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Abstract

We study a framework, RLF, for defining natural deduction presen-
tations of linear and other relevant logics. RLF consists in a language
together, in a manner similar to that of LF, with a representation mech-
anism. The language of RLY¥, the AAx-caleulus, is a system of first-order
linear dependent function types which uses a function x to describe the
degree of sharing of variables between functions and their arguments.
The representation mechanism is judgements-as-types, developed for lin-
ear and other relevant logics. The AA.-caleulus is a conservative extension
of the MT-caleulus and RLF is a conservative extension of LF.

1 Introduction

Linear and other relevant logics have been studied widely in mathematical
[4, 16, 25, 36], philosophical [3, 14, 33] and computational (1, 20, 24, 32, 37)
logic. We present a study of a logical framework, RLF, for defining natural de- -
duction presentations of such logics.! RLF consists in a language together, in a
manner similer to that of LT [5, 18, 28], with a representation mechanism. The- -
language of RLF, the Al c-calculus, is a system of first-order linear dependent
function types which uses a function & to describe the degree of sharing of vari-
ables between functions and their arguments. The representation mechanism is
judgements-as-types, developed for knear and other relevant logics.

We motivate the AA,-calculus by considering an abstract form of relevant
natural deduction. We specify the AA-caleulus, a family of first-order depen-
dent type theories with both linear and intuitionistic function spaces, discussing
only briefly the possible intermediate systems. The framework RLF is a con-
servative extension of LF; the notion of conservative extension takes account of
the representation mechanism as well as the type theory. The work reported
here builds on ideas presented by Pym in [29].

An explanation regarding our use of the word “relevant” is in order. Fol-
lowing Read [33], we use the term relevant for the family of logics which have
weaker structural properties than intuitionistic or classical logic, not merely for

'RLF, in common with LF, is also able to define Hilbert-type systems, although this is
beyond our present scope.



those which have contraction but not weakening. Read’s taxonomy would place
linear logic (without exponentials) at the lowest point in the “lattice” (we use
the word informally and not in any technical sense) of logics. We follow this
taxonomy and thus obtain a lattice of logical frameworks, the weakest being
RLF, the type theory of which has neither weakening nor contraction.? We em-
phasize that the AA.-calculus lies properly in the world of relevant logics: the
iype theory’s contexts are a dependently-typed notion of Read’s bunches [33].
The title of this paper reflects this point of view. Our framework RLF provides
a relevant analysis of natural deduction just as LF provides an intuitionistic
analysis of natural deduction. In this paper, we do not study the variety of
distributivity laws usually considered for relevant contexts [33]. However, such
an investigation should fit into our framework, possibly via variations on the
AA-calculus, quite straightforwardly.

The paper is organized as follows. In § 2, we motivate the AA.-calculus in
the context of a logical framework by considering an abstract form of relevant
natural deduction. We formally define it as a type theory and summarize its
meta-theory in § 3, concluding the section with a comparison with related work.
In § 4, we show that RLF is a conservative extension of LF. In § 5, we illustrate
several example encodings in the RLF framework. The object-logics we consider
are a fragment of propositional intuitionistic linear logic, the dynamic semantics
of ML with references and a relevant A-calculus. Finally, in § 6, we consider the
further work that arises from our study.

2 Motivation

Logical frameworks are formal meta-logics which, inter alia, provide languages
for describing logics in a manner that is suitable for mechanical implementation.
The LF logical framework [5, 18, 28} provides such a metatheory and is suitable
for logics which have at least the structural strength of minimal propositional
logic. We wish to study a logical framework for describing relevant logics. Now,
in order to describe a logical framework one must:

1. Characterize the class of object-logics to be represented;

2. Give a meta-logic or language, together with its meta-logical status vis-g-
vis the class of object-logics; and

3. Characterize the representation mechanism for object-logics,
‘The above prescription can conveniently be summarized by the slogan
Framework = Language + Representation.

We remark that these components are not entirely independent of each other
[30}. We will point out some interdependencies later in this section.

%In the literature, the terms “sub-structural® and “weak” are sometimes used in this way,



One representation mechanism is that of judgements-as-types, which origi-
nates from Martin-Ldf’s {23] development of Kant’s [22] notion of judgement.
The two higher-order judgements, the hypothetical J + J' and the general
Azcc - J(x), correspond to ordinary and dependent function spaces, respec-
tively. The methodology of judgements-as-types is that judgements are repre-
sented as the type of their proofs. A logical system is represented by a signature
which assigns kinds and types to a finite set of constants that represent its syn-
tax, its judgements and its rule schemes. An object-logic’s rules and proofs are
seen as proofs of hypothetico-general judgements A, cc, -+~ Ag, e, I F T
Representation theorems relate conseguence in an object-logic b, o conse-
quence in an encoded logic by -

(X, (s}, oo Imldm)) By & 0 J{) object — consequence
4 encoding
Ix,z1:d1(é1)s .- s ZmzJnldn) bpp Ms o J(¢) meta — consequence,

where X is the set of variables that occur in ¢, ¢; Ji, J are judgements; 6 is a
proof-object (e.g., a A-term); I'x corresponds to X; each z; corresponds o a
place-holder for the encoding of J;; and M; is a meta-~logic term corresponding
to the encoding of §.

In the sequel, we do not consider the complete apparatus of judged object-
logics. Our example encodings in § 5 are pathological in the sense that they
require only one judgement. For example, the encoding of a fragment of intu-
itionistic linear logic requires the judgement of (J; = J =) proof. This is in
contrast to the general multi-judgement representation techniques [6]. We con-
jecture that our studies can be applied to the general case, although we defer
this development to another occasion.

A certain class of uniform representations is identified by considering surjec-
tive encodings between consequences of the object-logic - and consequences
of the meta-logic by, [19]% So, all judgements in the meta-logic have corre-
sponding judgements in the object-logic. The judgement-as-types methodology
has the property that encoded systems inherit the structural properties of the
meta-logic. It is for this reason that LF — whose language, the Mi-calculus,
admits weakening and contraction — cannot uniformly encode linear and other
relevant logics. To illustrate this point, suppose Tzz is a uniform encoding of
intuitionistic linear logic in LF, and that I'x,Ta by, Ms:J(#) is the image of
the object-consequence (X, A) bypy §:J(¢). U I'x,['a bx,,, Ms:J(#) is provable,
then so is I'x,I'a,Te b5, , Ms:J($). By uniformity, the latter is the image of
an object-logic consequence (X, A, ©) by, §:.J{(¢), which implies weakening in
linear logic, & contradiction.

Thus we seek a language in which weakening and contraction are not forced.
We motivate the connectives of the language by considering the natural deduc-
tion form of rules for weak logics. We do this in a general way, by considering

3The specification in [19] is a stronger one, reguiring uniformity over all “presentations” of
a given logic. Such concerns are beyond our present scope.
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Prawite’s general form of schematic introductions from a more relevant point of
view. Prawitz [27] gives these for intuitionistic logic. A schematic introduction
rule for an n-ary sentential operator # is represented by an introduction rule of
the form below. In the rule, only the bound assumptions for G; are shown; we
elide those for Gy, where (k # 7), for the sake of readability.

[Hj1]- {Hj ;]

e N ? - Gy

#(F1,...,Fn)

In the above rule, 1 < j € p. The Fs, Gs and Hs are formulae constructed
in the usual way. An inference infers a formula #(F1, ..., F,) from p premises
G1,...,Gp and may bind assumptions of the form Hj,,..., Hj,, that occur
above the premise G;. We let the assumptions be multi-sets, thus keeping
the structural rule of exchange. We require that discharge be compulsory. In
the case of the natural deduction presentation of intuitionistic linear logic, for
instance, we require that {F1,...,F,} = {G;,Hj1 ..., H;jn;}. For example, in
the rule for —o-introduction, whose conclusion is ¢ —o ¢, we have {F, F2} =
{69}, G1 = and Hy, = ¢.

We annotate the introduction schema below o indicate our method of en-
coding. The A is a linear universal quantifier, o is the type of propositions
and € ranges over both linear (F:0) and exponential {F'lo) declarations. Each
inference — that is, the binding of assumptions Hj1,...,H; », above premise
 G; and the inference of formula #(F,,..., F,) from premises Gy,...,Gp — i3

represented by a —o . : '

i [H:?'#]D'“D[Hﬂ',ﬁj] l

AFg, G, HynEe l
#{F)_,...,F—,.)

The premises Gy,...,G, are combined either multiplicatively or additively, de-
pending on whether their contexts are digjoint or not. We distinguish between
these combinations by the use of two conjunctions; the multiplicative ® (“ten-
sor”) and the additive & (“with”) and so force the structural rules. (In tradi-
tional relevance logics, multiplicative is referred to as intentional and additive
as extensional.) We use O as meta-syntax for both ® and &, though mindful
of the relationship between the two operators. Full expressivity is recovered by
introducing the modality ! (“bang”} into our language. The premise !G allows
us to depart from relevant inference, and to choose the number of times we use
G in the conclusion.

In the meta-logic, then, the schematic introduction rule would be represented
by a constant of the following type:



AFy,Gj, Hip€o. .. . O0hign; (Hy0) —o G0, ~——0 #{F1,..., Fr),

where 1 <1 < h; and <y, represents an iterated 1. From the general encoding
formula above, it can be seen that the connectives (1 (i.e., ® and &) and ! occur
only negatively. In the tensor’s case, this allows us to curry away the ®, modulo
a permutation of the premises. For example, in the following type, we are able
to replace the occurrence of ®,

(Dlghj(Hj,l} — G,-)@(EEUS,L?_, (I{j',z') —0 Gjl) —0 Y, ),

by a w0 ,

(mish_—,‘(H',l) —_— Gj} ool (D[Igh}_l (er’y) ] Gjr) —o F#(F1,.... Fn).

We can also consider a currying away of the & by a non-dependent version of
the additive function space. A language with two kinds of dependent function
space is very interesting but is beyond the scope of our current study.

We recapitulate exactly how we have used the three logical constants in the
framework: the & is used to undertake additive conjunction; the A is used to
quantify and (in its non-dependent form —o) to represent implication; and the
! is used to represent dereliction from relevant inference. We should then be
able to formulate a precise idea regarding the completeness of the set {&, A, !}
with respect to all sentential operators that have explicit schematic introduction
rules {27, 35]. '

A similar analysis can be undertaken for the corresponding elimination rule.

Qur analysis allows us two degrees of freedom. The first is at the structural
level of types. In this section, our main intention has been to motivate a language
in which the structural rules of weakening and contraction are not forced, and
50 to be able to uniformly encode linear logic. But this language is only one
of a range of relevant logics [33], which includes, for instance, Anderson and
Belnaps’s relevance logic [3]. Choosing a different language, with it’s particular
structural and distributivity properties, would allow us to uniformly encode
another class of logics. The family of relevant logics determined by these choices
is very interesting from a representational perspective, though we pursue it no
further in this paper.

The second, orthogonal, degree of freedom, and one that we do concentrate
on in the sequel, concerns the corresponding range of structural choices at the
level of terms (as opposed to types). Considering this aspect from the logical
point of view, we consider multiple occurrences of the same proof. The degree to
which a proof can be shared by propositions is a structural property which de-
termines, via the Curry-Howard-de Bruijn correspondence, a type theory whose
functions and arguments share variables to a corresponding degree.

The language that we have motivated in this section, and develop in the
sequel, is a type theory in Curry-Howard-de Bruijn correspondence with a {&, -

Lvy g



, =, V, ! }-fragment of intuitionistic linear logic (ILL) extended with a W linear
universal quantifier. The details of the correspondence are deferred to another
occasion.

3 The A ,-calculus

The AA-calculus is a first-order dependent type theory for a fragment of linear
logic with both intuitionistic and linear function types. The calculus is used
for deriving typing judgements. There are three entities in the AA.-calculus:
objects, types and families of types, and kinds. Objects (denoted by M, N) are
classified by types. Families of types (denoted by 4, B) may be thought of as
functions which map objects to types. Kinds (denoted by K) classify families.
In particular, there is a kind Type which classifies the types. We will ugse U, V'
to denote any of the entities.

We assume given three disjoint, countably infinite sets: the meta-variables
T,Y,z range over the set of variables; ¢,d range over the set of object-level
constants; and a,b range over the set of type-level constants. The abstract
syntax of the AA-calculus is given by the following grammar:

Kinds K == Type| AwAK|AslAK
Types A 2= a|AvAB|AsIAB|Axn:A.B|AzlA.B] AM | A:B
Objects M u= cla|AzmA M| AelA M| MN | (M,N) | moM | 7 M .

We write €4 to range over both linear (x:4) and exponential (z!4) variable
declarations. The X and A bind the variable z. The object Az:A .M is an in-
habitant of the linear dependent function type Az:A.B. The object AzlA.M
is an inhabitant of the type Axz!A4.B, which amounts to the Martin-Lofstyle
IIz:A.B. The notion of linear free- and bound-variables {LFV, LBV) and sub-
stitution may be defined accordingly [10]. When z is not free in B we write

" Ao Band A— B for'Az:A.B and Az!A.B, respéctively. Our basic study ~ =~

does not include the units, but T and 1 can be added to the type theory with
little difficulty.

We can define the notion of linear occurrence by extending the general idea
of occurrence for the A-calculus [7], though we note that other definitions may
be possible.

Definition 3.1 (linear occurrence in U)

1. z linearly occurs in x;

2. If x linearly occurs in U or V' (or both), then x linearly occurs tn AyelU .V,
in Ayl V', and in UV, where x £ y;

3. If ¢ linearly occurs in both M and N, then x linearly ocours in (M, N);
4. If @ Hnearly occurs in M, then x linearly occurs in m;(M);

5. If ¢ linearly occurs in both A and B, then o linearly occurs in A&B.

The definition is extended to an inhabited type and kind.



Definition 3.2 (linear occurrence in U:V) A werieble @ linearly occurs in
the expression UV if it linearly occurs in U, in 'V, or in both.

Tn the sequel we will often refer informally to the concept of a linearity con-
straint. Essentially this means that all linear variables declared in the confext
are used: a production-consumption contract. But we depart from the usual
resource-conscious logics idea that formulae are produced in the antecedent and
consumed in the succedent. Given this, the judgement z:A4,y:cx by yiex in
which the linear z is consumed by the (type of) y declared after it and the y
itself is consumed in the succedent, is a valid one.

In the M ,.-calculus signatures are used to keep track of the types and kinds
assigned to constants. Contexts are used to keep track of the types, both linear
.and exponential, assigned to variables. The abstract syntax for signatures and
-contexts is given by the following grammanr:

Signatures T u= (} | ,alK | B,cld Contexts T n= (| D,z:A| D zl4 .

So signatures and contexts consists of finite sequences of declarations. The
dependency aspect of the type theory requires that “[bases] have to become
linearly ordered” [8, page 198]. We assume the usual extraction functions
(dom(T), ran(T)) related to such lists. We also define the following two functions
which extract out just the linear and exponential parts of a context:

in(()) = { exp(()) = {
lin(T,2:A) = Un(l},x:A exp(l,2:A}) = eap(I’)
lin(T,zlA) = Un(l) exp(D, 214} = exp(l),zlA

The M -calculus is a formal system for deriving the following judgements:

I % sig (¥ is a valid signature)

b5 [ context (I is a valid context in I}

kg K Kind (Kisavalidkindin ZandI') "™~
Tk AK (A has a kind K in £ and T)
T'hg M:A (M has a type Ain £ and I')

We write T by UV for either of I' g A:tK or T' by M:4, and I' by X for
I'ly K Kind or I' g UV, We abuse notation and also write I' Fx X to
indicate the derivability of X in the AA.-calculus, in which case the K or U is
said to be valid in the signature ¥ and context I'.

The definition of the type theory depends crucially on the following three

notions:

1. The joining together of two contexts to form a third must be undertaken
so that the order of declarations and type of variables (linear versus intu-
itionistic) is respected;

2. The idea of linear variable occurrences allows us to form contexts of the

form z:A4,2:A, for some type constant A in the signature. That is, con-
texts in which repeated but distinct declarations of the same variable are

possible;
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3. Pollowing & joining of contexts, certain occurrences of linear variables ~
those that are shared by a function and its argument ~ are identified with
one another. This sharing is implemented by the & function.

These notions will be explicated at appropriate points in the sequel.

‘We now present the rules for deriving judgements in Tables I and 2 below. To
save space, we place any side-conditions along with the premises. The rules are
conveniently separated into a linear and an exponential set, the latter relating
directly to the intuitionistic All-calculus.

Valid Signatures

()

= {) sig
FXsig Fe KKind ag D HEsig tn AType ¢ L
(DK {ZAD
F X, oK sig F ¥, clA sig
Valid Contexts
X sig

()

kg () context

s T context A g AiType [EiT; A] (¢ € dom(E} or 214 € )

(T4)
g &, 214 context

b5 T context A bp AType [E115 A] (o & dom{E) or z:4 € &)
' (ran

Fs Z, 214 context

Valid Kinds

kg I' context T,z:4 kg K Kind
e { I Az) (KAL)
Ftg Type Kind T'ke Azt A K Kind

Yo aL L

Frp AiType Abg K:Kind [E1A] 8 = 8\ (lin{l') N in{A)}

{KAZ2)
kg A we K:Kind

I,214 kg K Kind
RE—————— ¢ " Y 4
Ty Asld K Kind

Table 1: AA.-calculus

The signature formation rules enforce intuitionistic behaviour by allowing
only a constant of exponential type to extend the signature. The context forma-
tion rules allow only types to be assigned to variables. We distinguish between
extending the context by linear (Z, :4) and exponential (=, z!A) variables. The
context formation rules introduce two particular characteristics of the type the-
ory. The first one is that of joining the premise contexts for the multiplicative
rules. The join must respect the ordering of the premise contexts and the con-
cept of linear versus exponential variables. A method to join T and A into = ~



Valid Families of Types

Fnil context alK & B

(Ae)
I'ip e K
F,a:d g BiType Thg AType Aty BiType [E5154] 8 = 8\(lin(T) N Ln{A))
(AATL) (AAZZ)
T'ks Az:ALB 1 Type Eblg A ~o B:iType
T, ziA Fx BiType
(AAMT)
] ThoAzslA. B Type
T,e:A by BiK Pre B:AmA.K AOrg N:A [ET;A] E=8\s(l,A)
(AMAL) (AAE)
Pk AzA.B: AxmA K Ergp BN : K[N/z]
T,2lA by BiK Prg B: AzstA K 1Ay N:A [E;T;14]
{AXNIT) {AALE)
PrnAclA.B: AclAK & bn BN : K[N/=)

'y AType T bz BiType

{A&LT)
g ALB:Type

Thre AtK Otrg K Kind K=K [ST1;A]
: {a=)

By AK
Valid Objects

il context clA€X

(Mec)
Mg A

I'in A:Type T bxn AType
—_— (MVar) ————— (MVar!)
oAt oA I'f,:t;!lA Fp oA ..

I,z:4 b M:B Fhrp M : AmA.B Abp N:A [E0A] 2=2\w({l,4A)
{MXAT} {MAE)
Ibg AeA M - AziAB Elg MN : BiN/a}

T et kg M:B Frp M : Acld.B 1A bp N:A {5T;14]
{MMA!T) (MAIE)
[bgAztA.M : Azld.B Brg MN : BIN/z

I'bg M:A Tl N:B Pre M : Apkd;
(M&T) ——————————m (M &) (7 € {0,1])
Tre (M, Ny : ALB Tl M@ A;

Fro M:A Abg AliType Az A’ [Ei1A]

S tg MiA =)

Table 2: AA,-calculus (continued)



denoted by {Z;T'; A] - is defined in Section 3.1 below.

In order to motivate the second characteristic of the type theory, consider
the following simple, apparently innocuous, derivation. We assume that A'Type
and ¢lA —e Type are declared in the signature ¥. We note that the argument
type, cx, is a dependent one; the linear x is free in it.

A F;;'ca::Type

wid, ziow bxn sice @A l—g.cm:Type

@A by Aagiew .z 0 Aziow e @A, yiex by yicx

aiA, A, gz by (Azico.2)y @ ox

The problem is that an excess of linear xs now appear in the combined context
after the application step. (In this step, the types match literally. However this
problem arises where they are equal too.) Our solution is to recognize the two
zs as two distinct occurrences of the same variable, the one occuring in the argu-
ment type cx, and to allow a degree of freedom in sharing these occurrences. It
is now necessary to formally define a binding strategy for multiple occurrences;
this we do in § 3.2 below. The sharing aspect is implemented via the x func-
tion, defined in § 3.3 below. One implication of this solution is that repeated
declarations of the same variable are allowed in contexts. For this reason, the
usual side-condition of z ¢ dom(E) is absent from the rules for valid contexts,
though of course we don’t allow the same variable to inhabit two distinct types.

The (KAT) and (AAT) pair of rules form linear function spaces. The first
of each pair, in which x € FV{B), constructs linear dependent function spaces.
The second rule of each pair constructs the ordinary linear function spaces.
Thete are two side conditions for the latter rules: the first joins the premise
contexts and the second then does a necessary book-keeping for those occur-
rences of linear variables which are identified with éach other under the current™ "
binding strategy. The side-conditions in the {AAEL) and (MAE) rules are of a
similar nature. The & function selects those such “critical” linear occurrences.
These occurrences are removed to give the conclusion context. It can be seen
that these side-conditions are type-theoretically and, via the propositions-as-
types correspondence, logically natural.

The essential difference between linear and intuitionistic function spaces can
be observed by considering the (MAE) and (MA!E) rules. For the latter, the
context for the argument N:4 is an entirely intuitionistic one (1A), which allows
the function to use NV as many times as it likes.

Example 3.1 We end this sub-section with an exemple of o derivation which
does not involve shoring. Let AlType, dlA — Type, elAy:A dy € 5. Then we
construct

10



5 {} context e AType

Frne: Aypddy aAbgaod

Ay er: dr - A:Type

FodomA.exr : AxAde ziA by 2:A

wAbryg (Azd.ex)z : (de)z/a]

Now, (Az:A .ex)z —p ez and ez:dz, which maintains the linear occurrence of
the variable z.

3.1 Context joining

" The method of joining two contexts is a ternary relation [=;T; A], to be read as

—n

“the contexts I' and A are joined to form the context Z”. Or, for proof-search:
“the context = is split into the contexts I' and A”.

The first rule for defining [E;T; A] states that an empty context can be
formed by joining together two empty contexts. The second and third rules
comply with the linearity constraint, and imply that the linear variables in =
are exactly those of I' and A. The last rule takes account of the intuitionistic
behaviour of exponential variables. In search, the intuitionistic variable zlA
would be sent both ways when the context is splif.

(JOIN)
(s O
[E;L 4] BT 4]
— e (JOINL) —— (JOIN-R)
[B, AL,z A; A (B, e AT A, 2 A]
T EmT A o
(JOIN-Y)

=2l AT, eld A, 2l A]

Table 3: Context joining

Further, the context joining relation must respect the ordering of the contexts
and the linearity constraint (as defined by the binding strategy in the next
section). That is, if b5 I' context, -5 A context and [5;1'; A}, then - E context
(and wvice versa for when E is split into I’ and A). We remark that if we were
also studying the distribution laws for relevant contexts, then the context joining
relation would need to take regard of these context equalities.

We make a brief remark about the [5;T; A] relation with regard to logic pro-
gramming. As we noted above, in proof-search (the basis of logic programming)
the relation [Z;T; A] is read as “split E into I' and A”. An implementation of
the AA.-calculus as a logic programming language would have to calculate such
splittings, perhaps using techniques similar to those for Lolli and Lygon {17, 20],

11



although it would be interesting to consider approaches in which [5; T A] re-
mained unevaluated for as long as possible during search. Such an approach
would resemble matrix methods [39].

3.2 Multiple occurrences

Consider the multiple occurrences idea from a proposition-as-types reading.
Then z:A4,x:A can be understood as two uses of the same proof of the same
proposition, as opposed to z:4,y: 4, which can be seen as distinct proofs of the
same proposition. Though this idea can be seen, in the presence of the binding
strategy that we are about to define, as an internalization of a-conversion, it
allows us a degree of freedomn, that at the structural level of terms {as opposed
to types), which is useful in dealing with variable sharing (§ 3.3).

In this section, we define the “left-most free oceurrence of 3 in U and a
corresponding binding strategy for it. We use this in the sequel, later noting
that it can be generalized.

Definition 3.3 The left-most linear occurrence of © in U is defined as follows,
provided that x € LEV(U). We use @ to denote atoms {constants and variables)
and say “r,@ distinet” if @ is a, ¢ or y.

(Constant, Variable) The constant and variable cases are trivial:

Im.{@) = {} x,@ distinct
Ime(z) = {a}

(Abstraction) We adopt the usual technique of capture-avoiding substitution for
the case where another occurrence of & has already been bound. By induction,
the A (A} binds a given occurrence — the left-most one — of x in U. So we
can a-convert this to Az€A Viz/a] (Aze A V(z/z]) and continue. We give the
cases for the X binder; the ones for A are ezactly similar.

. _ Img(Ay ~« =€ LFV(A)
Im.(Ay€A.V) = Ima (V) otherwise
Ima(Az€A.V) = Ima(Az€A V]z/z]) z new

z,y distinct

(Application) The left-most occurrence of x in VM is in V or, failing that, in
M. The case where V is a constant or variable is straight-forward:

Im.(@M) = Im.(M) xz, @ distinct
Ime(aM) = {z}
Otherwise, we need to check whether x is free in V' or not:
Ima(V) z € LFV(V)
fma (VM) { Ima (M) otherwise

(Pairing) We deal with the additive cases by a disjoint union of the left-most
oceurrence of x in both components of the pair:

Ima (M, NY) = Im (M) ) Ima(NV)
Img (mi{M)) = Im.(M) i€ {0,1}
Ims(A&B) = lmg(A4) | Im.(B)

12
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We define the left-most occurrence of z:4 in a context I’ as the first decla-
ration of z:4 in . Similarly, the right-most occurrence of z:4 in I is the last
such declaration.

The binding strategy now formalizes the concept of linearity constraint:

Definition 3.4 (left-most binding) Assume I',2:4,A Fy UV and that ::4
is the right-most occurrence of x in the context. Then x binds:

1. The first left-most oceurrence of x inran(A), if there is such a declaration;

2. The unbound left-most linear occurrences of x in U:V.

There is no linearity constraint for intuitionistic variables: the right-most oc-
weurrence of 14 in the context binds all the unbound zs used in the type of a
- declaration in A and all the occurrences of z in U:V.

The rules for deriving judgements are now read according to the strategy in
place. For example, in the (M AAZ) rule, the A(A) binds the left-most occurrence
of & in M(B). Similarly, in the (admissible) cut rule, the term N:A cuts with
the left-most occurrence of z:4 in the context A, x:A, A'. In the corresponding
intuitionistic rules, the AI(A!) binds all occurrences of z in M (B) and N:4 cuts
all occurrences of z!4 in the context A, z!4, A’

In the sequel we use the left-most binding and cutting strategy as discussed
above. We remark that there is a general ij strategy, that of binding the *»
variable from the left and cutting the j°* variable from the left.

3.3 Variable sharing

Variable sharing is a central notion which allows linear dependency to be set up.
In fact, this notion is already implicit in our definition (3.1) of linear occurrence.
The A.-calculus uses a function x which implements the degree of sharing of
variables between functions and their arguments: et

We define & by considering the situation when either of the two contexts I’
or A are of the form ...,2:4 or ..., 2:A,y:Bz. The only case when the two
declarations of 2:4 are not identified with each other is when both I and A are
of the form ..., z:A,y:Bz.

Definition 3.5 The function k is defined for the binary, multiplicative (AAE),
(MAE) and (Cut) rules

The U :AzQV Abg N:C [EFA] BE=EBN\&(T,4)
(AAE), (MAE)

Erp UN : ViN/s}
IALN/2))

A, G A Fx UV T hg N [8:15A, A [N/zl] 8 =3\k(T,4)
{Cut).

B by (U:V)[N/:]

13



For each z:A occurring in both T and A, construct from right to left as follows?*
s(TA) = {} if Un(TYNlin(A) =0

{z:4 € in(T) N lin(A) | either () there is no y:B(x) to
the right of a:A in T
&I, A) = or (if) there is no y:B(x) to otherwise
the right of z:A in A
or both {i) and (i)}

The second clause of the definition can also be stated as follows: in at
least one of I" and A there is no y:B(x) to the right of the occurrence of z:A.
This clause is needed to form a consistent type theory which allows the for-
mation of sufficiently complex dependent types. By this, we mean types such
as Ari:Ay .. AzniAn(2y,. ., Zp—1) . A In which the abstracting types depend
upon previously abstracted variables. In binary rules, it can be that some vari-
ables must occur, in order to establish the well-formedness of types in each
premise, in the contexts of both premises, and must occur only once in order to
establish the well-formedness of types in the conclusion. However, it is possible
for other variables occurring in both premises to play a role in the logical struc-
ture of the proof; these variables must be duphca,ted in the conclusion. These
requirements are regulated by x.

In the absence of sharing of variables, when the first clause only applies, we
still obtain a useful linear dependent type theory, with a linear dependent func-
tion space but without the dependency of the abstracting A;s on the previously
abstracted variables. For example, we use such a type theory to encode the
dynamic semantics of ML with references in § 5 later.

With the definition of x given above, we can consider the following example.

Example 3.2 Suppose AlType,cl4 — Type € T. The we construct the follow-
ing:

s AType o -
Food —o Type xzAbpaA () kg AType
z:A by caType FocA—Type zmmAbpzA {x)
@A, ziex bn zice @A by i Type
Aby Azex.z ¢ Aziez.ox x: A, yiex by yien (s}

z A, yew by (A siex 2)y oo

The (x) denotes the context join to get x:A. The (#+) side-condition is more
interesting. First, the premise contexts are joined together to get x:A, x: A, yick.
Then, K removes the extra occurrence of :A and so restores the linearity con-
straint. A similar situation arises when the y is cut in for the z:

@A, zew b zicr A, yer by yiee (#)

@A, yex bo (ziexMy/2]

4Formally, s(T', A} is defined recursively on the structure of I' and A, read from right to
left. We adopt the following informal notation for ease of expression.

14



The function » is not required, i.e., its use is vacuous, when certain restric-
tions of the AA.-calculus type theory are considered. For instance, if we restrict
type-formation to be entirely intuitionistic so that type judgements are of the
form T I, A:Type, then we recover the {II, —, &}-fragment of Cervesato and
Pfenning’s AF°%T type theory [12]. Our fragment does not include T, the unit
of &; we will remark on this while stating the subject reduction property in
§ 3.5 later. Like the simple dependency case above, this restricted type theory
is useful too; we use it to encode a fragment of intuitionistic linear logic in § 5
later.

3.4 Definitional equality

"The definitional equality relation that we consider here is the p-conversion of
" terms at all three levels. The definitional equality relation, =, between terms
at each respective level is defined to be the symmetric and transitive closure of
“the parallel nested reduction relation, —, defined in Table 4 below. We note
that, in the B-rules, substitution is performed only for the bound occurrences
of . The transitive closure of — is denoted by —".

A— A MM
(s Tefl} (s M)

U e U

A-A K- K

Az€A K — AxcA K’
A— A BB

AxEAM — dzeA M
Ms M N-—N
“‘“““W(—'MET’P)
MN — M'N’

MM N-=N

— (— MB)
AzEA.B — Az€A.B (Az€A . MYN — M'[N' [l
A=A BB Mo M N N
. B e 1]
AzEA.B — AzcA B {M,N} = (M, N")
A A MM M — M
rsmsmemimme————eo A pp) - (-~ M=)
AM — A'M' wiM — m M
B—+B NN M — M
{ e (—+ M7 }
{Az€A.B}N — B'IN'fx] (M, N} — M’
A= A B B N =+ N
T —— 17 e {nr M1y}
ALB — A'%&B' m{M,N} - N’

Table 4: Parallel nested reduction

We remark that while S-conversion is sufficient for our current purposes, we
forsee little difficulty (other than that for the All-calculus [13, 34]) in strength-
ening the definitional equality relationship by the np-rule.
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3.5 Basic properties of the AA,-~calculus

In this section, we summarize the basic propersies of the A -calculus, the proofs
of which can be obtained by adapting the techniques of [18]. Note that we are
concerned here with just the basic, {&, A, I}-fragment, of the type theory.

The choice of the reduction relation — allows us to prove confluency:

Lemma 3.1 (CR Property) If U —* Ul and U —* U, then there exists o
Vam such that Ul -* V, ., and U —=* V,, .

Proof The lemma is proven in several steps. First, we show that substitution
is conserved under reduction. Then we prove, by induction on the sum of the
lengths of the proofs U — U’ and U — U”, the diamond property: that if
U= U"and U — U”, then there exists a V such that U/ - V and U = V.
CR then follows by an induction on the number of g-steps. O

The following lemma analyses how a type assignment for an abstraction
can be obtained. It is a specific (part 4) and specialized {for linearity} case of
Barendregt’s Generation Lemma for Pure Type Systems (PTS) [8].

Lemma 3.2 (Inversion) If'ky Aa€A.U : Az€AV, thenT,x€A -y UV,

Proof Consider & derivation of Az€A.U : AxeA.V. The conversion rules do
not change the term Az€A.U. We follow the branch of the derivation until
the term Az€A.U is introduced for the first time. This can be done by an
abstraction rule. The conclusion of the abstraction rule is

Ik AzcAU : AzgB W

with Az€A.V = AzeB .W. The statement of the lemma follows by inspection
of the abstraction. T T O

We remark that, given the next theorem, the above lemma could allow weaken-
ing or contraction in the intuitionistic parts of I

We recall our earlier comments, in § 2, regarding how the consideration of
a particular language allows us to admit certain structural rules. The next
theorem details this for the AA-calculus. We comment on the form of the ad-
missible structural rules. The exchange and contraction rules are inherited from
dependent and linear type theory, respectively. The rule for weakening requires
that the context for proving the well-typedness of A is entirely intuitionistic.
The rule for dereliction requires the derelicting of the free variables in the linear
type too. Cut comes in two forms, one for cutting a linear variable and one
for cutting an exponential one. The rules are read according to the current
binding strategy. The extra side-conditions for exchange enforce the context
well-formedness in accordance with the left-most binding strategy.

Theorem 3.1 (Structural Admissibilities) The following structural rules are
admissible: ‘
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1. Exchange: If I';z€A,yeB,A by UV, then I',yeB,x€A, A g UV,
provided x € FV(B), y & FV(A) and " kg B:Type;

2, Weakening: If I' b5, U:V and 1A by, A:Type, then Z,2!4 by UV, where
[E;T51A%

3. Dereliction: If T,z:A Fy UV, then I, 2!A by UV, where TV s T in
which the free variables of A have been derelicted foo;

4. Contraction: If I',&!A,ylA by UV, then T, zlA by (U:V)[z/y];

5. Cut: If HA[N/z]) is o sub-proof of A, x: A, A" b UV and T' g N:A,
then B b5 (U:V)[N/xz], where [Z; 1A, A'[N/z]] and B = E'\x(T, &);

6. Cutl: IFA, 1A, A by UV and IT by N:A, then B by (U:V)[N/z], where
[E;T; A, A'[N/x]).

"Proof By induction on the structure of the proof of the premises. We illustrate
~a few representative cases.
Admissibility of Dereliction:

1. (MVar). I',z:A b5 x:A because I' Fx. A:Type. In the case where there
are no free variables in A, we just use (MVar!) to get I', z!A by 2 A
Now suppose y € FV(A). If y is of an exponential type then we are done.
Otherwise, we consider the stép where the y is introduced and replace the
application of {MVar) with {MVar!);

2. (MMAD). Tz:A by Ay:B.M : Ay:B.C because I',x:A,y:B s M:C.
There are two sub-cases, depending on how the linear variables x:4 is
consumed.

(a) = € FV{B). That is, z has a linear occurrence in M:C. An Exchange
puts the judgment in the form where we can apply the induction
hypothesis. - So we get IV,y:B,z!4 Fg -M:C, where I' is I' with -
the z € LFV(A) are derelicted too. Then we apply Exchange and
(MAAD) to get TV, 2lA g Ay B .M ¢« Ay:B.C.

(b) = € FV(B). This case is argued similarly to the one before.

Admissibility of Cut:

1. (MVar). A,z:4 Fs z:4 because A g A:Type. We have to show that
= by (2:A)[M/z]. This follows from the agsumption I' by M:A with the
= = E"\&(I', A) side-condition needed to remove the excess occurrences in
I’ which type A

2. (MAE). A, x:A, A" by MN : C[N/y] because & kg M : Ay:B.C and
U by N:B, with [A,z:4, A'; &; ], There are two sub-cases to consider,
depending on whether or not z is a shared variable, as regulared by «.

(a) For the non-sharing case, the proof proceeds according to which con-
text the 2:4 is sent to. 3o suppose m:A € D (the case for x:4 € ¥ is
similar). By induction hypothesis we get T g (M : Ay:B .C)[M/x],

17



where [T; &, &,[M/z}; '] and © = &5, 7:4, $,. Then we use (MAL)
to construct E bz (MN : (CIN/z])[M/xz], with [5; T; ¥]. We have
elided the details of substitution.

(b) For the sharing case, z:4 will be sent to both branches. That is,
z:A € @ and 1:A € ¥. The argument then proceeds as above, using
the induction hypothesis on each branch. 3

The following unicity properties are desirable from both a type-theoretic and
pragmatic perspective:

Lemma 3.3 (Unicity of Types and Kinds, UT) If T Fx U:V and I bg
UV, thenV =V',

Proof By induction on the structure of the proof of the premises. We omit the
details. O

Lemma 3.4 (Extended Unicity of Domains, EUD) If Az€A.U inhabits
AzeB.V, then A = B,

Proof CR determines, up to definitional equality, the term Az€ A .U. UT does
the same for the type AxeB.V. This is sufficient to allow us to infer the result.
[’3 X

Our definition (3.1) of linear occurrence is motivated by the desire for the
type theory to have the subject reduction property. However, it is important
that no linear variables are lost during reduction. We stop to consider this
problem before proceeding to show the property. Consider the following instance
of application:

LR AP

“p e Az:A :y cA— B z:A—}—';,-‘z:A 1

'zArs QzAy)z . B

We suppose that the type of the function is A — B. After a S-reduction,
we have I', 2:A by y:B, which leaves the 2:4 hanging. Now, we supposed
that I' Fn Ax:Ady © A — B be provable. By inversion, we must then have
T,z:A b5 4:B provable. By our definition of linear occurrence, this can be so
for one {or both) of the following reasons:

1. z € FV{y), which is not true in this case (but, in general, in simple types
we may have a sufficiently complex M for all to be well);

2. x € FV(B), so the z is consumed by the B. That is, the type of the
function Az:A.y is not A — B but rather Az:A.B{z). So, in (1), the
conciusion of the application is of the form I, z:A by (Az:4 .y)z : Blz/7]
and hence we still have a linear occurrence of z.
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So it follows that a situation as simple as (1), with the loss of an occurrence of
a variable from the succedent, cannot arise in the type theory.

The subject reduction property is proved for —, the one-step reduction
relation in the basic type theory. (—* and =7 define the same relation.)

Lemma 3.5 (Subject Reduction) If T by U:V and U ~+y U, then I by
unv

Proof By simultaneous induction on the structure of the proof of the premises.
The two main cases are when the last step of the typing derivation is either rule
(MAE) or {MA!E); and the last reduction step is rule (= M3). We consider
the first of these cases. So, suppose

Ebg AzAMN : B and (AwAMN -1 M[N/x]
 and the first of these arises because

Iz A M Az:C.D and Aty N:C

with [T AL E = Z'\x(T, A) and B = D[N/x].

By Lemma 3.2, we have that ', z:A Fy M:D. By Lemma 3.4 we have that
A= C and by the (M =) rule we have that A kg N:A. Then we use the Cut
ritle to construct

PoArg M:D Abg NiA [E5TA] 8 =E\s(,)

Ebs (M:D)[N/x]

The conclusion is M[N/z]:D[N/z]. 3
The type theory extended with 1.7, the unit of &, does not have the stated

subject reduction property. The reason is ﬂiustrated by the following derwatlon
in which we assume that AlType € Z:

o ' @A context

Tazdbe 1T

ThgAzAdl: A—T  zAlFpnd

TzAbg AzmA D}z T

After a S-reduction we have I', 2:4 g 1:7, and the z is left hanging. However,
we conjecture that such an extended type theory will have a weaker form of
subject reduction, in which IV € T'. The conjecture arises from a consideration
of cut-elimination in linear type theory in the presence of 1:T. The point is that
B-reduction in an example such as the one above effects not only terms but also
proofs and so should therefore properly be considered an inference rule of the
type theory.
Al reduction sequences in the type theory terminate:
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Theorem 3.2 (Strong Normalization) All valid terms are strongly normal-
tzing:

1. If Ty K Kind, then K is strongly normalizing;
2 If Uy UV, then U is strongly normalizing.

The proof idea, again, & variation on an argument in {18], is to define a
faithful “dependency- and linearity-less” translation 7 of kinds and type families
to 5, the set of simple types constructed by x and — over a given base type w,
and {.|, of type families and objects to A(K), the set of untyped A-terms of over
a set of constants K = {n,|o € S}. Let > denocte type assignment following
Curry (with products) together with the infinite set of rules for K

B i = (0 = w) = w

for each o € .

The translation embeds AA, into such Curry-typable terms of the untyped
A-calculus in a structure preserving way. The dependency aspect is lost by,
for instance, forgetting about the variable z in the term Axz:A .B. The linear
aspect is lost by translating linear and exponential variables in exactly the same
manner,

Definition 3.6 (Translation to simple types)

T: K= 8

7(Type) = w

r{AzeA K) = 7(A} - 7(K)

7: A= 8

r{a) = q

T(AzgA.B) |, = r(A)-r(B) .
T(Az€A.B) = r(B)

T(AM) = 7(A)

T(A&LB) = r(A) x v(B)

[-] 2 A - AK)

|z} = q

|A G'JEA B; — FT{A)§A|(A:E.|BD

[AzeA . B| = {dy.Az.|B|}A] y & FV(B)
|AM] = [A|[M]

| A& B = |A] x|B|

L M - AK)

fel = ¢

Jarf = =z

zeA M| = (AyAz M4 y € FV(M)
JMN] = |M||N}

M, N = {IM], [N}

i M| = m|M]| i€ {0,1}

20



We note some minor technicalities to do with the translation. The transla-
tion of I' s UV is given by 7(Z), 7(T) > |U]:7(V); the signature and context
are dealt with in the obvious way. That is, 7{()) = (; 7(I', z€ 4) = +([), &:7(A4)
and 7(3,cl4) = 7(5),e:7({4), ete. The binding strategy is utilized to give oc-
currences unique names.

The next two lemmata show that the translation is sufficiently faithful. We
will abuse notation somewhat and take the symbols such =, —, [M/x], efc. to
mean similar relations in the simply-typed A-calculus.

Lemma 3.6

1. If A=A, then r{A) = 7(A").

2 If K = K', then 7(K) = 7(K").
Proof By induction on the structure of the proofs that if A — A', then 7{4) =
7{A') and that if K — K’ then, 7(K) = 7(K’). The lemma follows from the

.fact that = is defined to be the symmetric and transitive closure of —. We omit
the details. O

Lemma 3.7
1. |MIN{z]} = [M[[|N|/=].
2. |B{N/z]} = |B|[|N}/z].
Proof By induction on the structure of M and B respectively. We omit the
details. a
The next lemma shows the consistency of the translation.

Lemma 3.8

1. IfT kg AK then 7(5), 7(T) H* |ARr(K).
2, IfI'bg M:A then, 7(2),7([) F* |M|:m(A).

Proof By induction on the structure of the proof of the premises. We illustrate
the argument with a few representative cases.

1. (Mc). IT kg c:A because Fg!l context, with c!A € . Trivial, as 7(A) is
always a well-formed type.

2. (MMI). 'y AzmA M : Az:A.B because I'2:4 g M:B. By induc-
tion hypothesis we have that

T(8), 7)), zr(A) - [M| : +(B)

Therefore
(2, 7(") F* Az M| r(A) = r(B)

and
(), 7(T) R Ay e | MBIA] : 7(A) = r(B)

which is 7(Z), 7(T) F* |[Az:A M| : 7{Az:A.B).
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3. (MAE). EFs MN : B[N/z]becausel'Fg M : Az:A K and A by N:A,
with [2 T A} and E = EN\s(I", A}. By IH twice we have

7(£), 7() + M| : 7(A) - 7(B)

and
(), 7(A) F* |N] 1 7(A)

Then we construct
7(B), 7Y B M +(A) = +{(B) (), 7(A) F [N} 7(A)
1%
(), 7(I), 7{A) B M r(4) = r(B) X (), T{A), (1) B |V r{A)

y W

(D), 7(E) F |M]| : 7(A) »7(B) (), 7(E) F* |N| : 7(A)
APP

r(E), 7(E) F* (|M||N]) : 7(B)

where the double line indicates a series of applications of the indicated
rule. The weakenings (W) introduce 7(A) and 7(I'} into the left and right
premises. The exchanges (X) and contractions (C) are used to eliminate
duplicate (exponential, in the original type theory) variables. These are
necessary so as to get the premises of the —-elimination rule into ad-
ditive form. The conclusion of the proof tree is 7(£),7(E) +* {MN| :
(B[N /z]), as required. And 7(B) = 7(B[N/z]} as there i3 no type de-
pendency in the simply-typed Mcalculus,

4. (M&I). T by (M,N) : A&B because I' Fx M:A and I' by N:B. By
induction hypothesis twice we have

(), 7(0) F M| < 7(4)

and
: T(E) (D N : T(B)

The rule for x-introduction then gives us that TE),T B (M), N])
7{A) x 7(B), which is 7(2), 7(Z), 7{T") +* M, N)| : 7(A&B). 1

O

The extra combinatorial complexity of AA-calculus terms owing to the pos-
sibility of reductions within type labels is not lost by the translation.

Lemma 3.9

1 If A=y A, then [A| =7 |A/].
2. If M <y M, then | M| -3 |MY),

where =7 is the transitive closure of ~», for the untyped A-caleulus.

Proof By induction on the proof of 4 =1 A" and M —1 M’'. The only non-
trivial cases arise when the last rule applied is one of the B-rules, or one of the
A-rules. In the first case we have, for example,
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H

[(Aw:A MIN| = (Mo |MDIN| ] |M|{IN|/2]

which is 7(M|N/z]), by Lemma 3.7. In the second case, Lemma 3.6 suffices for
the result, 0

We can now give the proof of strong normalization. Suppose there was an
infinite reduction in the AA.-calculus. Then this would be translated into a
reduction in the simply-typed A-calculus. As the translation is faithful, the
reduction in the simply-typed A-calculus would be infinite too. But this cannot
be so, as the simply-typed A-calculus with pairing is known to be strongly

normalizing [15]. So there cannot be an infinite reduction in the AA.-calculus.

Predicativity arises as a corollary of Theorem 3.2. Finally, we have:

~Theorem 3.3 (Decidability) All assertions of the AA.-colculus are decid-

able.

Proof The argument is the same as for AIlL 'We observe that, firstly, the
complexity of the proof of a judgement is determined by proofs of strictly smaller
measure; and, secondly, the form of a judgement completely determines its proof.
The main method underlying this argument involves replacing the conversion
rules with a (better behaved) normal-order reduction strategy. O

3.6 Related systems

In this section, we briefly compare the AA.-calculus to the appropriate frag-
ments of other linear type theories. Abramsky’s [1] and Benton’s [9] linear type
theories are in propositions-as-types correspondence with a propositional ILL.
Our concern is with a predicate ILL. Consider a linear version of the Baren-

‘dregt cube, displayed in so-called standard orientation. Then Abramsky’s and

Benton’s type theories correspond to the A — and A2 nodes; our type theory
corresponds to the AP node.

Another difference between Abramsky’s and Benton’s studies and ours is
one of motivation; we study the M ~calculus as the langnage of a logical frame-
work. A comparison with Cervesato and Pfenning’s work [12] is, perhaps, more
appropriate in this case. Their work claims to be inspired by our study’s origins
[29]. We remark that the description of the LLF framework lacks an account
of a notion of representation and that the AP %7 type theory is a fragment
of the AA.-calculus lacking, inter alia, linear dependent function types. To
be precise, the {II, —o, &}-fragment of M%7 can be recovered by restricting
type-formation to be intuitionistic, with the consequence that the use of « is
vacuous. We have noted this restricted type theory in § 3.3.

The key point to make in these comparisons is as follows. It is the construc-
tion of the linear dependent function space that necessitates an investigation
into various structural properties. These are then explicated by the technical
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device of multiple oceurrences. If our concern were non-dependent (—, =) or
intuitionistic dependent (II} function spaces, then we could do without such
analyses.

4 Conservativity

In this section we show that RLF is a conservative extension of LF. We will need
the following transtation between the AIL- and AA.-calculi. This is reminiscent
of the translation of IL into ILL which maps ¢ = 4 to ¢ —o ¢ {16].

Definition 4.1 ("M = AA,) We first define o translation for signotures
and contexts. The clauses capture the intuitionistic—linear distinction between
the two languages; the image is always of an exponentiol type.

T o= T, el = TR U
TeAY = T zlA

For the succedent of the typing judgement, "7 is defined by induction on the
structure of the conclusion. We give only the cases for typed objects, M:A; the
other cases are similor,

Ta A7 = aA FAzAM : TIzA.BY = AzlA"M™: AztATEB™
Fo AT = mA TMN . B = "M™NY.™B?

The abstraction clouse deals with the fact that the binding z:4A is o negative
oceurrence of a variable,

Now, our argument must capture the property of conservative extension
not only at the level of the type theory but also at the level of a framework.®

-~ That is, we need to consider, for an arbitrary object-logic L, a translation from -~

its definition in LF, via an encoding £ and signature g, to its definition in
RLF, via an encoding £ and signature ¥, where both £ and &’ are standard
judgements-as-types encodings.

Lemma 4.1 (Conservativity) Let L be an object-logic. Let £ be a uniform
encoding of L in LF. For every provable L-consequence (X;A) b, o, if

E(X), £(A) ksl M:E(9) (2)
then there is o uniform encoding &'

E'(X),E(A) k3~ M7:E'(9).

5Conservativity at the level of the type theory is an immediate consequence of Defini-
tion 4.1.
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Proof We define £ as follows:
Xy = TEX)T Ery = fe(n EMYy = TEM),

where M and M’ are proof-realizers for the proposition ¢ in assumption A.
We now have to show that &£’ is a uniform encoding. The proofis by induction
on the structure of (2). An interesting case is weakening. So suppose, I, A l—g%
M:A because I' %w"ﬂ M:A. Translating the latter consequence into the M-
calculus gives us I %—)‘A M':A. This can be weakened to get {T', A) l--”"c M"A

From the definition Of C—7, this is the image of [,A F3I' M:A. Now, by
.assumption, £ is a uniform encodmg, soI'A %Alff M:4 is an image of some
.object-consequence. O

5 Example encodings

In this section, we illustrate several encodings in RLF. The intention is to bring
out the essential characteristics of the AA .-calculus language — the weak struc-
tural properties, linear dependent function space and variable sharing — which
allow these encodings to be undertaken uniformly via the judgements-as-types
mechanism. The object-logic syntax and inference rules are not considered to
be consumable resources and are encoded as (intuitionistic) constants in the sig-
nature. We adopt the notational convention that the meta-logic be expressed
in bold print, so as not to confuse it with the object-logic it encodes.

We state representation theorems for each of the three encodings we un-
dertake. In order to do this, we need a notion of canonicel {essentially, long
~ Bn-normal) form. The definitions and lemmata needed for the characterization

of canonical forms in the A -calculus are similar to that for the All-calculus;

we omit them from this presentation. In the following, we will often say that a
function is a “compositional bijection”; this simply means that it is a bijection
and commutes with substitution.

5.1 ILL

Our first encoding is that of the {®, &}-fragment of propositional intuitionistic
linear logic (ILL). We will work through the ILL object-logic in slightly more
detail than the others. In this encoding, we work with a restricted type theory
in which type formation is entirely intuitionistic; we have discussed such a type
theory in § 3.3 previously. Such a restriction picks out the system of Cervesato
and Pfenning [12] from amongst the others.

The natural deduction style rules for this logic are given in Table 5 below and
are taken from [38]. The lower-case Greek letters ¢, 4, x range over propositions
of the ILL object-logic. For the rest of this sub-section, i € {0, 1}.
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¢ dokeds

¢ x vb
(FENSOR-I}) e (TENSOR-E) {(WITH-I)
g@y X Pty B4

(WITH-E:)

Table 5: A fragment of ILL

The signature Xy 5, begins with the declarations 1!/ Type and o!Type to repre-
sent the syntactic categories of individuals and propositions of ILL. Next, each
of the two formula-constructors are declared as constants in the signature Dy

&lo —0 o —o0o &lo v g w0 0 .

Terms (formulae) are encoded by a function £x which maps terms (formulae)
with free variables in X to terms of type ¢ (0) in B;7.,T'x:

Ex(¢®¢) = ® Ex(¢) Ex(¥) Ex(p&eyp) = & Ex(¢) Ex(¥) .

There is one basic judgement, the judgement that the formula ¢ has a proof,
bz @ proof. This is represented by declaring the constant prooflo — Type
in the signature. A proof of a formula ¢ is represented by a term of type
proof (E{¢)). _

The multiplicative operator —o is used to represent the inference in the
object-logic. It is also used — as a curried version of a meta-logical multiplicative
conjunction - to combine the representation of the premises of the @ rules, which
are represented by the following declarations in the signature Zypz:

TENSORI | A, 9Plo.proof(d) —o proof(sh) —o proof(@(s, ¥))
TENSORE ! Ad, ¥, xlo.proof(®(d,¢)) —o
(proof(¢) —o proof(yh) ~—o proof(x}) =0 proof(x) -

We need the distinguished additive operator & to represent the additive
rules. An alternative might be to use an additive function space {(as described
in [38], for instance), although it would appear that such a connective forces
contexts to be more complex structures. Recall, 7 € {0,1} in this sub-section.

WITHI | Ag,lo.proof(d) & proof(s) —o proof(&(d, 1))
WITH-E: 1 Ado, d1lo.proof(&(¢o, $1)) —o proof{s:)

Valid proofs of ILL are labelled trees with the constraint that assumption
packets contain exactly one proposition and all such packets are uniquely la-
belled [10]. A valid proof II of ¢, with respect to a proof context (X;A),% is

6 As usual, linearity is at the level of propositions-as-types; the set of variables X is implicitly
l-ed.
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denoted by the assertion (X; A} I II:¢, where X is a finite set of variables of
first-order logic, A is the list of uniquely labelled assumptions {£1:¢1,. .., éni¢n},
and FV{dom(A)) € X. We remark that the treatment of the ILL quantifiers
in RLF is essentially the same as that in LF. The rules for proving assertions of
the form (X;A) F I:g are given in Table 6 below.

(X;6:¢) H HYPg(£):¢

(X;A)FT¢ (X;8) T (X8) e @¥ (X;87,6:64,6 ) F ix
(X;A,A") - TENSOR Ly o (X, ' Y6 @ o (X; 4, A" F TENSOR-BEg 0, (H, £, 11 )ix
(X;A)F g {X;0)+ 019 (X A) - Hegolegy
(X;A) - WITH-Lg o (XL, X )i ploa (X;A) - WITH-E; gg,0, ()

Table 6: Some valid proof expressions of ILL

The encoding function £ x;a) can be defined to encode proofs of ILL. The
two ® cases, for instance, are as follows:

Egxin,an (TENSORT4,4 (ILIT)) = TENSORI Ex($) Ex(¥) ux;a){Il)
Eexian(Il)
Ex:n,a7)(TENSOR-Ey 4,5 (IL, §, €:1')) = TENSOR-E Ex(¢) Ex(¥)} Ex{(x}
Exin(ID)
AEproof(Ex{¢)).

A& proof(Ex(¥)) .Eix;an(IT')

A proof context (X;A), with X = {z;,...,%m} and A = {{1:¢1,...,Enidn}, I8
mapped to Tx . a =&, ..., 2w, Eiproof(E(dr)), . ., Eatproof (E(dn)}.

The encoding basically illustrates the propositions-as-types correspondence
for a {®, &}-fragment of ILL. So we can expect a strong representation theorem.

Theorem 5.1 (Representation for ILL) The encoding functions are com-
positional bijections. That is, for every ILL-formula ¢:

1. Xy ¢ ifand only if Tx by, o Ex(¢)ue 5
2. (XyA) }_ILL H¢ 3f and Oﬂly ier,A I’_EILL MHPTOOf(gx(gb)) ,

where II 13 an ILL proof-object and My is a canonical object of the AN, -colculus,

Proof The encoding functions £x and £(x.a) are clearly injective. Surjectivity
is established by defining decoding functions Dx and Dx;a) which are left-
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inverse to Ex and & xa):

Dx(® Mi Ma}) = Dx{M) ® Dx(Mz)
Dx{& My My = Dx{Mﬂ & Dx(Mz)
TENSOR-I M M>
Dexin,an Py Py = TENSOR-ID(y o (M1),Dx 0y (Mz) (T, TT2)
TENSOR-E M) M:
Ms P TENSOR-ED, 1 o (M1, P ay (M2 D5 ary (Ma)
Do , = (o) M P aytMe h P xanyiMs
(Ksa.80) Aproof(Mi). (I1y, £, £":1,)

M proof(Ms) . Py
where I = Dy ny(P1)
and Iy = Dox,an(Pe)

That the decoding functions are total and well-defined follows from the definition
of canonical forms and the signature. By induction on formulae and proof
expressions, respectively, we get Dx(Ex(4)) = ¢ and Dy X;A}(S( x;a)(ID)) =
II. Again, by a similar induction, we get that the encoding commutes with
substitution. 0

The encoding can be extended to deal with a {T,®,®, —, 1}-fragment of
propositiontal ILL. The representation of the ILL units forces the design of the
type theory. A meta-logical T is required to directly represent the object-logic
T; linearity constraints in the type theory mean that an encoding of Tty T
would not be a valid AA.-calculus judgement. The cage for L. would be similar.

5.2 ML with references

Our second encoding is that of the programming language ML extended with
references (MLR), a reworking of an example in Cervesato and Pfenning [11, 12].
.. In our reworking, we exploit.the use of the A which is not.available to Cervesato
and Plenning. Consequently, we are in the full AA,-calculus type theory, in
which &’s action is non-trivial.

The basic MLR logic judgement is of the form S K F ;5 ¢ -~ a which
means: the program ¢ is evaluated with the store S and continuation K and
leaves an answer {a store-expression pair) a. The signature I 1 g begins with
the declarations store!Type, cont!Type, instr! Type and ans!Type to represent the
syntactic categories of store, continuations, expressions and answers. Evaluation
is represented by the following declaration:

ev!cont —o instr ——o answer —o0 Type.

We are really only interested in the rule for evaluating re-assignment. This
can be stated as follows:

S,cxv',S’ [ KFMLH *— A

3
Se=u,8 » Kbyrprefc=19 — A
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where o is the MLR unit expression. ‘

The ML memory is modelled by a set of (cell,expression}-pairs. Each such
pair is represented by a linear hypothesis of type contains which holds a lvalue
(the cell) and its rvalue (the expression).

cell ! Type exp! Type contains lcell o exp —0 Type

The rule for re-assignment evaluation is encoded as follows:

EV-REASS | Acleell. Av,v'lexp.
{(contains c v’} —o (ev K & A)) —o0
(A vexp. {contains ¢ v)) ~o0 (ev K (c:i=v") A)

- where the assignment instruction ¢ := v is shown in the usual (infix) form for
‘reasons of readability. The rule can also be encoded in such a fashion that
the linear property of the memory is formalized via the A quantifier. We will
illustrate this idea soon. For now, based on our re-working of the MLR example,
we can state the following by referring to [12].

Theorem 5.2 {(Representation for MLR) The encoding functions are com-
positional bijections. That is, for all stores S of shape {c1,v1),..., (Cn,Vn), con-
tinuations K, instructions i and answers A {which are closed except for possible
occurrences of free cells),

S K bppn it 3 o if and ondy if
arleell, ..., enlcell, pi:{contains e1 E(v1))}, ) .
[ ooy pmi{contains cm £(vm)) Foan Mi(ev E(K) E() £(a)),
where I1 is o proof object of MLR and My is a-canonical object of the AAjx -
calculus. :

One property that it is desirable to show for the MLR logic is type preserva-
tion; in the context of a store N, if S K by 5% — @, 1 is a valid instruction
of type 7, K is a valid continuation of type = — 7’ and S is a valid store, then
@ is a valid answer of type 7. The main difference in our reworking of this ex-
ample is how the proof of type preservation for the Ev-REASS rule, prEV.REASS,
is encoded.

prEV-REASS | Acleell. Av,v'lexp. A p:contains c v).
(A p':(contains ¢ v') . (prCell p’ ¢ v') —o0 (ev K » A)) —o
{prCell p c v) ~o0 {prEv K (z:=v") A)

In the above type, prCell and prEv are the proofs of type preservation over
cells and for evaluations, respectively. We note that the types of p and p’ have
no linear free variables in them. That is, the type theory we have employed in
the encoding does not involve the notion of sharing.
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Now, the cells could have been quantified intuitionistically {as they are in
[12]) instead of linearly. In that case, a sub-proof of I' by, prEv-REASS:U, where U
is the above type of prEV-REASS, would consist of an instance of I-introduction.
But this would allow us to admit garbage: (cell,expression)-pairs which are
occupying memory space but not being used. The linear quantification gives us
a better representation of memory management. The above encoding realizes
the intuition that we are making general statements about linear variables, so
the A and not the H quantifier should be used.

The encoded version of MLR type preservation can be stated and shown as
in [12]. We omit the details.

5.3 A Aj-calculus

Our last example is that of the equational theory of a type theory similar to
Church’s Af-caleulus, in which abstraction is only allowed if the abstracted
variable is free in the body of the function. We use the full expressiveness of the
Al -calculus type theory, with the crucial notion of variable sharing. This allows
the A quantifier to capture the (traditional) notion of relevance. By contrast, in
the encoding of the Al-calculus in Avron et al. [5], the relevance constraint is
enforced by introducing extraneous language to axiomatize relevance in domain
theory. :

The signature I, begins with the declaration o!Type to represent the syn-
tactic category of terms. The next three constants represent the object-logic
abstraction and application operations, and the equality judgement:

Arl(o ~00) —o 0 appleo —o0 0 —0 o =10 w0 0 —0 Type .

The axioms and rules of the equational théory of the relevant A-calculus are
encoded as follows:

Ee ! Azwv.z=zx

Eir ! Azwo.Ayo.a=y —o0 y==

Es 1 Azo.Ayo.Azo.2=y —0 y=z e =2

Ezs ! Azo.Ado.Ayo.Avo.a=3" —o y=¢y —o
app(z,y) = app(s’,y')

B 1 Axzio—oo.Aywo.app(ir(z),y) =xy

AN . co

The first three constant declarations, Fy to Es, encode the reflexivity, symme-
iry and transitivity properties of the object-logic judgement, =. The constant
declaration Fy; encodes the object-logic rule of congruence with respect to ap-
plication. Finally, the constant declaration 8 encodes application.

Now, the definition of x means that the Az:0 quantifies over all occurrences
of z in its body. Like the ILL example before, the encoding is illustrating a
propositions-as-types correspondence. This allows us to state a stronger repre-
sentation theorem than that given in Avron et al. [5].

Theorem 5.3 (Representation of A;) The encoding functions & are compo-
sitional bijections:
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1. X Fy, M if and only if z10,...,%010 i—gAI Ex{MYo, for z; € FV(M);
and

2. (M1 e Nl),. . ,(Mn = Nn) ’_)\f H(M = N) zfand only ’i‘,f $1:(£(M1) = S(Nl)),
cony 2 E(M,) = E(N,)) FE,\I Mn:(E(M) = E(N)), where Il is a proof
object of A; and Mnu s e canonical object of the A\, -calculus.

6 Further work

In this paper we have studied a framework, RLF, for uniformly encoding natural
deduction presentations of weak logics. Further work hased on this paper falls
into two groups. Firstly, we can continue the proof-theoretic work by exploring
the hyper-cube of intuitionistic and linear A-cubes, with “diagonal” edges deter-
*mined by a translation of the form considered in Definition 4.1. We have already
mentioned an extension of our current study to include the distributivity laws
.relating to contexts. We are currently studying the proposition-as-types corre-
spondence and a Gentzenization of the AA,-calculus. Secondly, a study of the
semantics of the AA.-calculus would bring together and generalize the Kripke
models of linear logic and typed A-calculus [2, 26]. We note that many char-
acteristics of functorial Kripke models of the All-calculus [31] — Tl-formation
as right adjoint to weakening, for instance — are not immediately applicable in
our case. We comment that, besides proof- and model-theoretic semantics, it
is also important to study the theory of meaning of the type theory [27]; our
discussion in § 2 barely touched on this.
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