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Abstract

In this thesis we are designing machine learning methodologies for solving the problem

of video annotation and retrieval using either pre-defined semantic concepts or ad-hoc

queries. Concept-based video annotation refers to the annotation of video fragments

with one or more semantic concepts (e.g. hand, sky, running), chosen from a pre-

defined concept list. Ad-hoc queries refer to textual descriptions that may contain

objects, activities, locations etc., and combinations of the former. Our contributions

are: i) A thorough analysis on extending and using different local descriptors towards

improved concept-based video annotation and a stacking architecture that uses in the

first layer, concept classifiers trained on local descriptors and improves their prediction

accuracy by implicitly capturing concept relations, in the last layer of the stack. ii)

A cascade architecture that orders and combines many classifiers, trained on different

visual descriptors, for the same concept. iii) A deep learning architecture that exploits

concept relations at two different levels. At the first level, we build on ideas from

multi-task learning, and propose an approach to learn concept-specific representations

that are sparse, linear combinations of representations of latent concepts. At a second

level, we build on ideas from structured output learning, and propose the introduction,

at training time, of a new cost term that explicitly models the correlations between

the concepts. By doing so, we explicitly model the structure in the output space

(i.e., the concept labels). iv) A fully-automatic ad-hoc video search architecture that

combines concept-based video annotation and textual query analysis, and transforms

concept-based keyframe and query representations into a common semantic embedding

space. Our architectures have been extensively evaluated on the TRECVID SIN 2013,

the TRECVID AVS 2016, and other large-scale datasets presenting their effectiveness

compared to other similar approaches.
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Chapter 1

Introduction

Contents

1.1 Video annotation and retrieval . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.1 Video annotation and retrieval

1.1.1 Problem definition

Video content can be annotated with semantic information such as simple concept

labels that may refer to objects (e.g., “car” and “chair”), activities (e.g., “running” and

“dancing”), scenes (e.g., “hills” and “beach”), etc. Annotating videos with concepts

is a very important task that facilitates many applications such as semantics-based

video segmentation and retrieval, video event detection, video hyperlinking, concept-

based video search and ad-hoc video search [98, 72, 73, 74, 42]. Concept-based video

search refers to the retrieval of video fragments (e.g., keyframes) that present specific

simple concept labels from large-scale video collections. Ad-hoc video search is another

related problem. Ad-hoc queries refer to textual descriptions that aim to model the

end user’s need of retrieving video fragments containing persons, objects, activities,
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1.1. Video annotation and retrieval

Figure 1.1: Video concept annotation pipelines: After temporal video segmentation,
e.g., using automatic video shot detection and extracting one representative keyframe
from the video shot, the upper part shows a typical concept-based video annotation
pipeline that is based on hand-crafted or DCNN-based features and supervised clas-
sifiers trained separately for each concept. The lower part is based on features that
can be learned directly from the raw keyframe pixels using a DCNN, and subsequently
using the DCNN as standalone classifier to perform the final class label prediction.

locations etc., and combinations of the former (e.g., “Find shots of a person playing

guitar outdoors”).

To deal with concept-based video search, concept-based video annotation methods

have been developed that automatically annotate video-fragments, e.g., keyframes ex-

tracted from video shots, with semantic labels (concepts), chosen from a pre-defined

concept list [98]. A typical concept-based video annotation system mainly follows

the process presented in Fig. 1.1. A video is initially segmented into meaningful

fragments, called shots; each shot is represented by e.g. one or more characteristic
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keyframes/images; and, several hand-crafted visual, DCNN-based (DCNN stands for

Deep Convolutional Neural Network), textual or audio features are extracted from the

keyframes (or any other chosen representation) of each shot. Given a ground-truth

annotated video training set, supervised machine learning algorithms are then used to

train classifiers (concept classifiers) independently for each concept, using the extrac-

ted features and ground-truth annotations. The trained classifiers can subsequently

be applied to an unlabeled video shot, following feature extraction, and return a set

of confidence scores for the appearance of the different concepts in the shot. A re-

cent trend in video annotation is to learn features directly from the raw keyframe

pixels using deep convolutional neural networks (DCNNs). DCNNs consist of many

layers of feature extractors, and are thus able to model more complex structures in

comparison to handcrafted representations. DCNN layers can learn different type of

features without requiring feature engineering compared to the hand-crafted features

that are designed and developed such as capturing specific properties of video frames,

e.g., edges and corners. DCNNs can be used both as standalone classifiers (Fig. 1.1,

bottom), i.e., unlabelled keyframes are passed through a pre-trained DCNN that per-

forms the final class label prediction directly, using typically a softmax or a hinge loss

layer [94, 57], and also as generators of video keyframe features (Fig. 1.1, top), i.e.,

the output of a hidden layer of the pre-trained DCNN is used as a global keyframe

representation [94], this latter type of features is referred as DCNN-based.

The challenge of ad-hoc video search (Fig. 1.2) is typically solved by analysing both

the video fragments and the ad-hoc query to a set of pre-defined concept labels. Spe-

cifically, each video-fragment is annotated with concepts using a pre-trained concept-

based video annotation system, then for each ad-hoc query the nearest concepts are

retrieved from the same pool of concepts that was used to annotate the video frag-

ments. Natural language processing (NLP) and keyword extraction is typically used

in order to transform the textual query to a concept-based representation. The video

fragments with the smaller distance from the target query are retrieved as the most
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Figure 1.2: Typical ad-hoc video search pipeline. Each video fragment is annotated
with concepts taken from a predefined concept pool. The text query is analysed
for concepts taken from the same concept pool. The distance between the concept-
based video fragment representations and the concept-based query representation is
calculated and the video fragments close in terms of the distance metric are retrieved.

related by calculating the distance between the concept-based query representation

and each concept-based video fragment representation.

1.1.2 Challenges and assumptions

While significant progress has been made during the last years in the task of video

annotation and retrieval, it continues to be a difficult and challenging task. This is due

to the diversity in form and appearance exhibited by the majority of semantic concepts

and the difficulty to express them using a finite number of representations. The system

needs to learn hundreds or thousands of concepts that belong to different categories

(e.g. landscapes, faces, actions). As a result, generality is an important property

that a concept-based video annotation system should present in order to generalize

its performance across many different heterogeneous concepts. Finally, computational
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requirements are another major challenge. The large number of concepts that a video

annotation system should learn is computationally expensive requiring lightweight and

fast methods.

It has been shown that combining many different features for the same concept,

instead of using a single feature, improves concept annotation accuracy. The subset

of features that will be used and the way the classifiers trained on these features will

be combined is a challenging problem that will affect the accuracy and computational

complexity of the complete concept-based video annotation system. Other methods

also improve the overall video annotation accuracy by looking for existing semantic

relations e.g., concept correlations.

As discussed in the previous subsection the dominant approach for performing

concept-based video annotation is to train DCNNs whereby concepts share features

within the architectures up to the very last layer, and then branch off to T different clas-

sification branches (using typically one layer), where T is the number of concepts [83].

However, in this way, the implicit feature-level relations between concepts, e.g. the

way in which concepts such as a car and motorcycle share lower-level features modeling

things like their wheels, are not directly considered. Also, in such architectures, the

relations or interdependencies of the concepts at a semantic level, i.e. the fact that two

specific concepts may often appear together or, inversely, the presence of the one may

exclude the other, are also not directly taken into consideration. While some methods

have been proposed for exploiting in a more elaborate way one of these two different

types of concept relations, there is no single method that jointly exploits visual- and

semantic-level concept relations in a unified DCNN architecture.

Ad-hoc video search is a very recent research topic. Existing methods have been

mainly focused on retrieving images for a single unknown concept label [79], [38], [99],

which is a simpler problem compared to the one that we investigate, i.e., retrieving

video shots given a complex textual query. Extending and improving such methods
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for ad-hoc video search is a very challenging and timely topic that to date has not

been thoroughly investigated.

1.2 Aims and objectives

In this thesis we are using machine learning methodologies for solving the problem of

video annotation and retrieval using either pre-defined semantic concepts or ad-hoc

queries. While the task of video annotation and retrieval has presented a lot of progress

during the last years, it remains a timely topic with open research questions and

practical application. In addition, the accuracy of state-of-the-art video annotation

systems cannot be considered as satisfactory, which shows the difficulty of this problem

and the need of developing novel approaches in this field. As briefly discussed in the

previous subsections, one way to achieve improved concept-based video annotation

accuracy is to train the concept classifiers in a rich pool of visual features (either

engineered or learned). The pool of these features and the training of concept classifiers

on them, the way that concept classifiers trained on different features can be combined,

the way that feature sharing across the concept classifiers can be achieved and the way

that concept relations can be modeled are the major topics of investigation within this

thesis.

Our first aim is to design a set of effective and accurate concept-based video annota-

tion architectures for solving the problem of concept-based video fragment retrieval.

With respect to this first direction, we collect a big pool of visual features. Specifically,

we examine how local binary descriptors can facilitate concept-based video annotation,

we propose color extensions of them inspired by previously proposed color extensions

of SIFT, and we show that the latter color extension paradigm is generally applicable

to both binary and non-binary local descriptors. In order to use them in conjunction

with a state-of-the-art feature encoding, we compact the above color extensions using

PCA and we compare two alternatives for doing this. Then, we present an improved

6



1.3. Thesis contributions

way of ordering and combining independently trained concept detectors using a cas-

cade. The proposed cascade combines hand-crafted (e.g. SIFT [62]) and DCNN-based

features, and is computationally more efficient and more accurate than other combin-

ation approaches by adjusting the required processing (i.e., evaluate fewer classifiers)

based on the input video fragment. Finally, following the recent advances in this field

that solve the problem using deep learning techniques, we propose a deep learning

method that jointly exploits visual- and semantic-level concept relations in a unified

DCNN architecture.

Our second aim is to develop a fully-automatic AVS method that uses solely a

natural-language textual query to retrieve related video shots from a video collection.

With respect to this direction we investigate two different ways of representing video

keyframes and textual queries in order to transfer them into a common representation

space. Our pre-trained concept-based video annotation system is used to annotate

the video fragments with concept labels and a query analysis strategy has been de-

veloped to translate the textual query into the same pool of concepts. More advanced

methods that use semantic embeddings of words and sentences, e.g., word2vec neural

network models, have also been investigated in order to achieve a second approach to

query/keyframe representations.

1.3 Thesis contributions

Our contributions are:

• A thorough analysis on extending and using different local descriptors towards

improved concept-based video annotation and a stacking architecture that uses

in the first layer, concept classifiers trained on the above local descriptors and

improves their prediction accuracy by implicitly capturing concept relations, in

the last layer of the stack.
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• A cascade architecture that orders and combines many classifiers, trained on dif-

ferent visual descriptors, for the same concept. This method is computationally

more efficient, in terms of classifier evaluations, and more accurate than other

state-of-the-art approaches.

• A DCNN architecture that addresses the problem of video/image concept an-

notation by exploiting concept relations at two different levels. At the first

level, we build on ideas from multi-task learning, and propose an approach to

learn concept-specific representations that are sparse, linear combinations of rep-

resentations of latent concepts. By enforcing the sharing of the latent concept

representations, we exploit the implicit relations between the target concepts. At

a second level, we build on ideas from structured output learning, and propose

the introduction, at training time, of a new cost term that explicitly models the

correlations between the concepts. By doing so, we explicitly model the structure

in the output space (i.e., the concept labels). Both of the above are implemented

using standard convolutional layers and are incorporated in a single DCNN ar-

chitecture that can then be trained end-to-end with standard back-propagation.

• A fully-automatic ad-hoc video search architecture that combines concept-based

video annotation and textual query analysis. We propose a new method for

transforming concept-based keyframe and query representations into a com-

mon semantic embedding space, and we show that our proposed combination

of concept-based representations with their corresponding semantic embeddings

results in improved video search accuracy.

Our architectures have been extensively evaluated on the TRECVID SIN 2013, the

TRECVID AVS 2016, and other large-scale datasets where we present their effective-

ness compared to other similar approaches.
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1.4 Structure of the thesis

In Chapter 2 we review the related literature in the field of video annotation and

retrieval using either pre-defined semantic concepts or ad-hoc queries. Specifically, we

provide an outline of the major trends in the field. We cover the bibliography related

to the feature extraction process, classifier learning and classifier fusion techniques,

subsequently we present methods that use multi-task learning and exploit semantic

concept relations. Then existing zero-shot learning methods are reviewed. Finally, we

summarize the TRECVID Semantic Indexing and Ad-hoc Video Search benchmarking

activities and datasets, and other related large-scale datasets some of which have been

used in this thesis.

In Chapter 3 we present how we extend existing feature extraction approaches in

order to create a large pool of discriminative visual features. Then we show how

these features can be used to train concept classifiers and how the predictions of

these independently trained concept classifiers can be improved by exploiting concept

relations in the last layer of a stacking architecture.

Chapter 4 describes the cascade architecture developed to combine many pre-trained

concept detectors on different visual features for the same concept.

Chapter 5 presents the proposed deep learning method that jointly exploits visual-

and semantic-level concept relations in a unified DCNN architecture for concept-based

video annotation.

Chapter 6 presents a fully-automatic ad-hoc video search architecture that combines

concept-based video annotation and textual query analysis.

The thesis concludes with Chapter 7 where we summarize the findings of our ex-

perimental studies, and present our general conclusions on using each of the proposed

machine learning architectures for video annotation and retrieval. Finally, we identify
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some areas where there is still space for further research and outline the avenues of

our future work.
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Related Work

Contents
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In this chapter we review some of the most representative works in the literature

of concept-based video annotation and retrieval and ad-hoc video search. Our aim is

to cover state-of-the-art studies in this field, highlight their limitations and provide a

comprehensive view of the research areas for the topics addressed in this thesis. The

chapter has been divided into five sections aiming to highlight the weaknesses of exist-

ing approaches and to show how the proposed approaches in this thesis can go beyond

the state-of-the-art. Section 2.1 covers the bibliography related to feature extraction

and representation. Section 2.2 presents related work on classifier learning, transfer

learning and classifier combination techniques. Then, Section 2.3, presents related

work, focusing on MTL and structured output prediction, while Section 2.4 reviews
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zero-shot learning techniques that are used for ad-hoc video search. Finally, Section 2.5

summarizes the TRECVID Semantic Indexing (SIN) and Ad-hoc Video Search (AVS)

benchmarking activities and the provided large-scale datasets for concept-based video

annotation and ad-hoc video search, respectively, that have been used by this study,

and also other related benchmarking datasets.

2.1 Feature extraction and representation

A variety of visual, textual and audio features can be extracted to represent each piece

of visual information; a review of different types of features can be found in [98]. In

large-scale concept-based video annotation, typically visual features are utilized, being

extracted from representative keyframes or similar 2D image structures [93]. We can

distinguish two main categories of visual features: hand-crafted features and features

based on Deep Convolutional Networks (DCNN-based). With respect to hand-crafted

features, binary (ORB [88]) and non-binary (SIFT [62], SURF [9]) local descriptors,

as well as color extensions of them [113] have been examined for concept-based video

annotation. Local descriptors are aggregated into global image representations by

employing feature encoding techniques such as Fisher Vector (FV) [22] and VLAD

[48]. With respect to DCNN-based features, one or more hidden layers of a pre-

trained DCNN are typically used as a global keyframe representation [94]. Several

DCNN software libraries are available in the literature, e.g., Caffe [50], MatConvNet,

TensorFlow [32] and different DCNN architectures have been proposed, e.g., Res-

NeXt [125], ResNet [46], GoogLeNet [106], VGG ConvNet [94], CaffeNet [57]. DCNN-

based descriptors present high discriminative power and generally outperform local

descriptors [90], [97].

Two of the most popular local descriptors are SIFT [62] and SURF [9]. Both of them

extract features that are invariant to rotation, scale and illumination variations, while

SURF extraction is somewhat less computationally-demanding (SURF is two times
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faster than SIFT according to [9]). SIFT and SURF construct vectors of floating-

point values (which are often quantized to integers in the range [0,255]). For many

modern applications, though, e.g. video annotation on mobile devices, small-sized yet

discriminative descriptors are very important in order to extract, store and transmit

them efficiently (e.g. send local descriptors to a server for performing concept-based

video annotation). Binary local descriptors are an attractive alternative to non-binary

descriptors such as SIFT and SURF, generating binary strings which can be computed

efficiently while also requiring lower storage space. ORB [88], BRISK [59], and FREAK

[2] are some examples of binary local descriptors that have been proposed for similarity

matching between local image patches. They are all based on calculating the differences

between pairs of pixel intensity values within an image patch; what distinguishes them

is the pattern they follow in order to perform these pair-wise pixel comparisons. Studies

show that ORB [88] and BRISK [59] are among the most accurate binary descriptors

for image matching [15]. The possibility of using ORB in image classification was also

briefly examined in [43].

The above mentioned non-binary and binary local descriptors are intensity-based:

they are applied to grayscale images (e.g. an RGB image is firstly converted to

grayscale), and the extracted features are calculated from the pixel intensity values.

Two color variants of SIFT, namely RGB-SIFT and OpponentSIFT, that increase the

descriptor’s discriminative power were proposed in [113]. Methods that consider the

color information in order to improve the SURF descriptor have also been proposed.

Most of them were examined only on the image matching problem [39], [36], [20], while

others, such as OpponentSURF and similar extensions of other descriptors, have also

been used for concept-based annotation [101], [103]. In [43], the extraction of ORB

from all three color channels of the RGB color space was considered.

For the purpose of visual concept annotation, local descriptors extracted from differ-

ent patches of one image are subsequently aggregated into a global image representa-
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tion, a process known as feature encoding. The most popular encoding in the last years

has been the Bag-of-Words (BoW) [85]. Fisher vector (FV) [22] and VLAD (Vector

of Locally Aggregated Descriptors) [48] are two state-of-the-art encodings that signi-

ficantly outperform the BoW [114] [16]. FV encoding describes the difference between

the distribution of features for an image and the distribution fitted to the features of

all the training data. VLAD [48] is a fast approximation of FV that performs some-

what worse but is more compact and faster to compute [49], which makes it a good

compromise. The two latter encodings are high-dimensional and their dimensionality

is affected by the dimensionality of the local descriptors they encode, thus dimension-

ality reduction approaches such as PCA [123] are widely used for making the image

representation more compact prior to learning/classification. Dimensionality reduc-

tion can be performed at two stages: local descriptors can be reduced prior to the

encoding, and then the final encoding can also be further compacted [49].

2.2 Supervised learning, transfer learning and classifier

combination techniques

Concept-based video annotation is a multi-label classification (MLC) problem (one

keyframe may be annotated with more than one semantic concepts), that can be

treated as multiple independent binary classification problems where for each concept

a model can be learned to distinguish keyframes that the concept appears from those

that the concept does not appear. Given feature-based keyframe representations that

have been extracted from different keyframes and also the ground-truth annotations

for each keyframe (i.e. the concepts presented) any supervised machine learning al-

gorithm that solves classification problems can be used in order to learn the relations

between the low-level image representations and the high-level semantic concepts. The

most commonly used machine learning algorithms are Support Vector Machines (SVM)

and Logistic Regression (LR). Chi-square kernels, that were originally considered to
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be optimal for use in SVMs [134], [52] are now often replaced by Histogram Intersec-

tion kernels [66] or even Linear SVMs. Other machine learning algorithms have also

been presented such as Random Forest and Lazy style algorithms (e.g. knn); how-

ever, achieving lower performance or presenting higher computational complexity. A

recent trend in video annotation is to learn features directly from the raw keyframe

pixels using DCNNs. DCNNs consist of many layers of feature extractors which makes

them having a more complex structure than hand-crafted representations. DCNNs

can be used either as feature generators as described in Section 2.1 but also as stan-

dalone classifiers, i.e., unlabeled keyframes are forward propagated by a DCNN that

performs the final class label prediction directly, using typically a softmax or a hinge

loss layer [94, 57].

The small number of labeled training examples is a common problem in video data-

sets, making it difficult to train a deep network from scratch without over-fitting its

parameters on the training set [96]. For this reason, it is common to use transfer learn-

ing that uses the knowledge captured in a source domain in order to learn a target

domain without caring about the improvement in the source domain. When a small-

sized dataset is available for training a DCNN then a transfer learning technique is

followed, where a conventional DCNN, e.g. [46], is firstly trained on a large-scale data-

set and then the classification layer is removed, the DCNN is extended by one or more

fully-connected layers that are shared across all of the tasks, and a new classification

layer is placed on the top of the last extension layer (having size equal to the number

of concepts that will be learned in the target domain). Then, the extended network is

fine-tuned in the target domain [83].

It has been shown that combining many different keyframe representations (e.g.

SIFT, RGB-SIFT, DCNN-based) for the same concept, instead of using a single feature

(e.g. only SIFT), improves the accuracy of concept-based video annotation. The

typical way of combining multiple features is to train several supervised classifiers
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for the same concept, each trained separately on a different feature. When all the

classifiers give their decisions, a fusion step computes the final confidence score (e.g. by

averaging); this process is known as late fusion. Hierarchical late fusion [102] is a more

elaborate approach; classifiers that have been trained on similar features (e.g. SIFT

and RGB-SIFT) are firstly fused together and then, dissimilar classifiers (e.g. DCNN-

based) are sequentially fused with the previous groups. A second category of classifier

combination approaches performs ensemble pruning to select a subset of the classifiers

prior to their fusion. For example, [93] uses a genetic algorithm to automatically select

an optimal subset of classifiers separately for each concept. Finally, there is a third

group of popular ensemble-based algorithms, namely cascade architectures, that have

been used in various visual classification tasks for training and combining detectors

[116], [17], [78], [19]. In a cascade architecture the classifiers are arranged in stages,

from the less computationally demanding to the most demanding ones (or may be

arranged according to other criteria such as their accuracy). A keyframe is classified

sequentially by each stage and the next stage is triggered only if the previous one

returns a positive prediction (i.e. that the concept or object appears in the keyframe).

The rationale behind this is to rapidly reject keyframes that clearly do not match the

classification criteria and focus on those keyframes that are more difficult and more

likely to depict the sought concept. Cascades of classifiers have been mainly used in

object detection tasks [116], however they have also been briefly examined for video

concept-based annotation [78]. Cascades developed for object and face detection are

mainly boosting-based [116], [17], [78], [19], [7]. Each stage of the cascade is build using

a boosting algorithm such as AdaBoost. Such approaches require the presence of a big

pool of weak features (e.g. Haar-like features) in order to combine them and build a

strong classifier. In contrast, concept-based video annotation systems utilize a different

kind of features, visual local descriptors encoded into global image representations or

DCNN-based features. These global image representation features are robust enough

to be used for training strong classifiers without the need of the boosing technique.
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Boosting is useful when weak features, such as pixel-level features, are available that

alone cannot build a strong classifier. In addition, existing boosting-based techniques

are based on pixel-level features, however, as described above concept-based video

annotation is typically based on global image representations. As a result, boosting

approaches for object detection could not be used without appropriate modifications.

2.3 Multi-task learning and structured outputs

As described in Section2.2, video concept annotation is a challenging multi-label clas-

sification problem that in recent years is typically addressed using DCNN models

that choose a specific DCNN architecture [94, 46] and put a multi-label cost func-

tion on the top of it [121, 119, 11]. As is the case in other multi-label problems,

there exist relations between the different concepts, and several methods attempt to

utilise/model them so as to improve the performance or reduce the complexity of

classification models that treat each concept independently. These methods can be

roughly divided in two main categories. In the first category, methods that fall under

the framework of multi-task learning (MTL), attempt to learn representations or clas-

sification models that, at some level, are shared between the different concepts (tasks)

[3, 80, 76, 35, 23, 4, 141, 105, 70, 58, 137, 69, 127]. In the second category, methods

that fall under the framework of structured-output prediction attempt to learn models

that make multi-dimensional predictions that respect the structure of the output space

using either label constraints or post-processing techniques [95, 122, 24, 27, 71, 84, 129,

84, 118, 117, 135, 63, 8, 65, 14, 107, 25, 104, 92, 26, 139, 69]. Label constraints refer

to regularizations that are imposed into the learning system in order to exploit label

relations (e.g., correlations) [84, 129, 138, 92, 26, 139, 69]. Post-processing techniques

refer to re-calculating the concept prediction results using either meta-learning clas-

sifiers or other re-weighting schemes [95, 122, 24, 27, 71]. In what follows, we review

works in those two broad categories.
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2.3.1 Multi-task learning

Multi-task Learning (MTL) refers to jointly learning classifiers for many tasks by

sharing knowledge across them so as to improve their accuracy, instead of learning

individual models for each task. Video/image concept annotation can be treated as a

MTL problem, where each task is about recognizing one concept. MTL methods can

be divided into two broad categories: i) Shallow MTL methods that focus on shallow

linear models and typically require pre-computed features as input, for example local

descriptors or DCNN-based pre-computed features and ii) MTL methods that are an

integral part of deep network architectures.

The MTL methods belonging to the first category extend typical linear models (e.g.,

Support vector machines (SVMs)) in order to incorporate task relatedness, i.e., the

type of knowledge that should be shared. In a single-task learning (STL) concept

annotation scenario, a supervised classifier is trained per concept on positive/negative

keyframes/images of this concept. If the classifier is linear (e.g., SVM) its goal is to

minimize the empirical cost: min(wj) L(wj) + Θ(wj), where wj ∈ Rd1×1 is the task

parameter vector to be estimated from the training samples, L(wj) is the empirical

cost on the training set, Θ(wj) is a regularization term and d1 is the dimensionality

of the input feature representation. MTL methods learn the parameters of all of

the tasks together at the same time. As a result, assuming T tasks, all the task

parameter vectors wj for j = 1...T are concatenated in a single parameter matrix

W ∈ Rd1×T and the classifier’s goal is to minimize the empirical cost: min(W ) L(W )+

Θ(W ), where Θ(W ) now encodes task relatedness. The main difference between MTL

methods is the way they define task relatedness. Some methods identify shared feature

representations between different tasks and use regularization over W to model task

relatedness [3, 80, 76]. Others identify a shared subspace over the task parameter

vectors [35, 23, 4]. The methods above make the strong assumption that all tasks

are related; some newer methods consider the fact that some tasks may be unrelated.
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For example, the clustered MTL algorithm (CMTL) [141] uses a clustering approach

to assign to the same cluster parameters of tasks that lie nearby in terms of their

L2 distance. Adaptive MTL (AMTL) [105] decomposes the task parameters into a

low-rank structure that captures task relations, and a group-sparse structure that

detects outlier tasks. The GO-MTL (Grouping and Overlap in Multi-Task Learning)

algorithm [58] and the online version of it [70] use a matrix factorization method, e.g.,

wj = V s>j , that allows two tasks from different groups to overlap by having one or

more bases in common. V corresponds to the parameter vectors of k latent tasks,

while sj ∈ R1×k is a task-specific weight vector that contains the coefficients of the

linear combination of the latent tasks.

With respect to the second category of MTL methods, DCNNs themselves are MTL

models that consist of many layers of feature extractors, with the bottom layers learn-

ing more generic features that are shared across all of the tasks and the top-most

layers being more concept-specific [131]. Typical DCNN architectures follow a hard

feature/parameter sharing, i.e., each task uses exactly the same weight matrix for the

corresponding layer; and similarly a hard feature/parameter separation, i.e., the last

layer (a.k.a. the classification layer) takes as input the output of the second-last layer

and translates it into a set of concept annotation scores learning weight matrices in-

dependently for each task [128, 46, 94]. However, more elaborate MTL methods that

introduce soft feature/parameter sharing, i.e., adjusting how much information and

across which tasks should be shared, have been presented. Such methods mainly focus

on reformulating existing shallow linear MTL methods in order to be incorporated in

DCNNs. For example, [127] proposes a two-sided neural network that unifies several

shallow linear MTL methods that use a predictor matrix factorization approach, e.g.,

wj = V s>j [58]. MTL in deep learning architectures has also been proposed for facial

landmark detection [137] and human pose estimation [81]. In [137] the single task

of facial landmark detection is optimized with the assistance of an arbitrary number

of related tasks. This is a special case of the conventional MTL that typically aims
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to maximize the performance of all tasks. In [81], the task of human detection is

learned jointly with the task of body locations estimation, which results in improved

human pose estimation. In [69] the two-sided neural-network of [127] is modified and

extended, for transferring a network that has been originally trained on a source image

dataset for concept annotation, to a target video dataset and a corresponding new set

of target concepts.

Sometimes the terms MTL and multi-domain learning (MDL) are used interchange-

ably. However, the problems that each of them aims to solve are different. In MDL

shared knowledge is exploited across different domains for the same tasks. For example,

in [132] a cross-media (text, image, audio etc.) MDL retrieval method is proposed,

where across the domains, the same set of concepts need to be learned. Similarly,

an asymmetric MDL approach for person re-identification is proposed in [119] and

a multiple-scene surveillance video understanding approach in [126], where in these

works different domains refer to different video capture conditions. Asymmetric learn-

ing, AKA domain adaptation [60, 124], refers to the fact that the method of [119]

utilizes information from different source domains in order to improve the perform-

ance on the target domain, without considering potential improvement to the source

domains as well. Transfer learning, also discussed in Section 2.2, is another related

problem that uses the knowledge captured in a source domain in order to learn a tar-

get domain without caring about the improvement in the source domain. MDL is also

referred in the bibliography as multi-view learning, where different “views” refer to dif-

ferent feature representations of the same example such as, image and text, audio and

video etc. The recent years, a very popular topic is multi-view representation learn-

ing, which is a sub-topic of multi-view learning. Multi-view representation learning

methods focus on building embedding models for each particular view and on the way

that these independent models can be jointly optimized in order to build a complex

model that leverages information from multiple views. The reader who is interested in

this topic could refer to the survey of [61] that reviews many approaches on multi-view
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representation learning.

2.3.2 Structured output prediction

Structured output prediction refers to methods that exploit semantic relations that

may exist between the concept labels, and has received a lot of attention in the deep

learning and the broader machine learning literature. In contrast to MTL that exploits

the common structure that task parameters or low-level features may have across the

different tasks, structured output prediction focuses on the semantic relations that

exist at the outputs, e.g., concept correlations. Video/image concept annotation is a

multi-label learning problem, where given a set of concept labels, each keyframe/image

is often associated with more than one labels. In most concept annotation datasets,

ground-truth annotation is provided without any accompanying structure information

concerning the concept labels; however, in many cases the concept labels are statistic-

ally related. For example, in the TRECVID-SIN video annotation dataset [82], which

is one of the datasets used in this thesis, there are several groups of mutually exclusive

labels, such as indoor -outdoor or nighttime-sun. The dataset also includes several pos-

itive correlations, such as car -vehicle and dog-animal. The automated learning of such

relationships can incorporate useful knowledge into the model, improving the accuracy

of the DCNN. In order to do so, many structured output prediction methods impose

some label structural constraints either explicitly, i.e., using predefined rules that are

known for the training dataset, or implicitly, i.e., the model is forced to discover ex-

isting label relations and considers them as label constraints. Existing methods can

again be divided in those that take as input any pre-computed features and those that

are tightly integrated with deep learning architectures.

With respect to the the first category, i.e., methods that take as input pre-computed

features, two main sub-categories have appeared in the literature: a) Stacking-based

approaches that collect the concept annotation scores produced either by a baseline set

of concept classifiers (e.g., SVMs) or by a DCNN when used as a standalone classifier,
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and introduce a second learning step in order to refine them, and b) Inner-learning

approaches that follow a single-step learning process, which jointly considers extracted

features and semantic relations. Stacking approaches aim to detect relations across

concepts in the last layer of the stack. The simple process of training each concept

classifier independently is known as Binary Relevance (BR) transformation and is

an elementary way of solving MLC problems. One popular group is the BR-based

stacking approaches. For example, in [95] concept annotation scores are obtained from

individual (BR-trained) concept classifiers in the first layer, in order to create a model

vector for each shot. These vectors form a meta-level training set, which is used to

train a second layer of independently trained concept classifiers. In [122], a graph-

based method is proposed that uses the ground-truth annotation to build decision

trees that describe the relations across concepts, separately for each concept, and

refines the initial scores by approximating these graphs. Using external knowledge

of label relations, Deng et al. [24] proposed a representation, the HEX graph, to

express and enforce exclusion, inclusion and overlap relations between labels. This

model was further extended for “soft” label relations using the Ising model by Ding

et al. [27]. Nevertheless, none of the above approaches considers the use of multi-label

classification methods as part of a stacking architecture. The latter is the focus of

Chapter 3 of this thesis, where we describe and evaluate the use of such methods for

building models in the second-layer of the stacking architecture that learns the semantic

relations across labels. All the above-mentioned approaches implicitly capture label

relations from the meta-level training set of model vectors. This is an inherent flaw

of all those methods that take as input existing concept annotation scores and try to

refine them, as a result, they rely on starting with good concept probability estimates

in the model vectors, otherwise the errors are propagated to the next layers. Some

good indicators of first-layer systems that produce good concept probability estimates

can be found in Section 3.3 of Chapter 3.

Inner-learning approaches, on the other hand, use the extracted features and exploit
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concept relations in a single learning step in order to build concept classifiers. For

example, the authors of [84] and [129] propose methods that simultaneously learn the

relation between visual features and concepts and also the semantic relations between

concepts. In [138] a joint learning-to-rank approach is proposed, which naturally

combines the benefits of training a DCNN with a structural SVM model that is used

for concept ranking. However, inner-learning approaches suffer from computational

complexity. For example, [84] has complexity at least quadratic to the number of

concepts, making it inapplicable to real video/image concept annotation problems,

where the number of concepts is large (e.g. hundreds or thousands). The LMGE

algorithm (Label correlation Mining with relaxed Graph Embedding) [129], is a faster

approach with linear complexity with respect to the number of concepts; however, the

complexity of the training process is about n3, where n refers to the number of training

samples. Many more methods can be found in this category for multi-label image

annotation, which explore such label relations to improve the classification accuracy

at the expense of increased computational complexity compared to the stacking-based

ones, e.g.,[118, 117, 135, 63, 8, 65, 14, 107, 25, 104].

With respect to the second category, i.e., methods that are an integral part of DCNN

architectures, structured output prediction techniques have been proposed for applic-

ation mainly to the pixel-wise semantic segmentation problem. The most popular

approach is to combine a DCNN with a graphical model [92], [26], [139]. For example,

in [92] a Markov random field is jointly used on top of a DCNN architecture in or-

der to incorporate the spatial relations and label correlations of the assigned labels

on the pixels of an image. Similarly, in [139] the conditional random field model is

formulated as a recurrent neural network (RNN) and plugged in as part of a DCNN.

Structured output prediction for DCNNs has also been proposed for other visual recog-

nition problems, such as group activity recognition [26]. All of these methods employ

probabilistic inference to correct the marginal probability of each label. In contrast

to the above methods that use graphical models, in [69] an auxiliary cost function
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that approximates the correlations between the concept labels gets added to the total

network’s cost. This auxiliary cost function takes the form of a constraint over the

task-specific parameters of the network and is shown to improve its accuracy.

2.4 Zero-shot learning

Zero-shot learning for image retrieval is an active field that is referred to the problem

of retrieving images for a single unknown concept label. This is a simpler problem

compared to the one that we investigate in this thesis, i.e., retrieving video shots given

a complex textual query AKA ad-hoc video search (AVS). AVS could also be placed

under the umbrella of zero-shot learning considering that no training data is available

with respect to the textual query. Fully-automatic AVS is a very challenging problem,

where the complete video search is performed without any user intervention. Typically,

the query is broken down to a set of concepts using NLP. Each video shot from the test

video collection is annotated with the same set of concepts, e.g., using DCNNs, and

a distance measure is applied in order to retrieve those video shots that are closer to

the concept-based query representation [133, 87, 28, 111, 79, 29, 67, 64]. Building the

concept-based query representation starts by using simple NLP rules, e.g., removing

stop-words, extracting nouns, verbs etc. or simply space-separating the whole query,

which results in a set of terms for the query. Then, the semantic relation between

each of the terms and the concepts is calculated, and the most semantically similar

concepts to these terms are selected. The novelty of [111] is that they also enrich each

concept with additional information captured by Google or Wikipedia, while in [29] an

inverted index structure is used in order to associate the query with the concepts. A

semi-automatic system is presented in [112], where the user is asked to choose keywords

given a test query. All the above methods treat the query as a set of simple terms.

However, detecting the most useful parts of it, e.g., subsequences that contain the

main content that the user asks for retrieval, could further improve the video search

accuracy. Such a method is proposed in Chapter6 of this thesis. In contrast to the
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above methods, in [31], query models are trained with videos retrieved from websites,

which is significantly slower compared to all the other methods discussed here.

Some recent methods for concept-based search, for example word2vec [75, 55, 56],

train semantic embedding spaces of words or sentences from a large corpus using

simple architectures of neural networks. After the embedding space is established,

both video shots and concepts can be projected to it in order to directly measure

their distance [79], [38], [99]. For example, in [79] images are mapped into a semantic

embedding space by combining the class label embeddings with the concept-based

annotation results. It should be noted that combining the distances of the video shots

from the target query calculated with respect to both concept-based and semantic

embedding representations has not been investigated before.

2.5 Benchmarking datasets and evaluation strategies

TRECVID Semantic Indexing (SIN) task [82] is a popular benchmarking activity that

provides a large-scale dataset for video concept-based video annotation. The task is as

follows. Given a set of shot boundaries for the SIN test dataset and a pre-defined list

of concepts, participants are asked to return for each concept, the top 2000 video shots

from the test set, ranked according to the highest possibility of depicting the concept.

The presence of each concept was assumed to be binary, i.e., it was either present or

absent in the given standard video shot. If the concept was true for some frame within

the shot, then it was true for the shot. This is a simplification adopted for the benefits

it affords in pooling of results and approximating the basis for calculating recall. A

list of 500 target concepts has been produced, 346 of which have been collaboratively

annotated by the participants and by Quaero annotators. A subset of 60 of them was

selected for participants’ submissions. Each year a different subset of the 60 concepts

is finally officially evaluated.

In this thesis our experiments were performed on the TRECVID SIN 2013 dataset
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[82] that provides the following materials:

• a development set that contains roughly 800 hours of internet archive videos

comprising more than 500000 shots;

• a test set that contains roughly 200 hours of videos, comprising 112677 shots;

• shot boundaries (for both sets);

• a set of 345 concepts;

• elements of ground-truth: some shots were collaboratively annotated. For each

shot and each concept, four possibilities are available: the shot has been an-

notated as positive (it contains the concept), the shot has been annotated as

negative (it does not contain the concept), the shot has been skipped (the an-

notator cannot decide), or the shot has not been annotated (no annotator has

seen the shot).

TRECVID SIN 2013 task was finally evaluated for 38 semantic concepts by calcu-

lating the Mean Extended Inferred Average Precision (MXinfAP) at depth 2000 [130].

MXinfAP is an approximation of the Mean Average Precision (MAP) that has been

adopted by TRECVID [82] because it is suitable for the partial ground-truth that

accompanies the TRECVID dataset [82].

From 2016 the TRECVID SIN task has been replaced by the new Ad-hoc Video

Search (AVS) task [5]. According to the AVS task, given a set of shot boundaries for

the AVS test dataset and a set of ad-hoc queries, for which ground-truth annotation

does not exist, participants are asked to return for each query, the top 1000 video

shots from the test set, ranked according to the highest possibility of being described

by the query. A list of 30 ad-hoc queries was given for participants’ submission in

AVS 2016. A query is a textual description of persons, objects, activities, locations
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etc. and combination of them, e.g., “Find shots of a person playing guitar outdoors”.

TRECVID AVS task is also evaluated in terms of the MXinfAP measure.

TRECVID AVS 2016 datasets provide the following materials:

• a development set that refers to the TRECVID SIN dataset

• a test set that contains roughly 600 hours of videos, comprising 335944 shots;

• shot boundaries (for both sets);

• a set of 30 queries.

TRECVID SIN (1,000h, 345 concepts) and TRECVID AVS (600h, 30 ad-hoc labels)

datasets are annotated and evaluated on video-fragment level, which is the focus of

this thesis. Other related video datasets also exist that focus on recognising concepts

or more complex event activities in video level. For example, the EventNet dataset

consists of 95,321 videos and 500 events and 4,490 concepts related to each event [44],

the TRECVID MED [5] provides 1000h videos and 20 event classes and the FCVID is

also one of the largest video datasets with 239 event-related categories and 91K you-

tube videos [53]. The Sports-1m (1 million videos, 487 sports-related activities) [54]

and UCF-101 (13,320 videos, 101 activities) [100] are activity detection datasets; and

the YouTube-8M (450,000h, 4,716 concepts) [1] is a concept-annotated video datasets.

All the above datasets are among the most large-scale and most challenging bench-

marking datasets for automatic video understanding. Related can be considered also

benchmarking image annotation datasets such as the ImageNet [89] (tens of millions

images, 100,000 concepts), the PASCAL-VOC 2012 (11,540 images, 20 concepts) [34],

the NUS-WIDE (269,648 images, 81 concepts) [21], and the Places (over 7 million

images, 205 scene-related concepts) [140].
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2.6 Conclusions

In this chapter we presented the most important works concerning the problems of

concept-based video annotation and ad-hoc video search. Based on such state-of-the-

art approaches we propose different extended and varied architectures for solving the

above challenging problems. We began by presenting approaches on visual feature ex-

traction using either handcrafted or DCNN-based features, then we presented classical

learning architectures for training independent binary concept classifiers, e.g., using

SVMs, or multi-label classifiers, e.g., using deep learning. We continued with more

advanced approaches that exploit concept relations at two different levels. Either at

feature-level relations between concepts building on ideas from multi-task learning or

at semantic level relations between concepts, e.g., by exploiting concept label correl-

ations. Having noted the limitations of the methods discussed in this section we will

present improved machine learning architectures that go beyond the state-of-the-art

as it is described below:

We firstly improve existing architectures that are based on binary, independently

trained concept classifiers (Chapter 3). Specifically, we deal with the problem of ex-

tending and using different local descriptors, as well as exploiting concept semantic

relations, towards improved concept-based video annotation. We examine if state-

of-the-art binary local descriptors that have been previously used only for image an-

notation( [88], [59]), can also facilitate concept-based video annotation. We propose

color extensions of them inspired by previously proposed color extensions of SIFT [62].

Concerning the learning stage of our independently trained concept classifiers, we per-

form a comparative study and propose an improved way of employing stacked models,

which capture concept relations, by using multi-label classification algorithms in the

last layer of the stack, in contrast to existing methods that use model vectors in order

to perform a second round of training binary classifiers that refine the initial prediction

scores [95].
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Secondly, we propose a cascade architecture which is another way of improving

both the accuracy and the prediction time of independently trained concept classifi-

ers (Chapter 4). Our proposed cascade architecture dynamically selects, orders and

combines many base classifiers, trained independently with different feature-based key-

frame representations, in contrast to existing cascades that are based on a fixed order-

ing of the cascade stages [78], as presented in Section 2.2.

Then, we aim to improve existing multi-label deep learning architectures by incor-

porating convolutional layers that enforce the sharing of latent concept representations

and model the correlations between the concept labels (Chapter 5). Our method has

some similarities with the MTL methods [58] and [69]. However, in contrast to [58]

that uses pre-computed features and a shallow linear model to factorize the 2D weight

matrix that encodes concept-specific features, our approach learns shared represent-

ations as an integral part of a DCNN architecture implementing the factorization in

two standard CNN layers. Furthermore, in contrast to [69] that uses a two-sided CNN

taking as input in the one side a keyframe/image, and in the other side a semantic

descriptor that verifies whether a certain concept is present in the keyframe/image, our

method requires only the raw keyframe/image and no additional information regarding

the task that should be learned/predicted. Both [58] and [69] can be optimized for

only binary or multi-class classification cost functions (e.g., logistic loss), thus ignor-

ing the multi-label nature of the concept-based video/image annotation problem. In

contrast, our method works for any multi-label classification cost (e.g., cross-entropy).

Our method is also most closely related to [69] and [70], that jointly consider MTL and

structured outputs, but differs from them as follows: In [70] pre-computed features are

used, specifically, a shallow linear MTL method is proposed that is instantiated with a

new cost function that exploits concept correlations and takes as input pre-computed

DCNN-based features. In contrast, we propose a single DCNN architecture, trained

end-to-end, that incorporates both MTL and structured-output prediction, both of

which are implemented using standard convolutional layers, resulting in a more ef-
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fective classifier. In [69] an auxiliary label-based cost function is proposed that forces

the network’s output to fit the distribution of a single row of the concept correla-

tion matrix. In contrast, our approach adds a concept correlation cost term to the

network’s main cost function that forces positively-correlated concepts to receive sim-

ilar scores and negatively-correlated ones to receive dissimilar scores, again leading to

better results.

Finally, we present a fully-automatic method that combines concept-based video

annotation and textual query analysis in order to solve the problem of ad-hoc video

search (Chapter 6). We present a set of NLP steps that cleverly analyse different parts

of the query in order to convert it to related semantic concepts. Specifically we can

detect the most useful parts of it, e.g., subsequences that contain the main content

that the user asks for retrieval, in contrast to existing approaches that simply use a

parser to extract parts of speech such as verbs, adjectives etc. We also propose a

new method for transforming concept-based keyframe and query representations into

a common semantic embedding space, and we show that our proposed combination

of concept-based representations with their corresponding semantic embeddings res-

ults in improved video search accuracy. Existing methods simply use concept-based

representations [133, 87, 28, 111, 79, 29, 67, 64].
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Chapter 3

Learning with Local Features and a

Two-layer Stacking Architecture
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In Chapter 1 we presented a typical concept-based video annotation system that

learns independent concept classifiers and consists of three main modules: the video

decomposition module, the feature extraction module, and finally the learning module

(Fig. 1.1). In this typical system, on the one hand, the keyframe features that will be

extracted for training concept classifiers should be carefully selected in order to train

discriminative models, and on the other hand, concept relations should be exploited

in a post-processing step, because any existing semantic relations among concepts are

not taken into account (e.g., the fact that sun and sky will often appear together in

the same video shot). In this chapter we focus on two directions: firstly, on feature-

based video representation and secondly, on learning algorithms that exploit semantic

concept relations. We present how different binary and non-binary local descriptors
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can be extended and used for building effective independent concept classifiers. We

also present a stacking architecture that is able to further improve the prediction scores

of a given set of independently trained concept classifiers, by exploiting label relations

in the last layer of the stack.

Considering feature extraction for video representation, Scale Invariant Feature

Transform (SIFT) [62] and Speeded Up Robust Features (SURF) [9] are probably

the two local descriptors that are most-widely used. However, they are non-binary

descriptors, which makes them not so suitable for modern applications requiring the

transmission of descriptor vectors. For example, when considering a mobile application

where pictures are taken with a mobile device and local descriptors from these pictures

need to be sent to a server for semantic analysis, then it is very important that the

local descriptors are as compact as possible, to minimize transmission requirements

[18]. Although mobile applications and improvement in terms of time efficiency is not

the scope of this thesis, we are always interested in having features that are as compact

as possible in order to provide a competitive and fast video annotation algorithm. This

is very important for other researchers that do research in this field in order to realize

that a successful video annotation algorithm should be a combination of accuracy and

time efficiency. ORB (Oriented FAST and Rotated BRIEF) [88] and BRISK (Bin-

ary Robust Invariant Scalable Keypoints) [59] are two binary local descriptors, which

were originally proposed for similarity matching between local image patches. On the

machine learning front, the majority of concept-based video annotation systems learn

supervised classifiers separately for each semantic concept. However, assigning con-

cepts to video shots is by definition a multi-label classification problem, since multiple

concepts may describe a single video shot. The simple process of training each concept

classifier independently is known as Binary Relevance (BR) transformation and is an

elementary way of solving multi-label learning problems. One way of improving this

baseline BR approach, is to consider concept relations. A group of methods in this

category follow a stacking architecture (e.g. [95], [51]). The predictions of multiple
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BR-trained concept classifiers form model vectors that are used as a meta-learning

training set for a second learning round (mainly by adopting a second round of BR

models).

Our contributions are:

• A thorough examination of ORB and BRISK in the task of concept-based video

annotation that shows that they constitute a viable alternative to the non-binary

descriptors currently used in this task, while their compact size and low storage

needs make them appealing for mobile applications.

• Color extensions for the three local descriptors considered in this chapter (SURF,

ORB, BRISK). Specifically, inspired by two color extensions of SIFT [113],

namely RGB-SIFT and OpponentSIFT, we define the corresponding color ex-

tensions for SURF, ORB and BRISK, and we show that this relatively straight-

forward way of introducing color information is in fact a generic methodology

that works similarly well for different binary and non-binary local descriptors.

• A different way of performing Principal Component Analysis (PCA) [123] for

feature reduction, which often improves the results of SIFT/SURF/ORB/BRISK

color extensions when combined with Vector of Locally Aggregated Descriptors

(VLAD) encoding [48].

• An improved stacking architecture that elaborates multi-label classification al-

gorithms instead of BR models for the second-layer learning, in order to capture

semantic concept relations.

Another distinguishing feature of this chapter is the way that concept-based video

annotation is evaluated. A closer look at the literature shows that researchers focus

on evaluating video annotation in a semantics-based indexing and retrieval setting,

i.e. given a concept, measure how well the top retrieved video shots for this concept
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truly relate to it. However, besides the retrieval problem, another important problem

related to semantics-based video manipulation is the annotation problem, i.e. the

problem of estimating which concepts best describe a given video shot. We report

evaluation considering both criteria and compare them.

The rest of this chapter is organized as follows: Section 3.1 examines how two binary

descriptors can be used for video concept detection, introduces the color extensions

of SURF, ORB and BRISK and discusses a different way of employing PCA for color

descriptors. Section 3.2 presents the proposed stacking architecture for exploiting

concept relations and multi-label learning algorithms that are suitable for instantiating

this architecture. Section 3.3 reports our experiments and results, and finally Section

3.4 summarizes our main conclusions.

3.1 Building independent concept classifiers

In this section we present how different local descriptors can be extended and used for

building effective independent concept classifiers. The classifiers can be used as stand

alone classifiers or alternatively as part of a stacking architecture.

3.1.1 Using a binary local descriptor for concept-based video

annotation

ORB [88] and BRISK [59] are two binary local image detectors and descriptors that

present similar discriminative power compared to SIFT and SURF in image match-

ing problems, they have similar properties such as invariance in rotation, scale and

illumination, but at the same time are more compact and faster to be computed. A

256-element binary ORB vector requires 256 bits to be stored (similarly a 512-element

binary BRISK vector requires 512 bits); in contrast, an integer-quantized 128-element

SIFT vector requires 1024 bits. In addition, according to [88] and [59], ORB and

BRISK are an order of magnitude faster than SURF to compute, which in turn is
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faster than SIFT.

There is not a single way for introducing binary descriptors in the video annota-

tion pipeline. [43] did so by considering the BoW encoding, and proposed a modified

K-means algorithm (the “K-majority” algorithm) for generating the codebook (vocab-

ulary) of BoW, that would result in a binary codebook.

In this work we claim that binary descriptors (ORB, BRISK) can be used for video

annotation in the same way as their non-binary counterparts. Specifically, let us

assume that I is a set of images and xi i = 1, ..., N are ORB or BRISK descriptors ex-

tracted from I, where xi ∈ {0, 1}d. N is the total number of extracted local descriptors

and d is their dimension. From these binary descriptors, we generate a floating-point

codebook of K visual codewords wk ∈ Rd, k = 1, ...,K, using a standard K-means.

The distances between the binary ORB/BRISK descriptors and the codewords are

calculated by the L2 norm. The update of the cluster centres is also performed as in

the original K-means (calculating the mean of a set of vectors). We compare these

two codebook creation strategies (that of [43] and the one described in this section) in

Section 3.3.1.

3.1.2 Color extensions of binary and non-binary local descriptors

Based on the good results of two color extensions of SIFT, namely RGB-SIFT and

OpponentSIFT [113], we examine the impact of using the same methodology for intro-

ducing color information to other descriptors (SURF, ORB, BRISK). Our objective is

to examine if this is a methodology that can benefit different local descriptors and is

therefore generally applicable.

Let d denote the dimension of the original local descriptor (typically, d will be equal

to 64 or 128 for SURF, 128 or 256 for ORB and 512 for BRISK). This section summar-

izes the process of extracting RGB-SURF, RGB-ORB, RGB-BRISK, OpponentSURF,

OpponentORB and OpponentBRISK descriptors. An RGB image has three 8-bit
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channels (for red, green and blue). The original non-color local descriptors are calcu-

lated on 8-bit grayscale images, so they first transform the RGB image to grayscale.

In contrast to this, our RGB-SURF/ORB/BRISK apply the corresponding original

descriptor directly to each of the three R, G, B channels and for each keypoint extract

three d-element feature vectors. These are finally concatenated into one 3 · d-element

feature vector, which is the RGB-SURF, RGB-ORB or RGB-BRISK descriptor vector.

Similarly, our OpponentSURF/ORB/BRISK descriptors firstly transform the initial

RGB image to the opponent color space [113]. We refer to the transformed chan-

nels as O1, O2 and O3. O3 is the luminance channel, i.e. the one that the original

SURF/ORB/BRISK descriptors use, while the other two channels (O1 and O2) cap-

ture the color information. Following the transformation, a normalization step that

converts the ranges of each channel within the [0,255] range is employed, as in [113].

Then, similarly to RGB-SURF/ORB/BRISK, the original SURF, ORB or BRISK

descriptor is applied separately to each transformed channel and the final 3 ·d-element

feature vector is the concatenation of the three feature vectors extracted from the three

channels.

3.1.3 Reducing the dimensionality of local color descriptors

State-of-the-art local descriptor encoding methods generate high-dimensional vectors

that make training of machine learning algorithms difficult. For example, while the

BoW model generates a k-element feature vector, where k equals to the number of

visual words, VLAD encoding generates a k · l-element feature vector (where l is the

dimension of the local descriptor; in the case of the color extensions of descriptors

discussed in the previous section, l = 3 · d). Thus, it is common to employ dimension-

ality reduction before the construction of VLAD vectors, on local descriptors, mainly

using PCA [123]. In this section we explain that directly applying PCA to the full vec-

tor of color descriptors, as implied from previously published works (e.g. [16]; termed

“typical-PCA” in the sequel), is not the only possible solution, and we propose a simple
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modification of this descriptor dimensionality reduction process that it experimentally

shown to improve the concept-based video annotation results in several cases.

PCA projects linearly l-dimensional features to a lower-dimensional feature space.

Given a matrix A with dimension l×n, where n is the number of observations (i.e., of

keyframes in a video training dataset), if we want to perform dimensionality reduction

(from l to l′) with PCA, the reduced matrix A′ will be A′ = ET · A, where E is the

projection matrix (of dimension l × l′) and T denotes the transpose of a matrix.

PCA aims to find those directions in the data space that present high variance.

When PCA is applied directly to the entire vector of one of the color extensions of

(binary or non-binary) local descriptors, if one or two of the three color channels

of the descriptor exhibit lower diversity than the others, then these risk being under-

represented in the reduced dimensionality space. To avoid this, we propose performing

PCA separately for each color channel and consider an equal number of principal com-

ponents from each of them, to create three projection matrices that correspond to each

of the three channels (termed “channel-PCA” in the sequel), instead of one projection

matrix that corresponds to the complete descriptor vector. The three reduced single-

channel descriptor vectors that can be obtained for a color descriptor using the afore-

mentioned projection matrices are finally concatenated in a reduced color-descriptor

vector. In some of our preliminary experiments we chose different number of principal

components from each color channel based on their variance. However, this did not

present large fluctuations in the overall system’s accuracy and this is the reason why

we finally take an equal number of components from each color channel. However,

more investigation towards this direction could be performed in the future for finding

a better way of choosing the number of components per channel in accordance with

their influence on the entire video frame encoding vector.
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3.2 Stacking for exploiting concept relations

Having presented our methods for building concept classifiers in Section 3.1, this sec-

tion deals with refining the scores of such independently learned concept classifiers by

exploiting label relations. Assuming that we first train a set of SVM-based or LR-based

independent concept classifiers, here we propose an improved way of subsequently em-

ploying stacked models, by using appropriate multi-label classification methods, able

to capture concept relations, in the last layer of the stack.

3.2.1 Proposed stacking architecture

Let D1, ..., DN denote a set of N trained independent concept classifiers on N different

concepts. Let V denote a validation set of video shots, which will be used for training

the second layer of the stacking architecture, and m denote the model vector of a

new unlabeled video shot. Fig. 3.1 summarizes the full pipeline from training the

second-layer classifiers to using them for classifying an unlabeled sample when using:

(1) the BR stacking architecture (Fig. 3.1(b),(d)) presented in Section 2.3.2, and (2)

the proposed stacking architecture (Fig. 3.1(c),(e)). Both architectures use exactly the

same strategy to create the meta-level training set; the trained BR models (D1, ..., DN )

of the first layer are applied to the validation dataset T and in this way a model vector

set M is created, consisting of the scores that each of D1, ..., DN has assigned to

each video shot of V for every concept (Fig. 3.1(a)). What distinguishes the two

architectures is the way that this meta-learning information is used and therefore the

way that the second-layer learning is performed.

During the training phase, the BR stacking architecture builds a new set of BR

models (D′1, ..., D
′
N ). To train each model, a different subset of M that is ground-

truth annotated for the corresponding concept Cn that the meta-concept classifier D′n

will be trained for, is used (Fig. 3.1(b)). In contrast, the proposed architecture uses

the whole model vector set and ground-truth annotation at once in order to train a
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Figure 3.1: Comparing BR and the proposed stacking architecture. (a) First layer of a
stacking architecture. (b) Training of the second layer of a BR-stacking architecture.
(c) Training of the second layer of the proposed stacking architecture. (d) Classific-
ation phase of the BR stacking architecture. (e) Classification phase of the proposed
architecture.

single multi-label classification model D′, able to capture concept relations, instead of

separate models D′1, ..., D
′
N (Fig. 3.1(c)).

During classification, a new unlabeled video shot is given to the first layer BR

models (D1, ..., DN ) and a model vector m is returned. Then on the one hand, the BR

stacking architecture lets the D′1, ..., D
′
N models to classify m and one score is returned

separately from each (Fig. 3.1(d)). On the other hand, the proposed architecture uses

the single trained model D′ in order to return a final score vector (Fig. 3.1(e)).

With respect to learning concept relations, the BR-based stacking methods learn

them only by using the meta-level feature space. BR algorithm is explained in details

in Section 2.3.2. One classifier is trained separately from the positive and negative

frames of each concept. Then the independently trained concept classifiers are used

to classify a validation set, their prediction scores on this set form model vectors that

are used as feature representations for training a second round of concept classifiers

separately for each concept. BR is a multi-label classification algorithm that solves the

problem by utilizing label transformations that ignore label relations. Subsequently,

the learning of each concept is still independent of the learning of the rest of the

concepts. The rationale behind us proposing the use of other multi-label learning

algorithms in replacement of the BR models at the second layer of the stacking archi-
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tecture is based on the assumption that if we choose algorithms that consider label

relations as part of the second-layer training, improved detection can be achieved. Our

stacking architecture learns concept relations in the last layer of the stack both from

the outputs of first-layer concept classifiers and by modelling relations directly from

the ground-truth annotation of the meta-level training set. This is achieved by instan-

tiating our architecture in our experiments with different second-layer algorithms that

model:

• Relations between pairs of concepts;

• Relations across sets of more than two concepts;

• Multiple relations in the neighbourhood of each testing instance.

3.2.2 Learning algorithms for stacking

To model the relations described above, we exploit methods from the multi-label

learning field [40], [86], [108], [136]. Pairwise methods can consider pairwise rela-

tions between labels; similar to the multi-class problem, one versus one models are

trained and a voting strategy is adopted in order to decide for the final classification.

In this category we choose the Calibrated Label Ranking (CLR) algorithm [40] that

combines pairwise and BR learning. Label powerset (LP) methods search for subsets

of labels that appear together in the training set and consider each set as a separate

class in order to solve a multi-class problem. We choose the original LP tranforma-

tion [108], as well as the Pruned Problem Transformation algorithm (PPT) [86] that

reduces the class imbalance problem by pruning label sets that occur less than l times.

Finally, lazy style methods most often use label relations in the neighbourhood of the

tested instance, to infer posterior probabilities. In this direction we choose ML-kNN

algorithm [136], which models exactly this information. In selecting the above meth-

ods, we took into account the computational complexity of these and other similar
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methods and tried to avoid using particularly computationally expensive ones, e.g.,

RAkEL and HOMER that are based on ensembles of classifiers [77].

The use of multi-label classification algorithms as the second layer of a stacking

architecture has the significant advantage of allowing the representation of the videos

using state-of-the-art high dimensional low-level features (for describing the video at

the first layer of the stack), as opposed to simpler features used in e.g. [77], [120],

while at the same time keeping relatively low the dimensionality of the input to the

multi-label classifier of the second layer, thus making the overall concept-based video

annotation architecture applicable even to large-scale problems.

3.3 Experimental study

Our experiments were performed on the TRECVID SIN 2013 dataset presented in

Section 2.5. Firstly, in Section 3.3.1 we performed experiments to assess the perform-

ance of many different binary and non-binary local descriptors and also color variants

of them that were presented in Sections 3.1.1, 3.1.2 and 3.1.3. On these experiments

we also want to examine the performance of the different methods both on the video

indexing and on the video annotation problem. Based on this, we adopt two evaluation

strategies: i) Considering the video indexing problem, given a concept, we measure

how well the top retrieved video shots for this concept truly relate to it. ii) Con-

sidering the video annotation problem, given a video shot, we measure how well the

top retrieved concepts describe it. For the indexing problem we calculated the Mean

Extended Inferred Average Precision (MXinfAP) at depth 2000 [130], presented in

Section 2.5. For the annotation problem we calculate the Mean Average Precision at

depth 3 (MAP@3). In the latter case, our evaluation was performed on shots that are

annotated with at least one concept in the ground-truth.

For experimenting with different local descriptors, one keyframe was initially extrac-

ted for each video shot and was scaled to 320× 240 pixels prior to feature extraction.
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For some of our final experiments, we also extracted two visual tomographs [93] from

each shot. Tomographs are spatio-temporal video slices that are extracted and used in

the same way that keyframes are typically used in video concept annotation schemes.

These spatio-temporal slices capture in a compact way motion patterns that are use-

ful for detecting semantic concepts and are used for training the concept classifiers.

Regarding feature extraction, we followed the experimental setup of [16] and we used

the toolbox that its authors have published. More specifically, we used the dense

SIFT descriptor, that accelerates the original SIFT descriptor, in combination with

the Pyramid Histogram Of visual Words (PHOW) approach [13]. For SURF, ORB

and BRISK we used their implementations included in OpenCV, and further extended

these implementations with the corresponding color variants that we introduced in

Section 3.1.2. The same square regions at different scale levels of the PHOW approach

were used as the image patches that were described by SURF, ORB and BRISK.

We calculated 128-SIFT, 128-SURF, 256-ORB and 512-BRISK grayscale descriptors;

then, each color extension of a descriptor resulted in a color descriptor vector three

times larger than that of the corresponding original descriptor, as explained in Section

3.1.2. All the non-binary local descriptors (SIFT, SURF and their color extensions)

were compacted to 80 dimensions, using PCA, following the recommendations of [16]

and [49]. Since there is no previous research on the influence of dimensionality re-

duction on binary descriptors when they are used for video annotation, ORB, BRISK

and their color extensions were compacted both to 80 and to 256 dimensions (the

latter is the original size of ORB), in order to investigate this. All the compacted

local descriptors (binary and non-binary) were subsequently aggregated using VLAD

encoding. Similarly with the authors of [16], we divided each image into the same 8

regions using spatial binning and we used sum pooling to combine the encodings from

different regions. As a result of the above process, a VLAD vector of 163840 elements

for descriptors compacted to 80 dimensions and of 524288 elements for descriptors

compacted to 256 dimensions was extracted for each image (by image we mean here
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either a keyframe or a visual tomograph). These VLAD vectors were compressed into

4000-element vectors by applying a modification of the random projection matrix [10].

The reduced VLAD vectors were L2 normalized according to [16] and served as input

to the Logistic Regression (LR) classifiers that we used. Following the cross validated

committees methodology of [72], we trained five LR classifiers per concept and per

local descriptor (SIFT, ORB, RGB-ORB etc.), and combined the output of these five

by means of late fusion (averaging). When different descriptors were combined, again

late fusion was performed by averaging the classifier output scores.

Secondly, in Section 3.3.2 we assess the usefulness of the stacking architecture,

presented in Section 3.2, that uses multi-label learning algorithms to capture label

relations. For this we further used the TRECVID 2012 test set (approx. 200 hours;

145634 shots), which is a subset of the 2013 development set, as a validation set to

train algorithms for the second layer of the stack. The first layer of the employed

stacking consisted from the independent classifiers evaluated in Section 3.3.1. Their

output was used to construct model vectors that were introduced in the second layer.

It would be useful here to remind that, as presented also in Fig. 3.1, model vectors

consist of the scores that each of first layer classifiers has assigned to each video shot of

the validation set (i.e., TRECVID 2012) for every concept. We instantiated the second

layer of the proposed architecture with four different multi-label learning algorithms

as described in Section 3.2.2, and will refer to our framework as P-CLR , P-LP, P-PPT

and P-MLkNN when instantiated with CLR [40], LP [108], PPT [86] and ML-kNN

[136] respectively. The value of l for P-PPT was set to 30. We compared these instan-

tiations of the proposed framework against BCBCF [51], DMF [95], BSBRM [110],

MCF [122] and CF [45]. For BCBCF we used the concept predictions instead of the

ground-truth in order to form the meta-learning dataset, as this was shown to improve

its performance in our experiments; we refer to this method as CBCFpred in the se-

quel. Regarding the concept selection step we used these parameters: λ = 0.5, θ =

0.6, η = 0.2, γ = the mean of Mutual Information values. For MCF we only used the
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Table 3.1: Performance (MXinfAP, %, and MAP@3, %) for ORB, when the binary
codebook proposed in [43] and when a floating-point codebook is used. In parenthesis
we show the relative improvement w.r.t. the binary codebook.

MXinfAP (indexing) MAP@3 (annotation)

Descriptor Binary codebook [43] Floating-point codebook Binary codebook [43] Floating-point codebook

ORB 4.52 10.36 (+129.2%) 66.85 71.05 (+6.3%)

spatial cue, so temporal weights have been set to zero. The φ coefficient threshold,

used by BSBRM, was set to 0.09. Finally, for CF we performed two iterations without

temporal re-scoring (TRS). We avoided using TRS in order to make this method com-

parable to the others. For implementing the above techniques, the WEKA [123] and

MULAN [109] machine learning libraries were used as the source of single-class and

multi-label learning algorithms, respectively.

In all of the experiments of this section, the final step of video annotation was

to refine the calculated detection scores by employing the re-ranking method of [91].

This method slightly changes the score that was given per concept based on the scores

that were assigned to its neighbors using the Gaussian distribution. Using this re-

ranking method improves the final results by approximately 1-2 percentage points.

We evaluated all the methods on the test set of the TRECVID 2013 SIN task [82]

using the subset of 38 concepts that were also evaluated as part of the task. For

the stacking architecture (Section 3.3.2), similar to Section 3.3.1, we examined the

performance of the different methods both on the video indexing and on the video

annotation problem.

3.3.1 Binary vs. non-binary local descriptors and their

combinations

In this subsection we performed experiments to assess the performance of many dif-

ferent binary and non-binary local descriptors and also color variants of them that

were presented in Sections 3.1.1, 3.1.2 and 3.1.3. Such experiments are very useful

for establishing a baseline concept-based video annotation system that consists of in-
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Table 3.2: Performance (MXinfAP, %, and MAP@3, %) for the different descriptors
and their combinations, when typical and channel-PCA is used for dimensionality
reduction. In parenthesis we show the relative improvement w.r.t. the corresponding
original grayscale local descriptor for each of the SIFT, SURF, ORB, BRISK color
variants.

MXinfAP (indexing) MAP@3 (annotation)

Descriptor Descriptor Keyframes, Keyframes, Boost(%) w.r.t Keyframes, Keyframes, Boost(%) w.r.t
size in bits typical-PCA channel-PCA typical-PCA typical-PCA channel-PCA typical-PCA

SIFT 1024 14.22 14.22 - 74.32 74.32 -
RGB-SIFT 3072 14.97 (+5.3%) 14.5 (+2.0%) -3.1% 74.67 (+0.5%) 74.07 (-0.3%) -0.8%
OpponentSIFT 3072 14.23 (+0.1%) 14.34 (+0.8%) +0.8% 74.54 (+0.3%) 74.53 (+0.3%) 0.0%
All SIFT (SIFTx3) - 19.11 (+34.4%) 19.24 (+35.3%) +0.7% 76.47 (+2.9%) 76.38 (+2.8%) -0.1%

SURF 1024 14.68 14.68 - 74.25 74.25 -
RGB-SURF 3072 15.71 (+7.0%) 15.99 (+8.9%) +1.8% 74.58 (+0.4%) 74.83 (+0.8%) +0.3%
OpponentSURF 3072 14.7 (+0.1%) 15.26 (+4.0%) +3.8% 73.85 (-0.5%) 74.07 (-0.2%) +0.3%
All SURF (SURFx3) - 19.4 (+32.2%) 19.48 (+32.7%) +0.4% 75.89 (+2.2%) 76.12 (+2.5%) 0.3%

ORB 256 (no PCA) 256 10.36 10.36 - 71.05 71.05 -
RGB-ORB 256 768 13.02 (+25.7%) 13.58 (+31.1%) +4.3% 72.86 (+2.6%) 73.21 (+3.0%) +0.5%
OpponentORB 256 768 12.61 (+21.7%) 12.73 (+22.9%) +1.0% 72.66 (+2.3%) 72.46 (+2.0%) -0.3%
All ORB 256 - 16.58 (+60.0%) 16.8 (+62.2%) +1.3% 74.32 (+4.6%) 74.20 (+4.4%) -0.2%

ORB 80 256 11.43 11.43 - 72.02 72.02 -
RGB-ORB 80 768 13.79 (+20.6%) 13.48 (+17.9%) -2.2% 73.20 (+1.6%) 72.96 (+1.3%) -0.3%
OpponentORB 80 768 12.81 (+12.1%) 12.57 (+10.0%) -1.9% 72.56 (+0.7%) 72.01 (0.0%) -0.8%
All ORB 80 (ORBx3) - 17.48 (+52.9%) 17.17 (+50.2%) -1.8% 74.64 (+3.6%) 74.58 (+3.6%) -0.1%

BRISK 256 512 11.43 11.43 - 72.36 72.36 -
RGB-BRISK 256 1536 11.78 (+3.1%) 12 (+5.0%) +1.9% 72.74 (+0.5%) 72.67 (+0.4%) -0.1%
OpponentBRISK 256 1536 11.68 (+2.2%) 11.96 (+4.6%) +2.4% 72.42 (+0.1%) 72.35 (0.0%) -0.1%
All BRISK 256 (BRISKx3) - 16.4 (+43.5%) 16.47 (+44.1%) +0.4% 74.56 (+3.0%) 74.58 (+3.1%) 0.0%

BRISK 80 512 10.73 10.73 - 71.79 71.79 -
RGB-BRISK 80 1536 12.21 (+13.8%) 11.6 (+8.1%) -5.0% 72.70 (+1.3%) 72.29 (+0.7%) -0.6%
OpponentBRISK 80 1536 11.05 (+3.0%) 11.15 (+3.9%) +0.9% 72.10 (+0.4%) 71.49 (-0.4%) -0.9%
All BRISK 80 - 16.43 (+53.1%) 15.95 (+48.6%) -2.9% 74.51 (+3.8%) 74.39 (3.6%) -0.2%

Table 3.3: Performance (MXinfAP, % ; MAP@3, %) of pairs and triplets of the best
combinations of Table 3.2 descriptors (SIFTx3 channel-PCA, SURFx3 channel-PCA,
ORBx3 typical-PCA, BRISKx3 channel-PCA).

(a) Descriptor pairs +SURFx3 +ORBx3 +BRISKx3 (b) Descriptor triplets +ORBx3 +BRISKx3
SIFTx3 22.4; 76.64 21.31; 76.81 20.71; 76.53 SIFTx3+SURFx3 22.9; 77.29 22.52; 77.39
SURFx3 21.6; 76.43 21.13; 76.68 SIFTx3+ORBx3 21.5; 76.61
ORBx3 19.08; 75.34 SURFx3+ORBx3 21.76; 76.56

Table 3.4: Performance (MXinfAP, %, and MAP@3, %) for the best combinations of
local descriptors (SIFTx3 channel-PCA, SURFx3 channel-PCA, ORBx3 typical-PCA,
BRISKx3 channel-PCA). (a) When features are extracted only from keyframes, (b)
when horizontal and vertical tomographs [93] are also examined.

MXinfAP (indexing) MAP@3 (annotation)

Descriptor (a) Keyframes (b) Keyframes+ Boost (%) w.r.t (a) Keyframes (b) Keyframes+ Boost (%) w.r.t
Tomographs (a) Tomographs (a)

SIFTx3 19.24 20.28 +5.4% 76.38 76.30 -0.1%
SURFx3 19.48 19.74 +1.3% 76.12 75.98 -0.2%
BRISKx3 16.47 19.08 +15.8% 74.58 75.26 +0.9%
ORBx3 17.48 19.24 +10.1% 74.64 75.16 +0.7%

SIFTx3+SURFx3+ORBx3 22.9 24.57 +7.3% 77.29 77.79 +0.7%

dependently trained classifiers (one per concept) and also understand the usefulness

of different feature types e.g., grayscale vs. color-based alternatives and binary vs.

non-binary descriptors, the influence of PCA on the local vectors, and the usefulness

of combining different feature types for the same concept. Finally, we show an altern-
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ative technique for annotating video shots with semantic concepts where instead of

extracting a representative keyframe per shot we extract a video tomograph per shot

[93] that is able to capture the motion information of it.

We start by assessing the performance of classifiers in relation to the indexing prob-

lem. In Table 3.1 we compare the performance of the original grayscale ORB descriptor

in concept-based video annotation, when used in conjunction with a binary codebook

(as in [43]) and a floating-point one (as in Section 3.1.1). In both cases, VLAD encoding

is employed. We can see that the binary codebook proves ineffective; the floating-point

one outperforms it by more than 129%. It should be noted that the MXinfAP of ran-

dom classification is <0.1%, which indicates the difficulty of the problem. Based on

this result, in all subsequent experiments with ORB, BRISK and their color extensions

a floating-point codebook was used.

In Table 3.2 we evaluate the different local descriptors and their color extensions

considered in this work, as well as combinations of them. First, comparing the original

ORB and BRISK descriptors with the non-binary ones (SIFT, SURF), we can see

that binary descriptors perform a bit worse than their non-binary counterparts but

still reasonably well. This satisfactory performance is achieved despite ORB, BRISK

and their extensions being much more compact than SIFT and SURF, as seen in the

second column of Table 3.2. Second, concerning the methodology for introducing color

information to local descriptors, we can see that the combination of the original SIFT

descriptor and the two known color SIFT variants that we examine (“All SIFT” in

Table 3.2) outperforms the original SIFT descriptor alone by 34.4% (35.3% for channel-

PCA). The similar combination of the SURF color variants with the original SURF

descriptor, is shown in Table 3.2 to outperform the original SURF by 32.2% (which

increases to 32.7% for channel-PCA), and even more pronounced improvements are

observed for ORB and BRISK. These results show that this relatively straightforward

way for introducing color information is in fact generally applicable to heterogeneous
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local descriptors.

We also compare the performance of each binary descriptor when it is reduced to

256 and to 80 dimensions. Reducing ORB and its color variants to 80 dimensions

and combining them performs better than reducing them to 256 dimensions (both

when applying typical- and channel-PCA). On the other hand, reducing BRISK and

its two color variants to 256 dimensions and combining them gave the best results (in

combination with channel-PCA).

To analyse the influence of PCA on the vectors of local color descriptors, in Table

3.2 we also compare the channel-PCA of Section 3.1.3 with the typical approach of

applying PCA directly on the entire color descriptor vector. In both cases PCA was

applied before the VLAD encoding, and in applying channel-PCA we kept the same

number of principal components from each color channel (e.g. for RGB-SIFT, which

is reduced to l′ = 80 using typical-PCA, we set p1 = p2 = 27 for the first two channels

and p3 = 26 for the third color channel; p1 + p2 + p3 = l′). According to the relative

improvement figures reported in the fifth column of Table 3.2 (i.e., for the indexing

problem), performing the proposed channel-PCA in most cases improves the concept

detection results, compared to the typical-PCA alternative, without introducing any

additional computational overhead.

According to Table 3.2, for each local descriptor, the combination with its color vari-

ants that presents the highest MXinfAP is the following: SIFTx3 with channel-PCA,

SURFx3 with channel-PCA, ORBx3 with typical-PCA, BRISKx3 with channel-PCA.

In Table 3.3 we further combine the above to examine how heterogeneous descriptors

would work in concert. We can see from the results that the performance increases

when pairs of local descriptors (including their color extensions) are combined (i.e.,

SIFTx3+SURFx3, SIFTx3+ORBx3, SIFTx3+BRISKx3 etc.), which shows a comple-

mentarity in the information that the different local descriptors capture. The per-

formance further increases when triplets of different descriptors are employed, with
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the best combination being SIFTx3+SURFx3+ORBx3. Combining all four considered

local descriptors and their color variants did not show in our experiments to further

improve the latter results.

In Table 3.4 we improve selected results of Tables 3.2 and 3.3 by additionally exploit-

ing the literature technique of video tomographs [93] (for simplicity, these tomographs

are described using only SIFT and its two color extensions). The results of Table 3.4

indicate that introducing temporal information (through tomographs) can give an ad-

ditional 7.3% relative improvement to the best results reported in Table 3.3 (MXinfAP

increased from 22.9 to 24.57).

Concerning the performance of independent classifiers with respect to the annota-

tion problem, for which results are also presented in Tables 3.1, 3.2, 3.3 and 3.4,

similar conclusions can be reached regarding the usefulness ORB and BRISK, and

how color information is introduced to SURF, ORB and BRISK. Concerning channel-

PCA, in this case it does not seem to affect the system’s performance: the differences

between classifiers that use the typical-PCA and channel-PCA are marginal. Another

important observation is that in all the above tables a significant improvement of the

MXinfAP (i.e., of the indexing problem results) does not lead to a correspondingly

significant improvement of results on the annotation problem.

3.3.2 Stacking for exploiting label relations

In this subsection, having a complete approach of independently trained concept clas-

sifiers we evaluate the refinement of their prediction scores using the proposed stacking

architecture, presented in Section 3.2 and other compared methods. The methods of

this subsection try to capture information that exists between the presence or absence

of pairs or groups of concepts in order to improve the prediction scores of the independ-

ently trained classifiers. This is useful for improving existing pre-trained concept-based

video annotation systems. However, more advanced methods such as deep networks
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Table 3.5: Performance, (MXinfAP (%), MAP@3 (%) and CPU time), for the methods
compared on the TRECVID 2013 dataset. The meta-learning feature space for the
second layer of the stacking architecture is constructed using detection scores for (i) 346
concepts and (ii) a reduced set of 60 concepts. CPU times refer to mean training (in
minutes) for all concepts, and application of the trained second-layer classifiers on one
shot of the test set (in milliseconds). Columns (a) and (c) show the results of the second
layer classifiers only. Columns (b) and (d) show the results after combining the output
of first and second layer classifiers, by means of arithmetic mean. “Baseline” denotes
the output of the independent concept classifiers that constitute the first layer of the
stacking architecture (i.e. the best classifiers reported in Table 3.4). In parenthesis we
show the relative improvement w.r.t. the baseline.

Method MXinfAP (indexing) MAP@3 (annotation)

2nd layer 1st and 2nd layer combination 2nd layer 1st and 2nd layer combination Mean Exec. Time
Training/Testing

(a) (b) (c) (d) (e)

Baseline 24.57 24.57 77.79 77.79 N/A

(i) Using the output of 346 concepts’ classifiers for meta-learning

DMF [95] 23.97 (-2.4%) 25.38 (+3.3%) 78.71 (+1.2%) 79.12 (+1.7%) 27.62/0.61
BSBRM [110] 24.7 (+0.5%) 24.95 (+1.5%) 79.31 (+2.0%) 79.06 (+1.6%) 1.02/0.08
MCF [122] 24.33 (-1.0%) 24.53 (-0.2%) 76.14 (-2.1%) 77.31 (-0.6%) 1140.98/0.22
CBCFpred [51] 24.32(-1.0%) 24.56 (0%) 78.95 (1.5%) 78.39 (0.8%) 26.84/0.27
CF [45] 23.34 (-5.0%) 25.27 (+2.8%) 78.13 (+0.4%) 78.81 (+1.3%) 55.24/1.22

P-CLR 14.01 (-43.0%) 24.52 (-0.2%) 79.17 (+1.8%) 79.26 (+1.9%) 49.40/9.85
P-LP 25.23 (+2.7%) 25.6 (+4.2%) 80.88 (+4.0%) 79.06 (+1.6%) 549.40/24.93
P-PPT 23.8 (-3.1%) 24.94 (+1.5%) 79.39 (+2.1%) 78.3 (+0.7%) 392.49/0.03
P-MLkNN 19.38 (-21.1%) 24.56 (0.0%) 77.55 (-0.3%) 79.64 (+2.4%) 607.40/273.80

(ii) Using the output of a subset of the 346 concepts’ classifiers (60 concepts) for meta-learning

DMF [95] 24.32 (-1.0%) 25.04 (+1.9%) 79.47 (+2.2%) 79.19 (+1.8%) 2.64/0.30
BSBRM [110] 24.71 (+0.6%) 24.96 (+1.6%) 79.82 (+2.6%) 79.26 (+1.9%) 0.65/0.08
MCF [122] 24.85 (+1.1%) 24.74 (+0.7%) 77.84 (+0.1%) 77.88 (+0.1%) 466.69/0.18
CBCFpred [51] 15.66 (-36.3%) 22.41 (-8.8%) 79.58 (+2.3%) 79.01 (+1.6%) 2.42/0.25
CF [45] 24.8 (+0.9%) 25.18 (+2.5%) 79.02 (+1.6%) 79.04 (+1.6%) 5.28/0,60

P-CLR 16.16 (-34.2%) 24.44 (-0.5%) 78.85 (+1.4%) 79.12 (+1.7%) 6.32/5.82
P-LP 23.85 (-2.9%) 25.28 (+2.9%) 80.22 (+3.1%) 79.04 (+1.6%) 208.9/41.43
P-PPT 24.12 (-1.8%) 24.96 (+1.6%) 79.6 (+2.3%) 78.45 (+0.8%) 90.13/0.31
P-MLkNN 22.21 (-9.6%) 24.94 (+1.5%) 77.68 (-0.1%) 79.42 (+2.1%) 167.40/72.54

Figure 3.2: Differences of selected second layer method from the baseline per concept
with respect to the indexing problem when a meta-learning set of 346 concepts is used.
Concepts ordered according to their frequency in the test set (in descending order).
Concepts on the far right side of the chart (most infrequent concepts) seem to be the
least affected, either positively or negatively, by the second-layer learning.
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that train a unique model that predicts all the concept in once and also exploit concept

relations are presented in Chapter 5.

In Table 3.5 we report results of the proposed stacking architecture and compare

with other methods that exploit label relations. As first layer of the stack we use the

best-performing independent classifiers of Table 3.4 (i.e., the last line of Table 3.4,

fusing keyframes and tomographs). We start the analysis with the upper part of Table

3.5, where we used the output of such classifiers for 346 concepts.

In relation to the indexing problem (Table 3.5:(a),(b)), we observe that the second

layer concept classifiers alone do not perform so well; in many cases they are not

able to outperform the independent first layer classifiers (baseline). However, when

the concept classifiers of the two layers are combined (Table 3.5:(b)), i.e. the second

layer concept detection scores are averaged with the initial scores of the first layer,

the accuracy of all the methods is improved. More specifically, P-LP outperforms all

the compared methods, reaching a MXinfAP of 25.6. LP considers each subset of

labels (label sets) presented in the training set as a class of a multi-class problem,

which seems to be helpful for the stacking architecture. PPT models label relations

on a similar manner, however, it prunes away label sets that occur less times than

a threshold. Modelling different kinds of relations (e.g. by using ML-kNN, CLR)

exhibits moderate to low performance. To investigate the statistical significance of the

difference of each method from the baseline we used a two-tailed pair-wise sign test

[12] and found that only differences between P-LP and the baseline are significant (at

1% significance level).

In relation to the annotation problem (Table 3.5:(c),(d)) the results show again the

effectiveness of the proposed stacking architecture when combined with P-LP, reaching

a MAP@3 of 80.88 and improving the baseline results by 4.0%. In this problem also

P-MLkNN presents good results, reaching top performance when combined with the

classifiers of the first layer. Also, for P-LP the relative boost of MXinfAP with respect
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to the baseline is of the same order of magnitude as the relative boost of MAP@3

(which, as we recall from Section 3.3.1, is not the case when examining independent

concept classifiers).

To assess the influence of the number of input classifiers in the second layer we also

performed experiments where the predictions of a reduced set of 60 concept classifiers

(the 60 concepts that NIST pre-selected for the TRECVID SIN 2013 task [82]) is used

for constructing the meta-level dataset (Table: 3.5:(ii)). Results show that usually

a larger input space (classifiers for 346 concepts instead of 60) is better, increasing

both MXinfAP and MAP@3. This outcome was expected as more classifiers/concepts

means more opportunity to find relations between concepts.

To investigate the importance of stacking-based methods separately for each concept,

we closely examine the four best-performing methods of column (b) in Table 3.5:(i).

Fig. 3.2 shows the difference of each method from the baseline. We observe that the

majority of concepts exhibit improved results when any of the second-layer methods is

used. The most concepts benefit from the use of P-LP (29 of the 38 concepts), while

the number of concepts that benefit from DMF, BSBRM and CF, compared to the

baseline, is 25, 21, and 25 respectively. One concept (6:animal) consistently presents

a great improvement when label relations are considered, while there are 3 concepts

(5:anchorperson, 59:hand and 100:running) that are negatively affected regardless of

the employed stacking method.

Finally, we take a look at the execution times that each method requires (Table

3.5:(e)). One could argue that the proposed architecture that uses multi-label learning

methods requires considerably more time than the typical BR-stacking one. However,

we should note here that extracting one model vector from one video shot, using

the first-layer classifiers for 346 concepts requires approximately 3.2 minutes in our

experiments, which is about three orders of magnitude slower than the slowest of the

second-layer methods. As a result of the inevitable computational complexity of the
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first layer of the stack, the execution time differences between all the second-layer

methods that are reported in Table 3.5 can be considered negligible. This is in sharp

contrast to building a multi-label classifier directly from the low-level visual features of

video shots, where the high requirements for memory space and computation time that

the latter methods exhibit make their application to our dataset practically infeasible.

In some preliminary experiments we performed PCA in order to reduce the feature

space and then applied such multi-label learning algorithms directly to the reduced low-

level visual features. However, this performed approximately two percentage points

worse compared to the proposed two-layer architecture.

Specifically, the computational complexity of BR, CLR, LP and PPT when used in

a single-layer architecture depends on the complexity of the base classifier, in our case

the LR, and on the parameters of the learning problem. Given that the training dataset

used here consists of more than 500.000 training examples, and each training example

(video shot) is represented by a 4000-element low-level feature vector for each visual

descriptor, the BR algorithm, which is the simplest one, would build N models for N

concepts; CLR, the next least complex algorithm, would build N BR-models and N ∗

(N−1)/2 one-against-one models. LP and PPT, would build a multi-class model, with

the number of classes being equal to the number of distinct label sets in the training set

(after pruning, in the case of PPT); this is in order of N2 in our dataset. Finally ML-

kNN would compare each training example with all other (500.000) available examples;

in all these cases, the 4000-element low-level feature vectors would be employed. Taking

into consideration the dimensionality of these feature vectors, using any such multi-

label learning method in a single-layer architecture would require several orders of

magnitude more computations compared to the BR alternative that we employ as

the first layer in our proposed stacking architecture. In addition to this, typically,

multi-label learning algorithms require the full training set to be loaded on memory at

once (e.g. [109]), which would be practically unfeasible in a single-layer setting, given

the dimensionality of the low-level feature vectors. We conclude that the two major
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obstacles of using multi-label classification algorithms in a one-layer architecture are

the high memory space and computation time requirements, and this finding further

stresses the merit of our proposed multi-label stacking architecture.

3.4 Conclusion

In this chapter we first dealt with video frame description and representation for

concept-based video annotation. We showed that two binary local descriptor (ORB,

BRISK) can perform reasonably well compared to their state-of-the-art non-binary

counterparts in the video semantic concept detection task. We subsequently showed

that a methodology previously used for defining two color variants of SIFT is a gen-

eric one that is also applicable to other binary and non-binary local descriptors. We

also proposed a different way of employing PCA for dimensionality reduction of color

descriptors that are used in combination with VLAD (channel-PCA). A second ma-

jor focus of this chapter was to take advantage of concept relations information for

building better classifiers. For this we proposed an alternative way of employing the

stacking architecture, using multi-label learning algorithms in the last level of the

stack. We showed that using the proposed architecture in combination with the Label

Powerset (LP) method represents an attractive solution. Furthermore, in this chapter

we compared video concept annotation approaches on two different experimental set-

tings: video indexing and annotation. In relation to this comparison, the message

that this chapter aims to pass is that the usual evaluation of video annotation results

in a retrieval-based problem setting is not sufficient for assessing the performance of

concept classifiers in the context of the annotation problem, and we experimentally

underline the importance of reporting evaluation results in both these directions. In

addition, for building a competitive system the most important is to use a combination

of many different types of visual features for the same concept i.e., binary, non-binary,

grayscale, color-based, and then further refine the output of such independently trained

classifiers with a stacking-based approach that exploits concept relations in the second
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layer. The dimension of local descriptors and the way that PCA will be applied to

color-extensions did not show important properties that someone should consider in

order to build a competitive system, so when building a new system one could simply

use what is already recommended in the bibliography.

Our video annotation architectures has been evaluated only on hand-crafted features

(i.e., local descriptors). However, introducing also DCNN-based features could further

improve the overall results of our system. With the goal of further increasing concept

annotation accuracy of our system, we are going to investigate the use of DCNN-based

features in combination with hand-crafted ones by developing more advanced classifier

combination techniques on the following chapter.
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In this chapter we present a cascade architecture that combines many pre-trained

concept classifiers on different visual features for the same concept. It has been

shown that combining many different keyframe representations (e.g. SIFT, RGB-

SIFT, DCNN-based) for the same concept, instead of using a single feature (e.g. only

SIFT), improves the video concept annotation accuracy. Motivated by this, we present

a cascade architecture (Fig. 4.1) suitable for combining many base classifiers that have

been trained for the same concept.

Our contributions are:

• A cascade architecture that combines many base classifiers in order to perform

fast and accurate video concept annotation.
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• An algorithm that uses a fixed ordering of cascade stages and a simple threshold-

ing strategy in order to instantiate the proposed cascade.

• A more advanced algorithm that sets the ordering of cascade stages (i.e. the

ordering of stage classifiers) and dynamically assigns thresholds to each stage in

order to instantiate the proposed cascade.

The chapter is organized as follows: Section 4.1 presents the proposed cascade ar-

chitecture, Section 4.2 introduces a simple algorithm that uses fixed stage ordering

and a simple thresholding strategy. Section 4.3 presents a more advanced algorithm

that sets the ordering of cascade stages and dynamically assigns thresholds to each

stage. Section 4.4 presents the experimental results and, finally, Section 4.5 presents

conclusions.

4.1 Cascade architecture overview

Figure 4.1 shows the proposed cascade architecture suitable for combining many base

classifiers that have been trained for the same concept [68]. Each stage j of the

cascade encapsulates a stage classifier Dj that either combines many base classifiers

(B1, B2, ..., Bfj ) that have been trained on different types of features or contains only

one base classifier (B1) that has been trained on a single type of features. In the first

case, the output of fj base classifiers is combined in order to return a single stage

output score Dj(I) =
1

fj

∑fj
i=1Bi(I), fj ≥ 1 in the [0,1] range. The second case is a

special case where fj = 1. Let I indicate an input keyframe; the classifier Dj+1 of the

cascade will be triggered for it only if the previous classifier does not reject the input

keyframe I. Each stage j of the cascade is associated with a rejection threshold, while

a stage classifier is said to reject an input keyframe if Dj(I) < θj . A rejection indicates

the classifier’s belief that the concept does not appear in the keyframe. Given a set of

pre-trained classifiers, we will present two different algorithm in order to instantiate
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Figure 4.1: Block diagram of a cascade architecture for one concept.

Figure 4.2: Threshold assignment of the proposed cascade architecture (Fig. 4.1) with
fixed ordering of stages.

the above cascade (i.e., set the ordering of cascade stages and assign thresholds to each

stage).

4.2 Simple cascades with fixed stage ordering

In this section we present an algorithm that uses a fixed ordering of cascade stages in

terms of classifier accuracy and a simple thresholding strategy that optimizes recall

in order to instantiate the proposed cascade of Fig. 4.1. Specifically, less accurate

classifiers are introduced on early stages (e.g. binary descriptors), while more accurate

classifiers are used on later stages (e.g. non-binary, DCNN-based). Subsequently, the
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threshold for each stage is chosen independent of the other stages.

Algorithm 1 presents the training and the classification process of this cascade in-

stantiation and Fig. 4.2 shows an illustrative example of the thresholding strategy

that is used to instantiate the thresholds for each stage. During the training phase,

the learning goal of the n-stage cascade is the calculation of n thresholds θj , one for

each stage (j = 1 : n). During the classification phase every next stage is triggered

only if the stage output score is higher than the rejection threshold; this guarantees

reduced number of classifier evaluations. The final score assigned to each image is the

average of all stage output scores of all the previous stages (Alg. 1 Classification: Step

3). As a result, even images that did not reach stage n have a confidence score.

In order to be effective, the proposed architecture needs to allow as many as possible

positive images to reach stage n. To achieve this, a rejection threshold should be

selected for each stage that maximizes the true positive rate. Minimizing the false

positive rate is not as important, because false positives that pass to next stages will

be processed by more accurate stages, which will correct any mistakes that the earlier

Algorithm 1 Algorithm for the training and classification process of a cascade with
fixed stages

Training
Input: Training set T= {xi, yi}Mi=1, yi ∈{±1}; n trained classifiers D = {D1, D2, ..., Dn}
ordered in terms of classifier accuracy
Output: A vector of thresholds θ = [θ1, θ2, ..., θn]>

for j = 1 to n do
1. Find the threshold θj , that optimizes the recall of Dj on T

end for
Classification
Input: Unlabeled sample = x′, n-stage trained cascade of D1, ..., Dn classifiers, and θ =
[θ1, θ2, ..., θn]> stage thresholds
Output: Concept confidence score Y
j = 1, Y = 0
while Dj(x

′) > θj and j ≤ n do
1. Y = Y +Dj(x

′)
2. j = j + 1

end while
3. Y = Y

j−1
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weaker stages have made. We automatically adjust the rejection threshold associated

with each stage using a simple threshold selection strategy, which selects a threshold on

the probability output of a classifier. More specifically, we apply each stage classifier

on a validation set, in order to collect probability output scores, and we select the score

that maximizes the required performance measure. Given that high true positive rate

is crucial for the success of the proposed cascade, the employed thresholding strategy

optimizes recall. Recall, which is a different name for the true positive rate, guarantees

that the detected rejection threshold will be as small as possible in order allow all

positive images to pass to the next stage.

4.3 Ordering of visual descriptors in a classifier cascade

In this section we present a more advanced algorithm that sets the ordering of cascade

stages (i.e. the ordering of stage classifiers) and assigns thresholds to each stage in

order to instantiate the proposed cascade of Fig. 4.1. In this case the ordering of stages

and the threshold assignment is performed towards the optimization of the complete

cascade and not the optimization of each stage separately from the other stages as

presented in Section 4.2.

4.3.1 Problem Definition and Search Space

Let D = {D1, D2, ..., Dn} be a set of n independently trained classifiers for a specific

concept. Let S = [s1, s2, ..., sn]> denote a vector of integer numbers in [−1, 0) ∪ [1, n].

Each number represents the index of a classifier from D and appears at most once.

The value -1 indicates that a classifier from D is omitted. Consequently, S expresses

the ordering of the pre-trained classifiers D1, ..., Dn. For example, given a pre-trained

set of 4 classifiers D = {D1, D2, D3, D4}, the solution S = [2, 1, 3,−1]> denotes the

cascade D2,1,3,−1 : D2 → D1 → D3, where stage classifier D4 is not used at all. In

addition, let θ = [θ1, θ2, ..., θn]> denote a vector of rejection thresholds for the solution

S and let T= {xi, yi}Mi=1, where yi ∈{±1}, be a finite set of annotated training samples
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4.3. Ordering of visual descriptors in a classifier cascade

Figure 4.3: Threshold assignment and stage ordering of the proposed cascade archi-
tecture (Fig. 4.1).

for the given concept (xi being the feature vectors, e.g., SIFT descriptors aggregated

using the VLAD encoding, and yi the ground-truth annotations). The problem we

aim to solve is finding the pair of the index sequence S (that leads to the cascade

DS : Ds1 → Ds2 → ... → Dsn) and the vector of thresholds θ = [θ?1, θ
?
2, ..., θ

?
n]> that

maximizes the expected ranking gain on the finite set T . The implied optimization

problem is given by the following equation:

(S?,θ?) = argmax
(S,θ)

{F (DS, T,θ)}, (4.1)

where the ranking function F (DS, T,θ) can be defined as the expected ranking gain

of DS on T , that is

FAP (DS, T,θ) = AP@k(rank(y), rank(DS(T,θ)),

where, rank(y) is the actual ranking of the samples in T (i.e., samples with yi = 1 are

ranked higher than samples with yi = −1), and rank(DS(T,θ)) the predicted ranking

60



4.3. Ordering of visual descriptors in a classifier cascade

of the samples of cascade DS,θ on T . AP@k is the average precision in the top k

samples.

Let l ≤ n refer to the number of variables sj ∈ S whose value is different from −1

(i.e., l is the number of cascade stages that solution S implies). The size of the search

space related to the ordering of cascade stages is
∑n

l=1

(
n
l

)
l! (i.e. all index sequences

for l = 1, all permutations of index sequences for l = 2, and similarly for all higher

values of l, up to l = n). Furthermore, Θ ⊂ Rn is the search space that consists of all

the possible rejection thresholds for each stage of the cascade. To collect candidate

threshold values, we apply each stage classifier on the finite set T . Each of the M

returned probability output scores constitutes a candidate threshold. The size of the

search space equals to Mn. Considering that this is a large search space, exhaustive

search cannot be practically applied. To solve the problem we propose the greedy

search algorithm described below.

4.3.2 Problem Solution

Our algorithm finds the final solution by sequentially replacing at each iteration a

simple solution (consisting of a cascade with a certain number of stages) with a more

complex one (consisting of a cascade with one additional stage). Algorithm 2 presents

the proposed greedy search algorithm that instantiates the proposed cascade (Fig.

4.1), i.e., sets the ordering of cascade stages and assign thresholds to each stage.

Fig. 4.3 presents graphically the algorithm’s steps. Let S = [s1, s2, ..., sn]>, and θ =

[θs1 , θs2 , ..., θsn ]>, represent a solution. Each variable s1, s2, ..., sn can take n possible

values, from 1 to n or the value -1 which indicates that a stage is omitted. Let as

remind that each number represents the index of a classifier from D and appears at

most once. Each variable θs1 , θs2 , ..., θsn can take M possible values. Initially we set,

sj = −1 for j = 1, ..., n and θ = [0, 0, ..., 0]> where |θ| = n. In the first step the

algorithm optimizes S with respect to sn (Alg. 2: States 1-3) in order to build the
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solution:

S0 = [−1,−1, ..., sn]>,θ0 = [0, 0, ..., 0]>,

where according to (4.1),

s?n = argmax
sn

{FAP (DS0 , T,θ0)}. (4.2)

and θ?0 = [0, 0, ..., θ?sn ], θ?sn = 0. This can be interpreted as the optimal solution of

l = 1, that maximizes (4.1). In simpler words, this is the optimal solution if we had

a single-stage cascade l = 1, so what the algorithm chooses her is the best performing

classifier from D. The selected classifier in this first step of our algorithm occupies the

last position of the cascade. Then we continue finding the best pair of stage-classifier

and threshold for the first to the last-1 position of the cascade. In iteration j, our

algorithm (Alg. 2: States 4-7) assumes that it has solution with l = j, that is:

S?j−1 = [s?1, s
?
2, ..., s

?
j−1,−1,−1, ..., s?n]>,

θ?j−1 = [θ?s1 , θ
?
s2 , ..., θ

?
sj−1

, 0, 0, ..., θ?sn ]>,

and finds the pair of Sj and θj in one step as follows. It optimizes the pair of S?j−1

and θ?j−1 with respect to sj and θj , respectively, in order to find the solution:

Sj = [s?1, s
?
2, ..., s

?
j−1, sj ,−1,−1, ..., s?n]>,

θj = [θ?s1 , θ
?
s2 , ..., θ

?
sj−1

, θsj , 0, 0..., θ
?
sn ]>.

According to (4.1):

(s?j , θ
?
sj ) = argmax

(sj ,θsj )
{FAP (DSj , T,θj)}. (4.3)

The algorithm finds the pair of (sj , θsj ) that optimizes (4.1). The complexity of this

calculation equals to (n − j) × M . This corresponds to n − j possible values that

variable sj can take in iteration j and M possible threshold rejection values that

variable θsj can take for every different instantiation of sj . So, in simpler words, in

any intermediate iteration of our algorithm we add a new stage classifier and also its
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Algorithm 2 Cascade stage ordering and threshold search

Input: Training set T= {xi, yi}Mi=1, yi ∈{±1}; n trained classifiers D = {D1, D2, ..., Dn}
Output: i) An index sequence S?, of the ordering of cascade stages: D?

S : D?
s1 → D?

s2 →
...→ D?

sn . ii) A vector of thresholds θ? = [θ?s1 , θ
?
s2 , ..., θ

?
sn ]>

Initialize: S = [s1, s2, ..., sn]>, sj = −1, j = 1, ..., n, θ = [0, 0, ..., 0]>, |θ| = n,
1. s?n = argmaxsn{FAP (DS0

, T,θ0)} (4.1),
S0 = [−1,−1, ..., sn]>, θ0 = [0, 0, .., 0]>

2. maxCost = FAP (DS?
0
, T,θ?0),

S?0 = [−1,−1, ..., s?n]>, θ?0 = [0, 0, ..., θ?sn ]>, θ?sn = 0
3. S? = S?0, θ? = θ?0
for j = 1 to n− 1 do

4. (s?j , θ
?
sj ) = argmax(sj ,θsj )

{FAP (DSj , T,θj)} (4.1),

Sj = [..., sj ,−1, ..., s?n]>, θj = [..., θsj , 0, ..., θ
?
sn ]>

5. cost = FAP (DS?
j
, T,θ?j ),

S?j = [..., s?j ,−1, ..., s?n]>, θ?j = [..., θ?sj , 0, ..., θ
?
sn ]>

if cost>maxCost then
6. maxCost = max(cost, maxCost)
7. S? = S?j , θ

? = θ?j
end if

end for

associated stage threshold by calculating which of the remaining stage classifiers, those

that have not been considered as part of the current cascade, optimizes the cascade

up to this iteration Finally, the optimal sequence S? equals to

S? = argmax
S∈{S?

0,S
?
1,...,S

?
n−1}
{FAP (DS, T,θ)}, (4.4)

which is the sequence that optimizes (4.1) within all the iterations of the algorithm

(Alg. 2: States 6-7). The optimal threshold vector θ? is the vector connected to the

optimal sequence S?. The algorithm terminates when the optimal stage classifier for

each position in S has been selected and consequently the optimal threshold per stage

has also been selected. In other words, when all of the stage classifiers have been either

used or omitted in each position of S and not any stage classifier has been remained to

be evaluated. Our algorithm focuses on the optimization of the complete cascade and

not the optimization of each stage separately from the other stages. This is expected to

give a better complete solution. Furthermore, the algorithm can be slightly modified

to make the search more efficient. For example, at each iteration we can keep the p

best solutions. However, this would increase the computational cost.
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4.4. Experimental study

4.4 Experimental study

Our experiments were performed on the TRECVID 2013 Semantic Indexing (SIN)

dataset [82] (for more details refer to Section 2.5). We evaluated our system on the

test set using the 38 concepts that were evaluated as part of the TRECVID 2013

SIN Task [82]. The video indexing problem was examined; that is, given a concept,

we measure how well the top retrieved video shots for this concept truly relate to it.

For experimenting with all methods, one keyframe was extracted for each video shot.

Regarding local feature extraction, we followed the experimental setup of [68]. More

specifically, we extracted nine local descriptors, presented in Table 4.1. These are

the best performing local descriptors of Section 3.3.1. All the local descriptors were

compacted using PCA and were subsequently aggregated using the VLAD encoding.

The VLAD vectors were reduced to 4000 dimensions. In addition, we used features

based on three different pre-trained convolutional neural networks: i) The 16-layer

deep ConvNet network provided by [94], ii) the 22-layer GoogLeNet network provided

by [106], and iii) the 8-layer CaffeNet network described in [57]. We applied each of

these networks on the TRECVID keyframes and we used as a feature i) the output

of the last hidden layer of ConvNet (fc7), which resulted to a 4096-element vector,

ii) the output of the last fully-connected layer of CaffeNet (fc8), which resulted to a

1000-element, iii) the output of the last fully-connected layer of GoogLeNet (loss3).

We refer to these features as CONV, CAFFE and GNET in the sequel, respectively.

To train our base classifiers, for each concept, a training set was assembled that

included all negative annotated training examples for the given concept and three

copies of each positive training sample (in order to account for the most often limited

number of the latter). Then the positive and negative ratio of training examples was

fixed by randomly rejecting any excess negative samples, to achieve an 1:6 ratio. This

is important for building a balanced classifier. Given the twelve different types of

feature vectors described above, for each concept we trained twelve different base-
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classifiers, using linear SVMs. These base classifiers are denoted as B1, B2, ..., Bfj in

our cascade presented in Section 4.1 and a stage classifier Dj can either combine many

base classifiers (B1, B2, ..., Bfj ) that have been trained on different types of features

or contains only one base classifier (B1) that has been trained on a single type of

features. In all cases, the final step of concept-based video annotation was to refine

the calculated detection scores by employing the re-ranking method proposed in [91].

We compared the proposed cascade (Fig. 4.1) instantiated with the dynamic al-

gorithm of Section 4.3 with five different ensemble combination approaches: i) Late-

fusion with arithmetic mean [102]. ii) The ensemble pruning method proposed by [93].

iii) The instantiation of the proposed cascade with the simple algorithm that assumes

fixed ordering of the stages in terms of classifier accuracy, presented in Section 4.2. We

refer to this method as cascade-thresholding. iv) A cascade with fixed ordering of the

stages in terms of classifier accuracy, and the offline dynamic programming algorithm

for threshold assignment proposed by [17]. In contrast to [17] that aims to improve

the overall classification speed, we optimize the overall detection performance of the

cascade in terms of AP. We refer to this method as cascade-dynamic in the sequel.

v) A boosting-based approach (i.e., the multi-modal sequential SVM [7]). We refer to

this method as AdaBoost. Both for the proposed and also for the cascade-dynamic

method we used quantization to ensure that the optimized cascade generalizes well to

unseen samples. In these lines, instead of searching for candidate thresholds on all the

M examples of a validation set, we sorted the score values in descending order and

split at every M/Q example (Q was set to 32). For all the methods, except for the

Late-fusion that does not require this, the training set was also used as the validation

set. With respect to the proposed method we calculated the AP for each candidate

cascade at three different levels (i.e., for k=50,100 and equal to the number of the

training samples per concept) and we averaged the results.
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Table 4.1: Performance (MXinfAP, %) for each of the stage classifiers that we used in
the experiments. For stage classifiers that are made of more than one base classifiers,
we report in parenthesis the MXinfAP for each of these base classifiers.

Stage classifier MXinfAP Base classifiers

ORBx3 17.91 (12.18,13.81,14.12) ORB, RGB-ORB, OpponentORB

SURFx3 18.68 (14.71,15.49,15.89) SURF, OpponentSURF, RGB-SURF

SIFTx3 20.23 (16.55,16.73,16.75) SIFT, OpponentSIFT, RGB-SIFT

CAFFE 19.80 Last fully-connected layer of CaffeNet

GNET 24.36 Last fully-connected layer of GoogLeNet

CONV 25.26 Second last fully-connected layer of ConvNet

Table 4.2: Performance (MXinfAP, %) for different classifier combination approaches.

M1 M2 M3 M4 M5 M6

RunID Stage classifiers
Late-
fusion
[102]

Ensemble
pruning
[93]

Cascade-
thresholding
(Section 4.2)

Cascade-
dynamic
[17]

AdaBoost
[7]

Cascade-
proposed
(Section 4.3)

R1
ORBx3;
SURFx3;CAFFE
SIFTx3

24.97 23.63 24.96 24.97 24.14 23.68

R2
ORBx3;
SURFx3;
SIFTx3;GNET

27.72 28.47 27.69 27.7 27.69 28.52

R3
ORBx3;
SURFx3;
SIFTx3;CONV

28.14 28.6 28.25 28.08 28.08 28.84

R4

ORBx3;
SURFx3;CAFFE;
SIFTx3;GNET;
CONV

29.84 29.74 29.79 29.84 29.70 29.96

4.4.1 Cascade architecture based on local and DCNN-based

descriptors

Tables 4.1 and 4.2 present the results of our experiments in terms of MXinfAP [130].

Table 4.1 presents the MXinfAP for the different types of features that were used by

the algorithms of this Section. Each line of this table was used as a cascade stage

for the cascade-based methods (Table 4.2: M3, M4, M6). Specifically, stages that

correspond to SIFT, SURF and ORB consist of three base classifiers (i.e. for the

grayscale descriptor and its two color variants), while the stages of DCNN features

(CAFFE, CONV, GNET) consist of one base classifier each. Let us remind here

that in our proposed cascade presented in Section 4.1 base classifiers are denoted as

B1, B2, ..., Bfj and stage classifiers are denoted as D1, D2, ..., Dn. For the late fusion
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methods (Table 4.2: M1, M2) and the boosting-based method (Table 4.2: M5), the

corresponding base classifiers per line of Table 4.1 were firstly combined by averaging

the classifier output scores and then the combined outputs of all lines were further

fused together. We adopted this grouping of similar base classifiers as this was shown

to improve the performance for all the methods in our experiments, increasing the

MXinfAP by ∼ 2%. For M2 we replaced the genetic algorithm with exhaustive search

(i.e. to evaluate all 26 − 1 possible classifier subsets) because this was more efficient

for the examined number of classifiers.

Table 4.2 presents the performance of the proposed cascade-based method and com-

pares it with other classifier combination methods. The second column shows the stage

classifiers that were considered in each run. Runs R1-R3 encapsulate nine types of fea-

tures from local descriptors and only one type of DCNN features; ultimately, R4 refers

to the systems that utilize six stage classifiers and all twelve types of features. The best

results were reached by the proposed cascade in R4, where it outperforms all the other

methods reaching a MXinfAP of 29.96 %. Compared to the ensemble pruning method

(M2) the results show that exploring the best ordering of visual descriptors on a cas-

cade architecture (M6), instead of just combining subsets of them (M2), can improve

the accuracy of video annotation. In comparison to the other cascade-based methods

(M3, M4) that utilize fixed stage orderings and different algorithms to assign the stage

thresholds, the proposed cascade (M6) also shows small improvements in MXinfAP.

These can be attributed to the fact that our method simultaneously searches both for

optimal stage ordering and threshold assignment. These MXinfAP improvements, of

the proposed cascade, although small, are accompanied by considerable improvements

in computational complexity, as discussed in the following section.

Computational Complexity

We continue the analysis of our results with respect to the computational complexity

of the different methods compared in Table 4.2 during the training and classification
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Table 4.3: Training complexity: (a) Required number of classifier combinations during
the training of different classifier combination approaches. (b) Required number of
classifiers to be retrained.

Required classifier
evaluations

Number of classifiers
to be retrained

M1 Late-fusion [102] - -
M2 Ensemble pruning [93] (2n − 1)M -
M3 Cascade-thresholding

∑n
j=0Mj , Mj ⊆Mj − 1 -

(Section 4.2)
M4 Cascade-dynamic [17] (n− 2)Q2 -
M5 AdaBoost [7] M(n(n+ 1)/2) n(n+ 1)/2
M6 Cascade-proposed Q(n(n+ 1)/2) -

(Section 4.3)

phase. Table 4.3 summarizes the computational complexity during the training phase.

Let us assume that n stage classifiers need to be learned, M training examples are

available for training the different methods and Q is the quantization value, where Q ≤

M . The late-fusion approach [102], which builds n models (one for each set of features),

is the simplest one. Cascade-thresholding (Section 4.2) follows, which evaluates n

cascade stages in order to calculate the appropriate thresholds per stage. Cascade-

dynamic [17] works in a similar fashion as the Cascade-thresholding, requiring a little

higher number of evaluations. Cascade-proposed is the next least complex algorithm,

requiring Q(n(n+1)/2) classifier evaluations. Ensemble pruning [93] follows, requiring

the evaluation of 2n − 1 classifier combinations. Finally, only AdaBoost requires the

retraining of different classifiers, which depends on the complexity of the base classifier,

in our case the SVM, making this method the computationally most expensive.

Table 4.4 presents the computational complexity of the proposed cascade-based

method for the classification phase, and compares it with other classifier combination

methods. We observe that the proposed algorithm reaches good accuracy while at

the same time is less computationally expensive than the other methods. Specifically,

the best overall accuracy reached in R4 achieved 37.8% and 32.6% relative decrease in

the amount of classifier evaluations compared to the late fusion alternative (Table 4.4:

R4-M1) and the cascade-dynamic alternative (Table 4.4: R4-M4), respectively, which
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Table 4.4: Relative amount of classifier evaluations (%) for different classifier combin-
ation approaches during the classification phase.

M1 M2 M3 M4 M5 M6

RunID Stage classifiers
Late-
fusion
[102]

Ensemble
pruning
[93]

Cascade-
thresholding
(Section 4.2)

Cascade-
dynamic
[17]

AdaBoost
[7]

Cascade-
proposed
(Section 4.3)

R1
ORBx3;
SURFx3;CAFFE
SIFTx3

83.33 55.92 66.17 77.69 83.33 53.50

R2
ORBx3;
SURFx3;
SIFTx3;GNET

83.33 55.70 66.98 77.95 83.33 52.74

R3
ORBx3;
SURFx3;
SIFTx3;CONV

83.33 57.68 66.98 78.54 83.33 54.32

R4

ORBx3;
SURFx3;CAFFE
SIFTx3;CONV;
GNET

100 66.67 74.94 92.38 100 62.24

Figure 4.4: Relative amount of classifier evaluations (%) per concept for R4 of Table
4.4.

are the two most accurate methods after the proposed-cascade. Figure 4.4 presents

the computational complexity of the proposed cascade-based method and compares it

with other classifier combination methods, separately for each target concept. We can

observe that the proposed method is computationally less expensive for 26 out of the

38 concepts.

To sum up, according to Tables 4.2 and 4.4, the three best-performing methods are

the proposed-cascade, the late fusion [102] and the cascade-dynamic [17]. With re-
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spect to runs R2-R3 the proposed-cascade outperforms the two other methods, while

it is always computationally more efficient during classification. When the number

of features/stage classifiers increases (R4) the proposed-cascade performs slightly bet-

ter in terms of MXinfAP compared to the late fusion and cascade-dynamic method,

achieving 0.4% relative improvement, for both cases. At the same time it is computa-

tionally less expensive during classification. Only for R1, which uses a small number

of stage classifiers, the proposed-cascade presents lower accuracy than the other two

best performing methods; however, it remains computationally less expensive. Fi-

nally, we should note that the training of the proposed cascade is computationally

more expensive than the training of the late fusion and the cascade-dynamic methods.

However, considering that training is performed offline only once, but classification

will be repeated many times for any new input video, the latter is more important

and this makes the reduction in the amount of classifier evaluations that is observed

in Table 4.4 for the proposed cascade very important. For example, the last con-

figuration of Table 4.4 (R4), would take approximately 10 hours for classifying the

TRECVID SIN 2013 test dataset when using late fusion, and approximately 6.2 hours

when the proposed cascade is used. This dataset consists of 200 hours of video, 2420

videos that have been decoded into 112677 keyframes, and also 38 concepts. So, this

means that the proposed cascade requires approximately 0.20 seconds/keyframe and

9.4 seconds/video. This is many times faster than real time.

4.5 Conclusions

In this chapter we presented a cascade architecture (Fig. 4.1) that can be served with

many different keyframe representations and we proposed two different algorithm in

order to instantiate it (i.e., set the ordering of cascade stages and assign thresholds to

each stage). Our first algorithm is a simple approach that uses fixed stage ordering

and static threshold assignment (Section 4.2). The stage classifiers are ranked from

the less accurate to the most accurate based on their retrieval accuracy in a validation
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set and each stage threshold is assigned to that value that lets all the keyframes that

depict the target concept to pass to the next stage (i.e., optimizing recall per stage). In

contrast, our second algorithm (Section 4.3) can optimally prune, order and combine

the cascade stages in order to perform fast and accurate video concept annotation.

This more advanced algorithm sets the ordering of cascade stages (i.e. the ordering

of stage classifiers) and assigns thresholds to each stage towards the optimization

of the complete cascade and not the optimization of each stage separately from the

other stages as our first simple approach does. For all of the compared methods

we observe that combining many classifiers trained on different features for the same

concept is able to improve concept annotation accuracy. The proposed more advanced

cascade-based approach, presented small improvements in terms of MXinfAP that are

accompanied by considerable improvements in computational complexity. As a result,

the proposed cascade could be useful for applications that require small detection

times, however, it does not really provide any significant improvement compared to

the simple late fusion scheme in terms of accuracy.

Another observation is that DCNN-based features significantly outperform the hand-

crafted local descriptors and this is clearly in accordance with the fact that local

descriptors have been completely replaced by DCNN-based features the last few years.

According to Table4.1, classifiers trained on DCNN-based features perform better than

the combinations of SIFT, SURF and ORB with their color variants. (With only one

exception for SIFTx3 that slightly outperforms CAFFE). It is also observed that each

of the base classifiers of these groups (e.g. RGB-SIFT) is rather weak, achieving

MXinfAP that ranges from 12.18 to 16.75 (depending on which descriptor is used).

In the next chapter we will focus on ways that existing deep architectures can be

improved, in order to achieve higher concept-based video annotation accuracy.
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Multi-task Learning and Structured

Outputs for DCNNs
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In this chapter we propose a DCNN (Deep Convolutional Neural Network) archi-

tecture that addresses the problem of video/image concept annotation by exploiting

concept relations at two different levels. At the first level, we build on ideas from multi-

task learning, and propose an approach to learn concept-specific representations that

are sparse, linear combinations of representations of latent concepts. By enforcing the

sharing of the latent concept representations, we exploit the implicit relations between

the target concepts. At a second level, we build on ideas from structured output learn-

ing, and propose the introduction, at training time, of a new cost term that explicitly

models the correlations between the concepts. By doing so, we explicitly model the

structure in the output space (i.e., the concept labels). Both of the above are imple-

mented using standard convolutional layers and are incorporated in a single DCNN
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architecture that can then be trained end-to-end with standard back-propagation 1.

As discussed in chapters 2 and 4, the typical pipeline of concept-based video annota-

tion systems that consists of hand-crafted feature extraction and training of concept

classifiers separately for each concept, has been replaced by deep learning architectures.

The dominant approach for doing this is training DCNNs in whose architectures the

concepts share features up to the very last layer, and then branch off to T different clas-

sification branches (using typically one layer), where T is the number of concepts [83].

However, in this way, the implicit feature-level relations between concepts, e.g. the

way in which concepts such as a car and motorcycle share lower-level features modeling

things like their wheels, are not directly considered. Also, in such architectures, the

relations or interdependencies of the concepts at a semantic level, i.e. the fact that two

specific concepts may often appear together or, inversely, the presence of the one may

exclude the other, are also not directly taken into consideration. While some methods

have been proposed for exploiting in a more elaborate way one of these two different

types of concept relations, there is no single method that jointly exploits visual- and

semantic-level concept relations in a unified DCNN architecture.

In this chapter we propose a DCNN architecture that captures therefore both im-

plicit and explicit concept relations, i.e., both visual-level and semantic-level concept

relations. First, implicit concept relations are modeled in a DCNN architecture that

learns T concept-specific feature vectors that are themselves linear combinations of

k < T latent concept feature vectors. In this way, in the shared representations (i.e.,

the latent concepts feature vectors), higher-level concepts may share visual features

- for example, concepts such as car, motorcycle, and airplane may share features en-

coding the wheels in their depiction [47]. This bears similarities to multi-task learning

(MTL) schemes, like GO-MTL [58] and the two-sided network proposed in [69] that

factorize the 2D weight matrix that encodes concept specific features. However, in

1Source code available at: https://github.com/markatopoulou/fvmtl-ccelc
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contrast to GO-MTL [58], in our work the factorization is achieved in two standard

convolutional network layers, and in contrast to [69], our network does not only verify

whether a certain concept that is given as input to the one side of the network is

present in the video/image that is given as input to the other side. Instead, it provides

scores for all concepts in the output, similar to classical multi-label DCNNs. Second,

explicit concept relations are introduced by a new cost term, implemented using a set

of standard CNN layers that penalize differences between the matrix encoding the cor-

relations among the ground-truth labels of the concepts, and the correlations between

the concept label predictions of our network. In this way, we introduce constraints on

the structure of the output space by utilizing the label correlation matrix - this will

explicitly capture, for example, the fact that daytime and nighttime are negatively

correlated concepts.

The main contributions of this chapter are:

• We propose a new approach, named FV-MTL (Shared Latent Feature Vectors

using Multi-task Learning), that learns shared feature vectors corresponding to

latent concepts, and expresses the concept-specific feature vectors as their sparse

linear combination. This corresponds to a factorization of the weight matrix and

is implemented using a set of standard CNN layers.

• We propose a new cost function, named CCE-LC (Cost Sigmoid Cross-entropy

with Label Constraint), which exploits a form of semantic relations, namely

correlations between pairs of concepts, in order to predict structured outputs.

This is again implemented using a set of standard CNN layers.

• We incorporate both of the above in a single DCNN architecture that is trained

end-to-end to solve the video/image concept annotation problem. We evaluate

the trained DCNN both as a standalone classifier, where the direct output of the

complete network is evaluated, and as feature generator, where SVM classifiers
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are trained on DCNN-generated features. In both cases we obtain state of the

art results in publicly available datasets and show the benefits of each of the

proposed contributions both alone and in tandem.

The remainder of the chapter is organized as follows: Section 5.1 presents the pro-

posed FV-MTL approach, the proposed CCE-LC cost function, and also the way that

FV-MTL can be used jointly with the CCE-LC cost in a unified DCNN architecture.

Section 5.2 reports our experiments, results, and comparisons, and finally, Section 5.3

summarizes our main conclusions.

5.1 Multi-task learning and structured output

predictions in deep networks

5.1.1 Problem formulation and method overview

We consider a set of concepts C = {c1, c2, ..., cT } and a multi-label training set P =

{(xi,yi) : xi ∈ X ,yi ∈ {0, 1}T×1, i = 1...N}, where xi is a 3 channel keyframe/image,

and yi is its ground-truth annotation. A video/image concept annotation system learns

T supervised learning tasks, one for each target concept cj . More specifically, it learns

a real-valued function f : X → Y, where Y = [0, 1]T×N could then be binarized (e.g.,

thresholded) in order to provide a hard classification result, if needed.

We propose a DCNN architecture that exploits both implicit visual-level and ex-

plicit semantic-level concept relations for video/image concept annotation by building

on ideas from MTL and structured output prediction, respectively. In Fig. 5.1 (i) we

illustrate a typical (Π + 1)-layer DCNN architecture, e.g., ResNet, that shares all the

layers but the last one (steps (a),(b))) [94, 46]; in Fig. 5.1 (ii) we illustrate how the

typical DCNN architecture of Fig. 5.1 (i) is extended by one FC extension layer, which

was shown to outperform the typical DCNN architecture when used in transfer learn-

ing problems [83] (steps (c)-(e)); and finally, in Fig. 5.1 (iii) we present the proposed
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Table 5.1: Definition of the symbols

Symbols Definitions

x A keyframe/image

y
A vector containing the ground-truth concept annotations
for a keyframe/image

N The number of training keyframes/images
c A concept
T The number of concepts, i.e., number of tasks
i Keyframe/image index, i.e., i = 1...N
j Concept/task index, i.e., j = 1...T

ŷ
A vector containing the concept prediction scores for a
keyframe/image

Lx Latent concept feature vectors of a keyframe/image

S
Concept-specific weight matrix, each column corresponds
to a task containing the coefficients of the linear
combination with Lx

LxS
Concept-specific feature vectors incorporating information
from k latent concept representations

U Concept-specific parameter matrix for the final classification
k The number of latent tasks
σ(.) The sigmoid function

Φ
The concept correlation matrix calculated
from the ground-truth annotated training set

m A cost vector utilized for data balancing
β Regularization parameter
z Normalization factor vector

DCNN architecture (steps (f)-(k)). In the next subsections we first introduce the new

FV-MTL approach for learning implicit visual-level concept relations; this is done us-

ing the network layers as shown in Fig. 5.1 in steps (f) to (i). Second, we introduce the

new CCE-LC cost function that learns explicit semantic-level concept relations, which

is done in step (k). CCE-LC predicts structured outputs by exploiting concept correl-

ations that we can acquire from a training dataset’s ground-truth annotations. The

source code of our method can be found at https://github.com/markatopoulou/fvmtl-

ccelc.

76



5.1. Multi-task learning and structured output predictions in deep networks

(g) Reshape to d×k matrix Lx 

d∙k1

d

k

Keyframe x

Shared feature vector 

(treated as a shared 
latent feature vector in 
subsequent steps) 

(h) Convolution 
with T filters 1×k: 
Parameters S of 
size k×T

d

(i) Convolution 
with T 
independent 
filters d×1: 
Parameters U of 
size d×T

u1 u2 uT

(j) Prediction scores per task 

iii) Proposed FV-MTL with CCE-LC cost

T concept-specific 
feature vectors LxS

Reshaped shared latent 
concept feature vectors Lx 
(corresponding to k latent 
concepts)

S
tru

ct
ur

ed
 o

ut
pu

t p
re

di
ct

io
n

M
ul

ti-
ta

sk
 le

ar
ni

ng

...

1×k

s2
s1

sT

d×1

T prediction 
scores: 

(f) FC layer: Parameters L of size d1×(d∙k)

A DCNN of Π layers, 
e.g., ResNet 

Feature vector yΠ 

(activations of the 
DCNN’s Π-th layer) 

Classification cost term 
(λ1: Eq. 2)

Matrix of the 
prediction squared 
differences: Q of 
size T×T

Ground-truth 
correlation 
matrix: Φ of 
size T×T

j

j’
(k) CCE-LC cost function

Total network cost (L: Eq. 5)

Scale with the cost weight vector mTx1

Auxiliary correlation 
cost term (λ2: Eq. 4)

(x) (x)Explanation of 
network layers

Explanation of processing steps in 
between network layers or other 
intermediate results

Legend:

Task-specific 
scores

T prediction 
scores: 

(b) Prediction 
scores per task 

Keyframe x 

A DCNN of Π layers, 
e.g., ResNet 

T1

Cost function 
(e.g., cross-entropy)

Total network cost

i) Typical DCNN 

ii) Typical DCNN extension strategy

Shared 
feature 
vector

Task-specific 
scores

T prediction 
scores: 

(c) FC layer: 
Parameters L 
of size d1×(d∙k)

(d) FC classi-
fication layer: 
Parameters W 

of size (d∙k)×T

(e) Prediction 
scores per task 

(a) FC classi-
fication layer: 
Parameters W 

of size (d∙k)×T

Keyframe x 

Cost function 
(e.g., cross-entropy)

T1

d∙k
1

A DCNN of Π layers, 
e.g., ResNet 

Total network cost

Figure 5.1: Sub-figure (i) presents the typical DCNN architecture (e.g., ResNet [46]).
Sharing all layers but the last one. Sub-figure (ii) presents the typical DCNN extension
strategy proposed in [83]. A shared fully-connected layer, a.k.a the extension layer,
and a concept-specific classification layer (a second fully-connected classification layer
that maps a common feature representation to concept categories, independently for
each concept), are placed on the top of a typical DCNN architecture (e.g., ResNet [46]).
Sub-figure (iii) presents the proposed FV-MTL with CCE-LC cost function: FV-MTL
is modeled as a stack of standard CNN layers, on the top of which the CCE-LC cost
function is placed, which consist of two terms i) the cross-entropy cost term and ii)
the auxiliary correlation cost term that integrates structural information. CCE-LC is
also modeled as a stack of standard CNN layers.
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Figure 5.2: Shared latent feature vectors using multi-task learning (FV-MTL).

Figure 5.3: MTL part of the proposed FV-MTL with CCE-LC cost function. (Part of
Fig. 5.1 (iii))

5.1.2 Shared latent feature vectors using multi-task learning

(FV-MTL)

In our approach, similarly to GO-MTL [58], we assume that the parameter vectors of

the tasks that present visual-level concept relations (i.e., defined in GO-MTL as be-
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longing to the same group) lie in a low-dimensional subspace, thus sharing information;

and, at the same time, dissimilar tasks (i.e., belonging to different groups) may also

partially overlap by having one or more bases in common. Allowing the sharing also

between dissimilar tasks is more natural than creating disjoint groups of task models.

In order to do so, see Fig. 5.2, we learn T concept-specific feature vectors that are

linear combinations of a small number of latent concept feature vectors that are them-

selves learned as well. Specifically, our approach uses a shared latent feature vector

Lx ∈ Rd×k for all task models, where the columns of Lx correspond to d-dimensional

feature representations of k latent tasks; and produces T different concept-specific fea-

ture vectors Lxsj , for j = 1...T , where each of them incorporates information from

relevant latent tasks, with sj ∈ Rk×1 being a task-specific weight vector that contains

the coefficients of the linear combination. Each linear combination is assumed to be

sparse in Lx, i.e, sj ’s are sparse vectors. In this way we assume that there exist a

small number of latent basis tasks and each concept-specific feature vector is a linear

combination of them. The overlap in the sparsity patterns of any two tasks, (i.e., how

much overlap is observed between two different task-specific weight vectors sj and sj′ ,

where j 6= j′) controls the amount of sharing between them.

The above can be implemented in a DCNN architecture by using the network layers

depicted in Fig. 5.1 in steps (f) to (i). This part of our architecture is also presented

in Fig. 5.3 in order to make it easier to the reader to follow this MTL part of our

approach. Specifically, an input training-set keyframe is processed by a typical DCNN

architecture (e.g., ResNet) and a fully-connected layer, to produce a shared represent-

ation of the keyframe across all of the tasks (Fig. 5.1, 5.3: step (f); this is the same

as step (c) in the typical DCNN extension architecture). Subsequently, the output

of the fully-connected layer is reshaped to the matrix Lx (Fig. 5.1, 5.3: step (g)).

Consequently, the reshaped layer outputs k feature vectors that correspond to k latent

concepts. Those representations are shared between the T concepts. The subsequent

layers calculate T concept-specific feature vectors, where T is the number of the con-
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cepts we are interested in detecting. Each of those feature vectors is a combination

of k latent concept feature vectors, with coefficients that are specific to the concept

in question. This is implemented as a 1D convolutional layer on the k feature masks

- in the case that the 1D convolutional layer implements a linear transform, i.e., we

do not use a non-linear activation function, then these two layers implement a feature

extraction scheme with a bilinear factorization of the weight matrix (Fig. 5.1, 5.3 step

(h)). Once T feature vectors are extracted, then an additional layer (Fig. 5.1, 5.3:

step (i)) transforms each of the T feature vectors into T concept annotation scores,

one for each of the concepts that we are set to recognize (Fig. 5.1, 5.3: step (j)). The

above process leads to a soft feature sharing, because the latent concept feature vectors

adjust how much information and across which tasks should be shared. By contrast,

both the typical DCNN and the DCNN extension architecture of [83] output a single

feature vector (Fig. 5.1: step (a) and (d), respectively) that is shared across all of the

target concepts and it is subsequently hard translated into concept annotation scores

independently for each concept (Fig. 5.1: step (b) and (e), respectively), as was also

discussed in Section 2.3.

Formally, the predicted score for the j-th task (concept) and the i-th datapoint

(keyframe/image) is given by:

ŷi,j = diag(u>j (Lxisj)), (5.1)

where Lxi is the output of the last fully-connected layer of the right part of Fig. 5.1, 5.3

(see step (f)), after reshaping the calculated vector of dimension 1× (d · k), in order

to have a matrix of d rows and k columns (Fig. 5.1, 5.3: step (g)). Specifically,

Lxi = reshape(α(L′y
(Π)
i + b)), where L ∈ Rd1×d·k the parameters of the last fully-

connected layer, y
(Π)
i ∈ Rd1×1 the output of the previous layer, and α the layer’s

activation functions, e.g. the ReLU. G = {g(π)}Ππ=1 is the set of network parameters

for the first Π layers. sj ,uj are the j-th columns of the parameter matrices S ∈ Rk×T

and U ∈ Rd×T , respectively. Each sj contains a task-specific weight vector of the
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coefficients of the linear combination with the shared latent feature vector Lxi . This

linear combination indicates for each concept which latent tasks describe it. Each uj

contains a concept-specific weight vector that transforms the concept-specific feature

vectors LxiS to concept scores.

Similarly to other DCNN works, we optimize the sigmoid cross entropy between the

predicted and the ground truth labels that is formed as:

λ1i,j = yi,jlogσ(ŷi,j) + (1− yi,j)log(1− σ(ŷi,j)), (5.2)

where σ(·) refers to the sigmoid function σ(x) = 1/(1+exp(−x)). That is, we optimize

Eq. 5.2 with respect to the parameters of the network. This is the cost of the classific-

ation cost term branch in Fig. 5.1 (iii) and differs from the GO-MTL cost function [58]

in the following ways:

First, while GO-MTL aims to approximate the parameter vector of the j-th observed

taskwj by a linear combination of a subset of latent taskswj = V sj , where V ∈ Rd×T

is a shared knowledge basis, our goal is given a keyframe/image i, to learn a new set

of concept-specific feature vectors Lxisj , one per task, that leverage shared properties

with all the other tasks. Our assumptions are similar, and we also use a predictor

matrix factorization approach LxiS, however, in a different way: In the proposed

approach, given an input keyframe/image our method transforms it into T different

concept-specific feature vectors that leverage information from a set of latent concept

feature vectors using a bilinear factorization of the weight matrix, as described above.

Subsequently, parameter matrix U is used in order to transform these concept-specific

representations to concept scores, i.e., U>(LxiS). Differently, GO-MTL factorizes the

2D weight matrix that encodes concept-specific features and directly transforms the

image/keyframe into concept scores.

Second, GO-MTL [58] uses iterative optimization and shallow linear models to learn

the parameters. For example, in each iteration of the GO-MTL [58] method all para-
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meters except for one are kept fixed and the function is optimized towards the non-fixed

parameter. In our case a complete DCNN architecture is used, which makes it easy

to calculate error differentials per layer w.r.t. its inputs, in order to back-propagate

them to previous layers.

Third, the GO-MTL cost function can be optimized with respect either to regression

loss (e.g., squared loss) or binary/multi-class classification loss (e.g., logistic loss), thus

ignoring the multi-label nature of the problem. In contrast, our method works for any

multi-label classification cost (e.g., the sigmoid cross entropy loss, presented above).

It should be noted here that we use the sigmoid function on each activation separately

and as a result the different outputs do not compete with each other (i.e., their sum

does not equal to 1).

To make clear the difference of the proposed architecture from the typical and exten-

sion DCNN architectures (Fig. 5.1 (i) and (ii), respectively) we set α(Ly
(Π)
i + b) = ∆

and rewrite Eq. 5.1 as: ŷi,j = diag(u>j (reshape(∆)sj)).

Similarly, the predicted score for the j-th task and i-th datapoint with respect to

the typical and extension DCNN architecture is given by: ŷTi,j = w>Tj (α(y
(Π)
i + b)),

and ŷEi,j = w>Ej ∆, respectively. The task-specific weight vector sj used in our method

contains the coefficients of the latent task feature vectors that will be combined with

respect to concept j. This is exactly the way that our method achieves a soft feature

sharing separately for each concept, i.e., by letting similar concepts to be described

by the same latent task feature vectors according to sj . In contrast, the other two

architectures of Fig. 5.1 do not use this linear combination of latent concept feature

vectors but let the second-last layer, a single feature vector, to be shared across all of

the concepts, thus, a hard translation into concept scores is performed independently

for each concept.
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Figure 5.4: Structured output prediction part of the proposed FV-MTL with CCE-LC
cost function. (Part of Fig. 5.1 (iii))

5.1.3 Label constraints for structured output prediction

Cross-entropy cost is not adequate for capturing semantic concept relations. In this

section we present an additional cost term that constitutes an effective way to in-

tegrate structural information. By structural information we refer to the inherently

available concept correlations in a given ground-truth annotated collection of training

videos/images. It should be noted that information from other external sources, such

as WordNet [37] or other ontologies, could also be used but we have not tried it in

our experiments. In order to consider this information we firstly calculate the correla-

tion matrix Φ ∈ [−1, 1]T×T from the ground-truth annotated data of the training set.

Each position of this matrix corresponds to the φ-correlation coefficient between two

concepts cj , cj′ calculated as:

φj′,j =
AD −BC

(A+B)(C +D)(A+ C)(B +D)
, (5.3)

where φj′,j refers to j′-element of the j-th row of the correlation matrix Φ that contains

the correlation between concepts cj′ and cj . A = p(cj ∧ cj′ |yi, i = 1...N), B = p(cj ∧

¬cj′ |yi, i = 1...N), C = p(¬cj ∧ cj′ |yi, i = 1...N), D = p(¬cj ∧ ¬cj′ |yi, i = 1...N),

where p(a|b) refers to the probability of a given b. The logical operator ∧ expresses

conjunction, e.g., cj ∧ cj′ , means that both cj and cj appear on the image/keyframe,
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according to its ground-truth annotations; and ¬ expresses negation, e.g., cj ∧ ¬cj′ ,

means that cj′ does not appear on the image/keyframe.

The proposed auxiliary concept correlation cost term that uses the correlation matrix

Φ is formed as follows:

λ2i,j =
1

T -1

T∑
j′=1,
j′ 6=j


φj′,j

∥∥σ(ŷi,j)− σ(ŷi,j′)
∥∥2 , if φj′,j ≥ 0

(−φj′,j)
∥∥σ(ŷi,j) + σ(ŷi,j′)

∥∥2 , otherwise

(5.4)

This term works as a label-based constraint and its role is to add a penalty to concepts

that are positively correlated but were assigned with different concept annotation

scores. Similarly, it adds a penalty to concepts that are negative-correlated but were

not assigned with opposite annotation scores. Contrarily, it does not add a penalty to

non-correlated concepts.

We can implement the λ2i,j correlation term (Eq. 5.4) using a set of standard CNN

layers, as presented on the top of the right part of Fig. 5.1. This part of our archi-

tecture is also presented in Fig. 5.4 in order to make it easier to the reader to follow

this structure output prediction part of our approach. One matrix layer encodes the

correlations between the ground-truth labels of the concepts (denoted as Φ), and the

other matrix layer contains the correlations between the concept label predictions of

our network in the form of squared differences (denoted as Q ∈ RT×T , i.e., the matrix

Q contains the differences of activations from the previous layer). Specifically, the

matrix Q gets multiplied, by element-wise multiplication, with the correlation matrix

Φ, i.e., Q ◦Φ. All the rows in the resulting T × T matrix are added, which leads to a

single row vector.
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5.1.4 FV-MTL with cost sigmoid cross-entropy with label

constraint (FV-MTL with CCE-LC)

The two cost terms presented in Sections 5.1.2 and 5.1.3, i.e., Eq. 5.2 and Eq. 5.4,

respectively, can be added in a single cost function that forms our total FV-MTL with

CCE-LC network’s cost as follows:

L =

N∑
i=1

1

T

T∑
j=1

mi,j

zj

(
λ1i,j + βλ2i,j

)
(5.5)

where parameter β controls the importance of concept correlation term.

In the above cost function we introduce the vector mi ∈ RT×1 that was originally

proposed by [11] to address the problem of class imbalance. Class imbalance is a

common problem in concept annotation, where for most datasets the distribution

between negative to positive examples per concept is highly imbalanced, with the

former outnumbering the latter in most cases. This results in bias of the classifier

towards the class (positive or negative) that contains the largest number of samples.

Consequently, we introduce the cost vector mi in our cost function in order to balance

the number of positive to negative examples per concept. Let us denote by pj the

number of the positive examples and nj the number of negative examples for the

concept cj . Then, the ratio rj of the negative to positive examples is computed as:

rj =


nj
pj
, if nj and pj 6= 0

1, otherwise

(5.6)

We create a weight vector mi = [mi,1, ...,mi,T ], for each training example i.e., for

i = 1...N . Where mi,j = 1 if yi,j = 0, mi,j = 0 if yi,j is unlabeled and mi,j = rj

if yi,j = 1, where rj is given by Eq. 5.6, and is different for each concept j. This

weight vector is multiplied element-wise with the cost function. By doing so we adjust

the misclassification cost of positive examples so as to prevent the biasing of the

network towards the negative class when only a few positive examples are available.

Furthermore, the normalization factor z ∈ RT×1 that is introduced in Eq. 5.5 is
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Table 5.2: Datasets and their statistics. Label cardinality (i.e., the average number of
concepts presented per image/video shot), concept cardinality (i.e., the average num-
ber of positive images/video shots per concept), and missing labels (i.e., the average
number of non-annotated labels per image/video shot) have been calculated on the
training set for each dataset.

Dataset
Training
Instances

Testing
Instances

Training set
Concepts

Test set
Concepts

Concept
Cardinality

Label
Cardinality

Missing
Labels

TRECVID-SIN 239495 112677 346 38 3206.3 2.2 294.6

PASCAL-VOC2012 5717 5823 20 20 416.6 1.5 0.0

PASCAL-VOC2007 5011 4952 20 20 379.2 1.4 0.0

NUS-WIDE 161789 107859 81 81 3066.1 1.9 0.0

calculated as: z =
∑N

i=1mi , where each position of this vector, i.e., zj , denotes

the sum of the weights for concept cj .

In our overall network architecture, an additional layer is used in order to imple-

ment the complete FV-MTL with CCE-LC cost function, adding the two cost terms

(λ1, λ2) and scaling their sum by the m (Eq., 5.5). In this way, the complete DCNN

architecture learns by considering both the actual ground-truth annotations and also

the concept correlations that can be inferred from it (Fig. 5.1: step (k)). In con-

trast, a typical DCNN architecture simply incorporates knowledge learned from each

individual ground-truth-annotated sample.

5.2 Experimental study

5.2.1 Datasets and experimental setup

Our experiments were performed on four large multi-label video/image classification

datasets, namely the TRECVID-SIN 2013 [82], the PASCAL-VOC 2007 [33], the

PASCAL-VOC 2012 [34], and the NUS-WIDE [21], presented in Table 5.2. For as-

sessing concept annotation performance, the indexing problem as defined in [82] was

evaluated, i.e., given a concept, the goal was to retrieve the 2000 video shots (or images,

depending on the dataset) that are mostly related with it. It should be noted here that

our scope was to evaluate our algorithm in as many datasets as possible. The problem

is that across existing large-scale video datasets (e.g., TRECVID MED, YouTube8m)
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only TRECVID SIN dataset provides multi-label ground-truth annotations in video-

shot level. The fact that we treat the problem as a still image annotation problem

(analysing each keyframe separately from the others), makes it easy to also evaluate

our method and all the compared methods on image annotation datasets. However,

once again we need datasets that provide multi-label ground-truth annotations, so

we couldn’t use ImageNet but NUS-WIDE and PASCAL-VOC are two benchmarking

datasets that cover the required properties and this is reason why we introduce them

in this Section.

The TRECVID-SIN 2013 [82] dataset consists of approximately 600 and 200 hours

of Internet archive videos for training and testing, respectively. The training set is

partially annotated with 346 semantic concepts. The test set is evaluated on 38 con-

cepts for which ground-truth annotations exist, i.e., a subset of the 346 concepts.

The PASCAL-VOC 2007 [33] dataset consists of 5011 training and validation images

and 4952 test images. The PASCAL-VOC 2012 [34] dataset consists of 22531 im-

ages divided into training, validation and test sets (5717, 5823 and 10991 images,

respectively). We used the training set to train the various methods of our study,

and evaluated them on the validation set. We did not use the original test set be-

cause ground-truth annotations are not publicly available for it (the evaluation of a

method on the test set is possible only through the evaluation server provided by the

PASCAL-VOC competition, submissions to which are restricted to two per week).

Both for the PASCAL-VOC 2007 and 2012 the images are annotated with 20 object

classes. The NUS-WIDE [21] dataset consists of 269648 Flickr images that have been

annotated with 81 semantic concepts. We used a subset of 161789 images for training

and the rest of them for testing. Since the available ground-truth annotations for each

of the four datasets are not adequate in number in order to train a deep network from

scratch without over-fitting its parameters, similarly to other studies [83], we used

transfer learning. I.e., we used as a starting point the ResNet-50 network [46], which

was originally trained on 1000 ImageNet categories [89], and fine-tuned its parameters
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towards each of these four datasets.

In order to evaluate the methods’ performance in the PASCAL-VOC 2007, 2012 and

NUS-WIDE datasets we used the mean average precision (MAP) measure, while, the

mean extended inferred average precision (MXinfAP) [130], which is an approximation

of MAP, was used for the TRECVID-SIN dataset. MXinfAP is suitable for the partial

ground-truth that accompanies the latter dataset.

5.2.2 Implementation details

For the rest of this section, when DCNN training takes place we did it by using the

pre-trained ResNet-50 ImageNet network [46] (removing the last classification layer)

and fine-tuning it on the target concept annotations. The network’s learning rate

and momentum was set to 10−5 and 0.9, respectively, whereas the mini-batch size

was restricted by our hardware resources and set to 32. Multi-label stratification was

used in order to ensure similar distribution of positive examples per class on each

batch. Stochastic gradient descent (SGD) was used as the network’s optimization

function. All networks were trained and implemented in Caffe [50]. Regarding the

proposed method, the new layers’ learning rate and momentum were set to 0.1 and

5 · 10−4, respectively, and β was set to 10. This value for β was chosen based on

preliminary experiments on the TRECVID SIN dataset (Fig., 5.5) that show that this is

an appropriate value, and also that the proposed approach is not sensitive to the value

of β. The diagonal of the Φ correlation matrix was set to zero. The model parameter

values with respect to the compared methods were either selected experimentally or

following the typical heuristics and strategies proposed in the corresponding works.

We conducted our experiments on two NVIDIA TitanX GPUs.

Each trained DCNN was used in two different ways to annotate new images/keyframes

with semantic concepts: a) As a standalone classifier, where each test image/keyframe

was forward-propagated by the network and the network’s output was used as the
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Figure 5.5: MXinfAP (%) for different values of β (Eq 5.5) for the proposed FV-MTL
with CCE-LC cost.

final class distribution that was assigned to the image/keyframe. b) As a feature

generator, where the training set was once again forward-propagated by the network,

and the values calculated in the last layer of the network were used as feature vectors

to subsequently train one Support Vector Machine (SVM) per concept. Then, each

test image was firstly forward-propagated by the DCNN to extract the features and

subsequently was served as input to the trained SVM classifiers.

5.2.3 Preliminary experiments - design choices

In Table 5.3 we examine the best way of using the proposed FV-MTL with CCE-

LC cost by comparing different parameters and intermediate versions of them. We

performed this set of experiments on the TRECVID-SIN dataset using as a starting

point the ResNet-50 network.

• As a baseline we used the extension strategy proposed in [83], i.e., the DCNN

architecture illustrated in Fig. 5.1 (ii). The results are presented in Table 5.3:

(d)). The dimensionality of the extension layer (Fig. 5.1: step (c)) is indicated

in Table 5.3: (a). Sigmoid cross-entropy was used as the network’s cost function.

• We compared the baseline approach with: i) The proposed CCE-LC cost when

used on the top of the baseline DCNN architecture, replacing the sigmoid cross-

entropy cost (Table 5.3: (e)), i.e., the FV-MTL method was ignored. ii) The

proposed FV-MTL with CCE-LC, where for the latter parameter β was set to
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0, i.e., the concept correlation term λ2 in Eq. 5.5 was ignored (Table 5.3: (f)).

iii) The complete proposed FV-MTL with CCE-LC cost for β = 10, i.e., both

cost terms, λ1 and λ2, were considered (Table 5.3: (g)). Each row of Table 5.3

corresponds to a different dimension of our FV-MTL first FC layer (shown in

Fig. 5.1: step (f)).

Each of the above DCNN architectures was fine-tuned on the 346 TRECVID-SIN

concepts using the TRECVID development dataset [82]. Using these results, we assess

i) how the number of the latent tasks k and feature dimensionality d affect FV-MTL

(Table 5.3: (a)-(c)), ii) the usefulness of exploiting semantic-level (explicit) concept

relations using the CCE-LC cost instead of the typical sigmoid cross-entropy cost, iii)

the usefulness of exploiting visual-level (implicit) concept relations using the proposed

FV-MTL with CCE-LC when ignoring the concept correlation term λ2 in Eq. 5.5

(Table 5.3: (f)), and iv) the usefulness of jointly exploiting visual-level and semantic-

level concept relations by adopting MTL and structured output prediction using the

proposed FV-MTL with CCE-LC cost when both cost terms (λ1, λ2 in Eq. 5.5) are

considered (Table 5.3: (g)). It should be noted that our proposed FV-MTL with

CCE-LC cost is most beneficial when used on datasets with non-exclusive labels (e.g.,

TRECVID SIN, PASCAL-VOC, NUS-WIDE) where CCE-LC can exploit and capture

concept correlations across the labels. Such concept correlations are missing in single-

label classification datasets such as ImageNet.

The choice of parameter k, which determines the number of latent tasks, is important

because it determines the amount of sharing between the tasks. If k is very high, the

tasks are not forced to share information with each other. On the other hand, if k is

very low, the latent space may shrink too much. In Table 5.3 we compare different

values for this parameter in order to see how it affects the proposed FV-MTL method

(Table 5.3: (f),(g)). We observe that the larger the value of k the better the accuracy of

the FV-MTL approach. According to the rest of the results, we observe that structured
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Table 5.3: Performance (MXinfAP, %) for different dimensions of the columns of the
Lx matrix (Fig. 5.1 step (e)) that we used in the experiments. For the methods (d), (e)
that do not use MTL, i.e., simply use one extension layer and one classification layer
on the top of it, col. c indicates the dimensionality of this extension layer. Extension
strategy [83] with sigmoid cross-entropy cost serves as our baseline.

Lx #columns
d× k

Latent
tasks k

Feature
dimension d

DCNN (extension
strategy [83]) with STL
sigmoid cross-entropy

Proposed
CCE-LC cost

Proposed FV-MTL
with CCE-LC

(β = 0)

Proposed FV-MTL
with CCE-LC

(β = 10)

(a) (b) (c) (d) (e) (f) (g)

128 4 32 23.18 28.76 30.01 29.43

256 4 64 26.91 30.84 30.50 31.38

512 8 64 28.44 30.95 30.37 31.92

1024 16 64 29.76 31.21 30.25 32.1

2048 32 64 30.95 32.44 31.60 32.83

4096 32 128 31.06 31.94 31.65 32.02

4096 64 64 31.06 31.94 31.71 32.07

output prediction using the proposed CCE-LC cost (Table 5.3:(e)), and MTL using the

proposed FV-MTL approach (Table 5.3: (f)) are two different ways to improve concept

annotation accuracy, as according to Table 5.3 the two methods always outperform

the baseline (Table 5.3:(d)). Jointly using MTL and structured output prediction, in a

DCNN architecture (Table 5.3: (g)) almost always outperforms all the other methods,

reaching the best result of 32.83% when parameter k equals to 32 and parameter d

equals to 64, i.e., the columns of Lx equal to 2048. One exception is seen in the

first row of Table 5.3, where we observe a small decrease in performance of β = 10

compared to β = 0. This is due to the low number of feature dimensions and latent

tasks, which are not sufficient for the CCE-LC term to capture well the correlation

information.

5.2.4 Visual-level and semantic-level concept relations of the

proposed method

According to Table 5.3, FV-MTL with CCE-LC for β = 10 with k equal to 32 and

d equal to 64 was the pair that reached the best overall MXinfAP. In this subsection

we will try to visualise what this model has learned with respect to visual-level and

semantic-level concept relations. As explained in 5.1.2, the overlap in the sparsity

patterns of any two tasks, (i.e., how much overlap is observed between two different

task-specific weight vectors sj and sj′ , where j 6= j′) controls the amount of sharing
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Figure 5.6: Recovered sparsity patterns (the matrix S) with FV-MTL with CCE-
LC for β = 10 with k equal to 32 and d equal to 64, for 15 selected concepts of the
TRECVID SIN dataset. Darker color indicates higher absolute value of the coefficient.
The horizontal axis depicts the 15 observed concepts and the vertical axis the 32 latent
tasks.

between them. Based on this in Fig. 5.6, we recovered sparsity patterns (the matrix

S) with FV-MTL with CCE-LC for 15 selected concepts of the TRECVID SIN dataset

(darker color indicates higher absolute value of the coefficient). The horizontal axis

depicts the 15 observed concepts and the vertical axis the latent tasks (k=32) in this

case. It is difficult to recover the grouping and overlap structure for the observed

concepts based on this figure but some interesting observations could be found. For

example, concepts with the same sparsity pattern can be considered as belonging to

the same group, while concepts with orthogonal sparsity patterns can be considered as

belonging to different groups. The 9th and 10th latent tasks are always active for the

transport-related concepts (e.g., airplane, car, bus, motorcycle) but they are inactive,
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Figure 5.7: Colormap of the phi-correlation coefficient calculated on the final prediction
scores of the proposed FV-MTL with CCE-LC for β = 10 with k equal to 32 and d
equal to 64, when applied on the TRECVID SIN 2013 test dataset for 20 selected
concepts.

at least one of the two, for any of the other concepts. Transport-related concepts can

be considered as belonging to the same group. In addition, those latent tasks that

are active for the concept “river” are always inactive for the concept “shopping-mall”

(except for the 11th latent task), which indicates that these are two disjoint groups.

Regarding the semantic-level concept relations, Fig. reffig:correlation presents the

color map of the phi-correlation coefficients, when calculated on the final prediction

scores of the model when applied on the TRECVID SIN 2013 test dataset for 20

selected concepts. We can see that the model has captured many pairs of positive cor-
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Table 5.4: MXinfAP (%) for 38 TRECVID-SIN and MAP (%) for 20 PASCAL-
VOC2007, 20 PASCAL-VOC2012 and 81 NUS-WIDE concepts, respectively, for differ-
ent STL, MTL, structured output and joint MTL and structured prediction methods
using the ImageNet ResNet-50 as the base network.

Category Method
TRECVID-SIN PASCAL-VOC2007 PASCAL-VOC2012 NUS-WIDE

(a) (b) (c) (d) (e) (f) (g) (h)
direct last layer direct last layer direct last layer direct last layer

i) Baseline
(without fine-tuning)

ResNet-50 [46] as
feature generator

29.21 29.78 83.90 83.76 82.98 83.04 51.30 56.20

ii) Typical DCNN
fine-tuning

ResNet-50 [46] 27.35 28.66 76.38 83.06 81.20 82.15 51.17 56.32

iii) DCNNs (extension
strategy [83]) with
STL cost functions

Hinge-loss 29.08 30.06 78.32 79.23 86.6 87.23 52.80 57.49
Sigmoid cross-entropy 31.06 32.2 80.74 84.97 86.94 86.80 53.94 57.20
CCE [11] 31.93 32.52 84.07 84.92 85.52 85.39 54.58 55.0
DWE [119] 28.03 29.17 77.25 78.12 85.14 86.00 51.10 56.08

iv) MTL for DCNNs
or shallow
linear models

AMTL [105] 29.36 30.15 83.15 84.37 83.17 84.05 53.40 54.22
CMTL [141] 29.89 30.45 83.44 84.42 83.55 84.60 51.80 52.40
2-sidedNN [127] 29.91 30.01 83.50 84.53 83.70 84.45 51.97 52.67

v) Structured
outputs

Stacking-LP [71] 30.01 31.05 84.68 85.12 84.25 85.30 51.96 52.98
LMGE [129] 30.17 31.24 84.32 85.02 84.52 85.64 53.07 54.62

vi) Joint MTL +
Structured outputs

ELLA LC [70] 28.15 29.09 81.98 82.84 82.15 83.17 52.40 54.68
DMTL LC [69] 28.23 31.71 82.01 84.07 82.23 84.30 52.35 54.70

vii) Proposed
CCE-LC cost 32.44 33.55 85.40 86.73 86.32 86.39 56.40 60.73
FV-MTL with
CCE-LC (β = 0)

31.60 32.15 82.21 86.96 87.10 88.51 55.45 54.69

FV-MTL with
CCE-LC (β = 10)

32.83 33.77 85.70 87.00 87.54 88.69 55.54 60.22

related concepts such as “adult”-“actor”, “adult”-“female human person” (green areas

of the figure), pairs of negative correlated concepts such as “animal”-“airplane land-

ing” (red areas of the figure), and non-correlated concepts such as “animal”-“actor”,

“anger”-“actor” (black areas of the figure). According to the observations recovered

from figures 5.6 and reffig:correlation we can see that our proposed method is able to

capture both visual-level and semantic-level concept relations.

5.2.5 Main findings - comparisons with related methods

Table 5.4 compares the proposed complete FV-MTL with CCE-LC (for β = 10) with

other related methods on the three datasets. In addition, we evaluate the two in-

termediate versions of our complete DCNN architecture that were also evaluated in

Table 5.3. I.e., a) Extension strategy [83] for DCNNs with the proposed CCE-LC

cost, i.e., the typical complete DCNN architecture illustrated in Fig. 5.1 replacing the

sigmoid cross-entropy cost with the proposed CCE-LC cost, and b) FV-MTL with

CCE-LC for β = 0. We set k equal to 32 and d equal to 64, which was the pair

that reached the best overall MXinfAP according to Table 5.3; similarly, in the case
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that CCE-LC is used alone the dimension of the extension layer was set to 2048. We

performed comparisons with the following methods:

• i) A baseline where we use the ResNet-50 pre-trained network as feature gen-

erator; one SVM classifier per concept was trained using as features either the

ResNet’s output or its last FC layer.

• ii) The typical DCNN architecture with sigmoid cross-entropy cost, i.e., the

ResNet-50 pre-trained network fine-tuned on each of the four datasets by simply

replacing the classification layer with a new layer with dimension that equals to

the number of concepts in the target domain as illustrated in Fig. 5.1 (i).

• iii) Extension strategy [83] for DCNNs, i.e., the DCNN architecture illustrated

in Fig. 5.1 (ii), and four different STL cost functions: a) hinge-loss, b) sigmoid

cross-entropy, c) cost sigmoid cross-entropy (CCE) [11], an extended version of

(b) that also addresses the class-imbalance problem, and d) dynamic weighted

euclidean loss (DEW) [119], an extension of the euclidean loss suitable for multi-

label classification giving a greater penalty to concept prediction scores that

have been ranked higher than the negative ground-truth annotated concepts.

The size of the extension layer was set to 4096, according to the findings of

Table 5.3. This category of methods uses exactly the same architecture with

the first intermediate version of our complete architecture (denoted as a) above),

with the difference that each of the above three cost functions is used instead of

the CCE-LC cost.

• iv) MTL, either as an integral part of DCNNs or for shallow linear models: a)

AMTL [105], b) CMTL [141] and c) the 2-sided NN that was proposed in [127]

for solving the GO-MTL method objective function [58].

• v) Structured output prediction: a) Stacking-LP [71], a two-layer stacking ar-

chitecture combined with the label power-set algorithm [71]. b) LMGE [129],
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an inner learning approach that uses the extracted features and exploits concept

correlations in a single step.

• vi) Methods jointly using MTL and structured output prediction: a) DMTL LC [69],

and b) ELLA LC [70].

We selected all the parameter values for these methods based on the training data,

and in accordance with the recommendations provided in the corresponding papers.

We apply and evaluate all the above methods in two different ways (in a direct ana-

logy to what is discussed in the last paragraph of Section 5.2.2); the specifics of these

depended on whether they are complete DCNN architectures or shallow models that

use pre-computed DCNN features. To the first category belong the following methods:

Typical DCNN fine-tuning (group (ii)), all methods of group (iii) above, the 2-sided

NN of [127], DMTL LC [69], the proposed FV-MTL with CCE-LC and the latter’s two

intermediate versions. These methods are used a) as standalone classifiers, where the

direct output of the complete network is evaluated (denoted as “direct” in Table 5.4),

b) as feature generators, where SVM classifiers are trained on DCNN-based features.

In the latter case, the output of the last layer of the complete trained network for

each method was used as a feature vector to train one SVM per concept (denoted as

“last layer” in Table 5.4). The remaining methods (that belong to the second cat-

egory), i.e., the baseline of group (i) above, AMTL [105], CMTL [141], ELLA LC [70],

Stacking-LP [71] and LMGE [129], use the pre-trained ResNet-50 network as feature

generator and the extracted features were used to train each of these methods. The

methods specifically used in our experiments a) the ResNet-50 output layer (denoted

as “direct” in Table 5.4), b) the ResNet-50 last FC layer (denoted as “last layer” in

Table 5.4).

Table 5.4 presents the results in terms of MXinfAP for the TRECVID-SIN dataset

and in terms of MAP for the PASCAL-VOC and NUS-WIDE datasets. With respect
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to the direct output (Table 5.4: (a),(c),(e),(g)) we observe that the two intermedi-

ate versions of our proposed method perform quite well, outperforming the compared

methods in the majority of cases. One exception is observed between the compared ex-

tension strategy [83] with sigmoid cross-entropy cost and the proposed FV-MTL with

CCE-LC for β = 0, where their difference is that the latter also incorporates MTL.

The results present fluctuations concerning which of the two methods performs better,

depending on the dataset. However, jointly combining MTL and structured output

prediction, using the proposed FV-MTL with CCE-LC for β = 10, further improves

the concept annotation accuracy and outperforms all the other previously-published

methods across all of the evaluated datasets, reaching the best overall concept annota-

tion accuracy of 32.83%, 85.70%, 87.54% and 55.54% for TRECVID-SIN, PASCAL-

VOC2007, PASCAL-VOC2012 and NUS-WIDE, respectively. The only exception

is the NUS-WIDE dataset, where our intermediate version of the typical extension

strategy with CCE-LC cost presents the best accuracy, and our complete architec-

ture reaches the second-best performance. It should be noted that we compare our

method with very recent methods; even our baseline is the ResNet-50 network that

was ranked first in the ImageNet 2016 competition and our method outperforms it by

approximately 3 to 4 percentage points. Similarly clear differences can be observed

with respect to all the other compared methods. Even compared to the most recent

DCNN with CCE cost [11], although the differences are smaller, we consistently out-

perform it by approximately 1 to 1.5 percentage points in all three datasets. Similar

conclusions can be reached regarding the results presented in columns (b), (d), (f) and

(h) of Table 5.4 that refers to the second way of applying the compared methods, as

described in the beginning of this section. We also present in Fig. 5.8 the XinfAP per

task regarding the proposed FV-MTL with CCE-LC and the other two best performing

methods (i.e., DCNN with sigmoid cross-entropy cost and DCNN with CCE cost [11])

in the TRECVID-SIN dataset. Besides our overall best result (33.77% - Table 5.4),

our method performs better than these other two well-performing methods for 25 out
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of the 38 evaluated concepts.

To investigate the statistical significance of the difference of the results of each

method from the best performing method, i.e., the proposed FV-MTL, we used a

paired t-test as suggested by [12]. We found that differences between the proposed

FV-MTL with CCE-LC (β = 10) and all other previously-published methods that we

compare with, per column of Table 5.4, are significant at 5% significance level.

Finally, we assess the robustness of the the proposed and the other two best per-

forming methods (i.e., Sigmoid cross-entropy, and CCE costs [83], [11]) with respect to

the TRECVID SIN dataset according to Table 5.4 , when they are trained on smaller

datasets for the same number of concepts. Specifically, Fig. 5.9 presents the reduction

of MXinfAP when each of the compared methods is trained a) on only half of the

keyframes of TRECVID SIN training set and b) on only a quarter of the keyframes

for the same dataset, compared to the complete training set. We observe that the

DCNN with sigmoid cross-entropy cost is affected by the smaller training datasets,

as according to Fig. 5.9 its concept annotation accuracy is reduced by approximately

6 and 3 percentage points when the half and quarter training sets are used instead

of the complete training set, respectively. In contrast, the proposed FV-MTL with

CCE-LC for β = 10 and its intermediate versions, i.e., CCE-LC cost and FV-MTL

with CCE-LC for β = 0, are robust to smaller training sets, exhibiting only a small

reduction of MXinfAP compared to the case of using the complete training set.

5.2.6 Execution times

We continue the analysis of our results by assessing the execution times during the

training and classification phase of the different methods compared in this study.

Table 5.5 summarizes the required execution time in hours for the proposed FV-MTL

with CCE-LC for β = 10 and its two intermediate versions, defined in earlier sections,

and also compares it with the rest of the methods. We observe that the proposed
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Figure 5.8: XinfAP (vertical axis) per concept (the horisontal axis shows the concept
ID, according to TRECVID SIN [82]), for the top-3 best performing methods with
respect to the TRECVID SIN dataset according to Table 5.4.

Figure 5.9: Reduction of MXinfAP when only a half and a quarter of the training
samples respectively are used instead of the complete training set, for the top-5 best
performing methods with respect to the TRECVID SIN dataset according to Table 5.4.
Lower values are better.

method is not considerably more computationally expensive than DCNN methods that

use STL cost functions. Training of the baseline, AMTL and CMTL methods that use

pre-computed features is a bit faster than the proposed method and its intermediate

versions; however, all these previous methods achieved lower accuracy than the pro-

posed one, according to Table 5.4. During classification all the compared methods are

executed on very similar time, except for the 2-sidedNN, Stacking-LP and DMTL LC

that are significantly slower. We conclude that our proposed FV-MTL with CCE-LC

is faster than other MTL methods for DCNNs (2-sidedNN, DMTL LC) both during
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Table 5.5: Mean execution training/testing times in hours.

Category Method
TRECVID-SIN
training testing

i) Baseline
(without fine-tuning)

ResNet-50 [46] as
feature generator

14.25 2.45

ii) Typical DCNN
fine-tuning

ResNet-50 [46] 17.33 2.47

iii) DCNNs (extension
strategy [83]) with
STL cost functions

Hinge-loss 17.35 2.48
Sigmoid cross-
entropy

17.45 2.47

CCE [11] 17.75 2.50
DWE [119] 17.85 2.50

iv) MTL for DCNNs
or shallow
linear models

AMTL [105] 14.75 2.50
CMTL [141] 14.85 2.58
2-sidedNN [127] 48.12 6.80

v) Structured
outputs

Stacking-LP [71] 23.15 4.51
LMGE [129] 15.17 2.68

vi) Joint MTL +
Structured outputs

ELLA LC [70] 20.97 2.53
DMTL LC [69] 49.27 6.84

vii) Proposed
CCE-LC cost 17.75 2.67
FV-MTL with
CCE-LC (β = 0)

17.53 3.17

FV-MTL with
CCE-LC (β = 10)

18.15 3.10

training and classification, and also comparable in execution time with the second-

best performing method of Table 5.4, i.e., DCNN with CCE cost [11]. In addition,

the proposed FV-MTL with CCE-LC, although a little bit slower, is comparable in

execution time with the other most commonly used baselines (without fine-tuning,

with fine-tuning and addition of one or more layers), and at the same time presents

significant improvement in concept-based annotation accuracy.

5.2.7 Data augmentation and comparisons

Recently, improved accuracy has been achieved by image augmentations, i.e., feed-

ing the DCNN with more than one image crops of the same image. For example, in

the PASCAL-VOC2007 dataset this was shown to improve the MAP by 6 percentage

points [121]. In Table 5.6 we compare our proposed method with these approaches,
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Table 5.6: MAP (%) for 20 PASCAL-VOC2007 concepts for methods that use image
augmentations.

Method PASCAL-VOC2007

Simonyan et al. [94] 89.3

Wei et al. [121] 90.9

Wang et al. [119] 92.5

FV-MTL with CCE-LC (β = 10)
+ augmentations

93.9

however, due to the fact that this is a very computational intensive and time consum-

ing process we present results only on the PASCAL-VOC2007 dataset. The following

three SoA PASCAL-VOC2007 methods were selected: (i) Simonyan et al. [94]: A

pre-trained ImageNet DCNN is applied on multiple image representations that are ex-

tracted and aggregated across multiple locations and scales. The resulting aggregated

image descriptor (using the second-last layer as image feature representation) is used to

train a linear SVM per concept.(ii) Wei et al. [121]: Many object segment hypotheses

are given as input to a shared DCNN that has been pre-trained in the ImageNet data-

set. The shared network’s output is aggregated with max pooling in order to return a

single multi-label prediction. The shared network is fine-tuned on the PASCAL-VOC

dataset. (iii) Wang et al. [119]: Similar to Wei et al. [121], a pre-trained ImageNet

DCNN is fine-tuned using many object segment hypotheses. Stochastic scaling and

cropping over images is performed in this case in order to choose the most useful image

crops. Furthermore, the DWE loss function, also presented in Table 5.4, is used on

the top of the network. Finally, the proposed architecture (FV-MTL with CCE-LC

(β = 10)) is fine-tuned on 15 random image object segment proposals per image ex-

tracted using the selective search method [115]. Similarly to [121] and [119] a shared

DCNN is used to aggregate the probability scores w.r.t. each proposal using max-

pooling. We observe that the proposed method once again outperforms all the other

compared methods and also that image augmentation is a robust way of increasing

the accuracy of our network by approximately 7 percentage points.
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5.3 Conclusion

In this chapter we proposed a DCNN architecture that jointly exploits implicit visual-

level and explicit semantic-level concept relations. We built on ideas from MTL and

structured output prediction in order to develop the FV-MTL approach for learning

shared latent representations across the different tasks, and the new CCE-LC cost

function that exploits the correlations between the concepts, respectively. The integ-

rated DCNN architecture that emerges from combining these approaches was shown

to improve concept annotation accuracy and outperformed the related state-of-the-art

methods, without introducing any significant computational overhead. Specifically,

it outperforms methods that do not impose any concept relations from 1.5% to 5%,

methods that solely introduce either MTL or structured outputs by ∼2%, and finally

methods that jointly consider MTL and structured outputs by ∼4%, in all three evalu-

ated datasets. Finally, introducing image augmentations during the network’s training

was successfully applied to our method, further increasing its accuracy by ∼7%.
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Ad-hoc video search (AVS) [5] is the problem of retrieving, from a large video

collection, video fragments (e.g., video shots) that are related to a given query. A

query refers to an ad-hoc textual description, e.g. “Find shots of a woman wearing

glasses”. This problem is closely related to the simpler problem of concept-based

video search, examined in the previous chapters, where a set of video shots is retrieved

given a specific keyword (a.k.a. concept). In the latter case supervised learning (e.g.,

DCNNs) can be used to annotate the video shots with concepts. However, AVS is more

complicated because an input query could be any complex or also abstract textual

description for which annotated data does not exist; as a result, unsupervised learning

and natural language processing (NLP) need to be employed for generating a common

representation of queries and videos.
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In this chapter we present a fully-automatic AVS method that uses solely a natural-

language textual query to retrieve related video shots from a video collection. The

novelty of our method is:

• An efficient algorithm that performs a number of NLP and semantic analysis

steps to translate a query into a set of predefined concepts.

• A new approach that projects the concept-based video shot and query repres-

entations into a common semantic embedding space.

• The combination of two different measures for the distance between the video

shots and the target query, calculated on the concept-based and the semantic

embedding representations respectively.

Our AVS method was evaluated on the TRECVID AVS 2016 [5] and Video Search

2008 [30] datasets. The results show that it outperforms other state-of-the-art ap-

proaches.

6.1 Concept-based query and keyframe representations

Assume that a text query Q and a set of keyframes X = {xi}Ni=1 are given, where one

keyframe xi ∈ Rd has been extracted from each shot of the videos in a collection. Our

goal is to retrieve for queryQ the k keyframes from X that are most closely related to it.

The overview of our method is presented in Fig. 6.1. Given a predefined concept pool

C = {cj}Tj=1, our method represents both the keyframes (Fig. 6.1 (a)) and the query

(Fig. 6.1 (c)) as vectors of related concepts. Then, these concept-based representations

are projected into a common semantic embedding space (Fig. 6.1 (b)). Finally, the

k-nearest keyframe representations to the query representation are retrieved using a

distance measure.
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Figure 6.1: Overview of the proposed ad-hoc video search method.

6.1.1 Concept-based Keyframe Representation

Our method initially applies a DCNN D : Rd ⇒ [0, 1]T , that has been trained on the

T concepts, in every keyframe xi in order to calculate concept-based representations

Y = {yi}Ni=1. The DCNN’s output for an input keyframe x, D(x) = y, is a vector

y ∈ [0, 1]T that indicates the model’s belief that each of the concepts in C appears in

the input keyframe.

6.1.2 Concept-based Query Representation

A set of NLP steps is applied in order to translate the query in a set of related concepts

chosen from the concept set C. Let CQ = {cQ1 , c
Q
2 , ..., c

Q
T ′} ⊆ C be the set of concepts

selected for the query Q, where T ′ ≤ T , and q = [q1, q2, ..., qT ′ ] ∈ [0, 1]T
′

a vector that

indicates the degree to which each of the selected concepts in CQ is related to Q. The

following steps focus on analysing different parts of the query, instead of treating it

as a set of single terms (words), which results to more distinctive retrieved concepts.

Starting from the empty set CQ = ∅ we calculate CQ and q as follows:

Step one: The complete textual description of Q is compared with each concept

in C for “semantic relatedness” in terms of the Explicit Semantic Analysis (ESA)

measure (which returns a real number in the [0,1] interval) [41]. Those concepts that

are semantically close to the query, i.e., the concepts that have ESA value higher than

a threshold θ, are added in the set CQ. If at least one concept is selected in this way,
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we assume that the entire query is very well described by these concepts and the query

processing stops; otherwise, we continue with step two.

Step two: This step searches if any of the concepts in our concept pool appears in

any part of the test query by string matching. Some (complex) concepts may describe

part of the query quite well, but appear in a way that is difficult to detect them due to

the subsequent linguistic analysis, e.g., breaking down the query to sub-queries. Any

concept that appears in the query is added in the set CQ and the query processing

continues in step three.

Step three: Queries are complex sentences, but this step automatically transforms

them into elementary sub-queries; i.e., meaningful smaller phrases or terms that are

included in the original query. For example, the query “Find shots of one or more

people at train station platform” is split into the following four sub-queries: “people”,

“train station platform”, “persons” and “train station”. Then, each of the sub-queries

is translated to a concept vector. To identify the sub-queries, part-of-speech tag-

ging and stop-word removal are used together with a task-specific set of NLP rules.

For example, extracting “Noun - Verb - Noun” sequences and considering them as

sub-queries. The motivation is that such a triad is much more characteristic of the

original query than any of the single terms alone. Then, the ESA measure is calculated

between each sub-query and each of the concepts in the pool. Concepts that exceed

the threshold θ are added in the set CQ. In the case that for all of the sub-queries at

least one concept has been selected, the query processing stops. If for a subset of the

sub-queries no concepts have been selected then these sub-queries are propagated to

step four. Finally, if for all the sub-queries no concepts have been selected then the

test query and all of the sub-queries are propagated to step five.

Step four: For a subset of the sub-queries no concepts were selected. For each of

these sub-queries, the concept with the highest value of ESA measure is selected in

this step (i.e., threshold θ is ignored), and then the query processing stops.
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Step five: For some queries, the processing step up to step three did not select

any concepts. In this case, the query and the sub-queries are served as input to the

zero-example event detection system of [111], which returns a ranked list of the most

relevant concepts in accordance with relatedness scores, based on the ESA measure.

In [111] the concepts are enriched with additional information captured by Google or

Wikipedia, which virtually augments the concept pool. Then, the query processing

has been completed.

Finally, the query’s concept vector q ∈ [0, 1]T
′

is formed by the corresponding scores

of the selected concepts. If a concept has been selected in steps 1, 3, 4 or 5 then the

corresponding vector’s element is assigned with the relatedness score (calculated using

the ESA measure); if it has been selected in step 2, it is set equal to 1. A complete

example of applying the above steps in a query is presented in Table 6.1.

6.2 Semantic embeddings for query and keyframe

representations

Given a semantic embedding space S ⊆ Rm, we project both the concept-based key-

frame (Section 6.1.1) and the query (Section 6.1.2) representations into S, in order to

directly measure their distance. Initially, we calculate the set SC = {s(c1), s(c2), ..., s(cT )}

of the semantic embedding vectors s(cj) ∈ S associated with each concept in C, by

applying a pre-trained word2vec model [75].

Then, similarly to [79], our method calculates a keyframe semantic embedding vector

f(x) ∈ Rm, as the combination of the semantic embeddings of the R-top retrieved con-

cepts for x, according to the concept-based keyframe representation y ∈ Y, weighted

by their corresponding concept detection scores:

f(x; y, SC) =
1

Z

R∑
r=1

yg(x,r) · s(cg(x,r)), (6.1)

where g(x, r) denotes the r-th most likely concept label for the input keyframe x
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according to y, Z =
∑R

r=1 yg(x,r) the normalization term and R a parameter that

considers the maximum number of embeddings that will be combined.

Subsequently, we calculate the semantic embedding vector associated with the concept-

based query representation by extending the above process as follows. Given the set of

concepts CQ assigned to this query and the corresponding ESA scores q, described in

Section 6.1.2, our method calculates the semantic embedding vector h(Q) for query Q,

as the combination of the semantic embeddings of the concepts assigned to this query

weighted by their corresponding ESA score:

h(Q; q, SC) =
1

Z ′

T ′∑
l=1

ql · s(cQl ), (6.2)

where Z ′ =
∑T ′

l=1 ql the normalization term.

After the concept-based keyframe representations have been calculated (Section 6.1.1),

our system measures their distance from the concept-based query representation (Sec-

tion 6.1.2), e.g. by calculating the euclidean distance. Similarly, the distance between

the semantic embedding keyframe representations and the semantic embedding query

representation is calculated and the two distance vectors are combined in terms of

arithmetic mean. The k keyframes with the smallest distance are then retrieved.

6.3 Experimental study

6.3.1 Dataset and Experimental Setup

Our experiments were performed on the TRECVID AVS 2016 (AVS16) [5] and Video

Search 2008 (VS08) [30] datasets that consist of approx. 600 and 100 hours of internet

archive videos and are evaluated on 30 and 48 queries, respectively. Ground-truth

annotated training data does not exist for these queries. The AVS problem as defined

in TRECVID [5] was examined, i.e., given a query, the goal was to retrieve the 1000

video shots that are mostly related with it. We analyze our results in terms of mean

extended inferred average precision (MXinfAP), which is an approximation of the
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Table 6.1: Concept-based query representation example.

Query: Find shots of three people or more walking or bicycling
on a bridge during daytime

Sub-queries CQ (θ = 0.8) q

Step 1 Find shots of...daytime ∅ -

Step 2
three people or more walking or

bicycling on a bridge during daytime
three or more people 1.0

Step 3

people walking walking 1.0

bicycling
bicycle-built-for-two

bicycles
bicycling

1.0
0.85
0.84

bridge
suspension bridge

bridges
1.0
0.84

Sub-query daytime also found but
without corresponding concepts with ESA distance > θ

Step 4 daytime daytime outdoor 0.74

mean average precision suitable for the partial ground-truth that accompanies the

TRECVID dataset [130].

In order to create the concept-based keyframe representations, each keyframe was

automatically annotated with 1000 ImageNet [89] and 346 TRECVID SIN [6] con-

cepts. Regarding the 1000 ImageNet concepts, we applied five pre-trained ImageNet

DCNNs on the keyframes and fused their outputs in terms of arithmetic mean to ob-

tain a single score for each of the 1000 concepts. Regarding the 346 SIN concepts,

we fine-tuned (FT) two pre-trained ImageNet DCNNs on the 346 concepts using the

TRECVID AVS development dataset [5] and the extension strategy proposed in [83],

where one extension layer with 4096 neurons was used. We used the last layer of each

of these networks to train support vector machine classifiers (SVMs) for each concept.

The keyframe score per concept was the average of the probabilities that the two SVM

models returned. Each keyframe was finally represented by a 1345-element vector by

simply concatenating the score vectors for the ImageNet and the TRECVID SIN con-

cepts. The threshold θ for deciding whether to select a concept or not in our method
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(Section 6.1.2) was set to 0.8. The pre-trained Google News Corpus word2vec model 1

was used for calculating the semantic embeddings of the concept-based representa-

tions (Section 6.2). In our preliminary experiments, small fluctuations of the overall

accuracy were observed for different values of parameter R (Eq. 6.1), consequently

and based on these experiments we set it to 70. The Euclidean distance was used for

measuring the distance between the keyframe and query representations.

6.3.2 Experimental Results

Table 6.2: Experiments (MXInfAP (%)) on the AVS16 dataset to investigate the
parameters of the proposed method.

All
Excluding one step:

Steps step 1 step 2 step 3 step 4 step 5

(a) Concept-based
representation
(Sections 6.1.1 + 6.1.2)

5.94 5.92 5.74 3.96 5.95 4.53

(b) Semantic
embeddings
(Section 6.2)

3.77 3.86 2.98 3.22 3.75 2.80

(c) Combination 6.35 6.51 5.77 4.37 6.27 4.99

Table 6.3: MXInfAP (%) for different compared AVS methods.

Methods AVS16 VS08

(a) Literature methods

Tzelepis et al. [111] 4.16 8.27

Ueki et al. [112] 5.65 7.24

Norouzi et al. [79] 3.14 7.30

(b) Top-4 TRECVID finalists

Top-1 Le et al. [29] 5.4 Tang et al. 6.7

Top-2 Markat. et al. [67] 5.1 Snoek al. 5.4

Top-3 Liang et al. [31] 4.0 Ngo et al. 4.2

Top-4 Zhangy et al. [133] 3.8 Mei et al. 4.1

Proposed 6.35 9.11

Table 6.2 presents the results of some intermediate experiments that we performed

in order to investigate the performance when: i) the transformation to the semantic

embedding space is ignored (Table 6.2 (a)), ii) the final distance from the query is

1https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz
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calculated solely in the semantic embedding space (Table 6.2 (b)), iii) the complete

process is used, i.e., the final distance is the combination of the distances calculated in

i) and ii) (Table 6.2 (c)). For each of the above cases, we also examine the usefulness

of each of the steps presented in Section 6.1.2, i.e., each column shows the correspond-

ing results when one of the steps is excluded. According to Table 6.2 we conclude

as follows: Concept-based representations perform very well on the AVS problem,

outperforming the semantic embedding representations. However, combining the two

types of representations further improves our method, reaching a MXInfAP of 6.35

%. It seems that these types of representations are complementary. This makes sense

because on the one hand, we have a representation that is based on the presence of

each unique concept both in the query and in the keyframe and on the other hand, we

have a representation that is based on semantic embeddings of each presented concept,

which is a more rich information that has been calculated using an external trained

model (word2vec).

Almost all of the steps one to five of Section 6.1.2 contribute to the improved trans-

lation of the query into related concepts; excluding one step reduces the performance

in most cases. One exception is observed w.r.t. step 1. However, excluding step 1

and evaluating w.r.t. the VS08 dataset slightly reduced the accuracy, which lead us

to propose the use of all five steps. Furthermore, step 4 only marginally affects the

performance; thus, sub-queries that do not present high semantic relatedness with any

of the concepts could be ignored when for at least one sub-query one or more concepts

have been selected. Similar conclusions were reached on the VS08 dataset.

Table 6.3 compares the proposed method with 11 different literature ones. The

top part of the table refers to those methods that were re-implemented in order to

be adapted for this problem and datasets, whereas in the lower part we introduce

the results of the top-four finalists in the AVS16 and the VS08 tasks. Especially

for comparing with [112] we used a modified version that does not require the user’s
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involvement. In this modified version, we automatically split the query into several

keywords after removing the stop-words, and for each keyword the concept with the

highest ESA value is selected. Overall, as we can see in Table 3, for both datasets our

proposed method performs very well compared to the other methods. Specifically, it

outperforms all the compared methods, achieving an MXinfAP of 6.35% and 9.11%

for AVS16 and VS08, respectively.

6.4 Conclusion

In this chapter we presented a fully-automatic method that combines video concept

detection and query analysis for ad-hoc video search. Extensive experiments reveal

the usefulness of the proposed NLP steps for translating a textual query to related

predefined concepts and the usefulness of combining different types of keyframe-query

representations (e.g., concept-based representations, semantic embeddings). Our pro-

posed method was compared with many state-of-the-art AVS systems and was shown

to outperform all fully-automatic entries to the TRECVID AVS 2016 benchmarking

activity.
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Chapter 7

Conclusions and Future Work

Contents

7.1 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Plans for future extensions . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Discussion and conclusions

In this thesis we studied the problem of video annotation and retrieval; our overall

aim was to develop and evaluate machine learning architectures that optimally solve

this problem. For the most of this thesis we focused on annotating video content with

a set of pre-defined concept labels. Then, we further used this information in order

to deal with the related and more challenging problem of annotating video content

with ad-hoc queries. While significant progress has been made during the last years

in the task of video annotation and retrieval, we found that it remains a difficult and

challenging task. This is due to the diversity in form and appearance exhibited by the

majority of semantic concepts and the difficulty to express them using a finite number

of representations. The system needs to learn hundreds or thousands of concepts that

belong to different categories (e.g. landscapes, faces, actions). As a result, generality

is an important property that a concept-based video annotation system should present

in order to generalize its performance across many different heterogeneous concepts.
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Computational requirements is another major challenge. The large number of concepts

that a video annotation system should learn is computationally expensive requiring

lightweight and fast methods. Finally, the most of the existing architectures focus on

the above two aspects, discriminative feature extraction and computational complexity,

and ignore other important aspects that can lead to robust systems such as the multi-

label nature of the problem and the implicit or explicit concept relations in feature-

or semantic-level, respectively. In this thesis we showed that various crucial factors in

video annotation should jointly been consider in order to develop a unique accurate

architecture. We presented different machine learning architectures that solve this

problem focusing on the most emerging directions of the video annotation and retrieval

problem: feature extraction, classifier combination and concept relation modeling.

One of the best strategies for building accurate and discriminative concept classifiers

is to extract a big pool of visual features, train concept classifiers separately for each

of the extracted features and combine the classifier’s outputs for the same concept.

After studying the related work we could see that there is a lot of research towards fea-

ture extraction, with many authors proposing local descriptors and variations of them.

However, the use of binary descriptors in the specific problem had not been examined

before. Since binary descriptors are more compact and faster to be computed, which

could be useful to applications with space and time constraints (e.g., mobile applica-

tions), we examined the use of them in the video annotation problem. We proposed

color extensions of them and we also presented general strategies of the way that di-

mensionality reduction can be applied to binary and non-binary local descriptors. Our

experimental results revealed that the propose binary local descriptors can perform

reasonably well compared to their non-binary counterparts and also that the binary

and non-binary local descriptors are complementary to each other because when they

are combined for the same concept, then concept annotation accuracy can be further

improved. In our first attempt of building a machine learning architecture for solv-

ing the concept-based annotation problem we trained concept classifiers independently
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from each other (i.e., for each concept a set of classifiers for this concept are trained on

different visual features ignoring the way that the training of the other concepts takes

place). However, concepts in a video keyframe do not appear in isolation from each

other. For example, the concepts sun and sky are expected to appear on the same

keyframe for the most of the cases. Having this in mind we extended our video annota-

tion architecture with a second layer that refines the scores returned by the first-layer

independently trained concept classifiers, using a multi-label learning algorithm. This

was referred as a two-layer stacking architecture and presented an 1.5% improvement

in terms of MXinfAP compared to the first-layer independently trained concept classi-

fiers. Related stacking architectures perform a second round of binary classifications,

independently for each concept, this time taking as input all the concept scores of the

first layer, thus implicitly consider concept relations. Our novelty is that we use a

multi-label learning algorithm that exploits sets of concept labels that occur together

in the spatial domain, thus explicitly considers such concept relations.

As discussed above one of our outcomes after evaluating our first video annotation

architectures was that combining many different keyframe representations (e.g. SIFT,

RGB-SIFT, ORB, BRISK) for the same concept, instead of using a single feature (e.g.

only SIFT), improves the concept-based video annotation accuracy. Motivated by this,

we tried to find a more accurate and fast way to combine the different base classifiers

for each concept. Based on the general field of ensemble learning that has been applied

to other machine learning problems, we know that classifier fusion techniques such as

cascade architectures can impose discriminative power to the ensemble and improve

the overall classification accuracy. For this reason we proposed a cascade architecture

that can be served with many different base classifiers and optimally prune, order and

combine them in order to perform fast and accurate concept-based video annotation.

We assumed that different concepts require a different subset of the extracted features

and also an optimal ordering of them could avoid querying classifiers that are not able

to further improve the annotation accuracy. Although cascade architectures have been
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proposed for other computer vision learning problems, e.g., object detection, we were

the first to present a suitable variation for the specific problem of concept-based video

annotation. The proposed cascade is computationally more efficient during classifica-

tion without presenting significant improvements in terms of MXinfAP compared to

other classifier combination approaches. As a result, the proposed cascade could be

useful for applications that require small detection time, however it does not really

provide any significant improvement compared to the simple late fusion scheme in

terms of accuracy.

All of our attempts up to this point were towards improving machine learning archi-

tectures that are based on the training of independent concept classifiers (i.e., trained

either on hand-crafted features or DCNN-based features). However, the great success

of deep learning techniques also in the field of video annotation resulted to the gradual

replacement of such independently trained classifiers with end-to-end deep learning ar-

chitectures. Towards this direction we reviewed the related work and the limitations of

the proposed methods and we developed our next machine learning architecture that is

based on such deep learning techniques, referring to it as FV-MTL with CCE-LC. We

have noted that in a typical DCNN architecture that is used for concept-based video

annotation, the concepts share features up to the very last layer, and then branch off to

T different classification branches (using typically one layer), where T is the number of

concepts. However, in this way, the implicit feature-level relations between concepts,

e.g. the way in which concepts such as a car and motorcycle share lower-level features

modeling things like their wheels, are not directly considered. Also, in such architec-

tures, the relations or interdependencies of the concepts at a semantic level, i.e. the

fact that two specific concepts may often appear together or, inversely, the presence of

the one may exclude the other, are also not directly taken into consideration. While

some methods have been proposed for exploiting in a more elaborate way one of these

two different types of concept relations, there is no single method that jointly exploits

visual- and semantic-level concept relations in a unified DCNN architecture. Thus,
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we propose a DCNN architecture that captures therefore both implicit and explicit

concept relations, i.e., both visual-level and semantic-level concept relations. So in our

proposed method, first, implicit concept relations are modeled in a DCNN architecture

that learns T concept-specific feature vectors that are themselves linear combinations

of k < T latent concept feature vectors. In this way, in the shared representations (i.e.,

the latent concepts feature vectors), higher-level concepts may share visual features -

for example, concepts such as car, motorcycle, and airplane may share features encod-

ing the wheels in their depiction. Second, explicit concept relations are introduced by

a new cost term, implemented using a set of standard CNN layers that penalize dif-

ferences between the matrix encoding the correlations among the ground-truth labels

of the concepts, and the correlations between the concept label predictions of our net-

work. In this way, we introduced constraints on the structure of the output space by

utilizing the label correlation matrix - this would explicitly capture, for example, the

fact that daytime and nighttime are negatively correlated concepts. The experimental

results were very promising revealing the usefulness of jointly exploiting visual-level

and semantic-level concept relations. Our method reached a MXinfAP of 33.77% in

the TRECVID SIN 2013 dataset, which is a state-of-the-art outcome for this dataset.

Finally, in the last main chapter of the thesis we dealed with the problem of ad-hoc

video search (AVS). AVS is the problem of retrieving, from a large video collection,

video fragments (e.g., video shots) that are related to a given query. A query refers

to an ad-hoc textual description, e.g. “Find shots of a woman wearing glasses”. This

is a very new task that was proposed as a TRECVID benchmarking activity in 2016

replacing the TRECVID SIN task. Our first attempt of developing a fully automatic

ad-hoc video search system seems very promising reaching the best position in the

TRECVID AVS 2016 competition, however the overall results are still very low from

considering the solution as satisfactory. Our method similar to related approaches uses

a pre-defined set of concepts and converts both the query and each video keyframe to

concept-based vectors using these concepts. Our novelties are the specific NLP steps
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that are used to extract useful keywords and sub-sequences from the target query and

a new approach that projects the video shots and the query representations into a

common semantic embedding space using their word2vec representations.

Overall, the lessons we learned in this thesis is that a good video annotation and

retrieval architecture can be developed by carefully taking into account many different

directions such as feature extraction, classifier combination, feature-level and semantic-

level concept relations. Deep learning architectures are the best way of jointly consider-

ing all these, with our proposed FV-MTL with CCE-LC deep architecture consistently

outperforming other related state-of-the-art ones. Other attempts that we made to-

wards improving older video annotation architectures that are based on independently

trained concept classifiers although presented promising results, their accuracy could

not reach the overall accuracy of deep learning approaches. Improving computational

complexity was not our focus, however, all of the proposed architectures were designed

in such a way that does not introduce any significant computational overhead. Also,

our cascade architecture was computationally more efficient during classification com-

pared to other methods making it useful for applications that require small concept

annotation time.

7.2 Plans for future extensions

Although concept-based video annotation accuracy has reached satisfactory perform-

ance for facilitating specific applications such as concept-based video retrieval, the

problem cannot be considered as solved. A possible direction of our future work could

be the extension of our FV-MTL approach in order to support incremental learning.

Incremental learning in DCNN training is indeed a very active field. Traditional DCNN

training/finetuning is computationally expensive; once a new concept category arrives

the full network should be fine-tuned/trained from scratch. As a result, a possible

future direction could be to extend the proposed FV-MTL with CCE-LC architec-
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ture, with an incremental learning methodology that will allow a trained network to

be extended with new classes, without losing the ability of recognising the previously

learned classes. Other possible future directions could focus on the improvement of the

way that implicit concept relations are captured by the proposed FV-MTL method,

for example, by introducing a non-linear function, and also the exploitation of differ-

ent constraints in order to capture different kinds of semantic relations (i.e., not only

correlations) between concepts.

Another direction that consists an active field of our future research is the improve-

ment of our ad-hoc video search architecture. As far as, this problem is very new and

has been investigated very little there are a lot of future plans towards this direction.

For example, to investigate the use of different types of semantic embeddings, and also

the influence of the different keyframe-query representations on different types of quer-

ies, i.e., in which cases concept-based representations outperform semantic embeddings

or the combination of both. To increase the predefined pool of concepts and search

for better word-to-vector representations but also sentence-to-vector representations.

Existing word2vec neural network models could be extended with MTL and struc-

tured output learning techniques, similar to what we have used in our FV-MTL with

CCE-LC method, in order to improve their discriminative power. Finally, keyword

extraction methods could be examined and improved in order to better analyse the

textual query into meaningful keywords.
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sification via calibrated label ranking. Machine Learning, 73(2):133–153, 2008.

40, 43

[41] E. Gabrilovich and S. Markovitch. Computing semantic relatedness using

wikipedia-based explicit semantic analysis. In IJCAI, volume 7, pages 1606–

1611, 2007. 105

[42] N. Gkalelis, V. Mezaris, and I. Kompatsiaris. A joint content-event model for

event-centric multimedia indexing. In IEEE Int. Conf. on Semantic Computing

(ICSC), pages 79–84, 2010. 1

124



Bibliography

[43] C. Grana, D. Borghesani, M. Manfredi, and R. Cucchiara. A fast approach for

integrating orb descriptors in the bag of words model. In SPIE, volume 8667,

pages 866709–866709–8, 2013. xv, 13, 35, 44, 46

[44] Y. Guangnan, Y. L., and H. X. et al. Eventnet: A large scale structured concept

library for complex event detection in video. In ACM MM, 2015. 27

[45] A. Hamadi, P. Mulhem, and G. Quenot. Conceptual feedback for semantic mul-

timedia indexing. In 11th Int. Workshop on Content-Based Multimedia Indexing

(CBMI), pages 53–58, 2013. 43, 49

[46] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-

tion. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 770–778, June 2016. xiii, 12, 15, 17, 19, 75, 77, 87, 88, 94, 100

[47] A. Jalali, S. Sanghavi, C. Ruan, and P. K. Ravikumar. A dirty model for multi-

task learning. In Advances in Neural Information Processing Systems, pages

964–972. Curran Associates, 2010. 73

[48] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local descriptors

into a compact image representation. In IEEE Int. Conf. on CVRP 2010, pages

3304–3311, SF, CA, 2010. 12, 14, 33

[49] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid. Aggreg-

ating local image descriptors into compact codes. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 34(9):1704–1716, 2012. 14, 42

[50] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-

rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-

ding. arXiv preprint arXiv:1408.5093, 2014. 12, 88

[51] W. Jiang, S.-F. Chang, and A. C. Loui. Active context-based concept fusion

with partial user labels. In IEEE Int. Conf. on Image Processing, NY, 2006.

IEEE. 32, 43, 49

125



Bibliography

[52] Y.-G. Jiang, C.-W. Ngo, and J. Yang. Towards optimal bag-of-features for object

categorization and semantic video retrieval. In Proceedings of the 6th ACM Int.

Conf. on Image and Video Retrieval, CIVR ’07, pages 494–501, NY, USA, 2007.

ACM. 15

[53] Y.-G. Jiang, Z. Wu, J. Wang, X. Xue, and S.-F. Chang. Exploiting feature and

class relationships in video categorization with regularized deep neural networks.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(2):352–

364, 2018. 27

[54] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.

Large-scale video classification with convolutional neural networks. In CVPR,

2014. 27

[55] T. Kenter, A. Borisov, and M. de Rijke. Siamese CBOW: optimizing word

embeddings for sentence representations. CoRR, abs/1606.04640, 2016. 25

[56] R. Kiros, Y. Zhu, and R. Salakhutdinov et al. Skip-thought vectors. In Advances

in Neural Information Processing Systems, pages 3294–3302. Curran Associates,

2015. 25

[57] A. Krizhevsky, S. Ilya, and G. Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in Neural Information Processing Systems

(NIPS 2012), pages 1097–1105. Curran Associates, Inc., 2012. 3, 12, 15, 64

[58] A. Kumar and H. Daume. Learning task grouping and overlap in multi-task

learning. In J. Langford and J. Pineau, editors, Proc. of the 29th Int. Conf. on

Machine Learning (ICML-12), pages 1383–1390, NY, USA, 2012. ACM. 17, 19,

29, 73, 74, 78, 81, 95

[59] S. Leutenegger, M. Chli, and R. Siegwart. Brisk: Binary robust invariant scalable

keypoints. In IEEE Int. Conf. ICCV 2011, pages 2548–2555, 2011. 13, 28, 32,

34

126



Bibliography

[60] J. Li, Y. Wu, and K. Lu. Structured domain adaptation. IEEE Transactions on

Circuits and Systems for Video Technology, 27(8):1700–1713, Aug 2017. 20

[61] Y. Li, M. Yang, and Z. Zhang. Multi-view representation learning: A survey

from shallow methods to deep methods. CoRR, abs/1610.01206, 2016. 20

[62] D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int.

Journal of Computer Vision, 60(2):91–110, 2004. 7, 12, 28, 32

[63] Y. Lu, W. Zhang, K. Zhang, and X. Xue. Semantic context learning with large-

scale weakly-labeled image set. In Proceedings of the 21st ACM Int. Conf. on In-

formation and Knowledge Management, CIKM ’12, pages 1859–1863, NY, USA,

2012. ACM. 17, 23

[64] Y.-J. Lu, H. Zhang, and M. de Boer et al. Event detection with zero example:

Select the right and suppress the wrong concepts. In ACM Int. Conf. on Multi-

media Retrieval (ICMR), ICMR ’16, pages 127–134, NY, USA, 2016. ACM. 24,

30

[65] Q. Luo, S. Zhang, T. Huang, W. Gao, and Q. Tian. Superimage: Packing

semantic-relevant images for indexing and retrieval. In Proceedings of Interna-

tional Conference on Multimedia Retrieval, ICMR ’14, pages 41–48, NY, USA,

2014. ACM. 17, 23

[66] S. Maji, A. Berg, and J. Malik. Classification using intersection kernel sup-

port vector machines is efficient. In IEEE Conference on Computer Vision and

Pattern Recognition, 2008. CVPR 2008., pages 1–8, 2008. 15

[67] F. Markatopoulou and A. M. et al. Iti-certh participation to trecvid 2016. In

TRECVID 2016 Workshop, Gaithersburg, MD, USA, 2016. 24, 30, 110

[68] F. Markatopoulou, V. Mezaris, and I. Patras. Cascade of classifiers based on

binary, non-binary and deep convolutional network descriptors for video concept

127



Bibliography

detection. In Proc. of the IEEE Int. Conf. on Image Processing (ICIP 2015),

pages 1786–1790, 2015. 56, 64

[69] F. Markatopoulou, V. Mezaris, and I. Patras. Deep multi-task learning with la-

bel correlation constraint for video concept detection. In Proc. of the Int. Conf.

ACM Multimedia (ACMMM 2016), pages 501–505, Amsterdam, The Nether-

lands, 2016. ACM. 17, 20, 23, 29, 30, 73, 74, 94, 96, 100

[70] F. Markatopoulou, V. Mezaris, and I. Patras. Online multi-task learning for

semantic concept detection in video. In Proc. of the IEEE Int. Conf. on Image

Processing (ICIP 2016), pages 186–190, Sept 2016. 17, 19, 29, 94, 96, 100

[71] F. Markatopoulou, V. Mezaris, N. Pittaras, and I. Patras. Local features and

a two-layer stacking architecture for semantic concept detection in video. IEEE

Transactions on Emerging Topics for Computing, 3:193–204, 2015. 17, 94, 95,

96, 100

[72] F. Markatopoulou et al. ITI-CERTH participation to TRECVID 2013. In

TRECVID 2013 Workshop, Gaithersburg, MD, USA, 2013. 1, 43

[73] V. Mezaris, P. Sidiropoulos, A. Dimou, and I. Kompatsiaris. On the use of visual

soft semantics for video temporal decomposition to scenes. In IEEE Int. Conf.

on Semantic Computing (ICSC), pages 141–148, 2010. 1

[74] V. Mezaris, P. Sidiropoulos, and I. Kompatsiaris. Improving interactive video

retrieval by exploiting automatically-extracted video structural semantics. In

IEEE Int. Conf. on Semantic Computing (ICSC), pages 224–227, 2011. 1

[75] T. Mikolov, I. Sutskever, and K. Chen et al. Distributed representations of words

and phrases and their compositionality. In 26th Int. Conf. on Neural Information

Processing Systems, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates.

25, 107

128



Bibliography

[76] H. Mousavi, U. Srinivas, V. Monga, Y. Suo, M. Dao, and T. Tran. Multi-task

image classification via collaborative, hierarchical spike-and-slab priors. In Proc.

of the IEEE Int. Conf. on Image Processing (ICIP 2014), pages 4236–4240, 2014.

17, 18

[77] G. Nasierding and A. Z. Kouzani. Empirical Study of Multi-label Classification

Methods for Image Annotation and Retrieval. In 2010 Int. Conf. on Digital

Image Computing: Techniques and Applications, pages 617–622, China, 2010.

IEEE. 41

[78] C. Nguyen, H. Vu Le, and T. Tokuyama. Cascade of multi-level multi-instance

classifiers for image annotation. In KDIR’11, pages 14–23, 2011. 16, 29

[79] M. Norouzi, T. Mikolov, and S. B. et al. Zero-shot learning by convex combin-

ation of semantic embeddings. CoRR, abs/1312.5650, 2013. 5, 24, 25, 30, 107,

110

[80] G. Obozinski and B. Taskar. Multi-task feature selection. In Proc. of the 23rd Int.

Conf. on Machine Learning (ICML 2006). Workshop of Structural Knowledge

Transfer for Machine Learning, Pittsburgh, Pennsylvania, 2006. 17, 18

[81] W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human pose

estimation. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 0:2337–2344, 2014. 19, 20

[82] P. Over et al. Trecvid 2013 – an overview of the goals, tasks, data, evaluation

mechanisms and metrics. In Proceedings of TRECVID 2013. NIST, USA, 2013.

xiv, 21, 25, 26, 44, 51, 64, 86, 87, 90, 99

[83] N. Pittaras, F. Markatopoulou, V. Mezaris, and I. Patras. Comparison of Fine-

Tuning and Extension Strategies for Deep Convolutional Neural Networks. In

Proc. of the 23rd Int. Conf. on MultiMedia Modeling (MMM 2017), pages 102–

129



Bibliography

114, Reykjavik, Iceland, 2017. Springer. xiii, xvii, 5, 15, 73, 75, 77, 80, 87, 89,

91, 94, 95, 97, 98, 100, 109

[84] G.-J. Qi et al. Correlative multi-label video annotation. In 15th Int. Conf. on

Multimedia, pages 17–26, NY, 2007. ACM. 17, 23

[85] G. Qiu. Indexing chromatic and achromatic patterns for content-based colour

image retrieval. Pattern Recognition, 35:1675–1686, 2002. 14

[86] J. Read. A pruned problem transformation method for multi-label classification.

In 2008 New Zealand Computer Science Research Student Conference (NZC-

SRS), New Zealand, 2008. 40, 43

[87] B. Romera-Paredes and P. H. Torr. An embarrassingly simple approach to zero-

shot learning. 32nd Int. Conf. on Machine Learning (ICML), 2015. 24, 30

[88] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternat-

ive to SIFT or SURF. In IEEE Int. Conf. on Computer Vision, pages 2564–2571,

2011. 12, 13, 28, 32, 34

[89] O. Russakovsky, J. Deng, and H. S. et al. ImageNet Large Scale Visual Recogni-

tion Challenge. Int. Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

27, 87, 109

[90] B. Safadi, N. Derbas, A. Hamadi, M. Budnik, P. Mulhem, and G. Qu. LIG at

TRECVid 2014 : Semantic Indexing tion of the semantic indexing. In TRECVID

2014 Workshop, Gaithersburg, MD, USA, 2014. 12
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