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S. P. V. Barros'

ABSTRACT

This paper analyses the performance of APLS, an
associative synchronous event-driven simulator. We
develop further on the resuits of a previous phase of
study'” where in two key factors were addressed:-
(a) the case for treating simulation as a SIMD
problem, rather than MIMD, has been presented,
and (b) the benefits of associative parallel logic
simulation (APLS) based on a SIMD architecture
called SAPY? (Symbolic Associative Processor)
which performs in-memory parallel processing has
been shown to deliver superior performance
compared with non-associative SIMD counterparts
such as the DAP™ (Distributed Array Processor) as
well as other general sequential SISD architectures
based on the von Newmann computer medel. In our
quest towards achieving very high simulation
performance in a scaleable manner, we pay
particular heed to the need for architectural
enhancements alongside algorithm development tfo
ensure that both aspects match the requirements of
the particular applications. It is demonstrated that
simulation performances in the region of 44uS per
epoch (or 22,650 simulation epochs/second) are
attainable, and we propose  architectural
enhancements to improve this performance by
nearly 5 fold (i.e. in excess of 100,000 simulation
epochs/second).

1. Introdaction.

Developments in CAD technology in conjunction with
developments in computer technology have together
facilitated the realisation of very effective computer
simulation tools for the design engineers, Historically,
in the mechanical and the electronics CAD arena,
specialist packages have been in extensive use for a
considerable amount of time, the rapid uptake of which
was only hindered by the lag in the development of low

cost personal computing facilities until the 19807s.

In the digital CAD area, the simulation task had posed
great challenges as a digital system is implicitly an
active system; in that it constantly generates events that
require a great deal of computational power to service
efficiently. Never-the-less, the challenges were met
through the development of complex algorithms and
supported by the developments in high speed sequential

computers.

CAD technology for digital electronics is today facing
the challenge of simulating highly complex systems
containing millions of logic elements (VLSI and WSI
scales of integration). The deployment of CAD tools
and VHDL in silicon design is no longer necessary,
they are imperative if designers are to maximise the
chances of producing minimum-cost, first-time-right

designs.

Although the widespread usage of simulators in silicon
design is evident, the plethora of silicon design
complexities places considerable strain on commercial
simulators, manifestlty apparent in the form of lengthy
simulation run-time, sometimes several days, and on

occasions longer than the host computers MTBF,

Researchers have, for more than a decade, sought
alternative solutions through the deployment of more
appropriate  computer architectures and  parallel
algorithms in the quest for better performance. Much of
the work on paralle] simulation has been based on the

development of complex algorithms on computer
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models such as Connection Machine,  Mini-DAP  and

. RET
special purpose hardware accelerators. Little has

been reported on SIMD approaches {o the problem which is
the cornerstone of our research. In the next section we
present a brief background of the SIMD perspective we have
adopted before examining the performance of the APLS

algorithm.

2. The SIMD Perspective of Simulation.

The process of logic simulation is about mimicking the
behaviour of a real system accurately, in the shortest
space of time. A digital system consisting of logic
elements may be treated as a collection of processing
elements which perform simple logic evaluations in
parallel. At the lowest level of digital design, the logic
elements are simple gates, each of which evaluate their

own particular Boolean function (e.g. AND, OR)

simultaneously.

It is easy to visualise the above process as being MiIMD
in nature. The process may, however, also be treated as
a SIMD process in which every element functionally
performs the same given, higher order, operation at
each time step; namely, the logical evaluation of output
states as a function of input states, the scheduling of
output changes and propagation of new events

according to the problem connection graph,
With simulation, we have

this perception of

demonstrated  that very desirable performance
characteristics are attainable using the SAP (Symbolic
Associative Processor) SIMD architecture (Fig. 1). The
to two factors,

advantages are due in-memory

processing and parailel processing.

Our present research is based on the application of the
SAP as a specialised support for logic simulation (Fig.
2). The problem circuit represented as a connection

graph is loaded into the SAP. Stimulus test patterns are

2
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then fed into the engine and the results returned to the

host computer.
Time SISD (von Nedmann)
i
//
) // SIMD (DAP-like)
e
e
// SIMD (Associative)
e
/f
-

Fig. 1. - Execution times (SISD vs SIMD).

Problem
(Trarh
HOST e S .
COMPUTER Data SAP
Resuits Simulation
Engine

Fig. 2. - Target Simulation System.

This perspective has lead to the development of an
original algorithm, called APLS, based on API's
(Associative Processing Instructions). APLS operates
as a synchronous SIMD process incorporating a single
global clock and may be broadly categorised in the
synchronous event-driven class.  Special features

catered for are zero-delay initialisation, nominal delay

analysis,  feedbackireconvergence and spike
detection/rejection.
3. Analysis of the APLS Simulation

Algorithm

In our previous study,”) APLS was shown to require
1%, or less, computational time to perform logical
evaluations compared with its seguential counterpart,
making this approach particularly suitable for VLSI and
WSI simulation. A speed advantage of around 30% -
67% was also shown to be attainable as a direct result

of in-memory processing capabilities of the SAP in



contrast with other SIMD based architectures (depicted

in Fig. 1).

Although these performance improvements in logical
evaluations are highly desirable, the algorithm exhibits
some stgnificant dependencies on various architectural
facets of the SAP which yield a less than optimum
performance of the overall simulation algorithm. In the
remainder of this paper, therefore, we analyse the
constituent parallel functions of the algorithm closely to
highlight some of the more significant facets and the
scope for further improvement through architectural

ephancemenis.

Fig. 3 presents the outline of an improved version of the
synchronous APLS algorithm and Fig. 4, the gate
descriptor cell for each logic element stored in the
associative memory., During execution, the algorithm
performs a general initialisation of the associative
memory, followed by initialisation for simulation by
reading the first set of Primary Input Events (PIE}. This
is followed by the main simulation loop which is

executed until the simulation run is terminated.

The worst case performance of the algorithm is

characterised by the following equation — eqn. 1:-

T= /f Time for general initialisation

Ty +
/f time for zero-delay initialisation
#( Tgny + Tpzr) + i
s(Tenv+ Tier+ Toart Tucvt Tenc

+ 2 Tyt Tpzr) ) - aegnl

Where:-
Tomgr= Time to perform Global Initialisation
Teny = Time 10 EvaluateNew Values (outputs = f2inpufs) )
Ty =Thne to PropagatekiZeroTime
Tier = Time to InitializeCrtTimers
Tpar =TFime w DecrementAliActiveTimers
Toov = Time to UpdateCunent Values
Tene = Time to PropagateNewCv's
The longest chain of zero delay elements in the problem

graph “z” determines the number iterations around the

%
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zero-delay initialisation loop (EvaluateNewValues and

PropagatelnZeroDelay). The total simulation time

L2Vl

(simulation epochs), dencted by the symbol “s

y

determines the number of iterations around the main

simulation loop in the algorithm (Fig. 3).

{f GENERAL INITIALISATION
Initialisation;

J7 INFTEALISATION OF SEMULATION

Read in PIE // Primary Input Event

InitializeGlobalClock // to time of first PIE

/f Fiush first PEE through any zero delay elements

WHILE {there are active zero delay elements)

BEGIN
EvaluateNewValues;
PropagateInZeroTime;

END

/I MAIN SIMULATION LOO?
WHILE (there are awaiting events)
BEGIN
EvaluateNewValues; / Bvaluate new valuves ...
# schedule for propagation
/f in nominal delay mode
IF (new events are generated) // SV = CV
InitializeCntTimers // of new active elements:
IF (active CNT timers exist) // marking time

BEGIN
DecrementAllActiveTimers;
fF (any CNT timer fires)
BEGIN
UpdateCurrentValues // CV =SV
PropagateNewCv // of relevant efements
END
END

Advance Global Clock;
Read in PIE // Any new Primary Input Event
WHILE (there are active zero defay efements)
BEGIN
Evah:ateNewValues;
PropagateinZeroTime;
END
END

Fig, 3. - Outline of APLS Algorithm.

TS[1] For inter-PE Communications
CNT[3} BEvent Countdown timer

Carry[1} - ditto - refated

PLY[3] Element Propagation Delay

A1} N[} dentifiers of Active PE's

CV[1] Current Value at Qutput

SV Scheduled (New) Value

IN[2} Two inputs per element

OPN{3] Element Type ldentifier (e.g. AND)
F1] Fanout Bvents - PE's with New Events
IG{2] Elements with Primary Inputs

| Fig. 4. - Element Descriptor Cell.

The main loop is the primary contributor to the

aggregate  simmulation  runtime. In attempting



performance improvement, therefore, we have treated
the execution times due to the initialisation stages as
being (relatively) negligible and focused on the
functions within the main simulation while loop.

The execution time of interest is, thus, the time to
complete a single pass of the main simulation loop as
characterised by eqn. 2 :-

Train = Tenvt T loart Tuov+ Tene eqn 2

For the purposes of further simplicity in this paper, we
have chosen o assume that there will be no zero-delay
elements in the problem graph being simulated, and
thereby eliminate the execution time due to the term
#Tpnv+Tezn) from the main simulation loop in eqgn. 1.
The above assumption is justifiable on the grounds that
zero-delay elements are the artefacts of techniques
employed in the simulation domain and do not
physically exist in logic circuits. For example, a
simulator that is capable of only dealing with 2-input
logic elements may pre-process a 3-input AND gate,
having propagation delay &, into a 2-input gate having
the same delay, which is in turn fed from another 2-
input gate having zero delay, thereby mimicking the

logic of the 3-input gate as depicted in Fig. 5.

= :D“}:D

Fig. 5 - Introduction of zero-delay gates in simulation

The requirement for such pre-processing arises only if
the simulator does not have sufficient provisions to deal
with gates having larger numbers of imputs. The
number of inputs to be catered for by a simulator is not
an issue in the technical sense, but is simply a matter of
debate and would be determined by empirical results.
We shall, therefore, not be addressing this issue further
in this paper although the impact on performance

(simulation runtime) is discussed.

o om
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The potential for performance improvement through
architectural enhancement is only achievable by more
efficient execution of the associative functions within
the APLS algorithm. The functions which provide
scope for improvement {(highlighted in Fig. 3} are the
main contributors to the total run time and fall into two
main groups; namely propagation delay management
and logic value management. The characteristics of

each category are now discussed to determine their

contributions to overall performance.

3.1

In contrast to most conventional synchroncus event

Propagation delay management.

driven simulators the APLS has provisions for an
independent timer/counter to be associated with each
logic element in the problem graph under simulation.
The scheduling of a change in value at an element
output involves initialising the timer of relevant gates
with the corresponding propagation delay values and
initiating a count down. When the simulation epochs
corresponding to the propagation delay of the element
has elapsed, (i.e. the timer reaches zero) the timer fires

to indicate that:-

e the corresponding element cutput needs to be updated,

s propagation to the next stage inputs is required, and

«  new events have to be generated at the outputs of the next

stage.

The main functions concerned with propagation delay
management, as described, are InitializeCntTimers and

DecrementAllActiveTimers.

InitializeCnatTimers

The process of timer initialisation involves loading
selected timers (Fig. 4 - CNT) with the designated
constant propagation delay value held in the cell
descriptor field (Fig. 4 - DLY). Within the SAP,
although initialisation of every descriptor cell is

executed in parallel, the initialisation occurs one bit at a



time starting from the L8B. This algorithm adopts a
word-parallel bit-serial approach as depicted in (he
following pseudo-code (Fig. 6) assuming N bit delay

operands:-

ent = 0/ In one APL all relevant counters are reset.
FORi=0to N-1 DO
BEGIN
ent[i} = dly[i]; // One API per bit
END

Fig. 6, - InitializeCntTimers Funaction

A single APl (Associative Processing Instruction) is
required to reset all relevant counters (only among
logic elements that generate new events), and thereafter
one API to copy each of the N bits of the DLY field
into the CNT field.

algorithrn inevitably means that the execution time

The bit-serial nature of the

increases linearly with the operand size, implying that
the performance of this function is architecture
dependent - egn. 3 -- but independent of the probiem
circuit size -

Tier = (N+1) Tam eqn 3

The significance of the dependency on the operand size
is really a question of whether the absclute execution
time is considered prohibitive for the size of the logic
circuit being simulated. For instance, 32 bit operands
for CNT and DLY will provide an ample propagation
delay capacity of 2% (or 4,294,967,296 time units),

which corresponds to a total execution time of 12.3
uS/epoch (Tap = 371 nS) irrespective of fhe number of

active elements in the simulation. The important

question is the proportion of total execution time that

this function requires, given its bit serial nature (§ 4).

DecrementAllActiveTimers

Arithmetic operations in an associative brocessor are
known to be inefficiently implemented™ without further
Incrementing  and

hardware  enhancements.
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decrementing in the SAP can be performed either by
adding or subtracting a unit to/from the operand value.
The current specification of the SAP does not permit
efficient execution of the DecrementAllActiveTimers

function.

Again, the algorithm is in fact a word-parallel bit-serial
process (Fig. 7) and benefits can be gained if the size of
the problem graph is sufficiently large (e.g. VI.SI

design) through economy of scale.

FOR1=0toN-1 DO
BEGIN

entfi] = ent[i} + carry[i-11; // Two APD’s per bit
END

Fig, 7. - DecrementAilActiveTimers Function

5.

Clearty, this function is very similar to
InitializeCrrTimers in structore and is also dependant
on the operand bit dimensions but with one significant
difference, that each iteration around the FOR loop
requires two APID’s, rather than one. This yields an
execution time that is also linearly dependent on the
operand field size -~ eqn. 4:-

Toar =2 * N * Tap eqn 4

For 32 bit CNT operands, and a nominal value for the
API execution time (Tap) of 371 nS, this yields an

execution time of 23.7 U8 irrespective of the number of
active elements in the simulatioﬁ, or the scale of the
problem graph. Again, the important question is the
proportion of total execution time that this function

requires, given its bit serial nature (§ 4).

3.2,
This group of functions is comcerned with the
When the CNT

Logic value management.

management of nodal logic values.
timer fires indicating that the propagation delay value

has elapsed, two operations have to be performed.



Firstly, the function UpdateCurrentValues is required
to schedule a new event by updating the current value
(CV field) of that logic element using the scheduled
(SV  field).

PropagateNewCv 1s required Lo propagate the new

value Secondly, the function
vafues to the inputs of the next level in the problem
graph (namely to the inputs of the fan-out gates or

primary outputs).

UpdateCurrentValues.

This is rather a trivial operation for the SAP and
concerns the parailel execution of the statement :-

CurrentValue (CV) = ScheduledValue (CV)

using the CV and SV fields of the element descriptor
cell. The task s basically a copying operation requiring
only two APT’s; one (o copy each of the two logic states
(logic 0 and 1). The process is characterised by eqn. Ja

and yields a constant execution time of 742 nS/epoch
(T,gpl =371 HS}

Toey =2 * Tap egn Sa

Extensions to the algorithm which deal with four state
logic (0, 1, X and Z}, or more, introduces a logarithmic
dependency of log,(S) over the number of simulation
states S catered for by the simulator. The general
equation for the performance for any number of states is
shown in eqn. 5b.

Tuev = { 108AS) + 1} * Tam eqn 5b

Although dependent on the number of states, S, the
approach is very efficient, requiring only one additional
API if the number of states is doubled (due to the
logarithmic dependency). Correlating this result with
simufator technology which utilise 15 value algebra®
for improved logic accuracy would simplify the
equation to a constant coefficient of 5 as shown in eqn.

Sc [ logA15+1 £ 5 L

This yields a constant 1.9

-

ISSN 1369-1961

uS/epoch to execute within the SAP, independent of
other parameters.

Tuev[15] =8 * Topr egn Sc¢

PropagateNewCv

This operation involves the transfer of the newly
updated values of CV to the inputs of subsequent levels
of the problem graph. Special treatment has been
adopted for this prototype version of the algorithm to
facilitate efficient transfer of logic values in a single
API. (Signa! propagation in a more scaleable manner
is, however, the subject of further research - § 5). For
the protolype version, execution requires 2 API's for
cach input and for a fan-in of F the execution time is
given by eqn. 6a:-

Tone = 2 F* Taps eqn 6a

In the case of a simulator employing S states, the
equation is modified by the logarithmic function,
logAS), as shown in eqn. 6b, which for 13 state logic

reduces to the result in eqn. 6c:-

Tene = 2 * F * 1oga(8) * Tanm egn 6b

For the prototype version of the APLS algorithm
adopting  2-input  gates and 15-state logic, this
corresponds o an 'é'xecution time of 3.9 uS/epoch,
independent of any other parameter changes -- eqn. 6c.

Tenc[15] = 8 * F* Tap egn ¢

EvaluateNewValues

The task of logic evaluation invoives using the current
logic values (CV) to compute and schedule new outputs
{(8V). The algorithm is implemented very efficiently
requiring 2 initialisation APFs, together with 1
additional API for each of the following 4 logic element

type {(AND, NAND, OR, NOR) and an additional 2



APT’s for each of the following 2 types (EXOR and
NXOR) requiring a constant total of 10 API’s. The
execution times for the NOT and BUF elements are
eliminated by embodying them within the above 6 types
thereby reducing execution cycles. All the primitive
logic elements are catered for by the function and in a
fully parallel manner yielding a constant execution time
of 3.7 S -~ eqn. 7.

Tenv = 10 * T"API eqn. 7
(The corresponding results for multi-value logic is more

complex and is the subject of additional research.)

4, Performance Analysis.
4.1
The

performance of the APLS algorithm is given below:-

The prototype algorithm.

complete set of equations governing the

Frin = Tenv+TertToar+ucy e egn 2
Ter = (N+1) Tap egn 3
Tpar =2 N * Tupy egn 4
Toey = (1oge(S) + 1) * Typy .. egn 56
Tone = 2 * F * 10g2(S) * Taps eqgn 6b
Teny = 10 % Tapy eqn.7

Based on current data for the prototype algorithm, we
assume 32-bit operand sizes for DLY and CNT {N=32),
maximum fan-in of 5 (F=53) and 2 state logic algebra
(S=2). This yields a total execution time, Ty, of 44 1S
for one simulation epoch (one pass of the main
simulation loop), or an execution rate of 22,650
simulation epochs/second. (Alternatively, a simulation
run of 100,000 simulation epochs would take 4.4
Seconds to execute.) Most importantly, the execution
rate is constant for the above parameters and has no
dependency on the size of the problem graph being
simulated, and is consistent with the performance model
depicted in Fig. 1.

4.2 Performance projections.

.
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Decomposition of the APLS main functions execution
times based on the same values of the parameters S, F,
and N, indicates quite clearly that the execution time is
(Fig. 8); namely,

dominated by two functions,

DecrementAlliActiveTimers (Toar) which is accountable
for more than half the execution time {(54%) and
followed closely by InitializeCntTimers (Tjep)which

accounts for 28%.

Fig. § - Proportion of Execution Times per epoch (%}.

Although the proportions are quite contrasting the
imbalance is not entirely unexpected because the two
functions in question operate in a bit-serial mode. They
are, therefore, considered to be less than optimum and
candidates  for through

prime improvement

implementation as special instructions in the SAP.

100

Tmain

Fig. 9 - Projected Execution Times per epoch {(%).



With hardware enhancement to support the new
instructions, their dependency on the operand size (N)
may be eliminated and considerable reduction in their
execution time is achievable (Fig. 9). Furthermore, this
enhancement yields a substantial reduction in the total
execution time of the simulation algorithm. For the
parameters specified, the total execution time (T, for
each simulation epoch is 9 pS/epoch (compared with 44
previously}, representing nearly a 5 fold speed up. In
real terms, this corresponds to a very high simulation
performance rate in excess of 100,000 simulation

epochs/second.

5. Conclusions and Future Work.

We have discussed the performance of a prototype
APLS simulation algorithm by examining constituent
functions, and their dependencies on certain parameters.
The prototype algorithm has been shown to perform at
rates in the region of 44 uS/epoch (22,650 simulation

epochsfsecond), irrespective of the size of the

simulation problem (gate count).

Although the results correlated with the SIMD model
shown in Fig. 1, two component functions of the

algorithm (viz. InitializeCrtTimers and

DecrementAllActiveTimers) were found to exhibit unduly

large dependencies on operand sizes used for

propagation delays. This dependency is attributed

mainly to their bit-serial nature of operation and it is,
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