Supplement to Bayesian mode and maximum estimation and accelerated rates of contraction

WILLIAM WEIMIN YOO*1

¹Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands E-mail: yooweimin0203@gmail.com and

SUBHASHIS GHOSAL²

²Department of Statistics, North Carolina State University, 4276 SAS Hall, 2311 Stinson Drive, Raleigh, North Carolina 27695-8203, USA E-mail: sghosal@ncsu.edu

The supplementary file contains detailed proofs of Corollary 4.2, Proposition 5.1 and Corollary 8.4. in the main paper Yoo and Ghosal [4].

Proof of Corollary 4.2. From the proof of Theorem 4.1 before, we know that $\mu - \mu_0 = Hf_0(\mu^*)^{-1}(\nabla f_0(\mu) - \nabla f_0(\mu_0))$. Noting that $\nabla f_0(\mu_0) = \nabla f(\mu) = \mathbf{0}$ by Assumption 2, we can use the fact $\|\mathbf{A}\mathbf{b}\|^2 \ge \lambda_{\min}(\mathbf{A}^T\mathbf{A})\|\mathbf{b}\|^2$ to write

$$\|\boldsymbol{\mu} - \boldsymbol{\mu}_0\| \ge \sqrt{\lambda_{\max}^{-2} \{\boldsymbol{H} f_0(\boldsymbol{\mu}^*)\}} \|\nabla f_0(\boldsymbol{\mu}) - \nabla f_0(\boldsymbol{\mu}_0)\|$$

$$\ge \lambda_1^{-1} \|\nabla f_0(\boldsymbol{\mu}) - \nabla f(\boldsymbol{\mu})\|,$$

by posterior consistency of μ^* as established in the proof of Theorem 5.2. Let $\delta_n \to 0$ be some sequence. Then for some small enough constant h > 0 to be determined below, we have

$$\Pi(\|\boldsymbol{\mu} - \boldsymbol{\mu}_0\| \le h\epsilon_n | \boldsymbol{Y}) \le \Pi(\|\nabla f_0(\boldsymbol{\mu}) - \nabla f(\boldsymbol{\mu})\| \le \lambda_1 h\epsilon_n, \|\boldsymbol{\mu} - \boldsymbol{\mu}_0\| \le \delta_n | \boldsymbol{Y}) + \Pi(\|\boldsymbol{\mu} - \boldsymbol{\mu}_0\| > \delta_n | \boldsymbol{Y}).$$

Since the posterior of μ is consistent, the second term is $o_{P_0}(1)$. Using the definition of continuity of $x \mapsto \|\nabla f_0(x) - \nabla f(x)\|$ at μ_0 and by taking n large enough (so that δ_n is small enough), we see that

$$\Pi(\|\boldsymbol{\mu} - \boldsymbol{\mu}_0\| \le h\epsilon_n | \boldsymbol{Y}) \le \Pi[\|\nabla f_0(\boldsymbol{\mu}_0) - \nabla f(\boldsymbol{\mu}_0)\| \le 2\lambda_1 h\epsilon_n | \boldsymbol{Y}] + o_{P_0}(1).$$

To obtain the same rate as the upper bound presented in (4.3) of Theorem 4.1, we then need the lower bound point-wise version of Theorem 9.1, namely for some constant

 $m_0 > 0$ and for any $x \in [0, 1]^d$,

$$\sup_{\|f_0\|_{\boldsymbol{\alpha},\infty} \leq R} E_0 \Pi \left(|D^{\boldsymbol{r}} f(\boldsymbol{x}) - D^{\boldsymbol{r}} f_0(\boldsymbol{x})| \leq m_0 n^{-\alpha^* \{1 - \sum_{k=1}^d (r_k/\alpha_k)\}/(2\alpha^* + d)} \Big| \boldsymbol{Y} \right) \to 0. \quad (1)$$

One can proceed to establish such lower bound directly since we have analytical expression for the Gaussian posterior distribution. By taking $\mathbf{r} = \mathbf{e}_k$ and $h \leq m_0/(2\lambda_1)$, we conclude that $\epsilon_n^2 = \sum_{k=1}^d n^{-2\alpha^*(1-\alpha_k^{-1})/(2\alpha^*+d)} \geq \max_{1\leq k\leq d} n^{-2\alpha^*(1-\alpha_k^{-1})/(2\alpha^*+d)}$. As a result, if one adds an extra lower bound assumption (4.5), we have the lower bound:

$$E_0 \Pi \left(\| \boldsymbol{\mu} - \boldsymbol{\mu}_0 \| \ge h n^{-\alpha^* \{ 1 - (\min_{1 \le k \le d} \alpha_k)^{-1} \} / (2\alpha^* + d)} \middle| \boldsymbol{Y} \right) \to 1,$$

for a small enough constant h > 0. For the posterior lower bound of M, let μ^* be some point in between μ and μ_0 . We Taylor expand f_0 around μ_0 , add and subtract M and use the reverse triangle inequality to write

$$|M_0 - M| \ge |f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| + 0.5(\boldsymbol{\mu} - \boldsymbol{\mu}_0)^T \boldsymbol{H} f_0(\boldsymbol{\mu}^*) (\boldsymbol{\mu} - \boldsymbol{\mu}_0)$$

$$\ge |f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| - 0.5\lambda_1 ||\boldsymbol{\mu} - \boldsymbol{\mu}_0||^2,$$

by the extra assumption and posterior consistency of μ^* . Choose $m_n = \sqrt{\log \log n}$ and define the set $\mathcal{T} := \{\|\mu - \mu_0\| \le m_n \epsilon_n\}$. Then for $\omega_n := n^{-\alpha^*/(2\alpha^* + d)}$ and a small enough constant h > 0 to be determined below,

$$\Pi(|M_0 - M| \le h\omega_n | \mathbf{Y}) \le \Pi\left(|f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| - 0.5\lambda_1 \|\boldsymbol{\mu} - \boldsymbol{\mu}_0\|^2 \le h\omega_n, \mathcal{T}|\mathbf{Y}\right)
+ \Pi(\mathcal{T}^c | \mathbf{Y})
\le \Pi(|f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| \le h\omega_n + 0.5\lambda_1 m_n^2 \epsilon_n^2 | \mathbf{Y}) + o_{P_0}(1),$$

where the last term follows from (4.3) of Theorem 4.1. Using the continuity argument as before for $\boldsymbol{x} \mapsto |f_0(\boldsymbol{x}) - f(\boldsymbol{x})|$ and the fact that $h\omega_n \gg \lambda_1 m_n^2 \epsilon_n^2$ when $\min_{1 \le k \le d} \alpha_k > 2$, we can further bound the right hand side above by

$$\Pi(|f_0(\boldsymbol{\mu}) - f(\boldsymbol{\mu})| \le 2h\omega_n|\boldsymbol{Y}) + o_{P_0}(1),$$

for large enough n. By setting r=0 in (1) above, we conclude that the first term is $o_{P_0}(1)$ when $h \leq m_0/2$ and the second posterior statement on M is established.

Proof of Proposition 5.1. By the triangle inequality, $|\widetilde{\sigma}_*^2 - \sigma_0^2| \leq |\widetilde{\sigma}_1^2 - \sigma_0^2| + |\widetilde{\sigma}_2^2 - \sigma_0^2|$. By (a) of Proposition 9.5, the first term is $O_{P_0}(\max\{n^{-1/2}, n^{-2\alpha^*/(2\alpha^*+d)}\})$. To bound the second term, let $U = (ZVZ^T + I_n)^{-1}$. By equation (33) of page 355 in Searle [2],

$$|E(\widetilde{\sigma}_{2}^{2}|\boldsymbol{\theta}_{0}) - \sigma_{0}^{2}| = |n^{-1}\sigma_{0}^{2}tr(\boldsymbol{U}) - \sigma_{0}^{2}| + n^{-1}(\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\xi})^{T}\boldsymbol{U}(\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\xi})$$

$$\lesssim n^{-1}[tr(\boldsymbol{I}_{n} - \boldsymbol{U}) + (\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\theta}_{0})^{T}\boldsymbol{U}(\boldsymbol{F}_{0} - \boldsymbol{Z}\boldsymbol{\theta}_{0})$$

$$+ (\boldsymbol{Z}\boldsymbol{\theta}_{0} - \boldsymbol{Z}\boldsymbol{\xi})^{T}\boldsymbol{U}(\boldsymbol{Z}\boldsymbol{\theta}_{0} - \boldsymbol{Z}\boldsymbol{\xi})],$$
(2)

where we have used $(x + y)^T G(x + y) \leq 2x^T Gx + 2y^T Gy$ for any matrix $G \geq 0$ (Cauchy-Schwarz and the geometric-arithmetic inequalities). Let $P_Z = Z(Z^T Z)^{-1} Z^T$ be the orthogonal projection matrix. For matrices Q, C, T, W, the binomial inverse theorem (see Theorem 18.2.8 of Harville [1]) says that

$$(Q + CTW)^{-1} = Q^{-1} - Q^{-1}C(T^{-1} + WQ^{-1}C)^{-1}WQ^{-1}.$$

Applying the above twice to U yields

$$(ZVZ^{T} + I_{n})^{-1} = I_{n} - Z(Z^{T}Z + V^{-1})^{-1}Z^{T} = I_{n} - P_{Z} + M,$$
 (3)

where $M = Z(Z^TZ)^{-1}[V + (Z^TZ)^{-1}]^{-1}(Z^TZ)^{-1}Z^T \geq \mathbf{0}$. Hence the first term in (2) is $n^{-1}\mathrm{tr}(P_Z - M) \leq n^{-1}\mathrm{tr}(P_Z) = (W+1)/n$. Note that $U \leq I_n$ since $ZVZ^T \geq \mathbf{0}$, and the second term in (2) is bounded by

$$\| n^{-1} \| \boldsymbol{U} \|_{(2,2)} \| \boldsymbol{F}_0 - \boldsymbol{Z} \boldsymbol{\theta}_0 \|^2 \le \| \boldsymbol{F}_0 - \boldsymbol{Z} \boldsymbol{\theta}_0 \|_{\infty}^2 \lesssim \sum_{k=1}^d \delta_{n,k}^{2\alpha_k},$$

in view of (8.3). By (3) and $(\boldsymbol{I} - \boldsymbol{P}_{\boldsymbol{Z}})\boldsymbol{Z} = \boldsymbol{0}$, the last term in (2) is $n^{-1}(\boldsymbol{\theta}_0 - \boldsymbol{\xi})^T[\boldsymbol{V} + (\boldsymbol{Z}^T\boldsymbol{Z})^{-1}]^{-1}(\boldsymbol{\theta}_0 - \boldsymbol{\xi}) \leq n^{-1}\sum_{j=0}^W \boldsymbol{\delta}_n^{i_j}(\theta_{0,i_j} - \xi_{i_j})^2 = O_{P_0}(n^{-1})$, since $\delta_{n,k} = o(1), k = 1, \ldots, d$, $\theta_{0,i_j} = O_{P_0}(1)$ and $\xi_{i_j} = O(1)$ by assumption on the prior for any $0 \leq j \leq W$. Combining the three bounds established into (2), we obtain $|E(\tilde{\sigma}_2^2|\boldsymbol{\theta}_0) - \sigma_0^2| \lesssim n^{-1} + \sum_{k=1}^d \delta_{n,k}^{2\alpha_k}$.

We write $n\widetilde{\sigma}_2^2 = (\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\xi})^T \mathbf{U}(\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\xi}) + 2(\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\xi})^T \mathbf{U}\boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}^T \mathbf{U}\boldsymbol{\varepsilon}$ by substituting $\mathbf{Y} = \mathbf{F}_0 + \boldsymbol{\varepsilon}$. Observe that $\boldsymbol{\varepsilon}$ and $\boldsymbol{\theta}_0$ are independent by definition. Using the inequality $\operatorname{Var}(A_1 + A_2) \leq 2\operatorname{Var}(A_1) + 2\operatorname{Var}(A_2)$ (from Cauchy-Schwarz and geometric-arithmetic inequalities), we conclude that $\operatorname{Var}(\widetilde{\sigma}_2^2|\boldsymbol{\theta}_0)$ is bounded up to a constant multiple by

$$n^{-2}[(\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\theta}_0)^T \mathbf{U}^2 (\mathbf{F}_0 - \mathbf{Z}\boldsymbol{\theta}_0) + (\mathbf{Z}\boldsymbol{\theta}_0 - \mathbf{Z}\boldsymbol{\xi})^T \mathbf{U}^2 (\mathbf{Z}\boldsymbol{\theta}_0 - \mathbf{Z}\boldsymbol{\xi}) + \operatorname{Var}(\boldsymbol{\varepsilon}^T \mathbf{U}\boldsymbol{\varepsilon})].$$
(4)

In view of (8.3) and $U \leq I_n$, the first term is bounded by $n^{-2} \|U\|_{(2,2)}^2 \|F_0 - Z\boldsymbol{\theta}_0\|^2 \leq n^{-1} \|F_0 - Z\boldsymbol{\theta}_0\|_{\infty}^2 \lesssim n^{-1} \sum_{k=1}^d \delta_{n,k}^{2\alpha_k}$. Observe that since $V \geq \mathbf{0}$,

$$Z^{T}M^{2}Z = [V + (Z^{T}Z)^{-1}]^{-1}(Z^{T}Z)^{-1}[V + (Z^{T}Z)^{-1}]^{-1}$$

$$\leq [V + (Z^{T}Z)^{-1}]^{-1} \leq Z^{T}Z.$$
(5)

Using (3), idempotency of $I_n - P_Z$ and $(I_n - P_Z)Z = 0$, the second term in (4) is $n^{-2}(\theta_0 - \xi)^T Z^T (I_n - P_Z + M)^2 Z(\theta_0 - \xi)$, which is

$$n^{-2}(\boldsymbol{\theta}_0 - \boldsymbol{\xi})^T \boldsymbol{Z}^T \boldsymbol{M}^2 \boldsymbol{Z}(\boldsymbol{\theta}_0 - \boldsymbol{\xi}) \le n^{-2}(\boldsymbol{\theta}_0 - \boldsymbol{\xi})^T \boldsymbol{Z}^T \boldsymbol{Z}(\boldsymbol{\theta}_0 - \boldsymbol{\xi}), \tag{6}$$

in view of (5). By (8.4) in the proof of Lemma 8.1, we can write $\mathbf{Z}^T\mathbf{Z} = n_2\Delta\mathbf{A}\Delta$ where $\Delta = \operatorname{diag}\{\boldsymbol{\delta}_n^{ij}: j=0,\ldots,W\}$ and $\mathbf{A} \to \mathrm{EUU}^T$ in probability entry-wise, where $\mathrm{U} = (\mathbf{U}^{i_0},\ldots,\mathbf{U}^{i_W})^T$ for $\mathbf{U} = (U_1,\ldots,U_d)^T \sim \mathrm{Uniform}[-1,1]^d$. This gives $\|\mathbf{A}\|_{(2,2)} \to \mathbf{A}$

 $\|\mathbb{EUU}^T\|_{(2,2)}$ in probability. The entries of \mathbb{EUU}^T are mixed moments of Uniform[-1, 1] and hence the matrix is nonsingular with $\|\mathbb{EUU}^T\|_{(2,2)} < \infty$. Since $\|\mathbf{\Delta}\|_{(2,2)} = 1$ and $n_2 \leq n$, the right hand side of (6) is bounded by

$$n_2 n^{-2} \|\mathbf{A}\|_{(2,2)} \|\mathbf{\Delta}\|_{(2,2)}^2 \|\mathbf{\theta}_0 - \boldsymbol{\xi}\|^2 = O_{P_0}(n^{-1}),$$

because $\|\boldsymbol{\theta}_0 - \boldsymbol{\xi}\| \le \|\boldsymbol{\theta}_0\| + \|\boldsymbol{\xi}\| = O_{P_0}(1)$. By Lemma A.10 of Yoo and Ghosal [3] with $\|\boldsymbol{U}\|_{(2,2)} \le 1$ and Gaussian errors by Assumption 1, the last term in (4) is O(1/n). Combining this with the three bounds established above, we obtain $\operatorname{Var}(\widetilde{\sigma}_2^2|\boldsymbol{\theta}_0) = O_{P_0}(1/n)$. Therefore, the mean square error is $\operatorname{E}_0(\widetilde{\sigma}_2^2 - \sigma_0^2)^2 = \operatorname{E}\{\operatorname{E}[(\widetilde{\sigma}_2^2 - \sigma_0^2)^2|\boldsymbol{\theta}_0]\} \lesssim n^{-1} + \sum_{k=1}^d \delta_{n,k}^{4\alpha_k}$.

To prove (b), observe that $E(\sigma^2|\mathbf{Y}) \lesssim n^{-1} + \widetilde{\sigma}_*^2$ and $Var(\sigma^2|\mathbf{Y}) \lesssim n^{-3} + n^{-1}\widetilde{\sigma}_*^4$. Therefore by Markov's inequality, the second stage posterior of σ^2 concentrates around the second stage empirical Bayes estimator $\widetilde{\sigma}_*^2$, and thus (b) will inherit the rate from (a) as established above.

Proof of Corollary 8.4. By (8.7), we have

$$||D^{r} f_{\theta} - D^{r} f_{\theta_{0}}||_{\infty} = \sup_{\boldsymbol{x} \in \mathcal{Q}} |D^{r} f_{\theta}(\boldsymbol{x}) - D^{r} f_{\theta_{0}}(\boldsymbol{x})|$$

$$\lesssim |\theta_{r} - \theta_{0,r}| + \sum_{r \leq i \leq m_{\alpha}, i \neq r} |\theta_{i} - \theta_{0,i}| \boldsymbol{\delta}_{n}^{i-r}.$$
(7)

Hence, the upper bound (8.8) is applicable and uniformly over $||f_0||_{\boldsymbol{\alpha},\infty} \leq R$, we will have $\mathrm{E}_0 \sup_{\sigma^2 \in \mathcal{K}_n} \mathrm{E}[||D^r f_{\boldsymbol{\theta}} - D^r f_{\boldsymbol{\theta}_0}||_{\infty}^2 | \boldsymbol{Y}, \sigma^2] \lesssim \delta_n^{-2r} (n^{-1} + \sum_{k=1}^d \delta_{n,k}^{2\alpha_k})$. Moreover, since the bound in (8.9) is uniform for all $\boldsymbol{x} \in \mathcal{Q}$, this implies that $\mathrm{E}_0 ||D^r f_{\boldsymbol{\theta}_0} - D^r f_{0,\boldsymbol{z}}||_{\infty}^2 \lesssim \sum_{k=1}^d \delta_{n,k}^{2\alpha_k - 2r_k}$. Therefore, we conclude that uniformly over $||f_0||_{\boldsymbol{\alpha},\infty} \leq R$,

$$\begin{aligned}
& \mathbf{E}_{0} \sup_{\sigma^{2} \in \mathcal{K}_{n}} \mathbf{E}[\|D^{r} f_{\theta} - D^{r} f_{0, \mathbf{z}}\|_{\infty}^{2} | \mathbf{Y}, \sigma^{2}] \\
& \lesssim \mathbf{E}_{0} \sup_{\sigma^{2} \in \mathcal{K}_{n}} \mathbf{E}[\|D^{r} f_{\theta} - D^{r} f_{\theta_{0}}\|_{\infty}^{2} | \mathbf{Y}, \sigma^{2}] + \mathbf{E}_{0} \|D^{r} f_{\theta_{0}} - D^{r} f_{0, \mathbf{z}}\|_{\infty}^{2} \\
& \lesssim \boldsymbol{\delta}_{n}^{-2r} \left(\frac{1}{n} + \sum_{k=1}^{d} \delta_{n, k}^{2\alpha_{k}}\right).
\end{aligned}$$

The empirical and hierarchical posterior contraction rates then follow from (8.10) and (8.11) with absolute values replaced by sup-norms.

References

- [1] Harville, D. A. (1997). Matrix Algebra from a Statistician's Perspective. Springer-Verlag New York, Inc.
- [2] Searle, S. R. (1982). Matrix Algebra Useful for Statistics. John Wiley and Sons, Inc.

- [3] Yoo, W. W. and Ghosal, S. (2016). Supremum norm posterior contraction and credible sets for nonparametric multivariate regression. *Ann. Statist.*, 44(3):1069–1102.
- [4] Yoo, W. W. and Ghosal, S. (2018). Bayesian mode and maximum estimation and accelerated rates of contraction. To apppear in Bernoulli.