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Abstract 

 ATP sensitive potassium channels (KATP) are so named because they open as cellular 

ATP levels fall. This leads to membrane hyperpolarisation and thus links cellular metabolism 

to membrane excitability. They also respond to MgADP and are regulated by a number of cell 

signalling pathways. They have a rich and diverse pharmacology with a number of agents 

acting as specific inhibitors and activators. KATP channels are formed of pore-forming 

subunits, Kir6.1 and Kir6.2, and a large auxiliary subunit, the sulphonylurea receptor (SUR1, 

SUR2A and SUR2B). The Kir6.0 subunits are a member of the inwardly rectifying family of 

potassium channels and the sulphonylurea receptor is part of the ATP binding cassette family 

of proteins. Four SURs and four Kir6.x form an octameric channel complex and the 

association of a particular SUR with a specific Kir6.x subunit constitutes the KATP current in a 

particular tissue. A combination of mutagenesis work combined with structural studies has 

identified how these channels work as molecular machines. They have a variety of 

physiological roles including controlling the release of insulin from pancreatic β cells and 

regulating blood vessel tone and blood pressure. Furthermore, mutations in the genes underlie 

human diseases such as congenital diabetes and hyperinsulinism. Additionally, opening of 

these channels is protective in a number of pathological conditions such as myocardial 

ischaemia and stroke.  

 

  



Didactic Synopsis 

 

Major teaching points 

 ATP-sensitive potassium channels (KATP) are widely distributed and characteristically 

are activated by falling cellular ATP levels. 

 KATP channels link membrane excitability to cellular metabolism. 

 KATP channels have a rich and diverse pharmacology with specific inhibitors such as 

glibenclamide and openers such as diazoxide. 

 The channel is an octamer formed of four inwardly rectifying potassium channels of 

the Kir6.0 family and four sulphonylurea receptor subunits, a member of the ATP 

binding cassette family of proteins. 

 Extensive mutagenesis experiments and recent structural studies have defined many 

aspects of how the channel works as a molecular machine. 

 KATP channels are key to the release of insulin from pancreatic β cells. 

 KATP channels in the heart are involved in adaptation to exercise and cellular 

protection and in vascular smooth muscle controlling vascular tone and blood 

pressure. 

 KATP channels are present in the brain and may be involved in neuroprotection and 

nutrient sensing.  

 Mutations in KATP channel subunits can result in human disease and includes 

disorders of insulin handling, cardiac arrhythmia, cardiomyopathy and neurological 

abnormalities. 

  



Introduction 

 Potassium conductances in cell membranes play an important role are important in 

determining membrane potential and in excitable cells in shaping repetitive firing and action 

potential characteristics. Opening potassium channels hyperpolarises the membrane potential 

towards the potassium equilibrium potential and can lead to repolarisation of an action 

potential. A number of families of potassium channel are distinguished by their 

electrophysiological properties with even greater molecular diversity underpinning these 

functional attributes (182; 251; 455).  

 One such family of potassium channel are the ATP-sensitive potassium (KATP) 

channels. The fundamental property of KATP channels is that they open in response to 

metabolic challenge, specifically a fall in ATP and\or a rise in ADP. They are widely found in 

a number of tissues. They have been described in cardiac myocytes (391; 544), pancreatic β 

cells (9; 88; 446), skeletal muscle (498), neurones (18; 154), smooth muscle (38; 500), the 

kidney (234) and epithelial cells (296; 297). They thus link cellular metabolism to membrane 

excitability. In one of the early reviews before the molecular identity of the channels was 

determined a number of different families were distinguished based on ATP sensitivity (15). 

In this review we consider only those channels constituted of Kir6.0 subunits with the 

exception of the mitochondrial KATP channel. For example, it is now known that in kidney 

tubules, where the channels are sensitive to ATP inhibition, albeit to mM ATP concentrations, 

the pore-forming subunits are likely constituted of Kir1.0 subunits (223). 

 

Biophysical and physiological properties 

The KATP channel is considered to be a member of the inwardly rectifying family of 

potassium channels. Inward rectification refers to the fact that this class of channel passes 

more inward current at potentials negative to the potassium equilibrium potential whilst less 



current is passed at membrane potentials positive to that. Thus the driving force for the 

current is determined by the difference between the membrane potential and the potassium 

equilibrium potential and not simply the membrane potential as with voltage-gated potassium 

channels (192). However, the degree of rectification can vary substantially and is relatively 

weak for KATP channels compared to other members of the inward rectifier family such as 

those responsible for the cardiac current, IK1. Thus, in single channel studies from inside-out 

patches in ~140 mM symmetrical potassium concentration the single-channel conductance is 

ohmic with a conductance of 50-80 pS (88; 391; 446). In contrast, in cell-attached patches 

there is significant inward rectification largely accounted for by voltage-dependent block by 

magnesium ions (142; 143). Figure 1 shows some typical single-channel recordings of KATP 

channels. Lower values reported in some papers have asymmetric potassium concentrations 

often with one or both concentrations significantly lower than the above. The channel is 

highly selective for potassium over sodium ions with a permeability ratio of PNa/PK~0.01 

(499). Like all potassium channels, ion conduction is likely best modelled using multi-ion 

conduction models which entail multiple potassium ions binding within the pore and ion-to-

ion repulsion ensuring high transport rates and selective binding (222; 421; 499). Indeed, we 

now have crystal structures of a number of potassium channels which identify multiple 

potassium ion binding sites and reveal how selectivity over the smaller sodium ion is 

achieved (see below). Models of ion conduction now use molecular dynamics simulations 

with these actual structures.   

Opening of an inward rectifier potassium channel is largely thought to influence the 

resting membrane potential buffering it close to the potassium equilibrium potential. 

However in cells with a high intrinsic potassium permeability the major effects may be on 

repolarisation. In addition, KATP channels are weak inward rectifiers and Kir6.1 containing 

channel complexes may actually have a degree of outward rectification even in whole cell 



recording with relatively physiological solutions (20; 22).   

The direct response of the channel to adenine nucleotides can be assessed best in 

inside-out patches and subsequent measurement of the change in open probability with bath 

perfusion, equivalent to the cytosol, of different nucleotide containing solutions. Channel 

activity is inhibited by ATP with a Ki in the range of 10-500 M with a Hill coefficient 

between 1 and 2 (11; 88; 256; 446; 499). There are variations according to the tissue and 

exact recording conditions with pancreatic channels being more sensitive than cardiac ones 

(11; 256).  The inhibitory effect is not reliant on magnesium ions and ATP can be substituted 

with non-hydrolysable derivatives (10; 547). Furthermore adenine dinucleotides can inhibit 

channel activity in magnesium free solutions (144). In early single-channel formulations of 

gating kinetics at least a single open and two closed states were necessary to describe the 

open and closed time distributions. The channel conforms to “bursting” behaviour with bursts 

of opening separated by long closed intervals (446; 499). ATP promotes channel inhibition by 

decreasing the number of opening per burst, shortening the length of the burst, increasing the 

length of closed times and decreasing the open time (499). The main feature affecting open 

probability is the increase in long closed times. ADP is able to relieve the inhibition of KATP 

channels by ATP. The action is distinct from that of ATP inhibition as it requires MgADP 

(144; 303). More recent gating models have attempted to integrate key features revealed from 

cloning and functional work into more structurally realistic schemes. For example, an 

allosteric model has been proposed based on the tetrameric pore structure with four ATP 

binding sites (129; 130).  

These properties apply to most of the well-studied and known KATP channel 

populations. However, smooth muscle KATP channels have unique properties. Specifically, the 

single-channel conductance is lower at ~35 pS and there is an absolute dependence for 

activity on cytosolic nucleotide diphosphates being present in the solution and this has led to 



the channel being designated a “KNDP” current in some of the literature (38). Furthermore, 

these channels are generally less sensitive to ATP inhibition (38; 101). 

Rundown of KATP channels was noted even in the earliest publications. This refers to a 

steady decrease in channel activity in excised patches or whole-cell recordings. The channel 

activity can be refreshed to some extent by exposure to low M concentrations of MgATP 

(145; 394). In early studies this was attributed to direct protein kinase regulation of the 

channel. However it is now known that channel activity is absolutely dependent on the 

provision of the anionic phospholipid phosphatidylinositol (4,5) bisphosphate (PIP2) for 

activity (37; 132; 220; 484).  

 

The pharmacology of KATP channels 

 KATP channels have a diverse pharmacology with both inhibitors and activators of the 

channel described. In addition, therapeutic agents often developed with another target or use 

in mind can have off-target effects on KATP channels. Figure 2 summarises the structures of 

some select drugs that modulate KATP channels. Table 1 summarises the properties of key 

potassium channel openers and inhibitors.  

 

Sulphonylureas and related agents 

 The hypoglycaemic effects of sulphonylureas were discovered by chance when 

investigating their potential antibacterial action against typhoid fever. Since then a number of 

derivatives have been synthesised (Figure 2 and Table 1). They act by inhibiting KATP 

channels present in the pancreatic β cell leading to the depolarization of pancreatic β cells and 

increase in intracellular calcium levels resulting in the release of insulin (185).  

 A number of developments were made in generating sulphonylureas or sulphonylurea-

related agents. In the first generation they have relatively low affinity and include drugs such 



as tolbutamide and chlorpropamide. The second group have a higher affinity and include 

agents such as glibenclamide, glipizide and gliclazide. Finally, a new generation of agent 

have emerged, the “glinides” including meglitinide and repaglinide and these resemble the 

non-sulphonyurea component of glibenclamide. The affinity of the pancreatic KATP channel 

for glibenclamide is high enough so that equilibrium radioligand-binding studies can be 

performed (389).  

 Although the main target of these drugs is the pancreatic KATP channel, earlier 

sulphonylureas also interact with cardiac channels and may lead to undesired cardiovascular 

side effects such as increased cardiovascular mortality in patients with type II diabetes (170). 

Recent developments in sulphonylurea chemistry have led to the synthesis of new derivatives 

that show tissue-specific selectivity. For example, the sulphonylurea HMR-1098 shows 400-

800 fold selectivity for the cardiac KATP over the pancreatic KATP channel (338). In 

comparison, the benzoic acid derivative insulin secretagogue mitiglinide has a 1000 fold 

greater affinity for the pancreatic over the cardiac and smooth muscle KATP channels (430). 

Two novel but selective non-sulphonylurea KATP channel inhibitors are the 

compounds PNU99963 and PNU37883A. They were initially developed as potentially 

selective agents for the vascular channel. PNU99963 is a cyanoguanidine similar to pinacidil 

whilst the PNU37883A is a morpholinoguanidine (233; 278; 350). In the initial 

characterisation of these agents it was shown that PNU99963 and PNU37886A inhibited 

dilation of blood vessels induced by various potassium channel openers (233; 278; 350). 

Electrophysiological studies showed PNU37883A at low micromolar concentrations inhibited 

KATP currents in single vascular smooth muscle cells but not currents in cardiac and skeletal 

myocytes (568). Subsequent molecular studies revealed that PNU99963 interacted with high 

nanomolar affinity with the sulphonylurea receptor whilst PNU37883A was a direct pore-

blocker and showed some selectivity to Kir6.1-containing channel complexes (100; 289).  



 

Potassium Channel Openers 

 Pharmacophores of widely different structures are able to activate KATP channels and 

lead to hyperpolarization and reduced electrical activity. These include; diazoxide 

(benzothiadiazines), minoxidil (pyrimidine sulfate), nicorandil (pyridyl nitrates), cromakalim 

(benzopyrans), aprikalim (carbothiamides) and pinacidil (cyanoguanidines) (Figure 2) (337). 

Initially these drugs were developed on the basis of their ability to relax smooth muscle in 

low (up to 20 mM) but not high (>50 mM) potassium containing external media and the 

ability to stimulate potassium flux (89; 419). A comprehensive study was performed to 

compare their capacity to dilate smooth muscle in various tissue types. The conclusions were 

that diazoxide has lower dilator potency in comparison to rilmakalim in aorta, coronary artery 

and trachea, and nicorandil shows higher tissue selectivity to aorta than trachea (337). 

 Differences in the pharmacological properties of the KATP openers were also observed 

in clinical settings and in in-vivo studies using animal models. Diazoxide was found to be a 

hypotensive agent, to promote hyperglycaemia (450; 576) and have a cardioprotective effect 

through its anti-ischaemic properties (169; 564). Nicorandil, used to treat patients with 

angina, has a dual pharmacological effect acting both as a cardiac KATP channel opener and at 

the same time being a nicotinamide nitrate derivative as a NO donor (226; 295; 514). In 

contrast, pinacidil fails to reverse glibenclamide-induced hypoglycaemia in rats (78) but 

shows a potent hypotensive effect in man (53; 63; 369; 565). 

 Radioligand-binding has allowed the study of the molecular interaction of potassium 

channel openers with the KATP channel providing further information on the differences in 

their binding sites and tissue-specific selectivity. Examples include an analogue of pinacidil 

([3H] P 1075), which can be radiolabelled (52). [3H] P 1075 binds with high affinity to 

cardiac KATP but not to pancreatic KATP and its binding is inhibited by glibenclamide (137; 



551). These observations were consistent with normoglycaemia on the administration of 

pinacidil in the intact animal. The detailed pharmacology of potassium channel openers 

acting on the KATP channel are summarised in Table 1. 

 

Miscellaneous agents  

 KATP channels like many other potassium channels are blocked by the generic agents 

barium, tetraethylammonium and 4-amino-pyridine (15; 516). They most likely act by 

directly occluding the pore. A number of clinically used drugs may actually exert some of 

their therapeutic effects through KATP channel modulation. For example baclofen is a muscle 

relaxant primarily used to treat spasticity in multiple sclerosis and stroke. It also has an 

antidepressant effect. In mice, co-administration of low doses of glibenclamide with baclofen 

showed a synergistic antidepressant-like effect in the forced swimming test and a low dose of 

cromakalim inhibited these effects suggesting that baclofen has an antidepressant action 

through its inhibition on KATP channels (376). The anticonvulsant drug carbamazepine used 

for treating epilepsy can inhibit KATP channel activity by disrupting the response to MgADP 

(613). Moreover, a number of drugs that display anticonvulsant properties in animal models 

may exert their effects through KATP channels. Examples include the inotropic calcium 

sensitizers levosimendan (183), glycolytic inhibitor 2-deoxy-D-glucose  (594), K+-sparing 

diuretic riamterene (594), hypnotic agent zolpidem (469) and fatty acid caprylic acid (472) 

though the mechanisms are complex and mostly seem to be indirect in nature. Another 

interesting example is the anticonvulsant and analgesic gabapentin which decreases [3H]-

noradrenaline release from rat hippocampal and human neocortical slices. This effect can be 

mimicked by pinacidil, and antagonized by glibenclamide and suggests an involvement of 

KATP channels. As a drug to treat nerve pain, using an inflammatory pain model in diabetic 

rat, glibenclamide blocked the gabapentin-induced antinociception (492). Other classes of 



drug may also be able to inhibit KATP channels such as phenformin but not metformin (21). 

Rosiglitazone may also have an off target inhibitory effect which shows selectivity for the 

vascular channel and acts through the pore-forming subunit (601; 602).  

 

Cloning and isoform distribution 

 The inwardly-rectifying family of potassium channels were cloned using expression 

cloning techniques (223; 293) and this then led to additional homology based approaches and 

the description of a substantial gene family and multiple members in various subfamilies 

(386). The Kir subunits have two transmembrane domains with an intracellular N and C-

terminus and assemble as a tetramer. An H5 segment intercalates into the membrane and 

contains a consensus motif (GYG or GFG) responsible for potassium selectivity (535). 

However when expressed alone none of the isolated cDNAs robustly recapitulated the 

properties of KATP channels. Using classic protein purification based on sulphonylurea 

binding activity, a second and distinct class of protein was isolated namely the sulphonylurea 

receptor (SUR) (1). The breakthrough then came when SUR1 was coexpressed with Kir6.2 

and this led to currents that recapitulated many of the properties of the native pancreatic β cell 

KATP channel (241; 454). Further cloning efforts revealed two isoforms of Kir6.0 (Kir6.1 and 

Kir6.2) and two SURs (SUR1 and SUR2 with two splice variants SUR2A and SUR2B) (240; 

247; 587) (Inagaki et al., 1996; Isomoto et al., 1996; Yamada et al., 1997).  SUR is a member 

of the superfamily of ATP binding cassette (ABC) proteins and is related to the subfamily 

which includes multidrug resistant-related proteins (219; 539). They are classified into the 

ABCC family and have seventeen transmembrane segments grouped into three domains 

comprised of five (TMD0), six (TMD1) and six (TMD2) membrane spanning helices 

respectively. The N-terminus is extracellular, each of these domains are connected by 

cytosolic linkers and then an intracellular C-terminus (87). Another distinctive feature is the 



presence of nucleotide binding domains (NBD) with Walker A and Walker B motifs in the 

TMD1-TMD2 linker and C-terminus. These domains generally bind and hydrolyse adenine 

nucleotides and in multidrug resistant-related proteins enable the active transport of drugs and 

other molecules out of the cell (318). The genes encoding SUR1 and Kir6.2, and SUR2 and 

Kir6.1 are adjacent to one another on 11p15.1 and 12p12.1, respectively in the human 

genome (76; 242). Kir6.1 (KCNJ8, gene ID: 3764) has five exons, Kir6.2 (KCNJ11, gene ID: 

3767) has three exons, SUR1 (ABCC8, gene ID: 6833) has 39 exons and SUR2 (ABCC9, 

gene ID: 10060) has 42 exons. Alternative splicing is best established for SUR2 which 

generates two variants SUR2A and SUR2B differing in the sequence of the terminal C-

terminus (240).   Other splice variants in SUR1 and SUR2 have been proposed but their 

importance isn’t clearly established (131; 196; 417). Four Kir6.0 subunits and four SUR 

subunits come together in a hetero-octamer to form the basic channel complex (83; 487). 

Figure 3 shows a cartoon and schematic of KATP channel assembly.   

The properties of the current are determined by the assembly of a particular SUR with 

a Kir6.0 subunit. So for example, the channel present in pancreatic β cells is almost certainly 

constituted of SUR1\Kir6.2. This generates a channel with a single-channel conductance of 

70 pS, a Ki for ATP inhibition in the 10-30 M range and inhibition by tolbutamide (1; 12; 

377; 454). In contrast, Kir6.1\SUR2B may underlie the KATP current in many smooth muscles 

and this leads to a single channel conductance of 35 pS, an absolute requirement for adenine 

nucleotides for activation and activation by levcromakalim (101; 587).  

The octameric structure means that heteromultimeric populations might occur, 

combining different Kir subunits and different SUR subunits. In heterologous expression 

systems the co-assembly of Kir6.1 and Kir6.2 can be readily demonstrated (99). Furthermore, 

it might also occur in native tissues such as endothelial cells, some smooth muscles and the 

cardiac conduction system (31; 525; 600). In contrast we and others have been unable to 



conclusively demonstrate heteromultimeric populations of SUR subunits (172; 542) whilst 

other laboratories have data demonstrating this might be a possibility (70). In practice this is 

likely to be less of an issue as the expression of SURs is more tissue-specific and co-

expression of different subunits in the same cell is more limited. Secondly, the composition of 

the channels may show subtle but important anatomic variations. Indeed, single neurons 

within a defined brain region may have specific expression of different SUR subunits which 

leads to differences in metabolic sensitivity (319).  

 

KATP channel trafficking, assembly and association with auxiliary proteins  

 The discovery that co-expression of two subunits was necessary to fully reconstitute 

the channel and that expression of the Kir6.0 alone did not lead to substantive currents led to 

the question of why this occurred. The two possibilities are that the subunits are present at the 

plasma membrane but functionally inactive or alternatively the assembly of SUR with the 

Kir6.0 subunit is necessary for the channel complex to traffic through the secretory pathway. 

The first clue to the answer to this question came with studies showing that truncation of  the 

C-terminus of Kir6.2 by 36 amino acids led to the expression of an ATP-sensitive potassium 

selective current with the characteristic single channel conductance of ~ 70 pS (548). Co-

expression of SUR was necessary to endow the channel with sulphonylurea and diazoxide 

sensitivity and activation by MgADP (548). Other investigators then identified an RKR motif 

in both Kir6.0 subunits and SUR subunits that behaved as an endoplasmic retention\retrieval 

signal (605). The mutual masking of these signals between each Kir6.0 and SUR subunit is 

thought to allow only mature octameric channels to progress through the secretory pathway 

and enter the plasma membrane. The arginine based retention\retrieval motif recognises coat 

protein I complexes and this vesicle population is involved in retrograde transport from the 

golgi to the endoplasmic reticulum (604). Furthermore, this interaction is antagonised by 



interaction with 14-3-3 proteins and also by phosphorylation by protein kinase A (7; 218).     

 A second and related question raised by the cloning work was which domains were 

responsible for the assembly of the KATP channel complex? In the inward rectifier family it 

seems the M2 transmembrane domain and proximal C-terminus are important with 

contributions from the N-terminus (535; 546; 579). Furthermore, essentially all regions in 

inward rectifiers have been implicated in the interaction with SUR (173; 465). Finally it 

appears the TMD0 region is important for the assembly of SUR with the Kir6.0 subunits (66). 

Many of these studies were subsequently supported by the solution of the recent crystal 

structures as discussed below.   

 In addition to the obligatory co-assembly of SUR and Kir6.0 subunits, it is also 

apparent that KATP channels may assemble with other auxiliary proteins. In the first studies 

investigators focused on specific proteins and were able to show interaction of KATP channels 

with adenylate cyclase (64), creatinine kinase (95), lactate dehydrogenase (94), various 

glycolytic enzymes (115; 225), syntaxin-1A (409), exchange proteins directly activated by 

cAMP (402) and Ankyrin (282). In more recent work using modern proteomic techniques and 

co-purification strategies a number of proteins were isolated from cell lines of heart tissue, 

endothelial cells, pancreatic β cells and the brain (277). A bioinformatics analysis revealed 

enrichment of proteins involved in metabolic processes, in particular glycolysis, but also fatty 

acid metabolism particularly in the heart and in proteins involved in endocytic and membrane 

trafficking (277). Specifically for the proteins involved in trafficking association was shown 

with cytoskeletal proteins (non-muscle myosins, F-actin capping proteins, dynein etc) and 

endosomal trafficking checkpoints (various ras related proteins and ADP ribosylation factors 

etc) (277). It is interesting that these interactions may explain some functional observations. 

For example, it is known that KATP channels in ventricular myocytes are preferentially 

modulated by ATP derived from glycolysis (566). Furthermore, the pancreatic βcell KATP 



channel is subject to endocytosis and this leads to changes in the membrane current-density 

(336). Finally, drugs that disrupt the cytoskeleton can change the functional behaviour of 

KATP channels (164).    

 

KATP channels as molecular machines 

 This topic can be viewed at a number of different levels of sophistication. Initially the 

questions of conduction, gating and drug binding were approached using biophysical models. 

However after the cloning of potassium channel genes, numerous studies were undertaken in 

which single amino acids were mutated or domains were swapped between different channels 

using standard molecular techniques. The mutated and\or chimaeric channels and subunits 

were then expressed in heterologous expression systems such as xenopus laevis occytes or 

mammalian cell lines and studied using two-electrode voltage-clamp and patch-clamp. The 

functional consequences could then be interpreted in an attempt to define binding sites. 

Ultimately these experiments would be optimally complemented by high resolution structural 

information. Recently, this aspiration has culminated in three land mark publications (305; 

310; 342) and these have superseded lower resolution structures (353).  Figure 4 and 5 show 

structures obtained in these studies. Most work has focussed on pancreatic (SUR1) and 

cardiac (SUR2A) channels with Kir6.2 constituting the pore-forming subunit.   

   

Ion conduction 

 Kir6.1 and Kir6.2 contain a GFG motif in the H5 domain which is a recognised 

variant of the classic K+ channel selectivity sequence GYG (212). Whilst there have been 

only a few direct studies of ion permeation in KATP channels it seems likely it will follow the 

general principles developed from the study of other potassium channels using mutagenesis 

and structural studies. In particular the latter has been revolutionary in developing our 



understanding (118; 298). The technical breakthrough, allowing the production of large 

quantities of protein in bacteria suitable for protein purification and crystallisation, came 

from the use of prokaryotic ion channels. In the crystal structures of KcsA and KirBac1.1 the 

channel contains a number of binding sites for potassium. The ion is complexed by the 

backbone carbonyl groups of the amino acids of the potassium channel signature sequence 

(VGYG) acting to replace the water molecules that the potassium ion would normally 

complex with if it were in solution. The structure is rigid and will not accommodate the 

smaller sodium ion in an energetically favourable position (118; 298) and this steric factor 

accounts for the exquisite potassium selectivity. Furthermore in the KcsA structure four helix 

dipoles further stabilise potassium ions in the central channel cavity. The KcsA channel likely 

represents an open conformation whilst the KirBac1.1 structure is closed. In the latter the 

pore is closed shut on the cytosolic side by hydrophobic residues (phenylalanine 146 in 

KirBac1.1) at the end of the second transmembrane segment also labelled as the inner helix in 

the crystal structures. The crystal structure of the pancreatic KATP (Kir6.2\SUR1) channel has 

been solved to 5 to 6 angstrom resolution (305; 310; 342). The structure of Kir6.2 closely 

resembles that of KcsA and the structure of the eukaryotic Kir3.2 (570). The pore is closed at 

the cytoplasmic face by the inner helices and outer helices forming a critical constriction 

(305; 310; 342; 570). Thus the mechanism of potassium selectivity and pore gating are likely 

to be broadly similar to that in other potassium channels.          

 Although KATP channels do not show pronounced inward rectification, it is instructive 

to look at the molecular basis for why this is the case. Inward rectification arises from 

voltage-dependent block by cytosolic magnesium and cellular polyamines i.e. as the 

membrane voltage becomes more depolarised these species are increasingly driven into the 

pore but are unable to permeate and this leads to occlusion of ion flow (329; 330; 385). The 

block by polyamines is extremely high affinity and practically it is very difficult to “wash 



off” these molecules even when recording in inside-out patches. This accounts for what was 

previously ascribed to be an “intrinsic” gate. Site-directed mutagenesis revealed that acidic 

amino acids such as aspartate and glutamate in the second transmembrane segment and the 

proximal C-terminus act as two potential key binding sites (140; 329; 332; 501; 596).  In the 

crystal structure these acidic amino acids form two rings of negative charge, one within the 

membrane and the other in a C-terminal cytosolic extension of the transmembrane domains 

(298). KATP channels show little sensitivity to polyamines (588) and this is likely accounted 

for by not having acidic residues in homologous positions to those in the strong inward 

rectifiers. For example, in Kir6.2 the M2 transmembrane residue is a neutrally charged 

asparagine and not a negatively charged aspartic acid.                 

 

Inhibition by ATP  

 The central defining property of KATP channels is the inhibition of channel gating by 

cytosolic ATP. This property is determined by residues in the pore-forming Kir6.0 subunit 

and was revealed using a C-terminal deletion mutant of Kir6.2 that was able to express at the 

plasma membrane of the cell in the absence of the sulphonylurea receptor (see above) (548). 

In inside-out patches the mutant had an IC50 (the concentration at which activity is inhibited 

by 50%) for inhibition by ATP of ~100 M. However the sulphonylurea receptor is not 

without some role as expression with SUR1 decreases the IC50 to ~ 10 M indicative of an 

allosteric effect (548). Co-expression of Kir6.2 with SUR2 does not result in this change in 

IC50. Generally Kir6.1 is not thought to be as ATP-sensitive though it can be shown under 

specific experimental conditions (24; 101). Furthermore, both Kir6.1 and Kir6.2 containing 

channels are activated by metabolic challenge (134). Site-directed mutagenesis in the C-

terminal deleted Kir6.2 was then used to define key residues influencing KATP channel 

inhibition by ATP and thus delineating a potential binding site. A series of such studies 



implicated R50, C166, I167, T171, I182, K185, R201 and G334 amongst others (5; 254; 431; 

540). A key feature is that these mutations do not significantly perturb the gating model (86; 

541). For example, it is possible that mutations could modify gating without affecting ATP 

binding but in functional assays the ability of ATP to inhibit the channel could still be 

impaired (86; 541). In the crystal structure the residues R38, R50 and K185 form a cluster of 

positively charged amino acids unique to the Kir6.0 family and in a pocket that could 

accommodate the adenosine ring of ATP (310). However in this crystal structure the 

Kir6.2\SUR1 octamer was crystallised in the absence of ATP. In contrast, in the other 

crystallographic studies ATP was included in the solution. In this case ATP is adjacent to 

K185 and a pocket is defined by the interface of adjacent N and C domains in Kir6.2 which 

includes I182, L205, Y330, F333, and G334 from the same subunit, and R50 from the other 

subunit (342). In the second structure (305), this is resolved even more clearly. ATP lies in a 

horseshoe shape in a pocket defined by 182-185 (IFSK) and 332-335 (KFGN) in one subunit 

whilst residues N48 and R50 from the neighbouring subunit making two hydrogen bonds 

with the adenine base of ATP (Figure 5). The channel complex was seen to bind four 

molecules of ATP and this is compatible with Hill coefficients of more than one when 

describing the dose-response curve for channel inhibition by ATP (5; 130). Binding of a 

single ATP to one subunit is sufficient to close the channel (554).         

  

Activation by MgADP 

 In contrast to ATP inhibition, activation by ADP is dependent on the provision of 

magnesium. In its absence ADP leads to inhibition probably acting via the ATP inhibitory site 

on Kir6.2. In contrast in the presence of a SUR the channel complex becomes sensitive to 

activation by MgADP and specifically is determined by residues in the nucleotide binding 

domains (NBD) (187; 483). NBDs in other ABC transporters adopt a two lobed structure with 



the larger one containing the Walker A and Walker B motifs followed by aspartate (“D”) and 

histidine (“H”) loop residues. The smaller lobe is an -helical domain and comprises the 

ABC transporter signature sequence (usually LSGGQ) and a “Q-loop”. Characteristically the 

larger lobe of NBD1 interacts with the smaller lobe of NBD2 to form a functional unit 

capable of hydrolysing adenine nucleotides. A second functional unit is formed by the large 

lobe of NBD2 and small lobe of NBD1. The Walker A motif contains a lysine that is critical 

for beta and gamma phosphate binding of ATP. The Walker B motif has a conserved aspartate 

amino acid that complexes magnesium ions and is central to nucleotide hydrolysis. The ABC 

signature sequence is part of a helix-dipole important for positioning ATP in the catalytic site 

(521; 555). There are functional and now structural data that the NBDs in SURs are 

asymmetric in the closed conformation.  

 The first critical evidence for the involvement of NBDs in activation of the channel 

complex by MgADP was that mutagenesis of key residues such as lysines and others in the 

Walker A, linker and Walker B motifs abolished or altered stimulation by MgADP (187; 483). 

However the NBDs are asymmetrical in functional behaviour and seem to differ in whether 

they bind and\or hydrolyse MgATP. Biochemical studies support the proposition that NBD1 

binds ATP without Mg2+ with slow hydrolysis whilst NBD2 binds and hydrolyses MgATP 

rapidly (42; 112; 550). The post and pre-hydrolytic states in the NBDs can be mimicked by 

using vanadate and beryllium in electrophysiological experiments and support the notion that 

MgATP hydrolysis at NBD2 is needed for increases in channel activity in Kir6.2\SUR2A 

complexes (615). However in excised patch-clamp recordings, MgADP clearly stimulates the 

channel and this implies that nucleotide hydrolysis is not a prerequisite for channel 

modulation. In addition, there are only a few reports of direct hydrolysis by SUR NBDs and 

if it were necessary for channel gating this would violate microscopic reversibility (42; 344). 

Furthermore, non-hydrolysable ATP derivatives may lead to conformational changes in the 



NBDs (400). It is also a general feature of ABC transporters that dimerization of the NBDs in 

the fashion detailed above is necessary for ATP hydrolysis to occur (318). The NBDs in SUR 

however are asymmetric in terms of their primary sequence with a degenerate Walker B motif 

in NBD1 and a degenerate ABC signature sequence in NBD2 (555). In the crystal structures 

the NBDs are clearly separate and asymmetric in relative position (310; 342). However this is 

a closed channel configuration co-crystallised in the presence of glibenclamide and it is 

possible that the NBDs might align and dimerise in an open configuration. Thus it is possible 

that whilst SURs may retain the ability to hydrolyse nucleotides it is not central to activation. 

However the adoption of the post-hydrolytic and MgADP bound state in NBD2 in a dimeric 

NBD structure is crucial for activation. It is however possible that the hydrolytic properties of 

the SUR subunit might be crucial for other functions though, for example, no clear transport 

ligand has been identified.  

 New light has been shed on these issues with the very recent publication of a high 

resolution structure of the pancreatic KATP channel co-crystallised with magnesium 

nucleotides and PIP2 (305).  They distinguished two forms: a propeller like overall structure 

similar to those studied previously and a new quatrefoil shape.  Crucially in the latter 

structure nucleotides were bound to SUR1 and reveal a canonical ABC transporter like 

structure with transmembrane segments 9 and 10 from NBD1 and transmembrane segments 

15 and 16 from NBD2 reaching across to interact with the other half NBD. The NBDs form 

head to tail dimers with the signature ‘LSGGQ’ motif in NBD1 disengaged from the bound 

MgADP leading to an open consensus ATPase site whilst the signature sequence in NBD2 is 

mutated to ‘FSQGQ’ directly contacting ATP and leads to a closed and degenerate ATPase 

site. The presence of ADP in one NBD site and ATP in another is a unique feature for an ABC 

transporter. The authors suggest that the ADP binding consensus site is an ADP sensor 

without a hydrolysis cycle during gating. In another structural feature, the lasso motif in 



SUR1 is disengaged from the ATP binding site and C-terminal domain on Kir6.2 in the 

quatrefoil but not in the propeller structure. The significance of this for gating however is not 

clear.   

 

Pharmacological Inhibitors 

 Once the KATP channels were cloned a priority for mutagenesis work was to determine 

the likely binding sites for sulphonylureas. Given that SUR1 was initially cloned by the use 

of high affinity binding and protein purification, it was clear that this subunit was the major 

binding site (1). However, in studies with tolbutamide in Xenopus laevis oocyte membrane 

patches expressing Kir6.2\SUR1, the dose-response curve for inhibition was best described 

by two independent binding sites. The curve was biphasic with a high affinity and low 

affinity site respectively (188). This is a feature of other sulphonylureas and related 

compounds (184; 185; 203). The high affinity component corresponds to the binding site on 

SUR and the low affinity site to one on the pore forming Kir6.2 subunit (16; 188). 

Furthermore, there are differential effects of these agents between SUR1 and SUR2 

containing channels. Thus glibenclamide, glimepiride, repaglinide and meglitinide show high 

affinity block in both SUR1 and SUR2 containing channels whilst tolbutamide, gliclazide, 

chlorpropamide and nateglinide do not exhibit high affinity block with SUR2 (185).  This 

observation drove an approach in which chimaeras were constructed between SUR1 and 

SUR2 and high affinity tolbutamide inhibition was assayed (16). The results indicated that 

the last group of transmembrane domains was important specifically the cytoplasmic loop 

between helices 15 and 16 in SUR1 (16).  Subsequent studies isolated S1237 as being the key 

amino acid residue (203) and introduction of serine at an equivalent residue in SUR2B led to 

an increase in the affinity of glibenclamide binding (195).  The cryo-EM structures are not 

clear as regards glibenclamide binding and will need higher resolution structures to 



unambiguously identify it. In the structure where glibenclamide is present, it might lie close 

to the S1237 residue but also that it might interact with the linker between TMD0 and TMD1 

(“L0”) specifically residue Y230 (342). There is some support from biochemical work for 

such a model (354; 574). For example deletion of TMD0 and L0 but not TMD0 led to an 

abolition of glibenclamide binding. The L0 domain interdigitates with Kir6.2 and thus would 

be optimally placed to regulate Kir6.2 gating. Finally, the structural studies suggest that 

glibenclamide might distort the relationship between the NBDs preventing alignment, 

dimerisation and consequent channel activation (310; 342).   

 At the physiological level there are also interactions between MgADP and 

sulphonylurea block. In inside-out patches tolbutamide acting at the high affinity site only 

leads to partial but not complete channel block in SUR1 containing channels. However in 

intact whole cells or in the presence of MgADP the action of tolbutamide is much more 

complete (188).  This is a general feature of sulphonylureas and related compounds (185).  

This interaction with MgADP is not a feature of SUR2 containing channels and in fact they 

are less effective when MgADP concentrations are high (427).  

 

Pharmacological Openers 

 As discussed above there are a wide variety of pharmacophores that can activate KATP 

channels. Nicorandil, pinacidil and cromakalim are selective for SUR2 containing channels 

whilst diazoxide is probably more specific for SUR1 containing subunits though it does 

activate SUR2B (172; 337). Diazoxide can activate SUR2A and cardiac channels under 

specific circumstances with high cellular MgADP (104). Studies using chimaeric approaches 

and binding studies have identified regions within TMD2 in particular the cytoplasmic linker 

between TM13 and TM14 and the last TM helices, TM16 and TM17, as responsible for the 

activation by pinacidil and cromakalim (25; 367; 551). The binding site for diazoxide is less 



well mapped though it is known that binding is nucleotide-dependent and occurs between 

TM6 to TM11 and NBD1 (25). The presence of more than one binding site on SUR for 

potassium channel openers may help rationalise the observed structural diversity of 

potassium channel openers. The binding sites are separate between that of the sulphonylureas 

and the potassium channel openers though there is some interaction which is likely to be 

allosteric in nature (195; 327). The pharmacological topology of drug-SUR interaction is 

summarised in Figure 6. It is worth noting that this has largely been determined from site-

directed mutagenesis and chimaeric studies and the contribution of structural studies using 

cryo electron microscopy is currently modest.  

 

Principles of assembly determined from structural studies    

 The cryo-EM structures have unambiguously delineated the key regions for the 

assembly and interaction of SUR1 with Kir6.2 in the closed channel configuration (310; 342) 

(and see Figure 4). Four SUR1 subunits are arranged peripherally to the pore-forming 

tetramer of Kir6.2. The complex is 125 angstroms in height, 200 angstroms wide and shaped 

like a propeller blade (Figure 4). The TMD0 and linker L0 contact the N-terminus of Kir6.2 

and also the proximal C-terminus close to the putative PIP2 and ATP binding site (see below). 

This is the primary point of contact and essentially TMD0-L0 is sandwiched between Kir6.2 

and TMD1 and TMD2 of SUR1. At the other interface between TMD0-L0 and TMD1-TMD2 

of SUR1 there is a so called “lasso” motif bound onto transmembrane segments M7, M15 and 

M16. Both of the cryo-EM structures are in a closed conformation however it is possible to 

speculate about sequences of events that might occur to gate the pore into an open state. 

MgADP binding for example could dimerise the NBDs and in other ABC transporters this 

results in motions of M6 and M7 in TMD1 and M15 and M16 in NBD2 relative to one 

another. This in turn is transmitted to the lasso and L0 linker which results in clockwise 



rotation of the proximal C-terminal domain of Kir6.2 opening the pore (310; 342).    

 

The regulation of KATP channels 

 

Metabolism and pH  

 The direct regulation of KATP channels by intracellular nucleotides has already been 

discussed.  It is worth noting that in cardiac cells it seems that KATP channels preferentially 

sense ATP derived from glycolysis (567). This is supported by more recent observations of 

direct association of glycolytic enzymes with the KATP channel complex as discussed above 

(225).  However cardiac cells also possess well developed phosphotransfer networks, using 

adenylate kinase and creatinine kinase, allowing mitochondrial energy homeostasis to be 

sensed and relayed to channels in the sarcolemma (64; 124). In contrast, in pancreatic beta 

cells mitochondrial oxidative metabolism is essential for KATP channel regulation by ATP 

(120; 214).  

 Intracellular acidification is an activator of KATP channels such as may occur with 

cellular anaerobic metabolism (111; 563; 583). The exact molecular basis for this effect is not 

clear though it involves an antagonism of ATP inhibition (581) and residues T71 and His-175 

in the Kir6.2 subunit (98; 584).  The latter residue is a good candidate for a direct pH sensor 

as it could readily be titratable by protons. In studies examining natively expressed KATP 

channels, the cardiac channel seems less sensitive to changes in intracellular pH than the 

skeletal muscle channel (111; 290; 303).  

 

Regulation by phosphatidylinositol (4, 5) bisphosphate (PIP2) 

 An emerging theme in ion channel research has been the dependency of channel 

activity on the presence of PIP2 and perhaps other anionic phospholipids in the plasma 



membrane (220; 221). PIP2 is a relatively minor lipid component of the plasma membrane 

making up less than 0.5% of total lipid composition (102; 560). Run-down could often be 

ameliorated by the provision of ATP or ATP-generating systems. The key observation was 

that this rundown in inside-out patches was reversed by the addition of PIP2 (either in lipid 

vesicles or as a water soluble derivative). This was also the case with the application of other 

anionic phospholipids but this was more variable and dependent on the specific channel being 

studied. This fundamental lipid dependency was observed for a number of channels and 

transporters and specifically with Kir6.2 containing KATP channels (132; 220; 484). 

Furthermore, with KATP channels the addition of increasing concentrations of PIP2 profoundly 

antagonised ATP inhibition (37; 484). This suggests that ATP inhibition and metabolic 

regulation might be subject to dynamic regulation within the cell. The Kir6.0 subunit 

determines the PIP2 sensitivity and there have been mutagenesis studies that have identified 

key positively charged residues in the slide helix. In particular basic residues in the C-

terminus (regions 176-222 and 301-314) have been identified as being important (485). The 

binding site for PIP2 in the cryo-EM structures was not particularly well resolved. However a 

binding pocket was better determined in other inward rectifier potassium channels (204; 570). 

It consisted of an interface between the transmembrane domain which confers non-specific 

lipid binding through hydrophobic acyl chains in PIP2 and the cytoplasmic domain which 

generates a specific phosphatidylinositol-binding region. The latter site is also contributed to 

by amino acid residues from the N-terminus. The effects of PIP2 are through direct binding. 

For example, it is possible to bind the C-terminus of Kir6.0 channels to phospholipid arrays 

and the ion channel activity of other inward rectifiers such as Kir2.0 channels can be 

reconstituted into PIP2 containing lipid vesicles (103; 422). Interestingly, in the binding 

assays the Kir6.0 channel domain is able to bind a wider array of phosphatidylinositol species 

and there are some indications that this might have functional significance in terms of 



regulation of KATP channel activity for phosphatidylinositol (4) phosphate (437).    

 PIP2 is an important substrate for a number of signalling enzymes including 

phospholipase C and phosphatidylinositol (3) phosphate kinase. One key question is whether 

PIP2 can act as a signalling molecule in its own right or whether cellular PIP2 depletion is 

ever sufficient to inhibit channels. Such regulatory phenomena can be demonstrated after 

heterologous expression of various components in cell lines and Xenopus laevis oocytes 

however these approaches lead to high and often non-physiological levels of expression. The 

critical point is what happens in native cells. There are studies examining phospholipase C 

activation via muscarinic receptors in neurones and these have revealed that PIP2 levels can 

fall by up to 60-70% (96; 572). However the remaining fraction is protected from depletion 

and once the agonist is removed the levels of PIP2 recover rapidly (generally within a 

minute). Ion channels regulated by PIP2 show a wide range of apparent affinities (441). 

Indeed in the Kir6.0 family, Kir6.1 has a higher affinity than Kir6.2 and this may account for 

why these channel complexes are less sensitive to ATP (422). The best evidence for PIP2 

acting as a true second messenger in signalling is the muscarinic receptor-mediated inhibition 

of the M-current (Kv7.0 channels) (56; 608). It is notable that these channels have low 

affinity PIP2 binding and the channel activity is exquisitely sensitive to changes in cellular 

PIP2 (291; 438). In many other channels including KATP channels such strong evidence is not 

evident and the jury is out on the potential signalling significance of the lipid regulation. In 

intracellular vesicles and organelles there are much lower amounts of PIP2. Thus one idea is 

that the PIP2 sensitivity of the majority of ion channels leads to them being closed in 

intracellular compartments. This would minimise ionic fluxes and water movement across 

these membranes (221).   

 

Regulation by other lipids 



 Other lipid species in particular fatty acids and metabolites are able to modulate KATP 

channel function. Fatty acids can also be metabolised by oxidation to acetyl CoA derivatives 

and independent of entering the citric acid cycle can modulate KATP channel function (321). 

These can directly activate KATP channels and seem to do so using the same binding site and 

mechanisms as PIP2 (339; 464). The effects are more pronounced on cardiac than pancreatic 

channels though both are regulated to some degree (51; 159).  Furthermore oleate is able to 

activate KATP channels in hypothalamic neurones: an effect that is independent of metabolism 

(105).  

 

Regulation by protein kinases  

 

Vascular smooth muscle cells 

 It is clear that in vascular smooth muscle phosphorylation of KATP channels is 

important in physiological function. It has been known for many years that vasodilators can 

activate KATP channels with subsequent membrane hyperpolarisation, decreased calcium 

entry and relaxation of vascular smooth muscle (420). This occurs through the classic 

signalling pathway where binding of an agonist to a G-protein coupled receptor activates the 

stimulatory G-protein (46; 174). This then leads to production of cAMP by adenylate cyclase 

and the activation of protein kinase A. Adenosine released from metabolically challenged 

tissue can bind to the adenosine receptor G-protein coupled receptors A2A and perhaps A2B 

(107; 109; 281). Calcitonin gene-related peptide is present in sensory nerve endings and leads 

to vasodilatation when it binds to the calcitonin receptor-like receptor which complexes with 

a receptor activity-modifying protein to form the mature receptor in vascular smooth muscle 

(34; 378; 569). Vasoactive intestinal polypeptide is another example of a vasodilator that is 

released from peripheral nerves and binds to its cognate receptor probably VIPR2 (597). 



Vascular smooth muscle cells contain α1 and β2 receptors and thus norepinephrine released 

from nerve endings will cause vasoconstriction whilst increases in circulating epinephrine 

will activate β2 receptors and cause relaxation (61; 227; 518). The response to exercise in an 

individual tissue is viewed as an interaction between a local signal, indicating metabolic 

demand, that can override the nervous signal mediated by sympathetic innervation. Finally 

endothelial mediators such as prostacyclin can activate their relevant GPCR in smooth 

muscle and this is particularly important in the pulmonary circulation (250; 463). It is worth 

emphasising that the activation of KATP channels is not the sole mechanism by which these 

vasodilators act and for example in some vascular beds the effects are only partially inhibited 

by sulphonylureas (280).  

 Protein kinase A acts by directly phosphorylating the channel complex. On the 

SUR2B complex T633, S1387 and S1465 are important whilst on Kir6.1 S385 is involved 

(423; 477). The phosphorylation sites on SUR2B are in and around the NBDs and it is 

plausible they promote MgADP binding and channel activation. It is also conceivable that the 

sequential phosphorylation of increasing numbers of these residues allows a graded increase 

in open probability and response with increasing strength of upstream signal (423). 

 In contrast vasoconstrictors can inhibit the KATP channel and this leads to membrane 

depolarisation, increased calcium entry and vasoconstriction (420). The vasoconstrictors 

include endothelin-I, an endothelial mediator, circulating angiotensin II, norepinephrine from 

sympathetic nerve endings and histamine released from mast cells (50; 210; 292; 361). The 

binding of relevant agonists to their cognate G-protein coupled receptors leads to the 

activation of the Gq\11 family of G-proteins and then activation of phospholipase C beta (45). 

This in turn leads to the production of diacylglycerol and inositol trisphosphate from PIP2. 

The former activates protein kinase C and the later mobilises Ca2+ from intracellular stores 

(41). It seems that protein kinase C is the important mediator. The vascular channel binds 



PIP2 with high affinity and it functions more like a cofactor necessary for channel activity 

than a signalling mediator (422). Where detailed measurements have been performed it seems 

likely that there is only ever modest depletion of PIP2 in native cells after receptor activation 

(375; 572). Electrophysiological studies support the involvement of calcium independent 

isoforms of protein kinase C and specifically the epsilon isoform (210). The inhibitory effect 

is dependent on phosphorylation of a cluster of serine residues in the distal C-terminus of the 

Kir6.1 subunit (S354, S379, S385, S391 and S397) (476). The Kir6.2\SUR2B channel 

complex can also be regulated by PKC but in this case the effect is calcium dependent and a 

single residue S372 is key (23). Whilst it is clear that PKC can directly inhibit channel 

opening it also seems that it can promote channel internalisation perhaps via caveolae (23; 

253). The modulation of KATP via PKC may contribute to vasoconstrictor action but it is clear 

that other potassium channels can be inhibited such as voltage-gated potassium channels 

(211; 424). In addition, IP3 mediated calcium release will directly promote vascular smooth 

muscle contraction.  

 There a number of ways the contractile response via KATP channels can be amplified. 

Agonist bound angiotensin receptor (AT-1) activates PKC via the Gq\11 family of 

heterotrimeric G-proteins but in smooth muscle it also couples to inhibitory G-proteins. This 

has the effect of inhibiting adenylate cyclase and down regulating basal PKA activity and 

vasodilatation (210). Phosphatases are important in reversing the action of protein kinases. 

Calcineurin (also known as PP2B) is a calcium dependent phosphatase and it can inhibit KATP 

channels in vascular smooth muscle (573). It is likely it does this through reversing PKA-

mediated phosphorylation (398). As vasoconstrictors promote calcium mobilisation, this will 

reverse PKA-mediated channel phosphorylation through the activation of calcineurin.  

Exchange proteins activated by cAMP represent a PKA independent signalling pathway. The 

emergence of good pharmacological tools to separate the two systems has implicated them in 



a number of cellular signalling events (308). Activation of exchange proteins by cAMP 

inhibits smooth muscle KATP channels via Ca2+ mobilisation and subsequent activation of 

calcineurin (418).          

 Caveolae are cholesterol rich vesicles and are involved in native smooth muscle in 

compartmentalising both PKA and PKC mediated signalling. Thus adenylate cyclase and 

Kir6.1 localise in caveolae as determined by sucrose gradient separation and electron 

microscopy (457). Cholesterol depletion, which disrupts caveolae formation, attenuates PKA 

mediated signalling (457). Protein kinase C epsilon translocates to caveolae on angiotensin II 

receptor activation (456). The PKA-mediated activation of KATP channels in vascular smooth 

muscle cells might also be enabled by A-kinase anchoring proteins (209). Use of a peptide 

which inhibits PKA binding to A-kinase anchoring proteins led to attenuation of KATP channel 

activation in whole-cell recordings (209). The regulation of vascular smooth muscle KATP 

channels by protein kinases is summarised in Figure 7.  

  

Cardiac myocytes 

 Protein kinase C is thought to be a critical mediator in various cardioprotective 

phenomena. For example, ischaemic preconditioning describes the phenomena where short 

periods of ischaemia, prior to a more damaging insult, protects the heart and reduces infarct 

size (598). This can be mimicked by phorbol esters, diacylglycerol analogues and receptor 

activation of receptors coupled to the Gq\11 family of G-protein and the protective response 

is inhibited by PKC inhibitors (323; 325; 326; 496).  Ischaemic preconditioning could also be 

mirrored by potassium channel openers and prevented by sulphonylureas (495). Initially it 

was proposed that this involved the sarcolemmal KATP channel but the focus quickly shifted 

to the mitochondrial channel (see below).   

Thus protein kinase C modulation of cardiac KATP channels was highly topical 



initially as an avenue for investigation. Indeed, as was expected, investigators were able to 

show activation of the cardiac channel by PKC. For example, perfusion of a catalytic subunit 

of PKC in inside-out patches increased open probability three-fold and this was inhibited by 

PKC inhibitors. The effect was rendered irreversible if phosphatase activity was blocked 

using okadaic acid (316). However the position is now known to be more complex. The 

prevailing level of ATP is thought to be important: thus the channel is activated by PKC 

under conditions of high ATP and inhibited in the presence of low ATP when channel activity 

is high (313; 316). The level of intracellular Ca2+ is also influential and in conditions where 

physiological levels of Ca2+ prevail there is a biphasic effect with activation followed by a 

slower inhibition due to channel internalisation (229). This complex behaviour is determined 

by the Kir6.2 subunit and thus would be expected to be observed with channels in the heart 

and pancreas. This is in contrast to Kir6.1-containing complexes which seem to be 

universally inhibited by PKC. The specifics of regulation of cardiac and skeletal myocyte 

KATP channels through PKA has been little studied though it is plausible it is important during 

exercise (see below).   

 

Pancreatic cells and other tissues 

A wide range of hormones including incretins, growth factors and neurotransmitters 

can regulate glucose-stimulated insulin release in pancreatic β cells. Two incretin hormones 

have been heavily studied, glucagon-like peptide 1 and glucose-dependent insulinotropic 

polypeptide, and it is known that both promote insulin release (166; 347). Glucagon like 

peptide-1 and glucose-dependent insulinotropic polypeptide are agonists at G-protein coupled 

receptors and are coupled to the stimulatory G-protein. In addition there are GPCRs such as 

GPR40 that sense free fatty acids and also amplify insulin signalling (366). In contrast the 

free fatty acid receptors couple to the Gq\11 family of G-proteins and thus activate PKC and 



mobilise Ca2+ from intracellular stores. Drugs acting on these pathways are already being 

developed and taken into clinical trials (366).  

Thus PKA-dependent modulation of the pancreatic KATP channel and the cloned 

equivalent has an important and emerging physiological context. In pancreatic β cells isolated 

from SUR1 knockout mice, glucagon-like peptide 1 was able to elevate cAMP but did not 

cause insulin release implicating KATP channels in incretin action (481). In this physiological 

setting it would be expected that PKA-mediated signalling should inhibit KATP channel 

currents thus promoting insulin release. However using the cloned subunits SUR1 and Kir6.2 

and examining regulation in a heterologous expression system, PKA-mediated 

phosphorylation led to increased currents. Furthermore, important residues were identified 

that were homologous to those established to be important in SUR2B and Kir6.1 (181; 317; 

423). Further studies revealed, rather like the actions of PKC, that the exact conditions used 

were important. Thus with 0.2 mM ADP the phosphorylation mediated by the PKA catalytic 

subunit was inhibitory whilst with 0.5 mM it was stimulatory (315). The S1488 residue in 

SUR1 was identified as being involved (315). There are also data, as for the vascular channel, 

implicating a non-PKA dependent pathway acting via cAMP and exchange proteins activated 

by cAMP (262; 263). It is important to note that incretins affect multiple other events in β cell 

signalling and the KATP channel likely plays only a contributory role. For example, glucagon-

like peptide 1 can also modulate TRPM channels (478) and PKA may modulate the insulin 

vesicle secretory apparatus.  

Insulin exocytosis is mediated by soluble N-ethylmaleimide-sensible factor 

attachment protein receptors (SNAREs). In β cells these include plasma membrane associated 

syntaxyn-1A and SNAP25/23, and granule membrane associated vesicle-associated 

membrane protein and synaptobrevin. These two sets of proteins interact and govern docking 

and fusion of insulin containing vesicles with the plasma membrane (272). KATP channels 



interact with syntaxin-1A via the NBDs of SUR1 and the interaction inhibits channel 

opening. Syntaxin-1A also influences the trafficking of KATP channels with a decrease in 

protein expression of syntaxin-1A leading to reduced surface expression of Kir6.2\SUR1 (68; 

384; 409). 

Leptin is a satiety hormone secreted by adipocytes and its absence leads to obesity. 

Leptin can inhibit insulin secretion by increasing the surface expression and activity of 

pancreatic KATP channels (224). The activation of the AMP-activated protein kinase by leptin 

may be central to the regulation of trafficking (406; 407) though there are also data showing 

that phosphoinositide 3 kinase may also be involved (585).  

 

Modulation by gasotransmitters 

 Nitric oxide is an important endothelial mediator and diffuses into smooth muscle 

where it activates guanylate cyclase increasing cGMP and activating protein kinase G. There 

is no clear consensus on whether PKG can directly activate KATP channels. For example, in 

cardiac ventricular myocytes activation of KATP channel currents has been seen (198; 199). 

However nitric oxide may predominantly affect non-potassium channel dependent pathways 

and if it does activate potassium channels there is most evidence for the activation of large 

conductance Ca2+-activated K+ channels (458; 610). Nitric oxide can also directly nitrosylate 

proteins and some of its effects on potassium channels may occur because of this (49; 373). 

Endothelial KATP channels can potentially modulate calcium entry and this would promote 

release of NO. Much less is known of the regulation of endothelial channels but they seem to 

be constituted of Kir6.1\SUR2B and can be activated via Gs- coupled adenosine receptors 

(20).  

 It is clear there are more gaseous endothelial mediators than simply nitric oxide. The 

endothelium also generates carbon monoxide and H2S. Carbon monoxide activates guanylate 



cyclase in a manner analogous to nitric oxide (373) and KATP channels do not seem to be 

prominently involved. H2S is synthesised largely by cystathionine -lyase and the deletion of 

the gene encoding the enzyme results in hypertension in mice (593). In this case activation of 

vascular smooth muscle KATP channels is thought to be involved and occurs through S-

sulphydration of cysteine residues (71; 372). In particular the SUR2B subunit appears to be 

the main target on residues C24 and C1455 (266). The regulation of KATP channels may 

extend more widely than just the vasculature including into non-vascular smooth muscle and 

neurones (67; 139).  

 

Mechanosensitivity of KATP channels 

  It has been known for some time that KATP channels seem to be directly sensitive to 

mechanical stretch. This is an important idea as it could potentially couple workload and 

contraction with channel activation independent of changes in adenine nucleotides. In rat 

atrial myocytes, the application of a hypotonic solution increased KATP channel activity in 

perforated patch whole-cell recordings (553). The channel seems to directly respond to 

membrane deformation such as would be generated by suction on the pipette in inside-out 

patch recordings (231). However this bilayer tension can be regulated by the actin 

cytoskeleton (231). This sensitivity was dependent on the SUR subunit and in particular 

nucleotide handling in NBD2 (135): specifically mutation of a residue (K1337) abolished the 

effect.   

  

Studying KATP channel function: an overview 

 A number of different approaches have given major insight into the integrated 

function of KATP channels in physiology. There is a long standing use of small molecule 

inhibitors and activators and in this regard KATP channels have a rich and well understood 



pharmacology (see above). Once the channel subunits were cloned this opened up 

engineering a variety of murine models of increasing sophistication including transgenic 

overexpression, global genetic deletion and conditional gene deletion and expression using 

cre\loxP approaches. Finally modern genetics and genomics has implicated KATP channels in 

human endocrine, cardiac and neurological disease and given important insights that 

complement the animal work. Table 2 summarises details of the various genetically modified 

mouse models that have been developed.  

 

Physiological and pathophysiological function of KATP channels 

 

Species conservation 

 Comparative genomics can be valuable in suggesting functional specialisation within 

the animal kingdom and identifying by homology domains key for core channel function. In 

general investigators will focus on traditional model organisms. In the invertebrate 

Drosophila melaganostar there are three inwardly rectifying channel subunits each with a 

GFG motif in the consensus sequence (117). A potential sulphonylurea like subunit also 

exists however the two proteins are expressed in different regions and there are no data on 

KATP like currents being present in native cells (374). Thus mature KATP currents may be a 

unique specialisation of vertebrates. In the lower vertebrate zebrafish (Danio rerio) subunits 

homologous to Kir6.1 and Kir6.2 are present but in addition there is another member of the 

family, Kir6.3, present in the genome (606). Two sulphonylurea subunits also exist and there 

is co-expression of these with Kir6.3 in the brain and heart (606). Expression of the zebrafish 

Kir6.3 with mammalian SUR1 in heterologous expression systems led to KATP like currents, 

however, currents in native cells were not examined and function was not further explored. 

However it is known that lizards, frogs and other fish have KATP like currents in cardiac cells 



(403; 404). In a recent study KATP currents have been found in zebrafish islet βcells and 

modulation of channel activity leads to changes in glucose homeostasis illustrating 

conservation of function between lower and higher vertebrates (128).      

 

KATP channels in the endocrine tissues 

 KATP channels play a key role in nutrient-sensing. The classical paradigm is in the 

pancreatic βcell where they are central in glucose-stimulated insulin release. However more 

recently it has also become apparent that similar KATP channels may have a physiological role 

in glucagon release from αcells in the pancreas and are also present in various 

enteroendocrine cells in the gut. Furthermore, nutrient-sensing is also important for 

regulating feeding behaviour and KATP channels in the central nervous system may be 

involved in this process.  The major channel populations in endocrine tissues are summarised 

in Table 3.    

 

Insulin release and pancreatic  cells 

 Pancreatic β-cells in the islets of Langerhans synthesise, store, and secrete insulin so 

that the fasting blood glucose level is kept within a narrow range of 3.5–5.5 mM. Insulin 

promotes glucose uptake into skeletal muscle, the liver and adipose tissue and switches off 

glucose production by metabolic processes such as glycogenolysis. KATP channels are 

essential in the tightly regulated process that couples the blood glucose concentration to the 

secretion of insulin (“stimulus-secretion coupling”). Pancreatic β cells are excitable and 

respond to increases in glucose with membrane depolarisation and action potential firing 

(442; 443). It is essential that glucose is metabolised to pyruvate and enters into 

mitochondrial oxidative metabolism which leads to changes in the cellular ATP concentration 

(214). KATP channels constituted of SUR1 and Kir6.2 are the main glucose-sensitive 



conductance in the pancreatic β cell and control electrical activity. In the absence of glucose 

the resting membrane potential is ~-70 mV. If exposed to 6 mM glucose the cell depolarises 

due to a 70% reduction in the KATP conductance and this triggers action potential firing above 

a threshold of -60 mV (442). These effects can be mimicked by the use of drugs such as 

tolbutamide. The action potential is driven by a variety of calcium channels (L, R and T 

types) and repolarisation by calcium-activated potassium channels (442). The repetitive 

action potential firing leads to calcium entry and oscillations resulting in insulin vesicle 

exocytosis. There are species differences with mouse islets needing higher glucose 

concentrations than human beta cells to trigger action potential firing and insulin release. This 

is likely underpinned by significantly lower KATP current density in human beta cells together 

with differences in glucose transporter expression (442; 443).  A cartoon shown in Figure 8 

illustrates the process of stimulus secretion coupling in pancreatic βcells.  

 The use of genetically modified mice has generally supported the key involvement of 

βcell KATP channels in insulin secretion however there are some qualifications. In pancreatic 

islets that have expression of gain of function mutations in KATP channel subunits there is 

impaired insulin release and resultant diabetes mellitus (176; 288; 432; 433). However, in 

SUR1 and Kir6.2 global knockout mice and loss of function mutations, hyperinsulinism and 

hypoglycaemia are a highly variable finding (232; 355; 467; 480). In fact the opposite is often 

true in that there is impaired insulin secretion and βcell loss ultimately resulting in diabetes. 

In congenital hyperinsulinism in man, due to loss of function mutations in KCNJ11 and 

ABCC8, patients may be predisposed to developing diabetes mellitus later in life. (and see 

below). It seems KATP channels are important for βcell survival and that the mouse is more 

predisposed to βcell loss resulting from KATP channel inactivation. A variety of hormones and 

neurotransmitters can modulate insulin release from pancreatic βcells and this is discussed in 

the section above.  



 

KATP channels in pancreatic  cells  

 Glucagon is released from pancreatic  cells and promotes the mobilisation of 

glucose. Glucagon release is inhibited by increase in blood glucose. Paradoxically KATP 

channels may also be involved in stimulus-secretion coupling in these cells (444). KATP 

channels are inhibited by the rise in blood glucose and this leads to membrane depolarisation.  

The key difference is that pancreatic alpha cells fire action potentials at normal blood glucose 

concentrations leading to the constitutive release of glucagon. Membrane depolarisation leads 

to an increase in action potential frequency but a reduction in amplitude. The latter is central 

and results in less calcium entry via P\Q calcium channels. Glucagon secretion is strongly 

dependent on calcium entry via P\Q calcium channels and thus secretion is reduced (444).    

  

Gut-derived hormone release 

 Glucagon-like peptide-1 is released from the gut and acts as an incretin to increase 

insulin release from the pancreas (see above). It is one of a number of gut-derived hormones, 

which also includes glucose-dependent insulinotropic polypeptide, released from different 

enteroendocrine cell populations in response to a variety of dietary cues (fasting, 

carbohydrates, protein, fats etc) (186). Glucagon-like peptide-1 is released from L-cells and 

glucose-dependent insulinotropic polypeptide from K cells (186). In an interesting study, a 

reporter mouse was developed that enabled the isolation and study of this cell population. 

The release of glucagon-like peptide 1 is sensitive to glucose in the intestine and stimulus 

secretion coupling involves calcium entry and KATP channels (429). However the mechanisms 

may not be as clear as with glucose-sensing in pancreatic βcells and may involve a variety of 

specialised G-protein coupled receptors recognising the dietary components and their 

breakdown products (186).   



 

KATP channels in the heart  

 The cardiac action potential is shaped by a large number of ionic conductances and 

the exact morphology varies between different chambers and within the conduction system 

(534). The calcium entry that occurs during the plateau of the action potential is central to 

calcium-induced calcium release and excitation-contraction coupling (146). Under resting 

conditions however KATP channels seem to contribute little to resting membrane potential or 

action potential repolarisation.  

 The classic composition of the cardiac KATP channel is thought to be Kir6.2\SUR2A 

and this is largely derived from studies in the ventricle. In fact KATP currents are widely 

distributed including the atria and conduction tissues and there may be some nuances in 

subunit expression. In the His-Purkinje system heteromultimers of Kir6.1 and Kir6.2 exist 

together with SUR2A (31; 600). Furthermore, in murine atrial cardiac myocytes there is good 

evidence that KATP is formed by Kir6.2\SUR1 however in human atrial myocytes it is 

Kir6.2\SUR2A (136; 149). The major channel populations in striated muscle are summarised 

in Table 4.  

 

Physiological function 

 Relatively large KATP currents can be observed when cardiac myocytes are 

metabolically challenged but not under resting conditions (391). Action potential duration 

and contractile function in the Kir6.2 knockout mice are also normal in the basal resting 

physiological state (511). This raises the question of what is the exact physiological role of 

the channel. The study of murine models with global genetic deletion of Kir6.2 has pointed to 

some interesting possibilities. In an exercise treadmill stress test the Kir6.2 knockout mice 

had significantly lower tolerance to high intensity running (616). Furthermore when 



challenged with isoprenaline they showed impaired contractile function, failure of action 

potential shortening and the development of arrhythmia and myocardial necrosis (616). Thus, 

despite the caveats of using a mouse with global genetic deletion, this suggests the cardiac 

channel is involved in adaptation to the stresses of a sympathetic “fear and flight” response. 

Additionally, exercise may have more chronic effects leading to an increase in KATP channel 

subunit expression (617). This would promote physiological adaptation to high intensity 

exercise.   

 

Hypoxia and ischaemia  

 Classically the activation of cardiac KATP channels occurs under pathological 

conditions associated with hypoxia and ischemia. Such stressors substantially shorten the 

action potential duration and can attenuate or even abolish contraction (304; 557). Whilst it is 

difficult to envisage that these responses evolved to deal with pathological challenges, the 

opening of KATP channels is likely to enhance myocyte survival and the field of 

cardioprotection is discussed further below. It is intriguing that KATP channels are localised at 

the neck of the t-tubule and activation could locally and preferentially inhibit t-tubule 

depolarisation impairing calcium induced calcium release and excitation-contraction coupling 

(285).  

 

Cardiac excitability 

 The action potential and QT interval on the ECG shorten with exercise. It is generally 

thought that increased magnitude of the slow component of the delayed rectifier potassium 

current are responsible for counteracting and overriding the increase in inward voltage-

dependent calcium currents that will occur with increased sympathetic drive during exertion 

(40; 459). This occurs through current accumulation at higher heart rates and direct protein 



kinase A phosphorylation of the channel (343; 503). However given the known properties of 

cardiac KATP channels it is plausible that these channels may also contribute to action 

potential shortening during exercise. Deviations of the ST segment from the isoelectric point 

occur during cardiac ischaemia and infarction and suggest spatial differences in repolarisation 

are occurring. These variations in ECG morphology occurring during cardiac ischaemia are 

reduced by glibenclamide and mimicked in the absence of ischaemia by potassium channel 

openers.  This pharmacology is consistent with KATP channel activation underlying these 

features (294). In support of this hypothesis, mice with global genetic deletion of Kir6.2 do 

not develop ST segment elevation in response to ischaemic episodes (311). However, SUR2 

null mice do show ischaemia-provoked ST segment elevation so there may be additional 

mechanisms operative under some circumstances (74).  

 

Cell volume regulation 

 The regulation of cell volume is important to the normal physiological function of the 

cell and if cell swelling is excessive membrane rupture and cell death will occur. It is known 

that KATP channels can be activated in atrial myocytes when the cells swell (453). In Kir6.2 

knockout mice KATP currents were not activated by cell swelling and atrial natriuretic peptide 

release was significantly higher suggesting that KATP channel activation limited the release of 

the hormone. The Kir6.2 knockout mice also showed exaggerated atrial natriuretic peptide 

release with systemic volume loading (453). In separate studies, when myocytes are 

challenged with a mild hypo-osmotic shock or with a hyperkalaemic cardioplegic solution, 

they swell and myocardial contractility is impaired (363; 415). The addition of diazoxide 

ameliorates this process as does the transgenic expression of a gain of function Kir6.1 mutant 

(213).  Thus it would seem that activation of KATP channels prevents excessive cell swelling 

and myocardial contractile failure. However some results from Kir6.2 knockout mice and 



with KATP channel inhibitors are contradictory and do not support this hypothesis (362; 468).  

To some extent these contradictions can be resolved by proposing that activation of 

Kir6.1\SUR1, but not of Kir6.2\SUR2A, is the specific channel population modulating cell 

adaptation to swelling. The effects on cell swelling might also contribute to cardioprotection 

(474).  

 

KATP channels in skeletal muscle 

 It was originally assumed that Kir6.2 and SUR2A underlie KATP currents in skeletal 

muscle and this view was reinforced by studies on mice with global genetic deletion of the 

genes (75). However the picture may be more intricate than this. KATP current-density is 

higher in fast twitch skeletal muscle and this is accompanied by higher SUR1 expression than 

in other muscle fibre types (542). As in cardiac muscle the channel is closed and contributes 

little to the electrophysiological properties of skeletal muscle at rest (236). The precise 

physiological role of the current is not clearly defined. The properties of channels in striated 

muscle are summarised in Table 4.  

 

Muscle fatigue 

 Characteristically there is a decline in force with repetitive and prolonged muscle use; 

a process known as fatigue. KATP channels are not involved directly in the initial decline of 

force with repetitive use however, after fatigue has developed, they help preserve a 

hyperpolarised membrane potential and prevent a rise in resting tension (77; 180). 

Furthermore, in Kir6.2 knockout mice the recovery of muscle tension after excessive muscle 

use is impaired (77; 180). The channel is also involved in preventing muscle damage after 

excessive exercise. Mice with global genetic deletion of Kir6.2 develop significant myofibre 

damage after swimming or treadmill exercise and the cellular mechanisms may be similar to 



those in analogous studies with cardiac muscle (260; 528). This adaptation to strenuous 

exercise is one potentially good candidate for the physiological function of the channel in 

skeletal muscle.   

 

Glucose uptake 

 Skeletal muscle KATP channels have been associated with regulation of glucose 

uptake. Sulphonylureas have been known to improve blood glucose control independent of 

their effects on pancreatic insulin release (110; 440). Specifically they enhance uptake of 

glucose into skeletal muscle and this is supported by studies on Kir6.2 and SUR2 knockout 

mice (75; 356; 545). Analogously increased activity of the channel during exercise might 

decrease glucose uptake and promote the use of alternative energetic substrates.   

 

Skeletal muscle metabolism 

 KATP channels in skeletal muscle may be involved more broadly in regulating 

metabolism. Even at low workloads KATP channel opening was observed and the absence of 

the channel led to increased heat production (614). Furthermore, these mice have a lean body 

phenotype with reduced glycogen and fat stores (2). They were also resistant to weight gain 

from high fat feeding but had impaired endurance due to inefficient muscle substrate 

metabolism. Absence of KATP channels also promoted the release of musclin, a peptide 

similar the natriuretic peptides that promotes mitochondrial biogenesis in muscle (488; 506).  

 

KATP channels in the vasculature 

 As discussed above the channel present in the vascular smooth muscle has distinct 

properties namely a lower single channel conductance (~30-35 pS compared to 70-80 pS), is 

less prominently regulated by ATP and channel activity is absolutely dependent on the 



provision of intracellular dinucleotides (a “KNDP“ current) (38; 79; 420). These properties, 

summarised in Table 5, correspond closely to that of the Kir6.1\SUR2B combination and this 

is likely to generate the “KNDP” current in smooth muscle (22; 101; 358; 587). In vascular 

smooth muscle cells from mice with genetic deletion of Kir6.1 and SUR2, KATP currents are 

no longer present, whereas similar smooth muscle cells from Kir6.2 knockout mice show a 

similar current-density of KATP currents when compared to littermate control (511). This may 

not be universally the case and there are some indications for example in portal vein that 

Kir6.2 may be expressed together with Kir6.1 and SUR2B (85). Interestingly, endothelial 

cells also express an ATP-sensitive potassium current (273; 274; 462) and this has been less 

studied. SUR2B is expressed in the endothelium and there is a study in human endothelial 

cells showing a heteromeric population of Kir6.1 and Kir6.2 (600). 

 

Blood pressure control  

 KATP currents are widely expressed in a number of vascular beds and throughout the 

vascular tree (379). This observation and the fact of clear regulation of vascular smooth 

muscle KATP currents by vasodilators and vasoconstrictors (see above) support the potential 

role for the channel in blood pressure control. Smooth muscle cell contraction is promoted by 

the entry of Ca2+ through L-type calcium channels in the sarcolemma and KATP channels by 

influencing membrane potential can promote vasodilatation and vasoconstriction. The exact 

effects observed will depend on whether there is tonic activity of the channel and this may 

not be the case in all vascular beds. It is known for example that the perfusion of 

glibenclamide into the coronary vascular bed increases coronary perfusion pressure (405; 

426). Figure 7 shows the regulation of KATP channels in vascular smooth muscle cells by cell 

signalling and how the channels could potentially be involved in blood pressure regulation.  

 The best evidence for the role of vascular KATP channels in blood pressure control 



comes from the study of genetically modified mice. SUR2 and Kir6.1 global knockout mice 

have significantly elevated blood pressure (74; 358). A mouse with conditional deletion of 

Kir6.1 in vascular smooth muscle cells is also hypertensive though it is intermediate in 

magnitude between the global Kir6.1 knockout and littermate controls (22). Furthermore, 

vasodilators such as calcitonin gene-related peptide no longer hyperpolarise vascular smooth 

muscle cells and the application of the agonist no longer increases potassium currents in 

whole-cell recordings in the mice with genetic modification (22). Finally, mice with a gain of 

function mutation rendering Kir6.1 ATP-insensitive are hypotensive when this subunit is 

transgenically expressed in vascular smooth muscle (309).  

 

Vascular reactivity 

Mice with global genetic deletion of Kir6.1 and SUR2 have more complex 

phenotypes than simply hypertension (74; 358). The two lines of mice are prone to dying 

suddenly and this has been attributed to coronary artery spasm in a syndrome equivalent to 

that of severe human Prinzmetal angina. It was proposed that the absence of the KATP channel 

in vascular smooth muscle in the coronary arteries predisposed them to vasoconstriction. 

However this simple hypothesis may only be part of the explanation. On the background of 

the SUR2 knockout mouse, Kakkar et al transgenically overexpressed SUR2B selectively in 

smooth muscle (257). The KATP current was fully reconstituted in the coronary arteries but 

vasospasm still occurred. Furthermore, a mouse with conditional deletion of Kir6.1 in smooth 

muscle in contrast did not have evidence of coronary artery spasm even after the 

administration of ergonovine (22). A key corollary of this study is that smooth muscle 

deletion of Kir6.1 does not fully recapitulate the phenotype and suggests the important 

influence of KATP currents constituted of Kir6.1 in other tissues.  

 In hypertensive animal models there is remodelling of KATP channels in vascular beds 



leading to functionally impaired and fewer KATP channels (47; 515). The membrane potential 

of vascular smooth muscle cells is more depolarised in hypertension. In addition, potassium 

channel openers have little effect on membrane potential compared to normotensive animals 

(515). 

 

Endothelial KATP channel 

 Increases in potassium currents can influence endothelial function by hyperpolarising 

the membrane potential. In contrast to smooth muscle cells, hyperpolarisation promotes 

calcium entry and leads to the release of vasoactive mediators (390). Endothelial cells may 

also express an ATP-sensitive K+ current (273; 274; 462), activation of which can increase 

intracellular calcium (167; 302; 562) and important mediators such as adenosine may 

modulate KATP channels in the endothelium as a component of their physiological action 

(299). Calcium is central to many endothelial functions such as mediator release and 

angiogenesis (69). Kir6.1 is thought to make a significant contribution to the current but is 

perhaps not the sole subunit underlying it (600). Furthermore, the expression of a dominant 

negative KATP channel construct selectively in endothelial cells increased endothelin-1 release 

(335). We have recently completed a study in which we selectively deleted Kir6.1 in 

endothelial cells using cre\loxP technology. This genetic manipulation abolishes KATP 

currents in endothelial cells and pinacidil-induced calcium entry (20).  These mice also 

showed impaired reactivity to hypoxia in the coronary circulation resulting in increased 

cardiac damage during ischaemia-reperfusion (20). The effects were potentially mediated by 

adenosine receptor activation in endothelial cells leading to the activation of KATP channels. 

Iptakalim, a KATP channel opener, has been developed as an anti-hypertensive agent (489) and 

has also been shown to increase NO release and NOS activity and to inhibit endothelin 

release in aortic endothelial cells (167).  



 

KATP channels in non-vascular smooth muscle 

 KATP channels are ubiquitously expressed in non-vascular smooth muscles and these 

include throughout the gastrointestinal tract (207; 255), bladder (155), uterus (328), urethra 

(524) and the respiratory airways (258). The currents are similar in properties to those of 

vascular smooth muscle and there is substantial evidence for the expression of Kir6.1 and 

SUR2B (255; 524). There may be some variations in specific smooth muscles. For example, 

in the urethra there is evidence for expression of Kir6.2 and of heteromultimer formation 

(525) and both pore-forming subunits may also be expressed in the colonic smooth muscle 

(536). 

 In general less is known of the physiological role of these channels in these varied 

organ systems and they have been little studied in the various genetically modified mouse 

lines. The application of KATP channel openers and inhibitors often causes relaxation and 

contraction respectively of the smooth muscle and thus it is clear these currents are of 

sufficient density to have the potential to significantly modify organ function (284; 371; 523). 

There is also the potential for drug development to treat conditions such as asthma or bladder 

instability.    

 

KATP channels in the central and peripheral nervous system 

 KATP channels are ubiquitously distributed in central and peripheral neurones and in 

glial cells (507). In glia the main current is probably made up of SUR1 and Kir6.1 (125; 532) 

though there is also evidence for Kir6.2 expression in some limited glial populations (612). 

The current is activated by diazoxide as might be expected from the SUR1 expression. In 

neurones the most common molecular composition appears to be Kir6.2\SUR1 however in 

some brain regions and even between individual neurones different SURs can be expressed 



(194; 270; 271). In an interesting study, using single-cell expression analysis the individual 

genetic makeup of SUR subunits within a cell was correlated with the exact 

electrophysiological phenotype and this defined the metabolic sensitivity of the respective 

neuron (319).  The major channel populations in the nervous system are summarised in Table 

6.    

 

Neuronal excitability 

 KATP channels may contribute to modulating neuronal excitability even in the absence 

of hypoxia (3; 194). Even moderate levels of neuronal spiking can lead to a significant 

metabolic challenge for the neuron and a consequent fall in cellular ATP levels. The 

activation of KATP current will hyperpolarise the membrane potential and this limits action 

potential spiking. Single channel cell-attached recordings show an increase of KATP channel 

activity after a burst of action potentials and this is attenuated if energy consumption is 

reduced by inhibiting the sodium-potassium ATPase transporter (520).  

 

Pain  

 KATP channels are present in dorsal root ganglion neurones and experimental studies 

support a role in suppressing hyperalgesia (618). Kir6.2, SUR1 and SUR2 are expressed in 

these neurones and severing of the nerve leads to hyperalgesia. This is accompanied by 

decreased subunit expression and reduced KATP current levels. Interestingly KATP channel 

subunits and currents are widely distributed in soma, axons and in Schwann cells (276; 618). 

The loss of KATP currents promotes hyperexcitability and facilitates neuronal firing. In injured 

dorsal root ganglion cells calcium signalling is impaired. In normal neurones, KATP currents 

are enhanced by increases in intracellular calcium in a process that is sensitive to calcium-

calmodulin dependent protein kinase inhibitor (275). In contrast in axotomised neurones 



calcium had no effect on KATP currents and this correlated with the degree of hyperalgesia.  

Thus KATP channels may be a drug target in the treatment of neuropathic pain.  

 

Locomotion and Behaviour 

 KATP channels may be involved in locomotion and behaviour. Using a broad battery of 

behavioural tests revealed that Kir6.2 knockout mice have reduced activity and impaired co-

ordination (113). Normal mice characteristically actively explore new environments 

especially if this is associated with reward. Dopaminergic neurones in the midbrain are 

critical for integrating this behaviour and it is associated with increased burst firing in these 

neuronal populations. In Kir6.2 knockout mice this behaviour does not occur and neuronal 

firing is also reduced. Furthermore injection of an adeno-associated virus expressing a 

dominant-negative construct for Kir6.2 bilaterally into the relevant dopaminergic neurones 

led to a similar phenotype as in the global Kir6.2 knockout mouse (461). Kir6.2 knockout 

mice also have impairment in working memory as they age which was thought to be a direct 

result of the loss of currents in the hippocampus and not secondary to systemic metabolic 

abnormalities (73).      

 

Nutrient sensing and satiety 

 It is now appreciated that the hypothalamus can influence hepatic glucose production 

through nervous innervation of the liver. Furthermore, the neurones in the hypothalamus can 

respond directly to glucose and to key hormones such as insulin and leptin (449; 493). This is 

a complex area and a number of details remain unclear. The two main neuronal populations 

mediating these effects are agouti-related peptide (AgRP)/neuropeptide Y (NPY)- and 

proopiomelanocortin (POMC)-expressing neurons of the mediobasal hypothalamus (17; 265; 

449). KATP channels are key in both cell types to integrating the response to glucose (449). 



Thus in POMC neurones physiological changes in blood and cerebrospinal fluid glucose can 

directly regulate neuronal excitability and firing pattern. Glucose causes changes in cellular 

ATP which is dependent on glucokinase and subsequent mitochondrial metabolism:  

analogous to the mechanisms of metabolite sensing present in the pancreatic βcell (264). In 

addition, AMP-activated protein kinase may also act as a direct glucose sensor influencing 

cellular energetics and ATP levels (80). The net result is an increase in efferent signal from 

the hypothalamus and this leads to less glucose mobilisation from the liver. Insulin signalling 

in AgRP/NPY neurones seems key to the effects of insulin on hepatic glucose production 

(449). In addition to the well-known transcriptional effects, insulin receptor activation can 

also entrain effects on cellular excitability. Insulin and other important metabolic hormones 

such as leptin lead to activation of PI-3 kinase and the production of PIP3 and may represent a 

critical signalling node for KATP channel activation in hypothalamic neurones (206; 449). This 

then activates KATP channels by promoting cytoskeletal changes and also through direct lipid 

modulation of ATP sensitivity (360; 441; 484; 494). This results in membrane 

hyperpolarisation and reduced neuronal output. The net effect of this is to supress hepatic 

gluconeogenesis via IL-6 dependent changes in gene transcription (449). Leptin is also able 

to modulate these neuronal populations but probably also via KATP channel independent 

mechanisms.  

 

Glial function  

 Glia cells have a range of functions but one role pertinent to potassium channels is 

potassium siphoning. Inwardly rectifying potassium channels form the main potassium 

conductance of glial cells and set the resting membrane potential (60). These channels are key 

in allowing glia and astrocytes in particular to siphon potassium from areas of high neuronal 

activity and high extracellular concentration to areas of lower concentration. Kir4.1 is central 



to this but the opening of KATP channels may form some kind of reserve under metabolically 

challenging conditions (60; 396).    

 

Peripheral nerve function 

 KATP channels are also present in peripheral nerves and specifically appear to have a 

role in controlling autonomic function. For example, inhibition using glibenclamide led to 

potentiation of the heart effect of both vagal and sympathetic nerve stimulation likely through 

presynaptic rather than direct cardiac action (4; 365).   

 

KATP channels and immune function 

Sepsis can impose a substantial load on the cardiovascular system and at its most 

lethal can engender shock often with a high mortality. There have been a number of 

contradictory studies of the role of KATP channels in sepsis. Initially, it was proposed that 

excessive KATP channel activation occurs in septic shock leading to hypotension which could 

be reversed by sulphonylureas (346). Other studies support this increase of activity in the 

vasculature in sepsis but also suggest certain changes in pharmacology namely the lack of 

effect of sulphonylureas. Only direct pore blockers were able to inhibit activity (392). 

Furthermore, the expression of Kir6.1 is regulated via Toll-like receptors and nuclear factor 

kappa-light-chain-enhancer of activated B cells and the increase in expression of the current 

is postulated to underlie the poor response to vasoconstrictors with overwhelming sepsis 

(475). However, subsequent studies on mice and flies with global genetic deletion of Kir6.1 

revealed that they have a substantial survival disadvantage in models of septic shock (97; 

261). The precise mechanism has not been elucidated but a poor response to increased 

metabolic demand in the coronary circulation is one idea.  

KATP channels may be involved more broadly in immune function. Thus hydrogen 



sulphide promotes neutrophil migration into tissues and this response is sensitive to KATP 

channel inhibitors (106). The exact mechanism was not defined but it was mediated via 

mechanisms involving chemokine receptor expression on the neutrophil and given some of 

these assays were in-vitro in nature a direct role of KATP channels in neutrophil biology 

cannot be excluded. A second mechanism is endothelial injury promoting the release of 

mediators and a consequent inflammatory response (141). As we have discussed above KATP 

channel may well be a component in that response. KATP channels within the cellular milieu 

can also modulate the inflammatory response. Thus in Drosophila infection by a cardiotropic 

virus is promoted by KATP channel knockout and inhibited by treatment with a KATP channel 

opener (126). Nicorandil can prevent monocyte to macrophage transition and promotes an 

anti-inflammatory macrophage phenotype (607). Thus in summary, KATP channels may be 

involved in inflammatory responses through classic actions in cardiac and vascular tissues 

however there are also indications that they may have direct actions in modulating immune 

cell biology. This is an area for future research.  

 

Mitochondrial KATP channels  

There has been considerable interest in whether a KATP channel is resident in 

mitochondrial membranes (“mitoKATP”) (244; 410). The earliest study directly recorded 

channel activity using patch-clamp in the mitochondrial inner membrane by fusing rat live 

mitochondria to form giant mitoplasts. They measured a 10 pS single channel conductance 

for a potassium-selective conductance. Critically single channel open probability was reduced 

by ATP and glibenclamide (244). Later work focussed on cardiac tissues and specifically tried 

to define a distinctive pharmacology for the mitochondrial channel over that of the 

sarcolemmal channel. On the basis of more indirect measurements of mitochondrial function, 

specifically mitochondrial swelling induced by water accompanying the K+ flux, it was 



proposed that 5-hydoxydecanoate was a specific inhibitor and mitoKATP was activated by 

diazoxide unlike the sarcolemmal channel (189). However this pharmacology may not be so 

clear cut (104; 312) and it is notable the number of publications that have made use of this 

pharmacology as an argument for involvement of mitoKATP in various protective phenomena 

(598).  

These questions and ambiguities could be resolved by the cloning of the relevant 

channel subunits. Initially Kir6.1 was suggested as a candidate (324; 510) however this relied 

on the use of antibodies that may be recognising unrelated mitochondrial proteins (157). A 

proteomic study isolated succinate dehydrogenase, mitochondrial ATP-binding cassette 

protein 1, phosphate carrier, adenine nucleotide translocator, and ATP synthase as a complex 

(8). However none of these proteins is a recognised sulphonylurea like subunit or inwardly 

rectifying potassium channel subunit. It is becoming clear that 5-hyroxydecanoate and 

diazoxide also have direct interactions with the components of the mitochondrial respiratory 

chain (108; 202). However one more recent study is potentially plausible (156). In bovine 

hearts an inward rectifier subunit (Kir1.2) was isolated from inner mitochondrial membranes. 

Kir1.2 is a member of the “ROMK” family originally expression cloned from kidney and 

these channels do show some intrinsic ATP sensitivity (223). Furthermore, short SUR2 

variants may localise to mitochondria (131). Finally in C elegans, deletion of all three inward 

rectifier genes did not affect potassium flux across mitochondria or hypoxic preconditioning 

(575).  

In summary, it is clear that drugs traditionally affecting KATP channels can change 

mitochondrial function however whether these observations definitively indicate the 

existence of a KATP channel can be contested. The ambiguities would be much clarified by the 

isolation and in-vivo validation of a channel subunit encoding mitoKATP.   

 



Other tissues 

 There are reports of KATP channels in joint tissues such as articular chondrocytes and 

also in bone cells such as osteoclasts (249; 364). Interestingly, nicorandil inhibits osteoclast 

differentiation: an effect that is dependent both on its ability to act as an NO donor and also to 

activate KATP channels (249). KATP channel subunits are also expressed in the hair follicle and 

may be involved in regulating the follicle growth cycle (482).  

 

KATP channels in disease  

 Human disease can be directly caused by defects in ion channel function particularly 

neurological, cardiac and endocrine disease. This occurs most commonly as a result of a 

mutation in an ion channel gene or subunit that occurs either spontaneously or is inherited in 

a Mendelian fashion within a family. The resultant mutant channels may then not be 

transcribed or if the protein is produced the channel may not reach the plasma membrane. 

Finally, if mutant channels do reach the plasma membrane they may then fail to gate or 

conduct properly or more rarely have enhanced function (“gain of function mutations”). 

These different mechanisms are summarised in Figure 9. “Channelopathies” can also be 

acquired in nature for example because of the production of auto-antibodies to channels such 

as with myasthenia gravis and the muscle endplate acetylcholine receptor. These conditions 

can give substantial insight into the physiological function of ion channels in man. Secondly, 

ion channels may be implicated in the genetic architecture of human traits in large scale 

genome wide association studies (370). Furthermore, ion channels may play a role in 

complex pathophysiological mechanisms and appropriate pharmacological intervention may 

ameliorate or reverse disease progression. KATP channels have been implicated in a range of 

human pathologies and this is discussed below. Table 7 summarises the association of 

mutations or genomic variants in KATP channels with human diseases or traits.     



 

Congenital Hyperinsulinism 

 Congenital hyperinsulinism describes a disease in which there are inappropriate and 

high levels of insulin secretion from pancreatic βcells. This leads to low blood glucose and 

can result in loss of consciousness and neurological damage if left untreated. The disease can 

present at any time, even into adulthood, but the more severe forms present in the neonate 

and young child. It occurs in 1 to 50,000 births but is much higher in areas of the middle-east 

with high levels of consanguinity (122; 381). There are a variety of genetic causes including a 

abnormalities in a number of metabolic enzymes, such as glutamate dehydrogenase and 

glucokinase, but those presenting early in life are generally due to mutations in ABCC8 

(SUR1) and KCNJ11(Kir6.2) (123; 381; 531). Morphologically a number of different patterns 

of disease are seen. In diffuse disease, which is the commonest, all pancreatic βcells are 

affected but the islet histology is normal. In general patients have a recessive inheritance 

pattern with homozygous or compound heterozygous mutations in the KATP channel genes 

(259; 383; 592). In focal disease one or more areas of the pancreas are affected and the cells 

in these regions are histologically abnormal. The genetics of this disease are more complex 

with a paternally inherited mutation in ABCC8 or KCNJ11 and the loss of a corresponding 

maternal allele (558). Furthermore, the imbalanced imprinting in the focal areas results in the 

expression of genes which promote islet cell hyperplasia (insulin-like growth factor 2 and 

various tumour suppressor genes) (158). Though rarer than the diffuse pattern it still 

constitutes up to 30-40% of cases and is an important differential in the diagnosis as surgical 

resection can be curative. Finally there is an atypical histological pattern that does not fit into 

either of the above (381).      

 In congenital hyperinsulinism a large number of mutations have been described 

through-out the ABCC8 and KCNJ11 genes (123; 383; 531; 538). In general the mutations are 



missense leading to a loss of channel function and this can occur in two ways. Figure 10 

illustrates the disease pathogenesis. The first is that the channels no longer reach the plasma 

membrane due to defects in cellular trafficking (65; 471; 519; 592). They may be retained in 

the endoplasmic reticulum and\or retrieved from the golgi apparatus where they are likely 

recognised as abnormal and degraded by the proteasome. Alternatively, they may be rapidly 

endocytosed on reaching the plasma membrane and degraded in lysosomes (336). In a second 

class of mutation, the SUR1 subunit is delivered to the plasma membrane but the ability of 

the channel complex to be stimulated by MgADP is impaired (486). This results in membrane 

resident but inhibited KATP channels that no longer respond to metabolism in the normal way. 

These mechanisms have been elucidated generally in heterologous expression systems but 

have also been confirmed in patient derived samples obtained after pancreatectomy (123; 

259). In addition, studies of patient-derived pancreatectomy samples also showed that βcells 

were depolarised and calcium overloaded.  

 The disease can be treated using diazoxide but this is only successful in a proportion 

of cases. In focal disease, the lesion or lesions can be surgically removed resulting in cure. In 

severe diffuse disease, partial pancreatectomy is ultimately necessary and may in later life 

lead to diabetes mellitus (502). There has been preclinical interest in whether trafficking 

deficient mutants can be rescued and trafficked to the plasma membrane using various 

pharmacological agents. There have been cellular studies showing that diazoxide and 

sulphonylureas can act as chemical chaperones resulting in improved delivery of channels to 

the plasma membrane (408; 591; 592). Whilst there are obvious practical issues with using 

sulphonyureas it suggests it is possible to find pharmacophores that can perform this function.  

For example recent studies have suggested that carbamazepine can act in this fashion (341). 

The recent clinical success of mutation-specific therapy in cystic fibrosis also means that 

other channelopathies may be amenable to similar approaches (425; 561).    



 The majority of congenital hyperinsulinism is autosomal recessive in inheritance. 

Interestingly however autosomal dominant disease is described and is generally milder often 

presenting later and is well managed by medical therapy especially diazoxide (235; 268; 

413). It appears that the majority of these mutations have impaired function: an effect that is 

dominant in the assembled octamers. Some dominant mutations do not respond to medical 

therapy and these appear to be a dominant negative trafficking deficit (380). Furthermore 

there are some indications that these patients may develop diabetes mellitus in later life (235). 

It is thought the excess calcium entry ultimately leads to pancreatic  cell apoptosis as in 

mice (see above).    

 

Neonatal Diabetes Mellitus 

 Neonatal diabetes mellitus is generally defined as diabetes mellitus occurring within 

the first six months of life though this has recently been extended by some investigators to 

nine months (451; 452). Type 1 diabetes is very rare in this age group and these patients have 

a unique genetic aetiology. A large number of genes have been implicated in causing the 

disease and these are involved in beta cell function, insulin release, pancreatic development 

and beta cell death (451). The three most commonly affected genes are KCNJ11, INS which 

encodes the proinsulin protein and ABCC8 (451). The discussion will be confined to disease 

causing genes in the pancreatic KATP channel subunits. The disease is rare occurring in 1 to 

100,000 of births (451).  

 Mutations in KCNJ11 and ABCC8 generally occur de-novo in outbred populations 

and are heterozygotic (178; 451; 533). There are spectrums of presentation from transient 

neonatal diabetes, and permanent neonatal diabetes through to much severer syndromes 

involving neurological manifestations which make up about 20% of cases (152; 177). These 

include developmental delay, autism and epilepsy (developmental delay, epilepsy and 



neonatal diabetes; DEND syndrome) and in some patients the epilepsy is absent (intermediate 

DEND; iDEND syndrome) (177; 451). In addition motor delay, ataxia, anxiety and attention 

deficit hyperactivity disorder can also be features of the neurological disease. SUR1 and 

Kir6.2 constitute a large population of widely distributed neuronal channels and thus it is not 

surprising that the central nervous system is involved (82). A murine model has been 

developed in which it was possible to selectively express the V59M Kir6.2 mutation in a 

variety of tissues using various tissue selective cre recombinases and these models offer 

insight into human disease pathogenesis. Expression of V59M Kir6.2 in the pancreas leads to 

impaired insulin release and diabetes (176). Furthermore, it seems that the muscle weakness 

is related to expression of mutant KATP channels in the central nervous system and not in 

muscle myocytes (81; 82). The expression of V59M Kir6.2 in the central nervous system as 

well as muscle weakness also leads to reduced anxiety (301). Interestingly, it appears that 

“neonatal diabetes” can present later in life due to KATP channel mutations either around 

adolescence or during pregnancy (152). In KCNJ11 the mutations often cluster on select 

residues particularly R201 and V59 whilst they are more widely distributed in ABCC8 (13). 

When the mutations are expressed in heterologous expression systems they lead to channels 

that have a “gain of function” phenotype and that are, to varying extents, insensitive to ATP 

inhibition (26; 175; 178). Figure 10 illustrates the disease pathogenesis. The severity of 

phenotype correlates with the degree of ATP insensitivity: DEND mutations lead to a severe 

loss of ATP inhibition whilst in neonatal diabetes the impairment can be modest (13). In this 

regard, a recessive KCNJ11 mutation has been described (G324R) which in the homozygous 

form leads to transient neonatal diabetes mellitus whilst the parents as heterozygous carriers 

show no evidence of impaired glucose homeostasis (556). When the mutation is expressed in 

heterologous expression systems the IC50 for channel inhibition is only modestly shifted from 

30 M to 38 M with the mutant (556). It is interesting that even with KCNJ11 mutations 



there is little evidence for cardiac or muscle disease that is independent of nervous 

innervation (81). Indeed in expression studies with SUR2A, KCNJ11 mutations do not affect 

ATP sensitivity to the same degree (517).  

 The discovery of the genetic basis of this disease has led to a revolution in the 

management of the patients and is a genuine example of precision medicine (411). 

Traditionally these patients were treated with insulin but the discovery of the over-activity of 

pancreatic KATP channels as central in the disease pathogenesis led to the use of 

sulphonylureas. The responses were dramatic with glucose homeostasis becoming normalised 

in many patients with normal responses of insulin release following eating due to 

preservation of the response of pancreatic β cells to incretins (411). High doses are necessary 

particularly when neurological disease is present and with severe disease and ATP-insensitive 

mutants the use of sulphonylureas may fail (13; 27). The neurological deficits are often only 

partially ameliorated by sulphonylurea treatment as their origins may, to a degree, be 

developmental (13; 39; 138; 286; 470; 490). Another interesting feature is that in contrast to 

type II diabetes mellitus, where with time sulphonylurea therapy fails, in neonatal diabetes 

the opposite occurs with a reduction in dose often necessary (237). However it is important to 

begin therapy as early as possible, as with time there is a decline in the success of 

sulphonylureas in neonatal diabetes (27). Expression of V59M Kir6.2 in the murine model 

above in the endocrine pancreas leads to additional morphological changes with glycogen 

accumulation in islets suggesting that high glucose can itself lead to βcell damage (55; 433). 

These morphological changes can be reversed by restoration of a normal blood glucose. The 

study of these naturally occurring mutations has also supported the molecular models of 

sulphonylurea action. Sulphonylureas inhibit MgADP activation and binding but this does not 

lead to complete closure and the antagonism is partial with a maximum of 70-80% inhibition 

(416). In intact cells the remaining inhibition is postulated to arise from MgADP now being 



able to act as an inhibitor of Kir6.2 in the presence of sulphonylureas. However if the 

mechanism of ATP inhibition by the mutant Kir6.2 subunit is severely attenuated then 

sulphonylureas may lead to incomplete block (416). This may account for why therapy for 

very severe forms of neonatal diabetes, with or without the neurological sequelae, is less 

effective.               

 

Type 2 diabetes and genome wide association studies 

 Type 2 diabetes is usually thought of as a disease of peripheral insulin resistance 

however it is clear that pancreatic βcell mass is reduced and insulin secretion impaired. In 

addition to the role of KATP channels in Mendelian diseases of blood glucose homeostasis, 

genome wide association studies in type 2 diabetes have implicated loci in and around the 

ABCC8-KCNJ11 genes in addition to numerous other associations (171). In general the exact 

mechanism by which such genomic changes result in changes in β cell physiology are not 

clear. It is complicated by the fact that the tag single nucleotide polymorphism is often in 

linkage disequilibrium with a number of other variants any of which may be causative. 

However in the case of the KATP channel complex there is a coding variant (E23K) in 

KCNJ11 that drives the association (179). The E23K mutant when expressed in heterologous 

expression systems leads to modest reductions in ATP sensitivity (197; 559). Furthermore, it 

is interesting that the E23K mutation is in linkage disequilibrium with another coding 

mutation in ABCC8 (S1369A) and co-expression of the two variants may potentiate the 

functional phenotype (197). The E23K mutant channels are also more susceptible to 

activation by long chain fatty acyl CoA species (436). 

 

Cardiac Arrhythmia 

 A variety of different arrhythmic mechanisms can be distinguished including re-entry, 



abnormal automaticity and abnormal electrical events such as early and delayed after-

depolarisations (146). In guinea pig ventricular myocytes action potential duration (APD) 

was reduced by as much as 50% when as little as 0.7% of the maximum KATP conductance 

was active (387) and the opening of KATP channels leads to foreshortened repolarisation and 

QT interval on the surface ECG (165; 294). In turn this gives a reduced effective refractory 

period, which in principle can predispose to re-entrant circuits and a pro-fibrillatory state. 

Pro-fibrillatory effects of KATP openers have been shown in numerous animal models and a 

major factor in this is likely to involve heterogeneous dispersion of action potential duration 

both in an interventricular, and intraventricular manner between layers of the myocardium 

(72; 116; 163; 549; 577; 578). The corollary is that blocking KATP channels would be anti-

arrhythmic. Studies in rat and canine models have looked at ventricular fibrillatory potential 

in the context of ischaemia and shown that this is reduced in the presence of KATP blocking 

drugs (44; 267; 578). This has been replicated in a Langendorff-perfused explanted 

cardiomyopathic human heart model (133).  

 Studies have also investigated arrhythmia inducibility in atrial preparations. In a rat 

model β-adrenergic induced metabolic stress caused reduced intracellular ATP concentration 

and led to inducible atrial tachyarrhythmia that was reversed with glibenclamide (279). In a 

murine model with salt-induced hypertension, atrial KATP channel upregulation was seen 

coinciding with a shortened effective refractory period and increased atrial arrhythmia 

inducibility (300). In human hearts obtained at transplantation, potassium channel openers 

were seen to increase atrial arrhythmia inducibility that was then terminated with a KATP 

inhibitor (133). Interestingly, in clinical trials with nicorandil there was no increased 

arrhythmic risk (529). Atrial electrophysiology remodels as a consequence of atrial 

fibrillation (571) but conflicting evidence exists for remodelling of KATP current in human 

chronic AF. Two studies have looked at differences in KATP current density in isolated right 



atrial appendage myocytes between sinus rhythm and chronic AF patients and showed 

opposing results (28; 580).  

 The significance of an early repolarisation pattern (“J wave”) on the ECG is 

controversial. For example, it is commonly observed in healthy males and athletes but in 

other circumstances it may presage something more malignant and the early repolarisation 

pattern (“J wave syndromes”) may predispose individuals to ventricular fibrillation and 

sudden death (6). A rare variant in KCNJ8 (S422L) has been associated with prominent early 

repolarisation and ventricular fibrillation (193). Other groups subsequently described similar 

findings with the same mutation (32; 349).  In functional studies in heterologous expression 

systems this mutation led to an increase in current-density when the mutant Kir6.1 subunit 

was expressed with a SUR caused by a decrease in ATP sensitivity (32; 193; 349). ABCC9 

mutations have also been reported in Brugada syndrome and these too led to gain of function 

phenotypes in expression systems (228). Sudden infant death syndrome has also been 

reported to be associated with mutations in KCNJ8. An in frame deletion E332del and a 

missense mutation V346I have been associated with this condition and both led to some loss 

of KATP channel function in heterologous expression systems (527). It is worth bearing in 

mind that the ExAc project is discovering a large number of missense mutations present in 

the population at large and has resulted in re-interpretation of the pathogenicity of missense 

mutations in a number of diseases (269).  

 Whilst KATP channel opening might lead to an increased likelihood of re-entry, in the 

case of abnormal automaticity or triggered activity it is also possible that hyperpolarisation of 

the membrane will lead to the arrhythmia being extinguished. Thus in isolated Purkinje fibre 

preparations KATP channel opening slows spontaneous firing rate and suppresses automaticity 

(239) whilst hypoxia-induced spontaneous cycle length prolongation was blunted in Kir6.2 

knockout mice suggesting a role in sinus node automaticity (161). Pinacidil has been shown 



to abolish early and delayed after-depolarisations (497). Indeed, nicorandil can abolish 

transmural dispersion of repolarisation and triggered activity in canine long QT models (479) 

and when given intravenously, has been shown to abolish EADs and ventricular fibrillation in 

a patient with long QT syndrome (460). Loss of KATP channel function has also been shown 

to promote triggered activity: for example, Kir6.2 knockout mice developed early 

afterdepolarisations after isoproterenol challenge (322). A similar mechanism was proposed 

in a patient with lone atrial fibrillation emanating from the vein of Marshall who was found to 

have a missense mutation in the ABCC9 gene encoding the SUR2A subunit (397). Thus the 

exact role of KATP channels in arrhythmia is complex and dependent on the substrate.  

 

Heart failure, hypertrophy and cardiomyopathy 

 Adult cardiac cells do not divide and respond to a prolonged increase in workload 

with cell hypertrophy. This can be physiological as occurs with exercise training but can also 

be the response to cardiac disease such as in hypertension and heart failure (84). The 

pathological hypertrophy can contribute significantly to the disease pathobiology. Aortic 

banding is a commonly used approach to generate hypertrophy in animal models and in 

Kir6.2 knockout mice it leads to increased hypertrophy compared to littermate controls (589). 

However, the interpretation of these results is complicated by the paradoxical observation 

that this also occurs in mice with transgenic overexpression of SUR1 (230). The suggestion is 

that the SUR1 transgenic mouse also has disrupted cardiac sarcolemmal currents (230).  

Hypertrophy also occurs following myocardial infarction and Kir6.1 expression has been 

shown to be increased around the infarct border zone (246). Furthermore, this increase in 

Kir6.1 expression correlated with increased angiotensin II and tumour necrosis factor α 

expression (245; 246). In contrast Kir6.2 expression decreased. The cells also become 

responsive to diazoxide and have significantly upregulated KATP currents. Although under 



resting conditions the action potential duration is prolonged, after the application of diazoxide 

it significantly shortens (246). Similar observations have been made in human samples (136). 

Cardiomegaly is also a feature of the Cantu syndrome (see below).     

 There are also some indications that KATP channels might lead to rare forms of heart 

muscle disease. A group of patients with dilated cardiomyopathy were subjected to 

sequencing of the KATP channel genes. A missense mutation A1513T and a frameshift 

mutation leading to a premature stop codon at Leu1524 were discovered in ABCC9. In 

functional studies these mutations impaired nucleotide hydrolysis at NBD2 (43). We have 

already discussed the non-synonymous polymorphism in Kir6.2 which generates a coding 

change (E23K) in relation to predisposition to type II diabetes mellitus. It is interesting that 

this polymorphism is also associated with increased left ventricular size in hypertensive 

patients and is also over-represented in heat failure patients (434; 435). Furthermore, 

homozygous carriers have reduced exercise capacity with an attenuated heart rate response 

and lower maximal oxygen consumption (434).  

 

Cardioprotection 

Cardioprotection is a broad term which includes protection from cardiac ischaemia, 

ischaemia-reperfusion injury and phenomena such as early and late preconditioning (599). 

KATP channels have a long history of being implicated in these various processes. These 

include as both an initiator and\or a downstream effector of the response whether present in 

cardiac sarcolemmal or mitochondrial membranes (153; 598). For example, ischaemic 

preconditioning was eliminated in Kir6.2 global knockout mice and diazoxide was no longer 

able to mimic ischaemic preconditioning (190; 512; 513). It is thought that the action 

potential shortening due to KATP channel opening leads to reduced calcium entry and 

attenuated contractile function as illustrated in Figure 11 and also discussed above (304; 557). 



The net effect is to reduce the energy demands on the cell and prevent calcium overload both 

of which, if unchecked, would lead to cell death. Thus KATP inhibitors prevent the action 

potential shortening whilst potassium channel openers potentiate the effect preserving cellular 

ATP levels (348; 557). In the Kir6.2 knockout mouse there was a failure of action potential 

shortening and prolonged contractile dysfunction (513). Application of potassium channel 

openers also reduced the amount of calcium entering the cell during reperfusion: a possible 

central event in ischaemia-reperfusion injury. Transgenic mice, with over-expression of 

SUR2A in cardiac myocytes, have increased cardiac KATP currents and this protects the 

cardiac myocytes from subsequent ischaemic challenge (119). There may even be a reservoir 

of KATP channels that can translocate from intracellular sites to the plasma membrane under 

conditions of metabolic strain (30; 58). Recent studies have shown that eps15 homology 

domain-containing protein 2 increases KATP channel trafficking and currents by inhibiting 

endocytosis. Furthermore expression of a dominant-negative mutant sensitised increased 

cardiac damage to ischaemia (595). Latest observations also suggest that activation of Kir6.2-

containing channel complexes occurs relatively late during ischaemic challenge in ventricular 

myocytes and other channels perhaps even those containing Kir6.1 subunits might also be 

important in the initial phase (54). It is also worth remembering that vascular KATP channels 

can have a significant influence on cardiac protection. Ischaemia-reperfusion injury was 

significantly increased in mice with both endothelial and smooth muscle deletion of Kir6.1 

(20).  

Thus the comprehensive available data using pharmacological agents and molecular 

approaches do indicate a potential role for KATP channels in a variety of cardioprotective 

processes. A host of second messengers and receptor pathways have been invoked either 

upstream or downstream of the channels and these include protein kinase C, adenosine 

receptors and reactive oxygen species to name but a few. However recent trends have 



focussed on new pathways including opening of the mitochondrial permeability transition 

pore and various protein kinases including protein kinase B and janus kinase pathways (191; 

447). It is not yet clear how these new paradigms integrate with the body of older literature to 

give a coherent view of these processes. Furthermore, the critical issue is whether 

cardioprotection can be used to benefit patients in common clinical scenarios. Human tissue 

preconditions in the same way that animal hearts do and thus this may be potentially feasible 

(495). Preconditioning can also be evoked remotely for example by repeatedly inflating a 

blood pressure cuff and this is much easier to use safely in patients in the hospital setting 

(331). KATP channels have a role in the effect and it likely resembles the phenomena invoked 

by local ischaemia though the full transduction pathway is not clear (35; 331; 345). However 

clinical trials have so far failed to show benefit: for example, remote ischaemic 

preconditioning was disappointingly unable to improve outcomes in the well-controlled 

setting of cardiac surgery (208; 352). The cardioprotection field is currently under a cloud as 

the best path to realising clinical benefit is not clear.  

 

Cantu syndrome 

 Cantu syndrome is a very rare disease characterised by hypertrichosis, abnormal facial 

features with similarities to that occurring in acromegaly, macrosomia, skeletal abnormalities 

and an enlarged heart (62; 439; 448). A number of other clinical features have been noted to 

occur in some individuals and these include pericardial effusion, patent ductus arteriosus, 

conduction system abnormalities, pulmonary hypertension and coarse lax skin (466). The 

genetic basis of the disease was initially obscure though sporadic autosomal dominant 

mutations were suspected. The advance came from the use of exonic sequencing in parent 

patient trios and led to the discovery of novel missense mutations in ABCC9 (205; 552). 

Subsequently a few missense mutations were also described in KCNJ8 (57; 91). Using 



standard heterologous expression techniques these mutations were expressed and shown to 

lead to increased KATP channel activity (92; 205). This occurs in two ways: the first is to 

impair inhibition to ATP and the second to increase activation by MgADP (92). A murine 

model has been developed in which Kir6.1 gain of function mutations can be transgenically 

expressed in various tissues and this can replicate features of the disease (306). However, this 

approach allows such mutant channels to be expressed ectopically where they may not under 

normal circumstances be expressed and does not replicate possible developmental aspects of 

the disease. In both Cantu syndrome and neonatal diabetes there is an argument for making 

true knock-in models to phenocopy the disease especially as this is easier now with 

CRISPR\cas9 technologies. As in neonatal diabetes sulphonylureas may significantly 

influence the course of the adult disease though they may not be effective in every case (90). 

To date there are no clinical data on the efficacy of this approach. One intriguing feature is 

that the clinical phonotype seems to be equivalent in ABCC9 and KCNJ8 mutation carriers. 

ABCC9 mutations would be thought to influence both Kir6.1 and Kir6.2 channel populations. 

This suggests that Kir6.1 might have a wider role in tissue physiology than is commonly 

appreciated and particularly during development.   

 

KATP channels and neurological disease 

 The KATP channel mutations that underlie congenital hyperinsulinism, neonatal 

diabetes and the Cantu syndrome can all have varying degrees of neurological pathology. It 

seems that these are due to primary abnormalities associated with KATP channel expression in 

neurones and not simply a secondary consequence of metabolic changes. Thus KATP channels 

can directly influence brain function in man but the he exploitation of this for wider 

neurological disease is very much at an experimental stage.  

  There has been interest in the involvement of KATP channels in neuroprotection and 



stroke (217). The arguments are similar to those invoked for cardioprotection in that 

hyperpolarisation leads to neuronal silencing thus reducing metabolic demands. In addition 

the hyperpolarisation prevents the terminal depolarisation and large rise in intracellular 

calcium that is a prelude to neuronal death. A number of studies have shown such effects in 

several different neuronal populations (160; 168; 590). In CA1 hippocampal neurones five 

minutes of hypoxia induces hyperpolarisation whilst in the same neurones from Kir6.2 

knockout mice there is a rapid depolarisation (509). Furthermore middle cerebral artery 

occlusion resulted in greater brain injury in an in-vivo model in mice lacking Kir6.2 

compared to control mice (508). Finally, transgenic mice overexpressing Kir6.2 in the 

forebrain were resistant to ischaemic injury due to neuronal silencing (216).  

 Neurones vary in their sensitivity to damage by anoxia. For example dorsal vagal 

neurones are highly resistant and this is attributed to prominent expression of KATP channel 

currents (29). However this is not a universal phenomenon and there has been focus on 

dopaminergic neurones in the substantia nigra given their relevance for Parkinson’s disease.  

In an interesting study the behaviour of ventral tegmental neurones with those in the 

substantia nigra was compared. The neurones in the substantia nigra were particularly 

susceptible to toxins known to lead to dopaminergic neuronal death and Parkinson’s disease. 

The application of these known toxins provoked KATP channel firing and cell death in the 

substantia nigra but not in the ventral tegmental area. The cell death and degeneration was 

prevented in the Kir6.2 knockout mouse (320).     

 Neuronal KATP channel also seem to be important in determining seizure threshold. 

Kir6.2 knockout mice are predisposed to hypoxia induced seizures and this was thought to 

arise from abnormal excitability of substantia nigral neurones in the genetically modified 

mice (586). In addition, mice transgenically overexpressing SUR1 in the forebrain were 

resistant to kainic acid induced seizures (215).     



 

The current clinical use of drugs modulating KATP channels 

 Sulphonylureas are still used in the treatment of type II diabetes however they can 

lead to counterproductive weight gain and also a risk of hypoglycaemia particularly in the 

elderly (393). In addition, it is recommended that the newer classes of sulphonylurea and 

related agents are used because of the potential for drugs such as glibenclamide to inhibit 

KATP channels in cardiac cells.  The more modern trend is to use metformin instead though 

suphonylureas still have a place in those intolerant of metformin and in combination therapy 

(393). In addition to fewer problems with weight gain there is also evidence that metformin is 

associated with a lower risk of dementia (399).   

 Nicorandil is used as a second line agent for the treatment of stable angina with β 

adrenoreceptor blockers and calcium channel antagonists the agents of choice. Nicorandil can 

also be used in combination treatment with these drugs however if more than two drugs fail 

to control symptoms some form of coronary revascularisation is generally recommended. The 

drug has been associated with gastrointestinal and skin ulceration and this has limited its use 

(200). Nicorandil has been tested in clinical trials to see if it can prevent acute coronary 

syndromes in patients with stable angina (529). There was some evidence of efficacy and also 

in a subsequent meta-analysis (333). However in the UK nicorandil is not recommended for 

secondary prevention after myocardial infarction (https://www.nice.org.uk/guidance/cg172).   

Very high levels of blood pressure represent a medical emergency and need urgent 

pharmacological intervention. Diazoxide and minoxidil are potent anti-hypertensives and can 

be used in these situations. However they are second line drugs with labetolol and nicardipine 

preferred in modern clinical practice (412). Monoxidil is also known to promote 

hypertrichosis and this has been exploited as a topical preparation for male pattern baldness 

(395). Hair follicles express KATP channel subunits but it is unclear what the mechanism is 



with direct effects on the follicle growth cycle or increases in blood flow being plausible 

(482). It is interesting that hypertrichosis is a feature of Cantu syndrome and suggests there is 

a direct effect of KATP channel in the hair follicle.  

 

Conclusions 

 KATP channels are potassium channels that are directly sensitive to cell metabolism. 

They are complex molecular machines constituted of an octamer of four sulphonylurea 

receptors and four Kir6.0 inward rectifier potassium channel subunits. The channels are 

widely distributed in a number of tissues and differential functional and pharmacological 

properties are accounted for by distinct subunit expression. The combination of structure 

function studies and recent high resolution structural information, means we understand in 

much greater molecular detail how the channels select for potassium and respond to ATP, 

MgADP, PIP2 and various pharmacological agents. The use of pharmacology, genetically 

engineered murine strains and the study of human disease have supported a number of 

physiological and pathological roles for KATP channels. The best characterised are KATP 

channels in pancreatic β cells that are central in supporting stimulus secretion coupling 

between blood glucose and insulin secretion.  Furthermore, glibenclamide and derivatives are 

used to treat type II diabetes mellitus and mutations in SUR1 and Kir6.2 can result in 

congenital hyperinsulinism and diabetes. However the physiological role of KATP channels is 

broader and includes regulation of muscle excitability and contraction, neuronal excitability 

and vascular and non-vascular smooth muscle contractility. KATP channels are also involved 

in cellular protection in a number of tissues and there may be ways of harnessing this for use 

in human disease.  

It is likely that further definition of molecular function, such as nucleotide regulation 

and KATP channel drug interactions, will come through additional structural studies and this 



may help develop new therapeutic approaches. The trafficking and regulation of the channel 

are still poorly defined particularly in native cells. Proteomic techniques are likely to reveal 

novel interactions and give clues to similarities and differences in different tissues. The use of 

increasingly sophisticated genetically modified mouse lines such as those that allow temporal 

and tissue-specific deletion is likely to further refine our integrated understanding of KATP 

channel function in the whole organism. Modern human genomics including genome wide 

association studies in various physiological and disease traits, and exome and genome wide 

sequencing technologies are likely to further reveal the role of these channels and associated 

pathways in human disease. Furthermore, the transcriptional control of expression in 

development and disease are little investigated and again modern epigenetic techniques could 

have an impact in this area.     
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Tables 

Table 1 - Pharmacology of drugs acting on KATP channels 

  

 Drug Chemical class Type of KATP channel Mechanism of action Drugs of same class 

K
C

O
s 

First Generation 

Pinacidil  Cyanoguanidines Cardiac KATP, Smooth muscle KATP 
↓ Sensitivity to ATP 
↑ KATP opening 

P-1075, PNU-99963, PNU-
9470 

Diazoxide Benzothiadiazines 
Cardiac KATP,  Smooth muscle KATP, 
Mitochondrial KATP, Pancreatic  KATP 

Require ADP for activity LN-5330 

Cromakalim Benzopyrans Cardiac KATP, Smooth muscle KATP 
↓ Sensitivity to ATP 
↑ KATP opening 

Levcromakalim, Blmakalim, 
Cellkalim, Rilmakalim, Y-
27152 

Nicorandil Pyridyl Nitrates Cardiac KATP 
Require ADP for activity 
Exhibit nitrate-like effect 

KRN-2391 

Minoxidil Pyrimidine Sulfate Cardiac KATP ND LP-805 
Aprikalim Carbothiamides Cardiac KATP ND MCC-134 
Second Generation 
WAY-151616 Cyclobutenediones Smooth muscle KATP ND WAY-133537 
ZM-244085 Dihydropyridine Smooth muscle KATP ND ZD-0947 
ZD-6169 Tertiary carbinols Smooth muscle KATP ND A-151892 

 

In
hi

bi
to

rs
 

First Generation 

Tolbutamide Sulfonylureas Pancreatic  KATP Binding with lower affinity 
Chlorpropamide, 
Acetohexamide, Tolazamide 

Second Generation 

Glibenclamide Sulfonylureas 
Cardiac KATP, Smooth muscle KATP, 
Mitochondrial KATP, Pancreatic  KATP 

Binding with higher affinity 
Glipizide, Glimepiride, 
Glipizide 

Third generation 

Meglitinide  Benzoic acid derivatives Pancreatic  KATP 
Nonsulfonylurea insulin secretagogues 
Binding with lower affinity 

Repaglinide, Nateglinide,  
Mitiglinide 

HMR-1098 Sulfonylureas Cardiac KATP Binding with higher affinity HMR-1883 



  



Table 2 – A summary of genetically modified mouse models used in investigating the biology of KATP channels 
 

Mouse Genotype Functional effect on 
KATP 

Premature 
Death 

Blood 
Pressure 
Effects 

Cardiac 
Effects 

Mouse Phenotype References 

Whole animal 
Kir6.1-/- Loss of current in 

vascular smooth muscle 
Yes Increased Yes Coronary artery vasospasm, hypertension, 

heart block and premature death 
(22; 309; 358) 

Kir6.2-/- Loss of current in 
striated muscle and β-
cells 

No No Yes Defective glucose-induced insulin secretion. 
Loss of current in ventricular myocytes. 
Action potential shortening and depressed 
cardiac contractility in response to KCOs. 
Enhanced glucose uptake in skeletal muscle. 
Impaired glucagon secretion. Impaired 
exercise tolerance with muscle damage and 
arrhythmia under stress. No neuroprotection 
after seizure.  

(322; 355; 357; 
511-513; 528; 
586; 616) 

Kir6.2 Y12X ENU 
mutagenesis 

Loss of current in 
pancreatic β-cells 

ND ND ND Impaired insulin secretion and no 
hypoglycaemia 

(232) 

SUR1-/- Loss of current in atrial 
cardiomyocytes and β-
cells 

No No ND Glucose intolerance and impaired insulin 
secretion. Protected against ischemic insult. 

(127; 149; 467; 
481) 

SUR1 E1506K knock-in Loss of current in 
pancreatic β-cells 

ND ND ND Initially hyperinsulinism but later followed by 
reduced β cell insulin content and diabetes 
mellitus 

(480) 

SUR2-/- Loss of current in 
smooth, cardiac and 
skeletal muscles 

Yes Increased Yes Coronary artery vasospasm, hypertension, 
heart block and premature death. Increased 
glucose uptake in skeletal muscle. Impaired 
exercise tolerance and skeletal muscle 
myopathy. Resistant to cardiovascular stress.  

(74; 75; 504; 505) 
 

Smooth muscle 
sm22α cre-Kir6.1 (flx, flx) Loss of current in 

vascular smooth muscle 
No Increased No Hypertension (22) 

sm22α-SUR2B/SUR2-/- SM-specific expression 
of SUR2B in SUR2 KO 

Yes ND Yes Coronary artery vasospasm, hypertension, 
heart block and premature death 

(257) 



mice 
smMHC-Kir6.1-AAA Dominant-negative 

suppression of Kir6.1 in 
smooth muscle 

No Increased No Hypertension (309) 

smMHC-Kir6.1[G343D] Gain of function in 
smooth muscle 

No Decreased No Hypotension, reduced blood vessel 
contractility 

(309) 

smMHC-
Kir6.1[G343D,Q53R] 

Gain of function in 
smooth muscle 

No Decreased No Hypotension, reduced blood vessel 
contractility 

(309) 

Endothelium 
Tie2 cre, Tg STOP Kir6.1-

AAA 
Dominant-negative 
suppression of Kir6.1 in 
endothelium 

No No Yes Coronary vasospasm. Increased coronary 
perfusion pressure 

(335) 

Tie2 cre -Kir6.1 (flx, flx) Loss of current in 
endothelium 

No No No Protective against ischemia-reperfusion 
damage 

(20) 

Cardiac Tissue 
CMV-SUR2A Increased expression in 

Cardiac muscle 
No ND ND Resistant to hypoxia, ischemia and ischemia-

reperfusion injury 
(119)  

αMHC-Kir6.1[G343D]-
AAA 

Increased expression in 
Cardiac muscle 

No ND Yes Decreased ATP sensitivity, AV nodal 
abnormalities, Increased tolerance to 
cardioplegic stress 

(213; 307) 

α-MHC cre, Tg STOP 
Kir6.1-AAA 

Dominant-negative 
suppression of Kir6.1 in 
cardiac muscle 

No ND Yes Loss of current in ventricular myocytes, 
Increased heart rate, Prolonged APD, 
Compromised exercise tolerance. 

(537) 

α-MHC cre, Tg STOP 
Kir6.2-AAA 

Dominant-negative 
suppression of Kir6.1 in 
cardiac muscle 

No ND Yes Loss of current in ventricular myocytes. 
Prolonged APD 

(537) 

α-MHC-FLAG-SUR1 Overexpression in 
cardiac muscle 

Yes ND No PR Prolongation. Reduced KATP conductance (151) 

α-MHC-Kir6.2[ΔN2-
30,K185Q] 

Overexpression in 
cardiac muscle 

Yes ND Yes Increased incidence of AV block. Reduced 
KATP conductance. Prolonged APD 

(147; 287) 

α-MHC-FLAG-SUR1/ α-
MHC-Kir6.2[ΔN2-

30,K185Q 

Overexpression in 
cardiac muscle 

Yes ND Yes PR Prolongation, Ventricular tachycardia, AV 
block, Atrial fibrillation, atrial flutter 

(150) 

α-MHC-FLAG-SUR2A Overexpression in No ND No Reduced KATP current-density (151) 



cardiac muscle 
Mck-cre, Rosa26STOP 

Kir6.2 V59M 
Gain of function in 
muscle cells 

No ND No Impaired ATP sensitivity of channels in 
skeletal and cardiac muscle. No discernible 
phenotype 

(81) 

Pancreas 
Rip-cre, Rosa26STOP 

Kir6.2 V59M 
Gain of function in 
pancreatic islets 

ND ND ND Reduced insulin secretion and diabetes 
mellitus 

(176) 

Rip-Kir6.1[G343D] Gain of function in 
pancreatic islets 

No ND ND Glucose intolerance (432) 

Rip-Kir6.1[G343D,Q53R] Gain of function in 
pancreatic islets 

No ND ND Reduced plasma insulin and severe diabetes 
mellitus 

(432) 

Neuronal 
CMK-SUR1 Increased expression in 

forebrain 
No ND ND Protective against seizures and neuronal 

damage 
(215) 

Nestin-cre, Rosa26STOP 
Kir6.2 V59M 

Gain of function in 
central neurones 

ND ND ND Muscle weakness and reduced anxiety (82; 301) 

 

  



Table 3 – Summary of the properties of KATP channel populations in the pancreas and gut 
 

Location Subunit 
Composition 

Conductance 
(pS) 

ATP IC50

(µM) 
Physiological Function Refs 

α-cells Kir6.2\SUR1 45-70 17 Regulation of glucagon secretion 
in response changes in blood 
glucose 

(36; 48; 
445; 609) 

β-cells Kir6.2\SUR1 70-80 15-160 Regulation of insulin release in 
response to changes in 
metabolism 

(14; 241; 
243) 
(359) 

Enteroendocrine 
cells 

Kir6.2\SUR1 ND ND Involved the stimulus-secretion 
coupling of gut hormones such as 
GIP, GLP-1 and PYY 

(334; 388; 
428) 
 

 
GIP - gluco-insulinotropic peptide, GLP-1 - glucagon-like peptide-1, PYY - peptide tyrosine tyrosine 
  



Table 4 – Summary of the properties of the major KATP channel populations in striated 
muscle 
 

Location Subunit 
Composition 

Conductance 
(pS) 

ATP IC50

(µM) 
Physiological Function Refs 

Atria Kir6.2\SUR1 52-90 39-100 Action potential repolarisation. 
Adaptation to cell swelling 

(33; 149; 
248; 553; 
619) 

Ventricles Kir6.2\SUR2A 70-90 10-100 Protection against Ca2+ overload 
during hypoxia, 
Adaptation response to stress 

(31; 148; 
240; 391; 
526) 

Conduction 
System 

Kir6.1\Kir6.2\ 
SUR2B 

52-60 16-120 Adaptation to stress, regulation of 
pacemaker activity 

(31; 162; 
201; 314) 

Skeletal 
Muscle 

Kir6.2\SUR2A 
Kir6.2\SUR1 

60-71 13-123 Adaptation to strenuous exercise 
and prevention of muscle fibre 
damage during exercise. 
Regulation of glucose uptake and 
metabolism.  

(22; 74; 
75; 351; 
356; 358; 
420; 488; 
528; 543; 
545; 587; 
614) 

 
  



Table 5 – Summary of the properties of the major KATP channel populations in smooth 
muscle 
 

Location Subunit 
Composition 

Conductance 
(pS) 

ATP IC50

(µM) 
Physiological Function Refs 

Endothelium Kir6.1\Kir6.2\ 
SUR2B 

25-40 and 150 ND Protective during ischemia (20; 252; 
273; 274; 
335; 600) 

Vascular 
Smooth 
Muscle 

Kir6.1\SUR2B 15-50 29-200 Vasodilation 
Blood pressure regulation 

(22; 74; 
358; 420; 
587) 

Non-vascular 
Smooth 
Muscle 

Kir6.1\Kir6.2\ 
SUR2B 

18-80  Relaxation/Contraction (284; 522) 

 
 
 
 
 
 
 
 
  



Table 6 – Summary of the KATP channel expression profile and function in the central and 
peripheral nervous systems. 
 

Location Subunit 
Composition 

Conductance 
(pS) 

ATP IC50

(µM) 
Physiological Function Refs 

Hypothalamus Kir6.2\SUR1 13-86, 149 ND Expressed in AgRP/NPY- and 
POMC-positive neurons. 
Regulation of neuronal 
excitability in response to 
glucose. Activity regulated by 
insulin and leptin. 

(238; 414; 
493) 
 

Pituitary Kir6.2\SUR2B 
Kir6.2\SUR1 

74 30 Regulation of hormone secretion (59; 582) 

Substantia 
Nigra 

Kir6.2\SUR1 77 12 Neuroprotection from stress and 
against seizures, Regulation of 
excitability, Release of 
neurotransmitters such as 
dopamine, GABA and glutamate 
in response to changes 
metabolism. Play a role in 
memory, locomotion and 
behaviour 

(19; 121; 
283; 461; 
473; 586) 

Dorsal Root 
Ganglion 

Kir6.2\SUR1\ 
SUR2 

72-78 ND Suppression of hyperalgesia.  (275; 618) 

Glial Cells Kir6.1\Kir6.2\ 
SUR1 

ND ND Neuroprotective 
Potassium siphoning 

(532; 603; 
611) 
 

 
 
AgRP/NPY-agouti-related peptide/neuropeptide Y, POMC-proopiomelanocortin 
 

  



Table 7 – A summary of human diseases associated with mutations in KATP channel subunits.  

 

Gene Clinical 
Condition 

Mechanisms of disease Reference 

KCNJ8 Cantu Syndrome Missense non-synonymous 
variant V65M, functional 
characteristics not confirmed 

(57) 

 Sudden Infant 
Death Syndrome 

In frame deletion E332del and 
missense mutation V346I each 
cause loss of function and have 
been associated with this 
condition 

(527) 

 Brugada 
syndrome, Early 
repolarisation ("J 
wave") syndrome, 
atrial and 
ventricular 
fibrillation 

S422L GOF has been 
associated with these 
conditions 

(32; 114; 193; 349) 

KCNJ11 Congenital 
Hyperinsulinism 

Recessive mutations leading to 
loss of KATP channels at the 
membrane and ER retention 
eg. H259R 

(340) 

  Recessive mutations producing 
non-functional protein eg. 
Y12X, L147P 

(382; 530) 

  Dominant mutation causing 
impaired pore-opening e.g. in-
frame deletion I284del 

(268; 380) 

 Neonatal Diabetes Missense mutations causing 
ATP insensitivity and GOF eg. 
E227K, E229K 

(175; 177; 556) 

  In-frame deletion Kir6.2-
28Δ32 causing ATP 
insensitivity and GOF 

(93) 

 Type 2 Diabetes E23K mutant causing modest 
ATP insensitivity and GOF 

(179) 

 Increased LV size 
and Heart Failure 

E23K mutant appears over-
represented in heart failure 
patients 

(434; 435) 

ABCC8 Congenital 
Hyperinsulinism 

Recessive mutations leading to 
loss of KATP channels at the 
membrane and ER retention 
e.g. F1388del 

(65; 471; 519; 592) 

  Recessive mutations causing 
loss of MgADP and drug 
sensitivity despite membrane 
resident channels e.g. T1139M, 

(486) 



R1215Q 

  Dominant mutations causing 
reduced sensitivity to 
metabolic inhibition and drug 
activation eg. V187D, E1506K 

(235; 268; 401)  

 Neonatal Diabetes Missense mutations causing 
ATP insensitivity and GOF eg. 
L213R, I1424V 

(26) 

 Type 2 Diabetes S1369A variant when co-
expressed with KCNJ11 E23K 
variant causes ATP 
insensitivity and GOF 

(197) 

ABCC9 Cantu Syndrome Missense mutations leading to 
reduced ATP sensitivity or 
increased MgADP activation 
and GOF eg. P432L, A478V, 
C1043Y 

(92; 205; 552) 
 

 Dilated 
Cardiomyopathy 

Missense mutation A1513T or 
frameshift mutation and stop 
codon introduction at L1524 - 
both impair nucleotide 
hydrolysis at NBF2 causing 
reduced function and 
associated with DCM patients 

(43) 

 Atrial Fibrillation Missense mutation T1547I 
leading to loss of function and 
implicated in AF initiating 
from the Vein of Marshall 

(397) 

 Brugada and 
Early 
Repolarisation 
Syndromes 

V734I and S1402C GOF 
mutations implicated 

(228) 

 Coronary spasm 
and Myocardial 
Infarction 

Association with V734I 
mutation which causes both 
reduced ATP inhibition and 
reduced MgNDP activation 
when mutant co-expressed 
with SUR2B 

(491) 

  



Figure Legends 

 

Figure 1 – Recordings of single KATP channels. Cell-attached single channel recordings of 

Kir6.2\SUR2B channels expressed in HEK293 cells. Co-expression of Kir6.2\SUR2B forms 

a channel with a single channel conductance of ~70 pS. 

 

Figure 1 Teaching points: Ion channels have an open and closed conformation and when 

open pass a current with a characteristic conductance. The figure illustrates such high 

resolution single channel recordings of KATP channels using the patch-clamp recording 

technique.   

 

Figure 2 – The structure of drugs acting on KATP channels. 

 

Figure 2 Teaching points: KATP channels have a rich pharmacology with a variety of 

pharmacophores able to selectively inhibit or activate the currents.   

 

Figure 3 – A cartoon of the molecular composition of a KATP channel. KATP channels are 

formed from four pore-forming Kir6.x subunits and four regulatory sulphonylurea receptor 

subunits. Kir6x is a member of the inward-rectifying K+ channel family (Kir) with 2 

transmembrane domains (M1 and M2), a pore-forming region (H5) with the K+ selectivity 

sequence and intracellular N and C termini. SUR belongs to the ATP binding cassette (ABC) 

family of proteins. SUR consists of 3 transmembrane domains (TMDs) composed of 5, 6 and 

6 transmembrane segments respectively. The intracellular loop between TMD0 and TMD1, 

L0 provides the physical interaction with Kir6x. Two nucleotide binding domains (NBD1 and 



NDB2) comprised of Walker A and B nucleotide binding motifs provide the binding sites for 

magnesium complexed adenine nucleotides.   

 

Figure 3 Teaching points: We understand the molecular composition of KATP channels. They 

are composed of four inwardly rectifying potassium channel subunits (Kir6.1 and Kir6.2) and 

four sulphonylurea receptors (SUR1, SUR2A and SUR2B) which are a member of the large 

family of ATP binding cassette proteins. ATP inhibits the channel by binding to the channel 

pore forming subunit whilst MgADP, sulphonylureas and potassium channel openers act on 

the sulphonylurea receptors. The channels in different tissues have different properties and 

this is accounted for by selective expression of different Kir6.0 subunits and different SURs.   

 

Figure 4 – The high resolution structure of the pancreatic KATP channel. A. The linear 

sequence of Kir6.2 and SUR1 proteins. The various critical domains are coloured and the 

same scheme is used in the other panels. The numbers indicate amino acid residues defining 

the regions. B. A side view of the cryo-EM density map of the KATP channel (3.6 Å 

resolution). The position of the membrane is indicated by the gray bars. C. An extracellular 

view of the complex. D. A model of the KATP channel complex with various ligands as 

indicated (ATP is green and glibenclamide is red). E. The model viewed from the 

extracellular side of membrane. This figure is reproduced from the recent study (342). 

 

Figure 4 Teaching points: One of the major advances has been the determination of crystal 

structures of KATP channels using cryo EM. These have revealed their characteristic structural 

features and given insight into how glibenclamide might bind and inhibit the channel.   

 

Figure 5 – The ATP binding pocket in Kir6.2 determined in the quatrefoil form. A. An EM 



density of the Kir6.2 tetramer with ATP molecules shown in yellow. B. A ribbon 

representation of Kir6.2 with two pore domains shown with important structural elements 

indicated. The ATP molecule is again shown in yellow. C The ATP binding site with residues 

contacting the yellow ATP as indicated.  The The N-terminus from the neighbouring subunit 

interacts with the purine base of ATP. Dashed lines indicate hydrogen bonds. D. The EM 

density of the ATP molecule is outlined with a blue mesh and illustrates a horseshoe-shaped 

conformation. This figure is reproduced from the recent study (305).  

 

Figure 5 Teaching points: The defining feature of KATP channels is their sensitivity to 

nucleotide levels and ATP in particular thus enabling them to link cellular metabolism and 

membrane potential. The crystal structures show in exquisite molecular detail how ATP binds 

to the Kir6.2 subunit.  

 

Figure 6 - Proposed sites of action of KATP openers and inhibitors. The above schematics 

demonstrate the pharmaco-topology with respect to the different sulphonylurea receptor 

subtypes. The colour of the various segments of each SUR demonstrates broadly the 

homology between the subtypes. SUR2A and SUR2B (red) share almost 100% homology and 

that which is different from SUR1 (blue). However, the terminal 42 amino acids of the C 

terminus of SUR2A and SUR2B differ, and in fact this segment in SUR1 shares almost 100% 

homology with that in SUR2B as depicted by the colour coding in blue. Openers and their 

sites of action are depicted in green and inhibitors black. Capital letters denotes binding with 

high affinity and lower case with lower affinity. The action of diazoxide on SUR2A is shown 

in darker green given the fact that this interaction requires the presence of a high 

concentration of MgADP, and this probably results allosterically due to the differing terminal 

42 amino acids at the C terminus of SUR2A (368). 



 

Figure 6 Teaching points: The drugs that work on KATP channels show some tissue selectivity 

accounted for by differential Kir6.0 and SUR expression.  

 

Figure 7 – The regulation of vascular smooth muscle KATP channels. Activation or inhibition 

of KATP channels in the vascular smooth muscle cell determines its membrane potential. 

Vasoactive factors that activate KATP channels either directly or indirectly cause membrane 

hyperpolarisation, closure of voltage-dependent calcium channels, reduced intracellular Ca2+ 

and dilation. Conversely factors that inhibit KATP channels cause depolarisation of the cell 

membrane leading to opening of voltage-dependent calcium channels, increased intracellular 

Ca2+ and contraction.  Left, Dilation of VSM as a result of KATP channel activation initiated 

by vasodilators such as adrenaline, adenosine, calcitonin gene-related peptide (CGRP) and 

vasoactive intestinal peptide (VIP) via the G-protein (Gs)/Adenylate Cyclase (AC)/Protein 

Kinase A (PKA) signalling pathway. Hypoxia, ischemia and metabolic stress indirectly 

activate KATP channels by inhibiting oxidative phosphorylation and therefore decreasing the 

ATP/ADP ratio. Right, endogenous mediators such as noradrenaline, angiotensin II, 

endothelin-1 and histamine inhibit KATP channels via the G-protein (Gi, q)/PKC signalling 

pathway leading to VSM contraction.  

 

Figure 7 Teaching points: KATP channels are critically involved in many physiological 

processes. In vascular smooth muscle cells they significantly influence vascular smooth tone 

and both vasodilators and vasoconstrictors can modulate activity through direct protein 

phosphorylation of the channel subunits.  

 



Figure 8 – A cartoon of stimulus-secretion coupling in pancreatic β cells. K
ATP

 channels 

couple cellular metabolism to electrical activity. When blood glucose is low, ATP production 

is reduced allowing K
ATP

 channels to open thus hyperpolarising the membrane and preventing 

an increase intracellular Ca
2+ 

and subsequent insulin release. When there is a high blood 

glucose concentration, ATP production increases leading to channel inhibition, an increase in 

intracellular Ca
2+ 

and insulin release. 

 

Figure 8 Teaching points: KATP channels are critically involved in many physiological 

processes. The best described are their role in stimulus secretion coupling in the pancreas. 

Increases in blood glucose are tightly coupled to ATP production in pancreatic beta resulting 

in channel inhibition, membrane depolarisation and entry of calcium which promotes the 

release of insulin vesicles.  

 

Figure 9 - Disease mechanisms in hereditary channelopathies. The route to delivery of fully 

and normally functioning ion channels at the cell membrane can be halted or disturbed at 

various checkpoints. Mutations can lead to: (1) Defective transcription or translation such 

that channel proteins are merely not synthesised at all. (2) Aberrant folding of channel 

proteins into their tertiary and quaternary structures that is recognised by chaperone proteins 

in the endoplasmic reticulum and leads to their degradation and failure to exit the 

endoplasmic reticulum. (3) Further quality control in the golgi complex where channels can 

still be recognised as faulty and retro-translocated back to the endoplasmic reticulum or 

assigned for degradation. (4) Defective cycling to and from the membrane through exo- and 

endocytosis. (5) Channels that pass through all the checkpoints and are delivered to the 

membrane but which display abnormal gating and/or kinetics, or abnormal responses to 

modulatory pathways. 



 

Figure 9 Teaching points: An emerging theme has been the involvement of ion channels in 

human disease known as “channelopathies”. For example, defects in KATP channels lead to 

disorders of insulin handling through gain and loss of function mutations. This can occur 

through many different mechanisms and not simply changes in the activity of the channel at 

the plasma membrane. Differences in channel trafficking through the secretory pathway and 

in endocytosis may also be involved. 

 

Figure 10 – The pathogenesis of hereditary hyperinsulinism and diabetes due to mutations in 

KATP channels. Loss of function mutations leads to excessive insulin release and 

hypoglycaemia. In contrast, gain of function mutation affect ATP sensitivity and impair 

insulin release from pancreatic beta cells resulting in diabetes.     

 

Figure 10 Teaching points: The critical role of role of KATP channels in insulin release is 

reinforced by human hereditary diseases of both excessive and reduced insulin release which 

result from mutations in the genes underlying subunits of KATP channels.  

 

Figure 11 - Protective role of KATP channels in cardiomyocytes. Activation of KATP channels 

by protein kinase C or metabolic insults such as ischemia and/or hypoxia stabilises the 

membrane potential, leads to shortening of the action potential duration and reduces the 

influx of calcium through voltage dependent calcium channels. This attenuates calcium-

induced calcium release from the sarcoplasmic reticulum which reduces contractility, 

prevents calcium overload and decreases ATP demand.   

 



Figure 11 Teaching points: KATP channels in the heart and elsewhere are protective to the cell. 

One of the main ideas in the heart is that this limits calcium entry and release reducing 

muscle contraction, calcium overload and ATP demand.  
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