Supplement to Bayesian mode and maximum
estimation and accelerated rates of
contraction

WILLIAM WEIMIN YOO*!

! Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: yooweimin0203@gmail.com
and

SUBHASHIS GHOSAL?

2 Department of Statistics, North Carolina State University, 4276 SAS Hall, 2311 Stinson
Drive, Raleigh, North Carolina 27695-8203, USA
E-mail: sghosal@ncsu.edu

The supplementary file contains detailed proofs of Corollary 4.2, Proposition 5.1 and Corollary
8.4. in the main paper Yoo and Ghosal [4].

Proof of Corollary 4.2. From the proof of Theorem 4.1 before, we know that p—py =

H fo(p*) "1 (V fo(r) — V fo(po)). Noting that Vfo(po) = Vf(u) = 0 by Assumption 2,
we can use the fact ||Ab||2 > Anin (AT A)||b]|? to write

e = poll > /A {H fo () HIV fo () = V fo(po) |
> AV o) — V),

by posterior consistency of pu* as established in the proof of Theorem 5.2. Let §,, — 0 be
some sequence. Then for some small enough constant h > 0 to be determined below, we
have

([l = poll < henY) STL([Vfo(p) = V()| < Arhen, ([ = poll < 6a]Y)
+ ([l = poll > 6nY).
Since the posterior of p is consistent, the second term is op,(1). Using the definition of

continuity of  — ||V fo(x) — Vf(x)| at po and by taking n large enough (so that d,, is
small enough), we see that

([ — pol| < hen|Y) <TIL[|V fo(mo) — Vf(po)|| < 2A1hen|Y] + 0p,(1).

To obtain the same rate as the upper bound presented in (4.3) of Theorem 4.1, we
then need the lower bound point-wise version of Theorem 9.1, namely for some constant
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mo > 0 and for any x € [0, 1]¢,

sup  Eoll (|D"f(a:) — D" fy(z)| < mon—“*{l—ELl(’“k/ak>}/(2@*+d>‘Y) =0, (1)
HfO”a,ooSR

One can proceed to establish such lower bound directly since we have analytical expres-
sion for the Gaussian posterior distribution. By taking » = e, and h < mgo/(2A1), we

conclude that 2 = Zi:l p—20" (1—ag ")/ (207 +d) > maxi<p<d p—20"(1—ag )/ (20" +d)  Ag g
result, if one adds an extra lower bound assumption (4.5), we have the lower bound:

EolI (HIJ’ _ IJ'OH > hn—a*{l—(minlgkgdOtk)fl}/(Qa*+d)‘Y> -1,

for a small enough constant A > 0. For the posterior lower bound of M, let u* be some
point in between p and pg. We Taylor expand f around pg, add and subtract M and
use the reverse triangle inequality to write

|Mo — M| > | fo(p) = f(m)| +0.5(1 — po) " H fo (") (1t — po)
> |fo(r) = ()] = 050 ||k — poll?,
by the extra assumption and posterior consistency of pu*. Choose m, = /loglogn and
define the set T := {||pt— po|| < mnen}. Then for w, := n=*"/(2¢"+4) and a small enough
constant h > 0 to be determined below,
(|Mo — M| < hw,|Y) <TL(|fo(re) = f(r)] = 05N [ — pol|* < hewn, TIY)
+II(TC|Y)
< (| fo(p) = f(B)] < hwy +0.5Mmpen|Y) + op, (1),
where the last term follows from (4.3) of Theorem 4.1. Using the continuity argument as

before for & — |fo(z) — f(x)| and the fact that hw,, > A\ymZe2 when minj<p<q ax > 2,
we can further bound the right hand side above by

([ fo(p) — f()] < 2hwn|Y) + 0p, (1),

for large enough n. By setting 7 = 0 in (1) above, we conclude that the first term is
op, (1) when h < mg/2 and the second posterior statement on M is established. O

Proof of Proposition 5.1. By the triangle inequality, |02 — 02| < |65 — 0|+ |05 — 03]
By (a) of Proposition 9.5, the first term is Op, (max{n=1/2 n=2¢"/2a"+d1) T bound
the second term, let U = (ZV ZT + I,,)~1. By equation (33) of page 355 in Searle [2],
[E(53180) — 03] = [n~'03tr(U) — o] + 0 (Fy — Z€)TU (Fy — 2¢)
SnTtr(L, — U) + (Fy — Z6,)"U(F, — Z6,) (2)
+(260 — 2€)"U (26, - Z¢)],
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where we have used (z + y)TG(z + y) < 227Gz + 2y’ Gy for any matrix G > 0
(Cauchy-Schwarz and the geometric-arithmetic inequalities). Let Pz = Z(Z7Z)=1ZT
be the orthogonal projection matrix. For matrices Q,C,T, W the binomial inverse
theorem (see Theorem 18.2.8 of Harville [1]) says that

QQ+cTw)'=Q'-Q'c(rt+wqQlc)"'wqQ L
Applying the above twice to U yields
(Zzvz' + 1) '=1,-2(Z"2+Vv)1ZT =1, - P, + M, (3)

where M = Z(ZTZ)7' [V + (217 Z)"1]71(Z7Z)=1ZT > 0. Hence the first term in (2)
is n=tr(Pz — M) < n~tr(Pz) = (W +1)/n. Note that U < I, since ZV ZT > 0, and
the second term in (2) is bounded by

d
n U 2o lFo — Z60* < | Fo — Z6o|% <> 625,
k=1

in view of (8.3). By (3) and (I — Pz)Z = 0, the last term in (2) is n~ 10y — TV +
(ZTZ)"1]71(0y — &) < n~1 ij;o &) (0o, — 5,-j)2 = Op,(n71), since &, = o(1),k =
1,...,d, 6pi, = Op,(1) and &, = O(1) by assumption on the prior for any 0 < j < W.

Combining the three bounds established into (2), we obtain |E(65]6y) — o3| < n~! +
d 20‘k
k=1""n,k *

We write ng3 = (Fy — Z&)TU(Fy — Z¢) + 2(Fy — Z¢)TUe + €TUe by substituting
Y = F, + . Observe that € and 8y are independent by definition. Using the inequality
Var(A4; + Az) < 2Var(4;) + 2Var(Az) (from Cauchy-Schwarz and geometric-arithmetic
inequalities), we conclude that Var(c3|6p) is bounded up to a constant multiple by

n"2(Fy — Z00)"U*(Fy — Z6y) + (Z6y — Z¢)'U*(Z0y — Z¢) + Var(e'Ue)].  (4)
In view of (8.3) and U < I,,, the first term is bounded by n_2||U||%272)HF0 — Z6,|? <
nYFy — Z6|* Snt 2221 52’1}; Observe that since V' > 0,
Z'M?*Z =V +(27z)" 172" z) ' \V+(2TZ)" !
<[V+(Zz'z2)"\1"'<z"Z. (5)

Using (3), idempotency of I, — Pz and (I, — Pz)Z = 0, the second term in (4) is
’I’L_2(00 — E)TZT(ITL — Pz + M)QZ(GO — 6)7 which is

n*(00— €)' Z"M?Z(6y — &) <n”*(6 — €)' Z" Z(6) - §), (6)

in view of (5). By (8.4) in the proof of Lemma 8.1, we can write ZTZ = npAAA
where A = diag{é,/ : j =0,...,W} and A — EUU” in probability entry-wise, where
U= (Ub,...,.UW)T for U = (Uy,...,Uq)" ~ Uniform[—1,1]%. This gives ||A[ 22 —
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|EUUT ||(2,2) in probability. The entries of EUU” are mixed moments of Uniform[—1, 1]
and hence the matrix is nonsingular with |[EUU” |52, < oco. Since ||Al|(2,2) = 1 and
ng < n, the right hand side of (6) is bounded by

nan 2| All2.2) | Allf.2) 100 — &> = Op,(n71),

because [|6g — &|| < ||0o]| + ||€]| = Op,(1). By Lemma A.10 of Yoo and Ghosal [3] with
[U||(2,2) < 1 and Gaussian errors by Assumption 1, the last term in (4) is O(1/n). Com-
bining this with the three bounds established above, we obtain Var(c5|6) = Op,(1/n).
Therefore, the mean square error is Eo(c3 — 02)? = E{E[(65 — 02)?|60]} < n™ ! +
e Ol

To prove (b), observe that E(c?|Y) < n=! + 52 and Var(o?]Y) < n=3 + n-tol.
Therefore by Markov’s inequality, the second stage posterior of o2 concentrates around
the second stage empirical Bayes estimator 52, and thus (b) will inherit the rate from
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(a) as established above. O
Proof of Corollary 8.4. By (8.7), we have

D" fo — D" fo,llo0 = sup |D” fo(x) — D" fo, ()|
xe
Sor—6orl+ Y 16— 604l6} T (7)

r<i<meq,i#r

Hence, the upper bound (8.8) is applicable and uniformly over ||folla,co < R, we will
have Eg supyzcic E[[|D” fo— D" fo,|12,1Y ,02] < 6,2 (n~ + 22:1 (57210‘,;“) Moreover, since
the bound in (8.9) is uniform for all & € Q, this implies that Eo||D" fo, — D" fo 2|2 <
Ei:l 672110‘,:72”. Therefore, we conclude that uniformly over || folla,c0 < R,

Eo sup E[|D"fo — D" fo |12 |Y, 07
o2e,

< Eo sup E[|D"fo — D" fo,[|3,[Y, 0%] + Eol D" fo, — D" fo.z |3

GQE)Cn
1 d
-2 2c0
k=1
The empirical and hierarchical posterior contraction rates then follow from (8.10) and
(8.11) with absolute values replaced by sup-norms. O
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