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0 Notation

We will, unfortunately, have to consider rather a lot of systems, and some
uniform notation will be a help. LL will be classical linear logic; LLy will be LE
extended with modal operators of a certain sort. Typically, we will be given a
rewrite system ~+, and we will be using the modal operators of LL¢ to represent
it; given a rewrite system, we will define two inequivalent modal systems, L1730
and LL'1, which thus represent it. We will also want to detect when a sequence
of rewrites terminates; this will involve an extension of LLZ'1 by two more
operators, giving a system LLZ, .

Finally, given a system S, we will typically distinguish different presentations
of it by primes, thus: §, §', S, ... . (Terms such as S can thus stand both
for systems and presentations of systems; this ambiguity will not cause any
problems in practice.}

Sequent calculus rules may take different forms in different systems; when
(and only when) this may cause confusion we will distinguish them by adding
the name of the system in parentheses. For example, we will distinguish between

rras OR(LLo)
I'¢A A

and
I a OR(LLZ1)
I'FQA, A

1  Outline

We should first recall the use of linear logic in [35, 37, 39}; the first two papers
used linear logic to represent instances of the frame problem, and showed how
proof search in Hnear logic could be used to give a computationally efficient
algorithm for solving the frame problem. Finally, [39] showed how this approach
could be extended to deal with complex actions, describing a system which could
bisimulate GoOLOG.

We would like, then, to start with this basic approach and integrate it with
an account of ramification. Now since we can already simulate GOLOG, we
could, in theory, write down complex actions which would yield the desired
effects. However, we could justifiably have reservations about such a solution of
the ramification problem; the notion of ramification seems to involve a certain
division of responsibility between agent and workl, and we want our solution
to respect that division of responsibility. So we must first describe the problem
phenomenologically, and only then should we try to formalise it.

1.1 Phenomenology

First, then, we need some sort of technically noncommittal, phenomenological
account of ramification; we shall mostly follow Sandewall. His basic intuition is
as follows:

Suppose the world is in a stable state r, and an action F is invoked.
The immediate effect of this is to set the world in a new state, which



is not necessarily stable. If it is not, then one allows the world to go
through the necessary sequence of state transitions, until it reaches
a stable state. That whole sequence of state transitions is together
viewed as the action, and the resulting admitted state is viewed as
the result state of the action. [27, p. 15]

This picture of change has the following consequences for the treatment of ac-
tion; they can be regarded as a policy of modularisasion, of being able to divide
the theoretical responsibility of representing the effects of actions into concep-
tually distinct components.

Firstly, since the result of change is, as it were, a joint product of the agent
and the world, any formalisation should locate the properties of the world’s
response ~ which may be common to many actions — in the world-related part
of the formalism:

If some regularities in the world at hand are reflected in the con-
sequent side of several of the action laws, then it makes sense to
factor ont the common parts and to represent them once and for all
as “domain constraints”. Instead of just applying the action law to
determine the effects of an action, one applies the action law plus
the domain constraints. [27, p. 11]

Secondly, our description of the world’s response should likewise admit a corre-
sponding decomposition:

Consider applications where every scenario describes a number of
separate but interconnected objects, different scenarios involve dif-
ferent configurations, and each action has its immediate effects on
one or a few of the objects, but indirect effects on objects which are
connected to the first ones, in some sense of the word ‘connected’.
Then, it would be completely unreasonable to let the action laws
contain different cases which enumerate the possible configurations.
Instead, action laws should only specify the “immediate” or “pri-
mary” effects of the action, and logical inference should be used for
tracing how some changes “cause” other changes across the struciure
of the configuration at hand. [27, p. 11]

Sandewall’s program is as follows: he has a formal semantics based on the
basic intuition (it is, basically, described in terms of labelled transition systems)
{27, Section 5]. He then evaluates various proposed solutions for the ramification
problem against this underlying semantics. We will follow a similar path: first
we will describe our approach to ramification, then we will compare it with
Sandewall’s basic intuttion.

First some notation. States will be written as oy, 09,... and so on: the
transitions that Sandewall talks of will be written as oy ~ oo. We will suppose
that we are given an account of which ramification transitions are possible (that
is, we are given the relation oy ~ o03) what we are lacking is a representation
of all this in a suitable formal system.

1.2 Proposed Treatment

We recall [35, 39, 37] that we have a treatment of actions in linear logic accord-
ing to which executions of an action « in a state oy, resulting in a state oy,



correspond to linear logic proofs of the sequent
o, b ooy

where o}, ¢}, and o are suitable linear logic formulae.

We would like to be able to accommodate ramification by extending this
formalism. In line with our discussion of the phenomena, this extension should
lie in the world-related part of our formalism, that is, in the formulae o and
oh, which represent states.

Furthermore, we should notice that Sandewall’s description is in terms of se-
quences of state transitions. The set of such sequences has two properties: it is
closed under composition, and it contains the identity. More abstractly formu-
lated, we will have what can be described category-theoretically as a monad, or
proof-theoretically as an S4 modal operator. We should recall that 54 modalities
are given by the rules in Table 1; classically or intuitionistically, these rules give
the usual modal logic [34, Section 9.1}, but they can equally well be added to
linear logic and they satisfy the usual proof-theoretic properties (cut elimination
and so on) [18]. They are, in fact, somewhat like the linear logic exponentials,
but without the contraction and weakening rules. And it seems, then, that we
could have a linear S4 modality ~ call it { — such that transitions from a state
A to a state B would correspond to entailments of the form A’ - OB’. The
fact that the allowable transitions contained the identity would correspond to
the validity of A - Q0A, for any A; and the closure of the allowable transitions
under composition would correspond to the provability of Q0A F ¢A. We are
thus starting from our transition relation, ~+, and we want to represent it as
provability in linear logic enriched with suitable modalities.

So, if we had such a modality available, we could plug it in to the above
treatment of action, and express the fact that an action was performed in a
state s; leading — after ramification — to a state s; as the validity of a sequent

o, o b Qo).

This is, perhaps, not so unexpected; there is a certain history of using modal
operators on problems like these. McCarthy and Hayes [19, p. 472] de propose
a reading of modal operators in terms of rewrites, but their modalities are
normal Kripkean ones in a classical theory, and they are unable to make a very
precise application of the modal logic. Mads Dam [3] defines a modal system,
in the style of dynamic logic, extending positive linear logic. His modalities are
emphatically not the same as ours; for example, his validate (in our notation)
O(A® BY - OA @ OB whereas, as we shall see (Corollary 2, p. 29), ours do not.
Dam also has a somewhat different agenda to ours: he wants to find a logic
whose semantics is given by traces of a certain process algebra, up to testing
equivalence. This seems to be a delicate matter, and he consequently has to
limit himself to rather weak systems.

1.2.1 Strong Modalities

Let us, then, consider modal operators in linear logic. Semantically, the ¢ looks
very like a monad: that is, it is functorial (from A + B follows QA & OB), it
has a unit (that is, an entailment A F QA for any 4), and it is idempotent (we



have, for any A, an entailment $¢A - O A. We also need an implication
04V B) - {0A4) vV (¢B), (1

for any A and B. Given this, we get the usual classical sequent calculus rules.
Now we need the entailment (1) in order to be able to derive 0A + OB, OC
from an entailment A B, € {functoriality would only give us 0 A - O(BV ).
In linear logic, we have both additive and multiplicative connectives: the con-
texts on either side of a sequent are formed using the multiplicative connectives

(that is, the sequent '+ A is morally the same as ®?'}' ol J’QAé), so we need to
e 5]

know something about how the operators interact with these connectives. We
could consider the natural replacement for (1), that is

O(Aw B) F (04) % (0B), (2)
but (as we shall argue) this turns out to be not as interesting as
QA BYr (QA) 9 B; (3)

we shall, then, consider modalities satisfying these. In fact, (3) has three other
formulations, namety

(04) ® B+ ¢(A® B) (4)
O(49 B)+ (0A) % B (5)
(DA)®@B+D{A® B) (6)

and these turn out to be equivalent:

LeMmA 1 If ¢ is functorial, and if we define 0OA to be (()A"L)“L, then, in the
presence of cut, the sequents (3), (4), (5) and (6) (with A and B free) are all
equivalent.

PROOF (3) and (6) can be transformed into each other by replacing 4 and B
by there inverses, negating both sides of the entailments, and replacing 0 by ¢,
and similarly for (5) and (4).

From (3) we can obtain

O(A» B), B*F QA
by transposition. Now we replace 4 by A’ ® B’ and B by B'", and we get
O((4'® B') 3 B'), B'F0(4' @ B)

Now trivially we have A’ + (4’ ®@ B")p B, so, by functoriality and cut, we
have (4). The final equivalence is similar.

So we have several candidates for our axiom; of these, (4) is probably the most
convenient.

We need entailments of the form (4) (rather than (2)) because rewrites have
certain properties which we want to capture; in particular, if A ~ B, then, for




any X, A®X ~ B®X. Now A ~ B is supposed to correspond to the validity
of AF OB, and s0 we want the rule

AF OB
A®XF O(B®X)

to be admissible. A good way of ensuring this would be to have (0B) @ X F
¢(B ® X), which is just (4).

REMARK 1 The comparison with the classical case is instructive here. We could
just as well define modalities using rules like (4) in the classical case, but — if
we have V and L — they would turn out to be trivial; we would find that, for
any P, OP was equivalent to (¢ L)V P, and OP was equivalent to (07) A P.
We would not have added to the expressive powers of our language except by
naming two arbitrary propositions 0T and ¢ L. In the linear case, however, we
do not have these equivalences; O.P I+ (0 L)® P is valid, but not (0 L)®P + ¢P,
and similarly (01) ® P + OP is valid, but not 0P F (01) ®@ P.

Intuitionistically, however, things are more interesting. In a cartesian closed
category — whose internal logic is, of course, intuitionistic ~ we can define non-
trivial A-strong monads, and there are many interesting such. The theory of
these is involved in the semantics of partial functions. [21, 23, 22]

In sequent calculus, these issues show themselves in the left rule for ¢ (and
also, of course, the right rule for 0). The classical rule is

or, A - QA
OF, QAR OA

If we adopt (4), we get the following left rule:

T,Ak OB, A
T,0A4F 0B, A.

That is, in order to apply the left rule for ¢, we need exactly one modalised
formula OB on the right {or also a 0B on the left). This seems to make sense:
examples indicate that it is reasonable to have

Ooy, @ F Oy
whenever we have
ai, o+ Qob,
but that neither
Oal, Lo’ + Qoy,
nor
of, Do’ + Qo

have much physical significance in the cases we are considering.



Table 1 Sequent Calculus Rules for 84

I'AFA L orE B, A

e ] ———[1R,
T,04F A ar k- 0B, 0A
ar, A+ 0A I'FA,A

OL
Or, oA+ A CHOA A

Table 2 The System LL,

T A-A T, 04F B,A I'+04, B, A
i [}, e TR ———rmrem——— [R5
IOARA ,O0AROB, A oA, OB, A

I, AF OB, A T, A, OBFA kA A

I,04F 0B, A~ T,04,0BFA  ~ TFOA4 A

So we are led to consider modalities given by the rules in Table 2; we will
call these strong modalities (the category-theoretic counterpart of (4) is called
a strength). Conversely, the usual S4 rules (Table 1) will be called monoidal
modalities (since (2) makes ¢ a monoid in an appropriate category of endofunc-
tors).

This system, based on classical linear logic together with a strong modality,
will be called LLy; it will be our point of departure.

1.2.2 Axioms

As we have said, we intend to represent the possibility of a ramification transi-
tion, from state s; to state s2, by the provability of a sequent s; - sy, Now we
have talked about 2 logic, but we also need to write down axioms for stipulating
which transitions are possible. So, if we have an allowable transition ¢ ~ o'
(where o and ¢’ represent states), we want the validity of

g Oo'.

Table 3 The System LLo'

AFOB,A  THAA
OAFOB, A TFOA A

DAF (0AYY" (04N + o4




A good way of guaranteeing this is to have a rule
M4, A
THo(A'), A

whenever 4 ~+ A4'.

This gives us a right rule for {(c¢’) in the presence of rewrites; we would like
a corresponding left rules. There turn out to be two choices here: they are given
in Tables 5 and 6. There seem to be no phenomenological grounds to prefer one
set of axioms to the other; however, there are good technical reasons preferring
the system given by Table 6. Both systems satisfy cut elimination, but only the
system of Table 6 is functorial (that is, only in this system do we have QA - 0B
whenever we have A+ B).

1.2.3 Detecting Termination: the Subcategory of States

There is, finally, a further complication, which is that we cannot, merely with
this machinery, detect termination of the sequence of ramification transitions:
A+ OB isvalid if B can be reached from A by any sequence of transitions, rather
than by one of maximal length. We have, then, no notion of what Sandewall
calls stable states.

Indeed, we have no notion of states in the logic. We do use the idea of states
in the metatheory; we have assumed that the basic rewrite relation leads from
states to states, and that states are closed under ®. However, we still cannot
assert, within the logic, that a particular proposition represents a state. So we
introduce a propositional operator, a{-); o(A) will be the state described by
the proposition A. Furthermore, we will require our states to be closed under
@ as well as under @; this will give us disjunctive states, which will allow us
somewhat more flexibility when translating between representations,

So, first, we define a syntactic notion of state proposition; these will be the
formulae that can appear inside the operator o (-).

DEFINITION 1 (STATE PROPOSITIONS) We suppose that we are given a collec-
tion of ground atomic formulae, the state atoms. The stale propositions are
generated from the state atoms by @ and &.

Note that, because A® (B@C) 4+ (A® B) @ (A® (), state propositions have
a normal form (s of @s of state atoms), and that the validity of entailments
between state propositions is, consequently, decidable.

Let us now assume that our rewrite relation, ~=, holds between tensor prod-
uete of state atoms; we can extend it to state propositions in general as follows:

DEFINITION 2 The rewrite relation on state propositions is defined as foliows:

~+ coincides with the original rewrite relation on tensor products of atoms;
o If A~ B, then A~ B& B, for B’ a state proposition;
e If A~ Band A' ~ B, then A A" ~ B

~+ ig transitive.



Table 4 Rules for o(-) and 7(*)

T, Ak A Th A, A
()1 L — o()R?
T,o(A) F A THo(4), A
T, o(A4), o(A) F A Cha(d), A T'Fo(d), Al
: o(®)L a (@R
D, o(A® A) F A I, Fo(A®A), A, A
T,o(A)FA T, a(A)FA TFo(d), A
o(@)L a{®)R?
T, o(de A) FA I'ko(AaA), A
T, 0(41) - A IFa(As), A}y aymoia.
cr( 1) T(W)L4 { 0"( ) } {A)~a{A} T(W)R
U, r(A)F A LEr(A), A
I, m(4) @ (B} - A I'F o (A) @ B, Ado(a)moia,
(4) ®7(B) (@)L {I'+ o(4) Yoa) 49 @R
Lr(A®B)YF A CHr(A)® B, A

T,r(A)FA I, 7(B) A
T, {A®B)F A

(D)L

L 4 a state proposition.
24 2 state proposition.
24’ a state formula.
Lo (A) ~ a(41)

Provided that our original rewrite relation is decidable, this extension will be
also.

We can now introduce our two operators, o{-) and 7(+); o(A4) will mean that
A is a state proposition, and the rules governing T are such that o(A4) b 7(A) is
valid precisely when A is terminal. These two operators are given by the rules
in Table 4.

ReMARK 2 We need to introduce the operator o(-) for the following reason. In
order for the rules 7(~)R and 7(~) ® R to be acceptable as logical rules, their
antecedents should be decidable sets; so the ~» relation, on whatever domain it
is defined, should be decidable. On the other hand, it is technically advisable
that ~» should be cornpatible with logical inference on the domain on which it
is defined (and, in particular, if we have X ~ Y, and if Y is logically equivalent
to ¥, we should have X ~» Y"). Defining ~+ over the state propositions satisfies
both of these requirements; (') is essentially a sort of state propositions.

So, finally, we can construct a logical system in which the successful execution
of an action « in a situation s, leading, after ramification, to a stable situation
s, corresponds to the validity of a sequent

o(s), at O{r(s').

Formally, we define it as follows:

10




DeFINITION 3 (LL3, ) The system LLY, . is LL3'1 together with the oper-
ators o{-) and 7(-), satisfying the rules in Table 4; rewrites now hold between

propositions of the form o{A}, according to Definition 2.

The fact that all of these systems satisfy cut elimination means that we can
use an appropriately modified subformula property, namely that every formula
occurring in a cut-free proof is a forward or backward rewrite of a subformula
of the final sequent of the proof. This means that these systems are good
candidates for a computational interpretation, using proof search to compute
with actions.

2 Cut Elimination

. 2.1 Cut Elimination with {

We will now start on the cut elimination results for our various systems. First we
consider the system LLy, that is linear logic (without exponentials) augmented
by the rules in Table 2.

TueorEM 1 (Cut ELIMINATION FOR LLg) LLg satisfies cut elimination.

PROOF We prove this by the usual induction. Suppose that we have a cut of
the form

0 I

PG A T, CFA

" ’ cut
T, TWF A, A

There are several cases.

Axiom One of the sequents is an axiom, say the right one. We have, then,

I

"TFC,A CFC
T.T'FA C

cut

and the cut is essentially redundant.

Non-Principal The cut formula is non-principal in at least one of the se-
quents; say the right one. We now proceed by induction on the type of the
principal formula in that sequent.

2R In this case, we have
HJ

10 .
: I, CrA B, A

- PR
THC,A I, CFA®mB, A
T,T'+FA%B, A, A

cut

11



and we move the cut up, thus:

11 L1y
TG, A T,CrA B, A )
cu
T,T'F 4, B, A, A
2R
T, T'FA’S?B,A, A
®L Like 2R.
—o R Like %R.
®R We have
Hf H”

I . it

: O A A ™EB, A"

TFC, A ' 1", C-A®B, A, A"
1-\’ rf’ 1-\}! = A®B, a’ AI,AH

@R

cul

which we transform to
I I

: . 1"
TEC,A I, CkA4, A -

cut :
M A A A '+ B, A"

DIMT'FA®B, A, A", A" R
21 Like @R.
—o L Like ®R.
&R We start with
1 m
i I',CrFAA T, CkB A
Ik A ', C'F A&B, A & -
I+ A&B, A, A’
and transform this to
1 ¥ I 1

THC,A T CFAA TFCA T CEB A
LT FA A A T.I'F B, A, A
T.T' - AzB, A, A/

&R

L Like &R.

12




VR Like &R.

dL Like &R.
&R, We have
g
H I'CF A4, A oh.
'eC, A IMCHA®B, A
OL,I"FAe B, AA
and pushing the cut upwards we get
I Ir
THC, A T,CFA A
YW
F T FAeE A A T
&Ry Like ®&R;.
&L Like &Ry,
&Ly Like ®R;.
dR. Like ®R;.
V1. Like ®R;.
OR We start with
I’
H I, Ok AN
THC, A I, CFOA4 A .
I, T'FOA, AA
and we can transform this to
I I
THC, A {",C’}.—A,Acut
[LD'EA A A R
L, I'F QA A A

OL Like ¢R.

13



OR; There are two cases here, because this rule has a side formula, which can
either be the cut formula or not. The subcase where it is not the cut
formula is straightforward: we have

Hf
I .
: I, OA, G+ B, A' -
T-C,A  I',04,CFOB, A t
Ci
I, T, 0AF OB, A, A
and we can derive from this
10 i
I'C,A TI'.C 0AFB, A t
cu
I,I', DA+ B, A, A/
ORy

I, I/, 0A+ 0B, A, A

If, on the other hand, the cut formula is the side formula of this application
of DRy, we must have

HJ
I :
: IV, 0C + B, A
: o
I'k0C, A M, oCr+-aB, A
oL,IM-aB, A, A

Ry

cut

We now have o examine the proof II. If the bottom inference is an axiom,
or if €' is not principal in the bottom inference of T and that inference is
¥R, ®L, — R, ®R, %L, — L, &R, &L, &Ry, DRs, &L, &Lz, ¢R, or
OL, we can immediately push the cut up on the left, rather than on the
right, using exactly the same reasoning as above. If the bottom inference
is OR;y, ORg, OLq, or {Lg, and if the cut formula is neither principal nor
a side formula, then we can do the same. The cut formula cannot be the
side formula of any of the modal rules; none of them has a necessitated
side formula on the right.

So the only subcase left is where the proof is as above and the cutformula
is principal. In this case, the bottom inference must be OR; or ORs;
suppose, for definiteness; that the inference is f1R;. We then have

ii I
I,0AFC, A . oCk B, &
R e——— |~ ORy
T, 0AF0OC, A I OC - OB, A .
cu

I T, 0A+OB, A, A/

14



which we transform to

II
: 118
INOAFRC A :
ToAFQC A ', nC+ B, A :
cu
I,TV,OAF B, A, A
OR,

I, DAFDOB, A, A
The subcase when the bottom inference of IT is (1R is exactly the same.
Principal The remaining cases are when the cut formula is principal in both

subproofs. We divide by cases according to the principal connective in the cut
formula.

©® We have
H III' }"IH
reA4, A TFB A . T A, BF A" o
® — s m————
[T FAQB, A, A T A@BF A"
LTI FA, A, A

eut

which becomes
H HH‘

I : :
: THAA T A BEA"

I+ B, A I. 1T BF A, A"
LT, T F A, A, A7

cut

cut

2, —o Like ®.
& The proof will either be
n it T
T4, A TFBA T, AF A
AR m—
N A&B, A TV, A&BF A'
LT+ A, A

Ly

cut

or will be of the same form but with II' ending in &L, In the first case
(the second is, of course, completely analogous) we replace the proof with

I Ir'

TFAA I AFA
T.TFA, A

cub
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& Like &.
V Like &.
3 Like &.

[ There are two cases, depending on the right rule applied to O in the original
proof. Suppose that it is OR;; we have, therefore,

I g
I OAF B, A I BF A
— [1R — L
D, 0AFOB, A M aBk A
LY, o4 A, A

cuf,

and we replace this with
I I

T OAFB A T.BFA
O,T, 04F A, A

cui

If the right rule is GR, the proof is, of course, much the same.

¢ Like 0.

2.2 Incorporating Rewrites as Axioms

The above cut elimination result is, of course, for systems without axioms. In
practice, though, we will have in mind a particular collection of rewrites which
we will want the modality to represent; so we want to know how to present
systems with axioms which encode a given set of rewrites,

First we define the sort of propositions that our rewrites will act on.

DEFINITION 4 A state proposition will be a finite tensor product of non-modal
atomic propositions.

Next we assume that we have a suitable rewrite system.

DErmNITION 5 Let ~vp be a set of basic rewrites: that is, it will consist of a set
of pairs {A; ~so B; |i € I}, where A; and B; are state propositions for all 4.

We now extend ~g to the set of all state propositions by Definition 2 (p. 9).

We can now modify our rules for the modal operators to accommodate these
rewrites. As before, it is simpler to give rules in the style of Table 3; that is, we
first give rules for ¢, and then define O in terms of {. It turns out that we can
give two systems, differing in strength; the weaker one is weirdly intensional,
but we will need it for representing certain things.

DEerFmNITION 6 Given a rewrite system ~», we define two linear modal systems:
LL3 0 is given by the rules in Table 5, and LLZ 1 is given by the rules in Table 6.

16



Table 5 The System LLJ0

([, AiF OB, Aams T AL A

I, OAF OB, A L' 0A, A
LHo4L, A I, 0A A
e L, OO A—
I,OAF A PFDOA4, A

In OR, A, is a proposition such that 4; ~~ 4; in QL the A; are all of the
propositions such that 4; ~ A.

Table 6 The System LLZ1

LAFOB A T, Ak OB, A L Tra,a
T, 0AF 0B, A T, Ay, ..., A F OB, A THOA, A

I OAY, A I, 0AL A
———— L — ——OR
T, OAFA o4, A

In OR, Ay is a proposition such that 4; ~» 4; in ~» L, 4;,... , 4, are proposi-
tions such that (4, @ ... @ 4,) ~ A.

REMARK 3 We could, if we wish, modify the rule ¢L of LLTO to

[A;F OB, A| As~o A, A # A} AF OB, A
GAF OB, A

oL/

and modify OR by only admitting A;s with A1 ~¢ A. It is easy to show,
using the transitivity of ~», that the two systems are equivalent. The modified
presentation would have the advantage that QL would have finite antecedents in
many cases its first version did not. However, the rules as we have given them
are more straightforward to prove cut elimination for.

PROPOSITION 1 The three systems LLg, LLZ'0, and LLT'1 are related as follows:

Lyt
+<>R(Ls,5*z)+7 \WL
LLo LLy0

that is, every rule of LL; is admissible for LL' 1, every rule of LLZ’0 is admissible
for LL 1, and LLY 1is obtained by adding QR(LLY'1) to LLo (in the presence
of cut), or by adding ~+ L to LLF 0.

Proor The admissibility part is trivial.

Suppose now that we consider the system LLy + QR(LLZ 1); this is clearly
closed under all of the rules of LLT1 except maybe ~ L. So if we have a proof
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IT, in LLy + QR(LL 1), of the antecedent of ~» L, we can prove its consequent
as follows:

I
AL A A .84, Ry D F OB, A oL(LLy)
A1, .. A FOA 0 I, 0AF OB, A ¢

cut

T, Ay, ..., A F OB, A

Similarly, the system LL3 0+ ~» L is clearly closed under all of the rules of
LLZ'1 except possibly OL(LL71). So if we have a proof II of the antecedent of
QLLLT'1, we can prove its consequent in LLE 04~ L

I

L, AF OB, A .
T, A; F OB, A
I, 0AF OB, A

Aim A OL(LLXO)

LEMMA 2 In LLTO,
[LOAFO(®v) @ 4)
el

Proor Obvious.
LemMa 3 In LLTO,

GOBF OB
ProoF Obvious.
PrOPOSITION 2 In the presence of cut elirination, LLZ0 together with func-
toriality:

Al B

AL OB
is equivalent to LLZ'1.
Proor We will show that, given LLy’0 together with cut and functoriality, we

can get ~ L. Suppose, then, that A" ~» A and that we have a proof I of
I', A+ QB. The resulting proof of I', A’ + OB is given in Table 7.

REMARK 4 This is basicelly rather bad news for LL;'0; we cannot do much
without functoriality of ¢. For example, we cannot automatically substitute
logically equivalent propositions inside ¢. But if we impose functoriality, LLF0
turns into LL 1. Nevertheless, we will find it convenient to use LLZ0 in its
pure state occasionally; for example, as Corollary 3 shows, LLT0 represents
Thielscher’s approach to ramification fairly exactly.

We can now prove cut elimination for these systems.

TrEOREM 2 (CuT ELIMINATION FOR LL30) Any proof II of a sequent I' - A
in the system LL70 can be transformed into a proof I’ which is cut free.

Proor We need to check the following cases, which differ from the proof of
Theorem 1.
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Table 7 Functoriality + LL3'0 = LLF'1
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Non-Principal Here we need to check the case where the cut is against the
side formula of OL; we can assume that the cutformula is principal in the other
subproof. Consequently, the bottom inference of the other subproof must be
L, and the proof looks like

I
. 1
A FOB, A A d .

oL .
T OAR OB, A ', 0B QC, A’

I T 0A R QC, A, A

cut

We can move the cut upwards, which gives us this proof:

I g

T, AiF OB, A T, 0BF 0C, A’
cut
T, T, 4+ 0C, A, A .y
L, T, 0AF OC, &, A

Principal We need to check the case where the cutformula is principal in 0L
and OR. So the proof is

H { : }
TFA;, A " :
vl OR F 3 AaL l” OB, A Ajs A OL
FFQA A I, 0AF OB, A
D,IV-OB, A A

cut

Here A; ~ A, so A; must be one of the 4;. Consequently, we can move the cut
upwards:

II 11

ChA;, A T, AjF OB, A
[, I F OB, A, &

cut

THEOREM 3 (CuT ELIMINATION FOR LLZ1) Any proof IT of a sequent T' - A
in the system LL7"1 can be transformed into a proof I’ which is cut free.

PROOF Again we need to check the cases which differ from the proof of Theo-
rem 1.

Non-Principal The new rules come into play when the cutformula is the side
formula in QL or in ~ L. In both cases we can assume that the cutformula is
principal in the other sequent,
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OL: The proof has the form
I

. I
T,AEOB, A :

e L .
F,0AFOB, A IV, 0B F OC, A
¢
T, 04FOC, A, A

ut

and we can fransform this to

I I

T,AF OB, A I',0BF0C, A’
T I, AF 0C, A, A ¢
T T, 0AF OC, A, A

ut

OL

thus moving the cut upwards on the left.

~+ I, In this case the proof has the form

1
. 1T
T, AFOB, A :
T, A4, ..., A FOB A ', 0B+ 0C, A .
. cu
I, T, A, ..., A OC, A A
where (A, ..., 4+) ~ A. So we can move the cut upwards on the left
thus:
I I
T, AFGOB, A IV, 0Bk OC, A t
cu
LI, Ak QC, A, A
~r L

T, TV, Ar, ..., A F OC, A, A/

Principal We now have the cases where the cutformula is principal in both
premises, and where the new rules are used in at least one of the premises. So
these are as follows:

OR,,OL Here the proof is as follows:
11 Ir
Tk A, A . ' A+ OB, A’
TFOA A I, A OB, A
L, -OB, A, A

cut
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where A; ~+ 4. We can move the cut upwards and obtain

HI
I :
: M, A OB, A
. PR
AL A IV, A; - OB, A .
' cu
D,IT"F OB, A, A
@R,~+ L The proof must be of the form
Hl I:!2 nn
ThALA Tk Ay, A . T Ak OB, A"
®
T, F’§”A1®A2, AL A F”, Ay ®A2,A3,...,ATE—OB, A"
cut
LI, As, v, A OB, A, A, A
which we can replace by two cuts higher up, thus:
l‘IH
1T :
: I, AF OB, A"
H2 . ~ I
. PFHALA ", Ay, Ag, As, ..., A F OB, A" :
‘ cu
b Ay, A DY, Ag, As, ..., A H OB, A, A"

LT T, As, ..., A, F OB, A, A, A"

(the side conditions for the ~ L rule are, for both proofs, that (4, ®...®

An) - A
&R, ~+ L The proof must look like
I Ir'
THA A T, CF oD, A'

TFA®B,A I, A®BF 0D, A'
T, T 0D, A, A

where A@® B ~» C. Now if A ~ A& B, so, by the transitivity of ~, we
must have A ~ ', so we can move the cut upwards thus:

HJ’
I .
: I, C+ 0D, A
TFA A [, AFOD, A
T,I'F 0D, A, A

Finally we state and prove a theorem about the permutability of the various
rules.
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THEOREM 4 (PERMUTABILITIES FOR LL3’1) The only cases in which the rules
of LL 1 cannot be permuted with each other are the following:

1. Neither ®R nor 'L can be permuted below 2R or ®L.
Neither @R nor ¥L can be permuted below &R or L.
Neither @R nor %L can be permuted below L, OR, or ~+ L.
Neither ®R nor &L can be permuted below &R or @lL.
Neither 3R nor VL can be permuted below &R or @L.
Neither 3R nor VL can be permuted below VR or ZL.

P T

Neither ¢L nor GL can be permuted below ¢L, OR, or ~» L.

PROOF We can quote Troelstra [33, pp. 340f) (who cites Lincoln [16}), or
Pym and Harland [26), for the permutabilities involving the non-modal rules.
The permutability of QR and OL below the non-modal rules is clear, as is
the permutability of ¢L and OR below the &, &, ¥ and 3 rules. Finally we
need counterexamples for the stated exceptions. A counterexample for the non-
permutability of ®R under L (3) is given by:

BF B
A-A UO©BFB
A 0OBFA®DB
OA, B-A®B

The example for ®R and OR is, of course, similar. A counterexample for the
non-permutability of ®R under ~ L is given by :

B+ B

A Ay oB+-B
A, 0B-A 9B
A OBFA B

ey

where A ~ Aj.
Finally, a counterexample for 7 is given by the obvious (indeed the only)
cut-free proof of 0 A+ A, for A atomic,

2.3 Cut Elimination with o and 7

B

We now give cut elimination results for the system LLo,a,a—' First, however, a
foolish little lemmas:

LEMMA 4 T we have a cut-free proof of I', 7{4) F A, then there is a cut-free
proof of some sequent T, o(A;) = A for some 4; with o{A4) ~ o{4;).

Proor An obvious induction on the size of the proof.
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THEOREM 5 (CUT ELMINATION FOR LLY, ) Any proof in LLY, . can be

. [e X408 0,0,
transformed into one which has no cuts.

ProOF Since we have already proved cut elimination for LLE'1, there are two
things to check; firstly, that cut elimination for LLZ'1 is not broken by the new
operators, and, secondly, that we can eliminate cuts involving the new operators.

In order to show that we can still carry out cut elimination for LEgl in
the presence of the new operators, we must show that cuts can still be moved
upwards across rules in which they are non-principal. But this is immediate; the
new rules which we have introduced are either single premise rules or behave
like &R, so that moving cuts upwards across them is straightforward. What is
crucial here is that none of the o(-) or 7{-) rules has side formulae.

Now we must deal with the case where the cutformula is of the form o{A4)
or 7(A4) and is principal in both premises of the cut.

Cuts with o{4) First we deal with cuts involving or(4). The rules which
have o(A) as a principal formula are the o rules given in Table 4, and also the
rule ~ L.

o{}R, o{-)L The cut looks like this

THA A T, AR A

e g (JR e g (edot) L
I'toa(d), A I, o{A) F A et
T,I'FA, A
and moving it upwards is trivial.
o(-)R, o{®)L The cut looks like this:
11 Ir
ThA®B, A sor Do) o(B) - A’
I'Fo{A® B), A I, o(A® B} - A
L, T FA, A out

There are two cases. If A® B is not principal in I, then, since 4 ® B is
not modal and consequently cannot be a side formula, we can move o(-)R
(and with it the cut) upwards. Otherwise, we can write I' = I'; U T,
A= Ay U Dy, and we have proofs Iy of Iy A, A; and IT; of Ty F B, A,
out of which I arises by ®R. So we can transform the proof to

11y
1, ; w
: Ty A A :
Tyt B, Ay DiFo(d), Ay IY, o(A), o(B) - A i,
s - U‘(B), Ay Pl, I", O'(B) F A;,Af cut

I‘la F2: I Ala Aﬁ: A

which moves the cut upwards.
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o(-)R, o(@)L Here the proof looks like
1l
THA®B, A T,od)FA T, oB)FA
Cho(Aa B), A I'e(Ae BYF A’
D IYEAA

cut

Here we argue by cases, according to whether A @ B is principal in II or
not; the argument is much like that of the previous case.

o(®@)R, o)L Here the proof is of the form
III'
Lk o(A), Ay ToFo(B,A; T, A®BFA
Ty, Teo{A®B), A, Ay F', U(A@B)}‘AI
rl: FZ: T’ + Ah AQ? A

cut

and we argue by cases on whether A ® B is prineipal in II' or not.
(@R, o(@)L We have
Tibo{d), Ay Tobo(B), A, I, 0(4), o(B)F A
I‘g,FgFU(A@B),Al,AZ F’,O’(A@B}}‘A’
Iy, Do, TV F Ag, Ag, A

cut

and moving the cut upwards is trivial.

a(®)R, o)L The proof must be of the form

HI
Tk o(4), A I A®BF A
Fte(A®B),A T olAdeB)FA

cut

I, T -A, A

As usual, we argue by cases according to whether A® B is principal in II'
or not.

o (@R, (@)L Again trivial.
o{)R, ~ L We start with the proof

I
kA A I o(4) F OB, A’
— &R
TFo(d), A I o(4) - 0B, A
cu
I,I'-OB, A, A
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where o(4) ~ o(4;). We argue by cases, according to whether A is
principal in II or not. If it is not, we can simply permute the rule c{ R,
and with it the cut, upwards in II. If A is principal, then IT is an axiom
ori8 ®R or ®R. I II is an axiom, we can trivially eliminate the cut; if
IT starts with ®R, we can permute o(-)R upwards and replace ®R with
a(®)R. This reduces this case to the next one. The argument for the case
when II siarts with ©R is entirely similax.

o(®)R, ~+ L We deal with this exactly like the case ®R, ~ L (Page 22) of
Theorem 3.

o(@&)R, ~ L Here the proof looks like
1 ¥
I'Fo(4), A I, o(A) F OC, A
F'Foe(AeB),A TI',oc(AeB)F OO, A
TR OC, A, A

cut

Now we have o{4) ~ o(A® B); we also have (A ® B) ~ o(4;); so we
have o (A) ~» o(A4;) and we can rewrite our proof as follows:
Hf
I :
2 L, o(A:) F0C, A
T'ko(A), A I, oA} OC, A
c
' I['FOO A

ut

Cuts with 7(4) We now deal with the cases where the cutformula is of the
form 7(A) and is principal on both sequents.

7(~)R, 7(~)L We have

{ i1, } o
CFo(A), A ) piyoony T o(d) - A
I'-r(4), A T, r(A - A
TTFA, A

cut
which we replace with
I; I

TFo(A), A TV, a(Ay), A
T, T F A, A

cut
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7(~=)R, 7(®@)L Here our proof looks like

11, Ir
{ THa(C) A ) oppommocy T TA)OT(B)F A’
TFr(A®B), A I, r(A® B) I A
LT FA, A

Consider the sequent I' v 7(4) @ 7(B), A; if we first apply the rule 7{~)
® R to it, we have premises I + o(4;) ® 7(B), A where the o(A;) are
all the rewrites of o(4). If we then apply the same rule, but to v(B) in
those premises, we find we have premises I' I o{4;) ® o(B;). However,
note that each o{4;) ® o(B;) is equivalent to a o(A; ® B;}, which is a
rewrite of o(A ® B); so, among the proofs II;, there must be a suitable
proof I ; of T+ o (4; ® By), A. So, finally, we have the proof in Table 8.
Here the bottom cut is higher up on the right, but lower on the left; a
suitable definition of cut rank will allow us to make an induction.

7(~)R, 7(®)L We have

cut

Ii; ;
{ . } 1-1.”
'+ G(AZ) @ U(Bﬁ’ A) a{ Ao (A;),0{B)wc(B;) :
THr(A® B), A T, r(A® B) F A’
T IFA A ¢

We apply Lemma. 4 to II' and find a proof II" of I, o (4; @ B; for some ¢
and 7. So we can rewrite the proof

i T3

ut

THo(di®B), A T, o(deB)r A
C
DI FA, A

ut

7(~) ® R, ®L We have

I, I
{ PFo(A) @B, A J yimony I T(A), BEA
r+r(A)® B, A I, 7(A)® BF A’
[
T,T'FA, A

We can now apply Lemma 4 to [T and find a proof II" of T, o (4;), B+
A’ for some suitable 4;. So we can now rewrite our proof as

HH

I ;
: T,o(4:), BF A

THeo(4)®B, A I o(d)®BrA
T EA, A

ut

cut
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Table 8 The Case 7()R, 7(®)L
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which moves the cut upwards on the left.

3 Applications

Here we compile a list of results about inference in the various systems. Some
of them are elementary, whereas others {the “coroilaries”) use cut elimination.

CororLLARY 1 The only valid instances of Ay, ..., 4, F ¢B, in either LLF0
or LLF'1, and in which 4; and B are state propositions, are those in which
(A ®...®A4,)~ B,

Proor We must apply the OR rule at some stage, at which time we must prove
an entailment of the form

ALA", ...F B, {7)
where the As and B’ are state propositions, B’ ~» B, and
2 A'@A"... inll0
Ai®...®9A ¢
19 T{WA’@)A"‘.. in LL3'1
Now {7) is only valid if A’ ® A’ ® ... = B", so we have the result.

COROLLARY 2 In any of the systems, (4 & B) F 0A @ OB is not valid for
general A and B.

PrOOF For general 4 and B, non of the rules encoding rewrites are valid, so
we are reduced to the rules of LLy. In this system, we must first apply ‘@R,
followed by either QR or ¢L followed by QR; neither choice leads to a proof.

ProrosiTioN 3 In all three systems,
AQB F O(A®B)
0A, 0B + Q(A®B)
ProorF Obvious.
CoroLLaRY 3 In LLY 0, the only valid sequents of the form
A, A" — B'+ 0B,

where A, A', B and B’ are state propositions, are those in which there is an A"
with A= A" ® A" and (A" @ B') ~ B.

Proor Consider a cut free proof. We must use OR before we use ®R, and we
might well have to use ®L before any of the environment splitting rules; but
otherwise the order of application of the rules is pretty well immaterial. So a
representative proof will be

A" A" B'+ B
A" BHrA" 9B
A A A", B'-0B
A, A" A - B 6B
A, A~ BF OB
and the constraints on the state propositions are evident.
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COROLLARY 4 In LL3'1, the only valid sequents of the form
A A" — B\ 0B,

where A, A, B and B’ are state propositions, are those in which there is an A"
with A ~» (A’ ® A") and (4" ® B') ~ B.

PROOF Much the same, except that we are now allowed to use ~ L, so proofs
will now look like:

A"F4"  B'FB
A", B'F A" QB
AF A A", B'F OB
A, A", Ao B+ OB
A®4", A~ B 0B
A A~ BF OB

®L

~ L

(applications of ~~ L later in the proof can be incorporated either into the first
one or into the application of ¢R}.

REMARK 5 Corollary 3 almost gives a proof-theoretic treatment of Thielscher’s
algorithm in [30, 31]. He there describes a treatment of ramification in which
one first computes the direct effects of actions using the “fluent calculus” [29]
(by [8] this is equivalent to non-modal linear logic), and then applies a rewrite
system to compute the ramification. We can obtain the same effect by applying
Corollary 3 to inferences in which A is an input situation, B an output situation,
and A’ ~o B’ is an action. The proof of the corollary shows that our proof search
can be split into two phases: a non-modal phase, which computes the direct
effects of the action, and a modal phase, which computes the ramification. This
almost translates Thielscher’s algorithm into proof theory; what we cannot yet
handle is detecting whether the sequence of ramifications has terminated. Our
proofs, that is, sequents describe sequences of ramifications of any length, and
not just the sequences which terminate.

REMARK 6 Corollary 6 generalises this algorithm; it shows that it is possible to
apply rewrites both to the input situation and to the outpui situation. This is a
much less synchronised mixture of action and ramification than that described
in Corollary 3. In general, one of the main differences between LLy G and LLY 1
is that the latter is less synchronised than the former.

CoroLLARY 5 In LLY ., the only valid proofs of o(4), o(4") — o(B) F
¢7(B), where B is a tensor product of atoms, are those in which there is an A"
with o(A) ~ o(4' @ A") and (A" @ B') ~ o(B) and in which B is terminal

{i.e. there are no non-trivial rewrites from B).
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Proor Proofs of the sequent in question are now going to be of the form

o(B) - a(B)
o TR
o(B) - 7(B) -l
o(AVF A o{A"), o(B')F Or(B)
o(AN, o(4"), 0(4") — o (B) - 07(B)
o(d'® A"), 0(A") — o(B) V- Or(B)
o(4), o(A') — o(B) F O7(B)

ExaMpPLE 1 (BALLS AND STRING) We quote the scenario from [36]:

OR

®L

~ 1

There are two balls (b; and by) linked together with a string s of
length 1. There are three locations: I is on the surface of a table,
1, is one unit above it, and [y is two units above [y, At time O the
two balls are at ly and the string is slack; bs is then raised so that,
at time 1, it is at Iy and, in consequence, by is hanging below it at
ly.

We can handie this with the rewrites

at(h, L) @at(h, ;) ~  at(b L) ® at(¥,Liy)
i=1,2,3,j<i
at(b, ;) @ at(h',1;) @ slack(s) ~ at(b,l;) ® at(¥,1;) ® taut(s)
4§ =0,1,2,3,0% ]
at{b, ;) @ at(V', ;) ® taut(s) ~ at(h,l;) ® at(t, ;) ® slack(s)
i=0,1,2,3

and we look for proofs of the sequent
o (at(by, lo) ® at(bs, lo) @ slack(s)), o(at(bs, lo)) — o (at{be,l2}) F O7{X),

where X is a tensor product of atoms; because of Coroliary 5, the only such
proofs are those in which X corresponds to the correct final situation.

The interesting thing about this example is that, even though it is quite
simple, the standard minimisation approach does not work on it ({36] [40]{38]).

ExamprLE 2 {PasTA) Here is the scenario.

I have a pan of water and some pasta; there are two actions, heat,
which heats the water, and put, which puts the pasta in the water.
The pasta can be in or out of the water, so we have fluents in(pasta)
and out(pasta). Both the water and the pasta can be cold, warm,
or hot: so we have fluents cold(water), warm(pasta), and so on. If
the pasta is in the water, the pasta and the water acquire the same
temperature {in particular, if cold pasta is put into hot water, we
end up with warm pasta in warm water). '

Initially the pasta is out of the water, the pasta is cold and the water
is warm, and I simuléaneously heat the water and put the pasta in.
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We don’t have any formal treatment of simultaneous actions, although one could
be given by extending the treatment of [39]; we can handle this case more
simply by simply defining a composite action whose postcondisions should be
hot(water) ® in(pasta). Ramification is easily handled by rewrites of the form

hot(water) ® cold(pasta) ~»  warm(water) ® warm(pasta)

Notice, however, that this example is problematic for the usual approaches,
because the ramification destroys one the of postconditions of the action. How-
ever, the standard approach (such as that of [28, pp. 122f]) makes it necessary
for the postconditions of any action to hold in the situation which is the result of
the action, even after ramification. The motivation for this may well be Lewis’
analysis of counterfactuals, namely {14, p. 10]:

[A counterfactually entails C] is true at [a world] 4 iff some (accessi-
ble) A A C-world is closer to ¢ than any A A ~C-world, if there are
any accessible A-worlds.

This would certainly yield something like the standard analysis (with its unwel-
corme consequences) if we read ‘4 causes 7 as ‘A counterfactually entails C7; if
we allow this, then circumscription can be thought of as spelling out, in formal
terms, what it means for a given world to be closest.

However, the identification of ‘A causes C” as ‘A counterfactually entails ¢
is probably not something that Lewis would agree with. He does use his analysis
of counterfactual implication when he analyses the concept of causation, but he
explicitly takes the transitive closure of the relation thus obtained [13, p. 167),
thus making his approach quite close to Sandewall’s [27, p. 15]. Taking the
transitive closure in this way makes his analysis vastly more plausible, but it
also makes it much less useful as a direct justification for minimisation-based
approaches to the frame problem.

The following pair of examples is due (in slightly different form) to Myers and
Smith [24] (see also {7], [28, pp. 289f]).

ExamprLE 3 (WET BABY) The scenario is this:

There is one agent (a baby) which has two actions, crawl_in and
crawl_out, which, respectively, take the baby into and out of a lake.
The baby is initially dry; crawling into the lake causes it to be wet,
but crawling out does not cause it to be dry.

This is easily handled in the usual manner, with the single rewrite
inlake @ dry -~  inJlake ®@ wet
EXAMPLE 4 (ENDANGERED BABY) The scenario is this:

There is one agent (a baby) which has two actions, crawlin and
crawl_out, which, respectively, take the baby into and out of a lake.
The baby is initially safe; crawling into the lake causes i to be
endangered, and crawling out causes it to be safe again.

We treat this with two rewrites, namely

in_lake @ safe ~+ in_lake @ endangered
on_land @ endangered -~ onland & safe
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There are two things to notice here. Firstly, we see that the dynamic behaviour
of these examples cannot be captured merely by giving state constraints; the two
of them (under the obvious correspondence) have exactly the same set of legal
states, but different dynamic behaviour. Secondly, our treatment is particularly
simple: Shanahan [28, p. 290] handles these two examples in the event calculus,
but his formalisation is quite complex.

Next we have an example which incorporates some element of explanation.

ExaMPLE 5 (TURNING THE LIGHT ON) The scenario is as follows (see [27, p. 13])

There are two light switches, either of which can switch a light on.
Initially the light is off: the agent switches the light on.

‘We can handle this as follows. If the two switches are & and sz, we will have
fluents up{s;), down{s;}, on and off. The rewrites are

up(s;) @ up(sa) ®on  ~»  up(s;) ® up(sy) @ off

up(s1) ® down(sz) ® off ~~» up(s;) ® down(sz} ® on
down(s;) ® up(s2) ® off ~» down(s1) ® up(s2} @on

down(s;) ® down{sz) @ on ~» down(s1) ® down{sy) ® off

Finally, there are the actions. We define toggle(s;) to be
(o (up(s:)) — o(down(s;)))&(o (down(s;)) — o (up(s;)))
and we look for proofs of
o(up(s1) ® up(s2) ® off), Vz. toggle(z) F ¢T(on @ Y)

Using cut elimination in the usual way, we find that the only proofs of this are
those in which @ is one of the s; and in which toggling the relevant switch has
the expected effect.

4 Semantics

4.1 Phase Semantics

We now describe a semantics for our modal operators; this will be modelled on
Girard’s phase semantics [5, 4].

DEFINITION 7 A phase frame is a tuple MM = (M, 0,1, 1,(-)°), where (M, o, T}
is a commutative monoid with unit, and where, if we define

moX def {mom{mEX}

mom ¥ VYneMmonel smongl,

(for X C M and m,m' € M} we have

s L is a subset of M downward closed under C, and
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Table 9 Phase Semantics

[A—B] = [4] —[H]

[[A-J-]] — {[AE.L
[A®B] = (EAEOI[B]})“L
[4%B] = ([A]"o[B]Y)

[L] = L

[1] = o
[A® B} = ([4u[B)*t
[A&B} = [4]N[B}

oy = g+t

KTE wmo M

[o4] = (A1)

[04] = ([4*19"

o ()% is a map P(M) = P(M) such that

°oc ol (8)
ACB = A°CBH ©)
mo(47) € (mod)° (10)
meA = Om e (A’ . mCm' (1L

forallme M, A€ PM.

A good way of getting such an operation {-)° is the following:

DEFINITION 8 A relational phase frame is a tuple 0 = (M, o1, L, p), where
M, o1, L are as above and p is a relation on M such that

e xpyAc el = ye l,
o TPy - (mom)p(yom),a.nd_
s spy = Hxapzhepr Ayl

Given a relational phase frame, we define the associated phase frame by adjoin-
ing to M, o1, L the operation A — 4° ={z |Vy.zpy — y€ A}.

REMARK 7 It is elementary to prove that the associated frame of a relational
phasge frame is, in fact, a phase franie.

We now define the following operations on PM:

DeFNITION 9 If X, Y ¢ M, we define

X—Y = meM|VeeX.mozeY)}
Xt = X oL

Having defined frames, we can now give semantic values to formulae; this
definition is closely analogous to [5, p. 23].

34




DEFINITION 10 Subsets of the form X are called facts. A semantic valuation
is given by an assignment A ++ [A] of atomic propositions to facts of M, and is
extended to the whole of the language by the clauses in Table 9.

LeMMa 5 Form,m',n € M,
mCm — monCmoen
Proor Obvious.

LemvMa 6 For A,B € PM with B downward closed, A — B is downward
closed.

ProOOF Suppose m € A — B, and suppose m' Zm. Then, for any a € A4,
m'oa T moa € B, and B is downward closed.

LeMMa 7 Facts are downward closed.

ProoF . is downward closed.

LEMMA 8 For any formula A of the language, [A] is a fact.
ProoF A straightforward induction.

LEMMA 9 For 4 a fact, A° C A,

PROOF We first establish that AL C A°%. Suppose m € A, and suppose
n € 4° Then, since mo A C L, mon € moA®° Cmod® ¢ L° C 1, s0
m € A%,

So now we argue as follows: by the contravariance of (-}, we have A%+ C
AtL but A° € A+ which gives the result,

LeMMA 10 For 4 and B propositions, [4 % B]" = [A' ® BL]
ProoF Immediate from the definitions of [- ® -] and [- '8 -]
LEMMA 11 For X ¢ M, X+ = X+4+4,

Proor Clearly, forany ¥ C M, Y C Y44, so we have X+ C X++b . However,
by definition, )i'-L-Lo(J‘(-’"J")"L C I,and X € X+, so we have Xo(X"’WL)L c.L,
and so X+ C xL.

LeEmma 12 For X € M, X+ is the smallest fact containing X.

PRrOOF (See [4, Lemma 1.13.1].) Clearly X1+ is a fact containing X. Suppose
Y is a fact containing X. Since Y is a fact, ¥ = ZL for some Z; but then
YAt = Yl = YL o ¥ So we have

X C VY
= Y+ Cc X+
=» XM o oyt -y

LeMMA 13 For X, Y, ZC M, (X = 2N — 2) = (XUY) — Z.
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Proor Immediate from the definition.
LemMma 14 T£ X, Y € M are facts, then X 1Y is a fact.
Proor Use Lemma 13.

LEMMA 15 For propositions A and B, [A @ B]* = [AteB'] and [A&B]" =
[4+ @ BL].

Proor For the first,
[A@ B]* = [4]uB]"**

={A]u Bl

= (4} n (BT

= [A*&B'];
this yields the second on dualising.
LEMMA 16 For any formula 4, [A] = [A++].
ProoF By Lemma 8, [4] is a fact; by Lemma 11, [A] = [A]™"; and, by the
definition of g(-)iﬂ, [A]* = [A+L].
LEMMA 17 For A, B and C formulae, we have

[4] € [B=»C] iff [A®B'] C [C].

ProoO¥ Since [A ® B*] is the smallest fact containing [4] o [B+], it suffices
to prove that
[4] < (Bl i [ [B] € [c.

Firstly, suppose that [A] € [BwC]. Foranya € 4, a € [B®C] =
([B*]} o [[OJ“]])L iff, for all m € [Bt] andn e [C*],aomon € L. Now let
aom € [A] o [BL]; we show that a o m € [C]™*, which will imply (since [C]
is a fact) that aom € [C]. So let n € [C]*; we know that aomon € L, which
is what we wanted to show.

Conversely, suppose that [A] o ﬂBL]] G [€], and suppose that a € [A];
we must show that, for any m € [B*] and n € [C'], aomon € L. But
aom € [C] = [C]*, so the result is immediate.

LEMMA 18 For A, B and C formulae, we have

[A] € [B*wC] if [AeB] C [C].
Proor Use Lemma 17 together with Lemma 16.
LeMMA 19 For A C M, A+t = goott

Proor Clearly Aoott C A°*-. For the converse, it suffices to prove that
A°Y C© 4°°*. So suppose that m € A°L, and consider an arbitrary a € A4°°;
we wani to prove that moa € L. But, by {11}, there is an o' € A° with ¢’ Ca,
and certainly ' em € L;soaom € L,

Now we can prove soundness and completeness.
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Table 10 The System LLo"

CLAKFA I,OAF B, A
o L, mmsrmn e []R,
L,O0AFA T, 0AFOB, A

L OL ER OR
OAF (DAY (CDAH) "+ OA

4.1.1 Soundness

THEOREM 6 (SOUNDNESS FOR THE PHASE SEManTICS) HT' - A is a valid

sequent, then | ® C .
auent, {L«er’y]} = {[6;9&7]]

ProoF We make an induction on the length of the proof of - A; we go by
cases according to the last rule of the proof. We use a presentation of our basic
system, LLo", given in Table 10; we can easily prove a dual form of Proposition 9
to show that they are equivalent to the rules of Table varModalRules.

Axiom The sequent is of the form A F A, so the result is clear.

L R Note that [L 4] = (JL]" o §[A]]J“)l, [1] =L, and L+ = I+ so we have
FL 2A} = [4]. Consequently, by the compositionality of [-], if we have

lel <l

Le] < |1=a)]

since the two right hand sides are equal.

then we have

L L The sequent must be L F, and we have to prove [1] C [L].
1R. The sequent must be I 1, and we have to prove [1] C [1}.
1L We argue, as for L R, that [A] = [A ® 1], and then the result is clear.

%R Immediate, since 5*315 is unchanged.
€

®L Likewise immediate.

R We can assume that

[27] < [a= iz

and
[{®7ﬂ9g3’9{’95}]
€I SeA!
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and we have to prove

ﬂvef@upryﬂ & [{(A‘X’B} v (MA’S’UN@H .

By a repeated application of Lemma 17, we can assume that we are given

[cemnees] cia

and

[ ema 554 <15]

~el SEA!

and that we have to prove

ﬂ(veﬁir'ﬂ ® (aeﬁwéi)ﬂ clae Bl

It suffices to prove that
® §t @ 5t ]} CiA® B];
lieme(es)-lcane(e ] caon
by the definition of . ® -], this is immediate.
'wL We can assume that we are given
w6
lseA |

N

ﬂ(grv) ® A_

and

Bl C 8
Ii(qé@}:){)@ ] _65’ ]

and we have to prove

lewsuee]e] 2.9

By Lemma 18 and Lemma 10, we can reduce this to QR.

&R By similar reductions to the above, we have to show that, if

|I®’rﬂ c 4]

el

and

[L%,’Yﬂ G 181
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then

IL%’YE C [A&B];

but this is immediate from the definition of [-&].
&L We use Lemma 15 to reduce this to the previous case.

@R, If we have

® i € [4]
RIci

then

@ ClA® B
&7 o | I

because, by definition of [- @ -}, [A] C [A® B].

&L Again we reduce this to the previous case.

L. 'We have to prove that, if
Al C é
ﬂ(7§FT)® H - |LE’S)A I|
then
OAl ¢ §
ﬂ(q§r7)® H = {LEA ]}’
or, equivalently, that if
Al C 8
{['E}I‘Wﬂ ol e |L§A B
then
NA] C & ;
Hﬂ{%’yl} olbAl < K&?A ﬂ

but the latter equivalence is trivially true since, by (8), [DA] C [A].

OR. By the usual arguments, we can reduce this to showing that, if
[(5604] cim,
Y€l
then

[ame GA}] ¢ [o81,
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or, equivalently, that, if
| 8] a1 cm,
yer
then
04] ¢ InBj.
[eo] a1 c 1o

It suffices, then, to prove that, for subsets C, A, and B of M, that if we
have

CoA®°C B, (12)
then we also have
Co A° C (B (13)
Now
Co(A°) CCo(A%)
C Co(A°0)t
by Lemma 19

C(Coayt
C{(C oAy
c (Bt

which establishes (13).

OL Obvious from the definition.

¢R Likewise obvious.

4.1.2 Completeness

As in Girard [5, 4], we show that there is a phase frame 9 such that [A] =
{I'{T'+ A}. This will establish completeness for the semantics.

DermiTioN 11 The canonicel model, is given by the following data:

M = {T'|T a finite multiset of propositions}

ol =Tur
I=0
L={I(TF)

Xox{rau(}h@®AT}I(P;A1®®A1") EX}
[A] ={I'| I' - A} for A atomic.
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ProrosrTION 4 The canonical model is 5 model.
Proor {M,o,I) is clearly a commutative monoid with unit. We note that
TCAI'FA-SAFRA

for all propositions A. So .L = {I"| ' L} is clearly downward closed.

To prove that 1° C L, suppose that T, 41,... , 4, F; then, by cutting with
[(A; ® - Ap) I Ay,..., Ay, we have I',0(4, ® --- A,) b (9) is obvious, and
(10) takes only a little thought. To see (11), suppose that m = I'U {D(4; ®
AN} € A% then m! =T U{DD{4; ®- - 4,)} € 4°°, and, by cutting with
(A1 ® - A) FDOO(4; ®- - Ay), we can show that m Cm/.

REMARK 8 The phase frame of the canonical model is, in fact, relational; the
relation is generated by

IOA:® - ®4) p DA @4,

PRrOPOSITION 5 In the canonical model, for any proposition 4, [A] = {I'| T+
A}.

Proor This is a straightforward induction on the logical complexity of A. We
have stipulated the result for A atomic; for composite A, when the principal
connective of 4 is non-modal, we can use the argument in [4, p. 24]. This just
leaves two cases:

A =0B We can assume inductively that [B] = {I' | I' = B}; we first show
that [B]° C {T'| T F 0B}. Let m € [B]°; w.l.o.g we can assume that
m=00P P ® - ®F) with,A,...,P, + B. We have a proof of
Lo @ -®F.)F0OB as follows:

T,P,...,P F B
(Ao --®@F)+ B .
rLopA®---®F) - B
roopPo---@F)+ OB

OoR

which shows that m ¢ {I"| ' - DB}.

To prove the converse, we show that ([[B]]t’)"L c{r|I'+ B}”L. Suppose
that A € ([B]°)"; thus, A,T,0(P,® - @ P,) F for all T, P;,... , P - B,
In particular, we can take I', Py, ... , P = B, and we have A, 0B I~. Now
suppose we have a I' such that I - 0OB; by cut, we now have I', A . This
shows that A € {I'| T+ B},

A= 0B Again we assume inductively that [B] = {I' | I' + B}; we can also
assume (because we have already dealt with the non-modal connectives)
that [B*] = {I'| ' + B*}. Now suppose that A € [0B] = (EB-L]]O)J".
As above, A, 1B+ F; cutting with + OB+, (B, we have A - {B. Conse-
quently, [0B] C {I'| '+ ¢B}.
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Now suppose that I' i+ 0B, and consider an element (A,0(P ®---®@F,)) €
[B+]°; that is, A, Py, ... , P, - B, o, alternatively, A, Py, ... , P, B F.
We now construct a proof of I A, O(P; @ - -- ® P,.) F as follows:

AP ® QP BF
AOP, ®---®F),B+
AOP® - ®P),0BF TFOB
T,AQP® -®P)F
and this shows that I' € [¢B].

cut

THEOREM 7 (COMPLETENESS FOR THE PHASE SEMANTICS) If we have a se-
quent ' - A which is not valid, then there is some model for which | ® I‘H ¢

el
2]
JEA

Proor With some rather tedious use of the standard lemmas, we show that it
suffices to prove the theorem in the case where the sequent has a single formula
on the right and nothing on the left; we therefore have to prove that, if - A4 is
not valid, that there is some model for which I ¢ [A]. But, by Proposition 5,
the standard model has this property.

4.2 Categorial Semantics

We can give a category-theoretic version of the above semantics. Recall that
[2, 1]:

DEFINITION 12 A category € is %-autonomous if

o it is symmetric monoidal closed; that is, there is a monoidal operation ®
and an internal hom — together with canonical isomorphisms

Hom(A® B,C) = Hom(4,B - (),
(subject to the usual coherence conditions) and
» there is an object L of € such that the functor - —o.L is an involution.
We define ()" to be - oL, and - - to be () & ()4)".

{Note that *-autonomous categories are called linear categories in [17, 32].)

Now a %-autonomous category with (finite and nullary) products and co-
products (one implies the other because of the duality) is a model of classical
linear logic; for convenience, we call the product & and the coproduct &. We
add to this the following:

DEFINITION 13 (STRONG MONADS) A strong monad is a monad (¢(-), s, ) on
€, together with a natural transformation

c: 0@ = Ol®)
such that the diagrams in Table 11 commute. (See [20]; cf. [9, 10, 11].)
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Table 11 Strong Monads

0004 2225 00A

e e

004 L2 04

OA 04 OOAOM OA

N

QA

) @125 04

tAlli Qea
O(A®1)

tagB,C

CA) @ (Bel) —> 0(Ag{BaC))

Seam,c
®HAB,C

(04)@B)®C ——(0(A® B))®C B;O({A@B) ®C)

A, p®ldc tag

A®B

NAGE
na@Ed.al \

{OA) ® B WO(A@B)

LASE
P"A@EdBT \

(004) ® B —= 0(04® B) = 00(4 ® B)

Here 0 : €= €, p: 00— 0, n:Id = Qisamonad, 0: ({)® =2 0(®)isa
strength, and @: - ® ((® )~ ((®-)®-and ¢ : - ® 1 — - are the associator and
unit for the monoidal structure.
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DEFRINITION 14 (COMMUTATIVITY FOR STRONG MONADS} Given a strong monad
on a symmetric monoidal category, let o' be the natural transformation given
by the following composite:

AGOB - (0BRA—-0(BRA) — (AR B)

A strong monad is commutetive [25, p. 460] if the following diagram com-
mutes:

Ooa,n

OLO(A) ® B) ~—2m 0O(A® B)

y \

OA® OB OlA® B)

h /

0(A@{(0B)) e 00(A®B)

DEPINITION 15 A linear modal category is a x-autonomous category together
with a comimutative strong monad.

We can now define our semantics. First, though, we need a lemma,
LemMa 20 For objects A, B and C of €, we have natural equivalences
Hom(4,B%C) = Hom(4d® B+, C)
Hom(A® B,C) = Hom(4,B* % C).
Proor Clear from the definition of %® and the adjointness between ® and —o.

DerINITION 16 (CATEGORIAL INTERPRETATION: ELEMENTARY DEFINITION)
Given a x-autonomous category € with sums, products, and a commutative
strong monad, we associate to each proposition P of our language an object
[P], and to each proof Il of I' - A a morphism

m: g bl - 5 0

by induction on the structure of propositions and proofs as follows. (Most of
the details for the non-modal case are given in [17], so we will not treat the
non-modal connectives in any detail.)

@ Welet [A® B] = [A]®[B]. If a proof ends with ®L, then the last sequent
and the penuitimate sequent must take values in the same Hom set; so we
simply assign the same morphism to the last sequent as was assigned to
the penultimate. If a proof ends with @R, we can assume inductively that
we have, corresponding to the immediate subproofs, morphisms

m: okl - [MQ 1l

m1: e bl -~ HIQ 3, b
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We then have (by Lemma 20) morphisms
e N
m: e M el — 4]
i L '
[ 8 M 80" ~ 4]

We take Eﬁj ® [fﬁ”]] and apply Lemma 20 again to get the reguired mor-
phism

o b - MY, 8, Bl

~+EFUL!

Pual to ®.

—o Very like .

__{

cut

We let [1] = 1. The left rule for 1 leaves the morphism unchanged; there
is only one sequent to which the right rule is applicable (namely + 1) and
we assign to it the morphism Idy.

Dual to 1.

Similar to ®: we take [4&A] = [A] &[A']. To define the morphism
for the right rule, we first apply Lemma 20 to obtain morphisms with
targets [A] and [A'], combine those morphisms with &, and finally apply
Lemma 20. To define the morphism for the left rule, we use a similar
process but dual.

Dual to &.
Clear.
Likewise clear.

We can assume that the two sequents are of the form I' - 4 and A F A,
we simply compose the corresponding morphistns.

We define [0A] = ¢[A]. To define a morphism for proofs whose last
inference is OR, we can assume, by Lemma 20, that the proof is of the
form

I‘If
Tk A
T'oA
Inductively, we have a morphism [II] : @ [¥] = [4], and we define a
€

morphism [I1] : ®r Iv] ~ [OA] by composing with the unit of the monad.
vE

If the last inference of the proof is 0L, we can assume that the proof is of
the form

Hf

I: 49 1 AFOB
I,0AF OB
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Inductively we have a morphism [II']. We define a morphism for the whole
proof by the composite

QD ® ® (7T SN 55

Hieg I

“ran. @ il 00 [B]

|

(AT &( 8. -1 __><> ([OBD

O Dual to 0; we define [0A] = (OJA])".

4.2.1 Functorial Semantics

"This is, as it stands, merely a definition, and there is nothing to verify about it.
What is not so obvious is that we can make a category in which the objects are
linear logic formulae and the morphisms are derivations of the corresponding
sequents, and that the above interpretation is a functor. We define the category
as follows (see [12, p. 55]):

DervTION 17 The free linear modal category, ¥, has as objects formulae of
our language, and an artow A -+ B is a proof of the entailment A+ B. The @
of § acts in the usual way on objects, and on morphisms it acts thus:

I Ir
Neil: AP."B A’}:B’

A A+-BeB

AQA'FBeB

—o acts in the obvious way on objects, and on morphisms it acts as
I I
O—oli':d A FB  A+B
—_t
B-oA,A+ B
B—A'tA-— B

The definitions of & and & are similar. ¢ is defined as ¢ on objects, whereas
on arrows it acts as

— R

I

ol : Ak B
Al OB
OAF OB
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7 and 4 are given by the following arrows:

nA:{AI-A
AF0A

AFA
Ty
pa: ——iL—~OL
OAF 0A

QOAF QA

Equality between arrows will be defined below.

oL

If we want & category here (in which, for example, the associativity of ®
holds up to equality) we cannot simply have the trivial equality of proofs here.
The tricky points are naturality and coherence. Naturality means, for example,
that, if we have objects A, A’, B, B',C and " of our category, and if we have
morphisms ¢ 1 A — A, ¢ : B — B, and x : C = (', then the following
diagram commutes:

AR(B®(C)——>={A®B)®C
¢®{¢®x)l (¢®'~'})®xl
A!@(B!@O’f)—\‘_(AIQ@B.’)@Cf

In our case, of course, the objects are formulae and the morphisms are deriva-
tions; we assume that we have derivations @ of A A", ¥ of B} B, and X of
C' b C'. Now the top right path around the diagram leads to this proof:

: ¥
AF4A BFB AFA  BFE
ABFAeB CFC  ABFA®B  COHC
A,B,C+(A®B)&C A,BCrHA ®BY®C
ABRCHA®B®C A®B,C+ (A @B)eC
A (BeC)FH(AeB)®C (A@B)@C%(A’@B')@C’mt
AR(BoO+{A®B)a ('
whereas the bottom left route leads to the following proof:
v X
BFrB CHC AFA  BFE
Ar4  BCrB®C A BrAeB  CFC
ABCHA®B ®C) ALB,C'-(A@BYe(C
A,BeCFHA ®(B ®C" A BoCFAQB)RC

AgBeO)rAe(BeC) AeoBelC)H4deB)al
C
A®BeC)F (A4 oB)ol

ut
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These are clearly different proofs. Thus, in order to regard linear logic proofs
as the morphisms of a category, we are led to impose (implicitly or explicitly) a
non-trivial equality between proofs; as Troelstra remarks [32, p. 91] a good deal
of freedom as to how we do this.

We are, then, here following [17] for the treatment of the non-modal frag-
ment of our logic; our task will be to extend this to the modal operators. The
additional equations to be satisfied are those given by the diagrams in Table 11.
The top diagram, for example, expresses the equality paopos = paoOua; now
the first is given by the proof

A
OAL OA oA

OAF 00A
0OAF 0OA o :
COOAF 004 00AT 04
O00AF 04 ¢

whereas the second is given by the proof

JUf_A

ut

— Axy

AR A

- 0R
A+ QA
QAL OA
QOAF QA
QOA R O0A oL .
GOOA F OOA S04 OA
QO0AL GA

We want these two proofs to be equal. We need similar equalities for the other
diagrams in Table 11, and for the other diagrams defining a *-autonomous
category.

With this definition of equality between proofs, then, we have defined a
category, &, in which the objects are lnear logic formulae and in which the
morphisms are proofs of entailments. Let us call this category T; it is something
very like a term model. We now have

QL

QL

OR HA

cut

DerFINITION 18 (CATEGORIAL INTERPRETATION: FUNCTORIAL DEFINITION)
Given a *-autonomous category €, together with a monoid with strength, an
interpretation of our logic in € is a monoidal functor § - € which preserves the
dualising object, the monocids, and the strengths.

Given this, it is reasonably easy (but tediously bureaucratic) to carry through
the programme of Marti-Oliet and Meseguer, and prove soundness and com-
pleteness for this semantics. § corresponds to the L[T] of [17, Definition 41],
and we first prove the equivalent of their Theorem 43, namely that the elemen-
tary and functorial definitions of our categorical semantics coincide. Given an
assignment of objects of some linear modal category € to atomic formulae of
our language, it is easy enough to unwind the definitions of the objects and
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morphisms of ¥ and thereby define a functor § ~ €. We can then find, for each
proof of A - B, an arrow of F(A, B) which maps onto the arrow of €([A], [B])
corresponding to the proof. On the other hand, given a functor § = €, we can
obtain from it an assignment of objects of € to atomic formulae of our language,
and thus to find an elementary semantic assignment for our language.

ExaMPLE 6 (PHASE FRAMES AS CATEGORIES) Given a phase frame MM, we
can regard its set of facts as a category Com (the morphisms are inclusions),
and an interpretation of our logic in M can also be regarded as a categorial
interpretation of § — @m. In particular, the canonical phase frame is the
extensional collapse of T.

4.2.2 The Kleisli Category

Let € be a linear modal category, and consider now its Kleisli category Cg;
objects are the same as objects of €, whereas morphisms in €y(A, B) are the
same as morphisms in €(A4, 0B). We can think of the Kleisli category here as
the category of causal transitions involving ramification; the original category
can be thought of as describing the causal microstructure, in which morphisms
are causal transitions without ramification. The main result of this section says
that we can think of the same actions acting on both categories. (A much more
systematic treatment of this material is possible; see [25].) We have

PROPOSITION 6 ® can be extended to a functor €y X € = .
PrROOF We define f @ f for f € €4(4,B) and f' € €(4', B') by the composite

ltﬂ'af

(B S B)

where f corresponds to f: A~ OB in € and where the tensor products in the
above diagram are those of €.

We have to show that this is a functor. Firstly, we show that it respects
composition, namely that, if we have f : A = B, g : B = ( in €, and
F oA B andg B -5 C'in¢ then (go fl@(gof i =(g®gN o (f®F)
(in €y). Now suppose that f corresponds to f: 4 — OB, and g corresponds to
f:B - ¢C (in €), and consider the following diagram.

no®ider

1 4 3 +
Ao 4 2L 0By e B 2% (000) o ¢ (0C) ® ¢! 2% 0(C & C)

\ lta’B‘ * ltoc'c’, 1

o(B® B) %000 o )

\ \}(Otc’cl

OM(C e ")

Hogo!

The top edge is the €-morphism corresponding to (g o f) ® (¢' o f'), whereas
the composite of the bottom two edges is the €-morphism corresponding to
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(g@g") o (f ® f"). However, % comnmutes because ¢ is a natural transformation,
and 1 commutes because of the bottom diagram in Table 11, (The small triangles
commute by definition.)

Finally we show that ® respects identities. For an object A, its identity Id 4
in €4 corresponds to 74 in €; so, to show that Id s ® Ida = Id 4 4+, we have to
show that ta 4 o (ng ® Id) = agar; but this follows from the bottom diagram
in Tabhle 11.

5 Interpretations

We will outline here the notion of an interpretation of one language in another,
where the languages are extensions of linear logic by some or all of our sets of
rules.

DEFINITION 19 (INTERPRETATIONS) Let £; and L2 be two languages in clas-
sical linear logic, together with strong modalities and axioms corresponding to
rewrites ~»; and ~g, respectively. An interpretation of (L£1,~1) in (La,~2) is
a mapping assigning, to each atom a of £, a state proposition @ of Ly, such
that, if we extend this mapping in the obvious way to state propositions of £,
then, if we have a ~»; b, we also have @ ~q b.

We now have

PROPOSITION 7 (INTERPRETATIONS AND LOGICAL CONSEQUENCE) If we have
an inferpretation of £y in Lz, then, if ' b A is a valid entailment in £,, then
I'F A is & valid entailment in £4.

Proor An induction on the complexity of the proof. The only non-trivial rules
are those involving ~+. Consider ~ {R; suppose that we have, in £y,

Iy Ay, Ay
[k OBy, Ay

with Ay ~1 By. Applyingw@ gives a diagram of the same form in (L2, ~+2},
which is still valid because Ay ~3 By. ~ QL is similar.

DEFINITION 20 {FULL INTERPRETATIONS) Let £, and £ be two languages in
classical linear logic, together with strong modalities, axioms corresponding to
rewrites ~+; and ~=, and operators o1 (-}, T1(+), and o2{"), r2(-), respectively.
A full interpretation of (Lq,~) in {£s,~43) is a mapping assigning, to each
atom o of £;, a state proposition @ of £,, such that, if we extend this mapping
in the obvious way to state propositions of £y, then,

o if we have o(a) ~1 o(b), we also have o{a) ~; o(b), and

e if we have o(a) € £; and o(a) ~, o(y), we have a state proposition ob
of £1 with o(b) F o(y) and o(a) ~;1 a{b).

ProposiTION 8 (FULL INTERPRETATIONS AND LoGicaL CONSEQUENCE) If we

have a full interpretation of £y in Lo, then, if T+ A is a valid entailment in £,
then I' - A is a valid entailment in £s.
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Proor The obvious induction. The only point not covered is the admissibility
of the rules v{~)R and 7{~) ® R. So suppose that we have an instance of
T(~)@Rin L;:

{T'F o(4;), A}
'k r(A), A

where the o'(4;) are all of the state propositions such that o(A) ~; o(4;). The
translation of the consequent into £ isI' - 7(A4), A; to prove this in £y, we have
to prove I - o(4;), A for all of the B; such that (o(A) ~2 o(By;). However,

for each such Bj there is an A; with o(A4;) b2 o(B;) and o(4) ~1 o{4;); so
we have the inductive step.

EXAMPLE 7 {BALLS AND STRING: INTERPRETATIONS) Consider Example 1. In
{40], we considered two formalisations of this example in the situation calculus;
for one of them our primitive fluents were at{b;,l;), for the other the primi-
tive fluents were below(b;, ;) and their negations. Although these formulations
looked as if they cught to be logically equivalent, the results of circumscription
are different in both cases. We will show here that, when we consider the anal-
ogous pair of linear languages, we can, in fact, translate from one into the other
in a way that preserves the validity of inferences.

So, let £1 be the language in which Example 1 is formulated. This has
primitives at(b;,1;), slack(s), and taut(s). Now in [40], we used formulae such
as holds{below(b;, [;}, s) and —holds{below(b;,1;),s). In our language, we do not
have a negation which takes states to states (the linear negation, (-}, does not
have the required meaning), so we shall formalise i, instead, with two sets of
primitives above(b;, I;} and below{b;,1;). above(b;, ;) will mean that b; is above
13; below(b;, {;) will mean that b; is at or below ;.

Let Ly be the language with primitives above(b;, [;) and below{d;, 1;), as well
as slack(s) and taut(s). We can translate from £y to £ by

at(b;,lp) = below(by, ly) @ below(b;, 1) & below(b;, 2} ® below(b, I3)

at(by,l1) = above(b;, lp) ® below(b;,I1) ® below(d;, l2) ® below(b;, I3)
at(bs,In) = abovel(b;,ly) ® abovelb;, 1) @ below(b;, Is) @ below(b;, I3)
at(b;,ls) — above(b;,lp) ® above(b;, l;) ® above(b;, l2) ® below(b;, Is)
slack(s) w» slack(s)

taut(s) — taut(s)

We can define rewrites for £, as follows:

above(b,l;) @ below(¥',1;) ~» above(b,l;) @ above(¥',l;) {j <i—1)
above(b, ;) @ below(b', ;) @ slack(s) ~» above(h,I;) @ below(V,1;) @ taut(s)
above{b,!;) ® below(b,l;11)} ®
above(d',l;) @ below(d,l;11) ® taut(s) ~» above(h, ;) @ below(d,liy1) ®
above(¥,1;) @ below{¥, ;1) ® slack(s)
below(b, lo} ® below(t',lp) ® taut(s) ~ below(b, Iy} @ below(l', 1) ® stack(s)

It is reasonably easy to see that these rewrites satisfy the conditions of Propo-
sition 8, and hence the translation preserves validity. (The key point is that,
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if we apply rewrites to a state proposition in the image of the translation, we
end up with a state proposition in the image of the translation). It can also be
seen that, for propositions in the image of the translation, the only inferences
of the required form are translations of inferences in L;; so we may just as well
argue in £y or in £y, (Providing mutually inverse translations between £; and
L9 would mean taking account of the logical dependencies between the various
primitives, and would thus require us to extend our formalism to include axioms
other than those given by rewrites; this would be more work, or, al any rate,
more bureaucracy.)

A The Connection with Golog

A.1 Modalities
A.1.1 Definitions

In this appendix we show how these modalities can be connected with previous
work on GOLOG in {39]. In particular, we should recall that, for actions @ and
B, we can define their sequential composition, « ; 3, by

a;f £ VX.(@®c(X)")B (@(X)®8) (14)
We can now define
DEFINITION 21 A GOLOG class of actions G is a set of actions such that
e 1€ and
e fa, feg thena;fed.
We now define modal operators as follows.

DermITION 22 We fix, for the moment, a suitable class § of actions; quantified
Greek letters will range over this class.

v ox — A
Voa.a® A

GA
DA

& s

‘We will prove that the two modalities ~ { and 11 ~ are strong modal operators:
their sequent calculus rules are given in Table 2.

A.1.2 Rules for Modalities

We want, then, to prove that the rules in Table 2 are admissible; however, we
notice that these rules are equivalent to another set — namely, those in Table 3.

ProposiTiON 9 The rules of LLe, given in Table 2 are equivalent to the rules
of LL¢', given in Table 3.

52



Proor Suppose first that we have an operator satisfying LLo. The first pair
of LLy' are special cases of the first pair of LLy. We prove the second pair as
follows {(see [34, Definition 9.1.3]):

AF A AF A
A, AT+ F A, At
DA, AL+ F A, 0A
04, 0AT - 04, 04+

OAF (0AY)T (045"

- 0A

The rules of LLy' are thus admissible, given the rules of LLg.
Conversely, suppose that we have the rules of LLy' (Table 3). We prove the
admissibility of LLy (Table 2) as follows.

UL Note that we can prove JA F A as follows:

AFA
b A+ A
FoAt, A
DAF (0AY)"  (0AD) 4
cut
DAF A

Suppose now that we have a proof of I, A - A; we simply cut it with the
above proof of DA F A, and we have a proof of I', DA F A,

DR, Suppose that we have a proof T of I', DA F B, A. From it we can, by a
cut with ({)AJ')“L I OA, obtain & proof IT' of T, {OA"L)J“ F B, A, and from
this, by the involutivity of negation and the rules for +, we can obtain a
oroof TI" of BL F OAL, A, 't
We now construct a proof of I', DA F OB, A as follows:

HH

Bt <>(A'~‘~), A, T
O(BH) Fo(ah), A, T
-k

I' 04, 0B F A

t

I, 04 F (0B, A ©BYY' 0B
I, 0AF DB, A

cut

where # is a sequence of cuts with (()fyf-L}L b Oy followed by a sequence
of applications of the involutivity of negation and * rules, and 1 is an
application of the left {-rule from Table 3.

¢Ry Similar to OR,;.
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¢Ly Similar to OR,.
¢Lo Similar to OR,.
OR, Similar to OL.

A.1.3 Admissibility of the Modal Operators

We now take the operators defined in Section A.l.1 and show that they are
modalities, i.e. that the sequent calculus rules are admissible for them. By the
results of the previous section, it suffices {0 prove the admissibility of the rules
of LLe'; this we now do.

PrOPOSITION 10 If A is any proposition, the sequent

OAF (0AL)™
is valid.
Proow
A A
aba A, At E
a, A, a—o AL+

a® A a— At F
V8.8® A4, a — A"+
04, o — At F
OA4, Ja. o — At -

04, OA* +
A
)

MA - (()A-L
where a new action variable o is introduced at *.

ProrosiTion 11 If A is any proposition, the sequent
ad
(0A-) 14

is valid,
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PROOF

Ak A
ot o FA+ A
akFAt, a0 4

Fa— At a®A
F38.8 - Al aw A
FoAt, a4
F oA, Voo ® 4

b O0AL, A )

(©AYY D4
where ¢« Is a new propositional variable introduced at *.
ProrosiTion 12 T A, A is provable, then so is T 04, A.

Proor Let I be a proof of ' + A, A; we construct a proof of I' - Q0A, A as
follows.

11

THA A

T, 1k A, A

I'k1—A, A

I'FHe.a— A, A
T'HOA, A
Lemma 21 For any X, 6;, B, By,
X —((Bf—B)eBw..) - (X®8) — (B ®Baw...)

is valid.

PROOF A routine calculation with the definition of — and the De Morgan
equivalences:

X—-o((8—B)ywBiw...)
X+»((8—~B)®Bi®...)
Xtg((BteB)wB:iw...)
(xtephye(Be B w...)
(Xep) ' wB®B®...)
(X®pB)—(Bw B w..)

LeMMA 22 For any situation X, and for propositions « and 3,

a— X a;fFX®8

wom e

R

7

is valid.
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Proor

XrX
ata X X'
a~oX, o, X+ F
a—X,a®X"F XeB+rXep
a—X, (a@XH)w(XefFXegs
a0 X, VY. ((a®Y ) e (Y@ANFXep
a—X, o f-rXas

LeEMMA 23 For any action « and any situation X, and for propositions B, B;,
Bs,...,

(60— X)®(X - (0B®By®...))F0B® B %...
is valid.

Proor

: X@OFXeg
BeBi%...FB B, ... a—X(:fHFXap
(X®f)—(BwByw...),(«;8) B, By, ...
a—X, (X®p8)—(BwB%...)F{a;8—~B, B, ...
a-oX,(X®8) ~(B®B7w...)F0B, B, ...
a—X, X~ {((8~~B)®B®...)F0B, By, ...
0a—-X,X—~(0B9B®. )F0B®B w...
(@—X)®(X - (0B®B1®...))FOB® B % ...

At * we use the definition of ¢, followed by the left rule for 3; we therefore
have to introduce & new action variable §. tis a cut with Lemma 21. At § we
use the definition of ¢, followed by the right rule for 3. We can thus substitute
whichever terms we like for the bound variable, and we make the choice shown;
we have here got to use the assumption that our actions form a GoLoG-class, so
e ; B 1s an action, and thus a suitable term to substitute for an action variable.
€ is a cut with Lemma 22.

ProrosiTion 13 If AR OB, A is provable, then sois A F OB, A.

Proor Suppose that we have a proof IT of A I+ $B, A, Let A = B;, Bsy,....
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We construct a proof of QA OB, A as follows:

I
AR OB, By, ...
Lemma 23
AFOBw Bw... :
FA—(0BwB w...) a-—oA4, A—-{0B® OB w...) - 0B, By, ... ;
cu
CX—OA}"OB,B;L,...
So.a e A QRB, By, ...
OAF OB, By, ...

THEOREM 8 (MODALITIES VIA GOLOG) The operators O and ¢ defined in Def-
inition 22 are modalities of LL,.

PROOF Propositions 10, 11, 12, and 13.
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