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Abstract

An efficient method for interpolation and approximation of both curve and surface
points using B-splines is described. An automatic fairing is presented based on minimizing
an energy functional. Additional data points, used as degrees of freedom for the fairing, are
inserted only where the curve (the surface) needs them. This reduces the number of the
unknowns to a minimum which makes the algorithm very fast and efficient especially when
a huge amount of data is concerned. Results of applying the algorithm for about 15000
face data points, subject to measurement errors due to the digitization, are presented at the

end of the paper.
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using curve and surface energy.

INTRODUCTION

To construct visually acceptable interpolations for sets of data points has been a long
standing research problem. The main difficulty arises from the fact that even when very
efficient schemes based on splines are used the resulting curve (or surface) is often not

“fair” enough and it has extrancous “bumps” and “wiggles” (for example as shown in
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Figures 4a, 5a, 6a, 7a, 8a). The objective of the work, described in this paper, is to develop
a method for fair spline interpolation and approximation for 3D curves and surfaces that is
efficient enough to be applied on large amounts of data.

Determining the parameterization of the curve is a fundamental problem to
interpolation. Three basic methods have been widely used: uniform’, chord length® and
“centripetal” parameterization?’. Uniform knot sequence does not usually give satisfactory
results because it does not take into account the geometry of the points. There are also
cases where chord length and centripetal methods fail to give good results. Several other

algorithms for “optimal” parameterization have been described in the literature®

% but once
the optimum has been found, the curve is determined simply by using the interpolation
conditions or by a least squares fit. No other shape constraints are applied.

One approach for constructing a fair curve is to apply additional mathematical
conditions to preserve its shape. For example Carl de Boor® proposed the “taut spline” that
preserves convexity of the data and Fritsch and Carlson’ constructed a C' cubic interpolant
that preserves the monotonicity. Another possibility is to use an interactive fairing
scheme™®, where the user decides which of the control points should be moved. Sapidis
and Farin'® suggested an automation of this process showing how to determine where a
knot should be removed and a new one inserted using the curvature plots as a fairness
criterion. Note that the resulting curve after the fairing is always only an approximation to
the original one.

An alternative approach exploits minimization of the energy of the curve (surface).
This dates back to 1966 when Schweikert suggested the idea of a spline in tension'’. Here
the standard cubic spline is enriched by adding new exponential terms and degrees of
freedom, called tension parameters. The works of Salkauskas” and Foley'” use a C'
interpolant that minimizes weighted Lp-norms of the second, and the first and the second
derivatives respectively. Celniker and Gossard™ constructed a shape that naturally resists
stretching and bending. This leads to a functional expressed as an integral of a weighted
sum of the first and second parametric derivatives of the curve (or surface). In this method
¢! continuous cubic Hermite polynomials are used as a basis for curves and C! triangular
elements for surfaces. Nowacki and Lii*® went further and adopted a fairness criterion that
contains L,-norms of the second and the third order parametric derivatives. Their
implementation uses C* Hermite quintic polynomial curves with area constraints resulting

in a non-linear system of equations that is solved numerically.



An interpolation scheme, using the fairness norm' together with Catmull-Clark
surfaces, is described by Halstead et al.'® for data sets with arbitrary topology. In order to
add degrees of freedom for the fairing, the original control mesh is subdivided twice to
decouple the interpolation constraints from each other. This, however, dramatically
increases the number of control points. As a result the method is too slow and practically
inapplicable for large amounts of data.

This paper describes an algorithm for fair interpolation and approximation with c?
continuous cubic B-splines and integral fairness criteria. Additional data points (ADP) are
used as degrees of freedom for minimizing the energy of the curve (surface), resulting in a
linear system of equations. The ADP are not distributed evenly but inserted only where
necessary, where a lack of data is observed, The parameterization is based on a new
method for incorporating the data geometry and the method is presented for both curves
and surfaces. The scheme was developed to be applicable for large amounts of data.

The rest of the paper is organized as follows. In the second section the construction of
a fair spline curve is described, including evaluation of the fairness norm, interpolation,
approximation and choice of additional data points. In the third section the method 18
extended to tensor product surfaces. Finally the results and conclusions are presented in

the fourth and fifth sections respectively.

FAIR B-SPLINE CURVES
Evaluating the fairness norm

Let w()=[x(), (1), z(u)] be a space curve parameterized by u and let V be a column
vector of its B-spline control points. Celniker and Gossard™ suggested the following

energy functional

E= [(ow’(w)+ B’ ()du ¢

CUrve

where w(u) and Ww(u) are the first and second derivatives in respect to the parameter u.
The energy of the curve is represented as a weighted sum of its stretching and bending
terms, where o and J are freely selected coefficients.

A single cubic B-spline segment can be written as wu)=V, B, where B, is the B-
spline basis functions vector. Evaluating the integral (1) for the function w, will result in

the following quadratic form
Es = sTKsVs, (2)



where K is a 4x4 symmetric matrix, whose entries are calculated by solving the integral
(1). E, is called the “local fairness norm” and K is the “local stiffness matrix” for the
segment w(u). K can be represented as a weighted sum of its stretching and bending
terms
K: = aK; + Ko 3)
For a uniform knot distribution, using de Boor’s formula® one can easily find that
6 7 -12 -1
L., 117 34 290 -12
2P 120{-12 29 34 7
-1 12 7 6

2 -3 0 1
Lo -3 6 -3 0
Kzs:stdeu:—é- 0 5 6 -3l (4)
Q
1 0 -3 2

Now, after we have expressed the local faimess norm for a single segment, the global
fairness norm E for a B-spline curve can be found as a sum of the local fairness norms over
each of the B-spline polynomial segments

E = V'KV, K=oK;+K,, (5)
where K is a quadratic symmetric band matrix obtained from the local stiffness matrices.
Minimizing (5) for a particular choice of degrees of freedom will ensure the fairing of the

curve.
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Figure 1 Data set for fair interpolation with additional data points



Fair B-spline interpolation with ADP

We will modify slightly the original problem of interpolation for the purposes of
fairing. The new task is: given a sequence of data points p;, i=l,...,n-1, some of them
unknown and used as degrees of freedom, find the vector V of B-spline control points of &
curve, which passes through the points p; and minimizes the fairness norm (5). This is
demonstrated in Fig. 1, where the original data set is {p,.... Ps, P9.... P13} and the
unknown data points are {ps p7, ps}. Using the interpolation constrainis with end
conditions set as degrees of freedom, the control points can be found by solving

AV=P, (6)

where A is a coefficient matrix and P is a column vector of data points, some of which
unknown, Using the blossoming principle’’ for cubic splines with uniform knot sequence

4 1 0 0 .. 0]
1 410 .0
A== = oo, {7)
0 .. 01 41
0 .. 0 0 1 4]

where rows 0 and » are the unknown end conditions.

In order to separate the known from unknown data points, we can rewrite the right
hand side of the system (6) as follows

P = DX+Dy, 8

where D is a (n+1)xr sparse matrix, containing only “0”s and “1”’s; X is a column vector of
unknown data points with length 7; Dy is a column vector of known data points with length -
(n+1), containing a data point, where it is known, and “0"s elsewhere. The system matrix
A is a symmetric band nonsingular matrix and its unique inverse A’ can be found. The
Cholesky factorization method®® is very efficient in such cases. Having in mind (7) and (8)

the system (6) becomes

V = A (DX+Dy). )
Now the fairness norm (5) for the curve can be expressed as
E = (DX+Do) K ,(DX+Dy) (10)

where Ka = ATKA™. K, is symmetric and positive definite, so X can be found by setting

the gradient of (10) to zero
DK ,DX + D'K,D, = 0. (11)



Fair B-spline approximation with ADP

Given a sequence of data points p;, i=1,...,m, some of them unknown, the problem is to
find the vector V of B-spline control points of a curve, which passes close to the points p;
and minimizes the fairness norm (5). The original problem of least squares approximation
with B-spline curves has been solved by Carl de Boor?. Let S be the linear space of all
spline functions of order k (k=3 for the cubic case), defined over a specific knot sequence.

A discrete inner product for this space, which is a reasonable approximation to the
b
continuous inner product J g(x)h(x)dx , is given by

<g h>= Y gx h(x)w, , (12)
=]
where x is a sequence of data points in some interval [a, b] and w sequence of weights.
The norm induced by the inner product (12) is expressed |g], =+/<g.g>. De Boor’

proves that a function fis a best approximation from the space S to an unknown function p
with respect to the norm |p — f|, ifand onlyif
i< BB, >V, =<Bip>i=0,.n (13)
j=0
Since some of the data points are unknown, we rewrite the inner products on the right
hand side of (13) as
AV=DX+Dy, (14)
where A [(n+1)x(n+1)] is the system matrix; D [(n+1)xr] is a sparse matrix; X is a column
vector of unknown data points with length r; and Dy is a column vector with length (n+1),
containing the known terms of the inner products. A is a symmetric band nonsingular
matrix and its unique inverse A™ can be found. From now on the problem is the same as

for the case of interpolation and can be solved in the same way.

Controlling the approximation error

The error of approximation can be calculated using the formula

3 lp, - wiu)f - (15)

g -
m-143

One can contro! the value of E4 by varying the number of polynomial segments L of
the B-spline curve. Finding the optimal L for reconstructing a curve from a given “noisy”

data set is problematic. Using too many segments will make the curve follow the noise and



thus have many unwanted undulations, while too few segments may result in failure of the
curve to represent the characteristics of the shape. Hence, the least L should be found that
satisfies a tolerance constraint. This can be done in the following way:
1. Find an initial value L, for which the tolerance requirement is violated. This is done
using a binary search starting with Lo = m/2.
2. Increase Lo by one and find the approximation with ADP as derived before.
3. Check the tolerance requirement.

4. Repeat step 2 and 3 until the tolerance requirement is satisfied.

a)
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Figure 2 Algorithm for new knots (data points) insertion

Parameterization and choice of the additional data points

When solving the problem for fair interpolation (approximation) we assumed that the
new data points were to be inserted in known places. In this section we describe how these
places may be determined. In many practical cases, when the points are obtained by
measurement, we have to deal with the problem of a lack of data, because for some
intervals measurements cannot be performed for physical reasons. As shown by the various
experiments the author conducted (see Fig. 4a, 5a, 6a, 7a), the curve tends to have
extraneous inflection points and undulations in and around these intervals. Therefore the
additional data points should be inserted precisely where a lack of data is observed. Fig. 2
demonstrates the insertion algorithm for the data set in Fig. 1. Itis as follows:

1. Calculate the parameter values w;, i=1,....n, using the chord length or centripetal

formula (Fig. 2a).
2. Compute the average length between two parameter values Au = u,/(n-1).
3. For each interval [u;, ;] find the number n; = round(Aui/Au) of the new parameter

values (data points) and insert them (Fig. 2b).



4. Recalculate the sequence y; this time using the uniform formula (Fig. 2c).

Note that the actual interpolation (approximation) is performed with the
parameterization from step 4 (Fig. 2c). Steps 1-3 are needed only to determine where the
additional data points are to be inserted. The last step is necessary because for the uniform
case the stiffness matrix K can be computed exactly from integral (1). Otherwise, if we
stop at step 3, numerical methods must be used to solve (1) which will decrease the
efficiency of the algorithm. Although it might seem as if the final parameterization is
uniform, this is not the case, because obviously the sequence {uy,...,us, Uo,....4s3} in Fig. 2¢
is not uniform in respect to the original data set {pi,....Ps, Po,...p13} in Fig. 1. In fact the
knot vector (Fig. 2¢) is only an approximation to this in Fig. 2b but it is good enough,

because the smoothness of the curve is ensured by the minimizing of the fairness norm (5).

FAIR B-SPLINE SURFACES
Fairness criterion

Let w(u,v) be a surface parameterized by » and v, and let V be a n.>n, matrix of its
control points. The following energy functional is considered in this paper
j‘j(clwm,2 + czwu?_v2 + cgwmz2 + c4wu2v,,2)dudv , (16)
where the suffixes mean partial derivatives in respect to the parameters u and v. A tensor

product B-spline surface can be expressed as
w(u,v) =B, VB, (17)

where B, and B, are vectors of the B-spline basis functions.

Figure 3 Surface data set with new data points inserted in direction of parameter u



Interpolation and approximation with ADP
The interpolation (approximation) constraints result in the following system:
AVA,=DorV=A,DA" (18)
Suppose we have inserted additional data points only in the direction of the parameter
u (see Fig. 3), then (18) becomes:

V= A (DXHDA, (19)
where X, is a rpxn, matrix of the unknowns and Dy is a n,xn, matrix of the known data
points,

Substituting (17) and (19) in (16) and finding its minimum leads to a system

D, K aDoXo + D,'KauDo =0, (20)

where K, and D, are the same as in {11) but computed for the knot sequence u;. Finding
the solution of (20) requires solving n, linear systems with r, unknowns. Note that the
system matrix D,"K 4D, is common and it can be computed and decomposed in advance
which speeds up the method. A detailed proof of (20) is given in the Appendix.

If we insert additional data points in direction of v we will obtain nearly the same
system as (20) but with matrices computed for the sequence vi. Once all the data points

have been found the control points are calculated from (18).

Parameterization and choice of degrees of freedom

The parameterization and the choice of degrees of freedom need to be slightly
modified for tensor product surfaces. New parameter values (data poinis) for the sequence
u; will appear in each one of the n, isoparametric curves (see Fig. 3), which may be
computed as follows:

1. For each interval [u;, #:+], using steps 1-3 from the previous chapter for each curve,
find the number Aie: = max(ny, j=1,....m).

2. For each interval [u;, ] inSert ny... new parameter values.

3. Recalculate the sequence u;, using the uniform formula u; = i, thus making the
parameterization common for all the isoparametric curves, which is necessary for
tensor product surfaces.

Controlling the error of approximation can be done in the same way as for curves but

this time the values L, and L, for both parameter directions should be varied.
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Figure 4 Data set 1: a. Cubic B-spline interpolation; b. Fair interpolation with ACP;

¢. Fair interpolation with ADP.
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Figure 5 Data set 2: a. Cubic B-spline interpolation; b. Fair interpolation with ADP and
o=1.0, $=0.2; c. Fair interpolation with ADP and ¢=0.2, f=1.0.

RESULTS

The algorithms were implemented on a Silicon Graphics Indy workstation using the
OpenGL library to render the surfaces. The results are shown in Fig. 4-8. The original data
points are marked with crosses and the new ones (inserted by the algorithm) with squares.

The curvature distribution is given below every curve as an indicator for the fairness. All

the experiments (except Fig. 5) were conducted with coefficient values in (1) o=f=1.
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An alternative method for fair interpolation has been implemented that follows from
the idea for inserting enough additional control vertices so that the mterpolation
constraints are decoupled from each other'®. This method uses the same energy functional
but additional control points (ACP) as degrees of freedom. Fig. 4 compares the quality of
the schemes with the data set given in Table 1. Type 1 end conditions (given tangent
vectors) have been imposed for the cubic B-spline interpolation. The method with ACP
obviously improves the smoothness of the curve but it neither cures the violated
monotonicity in interval one nor removes the extraneous inflection points in intervals 6, 7.

Fig. 5 demonstrates the results with another data set (Table 2). It also shows the
influence of the parameters « and f, which, as seen in Fig. 5b and c, can be used as shape
controls. Fair B-spline least squares approximation (Fig. 6) was applied on 119 points of a
face profile obtained through digitization and subject to substantial noise. The effect of
fairing is obvious in the areas of the forehead and the mouth. The performance of the
different methods for this data set is given in Table 3. The efficiency of the scheme with
ADP improves by a factor of 14 compared with that of ACP.

Fig. 7 shows B-spline surface interpolation of the data points in Fig. 3. The unwanted
bumps and wiggles (Fig. 7a) were removed by the fairing (Fig. 7b). Least squares B-spline
fair approximation has been applied on a “noisy” data set, of about 15000 points. The
extraneous undulations (Fig. 8a) were smoothed by the algorithm (Fig. 8b), automatically
inserting new data points where necessary. The performance of the different methods for
this data set is given in Table 4. It is obvious that the fairing is not too expensive compared

to the pure approximation, the quality however is much better.

Table 1 Data set 1, Figure 4

X 0.0 2.0 3.0 140 5.0 6.0 |70 8.0 190
Y 00 |05 6.5 7.6 6.5 1.2 1062 |06 0.6

Table 2 Data set 2, Figures 1,2, 5

X 0.0 1.0 2.0 30 140 |50 60 |70 8.0 9.0
Y 0.0 0.1 02 (04 1.0 | 6.6 72 |74 7.5 7.6
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Table 3 Performance of the different methods for approximating curves

Method Figure Number of polynomial Time (s)
segments L
Fair interpolation with ACP _ 354 713
Fair interpolation with ADP . 125 4.9
Approximation Fig.6a 70 0.05
Fair approximation with ADP Fig. 6 b 70 1.2
Table 4 Performance of the different methods for approximating surfaces
Method Figure Number of segments Time (s)
L, Ly
Fair interpolation _ 130 130 21.1
Approximation Fig. 8a 56 70 3.2
Fair approximation Fig.8b 56 70 6.8
a b

Figure 6 Face data set: a. Least squares approximation; b. Fair approximation with ADP.
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Figure 7 Surface interpolation: a. Spline interpolation;

b. Fair spline interpolation with ADP.

Figure 8 Face data set: a. Least squares spline approximation;

b. Fair spline approximation with ADP.

CONCILUSIONS

A method for fair interpolation and approximation of both curve and surface points
using B-splines has been described. The suggested energy functional for surfaces (16)
preserves the two-dimensionality of the arrays of control and data points. Solving this kind
of system, as Farin' shows, leads to O computations, which are normally O if the
points are arranged in a vector. Although the algorithms were implemented for the cubic
case, they could be easily extended for splines of any order k. Additional data points
(ADP) are inserted as degrees of freedom for the fairing only where necessary. This
approach proved 1o be very efficient especially for unevenly distributed points, often the

case with measured or digitized data. An important feature is that the algorithms for ADP
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insertion and for the actual fairing are independent. So, if for some practical applications
another insertion scheme proves to be more appropriate, it can be used without any
limitations with the described fairing procedure. The idea of ADP can be extended to other
methods for global fair interpolation (approximation). It will improve the performance,

especially when a larger amount of data is concerned.
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APPENDIX
Equation (16} is a sum of four similar terms and here the solation to the first one is
given. From (17)
w, =B VB BTVB,, 1)

where the dots mean first derivative. We have to compute

82 IJ‘ Ciwuvzdudv = c{ _a—i——J.jBVTVTBuBuTVBVdudv:
¢ —‘ai _U]E‘;VTAV—'F(DUXu +D, )TA, "B B.TA '(D X, +D,)A,"B_dudy=

2¢,[[D,"A,B,B,A, 7 (DX, +Dy)A,"B,B,"A, " dudv =
2¢,D, A7 j BB, TdiA, (D, X, +D,)A! (jl'szdev)A;"e
2¢,D,"A K AT DX, +DOA KA (22)
Results similar to (22) will be obtained solving the remaining three terms of (16). Then
the system of equations reads (<> means if and only if)
D,"A, (@ Ky, + B, K )A, " (DX, +D)A (0K, + KA, =0
DA, KA TDX +DHA KA T=0
DK, (DX, +D K, =0. (23)
Here ¢; = o0y, €2 = PuCly, €3 = f, ¢ = B The matrix Kay is symmetric, band and
positive definite and its inverse K, exists. Multiplying both sides of (23)‘ with Ka,'

resuits in

D 'K, DX, +DK, D,=0. (24
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