ISSN 1369-1961

Depariment of
Computer Science

Technical Report No. 750

The Persistemce
Calculus: unique
stable models for
persistence rules

Hisashi Hayashi

ob
WO
QUEEN MARY

AND WESTFIELD COLLEGE

UNIVERSITY OF LONDON
September 1998







T30

The Persistence Calculus: unique stable models
for persistence rules

Hisashi Hayashi

Department of Computer Science,
Queen Mary and Westfield College,
University of London,

Mile End Road, London E1 4NS, U.K.
email: hisashi@dcs.qmw.ac.uk

Abstract

One of the problems with logic programs for temporal reasoning is
that their semantics are not always unique. On the other hand, this pa-
per presents a method for writing logic programs for temporal reasoning
which guarantees a unique stable model. The ramification problem is also
discussed from the view point of the number of the stable models. Com-
parison with the (simplified) event calculus is also done briefly.

Keywords: Temporal Reasoning, Logic Programming.

1 Introduction

Logic programs do not have unique semantics in general. Temporal reasoning
in logic programming suffers the same problem. One of the treatments for this
problem is to restrict programs so that they are stratified [1). The stratification
of a logic program is important in the sense that any stratified logic program
has a unique stable model [3]. In this paper, a method to express temporal
persistence rules in a stratified logic program is shown. The ramification problem
is also discussed from the view point of the number of stable models. It is shown
that by restricting the expression of indirect effects, it is still possible to stratify
any program. The formalism of temporal reasoning in this paper is named the
persistence colculus.

The idea of actions is not used any more. Instead, two kinds of fluents are
introduced. One is a continuous fluent which continues to hold until it is stopped
explicitly. The other one is a non-continuous fluent which holds at a time point



but does not continue afterwards. Actions which happen instantaneously can be
regarded as non-continuous fluents. Therefore, compared with the logic program-
ming version of the (simplified) event calculus {9], the persistence calculus can be
regarded as a lower level language. It is possible to express in the persistence cal-
culus that a fluent £ holds immediately afterwards if two fluents al and a2 hold
at the same time. If al and a2 are regarded as actions, this sentence expresses
the effect of concurrent actions. Also, continuous changes can be expressed in the
persistence calculus. Most of the techniques were used o translate a program in
the higher level action language # [4, 5] into a stratified logic program.

The rest of the paper is organized as follows. After recapping the definition
of stratification of logic programs in the next section, the persistence rule axioms
and the domain description clauses are defined from Section 3 to Section 5. In
Section 6, which is the most important section, it is shown that the set of clauses
defined from Section 3 to Section 5 is stratified under some restrictions. In Section
7, some examples are shown. The conclusion is in Section 8.

2 Background

In this section, the stratification of logic programs is defined.

Definition 2.1 A program P is stratified’ if there e:cz's.ts a partition:
P = PU.UP,

such that the following conditions hold for any i(1 < i < n):

e if an atom a which is not preceded by “not” occurs in the body of a clause
in P, which defines b, then its definition is either in Ui_, Py or undefined®,
which i3 denoted by b > a.

e if an atom a which is preceded by “not” occurs in the body of a clause in F;
which defines b, then its definition is either in 2;11 P, or undefined, which
18 denoted by b = a.

In this paper, b = a is defined as (b = a) A =(b > a).
The following theorem follows from {1] and [3].

Theorem 2.1 If a program is stratified, there exists ezactly one stable model®
for the program.

18trictly speaking this definition of the stratification is extended from its original definition
in [1] and called local stratification.

*Predicates whose unique truth values are evaluated by their external solvers are also defined
as undefined.

5This stable model is consistent with the completion of the program.

2



3 Persistence rules

In the following persistence rules, two kinds of fluents are defined: 1. non-
continuous fluents; 2. continuous fluents. A non-continuous fluent is a
fluent which holds at a time point but does not hold afterwards. A continuous
fuent is a fluent which continues to hold after a time point until it is stopped
explicitly. Any fluent is either of the form “pos(z)” or of the form “neg(z)}”,
where z is a term of logic programming. Intuitively, neg(z) means that z does
not hold. Therefore, neg is an explicit negation. Note that a fluent can be both
a continuous fluent and a non-continuous fluent. For example, a fluent which
holds at the time point 5 and at all the time points between 10 and 1000 can be
expressed easily.

The atom “givenO(f,)” is defined to express that the non-continuous fluent
fholds at the time point £. The atom “givent(f,)” means that the continuous
fluent f continues to hold after the time point ¢ until it is explicitly stopped
continuing to hold. The atom “released0(f,?)” means that the continuous
fluent f does not continue to hold at and after the time point £. The atom
“released+(f,)” means that the continuous fluent fdoes not continue to hold
after the time point ¢ If both “released0(f,#)” and “givenO(f,1)” are true, f
is defined to hold at the time point £ Similarly, if both “released+(f,£)” and
“civen+(f,f)” are true, fis defined to continue to hold after the time point {.

These ideas are expressed by the following persistence rule axioms. These
axioms extend the stratified persistence rule introduced by Evans and Sergot
[2], where only one continuous fluent is considered for simplicity. Any query is
supposed to be of the form “Thold(f,#)”, which succeeds if the fluent f holds at
the time point £

hold(F,T):-given0(F,T). [pal]

hold(F,T2) :-given+(F,T1), TI1<T2, not broken(F,T1,72). [pa2]
broken(F,T1,T3) :-released0(F,T2), Ti<T2, T2<=T3. [pad]
broken(F,T1,T3) :~released+(F,T2), Ti<T2, T2<T3. [pad]

It is true that these persistence rules are only for prediction, but explanation
can be calculated by abduction [10].

In order to stop antomatically the continuous fluent pos(x) (neg(x)) contin-
uing to hold when neg(x) (respectively pos(x)) holds, the following axioms are
needed. '

released0(pos(X),T) :~givenO(neg(X),T) . [pad]
released0(neg(X),T) :-given0(pos(X),T). [pab]
released+ (pos(X),T) :~given+(neg(X),T). [paT7]

[pag]

released+(neg(X),T) :-given+(pos(X),T). [pa8

3



The problem is that if both “given0(pos(x),5)” and “givenO(neg(x),5)”
are true, both “hold(pos(x),5)” and “hold(neg(x),5)” are true. The same
problem arises if both “given+(pos(x),5)” and “given+(neg(x),5)” are true.
The latter case is pointed out in [2]. In this paper, nothing is done for this
problem. Therefore, both pos(x) and neg(x) are assumed to hold in this case,
avoiding making all the fluents true.

It is important to note that the above axioms are stratified as will be confirmed
in Corollary 6.1.

4 Stratified domain description

Three kinds of domain description clauses, which are called stratified do-
main description clauses, are defined in this section. One clause expresses
that if some predicates of logic programming are true, some fluents hold at a
time point, and some fluents cannot be proved to hold at the time point, then
another fluent starts to hold after the time point. This can be expressed by the
clause of the following form, where ¥, F1,..., Fj, Gi,..., Gk are fluents and
P1,..., Pi are predicates of logic programming which are either true or false by
the external solver.

given+(F,T):-Pt, ..., Pi, hold(F1,T), ..., hold(Fj,T), not
hold(G1,T), ..., not hold(Gk,T). [sl]

Note that “hold(neg(£f),5)” and “not hold(pos(f),5)” are different. The
former means that £ does not hold at the time point 5. The latter means that f
cannot be proved to hold. Therefore, it is possible to express that it is impossible
to prove that £ does not hold at the time point 5 by “not hold(neg(£),5)”.

Another clause expresses that if some predicates of logic programming are
true, some fluents hold at a time point, and some fluents cannot be proved to
hold at the time point, then another fluent is stopped continuing to hold after
the time point.

This can be expressed by the clause of the following form, where F, F1,...,
Fj, G1,... Gkarefluents and P1,..., Pi are predicates of logic programming
which are either true or false by the external solver.

released+(F,T):~P1, ..., Pi, hold(F1,T), ..., hold(Fj,T), not
hold(G1,T), ..., not hold(Gk,T). [s2]

'The other clause is for representing continuous changes based on Shanahan’s
approach [11].

The following clause expresses that if the fluent f starts to hold at the time
point Tt and £ is not stopped continuing to hold up to the time point T2, another



fluent pos(g(V))* holds at the time point T2(>T1), where V is a variable whose
value func(T1,T2) is decided by the value of the two variables T1 and T2.

givenO(pos(g(V)),T2) :~given+(f,T1), Ti<T2, not broken(f,T1,T2),
V is func(T1,T2). [s3]

For the readers who are not so familiar with Shanahan’s treatment for con-
tinuous changes, an example is shown below.

Example 4.1 The following program means that the height of water increases
by 2cm o minute after the tap is opened.

givenO(pos(height (H)),T2} :~given+(pos(open),T1), Ti<T2, not
‘broken(pos(open),T1,T2), H is 2 * (T2 ~ T1).

and [pal]...[pa8]

As will be written in Corollary 6.1, these stratified domain description clauses
of the form [s1], [s2], or [s3] together with the persistence rule axioms [pal]...[pa8]
are stratified.

5 Not always stratified clauses

Two kinds of other domain description clauses are defined in this section. Unlike
stratified domain description clauses, the domain description clauses introduced
in this section, together with the persistence rule axioms {pal]...[pa8], are not
always stratified, which means that the stable model is not always unique if these
clauses are used. However, by restricting the use of these clauses, any program
can be stratified.

The new type of domain description clauses are of the following form, where
F, F1,..., Fj, G1, ..., Gk are fluents and P1, ..., Pi are predicates of
logic programming which are either true or false by the external solver.

given0(F,T):-P1, ..., Pi, hold(F1,T), ..., hold(Fj,T), not
hold(G1,T), ..., not hold(Gk,T). [nsi]

released0O(F,T):-P1, ..., Pi, hold(F1,T), ..., hold(Fj,T), not
hold(G1,T), ..., not hold(Gk,T). [ns2]

Compare these clauses with the stratified domain description clauses of the
form [s1] and {s2]. The main difference is that while the heads of the clauses [nsl]
and [ns2] mention the truth value of the fluent F at the time point T and the bodies

4For simplicity, the argument of g is assumed to be one. Technically speaking, however, it
can have more than one argument.



of these clauses mention the truth value of the fluents F1,...,Fj, G1,...,Gk
at the same time points T, the heads of the clauses {sl] and [s2] mention the
truth value of F at the time points after T. Therefore, it is not difficult to imagine
that the clauses of the form [nsl] and [ns2] cause the ramification problem and
there might exist more than one stable model. In the next section, the method
to restrict these domain description clauses will be introduced in order to have a
unique stable model.

6 Stratification of the persistence calculus

In this section, a theorem is introduced which says that any program is stratified
under some restrictions.

Before a method to stratify a program is introduced, the stratification of
fluents is defined. Similar ideas [8] are used as a treatment for the ramification
problem. Note that the stratification of fluents is different from the stratification
of logic programs.

Definition 6.1 The fluents in a program are stratified iff:

o any fluent belongs to exactly one stratum of fluents, where all the strata are
totally ordered;

o for any z, the two fluents pos(x) and neg(z) belong to the same stratum.

o for any clause in the program of the form [nsl] or [ns2], the fluent F be-
longs to a higher stratum than the strata to which the fluents F1,..., Fj,
G1,..., Gk belong.

In this paper, £ < g denotes that the fluent g is defined in higher stratum
than the stratum the fluent £ belongs to. Now the theorem is introduced.

Theorem 6.1 Let P be a program which 13 a set of the persistence rule azioms
[pal]...[pa8] and clauses of the form [s1], [s2], [38], [ns1], or [ns2]. If the fluents
in P are stratified, then P is stratified.

Proof: A method to stratify the program is shown below.

1. First, the program can be split by time as follows. For all the
time points Toy, Toe, T1 and Ty such that Ty < Ty and for all
the fluents ¥; and Fs, split the program so that all the atoms of
the form:

released+(F,,T2), given+(F;,T3), hold(Fy,Ts),
broken(Fs, Tz, T2), released0(Fy, To), givenO{Fy, Tq)



are defined in higher strata than the strata to which the atoms
of the form:

released+(¥;,T1), given+(F;,Ty), hold(F,,T;),
broken(Fy, Tos, T1), released0(F;, T1), given0(F1, Tq)
belong.

2. Second, the program can be split by the fluents as follows. For
all the time points Ty and Ty and for all the fluents F; and Fy
such that F; < F, split the program so that all the atoms of
the form:

released+(Fy,T1), given+(Fy,Ty), hold(F3,Ty),
broken(Fz, Ty, Ti), released0(F2, T, ), givenO{Fa, Ty)

are defined in higher strata than the strata to which the atoms
of the form:

released+(F,,T;), given+(F;,Ty), hold(Fy,T,),
broken(Fy, T, Ty), released0(Fy,T;), given0(Fq, Ty)

belong.

3. Third, the program can be split by predicates as follows. For all
the time points Ty and Ty and for any fluent F, split the program
so that:

released+(F,T;) » given+(F,Ty) > hold(F,T;) >
broken(F, Ty, T1) > released0(F,T) = givenO(F, T;)

Now it is easy to confirm that any program consisting of [pal]...[pa8]
and clauses of the form [s1][s2]ls3] and [ns1][ns2] is stratified.

This theorem means that the stratification of the clauses is related to the
stratification of the fluents mentioned in these clauses. Within this limitation, any
program is stratified and does not suffer the ramification problem. the following
corollary is straightforward to prove.

Corollary 6.1 If P is a program which is o set of the persistence rule arioms
[pal]...[pa8] and clauses of the form [s1], [s2], or [s8], then P is stratified.
7 Examples

Proposition 7.1 The following program hes a unique stable model.

given+(pos(closed(a)),0).
given+{(neg(closed(b)),0).



given+(neg(stuffy),0).
givenO(pos (shut(b)),5).
given+(pos(closed(X) ,T) :~hold(shut(X),T).

givenO(pos (stuffy),T):~hold(pos(closed(a)),T),
hold{(pos{closed(b)),T).

givenO(neg(stuffy),T):~hold(neg(closed(a)),T).
givenO(neg(stuffy),T):-hold(neg(closed(b)),T).

and [pal]...[pag]

Proof: Because the fluents are stratified, the program is stratified

by Theorem 6.1. By Theorem 2.1, the program has a unique stable
model.

Proposition 7.2 The following program is not stratified.

given+(pos (stuffy),0). [s1.1]

givenO(neg(closed(a)),T) :~hold{(neg(stuffy),T),
hold(pos(closed(b)),T). [nsl.1]

givenO{(neg(closed(b)),T) :~hold(neg(stuffy),T),
hold(pos(closed(a)),T). [nsl.2]

and [pal]...[pa8]

Proof: In order to stratify [nsl.1] and |[nsl.2],

(Lemma 1:) givenO(neg(closed(a)),T)
(Lemma 2:) givenO{neg(closed(b)),T)

hold(pos(closed(b)),T)
hold(pos(closed(a}),T)

must hold. In order to stratify [pall...[pa8],

(Lemma 3:) hold(pos(closed(a)),T) > givenO(neg(closed(a)),T)
(Lemma 4:) hold(pos(closed(b)),T) > givenO(neg(closed(b)),T)

must hold. By Lemma 1 and Lemma 3,

(Lemma 5:) hold(pos(closed(a)),T) » hold(pos(closed(b)),T)
must hold. By Lemma 2 and Lemma 4,

(Lemma 6:) hold{pos(closed(b)),T) > hold(neg(closed(a)),T)

must hold. Lemma 5 and Lemma 6 contradict. Therefore, this pro-
grarm is not stratified.

Note that the above fluents are not stratified.

8



8 Comparison with the event calculus

It is easy to understand that what can be expressed by the simplified event calcu-
lus [9] can be wriiten in the persistence calculus. Unless indirect effects of actions
are expressed, all fluents in the simplified event calculus can be regarded as con-
tinuous fluents in the persistence calculus. Actions in the event calculus can be
regarded as non-continuous fluents in the persistence calculus. Effects of (con-
current) actions and continuous changes in the event calculus can be expressed
using clauses of the form [s1] and [s3] respectively in the persistence calculus.
Indirect effects of actions (e.g. holds(f,T) + hold{g,T").) in the event calculus
can be expressed using clauses of the form [nsl].

One of the big difference between the persistence calculus and the event calcu-
lus is that while in the event calculus, fluents® which are defined by other fluents
are not subject to the inertia, in the persistence calculus, a fluent can be both
continuous and non-continuous. For example, in Proposition 7.1, neg(stuffy)
is both continuous and non-continuous.

Another advantage to use the persistence calculus is the fact that it is easy to
assimilate knowledge by observation. For example, if the robot observed that the
car passed through the tunnel at time point 1000, then given0(pos(at{car,tunnel)},
1000) can be added to the knowledge base. If the robot observes that the block
@ is on the table at the time point 500, then given+(pos{on(a,table}),1000) can
be added.

It is straightfoward that comparison with the situation calculus [7] can be
done by allocating a time point to each situation. Comparison of the situation
calculus and the event calculus is done by Kowalski and Sadri [6].

9 Conclusion

By Corollary 6.1, it was shown that any program consisting of the persistence rule
axioms [pal]...[pa8] and clauses of the form [s1]...[s3] is stratified and has a unique
stable model. By Theorem 6.1, it was shown that any program consisting of
[pal]...[pa8] and clauses of the form [s1][s2][s3]ins1][ns2] is stratified if the fluents
in the program are stratified. Therefore, the stratification of logic programs in
the persistence calculus formalism is closely related to the stratification of fluents
in the programs. Also, it was shown that the persistence calculus can express
more than the event calculus can do as a lower level formalism.

"These fluents are called derived fluents by Lifshitz.



Acknowledgements

A lot of techniques in the present paper are based on the MSc thesis [4] of the
author whose supervisor was Mr. Marek Sergot. The discussion with Dr. Murray
Shanahan was also helpful.

References

[1] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming, pages 89—
148. 1988.

[2] D. Evans and M. Sergot. An abstract framework for the representation
of persistence. Department of Computing, Imperial College, University of
London, 1995.

[3] M. Gelfond and V. Lifschitz. The stable model for logic programming. In
JICSLP 86, pages 1070-1080, 1986,

[4] H. Hayashi. The language H: A language for representing actions. Master’s
thesis, Department of Computing, Imperial College, University of London,
1996.

[5] H. Hayashi. Language Hgimpie(R): an action langnage for representing con-
current actions and contimious changes. In the second workshop on practical
reasoning and rationality, pages 1-13, 1997.

6] R. Kowalski and F. Sadri. Reconciling the event calculus with the situation
calculus. Journal of Logic Programming, 31:39-58, 1997.

[7] J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Machine Intelligence, volume 4, pages
469-502. 1969.

[8] J. A. Pinto. Temporal reasoning in the situation calculus. Technical Report
KRR-TR~94-1, Computer Science Department, University of Toronto, 1994,

9] F. Sadri and R. Kowalski. Variants of the event calcilus. In ICLP, pages
67-82. MIT Press, 1995.

[10] M. Shanahan. Prediction is deduction but explanation is abduction. In
LICAI 89, pages 10551060, 1989.

[11] M. Shanahan. Representing continuous change in the event calculus. In
ECAIT 90, pages 598-603, 1990.

10



