Department of
Computer Science

Technical Report No. 741

o
RO
QUEEN MARY

AND WESTFIELD COLLEGE
UNIVERSITY OF LONDON

[SSN 1369-1961

GOLOG and
Linear Logic
Programming

Dr. G. White

January 1998

GoOLOG and Linear Logic Programming*

Dr. G. White
Department of Computer Science
Queen Mary and Westfield College

University of London
London E1 4NS§
email graham@dcs.qmw.ac.uk
url http://www.dcs.qmw.ac.uk/“graham

January 2, 1998

Abstract

We define a translation between the language GoLoG and a fragment
of linear logic augmented with definitions; we prove bisimulation for this
translation and finally suggest some extensions to GOLOG motivated by
the translation.

Contents

0 Preliminaries
0.1 Notablol v v e o e e e e e e e
0.2 Girard’s Fixpoint Theorern

1 The Basic Representation
1.1 Situationsand Fluents
1.1 A First Attempt o oo
1.1.2 The Situation-Forming Operators
1.1.3 Permutabilities 0o
1.2 Representing Situations
1.2.1 BasicActionso v i
1.3 Representing Fluents
1.31 TheFluents o v i
1.3.2 Representing Fluents in Linear Logic

*During the composition of this report, the auther was pald by Project Dynamo, supported
by the United Kingdom Engineering and Physical Sciences Research Council under grant
number GR/K 19266, The views expressed in this paper are the author’s own, and the
principal investigators of the project — John Bell and Wilf Hodges ~ bear no responsibility for

them.

2 Translating Compeosite Actions 13

2.1 Bisimulation. 13
22 Null Actions 14
28 Test Actlons. 14
24 Sequence. 15
2.5 Nondeterministic Choice of Actions 17
2.6 Nondeterministic Choice of Arguments, 17
2.7 Nondeterministic Iteration 18
3 Procedures 20
3.1 Contexts and Substitutions 21
3.2 Translating Procedure Definitions 22
3.3 Bisimulation with Procedure Definitions 23
3.4 Locally Defined Procedures 24
4 The Result 25
5 Assessment 25
5.1 Second Order Entities, 26
5.2 The Algorithm 26
5.3 Other Fixed Points 26

0 Preliminaries

Levesque et al. [6] have defined a programming language, Gorog, in order to
reason about complex actions within the framework of the situation calculus,
We build on previous work [17] and show how to translate this language into
linear logic, suitably angmented.

0.1 Notation

Multisets will be written {a,a, a, b, ¢, d, af, ete; () will also be the empty multiset.
Multiset union and intersection are |l and M.

0.2 Girard’s Fixpoint Theorem

We will need to define some extra machinery, beyond the standard linear logic
connectives; although we could do this in an ad hoc fashion, we will use Girard’s
Fixpoint Theorem, which provides a useful generic cut elimination theorem for
the sort of extensions of linear logic that we will be considering.

We recall Girard’s Fixpoint Theorem: see [4, 8, 13]. We quote the theorem
in something like Girard’s form:

. : L FB .
Definition 1. ¢ A right clause is written —— df, where h, the head, is

a linear logic term, and B, the body, is a linear logic formula without
exponentials;

BF
o A left clause is written —— df, where h, the head, is a linear logic term,

and B, the body, is a linear logic formula without exponentials;

e A definition Is a finite set of clauses.

Definitions give rise to sequent calculus rules. Suppose we have a definition,
P, and suppose {for simplicity) that no head of a left clause unifies with any
head of a right clause. Then we define the following.

Definition 2. The rules corresponding to D are:

THFA . . B L
® -~ where there is some right clause — df in D and a substitution
I'-A4,A Fh
¢ such that 4 = hs, F = Hg;
IFFA LT, F A B]
. where df} are the right clauses such
AR A =1

that h; unifies with A4, and where - i%, for each 1, ¢; is the most general
unifier of h; with A - F; = B;g;

ILF+A) B+ o

w———— where there is some left clause e df in D and a substitution ¢
I'NAF A ht
such that A = h¢, F = Bg;

L+-F,A ...TFF,A Bi+ *
. where ¢ —— df are the left clauses such
i fo]

THFAA i
that h; unifies with 4, and where — if, for each 4, ¢ is the most general

unifier of h; with A ~ F; = Bi;.

Remark 1. We can think of the right rules introduced by right clauses (or
the left rules introduced by left clauses) as definitions of their heads; the cor-
responding left rules (respectively right rules) arise by what Schroeder-Heister
calls definitional reflection [13, p. 146]. Girard describes it [4, Section 1.2] as

basically something like Clark’s completion but less naive: in
some senge we want to say that if p has been introduced as head of the
only clauses C,...,Cy ... then this must be taken as the definition
of a new logical primitive (a generalised connective if one prefers),
and that the elimination rules for p are basically the negation by
failure rules. In this it is absolutely essential that we know that no
other clause ending with p is there (i.e. the notion of end of the list
of clauses that is essential in small details like failure}.

Remark 2. Linearity is essential for this: we can, for example, use it to define
a proposition p such that p is equivalent to pt [4, Section 2.1}, which is harmless
in linear logic but disastrous in classical or intuitionistic logic. This motivates
the restriction on exponentials.

We now have

Proposition 1. Linear logic, together with the rules introduced by a definition,
satisfies cut elimination.

Proof. For the case where we have right clauses only, we can use the proof in
[13] {this theorem was announced, without proof, in [4]). A symmetry argument
will, of couzse, give us the case of left clauses only, but for the mixed case we need

Tk
to encode left clauses as right clauses. Replace each left clause ————— df
h{ty, ... ta) I
T F Ry, ... ta)" .
with the pair of right clauses —. df and (ts) df, where h
hty, ..., tn) Fhty,...,ts)
is a new relational symbol; it is easy to check that the new system, which now
consists only of right clauses, is equivalent to the stated rules. [

1 The Basic Representation

We will be comparing GoLoG (as defined in [6]) with a linear logic programming
language, in such a way that Levesque et al.’s three-term relation Do(d, s, s)
will correspond to the provability, in linear logic, of a sequent s®,8 + s'®, for
suitable formulae 52, 5'® and § corresponding to s, ¢ and d respectively., There
are, then, two issues: how we define the correspondences between the formulae,
and how we formulate the correspondence.

The latter issue is rather easier to state: we can regard both terms of the
comparison as labelled transition systems, the states s and s’ (or their trans-
lations into linear logic) being the nodes, and the actions § (respectively their
translations) being the labelled edges. So we will want to show that this corre-
spondence is a bisimulation.

1.1 Situations and Fluents

The question of the translation of the various terms is a little more delicate.
Levesque et al. start with an informally described notion of situation, and then
suppose that there are deterministic basic actions whose effects on situation can
be determined using the machinery of the situation calculus [6, Sections 2.1~
2.3]. Although this is all rather loosely specified, what is important about their
approach seems to be the following:

1. States determine truth values of fluents; i.e. fluents can be regarded as
predicates on the collection of states.

2. There are — for this form of the theory — no state constraints.

Remark 3. We use the notation of Levesque et al., according to which fluents
have a situation argument {and maybe others). Other authors — e.g. [7] -
talk of fluents without a situation argument place; these correspond to what
Levesque et al. call pseudo-fluents. The advantage of Levesque et al.’s, and our,
approach is that it makes the type structure of the langnage more visible: fluents
are functions from situations to propositions, and likewise actions are functions
from situations to sitations. This is mathermatically illuminating and fits with
an approach to language in the style of Montague: see [11] and [15, pp. 31ff].

By contrast, the approach in which fluents (and actions) are atoms means
that they can only be assigned relatively unstructured sorts, and that one then
has to define auxiliary relations {holds, result, and so on) in order to recover
the lost functional role of fluents and actions; this makes for a less transparent
syntax.

Remark 4. There are a number of much debated issues here, to do with
whether

1. situations are individuated by the propositions true and false in them, or
by their causal history, and

2. we are considering the set of all (non-contradictory} situations, or merely
the ones accessible from the initial situation.

Surprisingly little hangs on these: the fact that we will only be considering our
representations of states and actions up to bisimulation means, in effect, that
we will never have to make up our minds.

1.1.1 A First Attempt

We have already defined — in [16, 17] — a representation of situations and actions
as linear logic terms. In this representation, situations are linear tensor products
of “atomic facts; this was adequate for the purposes of [16, 17], but we face
difficulties if we try to extend this to GoLoG. The problem is this: in GoLog,
we want to test the truth-value of a given fluent in a given situation. According
to the above account, fluents should be predicates of situations, and indeed it is
easy enough, given a fluent — ¢, say ~ to define a predicate of s1tuatzons qﬁ such
that, for any situation s, ¢ is true of s iff the sequent - q&(s‘g’) is valid. We will
give such a definition in Section 1.3.

The representation of fluents, then, is not in itself problematic: the real
difficulty lies elsewhere. Given a fluent qb, Levesque et ol. define a test action, ¢7,
such that Do{¢7?, s, s') succeeds iff s = &' and ¢ is true in 5. It is thus tempting
to represent Levesque ef al.’s test actions by terms such as VX .(X ®q5(X) — X,
where X is a suitable variable. If ¢ is true in a situation ¢, then we certainly
have a corresponding valid proof:

®rs® g'gts@)
@ 5% @ ¢(s%) 5@ &%
5%, (s® © (s®)) — s® F ¥
sSPVX (X ® (X)) - X + 48

with an appropriate proof of - ¢(s®).
However, we also get proofs where we do not want them. We can, that is,
construct proofs such as the following:

Fr® - as®)

52, (P @ p(s®) ~s®Fs® §OLC
s 5% (5P @ $(s%) o s¥ F P @s®
2R (P ®d(s®) <P
P RO UX. (X GHX)) <X ®@s®

This can lead to unintended proofs:

Example 1. Suppose that there are two swans, henry and bruce, and that henry
is white whereas bruce is black. Let ¢ be the fluent corresponding to the propo-
sition ‘All swans are white’; then ¢ is true of the situation consisting only of
henry is white’, but false of the situation consisting of *henry is white’ and “bruce
is black’. In the linear logic representation, this means that - ¢(white(henry)) is
valid, whereas t+ g(white(henry) ® black{bruce)} is not valid; the predicate part
of the translation, then, behaves as we ought.
However, we have a proof of

white(henry) ® black(bruce), VX.(X ® $(X)) —o X b white(henry} ® black(bruce)

constructed as above - 5% is white(henry) and 5”® is black(bruce) — even though
the corresponding test action ought not to succeed on the situation in question.

More generally, we cannot, however we translate test actions into linear logic,
correctly represent them in the style of [16, 17]; for it is characteristic of that
representation that, if s®,8 F ¢/ is valid (where s® and s'® are representations
of situations, and § is a representation of an action), then so too is s® @ s"® 3+
#®@s®, Consequently, if we could represent test actions in this way, then if a
test action succeeded on a situation s, it ought alse to succeed on all situations
5 @ s”; but this allows too many proofs to succeed, as the example shows.

The problem here lies, not in the translation of test actions, but in the use
of ® as a situation-forming operator. This use allows situations to be broken up
into sub-situations, which are then processed independently. This is perfectly
adequate for the actions that we were considering in [16, 17], and it gave a
certain degree of asynchrony that could be computationally useful. However, as
soon as we add test actions to the calculus, we need more synchronisation than
we can have with ® as a situation-forming operator. We must, then, define an
alternative situation-forming operator, one which enforces the synchronisation
that we need.

Remark 5. This is a theme that s, in another guise, quite common in the
literature: it is well known that the situation caleulus reguires an implausibly
large degree of synchronisation - indeed, the event calculus was defined in order
to provide a less synchronous way of reasoning about actions [5]. However, the
above example shows that we need some degree of synchronisation in order to
apply tests to situations; it would be interesting to see if we could combine valid
tests with some degree of asynchrony. Something in the style of [12] may well
be possible,

1.1.2 The Situation-Forming Operators

We would like, then, to have situation-forming operators that would allow us to
permuie compenents of situations, but would not allow us to decompose them.
We use Girard’s Fixpoint Theorem to define an operator ¢(-) as follows:

Definition 3.
Fo(X @ (Y ® Z)) o Fo(Y @ X) o ko (X)
Fo({X®Y)® Z) Fo(X®Y) Fo(X&1)

We now have:

Lemma 1. o{X)} F o(Y) iff X and Y are linear tensor products of terms, equal
up to permutation and units.

Proof. Suppose we have such a proof, By cut elimination, the only rules which
are ever applicable on the proof tree are the right and left rules for ¢{) and the
linear logic axioms; the result then follows by induction over the proof tree.
Conversely, if the two terms are equal up to permutation and units, it is easy
to concoct such a proof. C

1.1.3 Permutabilities

We need the following easy permutability result:
Lemma 2. IfUo(A), ..., 0(A) F o(B1),...,0(B;), A is valid, then there

is-a proof in which all applications of the o-rules occur after (i.e. above) all
applications of other rules.

Proof. Suppose that we have a proof. Notice that the ¢s can occur as principal
fortrulae only in the o-rules themselves, or in axioms; the axioms, of course, can

ounly occur at the top of the tree.
Take the proof, and remove all instances of the o-rules from it as follows,
starting from the bottom. If we have a right ¢-rule, then it is of the form

11

I'+o(B),A
T+ o(B), A

Replace all instances of ¢(B') in I1 with ¢(B), and delete the o rule. I we have
a left o-rule, then it must be of the form

1

To(A)FA T,o(A")F§
I'e{A)F A

Select one of the branches (e.g. the left one}, delete the o-rule, and replace all
mstances of o{A4’) in IT with o(4).

After we have done this, we will have a tree in which all rules are valid
except for those in which one of the os is principal; since we have removed all
of the o rules, the only such rules remaining are the axioms. We thus have
a tree which is a valid proof tree except that it has some leaves of the form
o{A) F o(B). However, A is a replacement for some A', and B is a replacement
for something, which must be A’ because the proof was valid before we modified
it. Furthermore, we can check inductively that we always replaced terms with
equivalent ones, up to permutation and units; thus, 4 and B must be equivalent
up to permutation and units. Consequently there is a proof of o(A) F o(B)
which involves only the o rules; we graft suitable such proofs onto such leaves
as are necessary, and we have a valid proof of the required form. 0

We alse need the following rather trivial lemma:

Lemma 3. The only valid sequents I' = A, where I' and A are multisets of
propositions of the form ¢{.), are 0(A) & o(B), where A and B are equal up to
permutation and units.

Proof. The only rules that one can apply to such sequents are the left and right
rules for o, and the axioms. The former leave unchanged the cardinality of the
multisets on either side of the sequent, whereas we can only apply the axioms
if there is exactly one formula to the left and right. O

1.2 Representing Situations

We shall, then, represent situations by linear logic terms of the form o(z @ y @
...} For a GoLoG situation s, we let s® be the tensor product of the atoms
which are true in s; so we will represent s by the linear logic term o(s%).

Example 2. The “situation consisting of "henry is white’ and ’bruce is black™
of Example 1 will be represented as o(white{henry) @ black{bruce)).
1.2.1 Basic Actions

We will also define a class of basic actions; this is rather smaller than Levesque
et al.’s class of basic actions, but it is all we need. As it turns out, we can define
all of Levesque et al.’s rather loosely defined class in terms of ours together with
their action connectives.

Definition 4.

VZ.o(X®@Z)—o(Y ®Z)F o
a(X,¥)F
We have the following:

Proposition 2. ¢{A), «(X,Y) b o(B) is valid {ff A®Y is equivalent to B X,
up to permutation and units.

Proof. If is clear. Suppose that A®Y is equivalent to B ® X; then there is a
W such that A is equivalent to X @ W and B is equivalent to ¥ ® W. We use
the following proof.

I .
c(A) b (X ®W) oY @ W) F o(B)
o(A), (X ®@W) - oY@ W)} + o(B)

o(A),VZ.0(X ® Z) =0 o(Y ® Z) + o(B) \

o(4), a(X,Y) + o(B)

using the left rule for « at #, and where II; and II; are given by Lemma, 1.

For the only if direction, suppose that we have a proof of the sequent in
question. By Lemma 2 we can assume, without loss of generality, that the proof
starts with an application of the left rule for a; we are therefore reduced to
proving the condition on 4, B, X, and Y given the validity of o(A),YZ.0{X ®
Z) ~o o(Y ® Z) I~ o(B). Again without loss of generality we can assume that

we now have an application of the left ¥ rule. For some W, we must have the
validity of 0(4),0(X @ W) —o o(Y ® W) - ¢(B); again we can assume that we
first apply the left —o rule. The only distribution of resources that leads to a
proof is

oA a:(X QW) oY @ W)k a(B)
7(A), 7(X @ W) — a(Y ® W) F o(o(B))

and, by Lemma 1, we get the result. -

Lemma 4. There are no proofs of
I alX,Y) F A,

where T and A are multisets of propositions of the form &{.), if either I' or &
28 emply.

Proof. Because of the permutabilities, we can assume that any proof starts:

H1 H2

IFo(XeW),a I oY @W)F A
LI, o X@W) ~oY@W) F A A
T.T\VZ.0(X®2) —o(Y @ Z) F AA
T,T, a(X,Y) F A,A

IT, cannot be valid unless T' is non-empty, and Il cannot be valid unless A is
non-empty. O

Example 3. The basic actions described in [6, Section 2.2] can be fitted into
this framework. For example, the pickup(z) action (by which the agent picks up
an object z) replaces notHolding(z) by holding(z}, and can thus be represented
as a{notHolding(x}, holding(z)). Actions quite often have preconditions: thus
the preconditions of the pickup action are

1. that the agent is not holding the object initially,
2. that the agent is next to the object, and
3. that the object is not heavy.

These preconditions can be accomodated by working with a sequence of suitable
test actions followed by the appropriate o both test actions and sequence will
be described in Section 2.

One should also notice that in many cases the preconditions are not necessary
in the linear logic formalism. Thus the action a(rotHolding{x), holding(z)} will
simply not succeed in any situation which does not have notHolding(z) as a
component; using Proposition 2 it is easy to show that there can be no proof of
any sequent

a(A), a(notHolding(z), holding(z)) F (B}

unless A contains notHolding(x) as a component. So one does not need to give
precondition 1 explicitly. One could, similarly, absorb the third precondition
nto the o term, writing the action a(notHolding(x} @ notHeavy(z), Holding(z) ®
notHeavy{z)}. One might, however, have qualms about such an action descrip-
tion, although it is a relatively common idiom in Strirs. (Such things as the
notHeavy(z) fluent, which figure unchanged on both input and output of the
action description, are sometimes described as prevailing fluents.}

There are actions with effects which depend on the initial state of the system.
"Thus Levesque et al. have an drop action, which breaks fragile things:

poss(drop(i), s) A fragile(,s) — broken{z,do(drop(z}, s})

(i.e. if, in a situation s, it is possible to drop =z, and if z is fragile in s, then =
is broken in the situation which is the result of dropping & in s). The result of
dropping an object thus depends on whether it is fragile or not. This sort of
dependency can be handled by a choice between two actions, one of which has
the precondition of fragile and which makes the object broken, and the other
of which has the precondition of —fragile and which leaves the object intact.
Choice will, again, be described in Section 2.

Finally, some actions have logically more complex effects: thus there is an
explode action which has the effect of breaking every object near to the exploding
object. Such effects can, again, be described in terms of a while construct, and
this can, in turn, be described in terms of the usual composite action constructs
of Section 2 ~ indeed, Levesque ef al. have a very similar, but less destructive,
action, which (in the blocks world) puts all the blocks away into the box: [6,
. T}

Thus, although our set of basic actions is rather more austere than Levesque
et al’s, we can describe all of their basic actions in terms of composites of our
primitives.

1.3 Representing Fluents

Levesque ef al. assume that we are given fluents, and corresponding test actions,
without giving any syntax for these. I give here a syntax, and then show how
to define corresponding predicates in linear logic.

1.3.1 The Fluents

We assume that we are given some finite collection of individuals, for ex-
ample narcissus, blocks, and so on. We assume that all of the individuals
have names. We assume that we are given some class of atoms, for example
loves(narcissus, narcissus), on(table, book}, on{floor, X), and so on. The argu-
ment places of these atoms may be occupied by individuals or by free variables.
Ground atoms are those in which there are no free variables.

Definition 5. » If o is a (not necessarily ground) atom, then ¢, is a schem-
atic test;

e If ¢ is a schematic test, then Va.¢ and J2.¢, and —¢ are schematic tests;
¢ If ¢ and @' are schematic tests, then ¢V ¢’, $Ad, and ¢ — ¢ are schematic

tests; .

10

» A schematic test whose only free variable is the situation argument is a
test.

We define truth conditions as follows:

Definition 6. o Let o be a ground atom: the elementary a-test, ¢q, is 2
test. ¢o(s) is true of a situation s iff « is a component of s;

o Vz.¢(s) is true iff, for all ground substitutions for z, the resulting test is
true;

o Jz.4(s) is true iff, for some substitution for @, the resulting test is true;

“ e boolean combinations of tests are evaluated in the usual way.

1.3.2 Representing Fluents in Linear Logic

We can now define the translations of our tests. Suppose first that o1,..., @,
are all the individuals that there are. First define a predicate, Z(-), which will
pick out our individuals:

Definition 7. Define the predicate Z(-) by the set of clauses;

1 "
df
{l_ I(Oﬂi) }izl

Remark 6. We have assumed that 1t is practical to simply list all of the indi-
viduals that there are, and also that individuals have unique names. This is a
little naive: one would like to have more syntax, in order to deal with perfectly
good first-order terms like ‘the Moor’s last sigh’ and ‘the third man’. In order
to deal with intensionality, one would also like to have a decidable equality on
such terms. Given such a syntax — say along the lines of [11] - a corresponding
I{-} predicate could be defined.

We define the translation, &5, of a fluent, ¢, as follows. We define linear logic
predicates corresponding to elementary tests and the negations of elementary
tests. In order to translate a fluent of arbitrary complexity, we first convert it
to an eguivalent form in which negations only apply to atoms, and in which
the only connectives are A, V, and the quantifiers, and then define a translation
using the translations of atoms, negated atoms, and the linear logic quantifiers.

Example 4. Continuing Example 1, we can define tests such as dwhite(bruce)s
¢white(henry}; ¢b|ack(bruce): and so on. Then ¢white(bruce) is true of a situation in
which bruce is white and false of any situation in which bruce is not white.
We are assuming that all situations are non-contradictory; they will not, for
example, simultaneously contain white{bruce) and black(bruce). We are also
relying — as do Levesque et al. — on a rather informal understanding of what
situations are: in particular, the idea of a “component of a situation” remains
unexplained. We will be able to be more precise when we deal with the linear
logic translations of these things.

So, first the base cases:

11

Definition 8. o If & is a ground atom, we define the predicate 5; by the
right clause:

H1
== df
o X@a®Y)

¢ H o is a ground atom, we define the predicate g, by the left clause:

Ak
(X QaY)hk

df

Then the recursive cases:

Definition 9. ¢ AP = Fad,

¢« IV =day,

e Va.g(x) =VeI(z) — ¢z},
o Tz.p(z) = T I(z) ® ¢(x).
We now have

Proposition 3. ¢ is true of a situation s iff there is a proof of F $(s®}.

Proof. We prove this by the usual recursion. Firstly, if the test is of the form
$a, for an atom «, we can use cut elimination to show that the only proofs of
b ¢o(s) use a right rule for a, and will only succeed if s contains a. This is
clearly correct.

Secondly, if the test is of the form —¢e, for some atoM then it is clear
that, if s does not contain o, then there is a proof of =¢,(s) ~ because the
antecedent of the right rule is an empty set of sequents ~ whereas if s contains
@, we can only apply the right rule, and we get one or more sequents of the
form L, which are unprovable.

That completes the base cases. | We handle the recursive cases as follows. We
want there to be a proof of F (¢ A 9)(s) iff there is a proof of - ¢(s) and a proof

of - 4(s); but (¢ A)(s) is just $(8)&4(s) and, by cut elimination, proofs of it
can be put into the form:

111 Ilg
Fe) i)
F ¢(s)aab(s)

and the result is immediate. The proof for m is much the same.

For Vm), we want to prove that there is a proof of F V.¢(2)(s) iff, for
all individuals «;, there is a proof of ¢{a;)(s). Now Ve.¢(z)(s) is Va.I(z) —

12

q;(;’) (s), and, by cut elimination, proofs can be put into the form (where a1 ...
are all of the individuals that there are):

I e
b M(s) k- M(S)
1k an(s) - 1%%55(”5;5(3)?
I(z) F d(z)(s)
FI@) =)

F Yz Z(z) — ¢{z)(s)

Here 1 is an application of the left rule for Z(-). The only tricky point is {;
one might think that one could also apply here a right rule for ¢(x), but this
would not be valid — @ here is a free variable, and the form of right rules forbid
instantiating if. Gj@ that proofs are of this form, the result is immediate.

The case for Jz.¢(z){s) is quite similar. [

———r

Remark 7. The above result entails, for example, that - ¢ A (¢ V 8)(s) is prov-

———r

able iff F (¢ A} V (¢ A B)(s) is provable, and it would be tempting to regard
this as an instance of & distributing over @. However, & doesn’t distribute over
@ - A&(BBC) F (A&B)&(A&C) is not provable - and the above biconditional
is only admissible, not derivable.

2 'Translating Composite Actions

We have, so far, defined basic actions and situations in our language. We can
now define the translations of composite actions, following [6, Section 3.1}.

2.1 Bisimulation

The verification that the translation has the correct properties will be an in-
ductive verification of the usual sort. The main property to be verified will be
bigimulation. Since we have to carry out an inductive proof, the property that
we have to verify is rather more elaborate than we might suspect: the tricky
point will be the distribution of resources in proofs, and the fourth clause in
the definition of bisimulation is necessary in order to guarantee that proofs of
composite actions distribute their resources to subproofs in the correct way.

Definition 10. A linear logic term § bisimulates an action & if

1. for situations s, and sg, if Do(s1,d, s2), then there is a proof of (5, ®), § +
7(52®);

2. for a situation sy, if there is a proof of o(s1%)d & o(B), then there is a
situation s, with Do(s1, 4, 82}, and (up to permutation and units) B = 539

3. for a situation sy, if there is a proof of a(c(A)), § F ¢(o52%), then there
is a situation s; with Do(s1,4, s}, and (up to permutation and units)
A et 31®;

13

4. Any valid proof of T', § t A, where I' and A are multisets of propositions
of the form o(-}, must have T and A non-empty.

So far we have only defined basic actions ~ in Section 1.2.1 - so we should
verify that they satisfy bisimulation. We are not, of course, interested in just
any action «(X,Y}; rather, we have a pre-existing set of GoLoa basic actions,
and we pick a(X,Y)s to match them. So we can assume that, for each of these
a(X,Y)s, there is a suitable GoLoG action ~ call it ax,y — such that, for any
s and ¢, Dolax,y,s,s') iff 0(s®), (X, ¥) F ¢{s'®). This gives us the first
clause of the bisimulation definition for free; the other two also hold.

Lemma 5. The basic actions «{X,Y) for which there are GOLOG counterparts
axy satisfy bisimulation,

Proof. By the permutabilities, proofs of the sequent in question can be assumed
to begin (writing I', etc., for the relevant multisets of o(-)s):

I I
Tho(X®%),A T, oY@2)FA

LY oX®@Z)—o(YQZ)FA A
I VZ.0(X®Z) oY) F A, A’

Now suppose that T' U I = (o(5®){. Since I is valid, IV must be empty; so
we have I' = {o(s®}], and, since IT is valid, A must be empty. Since IV is
valid, finally, we must have A’ = Jo(s'®){, and we can use Prop 2 to show that
s and s’ must be appropriately related. This proves the second clause of the
definition of bisimulation; the third clause is similar. For the fourth clause, we
use Lemma 4. O

2.2 Null Actions

We will also need a null action, which does nothing: we define it by
Definition 11, Nall £ 1.

This clearly bisimulates the GoLog null action, which Levesque et al. omit
to define, but which has the ohvious sernantics.

2.3 Test Actions

Levesque et al. define a test action as follows, where ¢ is a fluent and ¢7 is the
corresponding test action:

Do(¢7,5,8') £ $(s) A(s = o). (1)

We assume (as explained previously) that we have a suitable translation $ of ¢.
We now define

Definition 12,

37 £ VX (o(X) @ $(X)) — o(X)

14

Now we have
Lemma 6. ¢7 bisimulates ¢7.

Proof. Suppose first that we have Do(¢?,s,s'); we must then have s = s'and
#(s). By Prop 3, we have a proof II of #(s®}. So we have a proof of
o(s®), ¢7 + o(s?), namely

1

o(s®)F o(s®) - a(s®) :
o(s®) F o(s%) @ ¢(s%) o{s®) I o(s%)
o(s®), (o(s®) ® (s®)) = o(s®) F o(s®)
o(s®), VX (0(X) ® $(X)) =0 o(X) F o(s®)

We now consider the second and third clauses of the definition of bisimula-
tion. By the permutabilities, we can assume that proofs of

ILVX.(0(X) ® $(X)) — o(X) F A

are of the form
Hl H_E
I3

The(X),A I'F3(X)),A
T, F o(X) ® $(X))A, A I, o(X) F A"
I, T7, (0(X) @ 6(X)) — o(X) F A, A, A7

I T VX (0(X) @ $(X)) — o(X) F A, AL A"

Now suppose that FUTY UTY =]o(s%)]. Because II; is valid, we must have
I = Jo{X)} and A = [. Because iz is valid, we must have ' = § and
A" =1¢{X)}. So we must have I" = I =}, and X = s®, because I'LI [V LI [
is the singleton]o(s®){. Furthermore, ALUA'LUA" is, by assumption, a singleton,
so we have A = A’ = § and A” = [o(s®}{. Thus, II; is a proof of the sequent
b q~5(3®); by Proposition 3 we must have ¢(s}. Consequently we have Do(¢7?,
5,5). Thus the second clause is satisfied. The third clause is exactly similar.
For the fourth clause, we argue that, since Iy is valid, I' must be non-empty;
similarly, since Ilz is valid, A” must be non-empty. i

2.4 Sequence
The semantics of Levesque et al.’s sequence operator ; is defined by follows:
Do({61;62),5,8") = 3s5*Doldr,s,s*) A Do(ds, 5%, ') (2)

We define our translation of ; thus:

Definition 13.
@8 £ V2. (0 e(2) ye(e(2) @ (32))

15

We now have:
Lemma 7. If §; and & bisimulate &; and & then (61;02) bisimulates &1;ds.

Proof. Suppose first that, for situations s, and sy, Do({61;62), 51,52). By the

the semantics of GoLod, we have a situation s3 such that Dol§;, sy, 83) and

Do(52,33,32} By blsamulatxon for 51 and &y, we have proofs II; and II; of
o(5:%), 8 F cr 33 % and o(s3%),d, + o(s®). We thus get a proof of
(.9®) (41;62)), viz:

IT:

o(51%), 5 F o(s3®)
o(51®), 31, 0 (538t + :
0(3:%), 10 0(5:0) F o(ss®)®% F o(s:®)
7(51%), (01 ® 0(53%))9(0(52%) ©F3) b (s2°)
7(51%), ¥Z. (3 @ 0(2)' y2(0(2) @ 52) + o(3,°)
This gives the first clause of the definition of bisimulation.

For the other clauses, we use the usual permutability results to argue that,
wlog, proofs of sequents such as I, (§1;63) F A are of the form:

I,

IL;
- 113
1‘, 51 - O’(O), A .
T, 3, 0(C) = A I, o(C), & - A

[5@c(C) FA M o005 F A
I, (& @ o (C)L)9(a{C) @ F) + A, A
DIV, VZ(& @a(2))y2(c(2)©8;) F A, A

Suppose now, for the third clause, that T U T = {o(s;®)] and that A UA’ is
a singleton {o{B){. By bisimulation for d;, T must be non-empty, and must
therefore be 1o(51®)]; [V must therefore be empty. By bisimulation for 35, we
must have A’ non-empty; because AUA! is a singleton, A must be empty Now
by bisimulation for §;, there must be a situation s, with €' = s3®, such that
Do(dy, 51,53). We can now apply bisimulation for s to show that there is a
situation sz, such that Do(dy, s3, s2), and that A’ = lo(s2®)]. This proves the
second clause of bisimulation.

Suppose now, for the third clause, that AUA’ = 1o(5,®) [and that TUT is a
singleton {o(A4){. By bisimulation for §;, I' must be non-empty, so consequently
I' must be empty. By bisimulation for 65, A’ must be non-empty, so A must be
empty. We can now apply bisimulation for d to show that C' = 532 for some 53
with Do{ds, s3, 82); consequently we can apply bisimulation for §; to show that
I =10(s1®)] for some s, with Do{d1, 81, 83}. This proves the second clause.

Finally, to prove the fourth clause, we argue that — for general ' and I —~ T
cannot be empty, by bisimulation for §;. So T' U T’ cannot be empty. Similarly
A UA cannot be empty. [

g

2.5 Nondeterministic Choice of Actions

Levesque et al.’s nondeterministic choice is defined as follows:
Do({6:162),5,5) £ Do(dy,s,s') V Dolda, s, 5" (3)
We define inductively our translation of | as follows:

Definition 14.

TFOrY d

@) £ Fad
We now have:
Lemma 8. If & and 85 bisimulate 8, and 83, then (61|62} bisimulates & 8.

Proof. By the permutabilities, for any A and B, we can assume that proofs of
I, 81]d2 + A are of the form

I
Ié F A
I, 6,88, F A
or of the form
1
[,6 F A
T, 683 - A

so facts about resource distribution, etc., for (d1]ds}) are ~ in the first case -
facts about resource distribution for &1, or — in the second case ~ facts about
resource distribution for 8. This gives us the various clauses in the definition
of bisimulation. i

2.6 Nondeterministic Choice of Arguments

Levesque ef al.’s nondeterministic choice of action arguments is defined as fol-
lows:

Do(rz.d(z),5,5") = 3z.Do(8(z),s,s) (4)
We define our translation as follows:
Definition 15.
m . Vx.m
We now have:

Lemma 9. Suppose that, for all instantiations [t/2] of x in 6(x}, é[t/z] bisim-
ulates 8[t/z], then me.d(x} bisimulates wx.d(x).

17

Proof. Suppose that we have o(A4%), nz.d(z) + o(B®) for some A and B.
Wlog, we can assume that proofs are of the following form:

1

o(5:2), 5t/a] b o(s:9)
o(5:%), Va.d b o(s:®)

for some I1.

Suppose first that we have Do(rz.d{z), 51, s2); by the GoLoG semantics, we
must have Do(d(2}, 81, s5) for some term ¢. By the assumption, then, we have
a proof of o(s:®), 8[t/x] F o(s3®), which gives us a proof of o(s,®), V2.3
o(s2%). This establishes the first clause of the definition of bisimulation.

Suppose that we have a proof of 0(519), V2.8 + o(B®); we must have a
proof of o(s1%), §[t/z] + o(B®), and, by the assumption, we must have a
situation sp with B = 5,% and Do(8[t/z], 51, s2), which entails Do(n#.8(x), s1,
s2). The third clause is similar.

Similarly for the proof of fourth caluse; we consider a proof similar to the
above, but with multisets ' and A in place of the ¢(5,%) and o(52®), and apply
the inductive hypothesis to show that both [and A must be non-empty. O

Remark 8. Levesque et al. are rather vague about the quantification employed
here. If we wanted to have quantification bounded to some domain — say the do-
main of individuals introduced in Section 1.3.1 ~ we could define our translation
as Vz.Z{z) —o §(2), and the above lemma would follow just as easily.

2.7 Nondeterministic Iteration

Levesque ef al.’s definition is as follows:

Do(d*, s, ") a VP.{Vsl.P(sl,sl)/\

Vs, 89, 3. (P(sl, 32} A Do(d, sa, 83}

o P(sl,sB))]
— P(s, s} (5}

which is a Peano-style induction. N
We approach this as follows. We define 6* recursively, using Girard’s fixed
point theorem (see Section 0.2):

Definition 16.
Null & (6% 6)
m---———-——m_() df
o
Here Null is our null action.

We can now prove

Lemma 10. Suppose that § bisimulates §. Then §* bisimulates 8* .

18

Proof. Suppose, for the first clause, that we have Do(d%,s,s’). We will apply
Levesque et al.’s definition, with As, ¢'. (%), (8*) F o(s ®) for their predicate
P(s,s'); we prove the two conjuncts of the antecedent of their condition, and
thus prove the consequent (i.e. o(s®), (6*) F o(s®)).

Ys1.P(s1,s1) This is o(s19), (3*) F a(51®); we prove it as follows.

o(5:%) F (5, %)
o(1%), Nullk ¢{5,%)
a(519), Nullg((6);3) F {5, %)
o(51%), 6" F o(5:%)

Definition 18

Here the step labelled Definition 16 uses the left rule coming from the
recursive definition.

V¥s1, 82, 53.(P(s1,52) A Do(6,s2,83) — P(s1,53) Suppose, then, that we have
situations sy, s7 and s3, and we have P(sq,s2) and Do(d, 53, 53). With
our choice of P, the first condition means that o(5: %), (8*) F o(s2%); we
can thus suppose that we have have a proof II of this sequent, The second
condition is that Do{4, sq, s3); by bisimulation for §, we can suppose that
we have a proof Il of ¢(53®),6 I o(s3%). We have to prove P(sl, 53}, i.e.
o(1®), (6*) & o(s3®), and we prove it as follows:

1 1y
o(5,2), B - o(52) o(52%), 5 o(s52)
(5:%), (*) @ o(s28)t L 5@ o(s2®) F o{s3%)

o(51%), () ® o(3:%)") 8 (6 ® 0(52%)) I o(55°)

o(51%), V2.6 @ c(2))2 (0 ®@c(2) + o(s3%®)
o(:1%), 3,0 F o (s57)

o(5:®), Null& (§*;5) F o(s5®)
(%), &t o(s3%)

Definition 13

Definition 16

By the inductive definition of Do{¢*, s, s'), we can now conclude P(s, s'); but, by
our choice of P, this amounts to ¢(s%), (6*) I o(s®). So we have established
one direction of the implication.

For the remaining clauses, we start with a proof of T, & + A. We proceed
by induction on the number of applications of Definition 16 in the proof,

We note, then, that, by the permutabilities, a proof of T, 8 F A, can be
assumed to start with the left rule for Definition 16, followed by ore variant or
the other of the left rule for &; so the proof must be equivalent to one of the

19

form
I
I+ A
I, Null F A (6)
I', Nullg (6%;9) + A

@) kA

or of the form

H.’ Hh’

I¥ Fo(C),A T,o(C)3 F A
LI, {5 @o(C))9 (a(C)®F) F A, A
0T, YZ. (F @0(Z)5) % (0(2) @8) - A, A (7)
oI, 88 - AN
U, Null& (§*;8) - A A

T, T, (%) + A, A

For the second clause of the definition of bisimulation, suppose that we
have, on the left, {o(s®){ and, on the right, {¢(B)§. If we have a proof of
the first sort, then we must have B = s®, up to permutation and units; this
establishes the clause. If we have a proof of the second sort, then we argue as
follows. II' has fewer applications of the left rule for 8%, so inductively we can
assume bisimulation for that. We have I LI’ = (o(s®)]; however, because of
bisimulation for II', we must have I' nonempty, so I' = {¢(s®)] and T’ = 0.
Similarly, AU A’ = o(B)§ and, because of bisimulation for II”, we must have
A’ nonempty. So A = § and A’ =]o(B){. This means that, because of
bisimulation for II', there is a situation s” with C' = 5”® and Do(4*, s, 5"). Now
because of bisimulation for IT17, there is a situation ¢’ with B = &% and Do(d,
s”,8'). Finally, because of the (GOLOG semantics of 6*, we must have Do(d*, s,
s'); this establishes the second clause. The third clause is very similar.

For the fourth clause, we proceed by cases. If we have a proof of the first
sort, then we have the result by properties of the null action; if we have a proof
of the second sort, then, since II' has fewer applications of the left rule for 3+,
we can assume the result inductively. So by bisimulation for IT', we must have
I’ nonempty. by bisimulation for I, we must have A’ nonempty. O

3 Procedures

Levesque et al. have a contextually defined semantics for the definition and use
of procedures. Suppose we have a procedure with head P(%) and body §; we
write this proc P{%) d endProc. Suppose that we have definitions for procedures
Py, ..., Py, and that we also have a program §,(X, ... , Xn) (where the X;

26

are suitable variables), then Levesque ef al. give the following semantics:
Do ({proc Pi(73) 81[Py, ..., Py, 7] endProc; .- - ;
proc Po{y) 6ulPy, ... , Py, % 1) endProc;

§D[P1, ,Pn]},s,s')

I vy, .., Y. /\ (Vsl,SQ,TJ’?.DO(&{IG,... Yo, W), 81, 82)
=1
Do(m(%?),sl,sz))}
- Dolée[Y1, ..., Yal, 5, 8) (8)

This needs a Hitle supplementary explanation.

Firstly, we need the notion of applying Do(, -, -} to a predicate. Here the Y;
are predicates of suitable arity — the arity of ¥; must be the arity of F; plus two
- and we must, in addition, define Do(Y (%), 5, s'), for such a predicate Y

Do(Y (7),5,¢) £ Y(,s¢) (9)

Secondly, the procedure definitions are, in general recursive, so the procedure
bodies {6;) should have argument places for the F;, and, of course, for the
parameters ; passed to the procedure. The calling procedure (8p), of course,
has argument places only for the F.

3.1 Contexts and Substitutions

The above definition uses the idea of substituting a procedure into a context.
We need a technical lemma; for simplicity, we will prove these for the defini-
tion of only one procedure, but the simultaneous recursive definition of several
procedures can be handled in an entirely similar way.

The lemma, then, shows how to relate substitution and bisimulation. First
a definition.

Definition 17, If © is a linear logic formula, then the predicate Yo is defined
by
Yo(s,s) £ a(s%),0 F o('®).
We extend the linear logic translation of GorLoc formulae to formulae in-
volving free propositional variables: we simply transiate the variable ¥ by itself

(or by a suitably chosen free propositional variable in linear logic, if one insists
on disjoint sets of variables). We now have

Lemma 11, Let §[Y] is @ Goroa action with a free propositional variable, and
let © be a (ground) linear logic formula such that any valid proof of T, © + A
- where T' and A are mullisets of propositions of the form o(-) ~ must have T
and A non-empty. Then §[Ye] bisimulates §[©].

21

Proof. We can prove this by an induction on the logical complexity of §. Since
this is a GOLOG action, it must be built from basic actions and the variable Y
using the action combinators. So there are the following cases:

Basic Actions We use Proposition 2.

Free Variables In this case we have to prove that Do(Ye, s, s’} bisimulates
7(5®),© F o(s’®) and satisfies Property A, but this is immediate from
the definition of Ye and (for the fourth clause of the definition of bisimu-
lation) the the assumption on ©.

Test Actions We use Lemma 6.
Sequence We use Lemma 7.

Choice of Actions We use Lemma 8.
Choice of Arguments We use Lemma 0.

Iteration We use Lemma 10.

3.2 Translating Procedure Definitions

We make the following definition: again, we restrict curselves, for the sake of
simplicity, to the definition of a single procedure.

Definition 18. Given a procedure definition proc P(#) §{"%"){P] endPrac, we
([P
P F

Then, given a program together with a series of procedure definitions, we
simply add the translations of the procedure definitions to our stock of defini-
tions, and translate the procedure in the normal way; calls of procedures defined
in the environment can now be translated, since we have clauses for them.

define the linear translation, P, by the left clause

Lemma 12, If_ﬁ[‘ff*] is an instatiation of the transiation of « Govoa proce-
dure, and if T', PIW] b A is a valid sequent, where I' and A are multisets of
formulae of the form (), then ' and A are non-empty.

Proof. We prove this by induction on the number of applications of the left rule
for P. By the permutabilities, we may assume that the proof starts as follows:

u

r 5P F A
I,P(TYF A

We can argue inductively and reduce the problem to that of proving the result
for proofs of smaller size. Using Lemmas 7, 8, 9 and 10 we can reduce the
problem to proving the result for basic actions, test actions, and applications of
the left rule for P. The first two are clear, by previously established results: and
the applications of the left rule for P belong to subproofs with fewer applications
of that rule, so we can assume the result for them inductively. |

22

3.3 Bisimulation with Procedure Definitions

We now prove our bisimulation result — again, for only one recursively defined
predicate; however, it can be easily extended to the case where we have several
such.

First a technical lemma:

Lemma 13. Suppose that we have a procedure definition
proc P(v) §(%)[P] endProc.
Then, for all 7, and all 5,¢', we have
Do(6() [V}, 5,8) — Do(¥p,s,5)

Proof. Suppose that we have Do(8(#)[¥5,5,5). By Lemma 11, we have
o(s8), 5(7)[P] + o(s'®). But this gives us a proof of o(s®), P o{s'®),
vig:
I
o(s2), S(P)P] I o(s"°)
o(s®), P F o(s'®)

using the left rule for P at . By definition of Yy, we thus have Do(Yg, 5,6}, [

Lemma 14. Suppose that we have a procedure proc P(v) §;(V)[P} endProc,
and suppose also that we have a GOLOG action 8o[Y] with a free variable. Then
3o[P] bisimulates proc P, W) 81(7)[P] endProc;dg[P).

Proof. Suppose, for the first clause, that
Do(proc P() 6;(%}[P] endProc; &[F], s, s').

By definition, we have

Do ({proc P(%") §;[P)] endProc ; ég{P]},s,s’)

g vY. (VSl, 82, T?DO((;; {Y}, 51, 52) b d DO(Y(“T'}}), 81, Sz))
— Do(do[¥], s, ') (10)

Now substitute, for ¥, the ¥ of Definition 17. By Lemma 13, the antecedent
of the definiens is true; thus we have Do(dp{¥5], s, 8'). By Lemma 11 (this time
applied to dg), we have o(s%), &[P] + o(s'®).

For the remaining clauses, suppose that we have I', &[P] - A. Suppose
now that T =]e{s®}], for some situation s, and that A = {o(B)}] is a singleton
of the appropriate sort. Inductively we can assume bisimulation for II, since it
contains fewer applications of the left rule for P. So we know that B = & ® for
some situation ¢'; this is more bureacratic than one might suppose, since the
GoLou semantics for actions involving procedure definitions is not prima facie

23

compositional in the same way as the other definitions are. So we suppose that
we have a predicate Y such that

Vsl,SQ,m"ﬁ}.Do(él(—??){Y],Sl,SQ) - DO(Y{“@'}),Sl,Sz) (ll)

We must show that Do(dy[Y], s, 8').

We argue by induction on the complexity of dg: that is, we prove that, if we
have a proof of ¢(3p[P]), s® + o(s'®), and a predicate ¥ satisfying (11), that
we have Do{8y[Y], s, 8').

If 6y is a primitive action or a test action, then it does not involve P and we
have already handled this case. If §[P] = P(¥), for some ¥, we can assume,
by the permubabilities, that the proof starts

11

5P F A
I &P A

where Il is a proof with fewer applications of the left rule for P than the original
proof; so inductively we can assume the result for o(s%), §(7) F o(s'®). We
thus have Do(8; (#}{Y], 5, s'). By the assumption on ¥, we have Do(Y (%), s,
s'), which is what we wanted to establish.

Finally, there are the inductive cases. Consider, for example, a sequence of
actions. If §o[Y] = 8§[Y]; 65 [Y], then, by Lemma 7, any proof of

o(s®), 84[PL 4P + o(s'®)

must come from proofs of o(s®), §)[P] + o(s”®) and of o(s"®), 84[P] +
o(s"®). Assuming the result for d5 and 87, we have Do(8)[Y], 5, 5”) and Do(d§[Y],
s”,5'); by the semantics of the ; operator, we have Do(84[Y]; 8§1Y], 5, ¢'), which
is what we have to establish.

The other inductive cases are entirely similar.

That establishes the second clause of the definition of bisimulation; the third
clause is entirely similar. The fourth clause is much simpler, because it does not
involve establishing anything of the form Do(ds[Y], s, &'). 0

3.4 Locally Defined Procedures
Levesque et al. mention that

[bly using programs as above within the bodies of other procedures,
we obtain the tree-structured nesting of procedures typical of Algol-
like languages. Moreover, we get the lexical scoping rules of these
languages for free from our use of quantifiers in the definition of Dy.
[6, p. 8n]

We have to show, then, that we can give local scope to procedure definitions.

We do this as follows: the trick is quite general, and can be used for restrict-
ing the scope of all manner of entities. Suppose we have, as above, a procedure
definition

proc P(7") & {#){P] endProc;

24

and we have, correspondingly, its linear logic transiation, P. We can now define
a higher-order predicate P(-) as follows:

1+
PP+

df (12)

We now have

Lemma 15. If proc P by endProc is a GOLOG procedure, and §[X] is ¢ GoLoa
context, then

o(s®), HP) + o(s'?) - (13)
if
o(s®), P(X) @ &[X] + o(s'®) (14)

Proof. Notice first that, by the permutativities, a preof of (14} can be assumed
to be of the form

so the result is clear, 3

‘We now restrict scopes as follows. Suppose that we have a block of any sort
(which need not necessarily be inside a procedure body); we can write it

{proc P &1 [P} endProc...§[P]...};
its linear logic translation will then be
3x. (.. P(X) @ &[] ..)

and some routine work with environments will show that this, indeed, gives the
correct scope o the procedure definition.

4 The Result

Putting all this together, we now have:

Theorem 1. If 8y is a GOLOG program, then &y bisimulates 4.

5 Assessment

We have shown that the linear logic formulation of Gorog is, to all intents
and purposes, equivalent to the original definition. This means that, if we have
a well-motivated extension of the linear logic formulation, we can happily use
that, regardless of whether the original definition can cope with it.

25

5.1 Second Order Entities

Levesque et al. have a rather equivocal attitude to higher order entities. Firstly,
they seemn to confuse the computer science notion of a “first class entity” with
that of being first-order:

why do we not treat [complex actions] as first class objects (terms)
in the language of the situation calculus? ... To see what must
happen if we avoid the macro approach, suppose we treat complex
actions as genuine first order terms in the language of the situation
calculus. [6, Section 3.2]

By opting to define programs as macros, we obtain a much simpler
theory than if we were to reify those actions. The price we pay for
this is a much less expressive formalism. For examaple, we cannot
quantify over complex actions ... [6, Section 3.3]

So the direction of thought seems clear: the only first class objects are those we
can quantify over, and those are first-order objects.

This seems very strange. For one thing, Levesque ef al. themselves resort
to higher order quantification, namely in the definition of the semantics of pro-
cedures ~ (8) — where the Y; are higher order entities and are clearly quantified
over. Furthermore, the idea of a “first class entity” is borrowed from main-
stream computer science, and it is there used without any prejudice against the
higher order: for example, Stoy [14, p. 39] describes first class entities as those
which can be assigned to variables, passed as parameters, returned as results of
function calls, and so on. None of this is prejudiced against the higher order,
and, of course, functional programming languages explicitly treat functions —
which are higher order if anything is - as first class entities. And this lack of
prejudice is useful: Abelson and Sussman, for example [1, Chapter 1], start
their textbook with an extensive and well-motivated series of examples in which
higher order entities are used and passed from one procedure to another.

Correspondingly, our linear logic formalism is not prejudiced against higher-
order entities: the logic was originally formalised as a second order theory [3].
We have ourselves used some higher-order language in our treatment of local
procedure definitions, and there will probably be & useful role for more explicit
higher-order operators. For example, Davidson {2] introduces existential quan-
tification over actions and events on the grounds that this is a natural account
of the structure of ordinary language.

5.2 The Algorithm

Levesque et al. have an algorithm which is fairly explicitly forward-directed.
Our formulation, in terms of proof search, is not biased in that way; we can use
the methods of Dale Miller [9] to give it a proof search algorithm. An algorithm
which conld be used bidirectionally would be much more useful: we could use
it, for example, for explanation and planning as well as for prediction.

5.3 Other Fixed Points

Girard’s Fixpoint Theorem is not limited to providing merely the least fixpoint,
and there are occasions when we might be interested in others. For example, if

26

we are interested in something like Kowalski’s cycle predicate, we would want
to construct a greatest fixpoint of some appropriate operator. We could also
define such a thing by a suitable linear logic definition; the proper treatment of
this would involve dealing with infinite proof objects, as in [8]. The linear logic
treatment, then, could deal with this: Levesque ef al.’s, with its bias towards
least fixpoints, would probably face severe difficulties.

References

[1)

Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, MA, second

 edition, 1996.

2]

[3]

[4]
(]
[6]

7]

[9]
(10]

(11]

Donald Davidson. The logical form of action sentences. In Essays on Ac-
tions and Fvents, pages 105-148. Oxford University Press, 1980. Originally
published in N. Rescher {ed.), The Logic of Decision and Action, University
of Pittsburgh Press, 1967.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

Jean-Yves (irard. A fixpoint theorem in linear logic. A message posted on
the linear@cs.stanford.edu mailing list, available at http://wuw.csl.
sri,com/linear/mailing-list-traffic/www/07/mail_3.html, Febru-
ary 1992.

R. Kowalski and M. Sergot. A logic-based calculus of events. New Gener-
ation Computing, 4(1):67-95, 1986.

Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzehn Lin, and
Richard B. Scherl. Golog: A logic programming language for dynamic
domains. Journal of Logic Programming, 19, 20:1-25, 1964,

Fangzhen Lin and Yoav Shoham. Provably correct theories of action (pre-
liminary report). In AAAI-91: Proceedings, Ninth National Conference
on Artificial Intelligence, volume 1, pages 349-854, Menlo Park etc., 1991,
American Association for Artificial Intelligence, AAAI Press/MIT Press.

Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding
transition systems in sequent calenlus: Preliminary report. Flectronic Notes
in Theoretical Computer Science, 3, 1996. Available from http://wuw.
elsevier.nl/locate/entcs/volume3.html.

Dale Miller. Forum: A multiple-conclusion specification language. Theo-
retical Computer Science, 165:201-232, 1996.

Richard Montague. Formal Philosophy: Selected Popers of Richard Mon-
tague. Yale University Press, New Haven, CT, 1974. R. Thomason {ed.).

Richard Montague. The proper treatment of quantification in ordinary
English. In Formal Philosophy: Selected Papers of Richard Montague [10],
pages 247-270. R. Thomason (ed.).

27

[12] John Reynolds. Syntactic control of interference. In Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 39-46. Association for Computing Machinery, 1978.

[13] Peter Schroeder-Heister. Cut-elimination in logics with definitional reflec-
tion. In D. Pearce and H. Wansing, editors, Nonclassical Logics and Infor-
mation Processing, volume 619 of Lecture Notes in Artificial Intelligence,
pages 146171, Berlin, etc., 1992. Springer-Verlag. International Workshop,
Berlin 1990,

114] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, MA, 1977.

[15] Richmond H. Thomason. Introduction. In Formal Philosophy: Selected
FPapers of Richard Montague [10], pages 1~69. R. Thomason (ed.).

{16] Graham White. A linear meta-interpreter for the situation calculus. Sub-
mitied to the Journal of Logic and Computalion.

[17] Graham White. The design of a situation-based Lygon metainterpreter:
I. simple changes and persistence. Technical Report 729, Department of
Cormputer Science, Queen Mary and Westfield College, London, October
1696,

28

