations were collected from three 

different listeners and the percent match between each annotation and model output was 

calculated, where the mean and standard deviation of these three values are presented in Table 

8.9.  The model performed melody extraction on these seven quartet movements using three 

pitch-based viewpoints and all their combinations: chromatic pitch, pitch interval and scale 

degree.  Two additional models were run for comparison: a random model and a skyline model.  

Results suggest the best overall approach to be the skyline model (see Table 8.9), however, 

when considering only the prediction-based model viewpoints, the scale degree viewpoint 

performed best, either alone (three movements) or in combination with pitch interval (three 

movements).  The remaining movement is best represented by the linked chromatic pitch and 

pitch interval viewpoint.  These results highlight scale degree as a particularly important 

viewpoint in this task. 

However, it is worth noting that in some cases the best performing viewpoint was only 

marginally better than the next best, as in the cases of movements K428-1, K428-2 and K646-

2.  In the case of K428-1, all viewpoint combinations perform similarly, with performance at 

least double that of the random model.  In the case of K428-2, linked pitch interval and scale 

degree only slightly outperforms pitch interval alone, which is also slightly better than all three 

linked viewpoints.  Finally, in the case of K464-2, chromatic pitch is the runner up to scale 

degree.  While in the first two cases the best performing viewpoint combinations share common 

viewpoints, for K464-2 they do not, and it is interesting that the combination of chromatic pitch 

and scale degree performs worse than the two individually.  However, unlike other movements, 

no viewpoint or viewpoint combination for K464-2 performs better than 4% above random-

selection model performance, where the sparse texture of the movement is an issue for the 
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prediction-based model.  While a linear mixed modelling analysis identifies viewpoint as a 

significant predictor when it is a fixed effect alone, this effect is overshadowed by differences 

in performance between movements, evident in Table 8.9 and highlighted in the discussion 

below. 

 Overall performance on this task is also much lower than analysis performed on Bach 

chorales.  To effectively evaluate the quality of this model’s performance, a model that simply 

selects one random pitch (or rest) from the next slice of music as melody, and a skyline analysis 

were also run.  As can be seen in Table 8.9, the prediction-based model generally performed 

better than the random model while performing worse than the skyline approach.  Exceptions 

to improved performance in comparison to the random model include K464-2, K575-2 and 

K590-1, where for some viewpoint systems the random model outperforms the prediction-

based model, though the best-performing viewpoint system outperforms the random model in 

all cases.  These three particular movements are sparse, containing many slices with less than 

four voices, where in these sections the voice chosen as melody by the model overwhelmingly 

contains rests instead of any notes.  By contrast, a model randomly selecting pitches is likely 

to select a pitch at some point, where the longest sparse section lasts 20 measures (K590, 

movement 1, mm 77-98) and there are 2-3 voices sounding for the majority of the section. 

Despite this, K590-1 is the movement with the highest model performance at 41.59% 

when using the scale degree viewpoint alone.  This is presumably due to the scalar nature of 

the piece and the fact that the opening theme of the movement (Figure 8.5) was picked up by 

the model immediately, either in the first violin or in the cello, and recognized regularly 

throughout, though not every instance was present in the extracted melody voice; it is possible 

that these were assigned to other voices instead.  However, it is worth noting that this opening 

excerpt would be perceived as one voice and one melody, rendering any ‘selection’ of a melody 
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perceptually incorrect.  A model beginning with stream formation, such as the one proposed in 

Chapter 4, is necessary to possibly achieve this perceptual accuracy.  Since the implementation 

in this chapter is score voice based, this issue must be conceded for the time being. 

Patterns.  Despite performance remaining below 50%, it is worth noting that the 

prediction-based melody extraction model is generally good at pattern detection, with pitch 

interval and scale degree, and combinations thereof being the best viewpoints to identify these.  

However, not all patterns detected are perceptually correct, which leads to a maintained low 

performance as once these are identified, they tend to be maintained throughout the movement.  

Some examples of successful and unsuccessful pattern detection will be described here for each 

movement. 

Figure 8.6 illustrates examples from the first quartet movement, K428-01, where 

patterns A and D were detected more successfully and more reliably than patterns B and C,  

 

Figure 8.5. Opening three measures of Mozart K590, movement 1.  This pattern was 
detected by all viewpoints, though all but the scale degree viewpoint selects the pattern in 
the cello octave while scale degree selects the pattern in the Violin I octave.   
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A  B  

C  

K428-1 
  A mm1-4 
  B mm5-6 
  C mm75 
  D mm77-8 

D  
Figure 8.6. Examples of pattern detection in Mozart string quartet movement K428-1; clefs 
same throughout.  The opening pattern (A) was picked up by most viewpoints, with the 
exception of the first pitch, which tended to be the lower octave.  The following pattern (B) 
was sometimes picked out successfully (blue) by the CP and CP-PI viewpoints and sometimes 
unsuccessfully but consistently (red, illustrating the extraction by the pitch interval viewpoint).  
Pattern C, always annotated as melodic, was only picked up by the model in its full 6-note 
pattern once each by the CP-SD, PI-SD and CP-PI-SD viewpoints, out of 14 occurrences in 
the piece.  Finally, pattern D (arpeggiated triplets), was also always annotated as melodic, and 
was picked up by every viewpoint except scale degree. 

 which were either sometimes incorrectly, yet reliably, or incompletely, yet reliably, identified 

respectively.  Red boxes here represent patterns identified by annotation, where in the case of 

pattern C, it was not successfully detected by the model, and in the case of pattern D, it was 

successfully detected using all but one viewpoint configuration.  Figure 8.7 illustrates examples 

from K428-02, whose extracted melody always began in the cello (red box), sometimes staying 

there for several measures and sometimes moving to other instruments.  The annotated melody, 

in contrast, was always in the first violin.  The scalar pattern found in mm32 (pattern B, red 

box) is best detected by the pitch interval viewpoint, matching melodic annotations.  Figure 8.8  
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A  B  

 illustrates examples from K458-

3, an adagio movement featuring 

many scalar and decorative 

passages.  These are best 

detected by the pitch interval 

(e.g., pattern B) and scale degree 

(e.g., pattern A) viewpoints, 

where the two illustrated 

patterns are always or most often 

annotated as melodic 

Figure 8.7. Examples of pattern detection in Mozart 
string quartet movement K428-2.  Pattern A (mm1), 
though never annotated as melody, is reliably 
detected by all viewpoints in extraction.  Pattern B 
(mm32), always annotated as melody, is best picked 
up by viewpoints including pitch interval 
information. 

 

A  

Figure 8.8. Examples 
of pattern detection in 
Mozart string quartet 
movement K458-3.  
Pattern A (mm11), 
often but not always 
annotated as melodic, 
is only successfully 
picked up by 
viewpoints containing 
scale degree 
information while 
pattern B (mm15-6), 
always annotated as 
melodic, is picked up 
by most viewpoints, 
though the pattern is 
not always complete.  
Viewpoints containing 
pitch interval 
information perform 
best on pattern B. 

B  
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 respectively.  Figure 8.9 illustrates examples from K464-

2, the minuet movement whose sparsity has been 

challenging for the prediction-based model.  

Accordingly, pattern detection is poor, with the 

movement’s principle melodic pattern detected only 

once by the PI-SD linked viewpoint and twice by the 

CD-PI-SD linked viewpoint, out of 24 instances of the 

pattern.  However, it is worth recognizing that this 

pattern sometimes occurs in canon (overlaps) in this 

Figure 8.9. The principle 
melodic pattern of Mozart’s 
movement K464-2 (mm5-6) 
is poorly identified by all 
viewpoints. 

 

movement, which restricts successful detection as the model is confined to monophony.  In 

K499-3, another adagio movement, scales and octaves are particularly prevalent.  Figure 

8.10B illustrates an example of successful scalar pattern extraction by the PI-SD linked 

viewpoint, where the model matches melody annotations.  While octaves are rarely 

annotated as melody, they are a pattern well picked up by the CP-SD linked viewpoint, 

commonly found in the accompanying voices.  Another notable moment in this movement 

is the partial identification of the first violin line as melody by the PI-SD linked viewpoint 

(Figure 8.10 A).  This opening pattern is also partially picked up when it recurs in mm54, 

though different notes are selected.  Figure 8.11 illustrates examples from K575’s sparse 

second movement, where pattern A, the principle melodic pattern of the movement, is only 

sometimes picked out by scale degree.  Similarly, secondary pattern B is only partially 

picked up by all viewpoints. Quartet movement K590-1 is the movement with the best 

overall performance, with a mean 41.59% match between the extracted melody and the three 

melody annotations.  As mentioned previously, the opening pattern (Figure 8.5) was  
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A  B  
Figure 8.10. Examples of pattern detection in Mozart string quartet movement K499-3.  The 
opening measures (A) commonly result in the selection of the cello voice (blue), while only 
the PI-SD combined viewpoint selects some notes from the first and second violins.  
Featuring many scalar passages (B, mm35, violin I) and octaves (B, cello), viewpoints 
containing pitch interval and scale degree perform best at identifying these patterns, where 
scalar passages are more often annotated as melodic (B red box). 

identified by most viewpoints, though sometimes identified in the lower octave (cello).  A 

particularly successful excerpt of melody extraction is illustrated in Figure 8.12A, while the 

measure in Figure 8.12B is representative of the long stretches of sparsity in the movement 

where melody extraction by prediction fails. 

A  B  

Figure 8.11. Examples of pattern detection in Mozart string quartet movement K575-2.  
Being a sparse movement, pattern detection is poor, with annotated patterns A (mm5-6) only 
sometimes detected by the scale degree viewpoint and B (mm21-3) only partially detected. 
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Though most patterns are straightforward, there are some instances where it will be 

impossible for this prediction-based model to successfully match the melody annotations 

provided by listeners.  Though these cases are few, it is worth mentioning when these 

situations arise in order to address these better in the future.  The first, already briefly 

mentioned, is the possibility of canonical excerpts, where a melody is performed in a round, 

with a second repetition of the melody beginning before the first is finished.  In this situation, 

the listener would likely be able to perceive that the melody is repeated in an overlapping 

manner and would hold the melody perceptually intact throughout.  Such excerpts are present 

in quartet K464, movement 2, where the canonized pattern is shown in Figure 8.9. Another, 

similar example is illustrated in Figure 8.13, where a pattern moves from one voice to another 

while the other voices sustain notes.  Melodic annotation of this excerpt tended to follow the 

moving pattern rather than the sustained notes.  However, due to the model’s treatment of 

note continuations, where a continuation must be assigned to the voice containing its onset, 

the complete pattern can never be captured by the model in its current implementation.  

However, this is currently a relatively rare problem faced by the model. 

The detailed look at model performance on all quartet movements above highlight 

some of the more salient issues faced by the current prediction-based model of melody 

extraction.  The first, evident by poor performance for quartets K464-2, K575-2 and K590-

1, is the difficulty it has in sparse musical conditions, where slices contain rests in one or 

more voices.  It seems that pitches are assigned to other voices, which have lower IC overall, 

while rests are assigned to the voice with the highest mean IC.  One possible explanation for 

this pattern is the design of the model itself: pitches are to be assigned according to the lowest 

IC.  This hypothesis clearly does not hold here as it does for Bach chorales.  The second  
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A  
Figure 8.12. Examples of pattern detection in Mozart’s string 
quartet movement K590-1.  The segment above (A; mm105-8) 
is part of a 12-measure long portion of highly successful 
melody extraction by the best performing viewpoint for this 
movement, scale degree.  Here highlighted pitches (red) 
represent the pitches from the first violin that were not present 
in the extracted melody; no accompanying voices were 
included in the extracted melody in this segment.  The measure 
on the right (B; mm21) is representative of the sparse texture in 
the movement where melody extraction fails, where the voice 
returned as the melody contains rests throughout these sections. 

B  

main issue, illustrated in Figure 8.10A, is the high frequency of movement between score 

voices as the model frequently selects pitches separated by large intervals, resulting in 

melodic patterns being broken into incomplete pieces.  While the model should already 

prefer smaller intervals to larger ones through training, this pattern was not seen in the 

model’s performance. Perhaps the viewpoint should be calculating compound intervals (the 

interval between pitch classes rather than the interval between pitches) instead of basic 

intervals, concentrating the model’s learning to within an octave.  It is interesting that this 

solution would strongly imply the use of pitch interval for melody extraction, resulting in 

the assumption that this viewpoint is salient to listeners.  These adjustments would be 

interesting to implement and test in future research. 
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 While voice separation cannot be appropriately evaluated in relation to perceptual 

validity, a few tests can be conducted in order to better understand the model’s successes 

and shortcomings.  With each voice differing in length and containing varying numbers of 

rests in varying locations, it is difficult to automatically calculate overlap between the 

model’s extracted voices.  Instead, observation of the data indicates very high overlap 

between the two upper and two lower voices and high instances of large leaps.  As this 

prediction-based model’s melody extraction performance depends on successful initial voice 

separation, it is possible that poor voice separation is the cause of poor performance and that 

the assumption that melody is the most complex voice remains valid (Duane, 2013; Madsen 

& Widmer, 2007).  To test this assumption, mean IC of each score-based voice was 

 

 calculated for chromatic pitch, pitch interval 

and scale degree viewpoints (Table 8.10).  

While these do not necessarily correspond to 

perceived voices, the success of the skyline 

approach, where the first violin most often 

plays the melody in these quartets, allows the 

approximation to be an interesting guideline.  

In the case of chromatic pitch, the first violin 

line narrowly has the highest mean IC, 3.58, 

while other voices have slightly lower mean 

IC: 3.45, 3.58 and 3.27 for the second violin, 

viola and cello respectively.  However, for 

pitch interval viola is the most complex voice, 

Figure 8.13. Mozart string quartet 
K428, movement 1, mm34-8.  In this 
excerpt, the melody is typically 
annotated as moving from one voice to 
another, ending on a long, sustained 
note before changing voices.  
However, due to constraints in treating 
continuation events, the current model 
is incapable of matching such an 
annotation. 
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Table 8.10. Mean information content for each score-based voice and annotated melody (mean 
of the three annotations) for seven Mozart string quartets. 

 Chromatic Pitch Pitch Interval Scale Degree 

Violin 1 3.58 3.05 4.61 
Violin 2 3.45 3.16 4.27 
Viola 3.58 3.27 4.34 
Cello 3.27 2.90 4.63 
Annotations (3) 3.33 2.87 4.74 

 

Table 8.11. Mean information content of the extracted melody voice for each tested viewpoint 
system, including chromatic pitch (CP), pitch interval (PI) and scale degree (SD). 

 CP PI SD CP-PI CP-SD PI-SD CD-PI-SD 

Mean IC 6.22 6.27 6.15 6.35 6.52 6.23 6.45 
 

where mean IC values are 3.05, 3.16, 3.37 and 2.90 for first and second violins, viola and cello 

respectively and for scale degree the cello is the most complex voice, where mean IC values 

are 4.61, 4.27, 4.34 and 4.63 for the first and second violins, viola and cello respectively.  For 

comparison, mean IC for the same viewpoints were calculated for the annotated melodies, with 

mean IC 3.33, 2.87 and 4.74 for chromatic pitch, pitch interval and scale degree respectively.  

While falling in similar ranges, only the scale degree viewpoint might have resulted in the 

melody being selected as the most complex voice, assuming that other annotated voices have 

lower mean IC.  The variation in highest mean IC may be due to the fact that pitch interval and 

scale degree detect patterns more successfully, reducing the mean information content as 

repeated patterns are predictable and therefore have low IC.  Perhaps something other than 

information content characterises melody.  For example, a compression-based analysis would 

be interesting to conduct as an alternative to information content, as both melodic and 

accompanying voices contain patterns, where their differences typically lie in length and 

complexity.  While a melody would be expected to be the least compressible voice, with longer 
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and more complex patterns, such an analysis may reveal new and interesting information and 

would make an interesting comparison to the current approach. 

While mean IC values for score-based voices and the annotated melodies are 

comparable within each viewpoint, mean IC for these same score-based voices are not 

comparable to the mean IC of extracted melodies, which are much higher (see Table 8.11).  

This supports the observed high frequency of large leaps, which increases the mean IC.  While 

it is possible that the melody may be in a different extracted voice and that the frequency of 

large leaps inflated the IC of the selected voice, observation indicates that voice separation is 

poor across all voices.  Once again, this indicates that improving voice separation should be the 

focus of further model development. 

8.4.3 General Discussion 

In this chapter, a prediction-based model of melody extraction was presented, guided by 

two hypotheses: a melody is internally coherent, and a melody is the most interesting stream.  

The model was evaluated on a total of 369 chorales by J.S. Bach and 7 string quartet movements 

by W.A. Mozart and results support the first hypothesis, but not the second. 

A melody’s hypothesized internal coherence is based on the pitch proximity principle 

(Huron, 2001) and is implemented in the current melody extraction model through the selection 

of the most likely pitch continuation for a given voice, with pitches within the range of a small 

leap (< perfect fifth) hypothesized to be the most likely pitches.  Testing the model using 

chorales by J.S. Bach allows the evaluation of the quality of melodic coherence due to the 

compositional nature of the chorales, where each voice can be considered an independent 

melody and these do not cross voices.  Results demonstrate good voice separation, where voice 

overlap is a result of any mis-attribution of a pitch to its correct voice having a long-term effect 
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on the remaining analysis, where the voice receiving the incorrect pitch will likely continue in 

that voice.  Results also demonstrate a good match between extracted voices and their 

respective ground truths, with percent match ranging from 61.9% to 80.2% for linked chromatic 

pitch and pitch interval, chromatic pitch and scale degree, and pitch interval and scale degree 

viewpoints, depending on the model version tested.  The same evaluation cannot be conducted 

for string quartets, as there is no such direct correspondence between perceived voices and 

score.  However, observations of exceptionally well extracted excerpts (see Figure 8.12A) 

support the hypothesis that melodies are internally coherent and that this melodic characteristic 

can be extracted by relying on information content.  On the other hand, high occurrence of large 

leaps in other areas, such as the model identifies in Figure 8.10A, suggests that the most likely 

continuation for a voice is not necessarily the closest pitch.  However, the mis-attribution of 

rests may be the cause of inflated information content (Table 8.11).  This causes a higher 

tolerance for large leaps, where pitches following a rest belong to a new phrase and thus are 

unexpected with respect to the immediate context (Pearce, Müllensiefen, et al., 2010).  While 

this may be the case, melodic annotations of the string quartets indicate that pitch proximity is 

preferred to large leaps in this music.  Therefore, future implementations of this model may 

integrate temporal information in order to more effectively handle rests in voices. 

Melody has previously been defined as the most interesting voice in a piece of music 

(Duane, 2012; Madsen & Widmer, 2007).  However, while Bach chorales are by definition 

harmonized melodies, the melodic voice extracted by the current model corresponds most 

strongly to the bass voice.  As discussed in Section 8.4.1, mean IC of each score-based voice is 

indeed highest for the bass, with the soprano voice often having the lowest mean IC.  This 

suggests a completely opposite definition for melody: the melody is the most predictable voice.  

Though melodic pitches were more often included in melodies extracted using entropy rather 
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than information content, so were other voices and melodic extraction results are no better 

overall, with score-based mean entropy being highest in the bass voice as well.  However, with 

existing evidence suggesting otherwise (Duane, 2012; Madsen & Widmer, 2007), it is worth 

highlighting the differences in musical style from which these definitions are derived.  As 

previously mentioned, chorales, composed in the style of 18th century counterpoint, are 

composed of four independent voices, each complex in its own right.  In contrast, string quartets 

and symphonic works (Duane, 2012; Madsen & Widmer, 2007) are typically composed of a 

melody and an accompaniment, where both may rove and where the accompaniment is much 

simpler and more repetitive than the melody, often simply providing harmonic support and 

context for the melody.  Therefore, the ideal melody extraction model should be able to 

recognize its context and apply the appropriate melodic definition to the situation. 

Another important consideration in melody extraction is the role of high-frequency 

salience.  It is well known that the highest pitch in a polyphonic context is typically the most 

salient to a listener, a phenomenon known as high voice superiority (Marie, Fujioka, 

Herrington, & Trainor, 2012; Marie & Trainor, 2012; Marie & Trainor, 2014; Trainor, Marie, 

Bruce, & Bidelman, 2014).  This is reflected in the creation of the skyline algorithm 

(Uitdenbogerd & Zobel, 1998), which simply selects the highest pitch in the polyphonic context 

as the melody.  This works well for pop music and would perform perfectly for Bach chorales, 

but breaks down for symphonic music, where melody tends to rove and where accompaniment 

is commonly higher in pitch than the melody (i.e., flutes).  String quartets represent a middle 

ground between these two styles, where with only four instruments, roving is minimized and 

timbral similarity results in the minimization of the masking of melodies played by lower 

pitched instruments by higher pitched instruments.  In the quartets analysed above, melodic 

annotations from three listeners greatly favoured the highest pitch as evidenced by the high 
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performance in melody extraction by the skyline approach over the prediction-based approach, 

suggesting that this would be a useful bias to incorporate into a melody extraction model for 

application to music for small ensembles in particular.  As the prediction-based model succeeds 

where the skyline approach fails (e.g. Figure 8.8A and B, where the prediction-based model 

identifies the melodic pattern even when it is not the highest pitch), it would be interesting to 

combine the skyline and prediction-based approaches in a hybrid model that includes a measure 

of certainty to the prediction-based decision.  In this hybrid model, the skyline portion would 

always select the highest pitch with 100% certainty, while the prediction-based model would 

select a pitch with less certainty, directly corresponding to the entropy associated with the 

prediction.  If the entropy is low, the pitch selected by the prediction-based model would be 

selected.  Conversely, if entropy is high, the model would default to the skyline choice.  Such 

a model would likely favour the highest pitch, while still allowing the possibility of roving 

across instruments. 

Returning to the current results, there is a marked decrease in performance between 

melody extraction for Bach chorales and Mozart string quartets.  From observation of the 

extracted melodies, the issue, previously highlighted in Section 8.4.2, is related to voicing, 

where chorales contain four voices throughout while the number of voices in string quartets 

fluctuates.  It is likely that no other extracted string quartet voice is a better match to the 

annotated melodies, as voice separation for these quartet movements is only partially successful 

(e.g, Figure 8.12A) while mostly poor (e.g., Figure 8.10A).  Therefore, voice separation must 

first be improved to improve melody extraction more generally.  As mentioned previously 

(Section 8.4.2), this could be solved by estimating melody at each slice rather than once at the 

end of the piece, preferring the assignment of pitches over rests to the melody at any given 

slice. 
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While this evaluation allows the testing of the two hypotheses of this chapter, 

performance of this model cannot be directly compared to other models of melody extraction 

due to differences in evaluation datasets.  Furthermore, while most melody extraction and voice 

separation models focus on score-based voice separation where melody tends to be confined to 

a single voice, this model is performing perceptual melody extraction, where the melody is 

identified by common practice or expert listeners and can change voices through the piece of 

music.  Therefore, comparison to a random model is the most effective evaluation possible for 

this model at the present time, assessing the extent to which the model performs better than 

chance.  Additional comparison to the skyline approach on the other hand identifies the gaps in 

the model’s performance and gives a minimum performance to aim for. 

 Finally, it is worth clarifying the extent of the cognitive validity of this model.  Though 

based on IDyOM, which has been evaluated for cognitive validity (Hansen & Pearce, 2014; 

Pearce & Müllensiefen, 2017; Pearce, Müllensiefen, et al., 2010, 2010; van der Weij et al., 

2017), these evaluations are based on monophonic stimuli.  Therefore, while it may be true that 

listeners learn patterns in music as IDyOM models them, listeners are unlikely to learn about 

chorale or string quartet structures by listening to each individual instrument, as the melody 

extraction model was trained here.  Harmonic viewpoint implementations and polyphonic 

learning need to be tested to fully implement cognitive validity for polyphonic music perception 

in IDyOM. 

8.5 Conclusion 

 In this chapter, a prediction-based model of melody extraction was presented and 

evaluated on Bach chorales and Mozart string quartet movements, testing two hypotheses: a 

melody is internally coherent and a melody is the most interesting voice in a polyphonic piece 
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of music.  While the first hypothesis is largely supported by current results and by existing 

literature (Huron, 2001), the second hypothesis was not supported, with results suggesting that 

the melody is instead the least interesting voice.  Consideration of the conflicting evidence 

highlights the importance of musical style in this problem, where Bach chorales are composed 

of four independent melodies while string quartets are built in melody-accompaniment style.  

While voice separation performs well for Bach chorales, the model struggles with fluctuating 

voice numbers, where this is an issue to target in future research.  
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9   Conclusion 

 

This thesis set out to do two things: 1) propose an integrated framework for auditory 

streaming using existing literature to produce a powerful, flexible and potentially collaborative 

research tool for future research, and 2) investigate a range of aspects of auditory streaming 

using probabilistic approaches.  Chapter 4 presented an integrated theoretical model of auditory 

streaming in music perception and Chapters 5-8 each investigated a distinct, specific subset of 

the auditory streaming problem for music, all together spanning the five categories of source 

information necessary to inform streaming.  Identified in detail in Chapter 2, these are: 1) 

auditory features; 2) musical features; 3) attention; 4) expectation; and 5) listener background, 

or musical training.  In this final chapter, Section 9.1 will summarize the content of this thesis, 

followed by a presentation of its outcomes and limitations, in Sections 9.2-3.  Section 9.4 will 
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present a systematic evaluation of the integrated framework for auditory streaming presented 

in Chapter 4 and Section 9.5 will wrap up with suggestions for future research. 

9.1 Summary 

First, Chapter 4 presented an integrated framework for musical ASA composed of a 

combination of modules, each containing a predictive model.  This framework, when 

implemented, would be the first to incorporate information from all sources relevant to musical 

ASA, namely auditory features, musical features, attention, expectation and listener 

background, on complex stimuli and combine these to produce a perceptually motivated 

analysis of auditory streaming, where existing streaming models perform score-based voice 

separation.  Furthermore, this framework would be an extremely rich research tool available to 

researchers, allowing the experimental exploration of musical ASA in parts and as a whole with 

the potential to develop even further as research in the field continues due to its modules’ 

common modelling approach: prediction. 

Chapter 5 investigated the role of timbre as a streaming cue and asked whether the 

specific instrument a musician played would bias their streaming perception, where it was 

hypothesized that listeners would be more sensitive to their own instruments’ timbre.  This 

effect was not found; rather, results suggest that directed attentional set and expectations about 

what they were about to hear influenced listeners’ perception more strongly than their listening 

background.  Additionally, the success of the paradigm, never before attempted with 

ecologically valid timbral sounds, further validates timbre as a relevant streaming cue.  Finally, 

the bistable percept reported by participants in the ABA paradigm suggests that in this simple 

streaming context, timbre is a less salient cue than pitch, timing or loudness.  Thus, this chapter 
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addressed a combination of auditory features, attention, expectation and listener background 

aspects of the integrated framework for auditory streaming. 

By asking listeners to rate their expectancies, or arousal and valence in real time, the 

study in Chapter 6 experimentally validated a subset of IDyOM’s temporal viewpoints and 

applied these along with pitch viewpoints to the prediction of expectation and perceived 

emotion in monophonic musical excerpts, where both pitch and timing expectancy were 

significant predictors of rated expectancy, arousal and valence for monophonic folk music.  

This both extends the application of predictive processes in the context of music perception, 

providing evidence for a prediction-based mechanism of musical emotion (Egermann, Pearce, 

Wiggins, & McAdams, 2013; Juslin, Liljeström, Västfjäll, & Lundqvist, 2011; Meyer, 1956), 

and sets the foundation for the studies of Chapter 7, which make use of the same temporal 

viewpoints. 

The studies in Chapter 7 address a particularly important aspect of musical auditory 

streaming: the relative perceptual salience of musical parameters, where the most salient 

parameter will dictate the organization of the auditory scene.  As proposed in Chapter 2, these 

studies investigate the potential link between predictability and salience, where it is 

hypothesized that less predictable, and therefore more complex, parameters are more salient 

due to higher cognitive processing demands.  While predictability was strongly linked to 

complexity, its link to salience in the chapter’s second study was tenuous.  Rather, results 

indicated that perceived ratings of complexity in relation to polyphonic stimuli manipulated in 

melodic, rhythmic and harmonic predictability were better predictors of detection of differences 

between pairs of stimuli than measures of predictability. 

Chapter 8 presented an extension of IDyOM that is also a simplified implementation of 

the proposed integrated framework for musical ASA from Chapter 4, investigating the use of 
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prediction as a method for voice segregation and melody extraction.  In this simplified 

implementation, IDyOM is applied to a polyphonic context by analysing each vertical slice of 

music iteratively, assigning the most likely continuation for each existing voice, the number of 

which is determined by the number of pitches in the first slice.  Once all voices have been 

constructed, the melody is selected as the voice with the highest average information content, 

in other words, the most interesting voice.  This algorithm was tested on chorales by J.S. Bach 

and string quartet movements by W.A. Mozart.  While voice separation was successful for 

chorales, the presence of rests and the fluctuation of the number of voices hindered performance 

for string quartets.  Furthermore, it was found that the bass voice rather than the melody was 

the most interesting voice in Bach chorales.  Where successful melody extraction here depends 

on successful voice separation, performance on string quartets was poor.  Compared to a chance 

model and a skyline approach, results from the prediction-based model performed better than 

chance but worse than the skyline approach, resulting in the consideration of a hybrid model 

combining prediction with the rule-based skyline decision.  This will be discussed further in 

Section 9.4.5 below. 

9.2 Outcomes 

This thesis has produced a number of useful outcomes to the scientific community.  

First, in Chapter 5, ecologically valid timbral sounds were confirmed as valid streaming cues, 

extending current knowledge of timbre as a basic auditory feature cue.  Second, where IDyOM 

is fast becoming a recognized cognitive model of musical expectation, its temporal viewpoints 

have only recently been used in research (M. Pearce & Müllensiefen, 2017; Marcus T. Pearce, 

Müllensiefen, et al., 2010; van der Weij et al., 2017) and only confirmed as valid models of 

perceived expectation here (Chapter 6; Sauvé, Sayed, Dean & Pearce, in review).  Third, 
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Chapter 7 established a strong link between information content, a measure of predictability 

derived using IDyOM, and perceived complexity, a link previously theorized but not 

empirically tested (Eerola, 2016; Huron, 2006).  Fourth, Chapter 8 presented an extension of 

the IDyOM model for melody extraction that will be published in a subsequent release of the 

software.  Fifth, Chapters 5-7 provided new evidence concerning the link between musical 

training and perception, where most of this evidence supports the initial assumption (Section 

2.5) that previous training is an important aspect to take into account for any study of auditory 

streaming, influencing expectations (Chapter 5) and accounting for individual differences in 

perception (Chapters 6 and 7).  However, it is important to note that in Chapter 5, attentional 

set and expectancies outweighed effects of listening background.  This discrepancy contributes 

to the rich findings of the current literature (Section 2.5) and highlights the need for further 

research.  Finally, Chapter 4 presented the synthesis of a large body of research, proposing a 

powerful framework for musical auditory streaming. 

9.3 Limitations 

This thesis also has its limitations.  Chapter 4’s most glaring limitation is that the 

integrated framework it proposes is theoretical and is not yet implemented, nor empirically 

validated as a whole.  Other model limitations were discussed in Section 4.8.  The small sample 

size in Chapter 5 is that chapter’s most important limitation, where larger power would produce 

more reliable statistical results.  In Chapter 6, pitch and temporal expectations successfully 

predicted listeners’ perceived expectations and emotional reactions to the music; however, this 

music was selected specifically for its extreme expectancy features.  Furthermore, these 

melodies are monophonic as opposed to polyphonic and while the models produced have 

excellent fit to the data, their ability to predict new data remains untested.  These three tests of 
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generalizability would strengthen the findings presented in this chapter considerably.  In 

Chapter 7, neither experimental manipulations, information content nor musical features could 

fully explain perceived complexity ratings or, in particular, same/different task performance; 

alternative predictors should be explored to better characterize perceived complexity and 

salience and until then, results should be considered encouraging but tentative.  In Chapter 8, 

it became clear that melody is not universally the most interesting line in a polyphonic piece of 

music, as exemplified by chorales by J.S. Bach, where the bass line was instead selected, thus 

disproving the chapter’s primary hypothesis.  This highlights the need for context to be 

considered in melody extraction.  Furthermore, melody was constrained to monophony, which 

is not always accurate, for example in the case of a canon.  Future development of the model 

should allow more than one voice to be melodic, though there should be a strong prior for 

monophony so that only strong evidence for multiple melodies will result in such an analysis.  

Finally, the analysis was only conducted on quartets opening with exactly four pitches and 

double stops were not considered.  Future editions of this model should be able to analyse all 

string quartets in their original form. 

9.4 Framework evaluation 

 In this section, the integrated framework for auditory streaming proposed in Chapter 4 

will be systematically evaluated in relation to the evidence provided by the studies presented 

in Chapters 5-8. 

9.4.1 Timbre, musical training, attention and expectation 

 The pair of studies in Chapter 5 covered four of the five sources of auditory streaming 

information, namely auditory features, musical training, attention and expectation.  In the 

proposed integrated framework for auditory streaming, only an idealized method of timbre 
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modelling could be presented as there is no existing model of polyphonic timbre.  While the 

results presented in Chapter 5 bring us no further to such a model, they do confirm timbre as a 

valid streaming cue.  Results additionally demonstrate differences in perception for more or 

less similar timbres (based on listener similarity ratings), where more similar timbres are more 

often perceived as integrated. 

 Musical training does not affect streaming perception as a function of timbre in these 

studies, but attention and expectations do, supporting their inclusion in an integrated framework 

for auditory streaming.  However, the lack of influence of musical training should not be taken 

to suggest that this source of information is irrelevant but that perhaps such minor distinctions 

between instrumentalists are too subtle to have an effect on auditory streaming perception. 

9.4.2 Temporal viewpoints 

 The proposed integrated framework for auditory streaming presented in Chapter 4 

assumed the inclusion of temporal viewpoints, among others, while these had yet to be 

validated in the IDyOM system.  Results from Chapter 6 validate the use of at least one temporal 

viewpoint, demonstrating that inter-onset interval predictability matches listener predictability 

ratings in short monophonic melodies.  While more of IDyOM’s viewpoints, temporal in 

particular, require validation for use in the proposed integrated framework, this study provides 

the first validation outside of monophonic pitch viewpoints. 

9.4.3 Relative salience 

 In Chapter 7, two studies were designed to connect information content to perceived 

complexity, and in turn to relative salience.  While a link between information content and 

perceived complexity was supported by the data, a link between complexity and salience, and 

therefore information content and salience, was not.  This affects the theoretical framework 
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proposed in Chapter 4, as the implementation of attentional bias relied on the modelling of 

relative salience using information content.  In the absence of evidence for such a link, 

corroborating evidence should be sought in replications and simplified experiments, where only 

pairs of parameters are compared, as well as an alternative implementation.  For example, 

perhaps the model would make the default assumption that melody is the most salient aspect of 

a piece of music and would prioritize another parameter, such as rhythm, only when onset 

synchrony exceeds a particular threshold, or harmony, only when the information content of a 

harmonic progression suddenly exceeds a particular threshold. 

 However, while a strong link between information content and salience was not 

established, a few patterns can be extracted from results of Chapters 6-8.  First, Chapter 7 was 

focused specifically on the relative perceptual salience of melody, harmony and rhythm in 

polyphonic music, where salience was defined by information content.  Results from this 

chapter support previous evidence that the pitch dimension is more salient than the rhythmic 

dimension (Palmer & Krumhansl, 1987; Prince et al., 2009), where predictability and salience 

are correlated, while the relative salience of harmony with respect to melody and rhythm is 

unclear and would be an interesting research avenue to pursue.  On the other hand, results from 

Chapter 6 suggest that the rhythmic dimension is more salient, with onset information content 

predicting both expectancy and arousal and valence ratings of monophonic folk melodies with 

more weight than pitch information content.  However, the musical contexts of these studies 

vary greatly in complexity, where in Chapter 7 the stimuli are short, dense 2-bar, 3-voice 

excerpts while in Chapter 6 the stimuli are an average of 30s long, monophonic folk songs, a 

generally simple musical style.  These differences suggest that timing information may be more 

salient, or more easily accessible in simpler musical contexts while pitch information is needed 

to process more complex scenes.  In Chapter 8, the hypothesis that melody was the most 
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interesting (or unpredictable) voice in a polyphonic piece of music was tested, where results 

indicated that this was not the case in Bach chorales.  Written in the style of 18th century 

counterpoint, these chorales are composed of four independent, interesting voices and the bass 

line was in fact the most interesting, with the highest mean information content and that the 

soprano line, in chorales equating to the melody, was the least interesting, with the lowest mean 

information content.  This is in complete contradiction to existing evidence suggesting that the 

melody is the most complex voice (Duane, 2012; Madsen & Widmer, 2007).  However, 

evidence for the latter case comes from string quartet and symphonic works, styles commonly 

built on a melody and accompaniment structure where the accompaniment is typically quite 

repetitive, reducing mean information content.  Therefore, context is once again crucial to 

defining the relationship between predictability and salience, where this evidence supports the 

important role of musical style in melody perception.  Finally, in Chapter 5, while predictability 

was not a factor, the bistability of the ABA_ sequences reported by listeners even when timbre 

was maximally different between the two tones suggests that timbre alone is not a sufficient 

cue for complete segregation.  With existing evidence that parameters like pitch and tempo are 

sufficient (van Noorden, 1975), this in turn suggests that pitch and time are more salient 

parameters than timbre, when all other parameters are held constant.  This evidence is provided 

in the context of extremely simple stimuli, where orchestration practice suggests it is likely that 

timbre plays a much more significant role in musical auditory scene analysis in more complex 

contexts such as symphonic works.  However, it is difficult to come up with examples of such 

works where pitch, rhythm and loudness are equally salient and where timbre can therefore 

become a defining characteristic of the music.  Perhaps the single best example of such a 

musical situation is Boléro by Maurice Ravel; in this situation, the only thing left to manipulate 

is timbre, and this defines the work. 
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To conclude, it seems that the salience of an event depends entirely on perceptual 

context, including the preconceptions of the perceiving agent; the role of context will be 

discussed further in Section 9.4.5 below. 

9.4.4 Melody extraction 

 In chapter 8, the concept of prediction was applied to the common engineering problem 

of melody extraction, where melodies were hypothesized to be internally coherent and the most 

interesting line in a piece of music.  While the implementation in this chapter is a simplification 

of the proposed framework from Chapter 4, the concepts and hypotheses with relation to 

melody identification are the same.  While the first hypothesis was supported by tests on 

chorales by J.S. Bach, where voices were well separated into score-based voices using 

prediction alone, the second was not, where the voice with the highest average information 

content – or highest average entropy – was not the melody.  Neither hypothesis was supported 

when the implemented melody extraction module was tested on Mozart string quartet 

movements; however, overall performance on this task was poor due to the difficulties the 

model has dealing with rests, where future work is needed to address this implementation issue.  

While these results disagree with the literature inspiring the high information content melody 

hypothesis (Duane, 2012; Madsen & Widmer, 2006), it is important to point out that these 

experiments were carried out on different musical styles.  Bach chorales consist of four 

independent voices, while string quartets and symphonies are structured differently.  Once 

again, though this thesis did include a test on string quartets, the voice separation was too poor 

to perform meaningful melody extraction. 

 Therefore, once again, the influence of context is inescapable, and thus will be discussed 

in more depth forthwith. 
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9.4.5 Considering Context 

As it has become clear in the past few pages, the role of context deserves some 

discussion; as the existing literature is compared and new results are obtained, it seems that 

particular approaches only function best in particular contexts and do not generalize to all 

music.  For example, our prediction-based melody extraction model performs better for 

homophonic music by J.S. Bach than for polyphonic music by W.A. Mozart.  While pointing 

out context seems a default explanation, humans can easily identify the melody in both contexts 

– the challenge remains to model it.  The obvious initial solution is to present the model with 

all sorts of contexts to learn from, so that it may in time recognize patterns as belonging to one 

context or another and therefore apply the appropriate response.  This would require substantial 

amounts of encoded musical corpora, which certainly do not exist in the form necessary for the 

proposed integrated framework of Chapter 4.  In the meantime, perhaps each musical context 

requires its own hypothesis, though the issue then becomes one of categorization: what music 

belongs to what context label, and how is melody defined in each? 

Another possibility might be to complement the predictive approach with a different 

type of modelling, one based on heuristics, here reflecting the use of less information to make 

decisions.  This approach, and its potential as a complement to the n-gram approach of 

prediction used in this thesis and as the basis of an integrated framework for auditory streaming, 

is introduced and discussed next. 

9.4.6 Considering Heuristics 

 As powerful as the predictive coding framework is, ignoring information can be a more 

efficient cognitive process.  These are heuristics, or rules about the environment that reduce 

processing load and are recently being shown to be more accurate than models designed to take 
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into account all available information in a given environment (Gigerenzer & Brighton, 2009; 

Hutchinson & Gigerenzer, 2005).  This is in contrast to the mentality developed towards the 

end of the 20th century that heuristics were second-best, the result of cognitive limitations, and 

that more information is always better.  Gigerenzer & Brighton (2009) give an excellent review 

of the state of the systematic study of heuristics, which will be briefly summarized before being 

tied into the predictive coding framework. 

 The idea that “less is more” came to light in the 1970s, where it was demonstrated using 

two methods: tallying, and take-the-best.  In tallying, models with equal weights (coefficients) 

on each cue predicted data better than multiple linear regression, where weights were fitted to 

the data.  Multiple linear regression fit the data better, but had poorer predictive power due to 

over-fitting (Czerlinski, Gigerenzer, & Goldstein, 1999).  While this works best for small 

sample sizes in relation to available cues, dependency between cues and low predictability of 

these cues, it is pointed out that this is often the situation in natural environments.  Rarely is all 

the possible information available and new situations arise regularly where quick, accurate 

decisions are needed.  Take-the-best is one of the one-good-reason class of heuristics, which 

finds the first cue that allows a decision to be made and ignores all other information 

(Gigerenzer & Goldstein, 1996, 1999).  Cues are considered independent and compared only 

to the object of the decision.  Again, this works best when information is sparse. 

 Heuristics are typically associated with bias, which generally carries a negative 

connotation because it is considered irrational.  Rational processes consider all the available 

information to make a decision; heuristics do not and are therefore irrational.  However, humans 

rarely have access to all the relevant information and must use what is available to make 

decisions.  This is why heuristics are considered such a powerful model of human cognition.  

This is well understood in machine learning, where total prediction error is a combination of 
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bias, variance and noise (Friedman, Hastie, & Tibshirani, 2001).  A model with zero bias 

reflects the underlying process perfectly while some bias is only an approximation of this 

process.  A model with zero variance is insensitive to differences between samples from which 

the underlying process is being extracted; this is practically impossible.  Studies have shown 

that higher variance is more harmful to accurate prediction than higher bias, as high variance 

is a symptom of an over-generalized model that contains many adjustable predictors and fits 

particular samples too well (Gigerenzer & Brighton, 2009).  Therefore, better fit leads to poorer 

predictions; yet, the current status quo in psychology is to search for the best fitting model 

without considering its performance in predicting new or other data (Roberts & Pashler, 2000). 

 The breakdown of prediction error into bias, variation and noise has the potential to 

seamlessly fit into the predictive coding framework, as there is not yet any specific detailing of 

how its prediction error is encoded.  If predictive coding is at its core the creation of models of 

the world continuously updated through error processing, why could these models not be, for 

example, take-the-best models, with high bias and low variance?  Heuristics are adaptable, 

updated through new information and error (Gigerenzer & Brighton, 2009), exactly as learning 

is proposed to function according to predictive coding (see Section 2.6).  The integrated 

framework for musical auditory streaming proposed in Chapter 4 could therefore potentially 

contain heuristic predictive models as part of its framework, leading to fast decisions based on 

prioritized cues chosen as a result of the immediate context.  While heuristics are typically 

interpreted and implemented as rules, such as in some of the streaming models presented in 

Sections 4.1 and 4.2, this conception of heuristics as models explaining prediction error with 

bias, variation and noise is different and offers a new way of testing the predictive coding 

framework, as well as thinking about human cognition in general.  This approach could 

potentially help solve the context issue discussed in Section 9.4.5 above and speed up the 
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overall processing time of the proposed framework, a current limitation mentioned in Section 

4.8.  This alternative implementation method also offers the opportunity to compare the n-gram 

approach to predictive coding with a heuristic approach to predictive coding, offering 

interesting insights into human cognition. 

9.5 Future directions 

Despite the limitations presented in Section 9.3, this thesis contributes new insight into 

the relationship between prediction and the perception of musical auditory scenes.  Beginning 

with an ambitious proposed integrated framework for auditory streaming, this thesis breaks the 

problem down into smaller chunks investigated separately before returning to evaluate the 

proposed framework in the context of this new data.  Clearly, much work is still needed to 

develop the implementation of this proposed integrated framework in order to evaluate it.  First, 

adapting IDyOM for polyphonic music is key, diversifying the number of viewpoints, 

especially harmonic, that it can learn and predict.  There is also a need to cognitively validate 

these; both tasks are currently being tackled in the Music Cognition Lab.  Second, the ‘fusion’ 

stage of the framework, where the output of modules are collected to merge and inform a 

streaming decision must be implemented.  Third, data with annotated streaming perception 

should be collected.  This step is arguably valuable for all music streaming research, where 

perceptual streaming can begin to be investigated in more depth once the appropriate data is 

made available.  Finally, the framework should be made accessible, where only high-level 

coding is necessary to develop a new module, thus making collaboration easier on a larger 

scale. 

More specifically, the results (both positive and negative) of the work presented in this 

thesis can guide the development of interesting new research questions based on each chapter.  
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From Chapter 4, an endless supply of research questions exploring musical ASA can be posed 

and investigated using the proposed framework as a powerful, flexible, collaborative research 

tool.  First, auditory and musical modules can be included selectively, allowing the comparison 

of performance using only pitch interval, or only timbre, or the combination of both, or any 

combination of auditory and musical modules.  Direct comparisons such as these within a single 

framework will help unify the disjointed evidence in the current literature, where different 

model approaches evaluate different information sources differently.  Second, the relative 

weights of these modules can be manipulated, investigating relative salience.  Furthermore, 

alternatives to linear combinations of these modules can be explored, such as the product or 

exponential combination of outputs.  Third, the framework can be trained to specialize in 

different musical styles and to reflect different areas of expertise (i.e. jazz, raga, flautist, etc.), 

simulating differences in perception between these listening groups.  How significant these 

differences might be, as well as where these differences lie provide interesting questions for 

future research.  Fourth, can the framework be more efficient with the inclusion of predictive 

heuristics, and to what extent?  Should all decisions be made by predictive heuristic models or 

only the most high- or low-level (i.e. parameter or viewpoint) ones?  These are only some of 

the research questions that can be explored with this new framework, once implemented.  From 

Chapter 5 we may ask whether directed attention influences perception more than listener 

background using an alternative task, such as transcription from a polyphonic context.  From 

Chapter 6 we may ask whether the manipulation of temporal expectancy affects listeners’ 

expectations and emotional reactions similarly to manipulations of pitch expectancy.  From 

Chapter 7, other potential predictors of perceived complexity such as entropy or change in 

complexity should be explored, along with using a wider range of stimuli (i.e. monophony, 

pairs of voices, chorales, short and long excerpts, etc.).  This in turn may better inform a 
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definition of perceptual salience and its relationship to predictability and its local context.  From 

Chapter 8, we may ask whether an increased use of heuristics, and better pattern recognition, 

may achieve better voice separation and therefore better melody extraction.  One heuristic may 

be to rely on one viewpoint alone, in a take-the-best model approach, or to ignore pitches 

outside of a learned range.  Overall, the contents of this thesis make valuable contributions to 

the research community, helping us to move forward with new tools, new knowledge and new 

questions. 
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Appendix A – Details of the stimuli for Chapter 4, Study 1 

Timbre (original 
file name) 

Pitch Length (ms) 
Peak 

Amplitude 
(dB) 

Fadeout (ms) 

Cello 
(CelA3_3.84sec) 

A3 

114 -16 10 

Cello 
(CelC#4_2.44sec) 

C#4 

Cello 
(CelD4_2.77sec) 

D4 

Cello 
(CelE4_2.67sec) 

E4 

Cello 
(CelF4_2.56sec) 

F4 

Cello 
(CelF#4_2.12sec) 

F#4 

Trombone 
(TTbnG3_2.17sec) 

G3 

113 

-12 

10 

Trombone 
(TTbnG#3_2.22sec) 

G#3 

Trombone 
(TTbnB3_2.54sec) 

B3 -15 

Trombone 
(TTbnD4_2.81sec) 

D4 

-16 
Trombone 

(TTbnD#4_3.54sec) 
D#4 

Trombone 
(TTbnF4_3.01sec) 

F4 

Trumpet 
(CTptG#3_6.06sec) 

G#3 

111 

-12.5 

10 

Trumpet 
(CTptA#3_2.75sec) 

A#3 -16 

Trumpet 
(CTptC4_7.44sec) 

C4 -13 

Trumpet 
(CTptD#4_3.54sec) 

D#4 -12 

Trumpet 
(CTptE4_7.42sec) 

E4 -15 
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Trumpet 
(CTptF#4_6.55sec) 

F#4 -14 

Violin 
(VlnG3_8.79sec) 

G3 

114 

-16 

10 

Violin 
(VlnA3_8.98sec) 

A3 -15 

Violin 
(VlnA#3_8.58sec) 

A#3 -16 

Violin 
(VlnB3_9.67sec) 

B3 -12 

Violin 
(VlnC4_7.69sec) 

C4 -14 

Violin 
(VlnC#4_7.12sec) 

C#4 -16 
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