Technical Report No. 718

~_ Departmentof |

Computer Science

Queen Mary and Westfield College

Processes for
plan-execution

Louise Pryor
David Pym
David Murphy

“
3

Z
<<
m
=
73
-
-
o
o

1996

| =
O
Z
Z

AN,

Tn: Proc. Working Notes of the 14th Workshop of the UK Planning

ARG CSeheduling Special tInterest Group (S. Steel; wedu}ii
University of Esdex,

1995,

Processes for plan-execution

Louise Pryor
Dept. of Artificial Intelligence
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN

louiseplaisb.ed.ac.uk

Abstrac£

This paper proposes a representation for plans
and actions based on the elgebraic theory of pro-
cesses. It is argued that the requirements of
plan-execution are better met by representing
actions through the processes by which changes
occur than by the more widely used state-change
representation. A simple algebra of plans, based
on process-combinators, is described and shown
to be adequate for a wide variety of the plans
found in the literature. The implications of this
type of plan-representation are discussed and its
advantages for meta-reasoning (including plan-
comparison and plan-construction) outlined.

1 IIntroduction ‘

The execution of plans in unpredictable en-
vironments is fraught with difficulty: actions
may not have the expected results, the en-
vironment may change in unexpected ways,
and there may be unforeseen opportunities.
Classical theories of planning, in which it is
assumed that the world changes only as a
" result of the planner’s deterministic actions,
are inadequate in such circumstances. Clas-
sical theories of plan-representation are mo-
tivated by the requirements of plan construc-
tion: how to represent plans in order to fa-
cilitate reasoning about them. In this paper,
ignoring for the moment the questions of how
to construct and reason about plans, we con-
centrate on the requirements placed on the
representation of plans by their execution.
Historically, there have been two main

David Pym
Queen Mary & Westfield College
University of London
Mile End Road
London El 4NS
pym@des . qmw. ac.uk

David Murphy
Risk Assessment Group
Securities & Futures Authority
Cottons Centre
~ Cottons Lane
London SE1 2QB

approaches to representing plans: the situa-
tion calculus [21] and sTRIPS add-and-delete
lists [7]. Both these approaches, and others
that derive from them, are based on the no-
tion of action as a transition between states
[25]. However, instead of asking what actions
are required to bring about a given change
of state, it is possible to ask what changes
have been brought about by a given action.
We believe that the latter perspective has
many advantages over the former, especially
when considering plan-execution, and there-
fore propose an approach based on the alge-
braic theory of processes, shifting attention
from changes of state fo the processes by
which transitions occur. We contend that a
process-based analysis is more powerful and
more expressive than those based on state-
transitions.

In this paper, we present a system of plan-
representation based on the algebraic theory
of processes.! In § 2, we discuss the ad-
vantages that a process-based representation
has over a state-based representation, based
on the relationship between the agent exe-
cuting a plan and its environment and the
requirements that plan-execution places on

'Some of the ideas were briefly discussed in [32].
Reference [18] in [32] should be taken to refer to the
present paper. References {17] and {19] in [32] should
be taken to refer to [33] in the present paper. The
main text of the present paper appeared under the
same title in the Working Notes of the 14th Work-
shop of the UK Planning and Scheduling Special In-
terest Group (S. Steel, editor), University of Essex,
1995,

. plan representations. In § 3, we define an al-
gebra of processes, presenting and illustrat-
ing a number of combinators that allow us to
construct complex plans from simpler ones.
Finally, we briefly consider some of the impli-
cations of this method of plan representation.

2 Executing plans

Theories of Al planning have in general con-
centrated on issues of plan construction and
reasoning about plans. They have been able
to do ignore issues of plan execution because
they assume that the world is predictable:
that it is possible to foresee accurately and
in detail all the circumstances that will arise
and the results of all actions. If this is so,
plan execution is simple: the specified ac-
tions are performed in the correct order; the
unexpected cannot occur and nothing can go
wrong. Unfortunately, the real world is not
like this. Consider, for example, a robot col-
lecting aluminium cans for recycling in an
office building. It cannot know in advance
where all the cans are: indeed, the people
in the office building will put out new ones
while the collection is in progress. People
may move items of furniture and open and
close doors, thus complicating the its naviga-
tion task. Moreover, the robot’s gripper will
not always grasp the cans effectively: some-
times it may knock one over instead of pick-
ing it up. Many environments are, like the
robot’s office bulding, unpredictable. Agents
operating in them cannot foresee the results
of their actions or what circumstances will
obtain in the future. In particular, many
- environments have the following character-
istics:

Complex It is impossible for an agent to
maintain or even acquire a faithful rep-
resentation of the environment;

Dynamic The environment changes as a re-
sult of the actions of other agents and
of exogenous influences; '

Nondeterministic The situation in which
an action is performed may not fully

determine its effects.

Under these circumstances, it is imprac-
tical to expect an agent to use a monolithic,
detailed plan that specifies exactly what it
should do and that is always guaranteed to
work [29]. Instead, we should accept that
plans can and do change during execution;
that an agent may have different plans for its
different tasks, that interact with each other
and the environment in unforeseen ways; and
that it is important that plans are opera-
tional inasmuch as they must provide ade-
quate guidance to the agent that is to exe-
cute them.

In the remainder of this section we dis-
cuss why a process-based representation of
plans is effective at handling the interactions
between an agent and its environment. The
remaining issues are addressed in § 3.

2.1 Agents in environments

An important aspect of plan execution is the
relationship between an agent executing a
plan and the environment in which it oper-
ates. The interaction between them is two-
way: the agent is affected by the environ-
ment through its perceptions and affects the
environment through its actions. Moreover,
the agent has only limited knowledge of its
environment. It can observe and interact
with the environment locally but in general
it can predict neither the environment’s nor
its own development. Any theory of plan-
ning must therefore recognize the essentially
non-privileged status of agents in the world;
an agent’s own actions should be represented
in the same way as external actions.

We should like our plan-representations
to reflect this view of an intensional agent in-
teracting with its environment; in addition,
as we noted above, it should account for in-
teractions between plans that are executing
concurrently. The algebraic theory of pro-
cesses {14, 24], which deals with the concur-
rent execution of communicating processes,
provides a framework that meets these re-

Figure 1: An intensional agent in its envi-

ronment

quirements. In this theory, the possible be-
haviours of an agent and its environment are
specified as separate but communicating pro-
cesses. Communication works through the
synchronization of pairs of actions and coac-
tions across processes executing in parallel
(see § 3.4). For example, the presence in the
environment of a can on a table is recognized
by the robot as a coaction PickUp which syn-
chronizes with the robot’s PickUp action, re-
sulting in the transfer of the can from the
table to the robot’s gripper.

Processes evolve during their execution,
the form their evolution takes depending on
their interactions with other processes. We
can specify the evolutions of processes by giv-
ing their operational semantics (see § 3.2).
If we represent a plan as a process, its op-
erational semantics thus effectively gives a
proof theory of its execution. The joint be-
haviour of the agent in the environment can
then be inferred from those of the individ-
ual processes and their interactions. More-
over, the specification of a plan is fully op-
* erational: the actions to be performed and
the relationships between them, the choices
to be made, and how the plan is affected by
external events are all explicit in the plan’s
definition.

We therefore treat agents and environ-
ments as two interacting autonomous pro-
cesses. We visualize an agent as an explorer,
finding out about its environment through
the interactions that occur (see Figure 1).

The agent can communicate with the envi-

ronment by perception and action only at

restricted locations. All actions other than
those performed by the execution agent are

represented as environment actions: - these -

may be exogenous events, earthquakes or fire
alarms for example, or actions performed by
other agents in the world.

In this view, a plan describes a collec-
tion of permitted actions performed by the
two processes.” The agent performs only ac-
tions that are permitted by the plan and re-
alizes that the plan is inadequate when the
environment does not respond as expected.

~ This means that in a plan we need only spec-

ify those actions of the environment that di-
rectly affect the current state of the plan;
of course, the environment may, and usually
will, perform many other actions too, some
of which may be relevant later.

The use of process algebras to represent
plans has, we believe, several advantages. As
well as having a well-developed theory with
a rich body of results to draw on, they are
more expressive than representations based
purely on state-changes, as we discuss in the
next section.

2.2 Action representations

Traditionally, plans have been seen as combi-
nations (often, simple sequences) of actions.
These actions, which we shall term A/l ac-
tions, are usually considered to be simple,
indivisible entities, and are often assumed to
be instantaneous. They are generally defined
in terms of the state-changes that they pro-
duce (see, for example, Pednault’s descrip-
tion of the state-transition model of action
in [25]). Representing Al actions in this way
facilitates reasoning about them when con-
structing plans. However, it is not optimal
when it comes to executing plans. A pri-
ori, & state-based representation is not op-
erational in that it does not specify how the

?For simplicity, we shall not differentiate between
actions performed by the execution agent and those
performed by the environment; it will usually be ob-
vious which we mean.

action should be performed. Telling an agent
what the result of an action should be is
not the same as telling it what the action
is. Moreover, when an action is actually per-
formed it may not have the expected results.
From the point of view of an agent executing
a plan, the results the action was expected
to have when the plan was constructed are
not important: instead, the important issues
are, for example, how the action should be
performed, when to stop performing it, and
what to do afterwards.

In our system of plan-representation, Al
actions are represented as processes built out
of basic actions and process combinators (see
§ 3). Basic actions are the smallest possible
building blocks of behaviours, for example
the smallest movement that can be made by
the actuators of the robot’s arm. Al actions
may thus have internal structure, need not
be instantaneous and are defined in terms of
the basic actions required to perform them.
The mathematical theory of processes allows
us to reason about how they affect the world:
we discuss this briefly in § 4.

Purely state-based representations of Al
actions have two major disadvantages: (i}
such representations demand that the frame
problem be addressed; (ii) they do not han-
dle interruptions to actions adequately. As
we shall see, these two issues are linked.

The frame problem is essentially that of
determining how an action affects the world.
While this is a vital issue when reasoning
about actions and plans, it might be thought
that it is not important in their execution,
thus rendering it unnecessary to represent all
" possible effects of an action. However, this is
not the case. In a complex, dynamic and
nondeterministic world it is impossible for
plan-execution and plan-construction to be
separated entirely. Plan-execution will nec-
essarily involve replanning, plan modification
and reasoning about what to do next. Even
when considering plan representations from
the point of view of plan-execution, then, is-
sues of plan-construction cannot be ignored.

There are two common approaches to the

frame problem in state-based approaches: (i)
that used in the situation calculus of specify-
ing explicitly (via frame axioms) the propo-
sitions that are not affected by the action;
(ii) the use of the STRIPS assumption to as-
sume that no effects occur that are not ex-
plicitly specified. While we do not claim
that the use of a process-based representa-
tion will solve the frame problem, we do be-
lieve that it means that the issue need not
be addressed: it is possible to represent ac-
tions and to reason about their effects with-
out being forced to accept the philosophically
poorly motivated or computationally unde-
sirable constraints of these two approaches.’
We substantiate these points in a specific ex-
ample below.

The second disadvantage of state-based
action representations is that they treat all
actions as being instantaneous. They define
actions in terms of a transition between the
state in which they are executed (the initial
state) and the state resulting from their ex-

“ecution (the final state}. State-based repre-

sentations have nothing to say about inter-
mediate states. Although they are based on
the results of actions, they ignore the effects
that an action has while it is being executed.
This causes problems when an action is in-
terrupted during execution, and replanning
has to occur in an unforeseen situation.

Of course, there have been several de-
velopments of purely state-based ideas that
address these issues. For example, the need
for frame axioms can be alleviated by intro-
ducing systems of non-monotonic reasoning,
such as in [13]; Lin and Shoham [17] have
considered concurrent actions in the situa-
tion calculus. Alternatively, the event calcu-
lus [15] considers the interplay between events
(actions) and time. Full discussion of the
strengths of these approaches is beyond the
scope of this extended abstract, but we con-

3The frame axioms of the situation calculus are
philosophically poorly motivated and computation-
ally undesirable. The STRIPS assumption is also
philosophically poorly motivated. It is computation-
ally desirable at the cost of expressivity.

tend that they amount to moves towards bas-

ing planning on a theory of processes. Sev-
eral very useful papers along these lines, too
many to discuss in detail here, appeared in:

Journal of Logic and Computation 4(5), 1994,

Special Issue: Actions and Processes. Of
particular relevance is the paper by J. van
Bentham, J. van Eijck and V. Stebletsova.
We propose going all the way to the use of
an algebraic theory of processes and exploit-
ing its elegant and substantial theoretical re-
sults.

To illustrate the problems of an approach
based purely on state-changes, consider our
can-collecting robot. Suppose that in ad-
dition to collecting aluminium cans, it also
fills the office drinking fountain. The drink-
ing fountain consists of a reservoir with a
filter, and has a tap at the bottom which
enables people to fill their drinking glasses.
'The robot fills the reservoir from a jug. Peo-
ple may use the drinking fountain while it
is performing the action of filling the reser-
voir. The robot’s plan is to keep filling the
reservoir until it is full. For simplicity, and
without loss of generality, we assume that the
jug contains as much water as necessary.

Note that the level of water in the reser-
voir varies continuously during the action of
pouring from the jug. However, the exact
course the level foliows depends on the peo-

ple filling their glasses and is not predictable .

in advance: it is therefore philosophically un-
acceptable to use axioms to describe this be-
haviour. Moreover, even if such descriptions
were available, in general their complexity
would necessarily make them computation-
- ally undesirable. If the robot interrupts the

pouring action for any reason (a fire alarm,

say) the water in the reservoir may be at any
level between empty and full. Replanning
must then take place: the plan that is cho-
sen will depend on the exact circumstances,
but one possibility is to try again to fill the
reservoir (possibly it was a false alarm).

It is easy to construct a process-based
plan using recursion: “pour water into the
reservoir until it is full” (see § 3.3). Con-

structing a plan is, however, more difficult in

a state-based representation. It is clearly im-
possible to define a pouring action in terms

of how much water is added to the reservoir:
it must be defined in terms of how much wa-

ter leaves the jug. When replanning, then,
the required amount of water must be de-
termined. It is conceivable (though unlikely)
that it would be possible to use perception
to determine the amount required under the
assumption that none is removed during the
filling operation. However, this assumption
is unreasonable: during the time it takes to
fill the reservoir, it is likely that someone
will want a drink. In these circumstances,
it is impossible to construct a successful plan
from pouring actions defined simply in terms
of the amount of water to be transferred from
the jug. Moreover, a pouring action defined
purely in terms of state-changes is not oper-
ational: the motor controls of the robot may
well be such that it is impossible to spec-
ify the exact movements that should be per-
formed in order to result in a given amount of
water moving from the jug to the reservoir.

An obvious solution is to construct a plan

" that involves adding small fixed amounts of

water until the reservoir is full, and indeed
this would be possible. A plan of this kind
amounts, essentially, to an implementation
of the process-theoretic solution (see § 3.3),
without the benefit of the direct applicability
of the theory of processes. Roughly speaking,
solutions of this kind are produced by de-
velopments of purely state-based approaches
such as those represented by the event calcu-
lus and non-monotonic logics (for many rele-
vant discussions see J. Logic Computat. 1(5),
1994).

Note that we are not advocating an ap-
proach that does away with reasoning about
states altogether: our point is that express-
ing AI actions in terms of processes is more
expressive and enables the use of powerful
analytic techniques (see § 4).

3 A process theory of plans

We have seen that the representation of ac-
tions as processes has significant advantages
over their traditional representation as state-
changes; we now consider how basic actions
can be combined to form plans. We present
a basic syntax of process-combinators that
allow us to construct complex plans from ac-
tions and simpler plans. We present the op-
erational semantics of the combinators and
show, by considering a variety of examples,
that our algebra is sufficiently expressive to
describe a wide variety of plans.*

Plans are represented by processes built
up from members of the set of basic actions,
Act, using a set of process combinators. The
basic machinery we shall use is that of tran-
sition relations: we write transitions of the
form P -%+ P’ to indicate that the process P
(representing a plan) is capable of perform-
ing the action a and, in so doing, becoming
the process P'.

3.1 Syntax of processes

We introduce the syntax of processes in four
stages, according to the grammar (1) and its
progressive extensions (2) — {(4) below. We
discuss their meaning and use in the sequel.
The basic syntax is given in (1). This lan-
guage consists of the empty plan (return-
ing outcome r), action prefix, external choice
and internal choice.

Pu=Niu(r)|a-P|P+P|PaP (1)

. Here the basic actions a are taken from the
set Act and outcomes 7 are taken from a
given set Out. '

Practical applications of this theory re-
quire a richer collection of combinators, in-
cluding recursion,

P = pg(X = B(X)), (2)

“‘For now, we shall use the terms “agent” and
“plan” interchangeably to denote the behaviour of
an agent executing a plan.

where F notes a vector of expressions; par-
allel composition,

Pu=Pl|P (3)
and sequential composition,
Pu=PpP; P, (4)

This basic syntax of processes can be ex-
tended in a number of ways to deal with spe-
cific types of situations. For example, infor-
mation about timing,® location, causal rela-
tionships between basic actions, probabilities
and utilities can be incorporated into the cal-
culus without significantly complicating the
metatheory. See, for example, [1, 12].

3.2 Operational semantics

We begin by considering the basic combina-
tors given by equation (1). We give their
operational semantics in the usual natural
deduction style [27, 28]. The meaning of a
combinator is determined by the rule of in-
ference that introduces it. All rules are of
the form

PREMISS; .. . PREMISS,,
CONCLUSION

bl

with the combinator being defined by the
rule occurring only in the conclusion. Ax-
ioms are the special case in which the set of
premisses is empty.

We discuss the sorts of plans that they
can define, which include finite contingent
and partially ordered plans. We then con-
sider the extension to the language of plans
given in equations (2}, {3) and (4), allowing
us to express recursive and reactive plans.
Here many choices of meaning are possible
within the definitional capability of opera-
tional semantics.

SNote, for example, that our assumption of an in-
terleaving ontology of parallelism yields one notion of
simultaneity whereas a non-interleaving assumption
would yield another. '

Figure 2: Sussman’s anomaly

3.2.1 The empty plan

NiL(r) is the plan that does nothing and re-
turns the outcome . No transition is pos-
sible from the empty plan. Formally, the
meaning of this plan is defined by its opera-
tional semantics:

7 € Qut
NiL(r) />
Often, r denotes either success (T) or failure

(1); the notion of plan-outcome can, how-
ever, be much more general,

Nil

3.2.2 Action prefix

Our first combinator is the simple sequence
or action prefix combinator. If a € Act, then
a- P is the plan that first performs an action a
and then executes the plan P. The meaning
of this combinator is given by:

a € Act
a-P -5 P
With this combinator we can describe all
plans that consist of a totally ordered se-
quence of actions. For example, the well-

known plan that solves Sussman’s anomaly
(shown in Figure 2) is:®

Pref

Putdoun(C) - Move(B, C) - Move(A, B) - NIL{T)

Strictly speaking, every plan ends with the
empty plan NIL returning a result; we shall
usually omit this when the result is T.

So far, we have limited ourselves to plans
with no alternative courses of action; they
have been noncontingent plans. However,

®Note that our theory permits actions to have
arguments.

plans for use in unpredictable environments

often bmn_ch: there may be several alterna-
tive courses of action; the one to be pursued

_is dictated by the conditions obtaining at the

time of execution. Recent systems within
the classical paradigm that construct such
plans include Cassandra [31, 30], cNLP [26],
SENSp (6] and c-BURIDAN [5]. For example,
a plan to paint a chair the same colour as the
table depends on the colour of the table [6].
In order to represent this plan we must be
able to represent the environment; we argued
above that this should be done by represent-
ing it as an agent on the same terms as the
planner. In particular, we represent the re-
sults of the planner’s perceptory actions as
actions performed by the environment; the
plan to paint the chair is Observe(Table) -
Colour(Table, Col) - PAINT(Chair, Col).

3.2.3 External choice

In the plan to paint the chair we can rep-
resent different branches simply through the
arguments of the actions. Often, however,
different branches of the plan consist of com-
pletely different actions. To see this, consider
how our can-collecting robot should pick up
a can: upright cans should be grasped di-
rectly, but a can on its side should be rolled
against a fixed object and then grasped. A
plan to pick up a can thus depends on the
can’s orientation, which is decided by the en-
vironment. The robot must be prepared for
both alternatives. For the agent (the robot),
this is an external choice (not under its con-
trol).

This notion of external choice is captured
by the combinator +. If P and @ are plans,
then P+@Q is the plan that makes an external
choice between plans P and Q. The meaning
of + is defined by its operational semantics:

Py P
Q+ P -2 P

PP

CL o—————;
P+Q —F

Using this combinator the robot’s plan to
pick up a can can be written Look- {Upright-
GRASP + OnSide - ROLLANDGRASP). This

. |
AT A
// \i \i"aik Ci l):/f/ }

Figure 3: Getting to a ski resort

plan is typical of those constructed by the
contingent planners mentioned above.

A more complex plan using this combi-
nator is that produced by CNLP to solve the
problem of getting to a ski resort. There
are assumed to be two: Snowbird and Park
City. The roads are as shown in Figure 3
[26]. A road cannot be driven along if it
is covered with snow: the only roads that
might be blocked are those leading into the
two resorts. The plan that CNLP produces
is to drive to B and observe the road lead-
ing up to Snowbird; if it is blocked, drive to
C and observe the road leading up to Park
City, otherwise drive to Snowbird; if the sec-
ond road is also blocked, the plan fails. In
our representation, the plan is:

Goto(B) - Observe(B, S)
(Clear(B, 8) - Goto(S) - Nu{T)
+ Blocked(B,5) - Gato(C) - Observe(C, P}-
{Clear(C, P) - Goto(P) - N1L(T)
+ Blocked(C, P} - N1L(L1)))

" This plan differs from those we have seen pre-
viously in that it is not guaranteed to achieve
the goal of getting to a ski resort. If both
roads are blocked, there is no route by which
a ski resort can be reached, so the goal can-
not be achieved. In this case, the plan ends
with NIL(1), signifying failure. Our repre-
sentation thus provides a natural way to in-
dicate plan termination, and moreover pro-
vides a facility for indicating the expected
result of plan-execution.

3.2.4 Internal choice

The combinator & allows the represention of
plans that make internal choices without ref-
erence to the environment. If P and @Q are
plans, then P & @ is the plan that makes
an internal choice between plans P and Q.
As usual, the meaning of this combinator is
defined by its operational semantics:

NL

- NR——
PpQQ>>P Qe P> P

where R > R' denotes that R undergoes an
internal transformation into R'. For exam-
ple, if we were indifferent as to which door
our robot uses to enter a room, we could rep-
resent its plan as DOOR1 & DOOR2.

This situation is not uncommon: there
may be several potential courses of action,
all of which are possible. In the plans pro-
duced by Cassandra, for example, as long as
the conditions that ensure the success of a
branch are met, it may be pursued [31]. Con-
sider the plan constructed by Cassandra for
driving to Evanston. There are two possible
routes, via Ashland or via Western. If the
traffic is bad, the route via Western should
not be attempted; the route via Ashland is
always possible, but it is slower if the traffic
is bad. The full plan is

CheckTraffic - (Jam - ASHLAND+
Clear - (ASHLAND & WESTERN))

This plan always achieves the goal of reach-
ing Evanston. If the traffic is clear, the choice
between Western and Ashland is left to the
execution agent, which may decide on the
slower but more interesting route via Ash-
land. '

The notion of external choice is in a sense
the dual of internal choice. When the plan-
ner sees an external choice, the environment
sees an internal choice and vice versa. For
example, suppose the robot tosses a coin to
decide which door to use. It cannot influence
whether the coin comes down heads or tails.
From the robot’s point of view, the choice

is made by the environment; once the envi-

ronment has acted, by making the coin come
down heads or tails, its course of action has
~ been decided. We represent the robot’s plan
using the combinator for external choice:
(Heads - DOoR1) + (Tails- DoOR2). A
description of the environment, in contrast,
models the fact that it is it, rather than the
robot, that decides how the coin lands. The
environment makes this choice without refer-
ence to external factors. We therefore repre-
sent the process that models the environment
using the combinator for internal choice:
(Heads - NiL) @ (Tails- N1L).

These examples show that the evolutions
of environments and agents within them can-
not be considered independently of one an-
other. We must instead analyse the mutual
interactions of processes and environments in
order to determine their joint behaviour.

3.2.5 Derived combinators

Before proceeding with our systematic ac-
count of the combinators, we give an example
of the flexibility of our analysis. In processes
described without the choice combinators 4
and @, the sequence of actions performed
is totally ordered by -, the sequence combi-
nator. However, many “classical” planners,
such as TWEAK [3] and sNLP [20], produce
plans having a weaker order on their actions.
We now show how weaker orderings can be
recovered via the choice combinators.
Consider, for example, Moore’s bomb-in-
the-toilet problem, described by McDermott
[23]. There are two identical packages, one
" of which contains a bomb. Bombs can be
defused by dunking them in water. There
is no way of telling which package contains
the bomb, so to guarantee safety both pack-
ages must be dunked. However, the order
in which they are dunked does not matter;
moreover, it does not matter whether both
packages are carried to the toilet before ei-
ther is dunked, or whether the first is dunked
before the second is carried. The only order-
ing that is imposed is that each package must

‘be carried before it is dunked. With an in-

ternal choice between all possible orderings,
the plan can therefore be written’

DUNK(
Dunk{A4

DUNK(4) - Carry(B))
) &
Dunk{B)} @
)) &
)% @

DuNK(B) - Carry{A) -
Carry(B) - DUNK{A) -
Carry(A4) - DUNK(A) -
Carry(B) - DUNK(B) -
Carry{A) - DUNK(B) -

(Carry(A4) -
(Carry(B) -
(Carry(A) -
(Carry(B) - DUNk({B
(Dunk(A
(

Dunk(4)

Carry(A) -
Corry(B) -

It should be clear that we can represent
all “classical” plans using this technique, al-
beit somewhat clumsily. We could therefore,
for example, introduce a derived combinator,
M, as syntactic sugar for this construction.
Using this combinator, the plan would be
written

(Carry(A) - DUNK(A)) X (Carry(B) - DUNK(B)).

It should be clear that this use of inter-
nal choice enables us to eliminate any order-
ing constraints that we wish from our plans.
For example, whenever we want to allow ei-
ther action a to precede action b or vice versa
prior to the execution of P, we simply in-
clude (a-b+ P) & (b-a- P) in the definition
of the plan. In the example above, each ®-
component represents a weakening of the or-
dering constraint on the sequence of actions.
Note that one could organize the notation so
that all orderings were possible unless specif-
ically prohibited, with many choices in be-
tween.

We have now discussed the basic com-
binators and shown how through their use
it is possible to represent all totally-ordered,
partially-ordered and contingency plans. We
now move on to more advanced combina-
tors that allow us to represent recursion {and
hence loops), parallel composition, execution
monitoring and reactive plans.

"The original point of this problem was to demon-
strate that classical planners could not find the cor-
rect plan; more recently, planners have been devel-
oped that can handle this situation [4].

3.3 Recursion

Recursive definitions are an essential aspect
of planning. For example, the robot’s action
of filling the drinking fountain can be de-
scribed as “continue pouring until the reser-
voir is full”. In process algebra, recursive
definitions are achieved via the fized point
combinator, pg(X E(}Z’)). This should
be read as “the process X such that X =
E(X)". Formally, its meaning is given by its
operational semantics:

Elug(X = B(0)/K] 5 B

Rec = o ~
pr(X = E(X)) = B

Note that in the premiss, ,uX(X' = F(X))
is substituted for X, where X is such that
X = pz(X = E(X)).

Consider, for example, the following re-
cursive process that describes the robot fill-
ing the drinking fountain:

FILL (Pour-X))).

px (X = ((Full N1L)+

If the reservoir is not full, the robot will con-
tinue to pour.® It is clear that the definition
of this plan can easily be modified to take
account of more complex circumstances.

3.4 Parallel composition

We consider the combinator for parallel com-
position of processes: P || @ is the process
in which the processes P and @ proceed to-
gether, either independently or interacting
with each other via action/coaction pairs.

We begin with an example of indepen-
dent evolution. In navigating around the of-
fice, our can-collecting robot may be simul-
taneously moving and updating its represen-
tation of the office to take account of any
changes, such as relocations of furniture, that
may have occurred:

Nav Move - Nav || UPDATE.

80ften we omit the px, writing, in this example,
just Fier = Full. NiL + Pour - FILL.

The plan UPDATE can be a complex process,
such as

Look - AlterMemory - NAV.

UPDATE

Now consider interacting evolution, via ac-
tion/coaction pairs. Suppose we include in
the definition of navigation a case that de-
scribes our robot’s act of picking up a can:

Nav (Move - NAV + PickUp - NAV)

{| UPDATE.

The evolution of the robot, described by its
executing N AV, proceeds in parallel with the
evolution of the environment, described by a
process such as

ENvV .+ MoveDesk - ENV +

PickUp - ENV + ...

including the coaction PickUp that describes
the existence of a can which may be collected
by our robot.

The joint evolution of the environment
and the robot can then be described as the
evolution of the process

ENnv || Nav.

It remains to give the operational semantics
of ||. In this case, we can specify the evolu-

_tion of ENV || NaV in terms of the evolutions

10

of Env and Nav as follows:?

PickUP vy Nav PP

Env || Nav <25 ENv || Nav

Par Env

Here 7 is a stlent or perfect action, so called
because it describes the synchronization of
PickUp and PickUp that is entirely internal
to the parallel process ENV || Nav [14, 24].
Generally, the mathematical semantics of
parallel composition is a delicate matter. A
number of choices is available even if we as-
sume an interleaving ontology of processes.

9The general form of the rule follows a similar
pattern.

in which || is definable in terms of +. How-

ever, the key idea is the ezpansion theorem
14, 24]:

~Theorem [f P =3, a; P and Q m._zj.ﬁj N

Qj, then

PIlQ = Tias- (P Q)+
=, 8 (Q; || P+
S 7 (P Q)

where E}c Ry, denotes the finite external sum,
R+ G

It can readily be seen that this theorem gives
a reduction of the meaning of parallel com-
position to that of external choice.'?

3.5 Interruptions

During the execution of a plan by an agent in
an environment, the environment may per-
form actions that cause the agent to abort
the current plan and execute an entirely dif-
ferent one. For example, if our can-collecting
robot is on its rounds in the office when the
fire alarm sounds, then it should stop collect-
ing and make its escape.

It is convenient and natural, we judge,
to describe this situation by introducing the
interrupt combinator, written P < @ and
pronounced “@ interrupts P". The idea is
that the plan P <1 @ behaves like P until
does something and then behaves like Q.

We may modify the definition of the plan
Nav To describe our robot’s behaviour as
follows:

Nav

{({(Move - NAV + PickUp - Nav)
|| UPDATE)
< (Alarm - EMERGENCYEXIT)

The operational semantics of <t can be
described in the usual way:

Q = Q'
PaQ-LtsPaqy

P p

- <R
Pa@ - P aQ

aL

The theory of interrupt combinators can be
found in {24].

10This relies upon the representability of finite pro-
cesses in a standard form [14, 24},

11

3.6 Sequential composition
The execution monitoring we saw in the last
section has much in common with the ideas
of so-called “reactive planning”. We saw in
§ 3.2.5 that our algebra of plans is adequate
to describe the traditional plans produced by
classical planning systems; we now see that
it can also be used to describe reactive plans.
Consider, for example, Agre and Chap-
man's Pengi [2], which has many different
reaction rules, each of which is appropriate
under different circumstances. There is also
an arbitration mechanism that decides be-
tween rules if there are several that are ap-
plicable. The process that describes Pengi
thus takes the form

PENGI tex (({Cond, - Action;+
...+ Cond, - Actiony,)

| ARBITRATION); X)),

where the ; combinator denotes the sequen-
tial composition of processes.!! Again, we
have a recursive definition to represent the
execution cycle of repeated rule application.

The operational semantics of this notion
of sequential composition can be given sim-
ply, although at some length, in the usual
natural deduction style illustrated above [24].
Informally, the @ in P ; @Q can proceed as
soon as P has terminated.

4 - Discussion

The use of the algebraic theory of processes
to represent plans is not new. For exam-
ple, both the Procedural Reasoning System
(PRS) of Georgeff and Lansky [11, 10] and
Lyons and Hendriks’s RS [18, 19] are based
on process theory. Lansky [16] introduces
the notion of action-based planning for use
in logistical planning domains. Firby’s RAPS
system [8, 9] and McDermott’s RPL [22] are
both essentially based on actions. However,

UHitherto, we have considered only the case of a
process following a basic action; here, we consider
the case of a process following another process.

. little attention has been paid to the advan-
tages of using the éstablished results of pro-
cess theory.

In this paper we have presented a sim-
ple representation of plans designed to facii-
itate their execution. We have based this
representation on the algebraic theory of pro-
cesses, and have demonstrated that it is able
to represent a wide variety of the plans that
appear in the Al planning literature. It can
handle a number of important issues that
arise in plan-execution, such as combining
several plans and representing interruptions
to actions as they are performed. We have
argued that a representation based on pro-
cesses has many advantages for the execution
of plans over one based on state-changes.

We have not, however, considered how
to reason about plans. There are many is-
sues that arise in this context that are ab-
sent from plan-execution: in particular, the
possible effects of actions become important.
As we discussed in § 2, one of the advan-
tages of our representation is that the use

~of processes allows us to ignore the potential
effects of actions, which are not required for
plan-execution. Clearly, a complete theory
of planning cannot ignore plan-construction
and modification: they are vital capabilities
for any agent operating in an essentially un-
predictable world [29]. We believe that the
large body of theoretical results provided by
the use of a process algebra such as the one
we have described will provide a sound basis
for the necessary analysis.

There are two types of reasoning about
actions and plans that must be considered:
* firstly, as designers of agents, we must be able
to reason about the agents we design and
their interactions with their environments;
secondly, an agent must itself be able to rea-
son about its behaviour and that of its en-
vironment if it is to adapt effectively to the
circumstances in which it finds itself.

Initial investigations indicate that Hen-
nessy-Milner (HM) logic [24] will prove to
be a productive framework within which to
reason about the behaviour of the processes

12

that model our agent. HM logic provides us
with a logical notion of equivalence of pro-
cesses which turns out to be the same as a
purely behavioural notion based on bisimu-
lation [24]. This is one of the first results in
the rich metatheory of processes, which also
provides a natural way of comparing nonde-
terministic plans. Our theory of plan-com-
parison, which will be discussed elsewhere, is
based on reasoning ahout the sets of possible
plan outcomes. It includes but is not limited
to decision-theoretic techniques. Moreover,
the natural equivalence induced by this the-
ory, outcome-equivalence, is compatible with
an HM-like equivalence.

HM logic also allows us to reason about
how processes affect propositions: it will thus
allow us to reason about the effects of actions
and the possibility of goal-achievement. Of
particular importance in this respect is the
satisfaction relation, P k= ¢, between pro-
cesses P and (modal) propositions ¢. This
relation is defined inductively in the usual
way and can be read as “after P has exe-
cuted, ¢ holds” [24]. Suppose an agent’s goal
is expressed as a proposition ¢. We may ask
if, starting from the executing agent’s reper-
toire of capabilities, we can construct, us-
ing the plan-combinators, a plan P sich that
P [= ¢. In this sense, plan-construction can
be characterized as {model-based) theorem
proving in HM logic.

Although HM logic allows us to describe
and reason about possible behaviours in an
elegant and intuitive way, it is not necessar-
ily appropriate as the basis of the agent’s
own reasoning. In order to be able to rea-
son about its own behaviour, and hence con-
struct and adapt plans, an agent needs a suit-
ably intensional logic that will allow it to
derive processes that will achieve goals. De-
signing such logics (there will be choices, de-
pending on our philosophical and engineering
stances) is a non-trivial task and is a major
area of future work.

References

(1]

[2}

[4]

(5]

(6]

" [10]
1y

[12]

. pear.) o

L. Aceto and 1. Murphy, Timing and Causality
in Process Algebra. Acta Informatica (to ap-

P. Agre and D. Chapman, An implementation
of o theory of activity, Proceedings of the Sixth
National Conference on Artificial Intelligence,
1987. -

D. Chapman, Planning for Conjunctive Goals,
Artificial Intelligence Volume 32 [1987),
pp. 333-337.

G. Collins and L. Pryor, Planning under un-
certainty: Some key issues, Proceedings of the
Fourteenth International Joint Conference on
Artificial Intelligence, C. Mellish (editor), Moz-
gan Kaufmann, 1995, pp. 1567-1573.

D. Draper, S. Hanks and D. Weld, Probabilistic
Ploanning with Information Gathering and Con-
tingent Ezecution, Proceedings of the Second
International Conference on Artificial Intelli-
gence Planaing Systems, Chicago, IL, AAAI
Press, 1994, pp. 31~36.

O. Etzioni, 5. Hanks, D. Weld, D. Draper,
N. Lesh, and M. Williamson, An approach
to planning with incomplete information, Pro-
ceedings of the Third International Confer-
ence on Knowledge Representation and Rea-
soning, Boston, MA, Morgan Kaufmann, 1992,
pp. 115-125, '

R. Fikes and N. Nilsson, STRIPS: a new ap-
proach to the application of theorem proving to
problem solving, Artificial Intelligence, Volume
2 (1971}, pp. 189208,

R. J. Firby, Adeptive evecutton in complex
dynamic worlds, Technical Report YALEU/
CSD/RR 672, Computer Science Department,
Yale University, 1989,

R. 1. Firby, Task networks for controlling con-
tinuous processes, Proceedings of the Second
International Conference on Artificial Intelli-
gence Planning Systems, Chicago, 1L, AAA]
Press, 1994, pp. 49-54.

M. Georgeff and A. Lansky, Procedural knowi-

edge, Proceedings of the Institute of Electrical
and Electronics Engineers, Volume 74 (1986},

.Number 10, pp. 1383-1398.

M. Georgeff, A. Lansky, and P. Bessiere, 4 pro-
cedural logic, Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelli-
gence, Los Angeles, CA, 1985, pp. 517-523.

R. van Glabbeek, B. Steffen and C. Tofts. He-
active, generative and stratifed models of prob-
abilistic processes, Proceedings of the 5th An-
nual IEEE Symposium on Logic in Computer

13

Science (LICS 90}, Philadelphia, USA, IEEE

[27]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Computer Society Press, Los Alamitos 1990,
pp. 130-141. -

S. Hanks and D. McDermott. Nonmonotonic

logic and temporal projection. Artificial Tatelli-

gence 33(3), 379412, 1987.

M. Hennessy, An algebraic theory of processes,
M.LT. Press, 1988.

R. Kowalski and M. Sergot, A logic-based calcu-
lus of events, New Generation Computing 4(1),
67-95, 1986.

A. Lansky, Action-based planning, Proceedings
of the Second International Conference on Ar-
tificial Intelligence Planning Systems, Chicago,
IL, AAAT Press, 1994, pp. 110-115.

F. Lin and Y. Shoham, Concurrent actions in
the situation calculus. Proc. AAAL-92, 590-
605, 1992,

D. Lyons, Representing ond analysing action
plans as networks of concurrent processes,
IEEE Transactions on Robotics and Automa-
tion, Volume 9 (1993), Number 3, pp. 241-256.

D. Lyons and A. Hendriks, Ezploiting patterns
of interaction o achieve reactive behavior, Ar-

tificial Intelligence, Volume 73 {1995), pp. 117-
148,

D. McAllester and D. Rosenblitt, Systematic
nonlinear planning, Proceedings of the Ninth
National Conference on Artificial Intelligence,
Anaheim, CA, AAAI Press, 1991, pp. 634-639.

J. McCarthy and P. Hayes, Some philosophical
problems from the standpoint of artificial intel-
ligence, Machine Intelligence 4 (B. Meltzer and
D. Michie, Eds.}, Edinburgh University Press,
1969, pp. 463-502.

D. McDermott, A reactive plan language, Tech-
nical Report YALEU/CSD/RR 864, Computer
Science Department, Yale University, 1991.

D. McDermott, 4 Critigue of Pure Reason,
Computational Intelligence, Volume 3 (1987),
pp. 151-160.

R. Milner, Communicetion and concurrency,
International series on computer science, Pren-
tice Hall International, 1989. '

E. P. D. Pednault, ADL and the state-
transition model of action, Journal of Logic and
Computation Volume 4 (1994}, pp. 467-512.

M. Peot and D. Smith, Conditional Nonlin-
ear Planning, Proceedings of the First Inter-
national Conference on Artificial Intelligence
Planning Systems, College Park, Maryland,
Morgan Kaufmann, 1992, pp. 189-197.

(27]

[31]

(32]

G. Plotkin, A structural approach to opera-
tional semantics; Technical Report DAIMI-
FN-19, Computer Science Department, Arhus
University, 1981,

D. Prawitz, Noaturel Deduction: A P?_"oof«
Theoretical Study, Almqgvist & Wiksell, Stock-
holm, 1965.

L. Pryor, Opportunities ond planning in an
unpredictable world, Ph.D. thesis, available as
Technical Report No. 53, the Institute for
the Learning Sciences, Northwestern Univer-
sity, 1994.

L. Pryor, Decisions, decisions: Knowledge
goals in planning, in Hybrid problems, hybrid
solutions (Proceedings of AISB-95), J Hallam
(Ed), pp. 181-192. I0OS Press, 1995.

L. Pryor and G. Collins, Cussandra: Planning
with contingencies, Technical Report No. 41,
the Institute for the Learning Sciences, North-
western University, 1993.

D. Pym, L. Pryor and D. Murphy, Actions as
processes: o position on planning, Proceedings
of the AAAI Spring Symposium on Extending
Theories of Action: Formal Theory and Prac-
tical Applications, Stanford University, 1995.
Also available as Technical Report No. 696, De-
partment of Computer Science, Queen Mary
and Westfield College, University of Londomn.

D. Pym, L. Pryor and D. Murphy, 4 note
on processes for plan-execution and powerdo-
mains for plan-comparison, Available as Tech-
nical Report No. 719, Department of Computer
Science, Queen Mary and Westfield College,
University of London.

14

