Abductive proofs in dynamic databases

Hisahi Hayashi

December 1997
Abductive proofs in dynamic databases

Hisashi Hayashi

Department of Computer Science
Queen Mary and Westfield College, London
Mile End Road, London E1 4NS, U.K.
e-mail: hisashi@dcs.qmw.ac.uk

Abstract

Normal proof procedures in abductive logic programming languages assume that a given program does not change until the proof is completed. However, while a proof is being constructed, new knowledge which affects the proof might be acquired. This paper addresses two important issues: 1. How is it confirmed that the proof being constructed is not affected by the change of the given program? 2. If affected, how is the invalid proof restored? The abductive proof procedure in this paper is based on [EK89, KM90a] and is extended for the preparation of proof checking and proof restoration. Only the propositional case without integrity constraints is considered for simplicity. The predicate case is also discussed informally.

1 Introduction

In most literature on logic programming, the design of a proof procedure does not take into account the dynamic nature of a program. If this kind of proof procedure is used, every time the program is revised and changed, the goal has to be proved again under the new program. However, it is easy to imagine that if the program is changed only a little bit, the old proof is still valid in a lot of cases. The term dynamic database is used in this paper to describe a logic program which is subject to change.

Example 1.1. Consider the following logic program;

\[p. \]
\[q. \]
\[r \leftarrow p. \]
Even if the clause ‘q.’ is removed, the proof for the goal r is not affected. However, if the clause ‘p.’ is removed, r cannot be proved any more.

Example 1.2 In a lot of countries, there is the principle that

a person is innocent unless proved guilty.

This can be rewritten in a non-monotonic logic such as a logic programming language:

\[\text{innocent}(X) \leftarrow \neg \text{guilty}(X). \]

Because \(\text{guilty(person1)}\) cannot be proved, \(\text{innocent(person1)}\) holds. Even if another sentence:

\(\text{guilty(person2)}\).

is added which means that another person, \(\text{person2}\) is guilty, the proof for \(\text{innocent(person1)}\) is not affected. However, by adding the information:

\(\text{guilty(person1)}\).

this proof becomes invalid because \(\text{guilty(person1)}\) can now be proved.

The purpose of this project is to reuse the same proof unless it becomes invalid and to change only limited parts of the proof if the proof becomes invalid. Indeed in a lot of cases, it takes time to make a proof. When a whole proof or a part of a proof needs to be constructed within limited time, it is not a good idea to make a brand new proof from the beginning every time programs are corrected.

This paper addresses two important issues in abductive proofs in dynamic databases:

1. How is the validity of a proof checked?
2. How is an invalid proof restored?

Consider planning in robotics. Suppose that a robot is always gathering information through its sensors and that the database of the robot is always changing.

Suppose that the robot starts constructing a plan at time, say, 10:00:00 and finishes at 10:01:15. If the plan is made based only on the information at
10:00:00, it is impossible to say that the plan is still valid at 10:01:15 because the database might be updated between 10:00:00 and 10:01:15. This means that the robot is not sensing the outer world while making the plan. (Even if the robot senses the outer world, it is not using new information during that time.)

Suppose that the robot uses the most recent information available in the database so that it can reflect new information to the plan. For example, when the robot starts constructing a plan at 10:00:00, it uses the database which is valid at 10:00:00 and when the robot completes a half of the plan and tries to make the rest of the plan at 10:00:30, it uses the database which is valid at 10:00:30. Clearly, even in this case, it is not obvious that the plan which is completed at 10:01:15 is valid at 10:01:15 because the plan is still based on the old information (i.e. the database between 10:00:00 and 10:01:15) when it is completed at 10:01:15.

Suppose that the robot completes a correct plan at 10:01:15 and that the robot is executing actions at 10:02:00 based on the plan. Although the plan is correct at 10:01:15, the plan might be useless at 10:02:00. This means that the robot is executing the actions without sensing the outer world believing that the plan is perfect and that unexpected events will never happen.

For this reason, some criteria are needed by which to confirm that the plan is still valid after updating the database. Also it is essential to reuse some parts of the plan to avoid reconstructing a brand new plan and save time.

Let us consider the following more intuitive example. Suppose that some AI researchers are going to an international conference which will be held in Nagoya, Japan from Queen Mary and Westfield College, London. They decided to use the underground, District line and Piccadilly line to go to Heathrow airport. They will take an airplane to Nagoya. From Nagoya airport, they will take an Airbus and change to the subway. So far so good. But they haven't completed the whole plan. They are still making a plan for what they should do after arriving at a hotel in Nagoya, which presentations they will listen to, and so on. When still making a plan, they hear the news that the airplane they were planning to use will be cancelled due to a strike. Also they hear the news that the District line is now closed due to signal failures. Obviously, this incomplete plan will not work any more. However, if some parts of this plan are changed, it can still work.

In partial order planning, causal links or protected links are used for replanning. (See standard textbooks such as [RN95].) In this paper, a more general theory which can be applied to any proof in abductive logic
programming will be introduced. Of course it is assumed that the contents of the databases (or programs) being used are updated as the time goes on.

A similar topic is discussed by Shanahan [Sha87a, Sha87b] for the SLD resolution case (see standard textbooks such as [Llo84]), where negation cannot be used. The proof procedure discussed in the present paper is for abductive logic programming. The abductive proof procedure adopted in this paper is based on the Eshghi-Kowalski (E-K) procedure [EK89] and the Kakas-Mancarella (K-M) procedure [KM90a]. The E-K procedure is an extension of SLD resolution and the K-M procedure is an extension of the E-K procedure. Only variable free programs and abducibles are investigated at first and later, predicate cases are considered.

The rest of the paper is organised as follows. In Section 2, the E-K and K-M procedures are explained. In Section 3, some applications of abduction are shown. From Section 4 to Section 6, the effects of program updates on proofs are investigated with examples. In Section 7, after a formal extended abductive proof procedure is introduced, a criterion is shown as to when a proof is still valid after the change of the program. From Section 8 to Section 10, the relationships between the proof procedure in Section 7, the K-M procedure, and the E-K procedure are shown and some semantics for the E-K and K-M procedures are discussed. In Section 12, some restoration methods of invalid proofs are investigated. In Section 13, predicates cases are discussed informally.

2 Abductive proof procedure

Various abductive proof procedures have been proposed in the past [EK89, KM90a, DS92, DS, Fun96, FK97, CDT91, SI92, IOH93, Teu93, GMS96]. In this section, an abductive proof procedure is explained briefly.

A literal is either an atom or a sequence of the form: not p, where p is an atom. Clauses are of the form p ← L₁, ..., Lₙ, where p is an atom and L₁, ..., Lₙ are literals. Suppose that G is a conjunction of literals (goals), Th is a set of clauses (a program), and Ab is a set of literals (abducibles). The task of an abductive proof procedure in abductive logic programming is to find Δ(⊆ Ab) such that Th and Δ are consistent and imply G.

Two kinds of abducibles are used, positive abducibles and negative abducibles. Positive abducibles are set of atoms undefined in Th. Any negative literal not p is regarded as a negative abducible. Negative literals are treated like positive literals. Indeed, in [KM90a] and [EK89], the nega-
tive literal \(\text{not } p \) is replaced by the positive literal \(p^* \). We can assume any positive or negative abducible as a hypothesis.

The proof procedure shown in this section is the abductive proof procedure in [KM90a] which is an extension of [EK89]. The proof procedure in [EK89] is a simulation of SLDNF by abduction and abducibles are restricted to negative abducibles while [KM90a] can use positive abducibles as well as negative abducibles.

The procedure interleaves the **abductive phase**, which is standard SLD-resolution, and the **consistency phase** that incrementally checks that all the hypotheses satisfy

\[\forall p (\neg (p \land \text{not } p)) \text{ and } \forall p (p \lor \text{not } p). \]

The positive hypotheses \(\Delta_{\text{pos}} \) and the negative hypotheses \(\Delta_{\text{neg}} \) are created incrementally.

This proof procedure will be illustrated by means of examples. Note that abductive phases are computed with sets of literals while consistency phases are computed with sets of sets of literals.

Example 2.1 Consider the following logic program.

\[
\begin{align*}
\text{clause 1: } & p \leftarrow \text{not } q. \\
\text{clause 2: } & q \leftarrow \text{not } r.
\end{align*}
\]

Let us assume \(r \) is a positive abducible. A proof for the goal \(p \) is as follows;

ab 1 ? \(p \)

ab 2 ? \(\text{not } q \) (add \(\text{not } q \) to \(\Delta_{\text{neg}} \))

co 1.1 ? \((q) \)

co 1.2 ? \((\text{not } r) \)

ab 1.2.1 ? \(r \)

ab 1.2.2 success, (add \(r \) to \(\Delta_{\text{pos}} \))

co 1.3 failure

ab 3 success
The goal p succeeds with the positive hypothesis $\Delta_{pos} = \{r\}$ and the negative hypothesis $\Delta_{neg} = \{\neg q\}$. The consistency phase co 1.1 is triggered to check

$$\neg(q \land \neg q)$$

and the abductive phase ab 1.2.1 is triggered to satisfy

$$r \lor \neg r.$$

Note that when adding r to Δ_{pos} in the abductive phase ab 1.2.2, the constraint

$$\neg(r \land \neg r)$$

is satisfied because $\neg r \notin \Delta_{neg}$.

Example 2.2 Consider the following program.

clause 1: $p \leftarrow \neg q, s$.
clause 2: $q \leftarrow r$.
clause 3: $r \leftarrow s$.

Let us assume s is an abducible. A proof for the goal p is as follows:

ab 1 ? p

ab 2 ? not q, s

co 1.1 ? (q) (add not q to Δ_{neg})

co 1.2 ? (r)

co 1.3 ? (s)

co 1.4 failure (add not s to Δ_{neg})

ab 3 ? s

ab 4 failure

The goal p fails at the abductive phase ab 4 because $\neg s \in \Delta_{neg}$ and s cannot be added to Δ_{pos}. If there did not exist $\neg s$ in Δ_{neg}, s could have been added to Δ_{pos} at ab 4 and the goal p could have succeeded, which would have led to an incorrect explanation.
3 Application of abduction

Before discussing about effects of database updates on abductive proofs, some applications of abduction are briefly shown in this section.

In the introduction, planning is used as an example of abductive proving. In planning, abduced positive abducibles can be viewed as a plan for a given goal state to be reached in the future [Esh88, Mis91, MDB95].

Abduction is used in other AI areas including: belief revision [MKF⁺84, KM90c, BB95, Bou96]; database updates [KM90a, Bry90, CS94]; temporal explanation [Sha89, Sha93, DMB92]; natural language interpretation [Sti88, HSAM90]; diagnosis [Reg83, Rei87, Poo88b, CDT89, PE92]; default reasoning [Poo88a].

4 When adding a new clause to the database

If another clause is added to the program, the completed proofs are no longer guaranteed to be valid, because the logic programming languages are non-monotonic. The examples are given already in the introduction. Also if the program is changed or updated when proving some goals, it is meaningless to continue to prove the goals unless it is confirmed that the incomplete proof constructed so far is not affected by the change of the program.

In this section, a criterion is shown as to when the complete and incomplete proof becomes invalid when adding a clause to the program by means of examples.

Example 4.1 Consider Example 2.1. Even if any clause defining the atoms p or r is added to the program, this does not affect the proof because such a clause simply supplies other ways of proving p and r in the abductive phases and p and r are not used in the consistency phase. Note that there never exists a clause to define negative literals in any program.

On the other hand, if a clause which defines the atom q is added to the program, q might be proved using that clause. In this case, the failure in the consistency phase co 1.3 becomes invalid, which leads to the invalidity of the proof.

Consequently, if no clause defining the atom q is added to the program, the proof is still valid.

Example 4.2 Consider Example 2.2. Suppose that the proof is not completed yet but has been constructed up to the consistency phase co 1.2. If, at this moment, the clause
\[q \leftarrow t, u. \]
is added to the program, it can be easily understood that it has to be proved that either the literal \(t \) or the literal \(u \) fails.

5 When deleting a clause from the database

In the previous section, the method to detect the invalidity of an abductive proof when adding some clauses to a program was investigated. In this section, the invalidity of the proof when deleting some clauses in the program will be investigated by means of examples.

Example 5.1 Consider Example 2.1. Deleting any clause from the program does not affect the consistency phase because the purpose of the consistency phase is to prove the failure and it does not change the failure to the success.

The proof is affected by deleting a clause from the program if and only if clause 1:

\[p \leftarrow \text{not } q. \]

which is used between the two abductive phase ab 1 and ab 2 is deleted.

Note that the abducible \(r \) which is added to \(\Delta_{pos} \) between the two abductive phase ab 1.2.1 and ab 1.2.2 must also be kept in \(\Delta_{pos} \) afterwards.

Example 5.2 Consider Example 2.2. Suppose that the proof is not yet completed but has been constructed up to the consistency phase co 1.2. If, at this moment, clause 1:

\[p \leftarrow \text{not } q, s. \]
is deleted from the program, it can be easily understood that the incomplete proof being constructed so far becomes meaningless. However, deleting any other clause does not affect the incomplete proof.

6 General case

Before generalising the abductive proof procedure which can detect the invalidity of an incomplete or complete proof for the given goals, let us consider slightly more complicated example.

Example 6.1 Consider the following program where \(d \) and \(g \) are abducibles;
clause 1: $a \leftarrow b, c$.
clause 2: $b \leftarrow d, \text{not } e$.
clause 3: c.
clause 4: $e \leftarrow d, f$.
clause 5: $e \leftarrow g$.
clause 6: $f \leftarrow \text{not } h$.
clause 7: $f \leftarrow \text{not } e, g$.
clause 8: $h \leftarrow \text{not } g, b$.

A proof for the goal a is as follows;

ab 1 ? a

ab 2 ? b, c

ab 3 ? $d, \text{not } e, c$

ab 4 ? $\text{not } e, c$ (add d to Δ_{pos})

co 4.1 ? (e) (add $\text{not } e$ to Δ_{neg})

co 4.2 ? ($d, f), (g$)

co 4.3 ? ($f), (g$)

co 4.4 ? ($\text{not } e, g), (\text{not } h), (g$)

co 4.5 ? ($g), (\text{not } h), (g$)

co 4.6 ? ($\text{not } h), (g$) (add $\text{not } g$ to Δ_{neg})

 ab 4.6.1 ? h

 ab 4.6.2 ? $\text{not } g, b$

 ab 4.6.3 ? b

 ab 4.6.4 ? $d, \text{not } e$

 ab 4.6.5 ? $\text{not } e$

 ab 4.6.6 success

co 4.7 ? (g)

co 4.8 failure

ab 5 ? c

ab 6 success
The goal α succeeds with the hypotheses $\Delta_{pos} = \{d\}$ and $\Delta_{neg} = \{not\ e, not\ g\}$. The abductive phases become invalid if and only if clause 1, clause 2, clause 3, or clause 8 which are used in the abductive phases are deleted from the program or the positive abducible d is deleted from the positive hypotheses Δ_{pos}.

The consistency phases become invalid if and only if one or more of the literals e, f, g succeed by the addition of clauses which define them or by the addition of the abducible g to the hypotheses. Note that f is attacked because g is attacked and that e is attacked because f and g are attacked where a literal is attacked if and only if its contrary is shown.

Now it can be generalised when complete and incomplete proofs become invalid by database updates.

Observation 6.2 Let $Keep$ be the set of all the clauses and the abduced abducibles which are used in the abductive derivations. Let $Reject$ be the set of all the literals which need to be proved to be false in the consistency derivations.

The proof is still valid after the change of the program if and only if no clause in $Keep$ is deleted and no clause which defines a literal in $Reject$ is added.

The formal definitions of abductive derivations and consistency derivations are introduced in the next section.

Example 6.3 Consider Example 6.1. $Keep$ and $Reject$ can be constructed incrementally as follows.

ab 1 ?a

ab 2 ?b, c (add clause 1 to $Keep$)

ab 3 ?$d, not\ e, c$ (add clause 2 to $Keep$)

ab 4 ?$not\ e, c$ (add d to $Keep$)

co 4.1 ?(e) (add $not\ e$ to $Keep$)

co 4.2 ?(d, f), (g) (add e to $Reject$)

co 4.3 ?(f), (g)

co 4.4 ?($not\ e, g$), ($not\ h$), (g) (add f to $Reject$)
co 4.5 ?(g), (not h), (g)
co 4.6 ?(not h), (g) (add g to Reject)
 ab 4.6.1 ?h (add not h to Reject)
 ab 4.6.2 ?not g, b (add clause 8 to Keep)
 co 4.6.2.1 ?g (add not g to Keep)
 co 4.6.2.2 failure
 ab 4.6.3 ?b
 ab 4.6.4 ?d, not e
 ab 4.6.5 ?not e
 ab 4.6.6 success
co 4.7 ?(g)
co 4.8 failure

ab 5 ?c

ab 6 success (add clause 3 to Keep)

Keep is

\{clause 1, clause 2, clause 3, clause 8, d, not e, not g\}.

Reject is

\{e, f, g, not h\}.

Now Keep plays the role of Δ_{pos} and Δ_{neg}. Although most parts of the proof are the same as the proof in Example 6.1, there is a few differences. From the consistency phase co 4.5 to the consistency phase co 4.6, not g is not added to Keep. Instead, g is added to Reject. Consequently, the consistency phase co 4.6.2.1 is triggered. Keep is constructed only in abductive phases while Reject is constructed only in consistency phases.

Note that any negative literal in Reject is not used in order to detect invalidities of proofs when adding clauses to a program because there does not exist a clause which defines a negative clause.

Observation 6.2 is useful also for incomplete proofs because Keep and Reject can be constructed incrementally and this observation suggests the point to which the proof procedure should backtrack when the given program is updated before completing a proof. The new extended proof procedure
which constructs \textit{Keep} and \textit{Reject} incrementally will be introduced in the next section.

In the predicate case, \(d \) has to be added to \textit{Reject} at co 4.3 in the above example. The predicate case will be discussed later. The procedure in the next section will add \(d \) to \textit{Keep}.

7 Construction of \textit{Keep} and \textit{Reject}

In this section, an abductive proof procedure which constructs \textit{Keep} and \textit{Reject} is introduced.

\textbf{Definition 7.1} A \textbf{nand set} is a set of literals.

Intuitively, a nand set, \(\{p_1,...,p_n\} \) means \(\leftarrow p_1,...,p_n \).

\textbf{Definition 7.2} A \textbf{goal set} is of the form: \((PG, NG, K, R)\) where \(PG\) is a set of literals, \(NG\) is a set of nand sets, \(K\) is a set of clauses and abducibles, and \(R\) is a set of literals.

Note that if \(\emptyset \in NG \) then \(NG \neq \emptyset \). Intuitively, \(PG \) is a set of literals which need to be true. Also for any nand set \(\{p_1,...,p_n\} \) in \(NG \), \(\leftarrow p_1,...,p_n \) needs to be true. (i.e. one of the literals \(p_1,...,p_n \) needs to be false.) \(K \) and \(R \) are used to calculate \textit{Keep} and \textit{Reject}.

\textbf{Definition 7.3} For a set of literals \(S = \{a, L_1, L_2, ..., L_n\} \) and a clause \(C = a \leftarrow L_{n+1}, ..., L_m, \) the \textbf{resolvent} of \(S \) on \(a \) by \(C \) is the set of literals \(\{L_1, ..., L_m\} \).

\textbf{Definition 7.4} An \textbf{abductive derivation} from the goal set \(G_1 \) to the goal set \(G_n \) under the program \(P \) is a sequence of goal sets:

\[
(PG_1, \emptyset, K_1, R_1)(= G_1),
(PG_2, \emptyset, K_2, R_2)(= G_2),
\vdots
(PG_n, \emptyset, K_n, R_n)(= G_n)
\]

such that for any \(G_i \) (\(1 \leq i \leq n-1 \)), there exists a \textit{selected literal} \(L_i (\in PG_i) \) such that \(G_{i+1} \) is obtained by one of the following \textbf{abductive derivation rules}.
a1 L_i is a non-abducible positive literal and there exists a chosen clause1 $C_i(\in P)$ which defines L_i:

PG_{i+1} is the resolvent of PG_i on L_i by C_i. K_{i+1} is obtained by adding C_i to K_i. R_{i+1} is the same as R_i.

a2 L_i is a (positive or negative) abducible in K_i:

PG_{i+1} is $PG_i \setminus \{L_i\}$. K_{i+1} is the same as K_i. R_{i+1} is the same as R_i.

a3 L_i is a positive abducible such that $L_i \notin K_i$, not $L_i \notin K_i$, and $L_i \notin R_i$:

PG_{i+1} is $PG_i \setminus \{L_i\}$. K_{i+1} is $K_i \cup \{L_i\}$. R_{i+1} is the same as R_i.

a4 L_i is a negative abducible not A_i such that not $A_i \notin K_i$, $A_i \notin K_i$, not $A_i \notin R_i$, and there exists a consistency derivation from

$$\langle \emptyset, \{A_i\}, K_i \cup \{\text{not } A_i\}, R_i \rangle$$

to

$$\langle \emptyset, \emptyset, K_j, R_j \rangle$$

under P:

PG_{i+1} is $PG_i \setminus \{L_i\}$. K_{i+1} is the same as K_j. R_{i+1} is the same as R_j.

Note that K_i is used to record chosen clauses and abduced abducibles in abductive derivations.

Definition 7.5 A consistency derivation from the goal set G_1 to the goal set G_n under the program P is a sequence of goal sets:

\[
\langle \emptyset, NG_1, K_1, R_1 \rangle (= G_1), \\
\langle \emptyset, NG_2, K_2, R_2 \rangle (= G_2), \\
\vdots \\
\langle \emptyset, NG_n, K_n, R_n \rangle (= G_n)
\]

1If the chosen clause is $L_i \leftarrow$, PG_{i+1} is $PG_i \setminus L_i$.

2This goal set is called from G_i by a4.
such that for any $G_i \ (1 \leq i \leq n - 1)$, there exist a selected nand set $NA_i(\in NG_i)$ and a selected literal $L_i(\in NA_i)$, such that G_{i+1} is obtained by one of the following consistency derivation rules.

c1 L_i is a non-abducible positive literal which is *not* defined in P:

$$NG_{i+1} = NG_i \setminus \{NA_i\}. \quad K_{i+1} \text{ is the same as } K_i. \quad R_{i+1} = R_i \cup \{L_i\}.$$

c2 L_i is a non-abducible positive literal which is defined by clauses in P:

Let Cs be all the clauses in P which defines L_i. NG_{i+1} is obtained from NG_i by replacing NA_i with all the nand sets each of which is a resolvent3 of NA_i on L_i by a clause in Cs. K_{i+1} is the same as K_i. R_{i+1} is $R_i \cup \{L_i\}$.

c3 L_i is a (positive or negative) abducible in K_i:

$$NG_{i+1} = NG_i \setminus \{NA_i\} \cup \{NA_i \setminus \{L_i\}\}. \quad K_{i+1} \text{ is the same as } K_i. \quad R_{i+1} \text{ is } R_i \cup \{L_i\}.$$

c4 L_i is a (positive or negative) abducible such that $L_i^* \in K_i$:

$$NG_{i+1} = NG_i \setminus \{NA_i\}. \quad K_{i+1} \text{ is the same as } K_i. \quad R_{i+1} \text{ is the same as } R_i.$$

c5 L_i is a positive abducible such that $L_i \not\in K_i$ and not $L_i \not\in K_i$:

$$NG_{i+1} = NG_i \setminus \{NA_i\}. \quad K_{i+1} \text{ is the same as } K_i. \quad R_{i+1} = R_i \cup \{L_i\}.$$

c6 L_i is a negative abducible *not* A_i such that *not* $A_i \not\in K_i$, $A_i \not\in K_i$, and there exists an abductive derivation from

$$(A_i, \emptyset, K_i, R_i \cup \{not A_i\})^5$$

to

3If one of the resolvents is \emptyset, we cannot derive a complete proof unless we backtrack because \emptyset cannot be resolved.

4(not $p)^* = p$ and $p^* = not p$ where p is an atom

5This goal set is called from G_i by c6.
\[(\emptyset, \emptyset, K_j, R_j)\]
under \(P\):

\(NG_{i+1}\) is \(NG_i \setminus \{NA_i\}\). \(K_{i+1}\) is the same as \(K_j\). \(R_{i+1}\) is the same as \(R_j\).

Note that \(R_i\) is used to record selected literals in consistency derivations.

Definition 7.6 An abductive derivation from \((\{L_1, ..., L_n\}, \emptyset, \emptyset, \emptyset)\) to \((\emptyset, \emptyset, K_m, R_m)\) under the program \(P\) is a **(complete) proof** for the goals \(L_1...L_n\) under the program \(P\).

Definition 7.7 An abductive derivation from \((\{L_1, ..., L_n\}, \emptyset, \emptyset, \emptyset)\) to \((PG_m, \emptyset, K_m, R_m)\) under the program \(P\) is an **incomplete proof** for the goals \(L_1...L_n\) under the program \(P\).

Note that complete proofs are the limiting case of incomplete proofs.

The following theorem indicates that \(K\) is carefully constructed so that it is consistent.

Theorem 7.8 For any incomplete proof under the program \(P\) from \((PG_1, \emptyset, \emptyset, \emptyset)\) to \((PG_t, NG_t, K_t, R_t)\), there does not exist an atom \(p\) such that \(p \in K_t\) and \(\neg p \in K_t\).

Proof: See Appendix B.

Observation 7.9 For any complete proof for \(L_1...L_n\):

\[\begin{align*}
\{(L_1, ..., L_n), \emptyset, \emptyset, \emptyset) \\
\vdots \\
(\emptyset, \emptyset, K_m, R_m)
\end{align*}\]
under the program \(P\), \(K_m\) and \(R_m\) are Keep and Reject of the complete proof respectively.

The next theorem ensures that under certain conditions, it is still possible to use incomplete proofs.

Theorem 7.10 For any incomplete proof for \(L_1...L_n\) under the program \(P\):
\[
(\{L_1, \ldots, L_n\}, \emptyset, \emptyset, \emptyset) \\
(\ldots) \\
(PG_t, \emptyset, K_t, R_t)
\]

and for any program \(Q\),

- if all the clauses in \(K_t\) are in \(Q\),
- if there does not exist a clause in \(Q\) which defines an atom in \(R_t\) other than those clauses in \(P\),
- and if there exists an abductive derivation under the program \(Q\):
 \[
 (PG_t, \emptyset, K_t, R_t) \\
 (\ldots) \\
 (\emptyset, \emptyset, K_m, R_m)
 \]

then there exists a complete proof for \(L_1 \ldots L_n\) under the program \(Q\):

\[
(\{L_1, \ldots, L_n\}, \emptyset, \emptyset, \emptyset) \\
(\ldots) \\
(\emptyset, \emptyset, K2_x, R2_x)
\]

such that \(K2_x \subseteq K_m\) and \(R2_x \subseteq R_m\), and \(Q \cup \Delta_1 \vdash L_1 \land \ldots \land L_n\), where \(\Delta_1\) is the set of all the abducibles in \(K_m\).

Proof: See Appendix B.

Note that the above theorem corresponds to Observation 6.2.

Theorem 7.11 For any incomplete proof for \(L_1 \ldots L_n\) under the program \(P\):

\[
(\{L_1, \ldots, L_n\}, \emptyset, \emptyset, \emptyset) \\
(\ldots) \\
(PG_t, \emptyset, K_t, R_t)
\]

and for any program \(Q\),

- if all the clauses in \(K_t\) are in \(Q\),
- if all the clauses in \(Q\) which define any atom in \(R_t\) are the same as in \(P\).\(^6\)

\(^6\)This condition is stronger than the counterpart of the previous theorem.
and if there exists an abductive derivation under the program Q:
\[
(PG_t, \varnothing, K_t, R_t) \\
\vdots \\
(\varnothing, \varnothing, K_m, R_m)
\]
then the sequence:
\[
(\{L_1, \ldots, L_n\}, \varnothing, \varnothing, \varnothing) \\
\vdots \\
(PG_t, \varnothing, K_t, R_t) \\
\vdots \\
(\varnothing, \varnothing, K_m, R_m)
\]
is a complete proof for $\{L_1, \ldots, L_n\}$ under the program Q.

Proof: See Appendix B.

Example 7.12 Consider the following program.

clause 1: $a \leftarrow \text{not } c, b$.
clause 2: b.
clause 3: $c \leftarrow d$.
clause 4: $c \leftarrow e$.

A proof for the goal a is shown below.

ab 1 ?a

ab 2 ?$\text{not } c, b$ (add clause 1 to *Keep*)

co 2.1 ?(c) (add $\text{not } c$ to *Keep*)

co 2.2 ?(d), (e) (add c to *Reject*)

co 2.3 ?(e) (add d to *Reject*)

co 2.4 failure (add e to *Reject*)

ab 3 ?b

ab 4 success (add clause 2 to *Keep*)
Even if the clause:
\[a \leftarrow \times. \]
is added to the program, the proof is not affected because \(a \) does not belong to \(\textit{Keep} \).
If clause 4 is removed, the proof is affected. (See co 2.1 and co 2.2.) However, it is intuitively understandable that this proof is still valid because the removal of clause 4 simply means that \(\leftarrow \, \varepsilon \) does not have to be proved, which follows from Theorem 7.10.

Example 7.13 Consider the following program:

- clause 1: \(a \leftarrow b \).
- clause 2: \(b \leftarrow c \).
- clause 3: \(\text{d} \).

An incomplete proof for the goal \(a \) is shown below.

ab 1 ?a

ab 2 ?b (add clause 1 to \(\textit{Keep} \))

ab 3 ?c (add clause 2 to \(\textit{Keep} \))

It is impossible to derive further from the abductive phase ab 3. However, if clause 4: \(c \leftarrow \text{d} \) is added to the program, by adding the following abductive derivation to the above incomplete proof, it becomes a complete proof, which follows from Theorem 7.11.

ab 4 ?d (add clause 4 to \(\textit{Keep} \))

ab 5 success (add clause 3 to \(\textit{Keep} \))

8 Comparison with the Kakas-Mancarella procedure

In this section, the proof procedure in section 7 is compared with the Kakas-Mancarella procedure [KM90a].

The only difference can be seen in the following example. In the K-M procedure, the absence of the positive literal \(s \) in a consistency derivation was recorded by abducting \(\neg s \) to avoid abducting \(s \) later, while in the procedure
in the previous section, s is recorded in Reject. (See the abductive derivation rule a3 and the consistency derivation rule c5.) If c5 is modified so that not s is added to Keep, the procedure in Section 7 becomes identical to the K-M procedure.

Example 8.1 Consider the following program in Example 2.2.

clause 1: \(p \leftarrow \neg q, s \).
clause 2: \(q \leftarrow r \).
clause 3: \(r \leftarrow s \).

Consider the following proof for \(p \) by the K-M procedure, where \(s \) is a positive abducible.

\[
\text{ab}_{\text{KM}} 1 \ ? \ p
\]
\[
\text{ab}_{\text{KM}} 2 \ ? \ \neg q, s
\]
\[
\text{co}_{\text{KM}} 1.1 \ ? \ (q) \ (\text{add not } q \text{ to } \Delta_{\text{neg}})
\]
\[
\text{co}_{\text{KM}} 1.2 \ ? \ (r)
\]
\[
\text{co}_{\text{KM}} 1.3 \ ? \ (s)
\]
\[
\text{co}_{\text{KM}} 1.4 \ \text{failure (add not } s \text{ to } \Delta_{\text{neg}})
\]

\[
\text{ab}_{\text{KM}} 3 \ ? \ s
\]

\[
\text{ab}_{\text{KM}} 4 \ \text{failure}
\]

"failure" was derived from ab 3 to ab 4 because \(\neg s \in \Delta_{\text{neg}} \).

The corresponding proof by the procedure in Section 7 is as follows, where \(s \) is a positive abducible.

\[
\text{ab} 1 \ ? \ p
\]
\[
\text{ab} 2 \ ? \ \neg q, s \ (\text{add clause 1 to } \text{Keep})
\]
\[
\text{co} 1.1 \ ? \ (q) \ (\text{add not } q \text{ to } \text{Keep})
\]
\[
\text{co} 1.2 \ ? \ (r) \ (\text{add } q \text{ to } \text{Reject})
\]
\[
\text{co} 1.3 \ ? \ (s) \ (\text{add } r \text{ to } \text{Reject})
\]
\[
\text{co} 1.4 \ \text{failure (add } s \text{ to } \text{Reject})
\]

\[
\text{ab} 3 \ ? \ s
\]
ab 4 failure

The goal \(p \) fails at the abductive phase ab 4 because \(s \in \text{Reject} \) and \(s \) cannot be added to \(\text{Keep} \) at ab 4. If \(s \) was not in \(\text{Reject} \), \(s \) could have been added to \(\text{Keep} \) at ab 4 and the goal \(p \) could have succeeded, which would have led to an incorrect explanation.

If \(\neg s \) is regarded as an explicit negation of \(s \), recording the absence of the positive abducible \(s \) by abducting \(\neg s \) is too strong as Kakas, Kowalski and Toni discuss in [KKT93, KKT97].

A similar comparison can be made in Example 6.1 and Example 6.3, as is discussed in Example 6.3.

9 Comparison with the Eshghi-Kowalski procedure

In this section, the proof procedure in section 7 is compared with the Eshghi-Kowalski procedure [EK89] which the K-M procedure is based on.

Let \(P \) be a program. After successfully proving the goals \(G \) with the set of positive abducibles \(\Delta_{pos} \) and the set of negative abducibles \(\Delta_{neg} \) (\(\Delta_{pos} \cup \Delta_{neg} \subseteq \text{Keep} \)) by the procedure in Section 7, it is possible to reprove the goal \(G \) by the E-K procedure with \(\Delta_{neg} \), by treating \(P \cup \Delta_{pos} \) as the given program. The reason is as follows.

In E-K procedures, there does not exist any abductive or consistency derivation rule for positive abducibles. It suffices to show that there exists an alternative derivation rule available which has the same effect. In the E-K procedure, the abductive derivation rules a2 and a3 are not applied to any positive literal \(p \) in \(\Delta_{pos} \). However, a1 can be applied instead and the effect is the same. Similarly the consistency derivation rules c3 and c5 are not applied to \(p \) in the E-K procedure. However, c2 and c1 can be applied respectively instead and the effect is the same. The consistency derivation rule c4 is not applied to any positive literal \(q \) in the E-K procedure. However, c1 can be applied to \(q \) instead because \(q \) was not abducted by the procedure in Section 7 if c4 was applied to the positive abducible \(q \). (See Theorem 7.8.) The effect is also the same.

Consequently, \((P \cup \Delta_{pos}) \cup \Delta_{neg} \vdash G \) by the E-K procedure.

Example 9.1 Consider the following program \(P \) where \(b \) and \(c \) are positive abducibles.

\[
\text{clause1: } a \leftarrow \neg b, c.
\]
The proof procedure in Section 7 successfully proves the goal a under the program P as follows. The set of abduced abducibles \{$not\ b, c$\} is a subset of $Keep$.

\textbf{ab 1} $?a$

\textbf{ab 2} $?not\ b, c$ (add clause 1 to $Keep$)

\hspace{0.5cm} \textbf{co 2.1} $?b$ (add $not\ b$ to $Keep$)

\hspace{1cm} \textbf{co 2.2} failure (add b to $Reject$)

\textbf{ab 3} $?c$

\textbf{ab 4} success (add c to $Keep$)

The E-K procedure successfully proves the goal a with \{$not\ b$\} under the program $P \cup \{c,\}$ as follows.

\textbf{abEK 1} $?a$

\textbf{abEK 2} $?not\ b, c$

\hspace{0.5cm} \textbf{coEK 2.1} $?b$ (add $not\ b$ to Δ)

\hspace{1cm} \textbf{coEK 2.2} failure

\textbf{abEK 3} $?c$

\textbf{abEK 4} success

Note that now c is a clause in the program and b is not an abducible.

\section{Semantics for the Eshghi-Kowalski procedure}

In this section, the semantics for the E-K procedure is discussed.

In the original paper describing the E-K procedure [EK89], a declarative semantics which has one-to-one correspondence to stable model semantics [GL88] is defined. However, this semantics is not always correct. Indeed, there exist programs which do not have any stable models. Several other semantics which conquer this problem were defined as follows.

One approach is to adopt an argumentation-theoretic interpretation. Dung [Dun91] defined preferred extension semantics and showed that it is
sound. Later Kakas and Mancarella [KM93] showed that it is equivalent to
partial stable model semantics [SZ90].

An interesting three-valued semantics is finite failure stable model se-
manitics [GMS93]. It is defined in the style of stable model semantics and it builds on an underlying Kripke/Kleene semantics [Fit85, Kun87a]. This semantics can capture finite failure while extended stable model semantics [Prz90] can capture infinite failure.

11 Semantics for the Kakas-Mancarella procedure

As is mentioned earlier, the K-M procedure is an extension of the E-K
procedure. If no positive abducible is used, the K-M procedure is the same
as the E-K procedure.

In the original paper [KM90a], Kakas and Mancarella used generalised
stable model semantics [KM90b]. In this semantics, they adopted stable
model semantics for a given program and abduced abducibles. Note that it
is possible to generalise other semantics in this way. The problem is that
there are cases where there does not exist any stable model.

Toni [Ton95] reinterpreted the K-M procedure in argumentation-theoretic
term as in the E-K procedure case. This semantics is similar to the notion
of admissibility for extended logic programming [Dun93] as is pointed out
in [KKT97].

Three-valued completion semantics can be used for the K-M procedure
as is adopted as a semantics [DS93] for the latest version [DS] of SLD-
NFA [DS92]. This semantics is based on three-valued completion seman-
tics for non-abductive logic programs [Kun87b] and two-valued comple-
tion semantics for abductive logic programs [CDT91]. Fung and Kowalski
[Fun96, FK97] also use three-valued completion semantics for their iff proof
procedure for abductive logic programming.

Any above semantics can be adopted. The investigation of semantics is
not the main theme of this project.

12 Restoration of proofs

From Theorem 7.10, it is possible to judge if complete and incomplete proofs
are still valid under modified programs. However, it is not discussed yet how
the validity to a proof is restored using parts of the invalid old proof. In
this section, some restoration methods are introduced.
The first restoration method is the simplest backtracking method.

Definition 12.1 Let $S: (PG_1, NG_1, K_1, R_1)\ldots (PG_i, NG_i, K_i, R_i)$ be an incomplete proof under the program P. Let Q be a program.

A **deleted keeping clause** in S when changing from P to Q is a clause in K_i which does not exist in Q.

An **added rejecting clause** r in S when changing from P to Q is a clause which defines a positive literal in R_i such that r exists in Q but not in P.

A **deleted rejecting clause** r in S when changing from P to Q is a clause which defines a positive literal in R_i such that r exists in P but not in Q.

Definition 12.2 Let $S: G_1\ldots G_x\ldots G_n$ be an incomplete proof under the program P. Let Q be a program. The goal set $(PG_x, NG_x, K_x, R_x) (= G_x)$ is the **backtrack point** for S when changing from P to Q, if x is the least y such that one of the following holds:

- The chosen clause for G_y is a deleted keeping clause in S when changing from P to Q.
- There exists an atom in R_y which is defined by an added rejecting clause in S when changing from P to Q.
- There exists an atom in R_y which is defined by a deleted rejecting clause in S when changing from P to Q.

Definition 12.3 Let S:

\[(PG_1, \emptyset, \emptyset, \emptyset)\]

\[\vdots\]

\[(PG_x, NG_x, K_x, R_x)\]

\[\vdots\]

\[(PG_i, NG_i, K_i, R_i)\]

be an incomplete proof under the program P. Let Q be a program. A **backtrack resumption** of S when changing from P to Q is any sequence of the form:

\[\text{7This condition is not really needed. However, if we add this condition, we can understand the following backtracking method easier.}\]

23
\[(PG_1,\emptyset,\emptyset,\emptyset)\]
\[
\vdots
\]
\[(PG_x,NG_x,K_x,R_x)\]
\[
\vdots
\]
\[(\emptyset,\emptyset,K_j,R_j)\]

where \((PG_x,NG_x,K_x,R_x)\) is the backtrack point for \(S\) when changing from \(P\) to \(Q\) and the sequence:

\[(PG_x,NG_x,K_x,R_x)\]
\[
\vdots
\]
\[(\emptyset,\emptyset,K_j,R_j)\]

is an abductive derivation under \(Q\).

Theorem 12.4 Any backtrack resumption of an incomplete proof for the goals \(L_1...L_h\) under the program \(P\) when changing from \(P\) to the program \(Q\) is a complete proof for the goals \(L_1...L_h\) under \(Q\).

Proof: See Appendix B.

Example 12.5 Consider the following program in Example 7.12.

clause 1: \(a \leftarrow \neg c, b.\)
clause 2: \(b.\)
clause 3: \(c \leftarrow d.\)
clause 4: \(c \leftarrow e.\)

and consider the following proof for the goal \(a\) shown in Example 7.12.

ab 1 \(?a\)

ab 2 \(?\neg c, b\) (add clause 1 to \textit{Keep})

co 2.1 \(?c\) (add \(\neg c\) to \textit{Keep})

co 2.2 \(?d, e\) (add \(c\) to \textit{Reject})

co 2.3 \(?e\) (add \(d\) to \textit{Reject})

co 2.4 failure (add \(e\) to \textit{Reject})

ab 3 \(?b\)
ab 4 success (add clause 2 to Keep)

If the clause:

e.

is added to the program and if clause 2:

b.

is removed from the program, both the consistency derivation from co 2.3 to co 2.4 and the abductive derivation from ab 3 to ab 4 are affected. The backtrack point\(^8\) is ab 2.

The method described above is simple. However, it is necessary to record the whole derivation in order to find the backtrack point. Also it abandons all parts of the old proof after the backtrack point. The next method overcomes these problems.

Theorem 12.6 Let \(S \):

\[
\begin{align*}
(L_1 \ldots L_n), \varnothing, \varnothing, \varnothing \\
(PG_i, \varnothing, K_i, R_i) \\
\vdots
\end{align*}
\]

be an incomplete proof under the program \(P \). Let \(Q \) be a program. Let \(DKC \) be the set of all the deleted keeping clauses in \(S \) when changing from \(P \) to \(Q \). Let \(\{c_1, \ldots, c_n\} \) be the set of all the literals which are defined by \(DKC \). Let \(\{a_1, \ldots, a_m\} \) be the set of all the literals which are defined by added rejecting clauses in \(S \) when changing from \(P \) to \(Q \).

If there exists an abductive derivation:

\[
\begin{align*}
(PG_i \cup \{c_1, \ldots, c_n\}, \varnothing, K_i \setminus DKC, R_i) \\
\vdots
\end{align*}
\]

\[(\varnothing, \varnothing, K_j, R_j)\]

under \(Q \) and for such \(K_j \) and \(R_j \), there exists a consistency derivation:

\[
\begin{align*}
(\varnothing, \{\{a_1\}, \ldots, \{a_m\}\}, K_j, R_j) \\
\vdots
\end{align*}
\]

\[(\varnothing, \varnothing, K_k, R_k)\]

\(^8\)It is possible to change the definition of backtrack points so that co 2.3 becomes the backtrack point.
under Q, then there exists a complete proof:

\[
\begin{aligned}
&\{L_1, \ldots, L_u\}, \varnothing, \varnothing, \\
&\vdots \\
&\varnothing, \varnothing, K_{2x}, R_{2x}
\end{aligned}
\]

under Q, such that $K_{2x} \subseteq K_k$ and $R_{2x} \subseteq R_k$, and $Q \cup \Delta_1 \vdash L_1 \land \ldots \land L_u$, where Δ_1 is the set of all the abducibles in K_k.

Proof: See Appendix B.

Example 12.7 Consider Example 7.12. (The program and the proof are recapped in Example 12.5.) If the clauses:

\[
e \leftarrow f.
\]

\[
b \leftarrow \text{not } d.
\]

are added to the program and if clause 2:

\[
b.
\]

is removed from the program, both the consistency derivation from co 2.3 to co 2.4 and the abductive derivation from ab 3 to ab 4 are affected.

If there exists an abductive derivation from \(\{(b), \varnothing, \{\text{clause1, not } c\}, \{c, d, e\}\}\) to \(\langle \varnothing, \varnothing, K_i, R_i \rangle\) and if there exists a consistency derivation from \(\langle \varnothing, \{\text{e}\}\rangle, K_i, R_i \rangle\) to \(\langle \varnothing, \varnothing, K_j, R_j \rangle\), then there exists a complete proof from \(\{(a), \varnothing, \varnothing, \varnothing\}\) to \(\langle \varnothing, \varnothing, K_{2x}, R_{2x} \rangle\) such that $K_{2x} \subseteq K_j$ and $R_{2x} \subseteq R_j$.

The method shown in Theorem 12.6 does not require recording the whole derivation and most parts of the old proof are used. The aim of this strategy is to supplement the old proof without backtracking.

However, because it is not possible to track the relationships between literals, it is unavoidable to prove meaningless subgoals which are derived by deleted keeping clauses.

This problem arises when deleting clauses from the program.

Example 12.8 Consider the following program.

- **clause 1:** $a \leftarrow b$.
- **clause 2:** $a \leftarrow \text{not } x$.
- **clause 3:** $b \leftarrow c$.
- **clause 4:** $c \leftarrow d$.
- **clause 5:** d.

26
A proof for the goal \(a \) is constructed as follows.

\textbf{ab 1} \(?a\)

\textbf{ab 2} \(?b\) (add clause 1 to \textit{Keep})

\textbf{ab 3} \(?c\) (add clause 3 to \textit{Keep})

Suppose that when this incomplete proof is constructed, the program is corrected and clause 1 is deleted. Using Theorem 12.6, it is possible to restore the proof by reproving \(a \) and \(c \). However, it is meaningless to reprove \(c \) because \(c \) does not imply \(a \) any more.

By restricting the program updates only to the addition of clauses, the following corollary holds.

\textbf{Corollary 12.9} Suppose that \(P \) and \(Q \) are programs such that \(P \subseteq Q \). Let \(S \):

\[
\begin{align*}
\{ & \{ L_1, \ldots, L_u \}, \emptyset, \emptyset, \emptyset \\
\vdots \\
\{ & PG_i, \emptyset, K_i, R_i \}
\end{align*}
\]

be an incomplete proof for the goals under \(P \). Let \(\{ a_1, \ldots, a_m \} \) be the set of all the literals which are defined by the added rejecting clauses in \(S \) when changing from \(P \) to \(Q \).

If there exists a consistency derivation:

\[
\begin{align*}
\{ & \emptyset, \{ a_1 \}, \ldots, \{ a_m \}, K_i, R_i \\
\vdots \\
\{ & \emptyset, \emptyset, K_k, R_k \}
\end{align*}
\]

under \(Q \), then there exists a complete proof:

\[
\begin{align*}
\{ & \{ L_1, \ldots, L_u \}, \emptyset, \emptyset, \emptyset \\
\vdots \\
\{ & \emptyset, \emptyset, K2_x, R2_x \}
\end{align*}
\]

under \(Q \), such that \(K2_x \subseteq K_k \) and \(R2_x \subseteq R_k \), and \(Q \cup \Delta_1 \vdash L_1 \land \ldots \land L_u \), where \(\Delta_1 \) is the set of all the abducibles in \(K_k \).

\textbf{Proof:} See Appendix B.
The restoration method in Corollary 12.9 does not trigger any redundant computation like in Theorem 12.6. As a matter of course, it is not necessary to record the whole derivation like Theorem 12.4. Note that no clause except abduced literals has to be recorded in \textit{Keep} if no clause is deleted from the given program. The deletion of clauses can be simulated by the addition as is shown in Appendix A.

Furthermore, Theorem 12.6 and Theorem 12.4 can be combined. In this strategy, even if the atom p cannot be reproved directly in an abductive derivation, it is still possible to reprove a selected literal from which p is derived. Similarly, even if $\leftarrow L$ cannot be reproved directly in a consistency derivation, it is still possible to reprove $\leftarrow p$ instead where p is a selected literal from which L is derived.

This intuitive method is explained by the following example.

Example 12.10 Consider the following program.

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clause 1: $a \leftarrow b$</td>
<td></td>
</tr>
<tr>
<td>clause 2: $b \leftarrow c, d$</td>
<td></td>
</tr>
<tr>
<td>clause 3: $c \leftarrow e$</td>
<td></td>
</tr>
<tr>
<td>clause 4: $c \leftarrow h$</td>
<td></td>
</tr>
<tr>
<td>clause 5: $d \leftarrow \text{not } g$</td>
<td></td>
</tr>
<tr>
<td>clause 6: $e \leftarrow f$</td>
<td></td>
</tr>
<tr>
<td>clause 7: f</td>
<td></td>
</tr>
<tr>
<td>clause 8: $g \leftarrow k$</td>
<td></td>
</tr>
<tr>
<td>clause 9: h</td>
<td></td>
</tr>
<tr>
<td>clause 10: $k \leftarrow i, j$</td>
<td></td>
</tr>
</tbody>
</table>

A proof for the goal a is as follows;

ab 1 $\leftarrow a$

ab 2 $\leftarrow b$ (add clause 1 to \textit{Keep})

ab 3 $\leftarrow c, d$ (add clause 2 to \textit{Keep})

ab 4 $\leftarrow c, d$ (add clause 3 to \textit{Keep})

ab 5 $\leftarrow f, d$ (add clause 6 to \textit{Keep})

ab 6 $\leftarrow d$ (add clause 7 to \textit{Keep})

ab 7 $\leftarrow \text{not } g$ (add clause 5 to \textit{Keep})

28
co 7.1 \(? (g)\) (add \(not g\) to \(Keep\))
co 7.2 \(? (k)\) (add \(g\) to \(Reject\))
co 7.3 \(? (i,j)\) (add \(k\) to \(Reject\))
co 7.4 failure (add \(i\) to \(Reject\))

ab 8 success

The proof succeeds with:

- \(Keep = \{\) clause 1, clause 2, clause 3, clause 5, clause 6, clause 7, \(not g\)\}
- \(Reject = \{g, k, i\}\)

Suppose that the clause: \(i\) is added to the program and that clause 7: \(f\) is removed from the program.

There is no abductive derivation from \(\{f\}, s, Keep, Reject\) to \(s, \phi, K_1, R_1\), nor from \(\{e\}, s, Keep, Reject\) to \(s, \phi, K_1, R_1\), however, there is an abductive derivation from \(\{c\}, s, Keep, Reject\) to \(s, \phi, K_1, R_1\). Also there is no consistent derivation from \(s, \{\{i\}\}, K_1, R_1\) to \(s, \phi, K_2, R_2\), however, there is a consistency derivation from \(s, \{\{k\}\}, K_1, R_1\) to \(s, \phi, K_2, R_3\).

Consequently, there is a complete proof for a under the new program.

In order to use the above method, trees which express relationships of resolutions between literals rather than sequences of goal sets are required. In the above example, \(f\) at ab 5 is derived from \(e\) at ab 4 which is derived from \(c\) at ab 3. \(i\) at co 7.3 is derived from \(k\) at co 7.2. Furthermore, a literal in a goal set \(G_i\) in a derivation is not always derived from a literal in the previous goal set \(G_{i-1}\). For example, \(d\) at ab 6 is derived from \(b\) at ab 2 but not from a literal at ab 5.

Obviously, recording and searching trees take time and memories. The comparison of proof restoration methods in terms of efficiency needs further investigation.

13 The predicate case

In this section, the methods to find and restore the invalidities of proofs in the predicate case will be shown intuitively. It is assumed that all variables in negative literals are substituted with ground terms before they are resolved so that they do not flounder.
Although the same strategy as the propositional case can be applied to the predicate case, it is necessary to extend the definition of \textit{Keep} and \textit{Reject} slightly.

In the propositional case, \textit{Keep} is the set of abduced abducibles and clauses used for resolutions. There are two roles of \textit{Keep}: 1: to record abduced abducibles; 2: to check if the clauses used for resolutions in abductive derivations are not deleted from the program. In the predicate case, the role of \textit{Keep} is almost the same. However, recording only clauses used in abductive derivations is not enough because in order to apply those clauses, the heads of those clauses are unified with the positive literals to be resolved. Those positive literals have to be recorded to remember what literals should be proved in abductive derivations.

\textbf{Example 13.1} Consider the following program.

\begin{verbatim}
clause 1: mortal(X) ← animal(X).
clause 2: animal(X) ← human(X).
clause 3: human(X) ← philosopher(X).
clause 4: philosopher(s).
clause 5: human(t).
clause 6: human(s).
\end{verbatim}

A proof for the goal \textit{mortal(s)} is shown below.

\begin{verbatim}
ab 1 ?mortal(s)
ab 2 ?animal(s) (add (mortal(s), clause 1) to \textit{Keep})
ab 3 ?human(s) (add (animal(s), clause 2) to \textit{Keep})
ab 4 ?philosopher(s) (add (human(s), clause 3) to \textit{Keep})
ab 5 success (add (philosopher(s), clause 4) to \textit{Keep})
\end{verbatim}

Unless a clause in \textit{Keep} is removed, this proof is valid. (cf. Theorem 7.10) If clause 3 is removed, this proof becomes invalid and this invalidity is detected because clause 3 is recorded in \textit{Keep}. However, without recording the literal \textit{human(s)} which was resolved using clause 3, \textit{human(s)} cannot be reproved using clause 6 like the propositional case because in clause 3, \textit{human(X)} is not ground and the term with which \textit{X} was unified is unknown. (cf. Theorems 12.6) Obviously, it is meaningless to prove \textit{human(t)} using clause 5. By recording the selected literal \textit{human(s)} as well as the chosen clause, clause 3, \textit{human(s)} can be proved.
As shown above, it is not difficult to reprove a selected literal which was proved by a deleted keeping clause. More complicated problem arises when re-substituting variables.

Example 13.2 Consider the following program.

clause 1: \(a(X) \leftarrow b(X) \).
clause 2: \(b(X) \leftarrow c(X), d(X) \).
clause 3: \(c(s) \).
clause 4: \(c(t) \).
clause 5: \(d(s) \).

A proof for the goal \(a(X) \) is shown below.

ab 1 ?\(a(X) \)

ab 2 ?\(b(X) \) (add \(a(X) \), clause 1) to \(Keep \)

ab 3 ?\(c(X), d(X) \) (add \(b(X) \), clause 2) to \(Keep \)

ab 4 ?\(d(s) \) (add \(c(X) \), clause 3) to \(Keep \)

ab 5 success (add \(d(s) \), clause 5) to \(Keep \)

\(?a(X) \) succeeds with the substitution \(X = s \). When clause 3 is deleted, this proof becomes invalid. Because clause 3 is recorded in \(Keep \), this invalidity is found and \(c(X) \) can be successfully reproved with the substitution \(X = t \). However, \(b(t) \) and \(a(t) \) are not proved yet because \(d(t) \) is not proved.

This substitution problem is more difficult. Indeed, re-substitution of \(X \) requires reproving \(d(X) \) in the above example. This suggests to record not only the selected literals but also the whole subgoals.

Example 13.3 Consider the proof in Example 13.2. \(Keep \) can be constructed as follows so that it can include subgoals.

ab 2 add \(([a(X)], \) clause 1) to \(Keep \)

ab 3 add \(([b(X)], \) clause 2) to \(Keep \)

ab 4 add \(([c(X), d(X)], \) clause 3) to \(Keep \)

ab 5 add \(([d(s)], \) clause 5) to \(Keep \)
The idea is that every time a chosen clause is erased, all the subgoals are reproved which are in the same tuple as the deleted chosen clause is an element of. The problem is that it takes more memories.

Construction of *Reject* in the predicate case is similar to the propositional case. First of all, as in the propositional case, it is necessary to record the selected literals which are (being) proved not to be true.

Example 13.4 Consider the following program.

clause 1: *innocent*(X) ← *not guilty*(X).
clause 2: *guilty*(X) ← *law*(L), *against*(X, L).
clause 3: *law*(eu).
clause 4: *law*(uk).
clause 5: *against*(a, japan).

A proof for the goal *innocent*(b) is shown below.

ab 1 ?*innocent*(b)

ab 2 ?*not guilty*(b)

co 2.1 ?(*guilty*(b)) (add *not guilty*(b) to *Keep*)
co 2.2 ?(*law*(L), *against*(b, L)) (add *guilty*(b) to *Reject*)
co 2.3 failure (add *against*(b, L) to *Reject*)

ab 3 success

The only elements of *Reject* are *guilty*(b) and *against*(b, L). Unless clauses whose heads can unify with these two atoms are added, this proof is still valid. Even if the clause:

against(c, uk).

is added to the program, this proof is still valid because it does not unify with *against*(b, L). If the clause:

guilty(X) ← *special_case*(X).

which unifies with *guilty*(b) is added to the program, ← *special_case*(b). has to be proved.

One of the big differences between the propositional case and the predicate case is the fact that proving in the predicate case largely depends on unification. The definition of *Reject* needs to be corrected.
Example 13.5 Consider the program in Example 13.4. A proof for the goal innocent\((a)\) is shown below.

\[\textbf{ab 1 } \neg \text{innocent}(a)\]

\[\textbf{ab 2 } \neg \text{guilty}(a)\]

\[\textbf{co 2.1 } \neg \text{guilty}(a) \text{ (add } \neg \text{guilty}(a) \text{ to } \text{Keep})\]
\[\textbf{co 2.2 } \neg \text{law}(L), \text{against}(a, L) \text{ (add } \text{guilty}(a) \text{ to } \text{Reject})\]
\[\textbf{co 2.3 } \neg \text{against}(a, eu), \text{against}(a, uk) \text{ (add } \text{law}(L) \text{ to } \text{Reject})\]
\[\textbf{co 2.4 } \neg \text{against}(a, uk) \text{ (add } \text{against}(a, eu) \text{ to } \text{Reject})\]
\[\textbf{co 2.5 } \text{failure (add } \text{against}(a, uk) \text{ to } \text{Reject})\]

\[\textbf{ab 3 } \text{success}\]

If \text{law}(\text{un}) \text{ is added to the program, this proof becomes invalid and this invalidity is detected because } \text{law}(L) \text{ is in } \text{Reject}. \text{ However, what needs to be proved is not } \leftarrow \text{law}(L). \text{ but } \leftarrow \text{law}(L), \text{against}(a, L)\).

The above example suggests to record in \textit{Keep} not only the selected literals in consistency derivations but also the selected nand sets like Example 13.3. This strategy is shown below.

Example 13.6 Consider the proof in Example 13.5. \textit{Reject} can be constructed as follows so that it includes selected nand sets.

\[\textbf{co 2.2 } \text{add } (\text{guilty}(a), [\text{guilty}(a)]) \text{ to } \text{Reject}\]
\[\textbf{co 2.3 } \text{add } (\text{law}(L), [\text{law}(L), \text{against}(a, L)]) \text{ to } \text{Reject}\]
\[\textbf{co 2.4 } \text{add } (\text{against}(a, eu), [\text{against}(a, eu)]) \text{ to } \text{Reject}\]
\[\textbf{co 2.5 } \text{add } (\text{against}(a, uk), [\text{against}(a, uk)]) \text{ to } \text{Reject}\]

The idea is whenever any clause which defines a selected literal in \textit{Reject} is added, one of the literals in the selected nand set which the selected literal belongs to is reproved. The problem is that it takes memories.

Now it is understood that the counterparts of Theorem 12.6 and Corollary 12.9 in the predicate case can be made.

As in the propositional case, further investigation is needed for restoration methods in the predicate case. The memory space used, the efficiency, and the number of invalid proofs which can be restored need to be taken into account.
14 Conclusion

In Section 7, a criterion was shown as to whether the continuation of the proof procedure will result in a correct proof or not. Even if it is not clear if the proof being constructed is valid or not, it is still possible to restore the proof by the methods shown in Section 12. In Section 13, it was shown intuitively how this theory can be extended to the predicate case.

Although some proof restoration methods were introduced in this paper, more methods can be investigated in both the propositional cases and the predicate cases.

15 Future work

There is a lot of future work for this project. First, the formal extension to the predicate case will be investigated. Second, more proof restoration methods will be presented and compared. When restoration methods are compared, the efficiency, the memory space to be used, and the number of invalid proofs which can be restored will be checked.

After that, two avenues of further work will be considered. One topic is to investigate constructive negations and constraint logic programming. Constructive negations are used in some abductive proof procedures [DS92, DS, Fun96, FK97, Teu93]. Abductive constraint logic programming is investigated in [Bür91, Bür94, Mai92, KM95, KM97]. Constructive negations are important if uninstantiated negative literals are selected. For example, in planning, if future time points are expressed by means of variables, constructive negations are needed because negative literals containing these variables are used and these are not always instantiated in order to construct partial order plans. Constraint logic programming is also important for planning because in partial order planning, the constraint $T_1 < T_2$ needs to be calculated, where T_1 and T_2 are variables expressing the future time points. In order to conquer these problems, some abductive procedures [Sha89, Esh88] specialise in temporal reasoning while Drylerakis [Dry92] uses the constraint logic programming $\text{CLP}(\mathcal{R})$.

Another topic is to apply the theory presented in this paper to such areas as robotics and planning. As mentioned in the introduction, this project is closely related to planning in robotics. However, in order to apply the theory to such applications, the theoretical work required for the applications should be investigated. For example, constraint logic programming has to
be investigated if calculations such as $1 + 1 < 3$ are needed during abduction.

Acknowledgement

I am grateful to Dr. Murray Shanahan for draft checking.

References

36

Appendix A

A new method to simulate deletion of a clause by the addition of an atom is introduced in this section. The motivation is to use Corollary 12.9.

Definition 15.1 Given a set of clauses P, $P!$ is the least set of clauses such that for any clause in P:

$a \leftarrow L_1, ..., L_n$.

$P!$ contains the clause:

$a \leftarrow L_1, ..., L_n, \text{not } a_{\text{del}}$.

where a_{del} is a new atom called a deletion atom.

Note that any deletion atom in a clause in the program $P!$ must not occur in any other clause in $P!$.

Definition 15.2 Whenever a clause in P:

$a \leftarrow L_1, ..., L_n$.

is deleted, the clause a_{del} is added to the program $P!$ where a_{del} is the deletion atom in the clause

$a \leftarrow L_1, ..., L_n, \text{not } a_{\text{del}}$.

in $P!$.

This definition simulates deletion of a clause by the addition of a deletion atom. The addition of a clause is straightforward.

Definition 15.3 Whenever a clause:

$a \leftarrow L_1, ..., L_n$.

is added to the program P, the clause:

$a \leftarrow L_1, ..., L_n, \text{not } a_{\text{del}}$.

is added to $P!$ where a_{del} is a new deletion atom.

Now the transforming method from any program P to another program $P!$ is defined which can simulate deletion of the program P by the addition. Note that every time P is updated, $P!$ is also updated without deleting clauses in it.
Appendix B

Proof of Theorem 7.8

There does not exist an atom p such that $p \in K_1$ and not $p \in K_1$ because K_1 is empty.

Suppose that neither a positive literal p nor a negative literal not p is in K_i. Because no single derivation rule can add both p and not p at the same time, either $p \notin K_{i+1}$ or not $p \notin K_{i+1}$ holds.

Suppose that a positive literal p is in K_i but not p is not in K_i. A negative literal can be added to K_i only by the abductive derivation rule a4. However, a4 is not applicable because $p \in K_i$. Therefore not $p \notin K_{i+1}$.

Suppose that a negative literal not p is in K_i but p is not in K_i. A positive literal can be added to K_{i+1} only by the abductive derivation rules a1 or a3. Before not p was added to $K_j (j \leq i)$ by the abductive derivation rule a1, a consistency derivation was triggered where p was proved to be false and p was added to $R_k (k \leq j - 1)$. Because $p \in R_i$, the abductive derivation rule a3 is not applicable. In order to apply a1 to add p to K_i, p must be a fact in P. But if p was a fact in P, p could not have been to be false in a consistency derivation. Therefore $p \notin K_{i+1}$.

Because for any i, $K_i \subseteq K_{i+1}$ holds, by induction, there does not exist an atom p such that $p \in K_i$ and not $p \in K_i$.

Proof of Theorem 7.10

Because the abductive derivation rules a2, a3, and a4 and the consistency derivation rules c3, c4, c5, and c6 are applied to abducibles, the effects of these rules under the programs P and Q are same.

If all the clauses in K_i are in Q, the effect of applying the abductive derivation rule a1 is the same under P and Q if the same clause is chosen.

If there does not exist a clause in Q which defines an atom in R_i other than those clauses in P, for every single consistency derivation from $(\emptyset, N_{G_i}, K_i, R_i)$ to $(\emptyset, N_{G_{i+1}}, K_{i+1}, R_{i+1})$ for
which c1 or c2 was applied, K_{i+1} and R_{i+1} are not affected by
the change of the program if the same nand set and literal are
chosen. Although, in this case, NG_{i+1} may be affected, the
counterpart of NG_{i+1} under Q is a subset of NG_{i+1}. Therefore
even under Q, every nand set which need to be resolved by a
consistency derivation rule can be resolved in the same way as
the given in complete proof.

Consequently, if there exists an abductive derivation from $(PG_t, \varphi, K_t, R_t)$
to $(\varphi, \varphi, K_m, R_m)$ under Q, there exists a complete proof for the
goals $L_1 \ldots L_n$ under the program Q from $(\{L_1, \ldots, L_n\}, \varphi, \varphi, \varphi)$ to
$(\varphi, \varphi, K_{2x}, R_{2x})$, such that $K_{2x} \subseteq K_m$ and $R_{2x} \subseteq R_m$ if $K_{2x},
R_{2x}$ are constructed by the above method under Q. Because
$K_{2x} \subseteq K_m$ and $R_{2x} \subseteq R_m$, $Q \cup \Delta \vdash L_1 \land \ldots \land L_n$ holds as well.

Proof of Theorem 7.11

The effects of applying the consistency derivation rules c1 and
c2 are the same under P and Q if the same nand set and literal
are chosen.

In the proof of Theorem 7.10, it was shown that the effects of
all the other abductive and consistency derivation rules are the
same under P and Q.

Consequently, the incomplete proof IP is not affected by the
change of the programs from P to Q.

Therefore the sequence $(\{L_1, \ldots, L_n\}, \varphi, \varphi, \varphi) \ldots (\varphi, \varphi, K_m, R_m)$ is
a complete proof for the goals $L_1 \ldots L_n$ under Q.

Proof of Theorem 12.4

It suffices to show that the sequence S: $(\{L_1, \ldots, L_h\}, \varphi, \varphi, \varphi) \ldots
(PG_x, NG_x, K_x, R_x)$, where (PG_x, NG_x, K_x, R_x) is the back-
track point, is an abductive derivation under the program Q.

Neither S nor the abductive derivations called by S are affected
by the change of the program from P to Q because all the clauses
used in abductive derivations are also available in Q.

Similarly no consistency derivations called by S are affected be-
cause all the clauses used in consistency derivations are also avail-
able in Q and these clauses are the only clauses which define the
atoms in K_x (i.e. the chosen literals).
Therefore, the sequence S is a derivation under the program Q.

Proof of Theorem 12.6

All the selected literals other than $c_1, ..., c_n$ in abductive derivations can be resolved under Q in the same way as under P because all the chosen clauses used in abductive derivations are not removed.

The selected literal for any goal set other than $a_1, ..., a_m$ in consistency derivations can be resolved in the same way under Q as under P if no clause in P which defines the chosen literal is deleted from Q because the definition clauses of the selected literal are not changed.

Let L be the selected literal in the selected nand set N for any goal set in consistency derivations other than $a_1, ..., a_m$. Let R_P be the set of all the resolvents of N under P. If the same nand set and chosen literal are selected under Q, the set of all the resolvents R_Q will be a subset of R_P (Lemma A) because the set of all the definition clauses of L under Q is a subset of those under P. Although R_P needs to be resolved under Q in this theorem, if R_P can be resolved under Q, R_Q can also be resolved under Q because $R_Q \subseteq R_P$.

Consequently it suffices to show that $a_1, ..., a_n$ in addition to the literals in PG_1 can be resolved to \varnothing in an abductive derivation under Q adding further restrictions to $K_i \setminus DKC$ and R_i and that \{b_1\}, ..., \{b_m\} can be resolved to \varnothing in a consistency derivation under Q adding further restrictions.

Because in Lemma A, $R_Q \subseteq R_P$, resolving R_P under P will result in $K_{2x} \subseteq K_k$ and $R_{2x} \subseteq R_k$ if K_{2x} and R_{2x} are constructed by resolving R_Q under Q. Because $K_{2x} \subseteq K_k$ and $R_{2x} \subseteq R_k$, $Q \cup \Delta_1 \vdash L_1 \land ... \land L_u$ holds as well.

Proof of Corollary 12.9

Straightforward from Theorem 12.6