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Abstract, We exploit a system of realizers for classical logic, and a
translation from resolution into the sequent calculus, to assess the in-
tuitionistic force of classical resolution for a fragment of intuitionistic
logic. This approach is in conérast to formulating locally intuitionistically
sound resolution rules. The techniques use the Ape-calculus, a develop—
ment of Parigot's Ap-calculus.

1 Introduction
1.1 Local methods for intuitienistic logic

It is standard practice to draw a sharp distinction between local methods of
automated deduction for classical logic, inspired by techniques such as Robin-
son’s resolution [17} and Maslov’s inverse method [9], and global methods, those
inspired by Gentzen's sequent calculus [8] and Smullyan's tableaux systems [18].

For a non-classical logic, such as intuitionistic propositional logic, global
methods are more easily developed (see e.g., [6, 14]) and, as Mints points out in
his {11], many attempts to formulate local methods fail to preserve the essential
properties of local methods for classical systems. He goes on to formulate a list
of criteria by which a system can qualify as “resolution,” and to present a local
method which satisfies them.

It is the propositional structure of the resolution method that gives it its
combinatorial strength. The viewpoint outlined above suggests that in obtain-
ing a local method for a non-classical logic we try to preserve the propositional
structure of the standard method as far as is possible, modifying only the con-
dition under which a particular clash or connection is sound. The complexity of
the local soundness check should be small compa.recl with the complexity of the
propositional search space.

* This research was supported in part by UK EPSRC grants GR/J46616 and GR/K41687
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For intuitionistic propositional logic this approach is of partieular signifi-
cance. Gentzen [8] formulates the intuitionistic sequent calculus LJ as a re-
striction of the sequent calculus for classical logic LK. The restriction concerns
the use of weskening on the right. Since I.J is a restriction of LK, the latter
is complete for intuitionistic logic, but not sound. By studying the structure
of LK derivations under permutation of inference rules, it is possible to assess
their intuitionistic force and hence use classical search to determine intuitionis-
tic provability. In {16], we used terms of the Aue-calculus, a variant of Parigot's
Au-calculus, as a system of realizers for sequent derivations to present such an
analysis, and hence give a characterization of the search space for intuitionistic
logic in terms of that for classical logic. Operations on the realizers were instru-
mental in enlarging the set of classical derivations that could be considered to
have non-trivial intuitionistic force. This in turn simplified the search space.

In this paper, we show how to extend this analysis to resolution. We do this
by reconsidering Mints' Maslov-inspired translations between resolution systems
and the sequent calculus. Unlike Mints, our goai is not to medify resolution to
make it locally intuitionistically sound, but to express the intuitionistic force of
standard (classical) resolution, and thereby give a characterization of the search
space for intuitionistic logic in terms of that for classical resolution.

1.2 Overview of technical results

In § 2, we summarize the results of [16]. A translation of sequent derivations into
Ape terms is given for the disjunction-free fragment of classical logic. The terms
are seen as realizers for the derivations, A realizer is said to be intuitionistic
if it satisfies a certain structural condition related to weakening and rule per-
mutation. A sequent is intuitionistically provable if there is a classical sequent
proof of it whose realizer is intuitionistic (Theorem 1). By defining a (finite) re-
stricted operation of permutation on realizers we obtain a completeness result
(Theorem 2): if a sequent is intuitionistically provable, then there is a classical
derivation for which some permutation of its realizer is intuitionistic. True to
the spirit of the outline above, the intuitionistic search space (for the fragment
considered) is rendered as a restriction of the classical search space together with
a computable test for intuitionistic soundness.

In § 3, we show that (inessential variants of) Mints’ translations esta.bhsh
tight connections between uniferm proofs and resclution derivations (Lemma 8).
We also show that for classical logic permutations in the resolution search space
correspond to permutations in the sequent search space {Proposition 11). The
results of [16] then give realizers for (classical) resolution derivations.

In § 4, we use the results summarized in § 2 to assess the intuitionistic force
of (classical) resolution derivations. An intuitionistic soundness result for resolu-
tion ig proved as Theorem 13. By a careful analysis, and modification of Mints’
translation, the class of resolution derivations that can be deemed to have non-
trivial intuitionistic force can be extended. With respect to this extended class
of derivations a completeness result is established as Theorem 186.
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2 The intuitioni_stic force of classical search

In [16], we presented a characterization of when search by means of the clas-
sical sequent calculus yields sufficient evidence for provability in a fragment
of intuitionistic logic, namely propositional intuitionistic logic with émplication,
negation and conjunction. The characterization takes account of the rule per-
mutability properties of both logics. We defined a translation, [}, from classical
sequent derivations into terms of the Ape-calculus {16, 13) and gave a combinato-
rial criterion for the corresponding Ape-term to determine intuitionistic validity
of the endsequent.! Based on this characterization, we defined a proof procedure
for intuitionistic logic considered which extends the notion of uniform proof as
defined by Miller. The procedure was shown to be sound and complete for the
fragment.

The. Ape-calculus thus provides realizers for multiple-conclusioned sequents
I — A, A, where A is a distinguished, or active, formula. The formulae in A
are indexed by names a, 3, ..., which are different from variables and which may
also cccur in terms. The Ape-calculus differs from Parigot’s Ap-calculus in that
it makes use of explicit substitutions to represent the D L-rule.? The rules of Aue
are presented in Appendix A in Figures 1 and 2.

A Mpe-term is identified as intuitionistic if the free names of the term model
weakening. For example, consider the sequent B — A D B, D O E. An intu-
itionistic search for a proof of this sequent based on LJ will be successful only if
we reduce the formula A D B first; i.e., closer to the root of the derivation. This
is not so classically. If a search according to the multiple-conclusioned classical
rules of LK results in a (classical) proof in which the formula D O E is reduced
at the root of the proof, we would need to detect from the corresponding Ape-
term whether this reduction can be considered superfluous. Therefore, if we can
judge this property, we can use the classical proof to determine that the sequent
is intuitionistically provable. In fact, an intuitionistic proof of the sequent can be
constructed from the data to hand. In the Aue-term Az: A.p8.[v}Ay: D.pe.[B]b,
corresponding to the obvious classical proof outlined above, this amounts to de-
termining that certain subterms, here the abstraction Ay: D, model weakening.
Full details are provided in [16] in which we prove the following theorem for the

fragment considered:

Theorem 1. Let ¢ be ¢ classical sequent derivation of I' —s A, A. If [¢] is an
intuitionistic Ape-term, then I' — A, 4 is intuitionistically provable.

We continued by giving a proof procedure for intuitionistic logic by extending
a definition of Miller et al. [10}: we defined a uniform proof to be a sequent
derivation where right rules are closer to the root than left rules. We call a proof
fully uniform if right rules are preferred even over putative axioms, thereby

! The restriction to a fragment of intuitionistic logic arises from the simple fact that Aue has
not been extended to disjunction; we see few difficulties in providing an extension suitable
for our purposes as we are not intending to ensure properties of cut-elimination that Au was
introduced to regulate.

2 This formulation is ciosely related to the notion of construction introduced in [15}.
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ensuring that the succedents of all axioms consist of atomic formulae only. We
then established the following completeness result for the fragment:

Theorem 2. If the sequent I" — A, A is intuitionistically provable, then there
exists a fully uniform proof ¥ of this sequent such that [3] is intuitionistic.

Hence to check provability of a sequent it is enough to consiruct a uniform
proof and then to check, for all possible axiom instances and for all possible
exchanges of > L and - L-rules, whether any of the corresponding Aue-terms are
intuitionistic. '

3 Resolution in classical logic

In this section, we show that, under inessential modifications, Mints’ translations
between resolution systems and the sequent calculus establish tight connections
between uniform proofs and resolution derivations in both classical and intu-
itionistic logic (Lemma, 8). We also show that, for classical logic, permutations
in the resolution search space correspond to permutations in the search space
generated by the sequent calculus (Proposition 11}. The results of [16] then give
realizers for (classical) resolution derivations.

We begin by recalling from [11] the construction of a set of clauses of bounded
complexity from an arbitrary propositional formula.

Definition 3. A formule A is o classical clause if it is @ disjunction 41 V---VA,,
with n > O and each A;, 1 <1 < n, a literal. Clauses which differ only in the
numbering or order of literals are identified.

Lemmad. For any propositional formule A, ¢ set X4 of clauses of length < 3
can be constructed in linear space and time (of the length of A) such that A is
valid if and only if X 4 is inconsistent.

Proof. We construct, by induction over the structure of A, a set of clauses for
the formulae X'V A and ~Av X, where X is a propositional variable; for details
see [11].

Resolution is defined as a calculus for deriving a judgement I' + C, where I
is a set of clauses and € is a clause. The precise definition follows below.

Definition 5. Let I' be a set of clauses, let C be a clause and let A and B be
atoms. A resolution derivation of a judgement I' - O is given by:

F-A\vC - I'k A, v
TorFe A TFavsx EM T AV VAL FOv v, fes

In the last case, we call tﬁe férmula‘A;_V.-u V A, the input formula of the
resolution rule.



... Note that weakening is admissible in this system: whenever I' € and also
I'c M thenalso IO, ‘
Mints [11] proves the following theorem:

Theorem 6. A formula A is classically proveble if and only if there is a reso-
lution derivation X4 F @, ‘

This is proved by transforming a resolution derivation into a sequent deriva-
tion where formulae consist only of disjunction and negation and vice versa.

Because our analysis of resclution is based on translating resolution deriva-
tions into seguent derivations, which in turn are translated into Ape-terms, and
because the Ape-calculus has no construction for disjunction, we replace dis-
junction in favour of conjunction, implication and negation. We will show that
Theorem 6 also holds for the appropriate medification of these translations.

We start with a translation of a resolution proof into a derivation in the
classical sequent calculus LK without cut.

Definition 7. Define the concatenation of n sequents I — 4Ay,..., [ — 4,
to be the sequent Iy, ..., Ih — Aq,..., Ap.

(i) By induction over the structure of clauses we define a sequent derivation
of I' — A, for each, clause C with a polarity {+,-}. If C is the clause
Cf v OF, then we define [CY v CF] to be the concatenation of the two se-
quents [CF] = It — A and [CF] = I3 ~— Ay, For the remainder of the
clauses the definition is as follows:

[(mrAV~Bv-C) e =(AABAC) ~—

{(~AV—-BVCY"']=(AAB)DC — o
{{(..,AvBVC)‘]::(AA—-B):)C__.; [(-2)_]:;»,4
[{AVBYC) ] = (~AA-B) D C — {(§A§+} =4 W_t
f(~Av =B)"] = ~{AAB) — i el

[(~AVB) = AD B —
AV B) ] = A5 B

(i) If X is a set of clauses Cy,...,Cr and C is a clause, we denote the sequence
resulting from concefenation of [CT'],...,[C7] end [C+] by [X~] — [C*].
By induction over the derivation of X b C, we define a classical sequent deriva-
tion of [X ] — JC*] as follows:
— With each aziom I'C, I'" |- C, associate the appropriate derivation from the
aTIOmS;
-~ With each axiom X b pV —p, associate the derivation consisting of the axiom
IX~,p—p
— If the input formula is ~A V B and if we hove resolution derivations of
XF AV, and X &+ B v Cy, then we construct the following derivation:

[X"1— 4 lcfl  1X7]— B.[¢3]
AR

[X™]—+ A A B [CTLICH

- L
[X~1~(AAB) — [c}){cF]
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~ [f the input formula is = Ay V —As V - A3, then the construction is similar;

- If the input formula is — AV -~BV C and if we have resolution derivations of
X+FAVC, XFBVC and X t ~CV Cs, then we construct the following
derivation:

X771 — AC) (X1~ B, 1C]]
AR

X7} — A nB.[CFLIC]] CIXTLe - (]

oL
[X~1,(4AB) D¢ — [CiLicHL 6

~ If the input formula is ~Av BV C and if we have resolution derivations of
XbAVO, X, B+ Cy and X + ~CV C3, then we construct the following

derivation:
(X7} B — [CF}
K71~ Ad0f] X1 — -B.0F]
(X1 =+ 4 A =B ICHLICT] '.\R x 1.0 —icfl .

[X"1(AA=B) 5 C s [CYLICTT.ICT]

-~ If the input formule is ~AV B and we have resolution derivations X + Av(C,
and X F =BV Cs, then we construct the following derivation:

[(X“3— Acf] [X71L.B - [Cf]

> L;
[X"1.42 B - [¢]].1CH]

~ If the input formula is AV B ond if we have resolution derivations X +
AV and X b BV Oy, we obtain the following derivation:
X714~ [Cf]

X1 — -AfCf]  XTLB (¢
= I3

[x71,-4 > B — [CFL [0

— If the input formula is Ay V Ay V Az, then the construction is similar;

— If the input formula is A and if we have a resolution derivation X - AV,
then we have a sequent derivation of [X~],A — [C*], by assumption,
which we stmply take;

— If the input formula is ~A and if we have a resolution derivation X - AvC,
then we have o sequent derivation of [X~] — A,[C], by assumption,
which we simply take.

By applying the translation of sequent derivations into Ape-terms, as given in
(16}, we obtain a Ape-term for each resolution derivation. Moreover, this sequent
derivation is uniform in the sense that right rules are closer to the root than left
rules. In [16] we also define a corresponding notion for Aue-terms which captures
the uniformity constraint by suitable constraints on the occurrence of the term
constructors in the Ape-calculus.
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Lemmas8,. (i) The sequent derivation associated with a resolution derivation

is uniform.

(ify The Ape-term associated with each resolution derivation is uniform.
Proof. () Note that the right-hand side of all root sequents of such a sequent
derivation is atomic. Furthermore any intermediate non-atomic formula on the

right is reduced as soon as it occurs. Hence the sequent derivation is uniform.
(i)  See [16].

As an example, we will give the resolution derivation and the corresponding
Ape-term for the formula A O A, According to Lemma 4 the set X454 is the
set (=X V-AVA AV X, ~AVX,-X} A resolution derivation of the empty
clause from a subset of these clauses can be obtained as follows:

=Xk -aAV A S QLAY 4

X AVXFEA -X F =X

X, AVX,—AVXHED

The corresponding sequent derivation is

A— A X
— -
Y. W ¢ X —X
oL
A DX s A X X+X

oL

SADXADX — X

The corresponding Ape-term, which is obtained by extending the translation of
sequent calculus into natural deduction to the case of multiple formulae on the
right-hand side, is p8.[8lw(po.[Blu(ra: A.ud.[ala)).

Observe that the sequent derivations obtained by translating resolution deriva-
tions do not use weakening. Moreover, these derivations can be rewritten in such
a way that the axioms have the form 4 — A, but at the expense of introduc-
ing weakening at the root of the derivation. These properties are a consequence
of the absence of a weakening rule in the resolution calculus. A transiation of
classical sequent derivations into resclution derivations can be given only for se-
guents without weakening in the middle of the derivation. Mints [11] gives such
a translation. Because every sequent derivation where all formulae are either
clauses or elements of [X ~] can be transformed into one in which weakening
occurs at the root of the derivation only, for each derivable sequent I' — A
with this property there is a subsequent I — A’ which has a resolution proof.
This translation is part of the foliowing theorem.

Theorem 9. Consider a uniform sequent derivation of [X ], &1 — Ay such
that (a) Ay and As consist of atoms; (b) all weakenings oceur only ot the root
of the derivation; and (c) all azioms have the form A —3 A. Then there is a
resolution derivation of X &+ =4y v A}, in which A} and A} are subsets of A,
and Ay respectively. Furthermore, all of the formulae in A, and Ay that are not
obtained by weakening are in A and A} respectively.

7



Proof. We give only a sketch. Let ¥ be the subderivation above the last weaken-
ing rule; proceed by induction over ¥. The hypothesis about weakening ensures
that we can always construct a resolution derivation with {4~] as the resolution
formula whenever the last rule was an A-L-rule.

Theorem 6 can now be obtained as a corollary.

Corollary 10. A formula A is classically provable if and only if there is a res-
olution derivation X4 - 0.

Proof. Suppose A is classically provable. By Lemma 4, the set X 4 is inconsistent,
hence there is a derivation of [X ;] — . Theorem 9 implies the existence of a
resolution derivation X4 F §.

Conversely, given a resolution derivation of X4 F . The second part of
Definition 7 yields a derivation [X;] — ; hence X4 is inconsistent. So 4 is
provable.

A central idea of [16] is to investigate when permutations transform a uni-
form sequent derivation which is non-intuitionistic info an intuitionistic deriva-
tion. Here we show how permutations in the sequent calculus are related to the
choice of input formulae in the resolution calculus. Later on we will transfer
this connection to intuitionistic logic. Because the formulae occurring in sequent
derivations arising from resolution derivations have a rather simple structure,
it suffices to consider exchanges of D L-rules and —ZL-rules. These are the only
two rules whose exchange leads from a uniform derivation to another uniform
derivation. The details are contained in the following proposition:

Proposition11. (i) Let

XbEmAy v Xk =A, vV,

XAV -« VA ROV Oy Xt=-BivDy-- - X+aBnvDn

X AV VAL G VB VB FCa V- Ca vy VeV Dy,

be a resolution derivation and let

X+-AVET  XF-BiVDi - XF =BV Dn

X, -Ci1vEBy---VBub-Ayvinv.. vy, XFE=AaVvCqy-- - XFmA, VT,

X, AV VA, OV E - VB Oav . Cav Dy V- oV Dy,

be the derivation in which the application of the two instances of the resolution
rule are exchanged. The translation of the second resolution derivation into a
sequent derivation is obtained by exchanging the two lefi-rules to which the two
applications of the resolution rule are translated.

(1) Conversely, given o uniform sequent derivation of a sequent I’ s A,

where I' consists only of clauses and A only of atoms, the exchange of —L and
2 L-rules corresponds to the exchange of two resolution rules.

4



Proof. For first part, check each resolution formula in turn. For the second part,
calculate the resolution derivations for all possible exchanges. o

Intuitively, this proposition indicates that the search for a uniform derivation
of a sequent with formulae in clausal form is as complicated as the search for a
resolution derivation of the corresponding clauses. In other words, this propo-
sition shows that the essential aspect of the resolution method is the transfor-
mation of formulae into clausal form; the complexity of finding the right input
formula is the same as finding the right permutation in the sequent derivation.

This analysis carries over to the intuitionistic case (see next section), includ-
ing the case of a resolution formuia (A D B} o C. This is important because,
in contrast to the classical case, in intuitionistic logic permutations of inferences
do matter. Classically, but not intuitionistically, any permutation of a sequent
derivation transforms a proof only into a proof and a non~proof only into a
non-proof.

4 Resolution in intuitionistic logic

In this section, we develop a resolution calculus for a fragment of intuitionistic

logic without disjunction based on the ideas above. The idea is to retain the
resolution calculus for classical logic, because this calculus has no constraints
on the order in which input formulae are taken. The translation of such resolu-
tion derivations into Aue-terms is used to decide when the derivation provides
sufficient evidence that the formula is intuitionistically provable.

4.1 Mints’ intuitionistic resolution

Mints [11] also defines a resolution calculus for intuitionistic logic. 1t is easily
seen that his calculus corresponds to constructing uniform proofs in LJ, with
weakening pushed as close to the root as much as possible. It is important to
note that Mints' calculus is not a restriction of classical resclution, but has special
rules for each connective of the logic. Moreover, clauses are no longer formulae,
but sequents of the foom A D B - C, 4 - Bv ( and 4;,...,4, = B
with n < 3, where all formulae are propositional variables. Mints constructs, for
every formula A, a set of clauses X 4, the translation of these clauses into one
formula Y4 and an atom F such that A is intuitionistically provable if and only
if Y4 — F is provable in LJ.

Mints then gives translations between resolution derivations and LJ deriva-
tions with weakening pushed down to the root as much as possible, and obtains
as a corollary that a formula 4 is intuitionistically provable if and only if X4 - F'
is derivable in the resolution calculus. _

The rules for implication and negation cannot be obtained as special cases of
the rules for classical resolution, hence it is not immediately possible to transfer
the implementations of classical resolution to the intuitionistic case. The reason
is that derivations may contain weakening at places other than at their roots.
As an example, consider the LK-derivation

1



' — B, A
B - i

NA— B, A -
R 0 Y 11

I s A7 B, A C—C
oL,

NADBY DO~ C a4

where the weakening of the formula A cannot be pushed to the root of the
derivation. Because the construction of Theorem 8 works only for derivations
where weakening is applied oniy as the last rule of the derivation, there can
be no resolution derivation corresponding to this sequent derivation. Indeed, the
method of the previous section, which uses the (classical) equivalence (A D B) D
C = (AVC)A (=B V), yields only the following resolution derivation:

'r-Bv A r-CvC

P=BvOk 4

where A is interpreted as the disjunction of its members, and the input formula
AV C is added by weakening at the end and not obtained by a resolution step.

4.2 The intuitionistic force of classical resolution

In this section, we exploit the results given above and in [16] to assess the
intuitionistie force of classical resolution. We take the association of Aue terms
with resolution derivations, as developed in the previous section, and identify
when they provide evidence for intuitionistic provability.

We restrict our treatment to intuitionistic formulae containing negation, con-
junction and implication, since as formulated, the Ape-caleulus has no coprod-
ucts and disjunction is a primitive connective in intuitionistic logic. A treatment
of disjunction in Apue, sufficient for our purposes, should present no problems
as we are not constrained to achieve strong normalization with respect to cut-
elimination: the original motivation for the calculus.

The translation of formulae into clauses, referred to in Lemma 4, produces
clauses given by the BNF

Cu= AV Ay i -4,V Ay | 41 V-Ads V 4; ! -4 V 4,y | -A; D As,

where Ay, Ag, Az are all atomic. In the sequel we restrict attention to such
clauses. Note that the transformations leading from formulae to clauses are no
longer equivalences: the formula (4 D B} D C intuitionistically implies (A v
CYA (B V (), but not vice versa. In all other cases, the transformations that
lead from formulae to clauses are intuitionistic equivalences.

The correspondence between the Aue-calculus and intuitionistic logic is based
on a sequent calculus with multiple conclusions for intuitionistic logic, as pre-
sented in [5, 21]. This calculus is the same as the calculus LK [8] for classical
logic except for the D R and ~R-rules:

o



The translation of resolution derivations into Ape-terms leads directly to a
criterion when a resolution derivation gives rise to an intuitionistic proof.

Definition 12. A resolution derivation is said to be intuitionistic if it translates
into an intuitionistic Aue-term.

The soundness theorem, i.e., that an intuitionistic resolution derivation in-
deed gives rise to an intuitionistic sequent derivation is as follows:

Theorem 13. A formula A is intuitionistically provable zf there is en intuition-
istic resolution derivation X4 F .

Proof. The translation of the resolution derivation produces a derivation of
fX7] —+ . By assumption the Ape-term corresponding to this derivation is
intuitionistic, hence the sequent is intuitionistically provable by Theorem 1.

To establish completeness, the translation of resolution derivations into se-
quent derivations must be modified to enable a larger class of the former to
be recognized as having non-tiivial intuitionistic force. For example, consider
the resolution derivation for the formula A O A4, shown after Lemma 8. The
corresponding sequent derivation is a classical sequent proof, but the resulting
Ape-term is not intuitionistic. However, we can modify the translation of resolu-
tion derivations such that this resolution derivation is translated into a sequent
proof whose Ape-term is intuitionistic. The modification is to map resolutions of
this form,

XbE=AVEBV(C XV

X, AvCO - BVCvC XrF-COvC.

X, AVC,~BvC+O,ve

where both formulae AV C and BV C-occur as input formulae, to the sequent
derivation
{X7),4 — B,[C]]

DR
X1 — A2 B.cH] C —C

o L.

[X"],{AD B)DC — [Cf).C

The modified transformation maps resolution derivations X + C into sequent
derivations of I — [C]™*, in which I"is the result of replacing some choice of
pairs of clauses AVC and -BVC by (4D B) 2 Cin {X~].

The soundness theorem for the modified translation is as follows:



Theorem 14. A formula A is intuitionistically provable if there is a resolution
derivation of X 4 I 0 such that the Aue-term corresponding to the modified trans-
lation into the sequent calculus is intuitionistic.

Proof. The translation of the resolution derivation produces either a derivation
[X 1] — or a derivation I' — where I" results from replacing pairs of clauses
—A > Cand B> C by (A D B) D C. By assumption the Aue-term correspond-
ing to this derivation is intuitionistic, hence there is an intuitionistic derivation
of this sequent [16]. The following lemma, a modification of lemma 4, now yields
the claim.

Lemmal5. 4 formule A is intuitionistically provable if and only if there is an
intuitionistic sequent derivation of I' ~—> , where I' is the result of replacing
some choice of pairs of clauses AV C and ~Bv C by (A> B) D> C in [X7].

Looking at the example of the resolution derivation for the formula 4 D A
again, we see that the modified translation yields a derivation

A~ A

I 3 {4

—— A TY A X — X
oL,

(ADA DX — X

with the Ape-term w(Aa: A.a), which is in fact a A-term and hence an intuition-
istic Ape-term. '

We need one extra step for the completeness proof. In our previous paper
{16] we show that a sequent I' —> A is intuitionistically provable if there is
a uniform classical sequent derivation such that the corresponding Ap,e-term is
intuitionistic. We now have:

Theorem 18. Suppose we hove a uniform classical sequent derivation of a se-
quent X, Ay — As such that the corresponding Ape-term is intuitionistic,
all formulae in X are clauses or (A D B) D C, all formulae in A, and As are
atoms, weakening is pushed as far as possible to the root of the derivation, and
all azioms have the form A ——+ A. Then there s an intuitionistic resolution
derivation X b+ -A} V Ay, where A} and A} are subsets of Ay and Ay respec-
tively. Furthermore, oll of the formulae in Ay and A; that are not obteined by
weakening are in A} and Al respectively.

Proof. We use the proof of Theorem 9 to construct a resolution derivation except
for the case of the principal formulae ~A D € and B O €, if they arise from the
translation of (4 D B) D C. If neither A nor B is obtained by weakening, we
construct a resolution derivation with the last two resolution formulae being AV
C and ~BVC. If Ais obtained by weakening, we construct a resolution derivation
with ~BVC as the last resolution formulae, and if B is obtained by weakening, we
construct a resolution derivation with AV as the last resolution derivation. The
maodified translation ensures that the translation of the constructed resolution
derivation is also an intuitionistic sequent derivation.

12




. Soundness and completeness now follow in exactly the same way as shown
for classical logic. S
Corollary 17. A formula A is intuitionistically provable if and only if there is
an intuitionistic resolution derivation of X4 F 0.

Proof. One direction has already been shown; see Theorem 14. For the other,
the argument as in Corollary 10 works for the modified translation.

Now we tuwrn to the connection between the choice of input formulae in the
resolution calculus and permutations in the sequent calculus. Consider the trans-
lation of a resolution derivation and examine all the permutations of O L-rules
and —L-rules. If one permutation yvields an intuitionistic Ape-term, then permu-
tation of the order of introducing the input formulae yields the image of an intu-
itionistic resolution derivation under the translation. Hence, the soundness and
completeness properties {Corollary 17) imply that the search for an intuitionis-
tic resolution derivation amounts essentially to the search for a permutation of
the D L and ~L-rules which yields an intuitionistic Ape-term. As an example
of this phenomenon, consider the formula (A D BA (A D B) D B) D B. This
example is the same one we gave in our previous paper [16] to demonstrate how
a permutation can transform a classical sequent derivation with no intuitionistic
force into one with such force. The crucial point is that in order to obtain a
uniform intuitionistic proof, the O L-rule with principal formula (A D B) D B
has to be the rule closest to the root of the derivation. This is also true for the
resolution derivation of the formula (4 D BA {4 D B} D B) D B in that the
resolution step that uses the input formula corresponding to (4 > B) D B must
oceur as late as possible; this gives rise to a Aue-term which Is intuitionistic.

5 Application to a logical framework

In an earlier paper [15], we argued that a A-calculus with explicit substitutions
could be use to provide a characterization, via normal forms, of the search space
of SLD-resolution for minimal implicational horn-clause logic. The analysis of
proof-search presented here constitutes a unified framework for both classical and
intuitionistic resolution, applicable to larger propesitional fragments, in which
the search space of resolution is again characterized by properties of A-terms.
Our general programme is concerned with representing logics together with
(the search spaces of ) associated proof-procedures, in order to build a framework
for defining computational logics. Such a framework might allow the specification
of a system of logic and the derivation of a logic programming language based
upon it. The framework we use for defining logics, LF, is based on a dependently
typed A-calculus, AII, and the representation of logics via judgements-as-types.
One application of the present paper would be to consider an extension of
the AIT-calculus to handle multiple conclusions, perhaps via the type-theoretic
connective +. By introducing such structure, it should be possible to exploit
many of the results presented here in the constructive type-theoretic setting.
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Moreover, it should be possible to lift search procedures for classical object-logics,
such as resolution, to the framework. In order to deal with the quantifiers of
dependent type theories such as A, it will be necessary to exploit the techniques
introduced in [14], based on Herbrand’s theorem.
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A Review of the \ue-calculus

We describe our variation on Pariget's Ap-calculus [13], which we call the Ape-caiculus [16]. In
addition to implicational types, we alse include conjunctive (or product) types and explicit substi-
tutions {t/x}. The latter are cruciai for our analysis of search in that we shall have representatives
within proof-objects for possibly incomplete sequens derivations, thereby forcing a lazy approach te

substitution. In addition to the constructs of Ape presented in {16}, we include hers rules for 1,
The raw terms of the Ape-calculus are given by the following grammar:

tuma | AzmAt bt | (et | pet | t{zt/y} | (&8 | w{) | =)

The rules for well-formed terms are given in Figure 1. The reduction rules are given in Figure 2.
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The Ape-caleulus provides an account of classical natural deduction: i.e., realizers for a calculus

in which multipie-conclusioned sequents can be derived without impure constraints 18], Consequentty,”
the form of the typing judgement in the Ape-caleulus is ' ¢ A, A, where I' is a context familiar

from the typed A-calculus and A is a context containing types indexed by names, «, @, .., distinct

from variables. The idea is that each Aue-sequent has exactly one principal formula, A, on the right.

hand side, i.e., the leftmost one, which is the formuia upon which all introduction and elimination

rules aperate. This formula is the type of the term &

The term ot realizes the introduction of a name. The term per.[#}¢ realizes the exchange opera-
tion: if A% was part of A before the exchange, then A is the principal formula of the succedent after
the exchange. Taken together, these terms aiso provide a notation for the realizers of contractions
and weakenings on the right of a multiple-conclusioned calculus. It is also easy to detect whether a
formula Bf in the right-hand side is, in fact, superfiuous, i.e., there is a derivation of I' - &1 A, A

where A’ does not contain B3; it is superfiuous if § is not a free name in t.
T o AF o A A Az

F-tA—BA I'baid

HoA-&8,4
TFsAra—mx 1! TFis B A +E

I't:A A 1] D A%, A

T+ [alfi A%, & 1~ bi ?ua.t:ﬂ.z #

P4 A4,A% A 1 '~ 4

T i—%at:ﬁu,z L~ . TFrat A, 4 #
Pt ), A n I 6a L
Tyt a TFRdE1LTA

Nuw B A s A A L
"5 AS Brt{zefw) G A ©

Ut AnB A 'FeAANEB A AE

rr
ANE FrTnT B A

A A I'Fs8:B,A Al
Fa s AAEB A 'Ry A A

3]
T
The second instances of the rules 1] and u model contraction and weakening respectively.

Fig. 1. Rules for well-typed Ape-terms

. B {(Az: At)s~—t]s/z} - 21 o Az

p—v {paA=B )s o w85 t[{Blus /(o)) (?t s)?yfsz}s /,\»}t{y;fz;z;jg%;}
=1 pajals~+s if @ not freein s (aJt){ys/z} ~ [altfys/z)
=B {’Y‘l(#g.s}us{’)‘ﬁa] (pat){ys/z} ~ pot{ys/z}
#—prod n(ua )~ pB 7 H[Blm () /[a]] Also obvious cases for conjunctive

. ' (et * B sy~ py® t{ly]7 (u)/lody] terms. Standard variable-capture
proj 7:(“‘ )t conditions assumed.

w'({t, a))~r 8

The term #[s/io]u] is ¢t with all occurrences of a subterm of the form [c}u replaced by s.

Fig. 2. Reduction rules of the Ape-calculus
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