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Proof of Corollary 4.2. From the proof of Theorem 4.1 before, we know that µ−µ0 =
Hf0(µ∗)−1(∇f0(µ) − ∇f0(µ0)). Noting that ∇f0(µ0) = ∇f(µ) = 0 by Assumption 2,
we can use the fact ‖Ab‖2 ≥ λmin(ATA)‖b‖2 to write

‖µ− µ0‖ ≥
√
λ−2max{Hf0(µ∗)}‖∇f0(µ)−∇f0(µ0)‖

≥ λ−11 ‖∇f0(µ)−∇f(µ)‖,

by posterior consistency of µ∗ as established in the proof of Theorem 5.2. Let δn → 0 be
some sequence. Then for some small enough constant h > 0 to be determined below, we
have

Π(‖µ− µ0‖ ≤ hεn|Y ) ≤ Π (‖∇f0(µ)−∇f(µ)‖ ≤ λ1hεn, ‖µ− µ0‖ ≤ δn|Y )

+ Π(‖µ− µ0‖ > δn|Y ).

Since the posterior of µ is consistent, the second term is oP0
(1). Using the definition of

continuity of x 7→ ‖∇f0(x)−∇f(x)‖ at µ0 and by taking n large enough (so that δn is
small enough), we see that

Π(‖µ− µ0‖ ≤ hεn|Y ) ≤ Π [‖∇f0(µ0)−∇f(µ0)‖ ≤ 2λ1hεn|Y ] + oP0(1).

To obtain the same rate as the upper bound presented in (4.3) of Theorem 4.1, we
then need the lower bound point-wise version of Theorem 9.1, namely for some constant
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m0 > 0 and for any x ∈ [0, 1]d,

sup
‖f0‖α,∞≤R

E0Π
(
|Drf(x)−Drf0(x)| ≤ m0n

−α∗{1−
∑d

k=1(rk/αk)}/(2α∗+d)
∣∣∣Y )→ 0. (1)

One can proceed to establish such lower bound directly since we have analytical expres-
sion for the Gaussian posterior distribution. By taking r = ek and h ≤ m0/(2λ1), we

conclude that ε2n =
∑d
k=1 n

−2α∗(1−α−1
k )/(2α∗+d) ≥ max1≤k≤d n

−2α∗(1−α−1
k )/(2α∗+d). As a

result, if one adds an extra lower bound assumption (4.5), we have the lower bound:

E0Π
(
‖µ− µ0‖ ≥ hn−α

∗{1−(min1≤k≤d αk)
−1}/(2α∗+d)

∣∣∣Y )→ 1,

for a small enough constant h > 0. For the posterior lower bound of M , let µ∗ be some
point in between µ and µ0. We Taylor expand f0 around µ0, add and subtract M and
use the reverse triangle inequality to write

|M0 −M | ≥ |f0(µ)− f(µ)|+ 0.5(µ− µ0)THf0(µ∗)(µ− µ0)

≥ |f0(µ)− f(µ)| − 0.5λ1‖µ− µ0‖2,

by the extra assumption and posterior consistency of µ∗. Choose mn =
√

log log n and
define the set T := {‖µ−µ0‖ ≤ mnεn}. Then for ωn := n−α

∗/(2α∗+d) and a small enough
constant h > 0 to be determined below,

Π(|M0 −M | ≤ hωn|Y ) ≤ Π
(
|f0(µ)− f(µ)| − 0.5λ1‖µ− µ0‖2 ≤ hωn, T |Y

)
+ Π(T c|Y )

≤ Π(|f0(µ)− f(µ)| ≤ hωn + 0.5λ1m
2
nε

2
n|Y ) + oP0(1),

where the last term follows from (4.3) of Theorem 4.1. Using the continuity argument as
before for x 7→ |f0(x)− f(x)| and the fact that hωn � λ1m

2
nε

2
n when min1≤k≤d αk > 2,

we can further bound the right hand side above by

Π(|f0(µ)− f(µ)| ≤ 2hωn|Y ) + oP0(1),

for large enough n. By setting r = 0 in (1) above, we conclude that the first term is
oP0(1) when h ≤ m0/2 and the second posterior statement on M is established.

Proof of Proposition 5.1. By the triangle inequality, |σ̃2
∗−σ2

0 | ≤ |σ̃2
1−σ2

0 |+ |σ̃2
2−σ2

0 |.
By (a) of Proposition 9.5, the first term is OP0

(max{n−1/2, n−2α∗/(2α∗+d)}). To bound
the second term, let U = (ZV ZT + In)−1. By equation (33) of page 355 in Searle [2],

|E(σ̃2
2 |θ0)− σ2

0 | = |n−1σ2
0tr(U)− σ2

0 |+ n−1(F0 −Zξ)TU(F0 −Zξ)

. n−1[tr(In −U) + (F0 −Zθ0)TU(F0 −Zθ0) (2)

+ (Zθ0 −Zξ)TU(Zθ0 −Zξ)],
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where we have used (x + y)TG(x + y) ≤ 2xTGx + 2yTGy for any matrix G ≥ 0
(Cauchy-Schwarz and the geometric-arithmetic inequalities). Let PZ = Z(ZTZ)−1ZT

be the orthogonal projection matrix. For matrices Q,C,T ,W , the binomial inverse
theorem (see Theorem 18.2.8 of Harville [1]) says that

(Q+CTW )−1 = Q−1 −Q−1C(T−1 +WQ−1C)−1WQ−1.

Applying the above twice to U yields

(ZV ZT + In)−1 = In −Z(ZTZ + V −1)−1ZT = In − PZ +M , (3)

where M = Z(ZTZ)−1[V + (ZTZ)−1]−1(ZTZ)−1ZT ≥ 0. Hence the first term in (2)
is n−1tr(PZ −M) ≤ n−1tr(PZ) = (W + 1)/n. Note that U ≤ In since ZV ZT ≥ 0, and
the second term in (2) is bounded by

n−1‖U‖(2,2)‖F0 −Zθ0‖2 ≤ ‖F0 −Zθ0‖2∞ .
d∑
k=1

δ2αk

n,k ,

in view of (8.3). By (3) and (I − PZ)Z = 0, the last term in (2) is n−1(θ0 − ξ)T [V +

(ZTZ)−1]−1(θ0 − ξ) ≤ n−1
∑W
j=0 δ

ij
n (θ0,ij − ξij )2 = OP0

(n−1), since δn,k = o(1), k =
1, . . . , d, θ0,ij = OP0(1) and ξij = O(1) by assumption on the prior for any 0 ≤ j ≤ W .
Combining the three bounds established into (2), we obtain |E(σ̃2

2 |θ0) − σ2
0 | . n−1 +∑d

k=1 δ
2αk

n,k .

We write nσ̃2
2 = (F0 − Zξ)TU(F0 − Zξ) + 2(F0 − Zξ)TUε + εTUε by substituting

Y = F0 + ε. Observe that ε and θ0 are independent by definition. Using the inequality
Var(A1 + A2) ≤ 2Var(A1) + 2Var(A2) (from Cauchy-Schwarz and geometric-arithmetic
inequalities), we conclude that Var(σ̃2

2 |θ0) is bounded up to a constant multiple by

n−2[(F0 −Zθ0)TU2(F0 −Zθ0) + (Zθ0 −Zξ)TU2(Zθ0 −Zξ) + Var(εTUε)]. (4)

In view of (8.3) and U ≤ In, the first term is bounded by n−2‖U‖2(2,2)‖F0 − Zθ0‖2 ≤
n−1‖F0 −Zθ0‖2∞ . n−1

∑d
k=1 δ

2αk

n,k . Observe that since V ≥ 0,

ZTM2Z = [V + (ZTZ)−1]−1(ZTZ)−1[V + (ZTZ)−1]−1

≤ [V + (ZTZ)−1]−1 ≤ ZTZ. (5)

Using (3), idempotency of In − PZ and (In − PZ)Z = 0, the second term in (4) is
n−2(θ0 − ξ)TZT (In − PZ +M)2Z(θ0 − ξ), which is

n−2(θ0 − ξ)TZTM2Z(θ0 − ξ) ≤ n−2(θ0 − ξ)TZTZ(θ0 − ξ), (6)

in view of (5). By (8.4) in the proof of Lemma 8.1, we can write ZTZ = n2∆A∆

where ∆ = diag{δijn : j = 0, . . . ,W} and A → EUUT in probability entry-wise, where
U = (U i0 , . . . ,U iW )T for U = (U1, . . . , Ud)

T ∼ Uniform[−1, 1]d. This gives ‖A‖(2,2) →
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‖EUUT ‖(2,2) in probability. The entries of EUUT are mixed moments of Uniform[−1, 1]
and hence the matrix is nonsingular with ‖EUUT ‖(2,2) < ∞. Since ‖∆‖(2,2) = 1 and
n2 ≤ n, the right hand side of (6) is bounded by

n2n
−2‖A‖(2,2)‖∆‖2(2,2)‖θ0 − ξ‖

2 = OP0
(n−1),

because ‖θ0 − ξ‖ ≤ ‖θ0‖ + ‖ξ‖ = OP0(1). By Lemma A.10 of Yoo and Ghosal [3] with
‖U‖(2,2) ≤ 1 and Gaussian errors by Assumption 1, the last term in (4) is O(1/n). Com-
bining this with the three bounds established above, we obtain Var(σ̃2

2 |θ0) = OP0
(1/n).

Therefore, the mean square error is E0(σ̃2
2 − σ2

0)2 = E{E[(σ̃2
2 − σ2

0)2|θ0]} . n−1 +∑d
k=1 δ

4αk

n,k .

To prove (b), observe that E(σ2|Y ) . n−1 + σ̃2
∗ and Var(σ2|Y ) . n−3 + n−1σ̃4

∗.
Therefore by Markov’s inequality, the second stage posterior of σ2 concentrates around
the second stage empirical Bayes estimator σ̃2

∗, and thus (b) will inherit the rate from
(a) as established above.

Proof of Corollary 8.4. By (8.7), we have

‖Drfθ −Drfθ0‖∞ = sup
x∈Q
|Drfθ(x)−Drfθ0(x)|

. |θr − θ0,r|+
∑

r≤i≤mα,i6=r

|θi − θ0,i|δi−rn . (7)

Hence, the upper bound (8.8) is applicable and uniformly over ‖f0‖α,∞ ≤ R, we will

have E0 supσ2∈Kn
E[‖Drfθ−Drfθ0‖2∞|Y , σ2] . δ−2rn (n−1 +

∑d
k=1 δ

2αk

n,k ). Moreover, since

the bound in (8.9) is uniform for all x ∈ Q, this implies that E0‖Drfθ0 −Drf0,z‖2∞ .∑d
k=1 δ

2αk−2rk
n,k . Therefore, we conclude that uniformly over ‖f0‖α,∞ ≤ R,

E0 sup
σ2∈Kn

E[‖Drfθ −Drf0,z‖2∞|Y , σ2]

. E0 sup
σ2∈Kn

E[‖Drfθ −Drfθ0‖2∞|Y , σ2] + E0‖Drfθ0 −Drf0,z‖2∞

. δ−2rn

(
1

n
+

d∑
k=1

δ2αk

n,k

)
.

The empirical and hierarchical posterior contraction rates then follow from (8.10) and
(8.11) with absolute values replaced by sup-norms.
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