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We study the problem of estimating the mode and maximum of an unknown regression function
in the presence of noise. We adopt the Bayesian approach by using tensor-product B-splines and
endowing the coefficients with Gaussian priors. In the usual fixed-in-advanced sampling plan,
we establish posterior contraction rates for mode and maximum and show that they coincide
with the minimax rates for this problem. To quantify estimation uncertainty, we construct
credible sets for these two quantities that have high coverage probabilities with optimal sizes. If
one is allowed to collect data sequentially, we further propose a Bayesian two-stage estimation
procedure, where a second stage posterior is built based on samples collected within a credible
set constructed from a first stage posterior. Under appropriate conditions on the radius of this
credible set, we can accelerate optimal contraction rates from the fixed-in-advanced setting
to the minimax sequential rates. A simulation experiment shows that our Bayesian two-stage
procedure outperforms single-stage procedure and also slightly improves upon a non-Bayesian
two-stage procedure.
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1. Introduction

Consider noisy measurements Y1, . . . , Yn of an unknown smooth function f at locations
X1, . . . ,Xn ∈ [0, 1]d given by the nonparametric regression model

Yi = f(Xi) + εi, i = 1, . . . , n, (1.1)

where the regression errors ε1, . . . , εn are modeled as independent and identically dis-
tributed (i.i.d.) N(0, σ2) with unknown standard deviation 0 < σ < ∞. The covariates
can be deterministic or can be drawn as i.i.d samples from some fixed distribution inde-
pendently of the regression errors.

1

http://isi.cbs.nl/bernoulli/
mailto:yooweimin0203@gmail.com
mailto:sghosal@ncsu.edu


2 W. W. Yoo and S. Ghosal

In this paper, we consider the problem of estimating the mode µ which marks the
location of the maximum of f , and the value of this maximum M = f(µ) = sup{f(x) :
x ∈ [0, 1]d}, assuming that µ is unique. The problem can be thought of as optimization in
the presence of noise and has wide range of applications. For instance, searching for the
optimal factor configurations in response surface methodology, locating peaks in bacteria
(Silverman [26]) and human (Müller [20]) growth curves, or to classify and compare curves
arising from longitudinal endocrinological data (Jørgensen et al. [14]).

The problem of estimating the mode and maximum of an isotropic regression function
is well studied in the frequentist literature. Müller [20, 21] and Shoung and Zhang [25]
provided convergence rates for univariate regression, with the multivariate case obtained
by Facer and Müller [10]. Furthermore, Hasminskĭi [13] and Tsybakov [29] showed that for
isotropic Hölder regression function of order α that is also α-continuously differentiable,
the minimax rates for estimating µ is n−(α−1)/(2α+d) and for M is n−α/(2α+d), under the
usual sampling plan of choosing samples that are fixed in advance.

However if one is allowed to choose samples based on information gathered from
past samples, the structure of the problem changes and we are in the sequential design
setting. In this case, the minimax sequential rates of estimating µ and M are respectively
n−(α−1)/(2α) and n−1/2 (see Chen [5], Polyak and Tsybakov [22], Mokkadem and Pelletier
[19]). When compared with the fixed design case, it is clear that sequential rates are
uniformly better and in fact M has successfully achieved the parametric rate. Moreover,
it also shows that judicious use of past information to guide future actions removes the
effect of dimension d on the rates. On the more practical side, Kiefer and Wolfowitz [15]
and Blum [2] used Robbins-Monro type procedures that is consistent; while Fabian [9],
Dippon [8] and Mokkadem and Pelletier [19] each constructed sequential procedures that
actually attain the minimax rates.

In actual practice, fully sequential design is costly to implement, because sample col-
lection time is longer and the required logistics in collecting data in many stages is much
more complicated than single-stage procedures. This then gave rise to the idea of a two-
stage procedure, which offers a compromise between the added cost of doing a follow-up
experiment and the added accuracy gained from it. At the first stage, limited samples
are taken to give a pilot estimate of some quantity (e.g., mode), and the second stage
samples are collected in the vicinity of this preliminary estimate. It was then shown in
Lan et al. [18], Tang et al. [28] and Belitser et al. [1] that an extra second stage is enough
to accelerate the convergence rates and in some cases propel them to attain the minimax
sequential rates.

To the best of our knowledge however, there are hardly any such results and procedures
in the Bayesian literature, whether it is in the fixed design, sequential or two-stage cases.
Therefore, it is hoped that this paper will fill in this gap by giving a Bayesian solution
to this problem. As we shall see, there are advantages in using the Bayesian approach,
as it provides a natural framework to do two-stage estimation, and it can outperform
frequentist procedures by exploiting the shrinkage property of Bayesian estimators.

In the first part of this article, we consider the fixed-in-advance sampling plan and
establish single stage posterior contraction rates for µ and M . Our prior consists of
tensor product B-splines with Gaussian distributed coefficients, and we endow the error
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variance with some positive and continuous prior density. We chose this prior because it
enables us to derive sharp results by directly analyzing the posterior distribution, and
B-splines are efficient to compute. The main challenge here is the non-linear and non-
smooth nature of the argmax and max functionals of f , and we avoid dealing with them
directly by relating the estimation errors of µ and M with the sup-norm errors for f and
its first order partial derivatives. To quantify uncertainty in the estimation procedure, we
construct credible sets for µ and M , and show that they have high asymptotic coverage
with optimal sizes.

Sequential sampling or more specifically a two-stage procedure can naturally be em-
bedded inside a Bayesian framework, as information gained from an earlier stage can be
used to adjust or update one’s prior opinion. In the second part of this paper, we propose
a Bayesian two-stage procedure for estimating the mode and maximum of f . We split
the samples into two parts, and use the first part to compute the first stage posterior
distribution of µ and M . Using this posterior, we construct a credible set based on the
techniques discussed in the first part of the paper. Second stage samples are then sampled
uniformly over this set, and they are used to compute the second stage posterior of these
two quantities.

We show that this second stage posterior is more concentrated around the truth than
its single stage counterpart, and it can accelerate single stage minimax rates to the opti-
mal sequential rates, under appropriate conditions on the radius of the credible set used.
We test our procedure in a numerical experiment and the results seem to support our
theoretical conclusions. Moreover when compared with a non-Bayesian method proposed
in the literature, our Bayesian two-stage procedure seems to outperform slightly in terms
of the root mean square error, and this is due to the shrinkage induced by our choice of
prior distributions (see Figure 3 below).

Throughout this paper, we will work with a general class of anisotropic Hölder space,
such that we allow f to have different order of smoothness in each dimension. In some
of our results below, it will be seen that additional smoothness in other dimensions can
help alleviate the loss in accuracy due to less smoothness in some dimensions, and this
borrowing of smoothness across dimensions, which is a unique feature of anisotropic
spaces, can result in the improvement of the overall rate.

The paper is organized as follows. The next section introduces notations and assump-
tions. Section 3 describes the prior and the resulting posterior distributions of µ and
M . Section 4 contains main results in the single stage setting on posterior contraction
rates and coverage probability of credible sets for these two quantities. We introduce the
Bayesian two-stage procedure of estimating µ and M in Section 5. Section 6 contains
simulation studies for our proposed Bayesian two-stage method. This is then followed by
a summary and discussion on future outlook in Section 7. Proofs of our main results are
given in Section 8 and some useful auxiliary results are collected in Section 9 Appendix.
We delegate some rather routine and technical proofs to a supplementary article Yoo and
Ghosal [34] to streamline reading.
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2. Notations and assumptions

Given two numerical sequences an and bn, an = O(bn) or an . bn means an/bn is
bounded, while an = o(bn) or an � bn means an/bn → 0. Also, an � bn means an =
O(bn) and bn = O(an). For stochastic sequence Zn, Zn = OP(an) means P(|Zn| ≤
Can) → 1 for some constant C > 0; while Zn = oP(an) means Zn/an → 0 in P-
probability.

Let ‖x‖p = (
∑d
k=1 |xk|p)1/p, ‖x‖∞ = max1≤k≤d |xk| and ‖x‖ = ‖x‖2. Inequality for

a vector stands for co-ordinatewise inequality. For a symmetric matrix A, let λmax(A)
and λmin(A) stand for its largest and smallest eigenvalues, and ‖A‖(2,2) = |λmax(A)|.
Given another matrix B of the same size, A ≤ B means B −A is nonnegative definite.
The Lp-norm of a function f is denoted by ‖f‖p.

We say Z ∼ NJ(ξ,Ω) if Z has a J-dimensional normal distribution with mean ξ and
covariance matrix Ω. By saying that Z ∼ GP(ξ,Ω), we mean that {Z(t), t ∈ U} is a
Gaussian process with EZ(t) = ξ(t) and Cov(Z(s), Z(t)) = Ω(s, t) for any s, t ∈ U .

Multi-indexes will be frequently used. Let N = {1, 2, . . . } be the natural numbers and

N0 = N ∪ {0}. For i = (i1, . . . , id)
T ∈ Nd0 and x ∈ Rd, define |i| =

∑d
k=1 ik, i! =

∏d
k=1 ik

and xi =
∏d
k=1 x

ik
k . For r = (r1, . . . , rd)

T ∈ Nd0, let Dr = ∂|r|/∂xr11 · · · ∂x
rd
d be the

mixed partial derivative operator. If r = 0, we interpret D0f ≡ f . If r = ek, where
ek = (0, . . . , 0, 1, 0, . . . , 0)T with 1 in the kth position and zero elsewhere, we write Dek

as Dk. We denote ∇f(x) = (D1f(x), . . . , Ddf(x))T to be the gradient of f at x. If f is
twice differentiable, Hf(x0) stands for the Hessian matrix of f at x0.

For α = (α1, . . . , αd)
T ∈ Nd, let us denote α∗ to be the harmonic mean, i.e., (α∗)−1 =

d−1
∑d
k=1 α

−1
k . We define the anisotropic Hölder’s norm ‖f‖α,∞ as

max

{
‖Drf‖∞ +

d∑
k=1

‖D(αk−rk)ekDrf‖∞ : r ∈ Nd0,
d∑
k=1

(rk/αk) < 1

}
. (2.1)

The constraint
∑d
k=1(rk/αk) < 1 is a technical condition and is imposed so that con-

traction rates for f and its derivatives will decrease to 0 as n→∞.

Definition 2.1. The anisotropic Hölder space of order α = (α1, . . . , αd)
T ∈ Nd, de-

noted as Hα([0, 1]d), consists of functions f : [0, 1]d → R such that ‖f‖α,∞ < ∞, and
for some constant C > 0 with any x,x0 ∈ (0, 1)d,

|Drf(x)−DrTx0
f(x)| ≤ C

d∑
k=1

|xk − x0k|αk−rk , (2.2)

where r ∈ Nd0 and
∑d
k=1(rk/αk) < 1. Here Tx0

f(x) =
∑
i≤mα

Dif(x0)(x − x0)i/i! is

the tensor Taylor polynomial of order mα := (α1 − 1, α2 − 1, . . . , αd − 1)T by expanding
f around x0.
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To study the frequentist properties of the posterior distribution, we assume the exis-
tence of a true regression function f0 such that it satisfies the following three assumptions.
In what follows, let B(x, r) = {y : ‖y − x‖ ≤ r} be a `2-ball of radius r centered at x.

1. Under the true distribution P0, Yi = f0(Xi) + εi, such that εi are i.i.d. Gaussian
with mean 0 and variance σ2

0 > 0 for i = 1, . . . , n.
2. f0 ∈ Hα([0, 1]d) for αk > 2, k = 1, . . . , d, and attains its maximum M0 at a unique

point µ0 in (0, 1)d which is well-separated: for any constant τ1 > 0, there exists
δ > 0 such that f0(µ0) ≥ f0(x) + δ for all x /∈ B(µ0, τ1).

3. For any 0 < τ ≤ τ1, there exists λ0 > 0 such that λmax{Hf0(x)} < −λ0 for all
x ∈ B(µ0, τ).

Assumption 1 states the true regression model for (1.1). The well-separation property
of Assumption 2 ensures that only points x that are near µ0 will give values f(x) that are
close to the true maximum M . This property is needed to establish posterior consistency
for µ as we shall see in Theorem 4.1 below. Assumption 3 says that the Hessian of f0 is
locally negative definite around µ0. Observe that Assumptions 2 and 3 imply ∇f0(µ0) =
0 and the Hessian Hf0(µ0) is symmetric and negative definite. Moreover, Hf0(x) is
continuous in x. If αk = 2, then we need to make an extra assumption that the second
partial derivatives of f0 are continuous; if not, the Hessian may not be symmetric and
its eigenvalues may not be real.

For xk ∈ [0, 1], let Bjk,qk(xk) be the kth component B-spline of fixed order qk ≥ αk,
with knots 0 = tk,0 < tk,1 < · · · < tk,Nk

< tk,Nk+1
= 1, such that Jk = qk +Nk. Assume

that the set of knots in each direction is quasi-uniform, i.e., max1≤l≤Nk
(tk,l − tk,l−1) �

min1≤l≤Nk
(tk,l − tk,l−1). Examples include uniform and nested uniform partitions (cf.

Examples 6.6 and 6.7 of Schumaker [23]), and we can always choose a subset of knots
from any given knot sequence to form a quasi-uniform sequence (cf. Lemma 6.17 of
Schumaker [23]).

For fixed design points Xi = (Xi1, . . . , Xid)
T with i = 1, . . . , n, assume that there is

a cumulative distribution function G, with positive and continuous density g on [0, 1]d

such that

sup
x∈[0,1]d

|Gn(x)−G(x)| = o

(
d∏
k=1

N−1k

)
, (2.3)

where Gn(x) = n−1
∑n
i=1 1{Xi∈[0,x]} is the empirical distribution of {Xi, i = 1, . . . , n},

with 1U the indicator function on U . The condition holds for the discrete uniform design

with G the uniform distribution when Nk . nα
∗/{αk(2α

∗+d)} for k = 1, . . . , d. IfXi
i.i.d.∼ G

with a continuous density on [0, 1]d, then (2.3) holds with probability tending to one if
Nk . nα

∗/{αk(2α
∗+d)} for k = 1, . . . , d, and α∗ > d/2 by Donsker’s theorem. In this

paper, we shall prove results on posterior contraction rates and credible sets based on
fixed design points. These results will translate to the random case by conditioning on
the predictor variables.
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3. B-splines tensor product, Gaussian prior and
posterior

In the model Yi = f(xi) + εi, i = 1, . . . , n, we put a finite random series prior on f based

on tensor-product B-splines, i.e., f(x) =
∑J1
j1=1 · · ·

∑Jd
jd=1 θj1,...,jd

∏d
k=1Bjk,qk(xk) :=

bJ,q(x)Tθ, where bJ,q(x) = {
∏d
k=1Bjk,qk(xk) : 1 ≤ jk ≤ Jk, k = 1, . . . , d} is a collection

of J =
∏d
k=1 Jk tensor-product B-splines, and θ = {θj1,...,jd : 1 ≤ jk ≤ Jk, k = 1, . . . , d}

are the basis coefficients. Note that bJ,q(x) and θ are vectors indexed by d-dimensional
indices and the entries are ordered lexicographically. Then by repeatedly applying equa-
tions (15) and (16) of Chapter X from de Boor [7] to each direction k = 1, . . . , d, the
r = (r1, . . . , rd)

T mixed partial derivative of f is given by

Drf(x) =

J1∑
j1=1

· · ·
Jd∑
jd=1

θj1,...,jd

d∏
k=1

∂rk

∂xrkk
Bjk,qk(xk) = bJ,q−r(x)TWrθ, (3.1)

whereWr is a
∏d
k=1(Jk−rk)×

∏d
k=1 Jk matrix whose entries consist of coefficients associ-

ated with applying the finite difference operator iteratively on θ (for exact expressions, see
(8.1)–(8.4) of Yoo and Ghosal [33]). We represent the model in (1.1) by an n-variate nor-
mal distribution Y |(X,θ, σ) ∼ Nn(Bθ, σ2In), where B = (bJ,q(X1)T , . . . bJ,q(Xn)T )T

is the B-splines basis matrix. Note that we can index the rows and columns of BTB
by multi-dimensional indices, such that for u = (u1, . . . , ud)

T and v = (v1, . . . , vd)
T , we

write (BTB)u,v =
∑n
i=1

∏d
k=1Buk,qk(Xik)Bvk,qk(Xik).

We consider deterministic J = (J1, . . . , Jd)
T number of basis functions depending on

n, d and α. On the basis coefficients, we endow the prior θ|σ2 ∼ NJ(η, σ2Ω). We choose
the prior mean such that ‖η‖∞ < ∞ and the J × J prior covariance matrix c1IJ ≤
Ω ≤ c2IJ for some constants 0 < c1 ≤ c2 <∞. We will use the same multi-dimensional
indexing convention of BTB on Ω, and further assume that Ω−1 is h = (h1, . . . , hd)

T -
banded, in the sense that (Ω−1)u,v = 0 if |uk − vk| > hk for some k = 1, . . . , d.

By direct calculations, Drf |(Y , σ) ∼ GP(ArY + crη, σ
2Σr), where Ar, cr and the

covariance kernel are defined for x,y ∈ (0, 1)d by

Ar(x) = bJ,q−r(x)TWr

(
BTB + Ω−1

)−1
BT , (3.2)

cr(x) = bJ,q−r(x)TWr

(
BTB + Ω−1

)−1
Ω−1, (3.3)

Σr(x,y) = bJ,q−r(x)TWr

(
BTB + Ω−1

)−1
W T
r bJ,q−r(y). (3.4)

For σ, we either take an empirical Bayes approach by maximizing the marginal likelihood
obtained from Y |σ ∼ Nn[Bη, σ2(BΩBT +In)], or use a hierarchical Bayes approach. In
the former approach, the empirical Bayes estimate given by σ̃2

n = (Y −Bη)T (BΩBT +
In)−1(Y − Bη)/n is plugged into the expression of the conditional posterior process
Drf |(Y , σ); while in the latter approach, we further endow σ with a continuous and
positive prior density. For example, we can use a conjugate inverse-gamma (IG) prior
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σ2 ∼ IG(β1/2, β2/2), where β1 > 4 and β2 > 0 are hyper-parameters, to get σ2|Y ∼
IG
[
(β1 + n)/2, (β2 + nσ̃2

n)/2
]
. The posterior for the function f itself can be recovered as

a special case r = 0 by setting W0 = I.

Remark 3.1. Finite random series based priors have been found to be very convenient
to use in Bayesian nonparametrics because their theoretical and computational aspects
can be dealt with very simply within the framework of Euclidean spaces. Even though
they have simpler structure, they can achieve contraction rates on par with Gaussian
process priors. Detailed discussions are given in Shen and Ghosal [24] and the book Ghosal
and van der Vaart [12]. More specifically, we used tensor-product B-splines with Gaussian
coefficients because it enables us to lower bound the variation of the posterior around
its center which is essential to get results on coverage of credible sets (to be discussed in
Section 4.2). The structure of the (Gaussian) prior is also helpful for bounding contraction
rates and computing the posterior, and this allows us to obtain sharp rates and stronger
statements regarding coverage probabilities (e.g. without additional logarithmic factors
in the radius), whether it is in the single or two-stage settings. Moreover, B-splines are
compactly supported and we have fast recursive algorithm to compute them (see Section
5 of Schumaker [23]). We shall further discuss issues on adaptation in Section 7 where α
is not assumed to be known.

We need to ensure that the priors discussed above for f will yield a well-defined
maximum point at every realization from its posterior. The following lemma assures this
property.

Lemma 3.2. If f is given the tensor-product B-splines with normal coefficients prior,
then µ is unique for almost all sample paths of f under the posterior distribution (em-
pirical or hierarchical Bayes).

In this paper, we simply use Π(·|Y ) to denote either the empirical or hierarchical
posteriors, we do not distinguish between these two cases since both approaches yield
the same rates.

4. Main results for single stage setting

4.1. Posterior contraction rates

The posterior distributions of µ and M can be induced from the posterior of f through
the argmax and maximum operators. However since these operators are nonlinear and
non-differentiable, we take an indirect approach by relating the estimation errors of µ
and M to the sup-norm errors in estimating f and its mixed partial derivatives. By this
strategy, results for posterior contraction rates in the supremum norm can be used to
induce the corresponding rates for µ and M as the following theorem shows.
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Theorem 4.1. Let Jk � (n/ log n)α
∗/{αk(2α

∗+d)}, k = 1, . . . , d and assume that As-
sumptions 1, 2 and 3 hold. Consider the empirical Bayes approach by plugging-in σ̃n for
σ, or the hierarchical Bayes approach by equipping σ with some continuous and positive
prior density, then

‖µ− µ0‖ ≤
√
d

λ0
max
1≤k≤d

‖Dkf −Dkf0‖∞, (4.1)

|M −M0| ≤ ‖f − f0‖∞. (4.2)

Therefore for any mn →∞ and uniformly in ‖f0‖α,∞ ≤ R,R > 0,

E0Π
(
‖µ− µ0‖ > mn(log n/n)α

∗{1−(min1≤k≤d αk)
−1}/(2α∗+d)

∣∣∣Y )→ 0, (4.3)

E0Π
(
|M −M0| > mn(log n/n)α

∗/(2α∗+d)
∣∣∣Y )→ 0. (4.4)

Clearly, a consequence of the result above is that the posterior mean E(µ|Y ) converges
to µ0 in `2-norm at the same rate given in (4.3), and the same can be said for E(M |Y ).
Given the absence of minimax results on anisotropic mode estimation (to the best of our
knowledge), it is instructive to ask whether the inequalities used above are sharp and the
contraction rates obtained are optimal? The following lower bound corollary shows that
these results are sharp up to logarithmic factors.

Corollary 4.2 (Lower Bounds). In addition to Assumptions 1,2 and 3, let us now
make an extra assumption that for any 0 < τ ≤ τ1, we have

inf
x:‖x−µ0‖≤τ

λmin{Hf0(x)} > −λ1, (4.5)

for some constants τ1, λ1 > 0. Then for some small enough constant h > 0, we have

E0Π
(
‖µ− µ0‖ ≥ hn−α

∗{1−(min1≤k≤d αk)
−1}/(2α∗+d)

∣∣∣Y )→ 1,

E0Π
(
|M −M0| ≥ hn−α

∗/(2α∗+d)
∣∣∣Y )→ 1.

For the isotropic smooth case α1 = · · · = αd = α, the norm in (2.1) can be generalized
(see Section 2.7.1 of van der Vaart and Wellner [32]) and the B-splines approximation
error rate is obtained for all smoothness levels (Theorem 22 of Chapter XII in de Boor
[7]). This allows generalization of these and subsequent results in this paper for arbitrary
smoothness levels. The contraction rates thus obtained, when reduced to the isotropic
case, are the minimax rates for this problem up to some logarithmic factor (see Hasminskĭi
[13] and Tsybakov [29] as discussed in the introduction). In Section 5 below, we will
describe another Bayesian procedure that is able to remove this logarithmic factor and
accelerate these rates to the optimal sequential rates.
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Remark 4.3. In the rates above, clearly the direction which has the least smoothness
is the most influential factor in determining the contraction rate for µ because of the
presence of the second factor in the numerator of the exponent. This is unlike the con-
traction rate for f , which is known to be (log n/n)α

∗/(2α∗+d) (Theorem 4.4 of Yoo and
Ghosal [33]), as it depends only on the harmonic mean α∗ of smoothness. The reason is
evident from (4.1) in that the largest of the deviations of the function’s derivative across
all directions bounds the accuracy of estimating µ. Nevertheless, it is easily checked that
the rate obtained above is better than that obtained by applying the above result on
a function of isotropic smoothness min1≤k≤d αk. In other words, additional smoothness
in other directions can help to alleviate the comparative loss of accuracy for dimensions
which are less smooth, and this borrowing of smoothness across directions, which is a
unique feature to anisotropic spaces, results in the improvement of the overall rate.

4.2. Credible regions for mode and maximum

Let us now quantify uncertainty by constructing credible regions for µ and M . In what
follows, we require that these sets have credibility at least some given level 1 − γ, and
they have optimal sizes with asymptotic coverage probability also at least 1− γ.

We first construct credible sets in the form of supremum-norm balls in the space of
regression functions, and then we map these regions back using the argmax and max
functionals into Euclidean spaces, so that they are credible sets for µ and M . Now, the
natural Bayesian approach to this problem is to directly construct these sets from the
posterior distributions of µ and M . The main reason for favoring the proposed method
is that it allows tighter control over the size of the induced credible regions in view of
(4.1) and (4.2). Such a control is essential for frequentist coverage, and enables us to use
them later in the Bayesian two-stage procedure in Section 5.

We make a remark before we present the main result of this section. It is well known
that in nonparametric models, a credible region may have frequentist coverage asymp-
totically less than the corresponding credibility level. The asymptotic coverage may even
be arbitrarily close to zero, because the order of bias of the center of a credible set may
be comparable with its variation around the truth under optimal smoothing; see Cox
[6], Freedman [11] and Knapik et al. [17]. This is in sharp contrast with finite dimensional
models where Bayesian and frequentist quantification of uncertainty agree because of the
Bernstein-von Mises theorem. Knapik et al. [17] showed that this low coverage problem
can be addressed by undersmoothing. Castillo and Nickl [3, 4] circumvented this problem
by using weaker norms to construct credible sets. Szabo et al. [27] and Yoo and Ghosal
[33] addressed this same problem by appropriately inflating the size of credible regions to
ensure coverage. In our own construction, we shall use the latter approach by introducing
a constant ρ > 0 in the radius and choose it large enough so that we will have asymptotic
coverage.

Below by posterior distribution we refer to either the empirical Bayes posterior distri-
bution by substituting σ̃n for σ, or the hierarchical Bayes posterior distribution obtained
by putting a further prior on σ. Denote the posterior mean of f by f̃ , and let µ̃ be the
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mode of f̃ and M̃ its maximum value. For ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 at entry k
and the rest zero, we abbreviate Aek by Ak, cek by ck and Σek as Σk respectively for
any k = 1, . . . , d, where these quantities were defined in (3.2)–(3.4).

Remark 4.4. Note that µ̃ is well-defined under P0. Indeed since the posterior mean is
an affine transformation of Y , it follows from Assumption 1 that f̃ is a Gaussian process
under P0. Therefore using the same argument as in the proof of Lemma 3.2, we see that
f̃ has unique maximum µ̃ for every realization.

For some 0 < γ < 1/2, consider {f : ‖Dkf −AkY − ckη‖∞ ≤ ρRn,k,γ} as a credible
band for f , where ρ > 0 is a sufficiently large constant and Rn,k,γ is the (1− γ)-quantile
of the posterior distribution of ‖Dkf−AkY −ckη‖∞. Similarly, let Rn,0,γ be the (1−γ)-
quantile of the posterior distribution of ‖f−A0Y −c0η‖∞. We proceed by using these sets
to induce credible regions for µ and M through the argmax and maximum functionals,
and they are given by

Cµ =

d⋂
k=1

{µ : ‖Dkf −AkY − ckη‖∞ ≤ ρRn,k,γ} , (4.6)

CM = {M : ‖f −A0Y − c0η‖∞ ≤ ρRn,0,γ} . (4.7)

The following result establishes properties of these regions.

Theorem 4.5. If Jk � (n/ log n)α
∗/{αk(2α

∗+d)}, k = 1, . . . , d, then we have uniformly
in ‖f0‖α,∞ ≤ R for any R > 0:

(i) the credibility of Cµ tends to 1 in P0-probability and its coverage approaches 1
asymptotically,

(ii) Cµ ⊂ Cµ := {µ : ‖µ− µ̃‖∞ ≤ ρ
√
dλ−10 max1≤k≤dRn,k,γ} with P0-probability going

to 1,
(iii) Cµ := {µ : ‖µ − µ̃‖∞ ≤ (Rd)−1ρmax1≤k≤dRn,k,γ} ⊂ Cµ with P0-probability

tending to 1,
(iv) the credibility of CM tends to 1 in P0-probability and its coverage approaches 1

asymptotically,
(v) CM ⊂ {M : |M − M̃ | ≤ ρRn,0,γ}.

Assertions (ii) and (iii) say that the induced credible set Cµ can be sandwiched between
two hypercubes, and its size is not too small when compared with the upper bound in (ii).

Thus, its radius is of the order max1≤k≤dRn,k,γ � max1≤k≤d(log n/n)α
∗(1−α−1

k )/(2α∗+d)

by the second statement of Theorem 9.2 in Section 9 Appendix (with r = ek); while (v)
and the same aforementioned statement (with r = 0) imply that the radius of CM is of
the order (log n/n)α

∗/(2α∗+d). Note that these radius lengths coincide exactly with the
contraction rates of Theorem 4.1.

The result above concludes that the induced credible regions for µ and M , i.e., Cµ
and CM respectively, have adequate frequentist coverage that are of (nearly) optimal
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sizes. Assertion (ii) also implies that the hypercube Cµ centered at µ̃ has at least (1 −
γ)-credibility and is a confidence set of nearly optimal size. Thus a credible set with
guaranteed frequentist coverage can be chosen to be a simple set like a hypercube centered
at the posterior mean. In practice, it is easier to construct such a hypercube than the set
Cµ, because the latter set requires performing function maximization multiple times to
obtain points in Cµ.

The construction of Cµ from the data is simple: one finds b such that the credibility
of {µ : ‖µ − µ̃‖∞ ≤ b} is 1 − γ, and then inflates this around µ̃ by a large constant
factor ρ > 0. For this set to serve as the domain for second stage sampling in a two-stage
procedure, some modifications are needed, in that we adjust the length of Cµ in each
direction so that it adapts to different smoothness. In other words, we embed Cµ inside
a hyper-rectangle and do uniform sampling inside this larger set. Clearly, keeping the
constant inflation factor as small as possible makes the credible sets smaller, but it will
be seen that for optimal contraction rate in the second stage, an inflation factor which
goes to infinity at a specific rate will be needed.

5. Two-stage Bayesian estimation and accelerated
rates of contraction

In this section we show that by obtaining samples in two stages in an appropriate manner,
we can accelerate the posterior contraction rates of µ and M to the optimal sequential
rates. Given a sampling budget of n, we first obtain n1 < n samples to compute the first
stage posterior distribution. The remaining n2 = n − n1 samples are then obtained by
sampling points uniformly from some regularly shaped credible region constructed from
this posterior. Since this is a small region, we can approximate the regression function f
by a multivariate polynomial. By further endowing the coefficients with normal priors,
we then use these samples to build the second stage posterior distribution for f and hence
for µ and M through the argmax and maximum functionals. We will then show through
Theorem 5.2 below and simulations (Section 6) that these second stage posteriors are
more concentrated near the truth.

Let us first describe our proposed Bayesian two-stage procedure in greater detail. Let
p ∈ (0, 1). In the first stage, we choose n1 ∈ N design points {x̃i, i = 1, . . . , n1} such that

n1/n→ p as n→∞ to obtain data D1 = {(x̃i, Ỹi), i = 1, . . . , n1} for the model in (1.1).
Typically, one chooses p = 1/2 to achieve equal sample splitting but other proportions
are possible depending on the sampling configurations (e.g., grid or random sampling)
and other practical considerations such as field conditions and financial constraints. By
using the B-spline tensor product prior discussed in Section 3, we obtain a first stage
posterior for f . This then allows us to construct the set

{µ : |µk − µ̃k| ≤ δn,k, k = 1, . . . , d},

where µ̃ is the mode of the first stage posterior mean of f . We choose δn,k, k = 1, . . . , d
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such that

min
1≤k≤d

δn,k = ρn max
1≤k≤d

(log n/n)α
∗(1−α−1

k )/(2α∗+d) (5.1)

for a chosen sequence ρn → ∞, so that this set is a valid credible set, as it contains Cµ
for large n. Now sample n2 = n−n1 locations {x1, . . . ,xn2

} uniformly from this credible
set and observe the second stage samples D2 = {(xi, Yi), i = 1, . . . , n2}.

Next, we center the second stage design points at the origin by zi = xi − µ̃ for
i = 1, . . . , n2. In other words, zi, i = 1, . . . , n2, are i.i.d. uniform samples from the hyper-
rectangle Q := {x : |xk| ≤ δn,k, k = 1, . . . , d} of sides δn,k, k = 1, . . . , d. Observe that
zi, i = 1, . . . , n2, are independent from the errors ε in this sampling scheme. We chose
this sampling domain because we need its length at each direction to adapt to different
smoothness, and it is operationally more convenient to construct credible sets in the
form of hyper-rectangles and do uniform sampling on it (see Remark 5.3 below for a
more thorough discussion).

At the second stage, we put a prior on the regression function by representing f(z)
at z = (z1, . . . , zd)

T ∈ Q as a multivariate polynomial function of fixed order mα =

(α1 − 1, . . . , αd − 1)T , i.e., for zi =
∏d
k=1 z

ik
k ,

fθ(z) =
∑
i≤mα

θiz
i = p(z)Tθ, (5.2)

where p(z) = (zi : i ≤ mα)T and θ = (θi : i ≤ mα)T are the corresponding basis
coefficients. The elements of {i : i ≤ mα} can be enumerated as {i0, i1, . . . , iW } where

W +1 =
∏d
k=1 αk with i0 = 0. Define Z = (p(z1), . . . ,p(zn2

))T , and note that for d = 1,
Z is a Vandermonde matrix.

We endow θ with the prior θ|σ2 ∼ NW+1(ξ, σ2V ), where the entries of ξ do not

depend on n and V = diag
{∏d

k=1 δ
−2(ij)k
n,k : j = 0, 1 . . . ,W

}
. Then it follows that the

posterior Π(θ|Y , σ2) is

NW+1

[
(ZTZ + V −1)−1(ZTY + V −1ξ), σ2(ZTZ + V −1)−1

]
. (5.3)

The empirical posterior follows by replacing σ2 with σ̃2
∗ = (n1σ̃

2
1 + n2σ̃

2
2)/n, where σ̃2

1 =

(Ỹ −Bη)T (BΩBT + In1)−1(Ỹ −Bη)/n1 is the empirical estimate of σ2 based on the
first stage samples, and σ̃2

2 = n−12 (Y − Zξ)T (ZV ZT + In2
)−1(Y − Zξ) is the same

estimate based on the second stage samples.
For the hierarchical Bayes approach, we use the first stage posterior of σ2 as prior for

the second stage. That is, we equip σ2 with IG(β1/2, β2/2) prior at the first stage, where
β1 > 4 and β2 > 0, we then use the resulting posterior IG[(β1 + n1)/2, (β2 + n1σ̃

2
1)/2]

as prior for the second stage, which will further yield IG[(β1 + n)/2, (β2 + nσ̃2
∗)/2] as

the second stage posterior for σ2. The proposition below shows that the second stage
empirical Bayes estimator and the hierarchical Bayes posterior of σ2 are consistent, and
it is a key step in establishing the main result given in Theorem 5.2 below.
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Proposition 5.1 (Second stage error variance). Uniformly over ‖f0‖α,∞ ≤ R,

(a) The second stage empirical Bayes estimator σ̃2
∗ converges to σ2

0 in P0-probability at

the rate max{n−1/2, n−2α∗/(2α∗+d),
∑d
k=1 δ

2αk

n,k }.
(b) If inverse gamma posterior from the first stage is used as the prior in the second

stage, the second stage posterior of σ2 contracts to σ2
0 at the same rate.

Let r = (r1, . . . , rd)
T be such that r ≤mα. Then the r mixed partial derivative of fθ

is

Drfθ(z) =
∑
i≤mα

θi

d∏
k=1

∂rk

∂zrkk
zikk =

∑
r≤i≤mα

θi
i!

(i− r)!
zi−r, (5.4)

which is a multivariate polynomial of degree mα−r. The posterior distributions of Drfθ
can then be induced from (5.3).

Let us define the location of the maximum of fθ inside the centered region as µz =
arg maxz∈Q fθ(z). We then relate this location back to the original domain by µ =
µ̃+ µz with corresponding maximum value M = fθ(µz). Following the same reasoning
as in Lemma 3.2, µ is unique for almost all sample paths of fθ under the empirical
or hierarchical posterior. The following theorem establishes the second stage posterior
contraction rates of µ and M for any smoothness level αk > 2, k = 1, . . . , d, uniformly
over ‖f0‖α,∞ ≤ R.

Theorem 5.2. For any chosen sequence ρn → ∞, let δn,k, k = 1, . . . , d, be such that

min1≤k≤d δn,k = ρn max1≤k≤d(log n/n)α
∗(1−α−1

k )/(2α∗+d). Then under Assumptions 1, 2
and 3, we have uniformly over ‖f0‖α,∞ ≤ R and for any mn →∞,

E0Π

[
‖µ− µ0‖ > mn max

1≤k≤d
δ−1n,k

(
n−1/2 +

d∑
l=1

δαl

n,l

)∣∣∣∣∣Y
]
→ 0,

E0Π

[
|M −M0| > mn

(
n−1/2 +

d∑
k=1

δαk

n,k

)∣∣∣∣∣Y
]
→ 0.

In particular, if αk > 1 +
√

1 + d/2 for all k = 1, . . . , d, then for the choice δn,k =
n−1/(2αk), k = 1, . . . , d, the posterior distributions for µ and M contract at the rates
n−(α−1)/(2α) and n−1/2 respectively, where α = min1≤k≤d αk.

Let us take δn,k = n−1/(2αk) the optimal choice suggested above. By comparing this
theorem and the single stage contraction rates of Theorem 4.1, we can draw the following
three main conclusions:

1. If we perform a Bayesian two-stage procedure, we accelerate contraction rates for
estimating µ and M , with M achieving the parametric rate n−1/2.

2. At the same time, we remove extra logarithmic factors that are present in the single
stage rates.
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3. The second stage rates for µ and M do not depend on d the dimension of the
regression function’s domain, and the effect of dimension is mitigated to a lower
bound 1 +

√
1 + d/2 required on the smoothness at each direction.

The first conclusion says that the second stage posteriors for µ and M are more con-
centrated near the truth when compared with their single stage counterparts, and this
is evident since the second stage rate of µ is n−(α−1)/(2α) � (log n/n)α

∗(1−α−1)/(2α∗+d);
while for M is n−1/2 � (log n/n)α

∗/(2α∗+d). As noted above, M has achieved its oracle
or the parametric rate. The second stage rate for µ is sharp, to see this note that if k is
the worst direction and we know all components of µ except the kth one, then by analyz-
ing the reduced one-dimensional problem, we find the same rate as well since dimension
disappears from the rate. Clearly this is oracle and unbeatable and so the rate is the best
possible under anisotropic Hölder spaces. In the isotropic case where αk = α, k = 1, . . . , d,
the second stage rate for µ reduces to n−(α−1)/(2α) and this is precisely the minimax rate
for this problem under sequential sampling (see Chen [5], Polyak and Tsybakov [22] and
Belitser et al. [1] as mentioned in the introduction).

Remark 5.3. There are other ways to construct credible set and obtain the second
stage samples. A first attempt would be to simulate f from its first stage posterior and
apply the argmax operator on f . However as the posterior of f contracts to f0, this
approach does not ensure that the second stage samples are sufficiently spread out, i.e.,
the distance between samples at direction k is at least some constant multiple of δn,k for
k = 1, . . . , d. Another way is to do uniform sampling on Cµ constructed in (4.6), that
is, we envelope Cµ, which is possibly irregularly shaped, by the smallest hypercube, do
uniform sampling on this cube and discard points that fall outside of Cµ. By (ii) and (iii)
of Theorem 5.1, Cµ ⊂ Cµ ⊂ Cµ, and samples in Cµ are proportional to those in Cµ under

uniform sampling. Hence, the entries of (ZTZ)−1 arising from uniform sampling on Cµ
or on hypercubes will have the same order, and the second stage posteriors from these
two sampling schemes will have the same asymptotic behavior. Operationally, sampling
from Cµ requires an extra step in deciding whether the sampled points fall in the set or
not.

Remark 5.4. For asymptotic analyses, the prior covariance matrix V plays a minor
role as the data “washes” out the prior. However, for finite samples, the correct specifi-
cation of V is crucial for the success of our proposed method in practical applications.
Through empirical experiments, we discovered that V must reflect the scaling of the
space by δn,k at direction k, and its inverse must have the same structure as ZTZ so
that (ZTZ + V −1)−1 will act as an effective shrinkage factor in (5.3). Let us write

∆ := diag
{∏d

k=1 δ
−(ij)k
n,k : j = 0, 1 . . . ,W

}
and we can see that ZTZ = ∆A∆ where A

is a matrix of constants not depending on n (see Lemma 8.1 for more details). There-
fore if we center the second stage design points, then we match the structure of ZTZ
by choosing V = ∆2, which is our default choice. If the points are not centered, we
found that Zellner’s g-prior will work, i.e., V = g(ZTZ)−1 where g can be estimated by
empirical or hierarchical Bayes methods.
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6. Simulation study

We shall compare the performance of our two-stage Bayesian procedure with two other
estimation methods: the single-stage Bayesian, and the two-stage frequentist procedure
proposed in Belitser et al. [1]. Consider the following true regression function defined on
[0, 1]2:

f0(x, y) =
(

1 + e−5(2x−1)
2−2(2y−1)4

)
[cos 4(2x− 1) + cos 5(2y − 1)]

where the true mode is given by µ0 = (0.5, 0.5)T . In the first stage, we observe f0 on
a uniform 30 × 30 grid with i.i.d. errors distributed as N(0, 0.01) (see Figure 1a with
black circles as observations). We use bivariate tensor-product of B-splines with normal
coefficients as our prior (see Section 3). We choose the pair (J1, J2) that maximizes its
posterior, i.e.,

Π(J1 = j1, J2 = j2|Y , σ = σ̃1) ∝ σ̃−n1
1 [det (BΩBT + In1)]−1/2Π(J1 = j1, J2 = j2)

by integrating out θ. We create a candidate set J := {1, 2, . . . , Jmax}× {1, . . . , Jmax} by
setting Jmax = 20. We put discrete uniform prior on (J1, J2) over J such that Π(J1 =
j1, J2 = j2) = J−2max = 1/400 for any (j1, j2) ∈ J . We then find the combination that
gives the maximum log Π(J1 = j1, J2 = j2|Y , σ = σ̃1) by doing a grid search. To speed
up computations, we ignore any constant terms such as the prior factor and the posterior
denominator since they do not affect this optimization problem. We plot this marginal
log-posterior of (J1, J2) in Figure 2 and we found that J1 = 7 and J2 = 9 based on this
criterion. At each dimension, the B-spline is of order 4 (cubic) with different uniform
knot sequence. For the prior parameters, we set η = 0 and Ω = I. Figure 1b shows the
surface of the first stage posterior mean of f .

We sample 864 points uniformly in {µ : |µk − µ̃k| ≤ δk, k = 1, 2} (see black circles
in Figure 1b) to obtain the second stage data Yi, i = 1, . . . , 864. This number is chosen
so as to fulfill the sampling configuration required by the frequentist method explained
below, and to ensure that all methods under consideration will use the same amount
of samples. To choose δ1, δ2, we first draw 1000 samples from the first stage posterior
distribution of f , find the mode for each sample by grid search to yield samples from
the first stage posterior of µ, search for the smallest rectangle enveloping these induced
µ samples, and take δ1, δ2 be the lengths of its sides. We found that δ1 = 0.1111 and
δ2 = 0.1111 and we proceed to do uniform sampling across this rectangular region. Note
that we do not take the induced µ samples as our second stage samples because most
of them are concentrated near the center, and hence they are not sufficiently spread out
(see Remark 5.3).

We center the 864 sampled design points at the origin by subtracting each of them
by µ̃, and we use tensor product of quadratic polynomials with normal coefficients as
prior (see (5.2)). That is for x, y ∈ Q = [−δ1, δ1]× [−δ2, δ2], fθ(x, y) = θ0 + θ1x+ θ2y +
θ3x

2 + θ4y
2 + θ5xy + θ6xy

2 + θ7x
2y + θ8x

2y2. Since x, y ∈ Q, we note that the last
three columns of the constructed basis matrix Z (corresponding to the last three terms)
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(a) A plot of f0, with the black solid point
as f0(µ0) = M0 and black circles as the first
stage 900 observations.
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(b) Posterior mean based on bivariate B-spline
prior, and the black circles are the 864 second
stage samples.

Figure 1: Our proposed Bayesian two-stage procedure: first stage on the left and second
stage on the right.
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Figure 2: log-posterior of (J1, J2) with its maximum at (7, 9).
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are very small in magnitude compared with the remaining terms. Thus for numerical
simplicity, we consider only

f∗θ (x, y) = θ0 + θ1x+ θ2y + θ3x
2 + θ4y

2 + θ5xy,

where θ|σ2 ∼ N(0, σ2V ), with V = diag(1, δ−21 , δ−22 , δ−41 , δ−42 , δ−21 δ−22 ). We use the empir-
ical Bayes method to estimate σ by σ̃∗, which is the weighted average of the first and sec-
ond stage estimates σ̃1, σ̃2. However, we note that in our simulations that σ̃2 gives a much
better estimate than σ̃1 at the current (n1, n2)-sampling plan, and since both are valid
independent estimates of σ, we take σ̃∗ = σ̃2. Now, to compute µz = arg maxz∈Q f

∗
θ (z)

for a fixed θ, we solve the following system of equation ∇f∗θ (µz) = 0, which is equivalent
to solving (

2θ3 θ5
θ5 2θ4

)(
µz,1
µz,2

)
=

(
−θ1
−θ2

)
(6.1)

for µz = (µz,1, µz,2)T . Therefore, to induce the posterior distribution of µ, we draw
samples from Π(θ|Y ) by substituting σ = σ̃2 in (5.3), solving for µz using (6.1) for each
sample, and translating back to µ = µ̃+ µz.
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Figure 3: Root mean square errors (y-axis) for the Bayesian and frequentist procedures
with 1000 Monte Carlo replications.

The procedure described is implemented in the statistical software package R. Univari-
ate B-splines are constructed using the bs function from the splines package. We then
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use tensor.prod.model.matrix from the crs package to form their tensor products.
Observe that we have used a total of 30 × 30 + 864 = 1764 observations. To show that
the two-stage procedure indeed has better accuracy than single stage procedures, we
then compare our two-stage procedure with a Bayesian single stage method that uses the
same number of samples, i.e., on a uniform 42× 42 grid points. As in the previous case,
we observe f0 at these points with i.i.d. errors N(0, 0.01). We then use bivariate tensor-
product B-splines with normal coefficients as prior with the same setting. We found that
J1 = 9, J2 = 9 maximizes its posterior.

To compare Bayesian and frequentist procedures, we repeated the same experiment
using the two-stage frequentist procedure implemented in Belitser et al. [1]. In their
procedure, we first fit a locally linear surface by loess regression in R on the first stage
design points. We choose the corresponding bandwidth or span parameter to be 0.02
by leave-one-out cross validation. The maximum of this surface serves as a preliminary
estimator. We construct a rectangle of size 2δ1 × 2δ2 around this estimator and further
divide this region into 4 smaller δ1×δ2 rectangles. In their implementation, Belitser et al.
[1] actually tuned δ1, δ2 using the knowledge of the true maximum, and to the best of
our knowledge, there is no practical frequentist method to choose the δs in the literature.
Faced with this situation, we decided to follow Belitser et al. [1] and choose the δs by
minimizing the expected L2-distance between the second stage posterior mean for µ and
the true µ0. We found that δ1 = 0.06 and δ2 = 0.06. Then, we take 96 replicated samples
at the 9 grid points to form 864 second stage samples. A quadratic surface is fit through
these points and its coefficients are estimated using least squares. We compute the second
stage estimator of µ0 by (6.1) and call it µ̂2.

Let µ̃1 and µ̃2 be the single stage and two-stage posterior means respectively. To
compare the performance of our proposed Bayesian two-stage method with the other
two, we replicate the experiment 1000 times for each of the three methods. For each
replicated experiment, we compute ‖µ − µ0‖ for each µ = µ̃1, µ̃2, µ̂2. Figure 3 shows
the box-plots of these 1000 computed root mean square errors (RMSE) for all three
procedures.

We see that the our proposed Bayesian two-stage procedure has considerably lower
RMSE than the corresponding single stage procedure, and thus supports the conclusion
of Theorem 5.2 in finite sample setting. We also observe that our proposed Bayesian
two-stage procedure performs slightly better than the frequentist procedure, despite the
fact that we have used the true maximum to tune the frequentist procedure while our
proposed Bayesian two-stage method is fully data driven. The superior performance may
be due to our choice of prior covariance matrix V (see Remark 5.4) where it causes
(ZTZ + V −1)−1 in the posterior (see (5.3)) to act as an effective shrinkage factor.

The R codes to reproduce all the results and figures in this section can be found in the
first author’s GitHub https://github.com/wwyoo/Bayes-two-stage.
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7. Conclusion and future works

We studied Bayesian estimation of µ and M in two different settings. In the usual single
stage situation, we obtained posterior contraction rates of (log n/n)α

∗{1−α−1}/(2α∗+d) for
µ and (log n/n)α

∗/(2α∗+d) for M , under a tensor-product B-splines random series prior
with Gaussian coefficients. Using our proposed Bayesian two-stage procedure, we can
accelerate the aforementioned rates to n−(α−1)/(2α) and n−1/2 for µ and M respectively,
as long as the optimal δn,k = n−1/(2αk) is chosen as radius for the credible cube used in
second stage sampling. This rate acceleration is remarkable because it removes the loga-
rithmic factors and it mitigates the effect of dimension d on the rates. We implemented
a practical version of our Bayesian two-stage procedure in a simulation study, and it
outperformed a traditional single stage Bayesian procedure by a large margin, and also
performed slightly better compared to a frequentist procedure recently proposed in the
literature.

An important future work for the single and two-stage Bayesian procedures is to make
them adaptive to the unknown smoothness α. In other words, designing theoretically
sound and data driven procedures to determine the optimal Jk (number of B-splines)
and δn,k (credible cube radius) for k = 1, . . . , d. If only L2-distances are studied, finite
random series easily gives adaptation by simply putting a prior on Jk the number of
basis functions. For supremum L∞-distance as considered in this paper, getting adaptive
posterior contraction rate is a lot more challenging and seems to need a different type of
prior (see Yoo et al. [35]). Coverage of uniform norm credible sets in the adaptive setting
may even need a more radical technique (cf. Yoo and van der Vaart [36]).

For two-stage procedures, rate adaptation has not been yet possible even for the non-
Bayesian procedure of Belitser et al. [1]. At the minimum, to adapt, one may need multi-
stage (possibly more than 2) sampling. In our simulation study, the empirical Bayes step
used in determining Jk and the sampling based procedure to choose δ1, δ2 are practical
and fast plug-in methods, but it is yet unknown how estimation uncertainty introduced
by plugging-in these estimated quantities propagate throughout the two-stage procedure,
and whether this is an optimal thing to do, even though they do give reasonable finite
sample results. We shall try to answer these pressing questions in some future work.
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8. Proofs

Recall that the posterior mean of Drf is Dr f̃ := ArY + crη. Let us write the poste-
rior contraction rate of µ given in Theorem 4.1 as εn = max1≤k≤d εn,k, where εn,k =

(log n/n)α
∗(1−α−1

k )/(2α∗+d).
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Proof of Lemma 3.2. For the empirical Bayes case, the reproducing kernel Hilbert
space of the Gaussian posterior process {f(t) : t ∈ [0, 1]d} given Y is the J-dimensional
space of polynomial splines spanned by elements of bJ,q(·) (see Theorem 4.2 of van der
Vaart and van Zanten [31]). This implies that it has continuous sample path at every
realization. Observe that σ̃2

n > 0 almost surely. Then if

0 = Var(f(t)− f(s)|Y , σ = σ̃n)

= σ̃2
n(bJ,q(t)− bJ,q(s))T

(
BTB + Ω−1

)−1
(bJ,q(t)− bJ,q(s)),

this implies that Bjk,qk(tk) = Bjk,qk(sk) for jk = 1, . . . , Jk, and k = 1, . . . , d. Since
qk ≥ αk > 2 for k = 1, . . . , d, this rules out the possibility that the B-splines are step
functions and further implies that t = s. Thus by Lemma 2.6 of Kim and Pollard [16], µ
is unique for almost all sample paths of {f(t) : t ∈ [0, 1]d} under the empirical posterior
distribution.

For hierarchical Bayes, consider the conditional posterior process Π(f |Y , σ) for arbi-
trary σ > 0. The reproducing kernel Hilbert space of this Gaussian process is still the
space of splines as before, and consequently has continuous sample path for each real-
ization. Now by substituting σ for σ̃n in the preceding display, we see that Var(f(t) −
f(s)|Y , σ) = 0 implies t = s. Again by Lemma 2.6 of Kim and Pollard [16], almost every
sample path of f given σ has unique maximum for any σ > 0. Note that f is generated
from the following scheme: draw σ ∼ Π(σ|Y ), and then f |σ ∼ GP(AY +cη, σ2Σ). Hence
almost every draw of f has unique maximum µ under Π(f |Y ).

Proof of Theorem 4.1. If both f, f0 ≥ 0, then (4.2) follows from the reverse triangle
inequality by noting that M = ‖f‖∞ and M0 = ‖f0‖∞ in this case. If the condition
fails to hold, we can add a large enough constant C > 0 such that g = f + C ≥ 0 and
g0 = f0 + C ≥ 0. Then by the reverse triangle inequality, |‖g‖∞ − ‖g0‖∞| ≤ ‖g − g0‖∞.
The right hand side is ‖f − f0‖∞, while the left hand side is |M −M0| because ‖g‖∞ =
M + C, ‖g0‖∞ = M0 + C.

To prove (4.1), we need to first establish consistency of the induced posterior of µ.
Now for any ε > 0 and δ > 0, Π (‖µ− µ0‖ > ε|Y ) is bounded above by

Π

(
sup

x/∈B(µ0,ε)

f(x) > f(µ0)

∣∣∣∣∣Y
)

≤ Π

(
sup

x/∈B(µ0,ε)

f(x) > f(µ0), f(µ0) ≥ f0(µ0)− δ/2

∣∣∣∣∣Y
)

+ Π (f(µ0) < f0(µ0)− δ/2|Y ) .

The second term is bounded above by Π(|f(µ0) − f0(µ0)| > δ/2|Y ) ≤ Π(‖f − f0‖∞ >
δ/2|Y ), and this goes to 0 in P0-probability by Theorem 9.1 in Section 9 Appendix with
r = 0. The well-separation property of Assumption 2 implies that there exists a δ > 0,
such that f0(x) < f0(µ0)− δ for x /∈ B(µ0, ε). Hence, for this δ > 0 and appealing again
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to Theorem 9.1, the first term is bounded above by

Π

 ⋃
x/∈B(µ0,ε)

{
f(x) > f0(x) +

δ

2

}∣∣∣∣∣∣Y
 ≤ Π

(
‖f − f0‖∞ >

δ

2

∣∣∣∣Y )→ 0

in P0-probability as n→∞. Thus the posterior distribution of µ is consistent at µ0.
Now by Taylor’s theorem, ∇f0(µ) = ∇f0(µ0) + Hf0(µ∗)(µ − µ0) for some µ∗ =

λµ + (1 − λ)µ0 with λ ∈ (0, 1). Since the posterior of µ is consistent as shown above
and µ∗ falls in between µ and µ0, it must be that as n → ∞ and for any ε > 0,

Π(‖µ∗ − µ0‖ ≤ ε|Y )
P0−→ 1. Let us introduce the set B = {λmax[Hf0(µ∗)] < −λ0},

and note that under Assumptions 3, Π(B|Y )
P0−→ 1 and Hf0(µ∗) is invertible with

posterior probability tending to one. Therefore, as n → ∞ and intersecting with B,
µ − µ0 = Hf0(µ∗)−1(∇f0(µ) − ∇f0(µ0)). Noting that ∇f0(µ0) = ∇f(µ) = 0 by
Assumption 2, then

‖µ− µ0‖ ≤
1

λ0
‖∇f0(µ)−∇f(µ)‖ ≤

√
d

λ0
max
1≤k≤d

‖Dkf −Dkf0‖∞,

where we have used the sub-multiplicative property of the ‖ · ‖(2,2)-norm, i.e., ‖Ay‖ ≤
‖A‖(2,2)‖y‖ for some matrix A and vector y.

Theorem 9.1 with r = 0 together with (4.2) now proves the desired contraction rate
on M . To derive the rate (4.3) for µ, apply again Theorem 9.1 with r = ek, and the
L∞-contraction rate for Dkf is εn,k, k = 1, . . . , d. In view of (4.1), we have for any
mn →∞,

E0Π(‖µ− µ0‖ > mnεn|Y ) ≤
d∑
k=1

E0Π

(
‖Dkf −Dkf0‖∞ >

λ0√
d
mnεn

∣∣∣∣Y )
approaches 0 uniformly in ‖f0‖α,∞ ≤ R, establishing the assertion.

Proof of Corollary 4.2. See supplementary article Yoo and Ghosal [34].

Proof of Theorem 4.5. By construction, Cµ contains µ̃, the mode of the posterior

mean f̃ of f . Since γ < 1/2, Rn,k,γ is greater than the posterior median of ‖Dkf−Dkf̃‖∞.

For the empirical Bayesian posterior, Dkf−Dkf̃ is a Gaussian process under Assumption
1 and in view of the second assertion of Theorem 9.2 in the Appendix, it follows that
Rn,k,γ & εn,k (with r = ek). Define ν2n,k := supx∈[0,1]d var(Dkf(x) −Dkf̃(x)|Y ). Since

the empirical Bayes estimate σ̃2
n is consistent in view of (a) in Proposition 9.5, then by

applying the inequality yTAy ≤ λmax(A)‖y‖2 for any square matrix A, we can bound

var(Dkf(x)−Dkf̃(x)|Y ) with expression given in (3.4) by

(σ2
0 + oP0(1))λ−1min(BTB + Ω−1)λmax(WekW

T
ek

)‖bJ,q−ek(x)‖2

. n−1J2
k

d∏
l=1

Jl . n−2α
∗(1−α−1

k )/(2α∗+d),
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for any x ∈ [0, 1]d. In the above, we have used the fact 0 ≤ Bjl,ql(xl) ≤ 1 and the

partition of unity property of B-splines
∑
j

∏d
l=1Bjl,ql(xl) = 1 to bound ‖bJ,q−ek(x)‖2 ≤∑J1

j1=1 · · ·
∑Jd
jd=1

∏d
l=1Bjl,ql−1{l=k}(xl) ≤ 1 for any x ∈ [0, 1]d. The eigenvalues were

bounded by (9.2) of Lemma 9.3 and Lemma 9.4 (with r = ek). Thus, we conclude that
ν2n,k = o(ε2n,k). Consequently by Borell’s inequality (cf. Proposition A.2.1 of van der Vaart
and Wellner [32]) and taking ρ to be large enough, e.g. ρ > 1,

Π(µ 6∈ Cµ|Y ) ≤
∑d
k=1 Π(‖Dkf −Dkf̃‖∞ > ρRn,k,γ |Y )

≤ dmax1≤k≤d exp[−(ρ− 1)2R2
n,k,γ/(2ν

2
n,k)]

which goes to zero since R2
n,k,γ/ν

2
n,k →∞. Thus the credibility of Cµ tends to 1 (or is at

least 1−γ) in P0-probability as n→∞. For the hierarchical Bayesian posterior, the same
conclusion follows since conditionally on σ, the posterior law obeys a Gaussian process
and σ lies in a small neighborhood of the true σ0 with high posterior probability (from (c)
of Proposition 9.5). To ensure coverage, note that by the construction of Cµ, it contains

µ0 if ‖Dkf0 − Dkf̃‖∞ ≤ ρRn,k,γ for all k = 1, . . . , d. When f0 is the true regression
function, the P0-probability of the last event tends to one for all k by Theorem 9.2 with
r = ek, and hence the statement on coverage is established. This proves assertion (i).

Assertion (ii) follows in view of (4.6) and if

‖µ̃− µ0‖ ≤
√
d

λ0
max
1≤k≤d

‖Dkf̃ −Dkf0‖∞ (8.1)

holds with P0-probability tending to 1. Indeed by Remark 4.4, ∇f̃(µ̃) = 0 and the

Hessian matrix H f̃(µ̃) is non-negative definite and symmetric. Moreover, since f̃ is a

polynomial splines of order qk ≥ αk > 2, k = 1, . . . , d, by Assumption 2, H f̃(x) is

continuous. Now since f̃ → f0 uniformly in P0-probability as a result of Theorem 9.1
and f0 has a well-separated maximum by Assumption 2, it follows that µ̃ is consistent in
estimating µ0 by Theorem 5.7 of van der Vaart [30]. Hence for n large enough, B(µ̃, τ/2) is

contained in B(µ0, τ) for the same τ appearing in Assumption 3. Now sinceDr f̃ converges
uniformly to Drf0 (Theorem 9.1), and using the fact that maximum eigenvalue is a

continuous operation, we have by the continuous mapping theorem that λmax(H f̃(x))→
λmax(Hf0(x)) uniformly in x. By further adapting (4.2) to the present situation, we see

that supx∈B(µ̃,τ/2) λmax(H f̃(x)) < −λ0 for sufficiently large n. Consequently, the proof

of the inequality (4.1) given in Theorem 4.1 will go through even if we replace f0 with f̃
and µ0 with µ̃.

Let 1d be a d-dimensional vector of ones, and ξ some point between x and x −
(Rd)−11dρRn,k,γ for any given x ∈ [0, 1]d. In what follows, we take n large enough so
that Rn,k,γ is small enough, and adding or subtracting some constant multiple of Rn,k,γ
still allows us to stay within [0, 1]d. For (iii), we have by the multivariate mean value
theorem and the Cauchy-Schwarz inequality that∣∣∣Dkf̃(x− (Rd)−11dρRn,k,γ)−Dkf̃(x)

∣∣∣ ≤ ‖∇Dkf̃(ξ)‖R−1d−1/2ρRn,k,γ ,
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for k = 1, . . . , d. Since Dr f̃ → Drf0 uniformly (cf. Theorem 9.1) and the norm is a

continuous map, ‖∇Dkf̃(ξ)‖ → ‖∇Dkf0(ξ)‖ ≤
√
dmax1≤j≤d |DjDkf0(ξ)| ≤

√
d‖f0‖α,∞

in view of the definition given in (2.1). Therefore uniformly over ‖f0‖α,∞ ≤ R, the
right hand side above is less than ρRn,k,γ when n is large enough. Now since the mode

of f̃(· − (Rd)−11dρRn,k,γ) is µ̃ + (Rd)−11dρRn,k,γ , it follows immediately that µ̃ +
(Rd)−11dρmax1≤k≤dRn,k,γ ∈ Cµ. Notice that this argument still holds even when we
replace 1d with any point in the boundary of a unit cube, and this collectively shows
that with probability tending to one, Cµ contains a hyper-cube centered at µ̃ of size
(Rd)−1ρmax1≤k≤dRn,k,γ .

The proof of (iv) is similar to that of (i) with max1≤k≤dRn,k,γ replaced by Rn,0,γ .
The proof of assertion (v) can be completed by following the arguments used in the proof

of assertion (ii) with (4.2) applied to the pair f and f̃ .

To prove the results in Section 5, we need to first lay out some preliminary details.
Define f0,z(x− µ̃) = f0(x) to be the shifted true function. Let θ0 = (θ0,i : i ≤mα)T be
a random vector such that fθ0(x− µ̃) = Tµ0

f0(x), where fθ is from (5.2) and Tµ0
f0(x)

is the Taylor polynomial of order mα by expanding f0 around µ0, that is,

∑
i≤mα

θ0,i(x− µ̃)i = f0(µ0) +
∑

i≤mα,|i|≥2

Dif0(µ0)

i!
(x− µ0)i, (8.2)

where ∇f0(µ0) = 0 by Assumption 2. Hence θ0 can be thought of as the true θ by
projecting f0 onto the space of polynomials of order mα. Note that θ0 is random and
depends on µ̃, µ0 and f0. By applying Di on both sides of (8.2) and evaluating at
x = µ̃, we have i!θ0,i = DiTµ0

f0(µ̃). Note that since Dif0(x), i ≤ mα, are continuous
by Assumption 2, they are bounded over {µ : |µk − µ̃k| ≤ δn,k, k = 1, . . . , d}, and this
implies that for any i ≤ mα, |θ0,i| = OP0(1) uniformly over ‖f0‖α,∞ ≤ R. The design
matrix Z is generated using i.i.d. uniform samples and by Lemma 8.1, we know that
ZTZ is invertible with probability going to 1 as n → ∞. In the actual computation,
the invertibility of ZTZ is not an important issue as there is the presence of the prior
covariance matrix V to serve as a regularization factor, and ZTZ + V −1 in (5.3) is
always invertible by our choice of V .

As a consequence of Theorem 9.1, Dkf̃ converges uniformly to Dkf0 at the rate εn,k,
and by (8.1), this translates to ‖µ̃ − µ0‖ = OP0

(εn). Let F0 = (f0(x1), . . . , f0(xn2
))T

where {x1, . . . ,xn2
} is the original (unshifted) second stage samples. Note that (Zθ0)i =

fθ0(xi − µ̃) = Tµ0
f0(xi) and under the assumption of (2.2), we have

‖F0 −Zθ0‖∞ = max
1≤i≤n2

|f0(xi)− Tµ0
f0(xi)| . max

1≤i≤n2

d∑
k=1

|xik − µ0k|αk

. max
1≤i≤n2

d∑
k=1

|xik − µ̃k|αk +

d∑
k=1

|µ̃k − µ0k|αk .
d∑
k=1

δαk

n,k (8.3)
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uniformly over ‖f0‖α,∞ ≤ R. The second line follows from the inequality |x + y|r ≤
max{1, 2r−1}(|x|r+|y|r), while the last inequality is due to |xik−µ̃k| ≤ δn,k almost surely
since xik − µ̃k ∼ Uniform(−δn,k, δn,k); and |µ̃k −µ0k| ≤ ‖µ̃−µ0‖ = OP0

(εn) = oP0
(δn,k)

as argued above, where εn = o(δn,k), k = 1, . . . , d was by our choice in (5.1).
We break the proof of Theorem 5.2 into a series of steps. First, let us enumerate the

elements of {i : i ≤ mα} as {i0, . . . , iW } with W + 1 =
∏d
k=1 αk. For the rest of this

section, we follow this indexing convention and index the entries of vectors ξ, θ and θ0
by elements of {i : i ≤ mα}. For matrices ZTZ and V , we enumerate their rows and
columns starting from 0 and ending at W . We note that in our first and second stage
sampling plans, n1 � n � n2.

The first key step is to derive sharp upper bounds for the posterior mean and variance,
which will involve upper bounding the entries of (ZTZ)−1. These calculations are made
simpler by centering the design points so that they are uniformly distributed around
zero in each co-ordinate, and (ZTZ)−1 will not depend on µ̃. The following lemma
describes the asymptotic behavior of the entries of (ZTZ)−1 when the second stage
samples are collected under uniform random sampling. In the following, we define δn =
(δn,1, . . . , δn,d)

T and write δin to mean
∏d
k=1 δ

ik
n,k.

Lemma 8.1. As n→∞, ZTZ is invertible with probability tending to 1. Moreover for

a, b = 0, . . . ,W , we have [(ZTZ)−1]ab = OP

(
n−1δ

−(ia+ib)
n

)
.

Proof. After centering, second stage samples are distributed as zi = (zi1, . . . , zid)
T i.i.d.∼

Uniform
(∏d

k=1[−δn,k, δn,k]
)
, i = 1, . . . , n2, and zik ∼ Uniform[−δn,k, δn,k]. Thus,

ZTZ = n2


a00 a01δ

i1
n · · · a0W δ

iW
n

a10δ
i1
n a11δ

2i1
n · · · a1W δ

i1+iW
n

...
...

. . .
...

aW0δ
iW
n aW1δ

iW+i1
n · · · aWW δ

2iW
n

 := n2∆A∆ (8.4)

with the (i, j)-entry of A being aij = n−12

∑n2

k=1U
ii
k U

ij
k where Uk = (Uk1, . . . , Ukd)

T i.i.d.∼
Uniform[−1, 1]d, and ∆ = diag

{
δ
ij
n : j = 0, . . . ,W

}
. Define U = (U i0 , . . . ,U iW )T for

U = (U1, . . . , Ud)
T ∼ Uniform[−1, 1]d. By the law of large numbers, we have that A

converges in probability to EUUT entry-wise, and hence EUUT − εI ≤ A ≤ EUUT + εI
for a sufficiently small ε > 0. Observe that entries of EUUT are mixed moments of
U ∼ Uniform[−1, 1] and hence is positive definite. Then EUUT − εI is invertible when ε
is smaller than the minimum eigenvalue of EUUT . Thus for sufficiently small ε > 0,

n−12 ∆−1(EUUT + εI)−1∆−1 ≤ (ZTZ)−1 ≤ n−12 ∆−1(EUUT − εI)−1∆−1.

Let uij be the (i, j)th entry of (EUUT )−1 and recall that n2 ≥ cn for some constant

c > 0. It then follows that for a = 0, . . . ,W , [(ZTZ)−1]aa is OP (n−12 uaaδ
−(ia+ia)
n ) =
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OP (n−1δ
−(ia+ia)
n ). Using the fact that for positive definite G, gij ≤

√
giigjj by the

Cauchy-Schwarz inequality, [(ZTZ)−1]ab with a, b = 0, . . . ,W is bounded above by√
[(ZTZ)−1]aa[(ZTZ)−1]bb = OP

(
n−1δ−(ia+ib)n

)
.

Proof of Proposition 5.1. See supplementary article Yoo and Ghosal [34].

Let Kn := [σ2
0 −mnξn, σ

2
0 + mnξn] where mn is any sequence going to infinity (e.g.,

slowly varying such as log n) and ξn = max{n−1/2, n−2α∗/(2α∗+d),
∑d
k=1 δ

2αk

n,k }. Recall
thatQ = {x : |xk| ≤ δn,k, k = 1, . . . , d} is the centered second stage credible set/sampling
region.

Lemma 8.2. For any i ≤mα and σ2 ∈ Kn,

E[(θi − θ0,i)2|Y , σ2] = OP0

[
d∏
k=1

δ−2ikn,k

(
1

n
+

d∑
k=1

δ2αk

n,k

)]
.

Proof. Let 0 ≤ h ≤ W . Since V > 0 by assumption, we have by Lemma 8.1 that
supσ2∈Kn

Var(θih |Y , σ2) is

[σ2
0 + o(1)][(ZTZ + V −1)−1]hh . [(ZTZ)−1]hh . n−1δ−2ihn . (8.5)

Now the bias for the conditional posterior mean in vector form is

E(θ|Y , σ2)− θ0 = (ZTZ + V −1)−1(ZTY + V −1ξ)− θ0
= (ZTZ + V −1)−1[ZTε+ZT (F0 −Zθ0) + V −1(ξ − θ0)]. (8.6)

Following the same reasoning as in (8.5), the hth diagonal entry of the covariance matrix
σ2
0(ZTZ + V −1)−1ZTZ(ZTZ + V −1)−1 of (ZTZ + V −1)−1ε is

σ2
0 [(ZTZ + V −1)−1ZTZ(ZTZ + V −1)−1]hh . n−1δ−2ihn .

Since E0(ε) = 0, it follows from Markov’s inequality that the hth entry of (ZTZ +
V −1)−1ZTε is OP0

(
n−1/2δ−ihn

)
for 0 ≤ h ≤W .

Let βij be the (i, j)th element of (ZTZ +V −1)−1, κij be the (i, j)th element of V −1

and γi be the ith entry of F0 − Zθ0. By (8.3), we have uniformly over 1 ≤ i ≤ n that

|γi| .
∑d
k=1 δ

αk

n,k. Now using the fact that for positive definite G, ghj ≤
√
ghhgjj by the

Cauchy-Schwarz inequality, we have for 0 ≤ h, j ≤W ,

[(ZTZ + V −1)−1]hj ≤
√

[(ZTZ + V −1)−1]hh[(ZTZ + V −1)−1]jj

≤
√

[(ZTZ)−1]hh[(ZTZ)−1]jj . n−1δ−(ih+ij)n .



26 W. W. Yoo and S. Ghosal

Since zj ∈ Q, j = 1, . . . , n2, we have |zij | ≤ δin for i ≤ mα. Therefore, since n2 ≤ n,

[(ZTZ + V −1)−1ZT (F0 −Zθ0)]h is

βh0

n2∑
j=1

zi0j γj + · · ·+ βhW

n2∑
j=1

ziWj γj . δ
−ih
n

d∑
k=1

δαk

n,k.

It remains to bound each entry of the last term in (8.6). Since |θ0,ij − ξ0,ij | ≤ |θ0,ij | +
|ξ0,ij | = OP0

(1) for j = 0, . . . ,W , then Lemma 8.1 and the choice of V imply that
[(ZTZ + V −1)−1V −1(ξ − θ0)]h is

βh0

W∑
j=0

κ0j(ξij − θ0,ij ) + · · ·+ βhW

W∑
j=0

κWj(ξij − θ0,ij ) . n−1δ−ihn .

Combining the bounds derived back into (8.6), the squared bias
[
E(θih |Y , σ2)− θ0,ih

]2
is

OP0

[
n−2δ−2ihn + δ−2ihn

∑d
k=1 δ

2αk

n,k

]
. The result follows in view of the bounds established

and (8.5).

Lemma 8.3. Uniformly over ‖f0‖α,∞ ≤ R, for any r ≤ mα, x ∈ Q and mn → ∞,

E0Π(|Drfθ(x)−Drf0,z(x)| > mnεn,r|Y )→ 0, where εn,r := δ−rn (n−1/2 +
∑d
k=1 δ

αk

n,k).

Proof. In view of (5.4),

Drfθ(x)−Drfθ0(x) = r!(θr − θ0,r) +
∑

r≤i≤mα,i 6=r

i!

(i− r)!
(θi − θ0,i)xi−r.

Observe that for any x ∈ Q, |xi−r| ≤ δi−rn . Also, by noting that rk ≤ ik ≤ αk − 1

for k = 1, . . . , d, we have both r!, i! ≤
∏d
k=1(αk − 1). Using the fact (

∑n
i=1 |bi|)p ≤

np−1
∑n
i=1 |bi|p for p ≥ 1, |Drfθ(x) − Drfθ0(x)|2 is bounded above up to a constant

multiple by

|θr − θ0,r|2 +
∑

r≤i≤mα,i 6=r

|θi − θ0,i|2δ2i−2rn . (8.7)

Therefore, for any r ≤ mα and any x ∈ Q, we have uniformly over ‖f0‖α,∞ ≤ R that
E0 supσ2∈Kn

E(|Drfθ(x)−Drfθ0(x)|2|Y , σ2) is bounded up to a constant multiple by

E0 sup
σ2∈Kn

E[(θr − θ0,r)2|Y , σ2] +
∑

r≤i≤mα,i 6=r

δ2i−2rn E0 sup
σ2∈Kn

E[(θi − θ0,i)2|Y , σ2]. (8.8)

In view of Lemma 8.2, the first term is bounded by δ−2rn (n−1 +
∑d
k=1 δ

2αk

n,k ). By noting

that the sum over {i : r ≤ i ≤ mα, i 6= r} has at most
∏d
k=1 αk terms, another

application of Lemma 8.2 implies that the second term in (8.8) is bounded above by∑
r≤i≤mα,i 6=r

δ2i−2rn

[
δ−2in

(
1

n
+

d∑
k=1

δ2αk

n,k

)]
. δ−2rn

(
1

n
+

d∑
k=1

δ2αk

n,k

)
.
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Using the inequality |a + b|r ≤ max(1, 2r−1)(|a|r + |b|r), r > 0 and (2.2), we have
|Drfθ0(x)−Drf0,z(x)| is

|DrTµ0
(x+ µ̃)−Drf0(x+ µ̃)| .

d∑
k=1

|xk + µ̃k − µ0,k|αk−rk

.
d∑
k=1

δαk−rk
n,k +

d∑
k=1

|µ̃k − µ0,k|αk−rk , (8.9)

and E0|Drfθ0(x)−Drf0,z(x)|2 .
∑d
k=1 δ

2αk−2rk
n,k uniformly in ‖f0‖α,∞ ≤ R by (8.3).

Define Pn,r(x) := E0 supσ2∈Kn
E[(Drfθ(x) − Drf0,z(x))2|Y , σ2]. Combining all the

bounds established and (8.8), we have uniformly over ‖f0‖α,∞ ≤ R,

Pn,r(x) . E0 sup
σ2∈Kn

E(|Drfθ(x)−Drfθ0(x)|2|Y , σ2) + E0|Drfθ0(x)−Drf0,z(x)|2

. δ−2rn

(
1

n
+

d∑
k=1

δ2αk

n,k

)
+

d∑
k=1

δ2αk−2rk
n,k . ε2n,r.

By Proposition 5.1, P0

(
σ̃2
∗ ∈ Kn

)
→ 1 as n → ∞ uniformly in ‖f0‖α,∞ ≤ R. For the

empirical Bayes posterior Π(·|Y ) ≡ Πσ̃∗(·|Y ) and by Markov’s inequality, we have for
any mn →∞,

E0Πσ̃∗(|Drfθ(x)−Drf0,z(x)| > mnεn,r|Y ) ≤ Pn,r(x)

m2
nε

2
n,r

+ o(1)→ 0, (8.10)

uniformly over ‖f0‖α,∞ ≤ R. For the hierarchical Bayes procedure, we have for any
mn →∞ that E0Π(|Drfθ(x)−Drf0,z(x)| > mnεn,r|Y ) is uniformly over ‖f0‖α,∞ ≤ R
bounded above by

Pn,r(x)/(mnεn,r)2 + E0Π
(
σ2 6∈ Kn

∣∣Y ) . (8.11)

The first term is o(1) since Pn,r(x) . ε2n,r, while the second term goes to zero by Propo-
sition 5.1.

An immediate consequence of the previous lemma is the following, whose proof can
be found in the supplementary article Yoo and Ghosal [34].

Corollary 8.4. Uniformly in ‖f0‖α,∞ ≤ R, we have for any r ≤ mα and mn → ∞
that E0Π(‖Drfθ −Drf0,z‖∞ > mnεn,r|Y )→ 0.

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. We shall prove only the empirical Bayes case as the hierar-
chical Bayes case follows the same steps. Recall that µ = µ̃ + µz. As a consequence of
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Theorem 4.1 and our choice of δn,k, k = 1, . . . , d, we have P0(µ0− µ̃ ∈ Q)→ 1. Therefore
by (4.1),

‖µ− µ0‖ = ‖µz − (µ0 − µ̃)‖ ≤
√
d

λ0
max
1≤k≤d

sup
x∈Q
|Dkfθ(x)−Dkf0,z(x)|.

Let τn,k := δ−1n,k(n−1/2 +
∑d
k=1 δ

αk

n,k). Using this bound and Corollary 8.4 with r = ek, we
have for any mn →∞ that E0Π(‖µ−µ0‖ > mn max1≤k≤d τn,k|Y ) is bounded above by

d∑
k=1

E0Π

(
‖Dkfθ −Dkf0,z‖∞ >

λ0√
d
mn max

1≤k≤d
τn,k

∣∣∣∣Y )→ 0.

By definition, M = fθ(µz) and M0 = f0,z(µ0 − µ̃). Then by (4.2), |M − M0| ≤
supx∈Q |fθ(x) − f0,z(x)| since P0(µ0 − µ̃ ∈ Q) → 1 as before. Therefore by Corollary

8.4 with r = 0, we have for mn → ∞, E0Π[|M −M0| > mn(n−1/2 +
∑d
k=1 δ

αk

n,k)|Y ] ≤
E0Π[‖fθ − f0,z‖∞ > mn(n−1/2 +

∑d
k=1 δ

αk

n,k)|Y ]→ 0, uniformly over ‖f0‖α,∞ ≤ R.

To prove the last part, note that δn,k = n−1/(2αk), k = 1, . . . , d, comes from equating

the two terms in the second stage rates for µ and M , i.e., n−1/2 =
∑d
k=1 δ

αk

n,k. To solve

for δn,k, take δn,k = (d−1δn)1/αk , where δn is a positive sequence in n that does not
depend on k. It follows that δn = n−1/2 and hence δn,k = n−1/(2αk). The condition
min1≤k≤d δn,k = ρnεn or equivalently εn = o(min1≤k≤d δn,k) is fulfilled when 1/(2α) <
α∗(1−α−1)/(2α∗+d) for α = min1≤k≤d αk. By rearranging, we need 2αα∗−4α∗−d > 0.
Since α > 2 by Assumption 2, we have 2αα∗− 4α∗− d = 2(α− 2)α∗− d ≥ 2α2− 4α− d.
Thus, it suffices to find α such that 2α2 − 4α − d > 0 and this is satisfied if α >
1 +

√
1 + d/2 under the constraint that α > 2.

9. Appendix

In this section, we collect some auxiliary results and technical lemmas that were used in
several places to prove the main theorems in the previous section.

The next two results concern contraction rates and credible band coverage for the
regression function f and its derivatives, and they correspond to Theorems 4.4 and 5.3
of Yoo and Ghosal [33] respectively.

Theorem 9.1. Let Jn,k � (n/ log n)α
∗/{αk(2α

∗+d)}, k = 1, . . . , d. Then under Assump-
tion 1, we have for any sequence mn →∞,

sup
‖f0‖α,∞≤R

E0Π(‖Drf −Drf0‖∞ > mn(log n/n)α
∗{1−

∑d
k=1(rk/αk)}/(2α∗+d)|Y )→ 0.

In particular, contraction rate for f can be recovered by setting r = 0.
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Consider the simultaneous credible band {f : ‖Drf −Dr f̃‖∞ ≤ ρRn,r,γ}, where the

quantile Rn,r,γ is chosen such that Π(‖Drf −Dr f̃‖∞ ≤ Rn,r,γ |Y ) = 1− γ and ρ > 0 is
some large enough constant.

Theorem 9.2. Let Jn,k � (n/ log n)α
∗/{αk(2α

∗+d)}, k = 1, . . . , d. Then under Assump-
tion 1,

1. inf‖f0‖α,∞≤R P0(‖Dr f̃ −Drf0‖∞ ≤ ρRn,r,γ)→ 1,

2. Rn,r,γ � (log n/n)α
∗{1−

∑d
k=1(rk/αk)}/(2α∗+d) in P0-probability.

Credible bands for f is recovered by r = 0 and for Dekf ≡ Dkf by r = ek, in the
latter case we also write the radius as Rn,k,γ = Rn,ek,γ .

The result below was taken from (3.10) and (3.11) of Yoo and Ghosal [33], and it
shows that B-splines despite being a non-orthonormal basis, are approximately orthogo-
nal under our assumption on the design points.

Lemma 9.3. Let J =
∏d
k=1 Jk. If the design points were chosen such that (2.3) holds,

then for some constants C1, C2, c1, c2 > 0,

C1(n/J) ≤ BTB ≤ C2(n/J), (9.1)

C1(n/J) + c−12 ≤ λmin(BTB + Ω−1) ≤ λmax(BTB + Ω−1) ≤ C2(n/J) + c−11 . (9.2)

Lemma 9.4. Let Wr be the finite difference matrix as seen in (3.1). Under the quasi-

uniformity of the knot distribution, we have λmax(WrW
T
r ) = O(

∏d
k=1 J

2rk
k ).

Proof. Note that λmax(WrW
T
r ) = λmax(W T

r Wr) ≤ ‖W T
r Wr‖(2,2) .

∏d
k=1 J

2rk
k ,

where the last upper bound was computed in (7.15) of Yoo and Ghosal [33].

The following proposition shows that the single stage or the first stage (in the setting
of two-stage procedure) empirical or hierarchical Bayes estimator of σ2 is consistent. Note
that this result corresponds to Proposition 4.1 of Yoo and Ghosal [33].

Proposition 9.5 (First stage error variance). Suppose Jn,k � (n/ log n)α
∗/{αk(2α

∗+d)}.
Then uniformly over ‖f0‖α,∞ ≤ R,

(a) First stage empirical Bayes estimator σ̃2
1 converges to σ2

0 under P0-probability at
the rate max{n−1/2, n−2α∗/(2α∗+d)} .

(b) If inverse gamma prior is used, first stage posterior for σ2 contracts to σ2
0 at the

same rate.
(c) If the prior used has continuous and positive density on (0,∞), then the first stage

posterior for σ is consistent.
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Supplementary Material

Supplement to Bayesian mode and maximum estimation and accelerated rates
of contraction
(doi: COMPLETED BY THE TYPESETTER; .pdf). The supplementary file contains
detailed proofs of Corollary 4.2, Proposition 5.1 and Corollary 8.4.
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