0
Vectorising a non-strict data-parallel
functional language

Jonathan M.D.HillKeith M. Clarke, and Richard Bornat
Department of Computer Science

Queen Mary and Westfield College

University of London

The role of a vectorising compiler for an imperative language is to transform the for-loops of a program into
the vector instructions of a data-parallel machine. In a functional language, constant complexity map is the
essence of data-parallelism, where a function is applied to every element of a data-structure all at the same time.
As map can be considered to be an abstraction of an imperative for-loop, the goal of vectorising a functional
Janguage is to transform map expressions into vector operations. This paper presents a vectorisation process in
terms of transformations to programs expressed in an extended lambda-calculus, Of particular interest is the
way in which algebraic data-types are transformed into a form that is susceptible to the synchronous parallel
evaluation on a data-parallel machine. Results are presented for a vectorising Haskell compiler that generates
code for the CPP DAP, a massively parallel SIMD machine.

Pownload Postscript




